
Mattia Sarti

Machine learning techniques for real-time
collision detection in a wheeled mobile robot

Master’s thesis in Reliability, Availability, Maintainability and Safety
Supervisor: Shen Yin
Co-supervisor: Lippi Marco, Xingheng Liu
October 2023

Norwegian University of Science and Technology
Faculty of Management Engineering
Department of Mechanical and Industrial Engineering

ABSTRACT

This thesis focuses on the application of various machine learning (ML) techniques to
improve the overall dependability of a wheeled mobile robot (WMR) control during a
real-time simulation.
The whole system consists on a WMR, provided by the company ’Quanser’, and a related
ground station that represents a Digital virtual twin of the device, which aims to control
the real-time simulation of the robot.
The control model of the WMR had already been developed in Simulink, where it was
possible to immediately carry out various experiments in order to gain some insights into
possible improvements to make the whole system safer and more reliable, which is the
aim of this work.

This was done by first extracting a large dataset containing all the signals that occurred
during the simulation. After analyzing the data, different ML models were developed in
Python that were able to identify collisions and their duration. At the end of this step,
the ML model with the highest score was selected and, as a result, a neural network
model was identified as the best one.
The neural network was then exported to the robot’s Simulink Digital twin, allowing the
model’s performance to be verified in real-time during the simulation.

The main objective of this work was to prevent the robot from malfunctioning and to
enable the bumper to react appropriately even in such situations.
Since it makes sense that the sensors would lose their ability to work properly after a
certain period of time, the ML models developed aim to work in a real-time simulation
in parallel with the standard model, which includes the output of the sensors, in order
to make the device more resistant to sudden failures and able to act as if these failures
were not occurring.
In industrial applications, the robot’s sensors may stop working as they should, causing
downtime and potential hazards to nearby workers.
In this way, it was possible to make the robot’s bumper sensors more reliable and safer,
behaving as if they were not affected by these faults, making the system more flexible
and durable.

The final results clearly show how the application of ML algorithms in the field of robot
control can lead to significant improvements in safety and reliability.

i

CONTENTS

Abstract i

Contents iii

Abbreviations iv

1 Introduction 1
1.1 Hardware information . 1
1.2 Motivation . 2
1.3 Project Description . 3

2 Theory 5
2.1 Motion models of Qbot 2e . 5

2.1.1 Kinematic model . 5
2.1.2 Dead reckoning model . 7

2.2 Bias and Variance . 7
2.3 Decision tree . 10

2.3.1 Algorithmic framework for Decision Trees 11
2.3.2 Information Gain . 12
2.3.3 Gini Index . 13
2.3.4 Pre-pruning and post-pruning . 16

2.4 Logistic Regression . 17
2.4.1 LR Model . 17

2.5 Methods based on Bayes techniques . 21
2.6 Support vector machine . 23

2.6.1 Maximal margin hyperplane . 23
2.6.2 Soft margin hyperplane . 25
2.6.3 Kernel machines . 26

2.7 KNN . 28
2.8 Artificial neural network . 30

2.8.1 Structure . 30
2.8.2 Model training and backpropagation 32
2.8.3 Model boosting . 33

ii

CONTENTS iii

3 Methods 35
3.1 Drone experiment . 35
3.2 Experiment description . 36
3.3 ANN Architecture . 43
3.4 ANN Enhancement . 44

4 Results and Discussion 47
4.1 Offline results . 47

4.1.1 Timeseries problem . 47
4.1.2 Best ML model . 50

4.2 Online results . 52

5 Conclusions 56
5.1 Conclusion . 56
5.2 Model limitation . 56
5.3 Future work . 57

5.3.1 Explainable neural network . 57
5.3.2 Sensor fusion . 58

References 59

Appendices 63

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• ANN Artificial neural network

• DT Decision Tree

• KNN K-nearest neighbors

• LR Logistic Regression

• ML Machine learning

• NB Naive Bayes

• SVM Support vector machine

• WMR Wheeled mobile robot

• XNN Explainable neural network

iv

CHAPTER

ONE

INTRODUCTION

1.1 Hardware information
Contemporary research is placing a significant emphasis on mobile robots due to their po-
tential utility across a spectrum of challenging environments. These environments include
agriculture and harvesting, household chores, and medical applications. The fundamental
technologies underpinning these applications encompass sensory-enhanced remote control
of mobile robots, the ability for self-localized autonomous navigation, obstacle avoidance,
and intelligent decision-making for task execution, [1].
The effective use of these methods relies heavily on a range of sensors, including rotary
encoders to determine the robot’s position, range finders to help avoid obstacles and vi-
sion systems to recognise visual patterns [2].
Investigations into mobile robots and their sensor technologies have become an essential
component of automation research.
The evolution of control algorithms for mobile robots necessitates the availability of a
well-suited robotics platform furnished with the requisite sensors.
To address this challenge, the company "Quanser" has introduced a mobile robot control
framework that uses MATLAB Simulink interactive graphical environment alongside a
versatile collection of customizable block libraries, [3]. This work involves the kinematic
and dynamic control of the WMR called "Qbot 2e".

Figure 1.1.1: Visualization of Qbot 2e

1

CHAPTER 1. INTRODUCTION 2

The work is based on a system consisting of the WMR "Qbot 2e" and an associated
accurate digital virtual twin of it that behaves in the same way as the physical hardware
and can be measured and controlled using MATLAB/Simulink and other development
environments.
In Table 1.1.1 it is possible to see the details about the device that we worked with, [4].

Characteristic Value
Diameter 35 cm
Height (with Kinect
mounted)

27 cm

Maximum linear speed 0.7 m/s
Available payload 4.5 kg
Battery life Maximum 3 hours
On-board computer Raspberry Pi™ with integrated WiFi
Camera resolution 640 x 480
Depth sensing 11 bit
Depth sensor range 0.5 - 6 m
On-board sensors 3 digital bump sensors

2 wheel encoders
2 digital wheel drop sensors
3 digital buttons
3 cliff sensors
2 over current sensors
1 3-axis gyroscope
1 battery voltage sensor
2 analog motor current sensors
1 Kinect RGBD sensor
1 Z-axis angle measurement (heading)
1 charger
2 multi-color programmable LEDs

Additional I/O channels
available

28 reconfigurable digital I/O channels, includ-
ing:
1 SPI bus channel
1 I2C serial bus channel
2 PWM output channels
1 UART serial port (interface 3.3 V serial device)

Table 1.1.1: QBot 2e specifications

1.2 Motivation
In recent trends, Artificial Intelligence (AI) is used for the creation of complex automated
control systems. Learning ability in robotics has recently experienced significant hurdles
as a result of the theoretical advancement at the boundary between optimization and
ML, even though the latter has long been recognized as a core technique in the many
domains of robotics. In fact, it has been shown that combining ML and optimization can
significantly improve decision-making quality and learning capacity in decision systems,
[5].
The development of autonomous mobile systems, in particular WMRs, has recently accel-

CHAPTER 1. INTRODUCTION 3

erated due to their widespread use in many industries. These device are used in situations
where operational safety and efficiency are critical, such as warehouse logistics and au-
tonomous cars, [6].
Traditional collision detection systems often use static sensor thresholds and predefined
rules, which limits their ability to react to changing circumstances. On the other hand,
the use of ML algorithms offers a promising way to improve collision detection and pre-
diction capabilities.
Additionally, the successful implementation of ML-driven collision methods in WMRs not
only enhances safety but also contributes to their overall autonomy and efficiency, [7].
This research addresses a critical need in the field of robotics and autonomous systems,
where real-world applications demand sophisticated, data-driven solutions for ensuring
the seamless operation of WMRs.
Consequently, the primary motivation for this work lies in the potential to exploit the
power of ML in order to create intelligent and adaptive collision detection systems for
WMRs.
By retrieving dataset consisting of signals that occurred during many simulations and
then training ML models on these dataset, we aim to develop algorithms that can work
in parallel with the default model which are capable of learning complex patterns and
making real-time decisions to increase the reliability of the system, making it more flexi-
ble, durable and cost-saving.

1.3 Project Description
The core problem we are addressing is the improvement of real-time bumper control for
WMRs, with a particular focus on scenarios where traditional sensor-based approaches
may fall short. We aim to develop solutions that enable the robot to respond effectively
in the face of sensor failures that cause poor performance.
Our research objectives include the development and implementation of ML algorithms
that aims to predict the exact moment of collision and the right duration of it during the
real-time simulation.
In addition, we aim to create a system that allows for a seamless transition between
sensor-based control and ML-based control, making the WMR more resilient and able to
adapt over time.
The work began with the extraction of the dataset, including all the signals coming from
the robot during each simulation. Later the dataset was used to build a ML models on
Python, with different methods in order to obtain the best score from the final model
prediction based on the test set.
Since the best model turned out to be an Artificial neural network, (ANN), the goal
of this step was to transfer the trained ANN model to the Qbot Digital twin Simulink
model, so that the ML model could also perform in real-time, which is the purpose of
this work.
This made it possible to create an algorithm that works in parallel with the standard Qbot
model, with the aim of replicating the same behaviour of the bumper sensors throughout
the simulation.
Finally, it was necessary to modify the Qbot Simulink model to make the ML model
suitable for this software, adding various blocks to shape and modify the standard Digital

CHAPTER 1. INTRODUCTION 4

twin model.
Lastly we will discuss different logic and methods used to achieve our purpose and further
potential improvements on this scenario.

CHAPTER

TWO

THEORY

2.1 Motion models of Qbot 2e

2.1.1 Kinematic model

The kinematic controller is a Lyapunov based nonlinear feedback control, where the con-
trollers are implemented on the system hardware using QUARC, a MATLAB-Simulink
based software, [8]. The kinematic control model has a forward velocity vc and the an-
gular velocity ωc as the control inputs and the error in position as the output. The goal
of the kinematic controller is to drive the error to zero.

vc =
νL + νR

2
(2.1)

ωc = θ̇ =
νR − νL

d
(2.2)

Where d is the distance between the left and right wheels, θ is the heading angle of the
robot, νL is the left wheel velocity, and νR is the right wheel velocity. The purpose now is
to explain the motion of a mobile robot with a two-wheel differential drive in a Cartesian
frame. It is necessary to build two coordinate systems in order to explain how the mobile
robot will travel. The first one is a global coordinate frame, where the origin is a point in
a two-dimensional plane; the second is a local coordinate frame, where the origin is the
centroid of the robot.

Figure 2.1.1: Quanser QBot 2e Mobile Platform Reference frame definition, [8]

5

CHAPTER 2. THEORY 6

The robot’s posture q is defined by the following position vector.

q = [x y θ]T (2.3)

By taking the derivative of posture and mapping the robot’s linear and angular velocities,
νC and νC , to its cartesian frame, the kinematic model can be stated as follows:

q̇ =

χ̇ẏ
θ̇

 =

cosθ 0
sinθ 0
0 1

[vc
ωc

]

From equation previous above, it is then reasonable to conclude that the trajectory can
be controlled by adjusting the linear velocity and angular velocity of the Qbot, [8]. The
use of a local frame of reference is implicit in the construction of the kinematics model
discussed above. In other words, rather of using the global frame that would be utilized in
an environment map, the chassis speed, νC , is stated in the forward/backward (heading)
direction of the robot chassis. since the robot chassis heading changes when the angular
rate is non-zero, ωC = θ̇, it is necessary to apply a transformation to the differential drive
kinematics model in order to compute the robot chassis motion with respect to the global
reference frame. The needed transformation for a robot with a heading of is the rotation
matrix shown below:

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (2.4)

This transformation maps motion expressed with respect to the robot chassis local frame
to the corresponding motion in the global frame, [9]. Defining state vector, S, as the
position, x and y, and the heading, θ, of the robot chassis. Its definition and rate of
change are given as follows:

S =

xy
θ

 , Ṡ =

ẋẏ
θ̇

 (2.5)

The x and y axis lie in the ground plane where the robot primarily travels in. The heading
θ is measured about the vertical z axis, which is defined as positive pointing upwards.
The heading is zero, (θ = 0), when the robot chassis’ forward direction aligns with the
global x axis. The rate of change of the states can be expressed in terms of the robot
chassis speed, νC , and angular rate, ωC as follows, [9]:

Ṡ =

ẋẏ
θ̇

 = R

vC0
ωC

 =

vC cos θ
vC sin θ
ωC

 =

1
2
(vR + vL) cos θ

1
2
(vR + vL) sin θ
1
d
(vR − vL)

 (2.6)

Eventually, equation 2.6 represents the forward kinematics model for the QBot 2e that
computes the linear speed, ẋ and ẏ, and turning rate, ωC , of the robot chassis given its
heading, θ, and wheel speed, νR and νL.
Regarding the Dynamic control, it provides a more comprehensive representation of a
robot’s behavior, it takes into account also the external forces and toques applied to the
robot and then describes how it will respond to various forces and moments applied to
it.

CHAPTER 2. THEORY 7

In comparison to the kinematic model, the dynamic model is more difficult to formulate
and solve since it necessitates a thorough comprehension of the physical characteristics
and rules of motion of the robot. It does, however, give a more accurate picture of how
the robot would perform in dynamic circumstances and while interacting with the en-
vironment. It is essential for applications where precise control, high-speed motion, or
interactions with the environment are critical, such as this device.
In summary, the kinematic model simplifies the robot’s behavior by focusing on mo-
tion and position, while the dynamic model provides a more complete representation,
considering forces and torques.

2.1.2 Dead reckoning model

Dead reckoning is the procedure for obtaining the location based on the previous known
position, [10].
It refers to a method of estimating the current or future position of a robot or vehicle
based on its previously known position and measurements of its speed and direction of
travel.
It is used in robotic applications in order to reduce the need for sensing technology,
such as some specific sensors, GPS, or the placement of some linear and rotary encoders
in an autonomous robot, [11]. Dead reckoning is then a navigation method based on
measurements of distance traveled from a known point used to incrementally update the
robot pose. This leads to a relative positioning method, which is simple, cheap and easy
to accomplish in real-time, [12].
WMR frequently estimate their position from odometric data, which is the use of data
from motion sensors to estimate change in position over time.
The Qbot has rotatory encoders, which is is an electro-mechanical device that converts
the angular position or motion of an axis into analogue or digital output signals, [13].
Odometric data is then used by a robot from its encoders to retrieve some estimations.
The results of these measurements were then used for the robot’s odometric localization
where the pose at time instant t in the global reference frame was obtained by integrating
equation 2.6 over the interval from 0 to t, [14]:x(t)y(t)

θ(t)

 =

∫ t

0

1
2
(vR + vL) cos θ

1
2
(vR + vL) sin θ
d
2
(vR − vL)

 dt (2.7)

This pose will then be used to control the robot in such a way that it moves along the
planned path.

2.2 Bias and Variance
In order to understand the goodness of a ML model it is important to understand pre-
diction errors, bias and variance.
The term "bias" refers "any basis for choosing one generalization hypothesis over another,
other than strict consistency with the observed training instances, [15]".
According to [16], in statistics the term "bias" is the persistent or systematic error that
the learning algorithm is expected to make on training sets, when is trained.
Building a ML model there is always a trade off problem between the model’s ability to

CHAPTER 2. THEORY 8

minimize bias and variance at the same time, which is related to the concepts of under-
fitting and overfitting.
Since a ML model try to approximate the exact formula that describes the relationship
among the predictors, roughly speaking bias and variance could been also seen as the
inability to capture the true relationship and the fitting difference over data between
training and test set, respectively.
Models with high variance focus a lot on training data and does not generalize on the test
set which it has not seen before. As a result, these models perform very well on training
set but has high prediction error on predicting over the test set.
Then, bias and variance are defined as follows:

Bias(ŷ) = E[ŷ]− y (2.8)

V ariance(ŷ) = E[(E[ŷ]− ŷ)2] (2.9)

It is possible to see the limit of a ML model mathematically by [17]:

(y − ŷ)2 = (y − E[ŷ] + E[ŷ]− ŷ) (2.10)

Applying the expectation operator on both sides, the left term becomes the Mean Square
Error (MSE) while the right-hand side of the equation develops as follows:

MSE = E[(y − ŷ)2] (2.11)
= E[(y − E[ŷ] + E[ŷ]− ŷ)2] (2.12)
= E[(y − E[ŷ])2] + E[(E[ŷ]− ŷ)2] + 2E[(y − E[ŷ])(E[ŷ]− ŷ)] (2.13)
= E[(y − E[ŷ])2] + E[(E[ŷ]− ŷ)2] + 2E([y − E[ŷ])(E[ŷ]− E[ŷ]) (2.14)
= (y − E[ŷ])2 + E[(E[ŷ]− ŷ)2] + 0 (2.15)

Since the expected value of a constant is simply the constant itself and E[−E[ŷ]] = −E[ŷ]
it is possible to simplify the first term.
Instead, the third term goes to zero.

MSE = (y − E[ŷ])2 + E[(E[ŷ]− ŷ)2] + 0 (2.16)
MSE = Bias2 + V ariance+ ϵ (2.17)

Where:

• y represents the actual data point.

• ŷ represents the predicted data point after having fitted the model.

• ϵ measures the irreducible error that comes from every model prediction (included
in ŷ), which is the error that can’t be reduced by creating good models. It is a
measure of the amount of noise in the data.

Consequently the purpose is to build a ML model that aims to minimize error that will
be present, due to the noise of the data and the limits of the model.
Minimizing the Total Error means that the complexity of the model should be stopped
after a while during the fitting, over the training set.
The model complexity is defined as a measure of how accurately a ML model can predict
unseen data, as well as how much data the model needs to see in order to make good

CHAPTER 2. THEORY 9

predictions.
Then model complexity is important because it determines how generalizable a model is,
meaning how well the model can be used to make predictions on new, unseen data, (i.e.
on the test set).

Figure 2.2.1: Total error curve that shows its minimum as a balance between Bias and
Variance, which is the point where the model should be stopped to train
The region at the left of the exact Model Complexity (dotted line) is called ’Underfitted’
while the region at the right is known as ’Overfitted’.

Without falling in Overfitting, there are different techniques that could be used in order
to obtain a good learning for the model, such as:

• Use early stopping: Early stopping is a technique that is adapt to prevent overfit-
ting. It involves training the model until the validation error starts to increase and
then stopping the training process. This ensures that the model does not continue
to fit the training data after it has started to overfit.

• Use k-fold cross-validation: Cross-validation is a technique that can be used to
reduce overfitting by splitting the data into multiple sets and training on each set
in turn.
This approach involves randomly dividing the set of observations into k groups, or
folds, of approximately equal size.
While the kth fold is treated as a validation set, the model is trained on the re-
maining k − 1 folds. This process is applied k times every time with a different k
fold as a validation set.
This allows the model to be trained each time on different data and prevents it
from being overfitted to a particular set of data.
The k results of a k-fold cross-validation are often summarized with the mean of
the model skill scores.

CHAPTER 2. THEORY 10

• Monitor the performance of the model as it is trained and adjust the parameters
accordingly.

2.3 Decision tree
A Decision tree (DT), is a supervised ML algorithm that is used for both classification
and regression tasks.
The mechanism behind decision trees is that of a recursive classification procedure as a
function of explanatory variables and supervised by the target variable. Moreover, this
mechanism sees a recursive splitting of the initial sample alongside one variable at the
time into two or more subsamples, [18].
The main idea is to start by splitting the variable which is more able to explain the re-
sponse, setting it as the root of the tree. Then, in the same way, it continues by splitting
recursively each subsample, called node, into smaller nodes alongside single variables and
according to threshold values that identify two or more branches.
Finally, when a node is no longer split into further nodes (either because a stopping
criterion is reached or because it is no longer useful for the evaluation), the actual node
becomes a leaf of the tree, which represents the class of the sample or a value, if it is a
regression problem.
The leaf may hold also a probability vector indicating the probability of the target.
In the simplest and most frequent case, each test considers a single attribute, such that
the instance space is partitioned according to the attribute’s value. In the case of numeric
attributes, the condition refers to a range.

Weather Temperature Humidity Wind Play

Sunny Hot High Weak No

Cloudy Hot High Weak Yes

Sunny Mild Normal Strong Yes

Cloudy Mild High Strong Yes

Rainy Mild High Strong No

Rainy Cold Normal Strong No

Rainy Mild High Strong Yes

Table 2.3.1: Table that represents the first rows of the dataset

In Table 2.3.1, the first four columns are called features and the last column is called
target or response variable. In any ML model, features variables are used to predict the
target variable.

Instances are classified by navigating them from the root of the tree down to a leaf,
according to the outcome of the tests along the path.

CHAPTER 2. THEORY 11

Figure 2.3.1: Representation of decision tree

The Figure 2.3.1 describes a DT that reasons weather a person should play tennis or not
based on the previous table. As it possible to see, a single sample is classified by simply
navigating from the root node to the leaf.
The tree complexity, which has a crucial effect on its accuracy, is explicitly controlled by
the stopping criteria used and the pruning method employed, [19].
Usually the tree complexity is measured by these of the following metrics:

• Total number of nodes

• Total number of leaves

• Tree depth

• Number of attributes used

2.3.1 Algorithmic framework for Decision Trees

Classification tree
In order to check “the goodness of splitting criterion” for evaluating how well the split-
ting is, various splitting indices were proposed, where the difference among them is the
definition of the importance of all the variables in explaining the response.
First of all it is important to define the entropy, that is the degree of uncertainty, impu-
rity or disorder of a variable and characterizes the impurity of an arbitrary class (target
variable).
So if all elements belong to a single class, then it is termed as “Pure”, and if not then the
distribution is named as "Impure", with a certain degree of impurity.
The formula of Entropy is given by:

H = −

(
n∑

i=1

pi log2 pi

)
(2.18)

Where:
H is the Entropy
pi is the proportion of the class i in the dataset
n is the total number of the classes present on the target variable

With more than one attribute taking part in the decision-making process, it is necessary
to decide the relevance and importance of each of the attributes.

CHAPTER 2. THEORY 12

Figure 2.3.2: Representation of entropy in a binary classification problem, [20]

Thus, placing the most relevant feature at the root node and further traversing down by
splitting the nodes. As we move further down the tree, the level of impurity or uncertainty
decreases, thus leading to a better classification or best split at every node.
Subsequently it possible to define some of different splitting criteria such as:

1. Information Gain

2. Information Gain Ratio

3. Gini Index

2.3.2 Information Gain

Information gain (IG), is one of the measures used to select the best attribute at each
step in growing the tree.
It is computed for each variable in the dataset where the variable that has the largest IG
is selected to split the dataset. Generally, a larger value of IG indicates a smaller entropy.
IG is calculated in this way:

IG(S, a) = H(S)−H(S|a) (2.19)

Where, [21]:
IG(S, a) is the information for the dataset S given by a random variable a.
H(S) is the entropy for the dataset S before any change.
H(S|a) is conditional entropy for the dataset after choosing a random variable a for split-
ting it into two nodes.

The IG could be seen also as the difference of the Entropy H in the dataset S before
and after the splitting of the dataset.

Note that minimizing the entropy is equivalent to maximizing the information gain.[22]
The process of selecting a new attribute (variable) and partitioning the training examples

CHAPTER 2. THEORY 13

is now repeated for each non terminal descendant node, this time using only the training
examples associated with that node.
Attributes that have been incorporated higher in the tree are excluded, so that any given
attribute can appear at most once along any path through the tree.
In most decision tree implementations, it is possible to specify a ’max depth’, that is the
number of value as a hyperparameter to limit the maximum depth of the tree. In this
case, the maximum depth is limited to the specified value, which may be less than the
number of attributes in the dataset.
In summary, the maximum depth of a decision tree can be at most equal to the number
of attributes in the dataset, but in practice it will generally be less than this value in
order to avoid overfitting and achieve a more generalised model.
Finally, IG tends to favor attributes with a large number of values because they can

potentially create many homogeneous subsets, leading to deeper and more complex trees.
According to the IG, when an attribute has many distinct values, it can lead to better
divisions in the data, resulting in more specific rules and potentially overfitting the train-
ing data.
Then the Information Gain Ratio (IGR) was introduced to provide a correction for this
bias towards attributes with many values.
It normalizes the Information Gain by taking into account the intrinsic characteristics of
the attribute, such as the number of distinct values it can take.
By doing so, it reduces the impact of attributes with many values, making the attribute
selection process more balanced.
IGR is computed as follows:

IGR(S, a) =
IG(S, a)

H(S|a)
(2.20)

It has been shown that the IGR tends to outperform simple IG criteria, both from the
accuracy aspect, as well as from classifier complexity aspects, [23].

2.3.3 Gini Index

Gini Index is a powerful measure of the randomness or the impurity in the values of a
dataset, it aims to decrease the impurities from the root nodes to the leaf nodes of a
decision tree model.
Consequently Gini index G(S), over a dataset, represents the probability of classifying a
data point imperfectly.

G(S) =
K∑
i=1

P (i) ∗ (1− P (i)) (2.21)

Where:
P (i) is the probability of picking a data point of class i, that is the proportion of examples
which belongs to that class.
1− P (i) is the probability of not picking a data point of class i.
K is the number of classes.

The Gini Index varies between 0 and 1, where 0 represents purity of the classification
where all the data points belong to one class and then there is a perfect classification, on

CHAPTER 2. THEORY 14

the other hand 1 denotes a random distribution of points among various classes.
A Gini Index between 0 and 1 indicates a certain degree of impurity.

Regression tree
In this scenario where the purpose is no longer assign labels to new data points, the goal
now is building a regression model where each leaf represents a numeric value, [18].
Here the tree stratifies or segments the predictor space into different non-overlapping
regions, known as leaves of the tree or terminal nodes.
It is possible to summarize the process in two steps:

1. Dividing the predictor space, that is the set of possible values for X1, X2, ..., Xp into
J distinct and non-overlapping regions, R1, R2, ..., RJ .

2. Every observation that falls into the region Rj, is characterized to have the same
prediction, which is simply the mean of the response values for the training obser-
vations in Rj.

Figure 2.3.3: A partition of two-dimensional feature space with different thresholds
values that results in the corresponding tree

According to [18], the process to build an optimal regression tree consists in searching
different threshold t within the predictor space X = X1, ..., Xp where the latter that has
the smallest value of RSS becomes a candidate for becoming the discriminant in order
to split the actual node. With the need of searching the boxes R1, ..., RJ the goal is to
minimize the RSS (Residual Squares Error), given by:

RSS =
J∑

j=1

∑
i∈Ri

(yi − ŷ(Rj))
2 (2.22)

Where:
yi represent the actual target point i
ŷ(Rj) is the prediction that represents the mean response for the training observations
within the jth box. R1, R2, ..., RJ represent the leaves of the tree.

CHAPTER 2. THEORY 15

Subsequently the predictor space Xp is divided into J distinct and non-overlapping re-
gions, R1, R2, ..., RJ , where every observation that falls into the region Rj , has the same
prediction, which is simply the mean of the response values for the training observations
in Rj.
Finally the process ends when one of the stopping criterion is reached, such as the number
of observations included in each box or leaf.

Since this problem is classified as NP-hard, it is computationally infeasible to consider
every possible partition of the feature space into J boxes for every step, for this reason
it is better to proceed with a greedy algorithm, which is a top down approach called
recursive binary splitting.
The recursive binary splitting approach is top-down because it begins at the top of the
tree (where at every point all observations belong to a single region) and then successively
splits the predictor space, [18].
Each split is indicated via two new branches further down on the tree. It is greedy be-
cause at each step of the tree-building process, the best split is made at that particular
step, rather than looking ahead and picking a split that will lead to a better tree in some
future step.

Recursive binary splitting:

1. Consider all predictors X1, ..., Xp, and all possible values of the cutpoints t for each
of the predictors.

REPEAT:

2. For any j and t it possible to define a pair of half-planes such that:

R1(j, t) = {X | Xj < t} R2(j, t) = {X | Xj ≥ t} (2.23)

3. Cut the predictor space X with threshold t and predictor Xj searching the value of
j and t that minimize the equation below:∑

i:xi∈R1(j,t)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,t)

(yi − ŷR2)
2 (2.24)

4. Split one of the two previously identified regions with the previous process.

UNTIL(Stopping criterion is reached)

5. Found all the features regions R1, ..., RJ , for a given test observation predicts the
value using the mean of the training observations in the region to which that test
observation belongs.

CHAPTER 2. THEORY 16

2.3.4 Pre-pruning and post-pruning

The process described about how to build a DT may produce good predictions on the
training set, but is likely to overfit the data, leading to poor test set performance. This
is because the resulting tree might be too complex. A smaller tree with fewer splits (that
is, fewer regions R1, ..., RJ) might lead to lower variance and better interpretation at the
cost of a little bias.
There are 2 possible ways to prevent Overfitting:

1. Pre-pruning: the process of decision-making for every node is made during each
stage of the splitting the tree where the cross-validation error is monitored. If the
value of the error does not decrease significantly enough then the growth of the
decision tree should be stopped.

2. Post-pruning: growing a very large tree T0, and then prune it back in order to
obtain a subtree which produce better performance on the test set.

Cost complexity pruning
However post pruning on decision trees is considered more mathematically rigorous, then
one post-pruning strategy that is possible to use is called Cost complexity pruning, also
known as weakest link pruning.
After having built a beginning full tree T0 with the mechanism described previously, now
instead of considering every possible subtree in order to prune some nodes, consider a
sequence of trees indexed by a non-negative tuning parameter α.
For each value of α chosen within a sufficiently large list of candidates, it is possible to
compute the TreeScore which identifies a sequence of best subtrees, [18]:

TreeScore =

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)
2 + α|T | α = 1, ..., L (2.25)

Where:

• |T | indicates the number of terminal nodes of the tree T .

• Rm is the subset of predictor space corresponding to the mth terminal node.

• ŷRm is the mean predicted response associated with Rm.

• α acts as penalty, since controls a trade-of between the subtree’s complexity and
its fit to the training data.
Different values of α give a sequence of trees, from full sized tree (T0 with α=0), to
a tree with one leaf.
As α increases, there is a price to pay for having a tree with many terminal nodes,
on the other hand as α decreases allow the tree to have more complex and deeper
branches.

Found the scores for each tree the next step is to use k-fold cross validation where different
values of α are tested on multiple subsets of data.
Finally the value of α that minimize the average error, α⋆, is the optimal value to take
in order to build the final decision tree which has the best performance to generalize the
data (low bias and low variance).

CHAPTER 2. THEORY 17

2.4 Logistic Regression
The purpose of Logistic Regression (LR), is to determine the probability of the occurrence
of an event by exploiting many of the principles of linear regression, logistics can provide
accurate information on the probability of the occurrence of events [18].
The LR model, instead of modeling the response variable Y directly, as it would do the
Linear Regression model, aims to compute the probability that Y belongs to a particular
category.
In order to build a trustworthy model, it requires certain prior assumptions to be met.
Satisfying these assumptions is essential to ensure that the regression results are not af-
fected by bias.

• Lack of strongly influential outliers that could influence the data

• Lack of correlation between the features, i.e. multicollinearity

• Independence of the observations

• Linearity in the logit function, i.e. sigmoid function, for continuous variables

• Large enough sample to avoid overfitting

An important difference concerning these assumptions is that LR does not make many
assumptions which are, on the other hand, essential to the Linear regression, such as:

• Linear relationship between the dependent and independent variables

• Residuals (error terms) does not need to be normally distributed

• Homoscedasticity is not required, that is present when the size of the error term is
different across values of an independent variable

As regards to the last point, [24], since the Linear Regression model use Ordinary least
squares (OLS) as a technique for estimating the coefficients, the outcome gives equal
weight to all observations, but when there is a violation of homoscedasticity the cases
with larger disturbances could have a greater influence to the final result than other ob-
servations.

2.4.1 LR Model

As already mentioned LR models the probability of the response variable, using for con-
venience the generic 0/1 coding for it, where it is possible to express the conditional
probability:

P (X) = P (Y = 1|X) (2.26)

Since the purpose now is to model the relationship between the above equation, would
not be consistent to adopt a straight line to fit a binary response that is coded as 0 or 1,
the consequence is that in this case predict P(X) < 0 for some values of X and P(X) > 1
for others. To avoid this problem, it is better to model P(X) using a function that gives
an output between 0 and 1 for all values of X.

CHAPTER 2. THEORY 18

Figure 2.4.1: Logistic function that returns a probability to classify a new data point

Many functions meet this description. For reproducing the shape of a S-curve, in logistic
regression it is common to use the logistic function, known also as a sigmoid function:

p(X) =
eβ0+β1X

1 + eβ0+β1X
(2.27)

To fit this model there is a method called maximum likelihood, which aims to compute
the best coefficients in order to give to the new data points the best logistic function
resulting from the method.
In this scenario, the y-axis is confined to probability values between 0 and 1 and since
during the fitting it is preferable to have a list of values in order to have a meaningful
outcome, then it’s more convenient to do a bit of manipulation to the previous equation,
that becomes:

p(X)

1− p(X)
= eβ0+β1X (2.28)

The quantity p(X)
1−p(X)

is called odds, and can be any value between 0 and ∞. Always
keeping in mind that the assumption started with the equation 2.28, if the value is close
to 0 indicate very low probabilities of the response variable otherwise a value close to ∞
means an high probability of the outcome.
By taking the natural logarithm of both sides of (3.18), resulting in:

log(
p(X)

1− p(X)
) = β0 + β1X (2.29)

The left term is called logit and the 2.29 equation is helpful because the logit transforma-
tion produces a linear function of the parameters β0, ..., βn, (where the extended formula
is: β0 + β1X1 + ...βnXn), in addition the range of values logit is between −∞ and +∞
which makes it more appropriate for fitting the model.

CHAPTER 2. THEORY 19

Figure 2.4.2: Transformation of the y-axis from the probability to log(odds)

Since the fitting process needs to project the data points onto a straight line in order to
compute a log(odd) value, the picture above 2.4.2 shows the y-axis transformation, which
pushes the data points to +∞ and -∞, in such a way as to find the best fitting line for
the LR model, which eventually will correspond to the best S-curve.

According to [25], the process to choose the best logistic function and then to find the
best parameters starts from defining the likelihood function:

p(y1, ..., yn) =
n∏

i=1

p(Xi)
yi(1− p(Xi))

1−yi (2.30)

Now, since p(Xi)
1−p(Xi)

= e(β0+β1Xi) and 1 − p(Xi) = 1
1+e(β0+β1Xi)

the equation 2.30 can be
expressed as:

p(y1, ..., yn) = L(β0, β1) =
n∏

i=1

e(β0+β1Xi)
yi (

1

1 + e(β0+β1Xi)
) (2.31)

Keeping in mind that p(Xi) =
e(β0+β1Xi)

1+e(β0+β1Xi)
and computing the derivative of log-likelihood

function with respect to β0 and β1 respectively, gives the following equations:

∂l(β0, β1)

∂β0

=
n∑

i=1

yi −
e(β0+β1Xi)

1 + e(β0+β1Xi)
= 0 (2.32)

∂l(β0, β1)

∂β0

=
n∑

i=1

(yi − p(Xi)) = 0 (2.33)

∂l(β0, β1)

∂β1

=
n∑

i=1

yiXi −Xi
e(β0+β1Xi)

1 + e(β0+β1Xi)
= 0 (2.34)

∂l(β0, β1)

∂β1

=
n∑

i=1

Xi(yi − p(Xi)) = 0 (2.35)

CHAPTER 2. THEORY 20

Finally, starting from the equations 2.33 and 2.35 it possible to compute the optimal
parameters. Since finding solutions to these equations is analytically difficult, then it is
preferable to use the numerical iteration method called Newton Raphson, which will not
be treated in this work but it can be found in the article [26].

Figure 2.4.3: Different values of beta0 in
the logistic function

Figure 2.4.4: Different values of beta1 in
the logistic function

This two pictures show how the logistic regression fitting works, by varying the value of
the parameters also varies the curve which results every time in different logistic functions.
Once found the optimal parameters that maximize equation 2.30 then it has been found
also the resulting logistic function in Figure 2.4.5 for the actual data.

Figure 2.4.5: The green curve represents the optimal logistic function, where the red
points are the new data to which the curve aims to classify with the resulting probability

According to [27], there are many approaches to know the goodness of the fitted model.
McFadden (1973) suggested an alternative known as ’likelihood ratio index’, which con-
sists in comparing a model without any predictors to a model including all predictors.
Because a binary response variable will not be normally distributed and because the form
of the relationship to the binary variable will tend to be nonlinear it would be inconsistent
to use a normal R2 for evaluating the model. Instead, there is a pseudo R2, proposed by
Mc Fadden (1974), known also a Mc Fadden’s R2 and it is calculated as follows:

CHAPTER 2. THEORY 21

R2
M = 1− ln(LM)

ln(L0)
(2.36)

In this case L0 is the likelihood function computed for a model with no predictors (i.e.
considering the only paramter β0) and LM is the likelihood for the estimated model. L0

plays an important role analogous to the residual sum of squares in linear regression,
consequently, this formula corresponds to a proportional reduction in “error variance”.
Another similar approach concerns on the Cox and Snell formulation, [28]:

R2
C,S = 1− (

LM

L0

)2/n (2.37)

Since the equation 2.37 can be naturally extended to other kinds of regression estimated
by maximum likelihood, then it’s more appropriate to describe this as a “generalized” R2

rather than a pseudo R2. On the other hand, it has the problem with the resulting upper
bound that is less than 1.0, more specifically is 1− L

2/n
0 .

2.5 Methods based on Bayes techniques
Bayes’ theorem is of fundamental importance for inferential statistics and many advanced
machine learning models. Bayesian reasoning is a logical approach to updating the prob-
ability of hypotheses in the light of new evidence, and it therefore rightly plays a pivotal
role in science, [29]. Bayesian analysis allows us to answer questions for which frequentist
statistical approaches were not developed. In fact, the very idea of assigning a probability
to a hypothesis is not part of the frequentist paradigm, [30]
According to [18], suppose that the goal is to classify an observation into one of K classes,
where K ≥ 2. Let:

• πk representing the overall or prior probability that a randomly chosen observation
comes from the prior kth class

• fk(X) = Pr(X|Y = k) denoting the density function of X (which is now a random
variable) for an observation that comes from the kth class.

The Bayes’ theorem states that:

Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

(2.38)

Pr(Y = k|X = x) is called posterior probability that an observation X = x belongs to
the k class.
Instead of directly computing the posterior probability pk(x) as in equation [citaeqn], we
can simply plug in estimates of πk and fk(x) into 2.38. Since it possible to compute the
fraction of the training observations that belong to the kth class, then the value of πk

is straightforward. Since the density function fk(x) much more difficult to compute, it
could be estimated, based on assumptions, in three different ways, [18].

1. Linear Discriminant Analysis (LDA)

2. Quadratic Discriminant Analysis (QDA)

CHAPTER 2. THEORY 22

3. Naive Bayes

Assuming that fk(x) ∼ N and also assuming that for simplicity the problem has only
one predictor, the density function can be estimated using LDA:

fk(x) =
1√
2πσ2

k

exp

(
− 1

2σ2
k

(x− µk)
2

)
(2.39)

Where µk and σ2
k are the mean and variance parameters for the kth class. Plugging 2.39

into 2.38 it is possible to classify a single observation, according to the greatest pk(x).
With the same logic the equation 2.39 can be extended also to the case of multiple pre-
dictors, [18] where now X = (X1, ..., Xp) comes from a multivariate gaussian distribution
with a mean vector E(X) = µ and a common covariance matrix Cov(X) = Σ, (p× p):

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.40)

Once again, [18], after plugging 2.40 into 2.38 and doing a bit of manipulation, the Bayes
classifier assigns an observation to the class k for which δk(x) is the greatest, where:

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log(πk) (2.41)

Regarding QDA, it assumes that each class has its own covariance matrix, making the
final decision δk(X) different from the LDA generalized method, where:

δk(x) = −
1

2
xTΣ−1

k x+ xTΣ−1
k µk −

1

2
µT
kΣ

−1
k µk −

1

2
log |Σk|+ log(πk) (2.42)

Finally the last method for estimating the density function is called Naive Bayes.
Rather than assuming that these functions belong to a particular family of distributions
Naive Bayes makes a single assumption, [18]:
"Within the kth class, the p predictors are independent", where the density function is
given by:

fk(x) = fk1(x1)× fk2(x2)× . . .× fkp(xp) (2.43)

Since assuming that the p covariates are independent within each class, then there is no
reason to worry about the association between the p predictors, because of the assumption
that there is no association between the predictors.
One more time, plugging 2.43 into 2.38 it can be obtained an expression for the posterior
probability, computed for each class k:

pk(x) =
πk · fk1(x1) · fk2(x2) · . . . · fkp(xp)∑K
l=1 πl · fl1(x1) · fl2(x2) · . . . · flp(xp)

(2.44)

A characteristic problem with this method is that if a particular attribute value does not
occur in the training set in conjunction with every class value, then things go wrong, [31].
A simple example could be the following: suppose that the model learn from the training

CHAPTER 2. THEORY 23

set of Table 2.3.1 that the value play : rainy is always associated with the outcome No.
Then Pr[Play = rainy|Y es] = 0 because from the equation 2.43, the other probabilities
are multiplied by the final probability.
As a consequence of that, if the the test set contains this observation, which is not present
in the training set, the method would give a final probability of zero. This bug is easily
fixed by minor adjustments to the method of calculating probabilities from frequencies
with a method called Laplacian estimator.
Assuming in this scenario that the training set is so large that adding one to each count
that would only make a negligible difference in the estimated probabilities,[32] one pos-
sible solution is to smooth all probabilities upwards by a count of 1.
This is now a fully Bayesian formulation, with prior probabilities assigned to everything
in sight.
Eventually the pros and cons of adopting this method could be summarized:

• High accuracy and speed when applied to large databases.

• Simple and easy to understand algorithm, making it a good choice for rapid proto-
typing and baseline

• "Naive" assumption that features are conditionally independent. Actually, many
dataset have correlated features, and this assumption can lead to suboptimal per-
formance.

• Due to its simplicity, Naive Bayes may not capture complex relationships in the
data as effectively as more advanced algorithms, such as decision trees or neural
networks.

2.6 Support vector machine
Support Vector machines (SVM) can be defined as systems which use hypothesis space of a
linear functions in a high dimensional feature space, [33]. SVM is actually a generalization
of a simple and intuitive classifier called maximal margin classifier.

The underlying methodology is taken following [18].

2.6.1 Maximal margin hyperplane

First of all is important to define an hyperplane. In a p dimensional space, a hyperplane
is subspace of dimension p− 1.
The mathematical definition of hyperplane to p dimension is given by:

β0 + β1X1 + β2X2 + . . .+ βpXp = 0 (2.45)

Now, if a point X = (X1, ..., Xp) do not satisfy the equation 2.45, (making it greater or
less than zero) then X will not lie on the hyperplane, but on the other side of it.
A single point in the feature space belongs to a specific class, where here for simplicity
the problem is constituted from 2 classes. Each point is classified into 2 classes according
to y1, ..., yn = −1, 1.

CHAPTER 2. THEORY 24

Assuming that the hyperplane separates the n training observations perfectly according
to their labels, the separating hyperplane for i = 1, ..., n can be expressed by:

yi(β0 + β1Xi1 + β2Xi2 + . . .+ βpXip) > 0 (2.46)

Then, it is possible to compute the label of the point with sign of f(x∗) = β0 + β1X1 ∗
+β2X2 ∗+ . . .+ βpXp∗, where:

• f(x∗) > 0 the point i will belong to the class yi = 1

• f(x∗) < 0 the point i will belong to the class yi = −1

Further is f(x∗) from 0, more the point x* lies far from the hyperplane and so more the
point it is classified according to high level of confidence. Otherwise if f(x∗) is close to
zero, the point would be classified always in the same class, (if the sign of 2.46 is the same
for both), but with a low level of confidence, since it is closer to the separated hyperplane.
As the Figure 2.6.1 shows, it is possible to have various hyperplanes that perfectly splitted
the points in 2 classes, but with different values of f(x∗). As a consequence the best hy-
perplane that best divides the observations, is called maximal margin hyperplane, which
is selected according to the one which is the furthest from the training observations, as
shown in Figure 2.6.2

Figure 2.6.1: Different possible hyperplanes for n observations, [34]

CHAPTER 2. THEORY 25

Figure 2.6.2: Selecting the best hyperplanes for the observations, [34]

The analytical solution about this problem is given from the following optimization prob-
lem, where the maximal marginal hyperplane (M) is the final solution.

Maximize
β0,β1,...,βp,M

M (2.47)

subject to
p∑

j=1

β2
j = 1, (2.48)

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M ∀i = 1, . . . , n. (2.49)

2.6.2 Soft margin hyperplane

Actually, in many cases a perfect separating hyperplane does not exist, and so there is
no M that maximize a perfect potential hyperplane among others. In fact there is no
solution for this optimization problem with M>0. In addition there is also a risk that
the training data could be overfit.
For this reasons, it is preferable to introduce a tuning parameter that allows an hyperplane
that lead to a better classification in the test set. In this way it is tolerable that some
observations will end up on the wrong side of the hyperplane even though this mechanism
will result in a single classification error.
Eventually the previous optimization problem is integrated with the tolerance to accept
some misclassification error:

Maximize
β0,β1,...,βp,M,ϵ1,...,ϵn

M (2.50)

subject to
p∑

j=1

β2
j = 1, (2.51)

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M(1− ϵi) ∀i = 1, . . . , n. (2.52)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C (2.53)

Where:

• M is the width of the margin to maximize s.t. the constrains

CHAPTER 2. THEORY 26

• C is non-negative tuning parameter that determine the severity of the violations to
the margin M .
Large values of C produce a smaller margin, trying to classify more observations
correctly. On the other hand small value of C will produce a larger-margin, even if
misclassifying some points.
Then C is then chosen through a cross-validation in order to find a good balance
between the bias-variance trade-off.

• ϵ1, ..., ϵn are called slack variables that allow the observations to be on the wrong
side of the margin.

The solution for this optimization problem (support classifier problem) is given by only
the inner products of observations, more specifically:

f(x) = β0 +
n∑

i=1

αi⟨x, xi⟩ (2.54)

Because of their importance in changing the support vector classifier and so the margin
M , observations that lie directly on the margin, or on the wrong side of the margin for
their class, are known as support vectors.

Figure 2.6.3: Soft margin hyperplan in the green

2.6.3 Kernel machines

Since the last model presented is a linear model, meaning that aims to partitions the
feature space through straight lines, it so not sufficient since in many cases the relation-
ship between features and the response variable is non linear, such as many real-world
problems, as shown in Figure 2.6.4.

CHAPTER 2. THEORY 27

Figure 2.6.4: XOR problem, [35]

In order to overcome this problem, it has been introduced the Kernel machines that
extend the SVMs to the non linear case, [36].
Since the equation 2.54 has n parameters α that are different from zero only for the
points in the training set known as support vector, this equation could be written also as
follows:

f(x) = β0 +
∑
i∈S

αiK(x, xi) (2.55)

Where:

• S is the collection of indices of the support vector points

• K is some function that quantifies the similarity of two observations, known as
Kernel, such as:

Polynomial kernel: K(xi, xi′) =
(
1 +

∑p
j=1 xijxi′j

)d
, where p is the number of fea-

tures in the dataset and d is the degree of the polynomial
Radial kernel: K(xi, xi′) = exp

(
−γ
∑p

j=1(xij − xi′j)
2
)
, where γ is a positive con-

stant.

In order to a better understanding of the importance of kernel machines, the Figure 2.6.5
shows a classification .

CHAPTER 2. THEORY 28

Figure 2.6.5: Classification of Support vector machines based on a radial kernel, [37]

2.7 KNN
The k-nearest neighbors (KNN) algorithm is supervised ML algorithm, which is simple,
easy-to-implement and can be used to solve both classification and regression problems.
Then the basic idea is to assign an individual to the the population whose sample contains
the majority of classes from the k ’nearest neighbours’, [38].
In a few words, KNN algorithm classify a point based on the similarity which this point
has with the rest of population.
This concept of similarity is expressed by the distance metric, which is euclidean by
default.
The distance can be defined also in different ways. Here for simplicity these metrics refer
to a dataset with 2 features, x1, x2:

• Manhattan distance:
∑N

i=1 |x1i − x2i|

• Minkowsky distance: (
∑n

i=1 |X1i− x2i|p)
1
p , where is a parameter.

How KNN works can be better understood from a pseudo-algorithm:

1. Choose an hyper-parameter k

2. Compute the euclidean distance d from the observation point to the other N points:
d =

√
(x1obs− xi

1)
2 + ...+ (xpobs− xi

p)
2 ∀i = 1, ..., N

3. Sort in a list in ascending order the first k points according to the distances com-
puted

4. Count the votes for each class (label) among the neighbors

CHAPTER 2. THEORY 29

Figure 2.7.1: KNN Classification

5. Classify the observation point xobs = (x1obs, ..., xpobs)
T according to the class that

"gets the most votes" within the first k in the list, (if it is a regression problem, it
returns the average of the k points considered).

Since the KNN algorithm does not learn anything because it just classify a point based on
the distance, it is not defined properly as a learning algorithm. In the dataset related to
Figure 2.7.1, there are only 2 features and a target variable that is responsible to assign
a label to the point (red stars or green point here).
Always referring to this figure, it is possible to see how important the choice of K is: if
K = 3 is chosen, then the point is classified as a green point (because of the majority of
"votes" among the three points). Otherwise, if K = 5, the point is marked as a red star
for the same reason.
Since KNN method is biased by k, as it suggest [39], there are many ways to choose the
value of k, but a simple one is to use the cross-validation method, where the accuracy is
measured with a different value of k each time. In this way, the highest value of k in the
cross-validation will be the correct value to use in the test set.
Choosing the right value of k is made between these two considerations:

• small value of k means that noise and outliers will have a higher influence on the
classification, resulting in a less stable prediction

• high value of k make computationally expensive as much as the number of features
increase , being also against the basic philosophy behind the model, which aims
that the observations that are closer to the point are more likely to have similar
classes, (according to the concept of similarity based on the distance)

It is accepted that a good and simple approach, coming from a simple rule of thumb is
to select k =

√
N , where N is the number of observations in the training data.

The KNN algorithm can struggle with imbalanced data, where one class has significantly
more data points than the other, resulting in a biased classification results. From this
problem it is possible to fix this issue assigning a weight to the neighbors, based on their
distance.

CHAPTER 2. THEORY 30

In this case the data that belong to that particular class will be weighted and then
"brought closer" to the neighbors, without being affected from this unbalancing.
Choosing an even value of k could end in a tie from the labels that comes from the most
votes, in this case the best thing is to weight more the data closer the point to classify,
as mentioned above.
Eventually KNN presents the main benefits and drawbacks:

• "curse of dimensionality" in high-dimensional space, meaning that the algorithm
does not work well with an high number of features (the distance between observa-
tion will go to "collapse", making this metric not meaningful anymore)

• easy to implement

• it is no-parametric, which means it makes no assumptions about the underlying
distribution of the data. This makes it a flexible algorithm that can be used in a
wide range of applications, (has only the value k to fix from the user in advance,
called hyper-parameter).

2.8 Artificial neural network
Since the 1940s, artificial neural networks (ANN) have been the subject of active re-
search. As a component of connectionism (neural computations), ANN has progressed
significantly from the period of unrealistic expectations, through the period of disappoint-
ment in the 1970s, to the current period of widespread application of the technology, [40].
The key behind this method is the connection between biological neurons and the possi-
bilities of modelling them using logistic computations.
Many computationally challenging problems such as optimization, signal processing, im-
age recognition, prediction and classification can be solved using a neural network model,
[41].
A neural network takes an input vector of p variables X = (X1, X2, ..., Xp) and builds a
nonlinear function f(X) to predict the response variable Y , [18].

2.8.1 Structure

Neural network are composed by nodes or units, arranged in 1 or more layers, which are
connected by directed links. The layers involves the input features X, the target y and
one or more hidden layer between these two.
The activation ai is propagated from unit to unit via a link. In addition, each link has a
numerical weight ω that indicates the direction and strength of the connection, [41].
The single-layer neural network, shown in Figure 2.8.1, is a neural network composed by
three layers: one input layer (features), one output layer (target) and one hidden layer
which is between them. This architecture of neural network is also called perceptron and
can be described in two steps, [18]:

• For each unit k = 1, ..., K in the hidden layers (only one layer here), compute the
activation function Ak as a function of the input features X1, ..., Xp.

Ak = hk(X) = g(ωk0 +

p∑
j=1

ωkjXj) (2.56)

CHAPTER 2. THEORY 31

• These K activations from the unique hidden layer are then fed into the output
layer, resulting in:

f(X) = β0 +
∑
k=1

KβkAk (2.57)

Figure 2.8.1: Structure of a neural network composed by one hidden layer, [42]

The activation functions are not computed in advance, but are fixed later during the
training of the model, 2.62. Instead, the output layer uses these activations functions
linearly as inputs, resulting in a function f(X). Then, the final form of the neural
network is:

f(X) = β0 +
K∑
k=1

βkg(wk0 +

p∑
j=1

wkjXj) (2.58)

Where estimation of the parameters β0, ..., βk and ω10, ..., ωkp is required. Instead, g is a
non linear function which is described typically by a logistic function or a ReLu function
(rectified linear unit), 2.59 and 2.60 respectively.

g(z) =
ez

1 + ez
=

1

1 + e−z
(2.59)

g(z) = (z)+ =

{
K if z < 0

z otherwise
(2.60)

As a consequence of these non-linearity functions, neural network can capture non-
linearity relationship between features and target variable.
Once the mathematical model for individual "neurons" has been decided, the next task is
to is to connect them together to form a network. There are two fundamentally different
ways to do this, a recurrent network, which feeds its output back back into its own
inputs and a feed-forward network. A feed-forward network forms a directed acyclic
graph because it has connections that only point in one direction. Here there are no
loops, each node passes information from "upstream" nodes to "downstream" nodes, [18]
. Feed-forward networks are typically constructed in layers, with each unit only receives
input from units in the layer immediately before it and returns an output to all the units
in the next layer.

CHAPTER 2. THEORY 32

2.8.2 Model training and backpropagation

Eventually, given an observation (xi, yi) where xi represents an entire set of features data
x1, ..., xp and yi the response, it is possible to develop a fitting model in the following
way, [18]:

minimize
ωk,β

1

2

n∑
i=1

(yi − f(xi))
2 (2.61)

where f(xi) = β0 +
K∑
k=1

βkg(wk0) +

p∑
j=1

wkjx
2
ij (2.62)

This optimization problem is non-convex, meaning that has multiple feasible regions
and multiple locally optimal points within each region. Depending on the number of
variables and constraints, it can take an exponential amount of time to determine an
optimal solution. For this reason 2 strategies are applied to overcome this issue:

• Slow learning: Gradient descent is used to iteratively fit the model. The fitting
model is terminated when overfitting is detected.

• Regularization: in this fitting process there penalties imposed on the parameters ω
and β.

Involving all the parameters in one unique vector θ, the previous objective functions could
be rewritten as:

R(θ) =
1

2

n∑
i=1

(yi − fθ(xi))
2 (2.63)

Figure 2.8.2: Gradient descent problem

The Figure 2.8.2 refers to the non-convex optimization problem of the gradient descent,
which aims to find the global minimum taking as few steps as possible, resulting in an
acceptable computation time.
At this time it essential to introduce the concept of Backpropagation, it is a process
involved in training or fitting a neural network. It aims to take the value of the objective
function (i.e. error of prediction) trying to minimize it for each iteration, called also
epoch.
During the forward propagation the algorithm feed this loss backward through the neural
network layers to fine-tune the weights, making the model more reliable increasing its
generalization.
The idea behind this method is to find a direction of θ which brings the objective function

CHAPTER 2. THEORY 33

to its global minimum, even tough is not guaranteed.
The local minimum point is that particular point where the all parameters needed for
building the objective function, and so the neural network, assume their best value in
order to make the final prediction.
This is made computing the direction where R(θ) increases most rapidly and then to move
θ in the opposite direction, where m here represents his value after a single iteration, [18]:

∇R(θm) =
∂R(θ)

∂θ

∣∣∣∣∣
θ=θm

(2.64)

Since R(θ) =
∑n

i=1Ri(θ) then:

Ri(θ) =
1

2

n∑
i=1

(
yi − β0 −

K∑
k=1

βkgk(wk0 −
p∑

j=1

wkjxij)

)2

(2.65)

Where it could be simplified using zik = wk0 −
∑p

j=1 wkjxij:

Ri(θ) =
1

2

n∑
i=1

(
yi − β0 −

K∑
k=1

βkgk(zik

)
)2 (2.66)

Eventually, applying the differentiation respect to both parameters β, ωkj will result in
the best direction of θ to reach the local minimum point:

∂Ri(θ)

∂wkj

= −(yi − fθ(xi)) · βk · g(zik) · xij (2.67)

∂Ri(θ)

∂βk

= −(yi − fθ(xi)) · g(zik) (2.68)

2.8.3 Model boosting

As already mentioned, the purpose gradient descent algorithm is to move θ from the
previous point θm towards the peak of the objective function, but oriented in the opposite
direction, −∇R(θm). Then the this iterative method to find global minimum point can
be expressed as:

θm+1 = θm − ρ∇R(θm) (2.69)

Where ρ is an hyper parameter called learning rate which acts as a "boost" to help the
function to find its global minimum, but tuning ρ is not so straightforward since:

• low value of ρ lead to going deeper into one of the local minimum points, but with
the risk that it may be difficult to "get out". In this way there more possibilities to
find best suitable points nearby, but the method could be trapped in one of these
local minimum points with the risk of overfitting the training data.

• high value of ρ on the other hand aims to find the global minimum point by trying
to search in a larger feasible region, thus having more possibilities to explore more
points of the solution space, but with the risk of "skipping" some local minimum
points.

CHAPTER 2. THEORY 34

Another hyper parameter regarding the implementation, is called batch size. Batch size
refers to the number of examples from the training dataset used in the estimate of the
error gradient and so the number of samples that will be propagated through the network.
Since it captures the accuracy about the descending gradient method, it is possible to
select among three different configurations about it, [43]:

• Batch gradient descent, where the batch size is the total number of observations in
the training set.

• Minibatch gradient descent, where the batch size is set between one and the total
number of examples in the training dataset. In this way the sample of a small
fraction is representative to compute the gradient step. Its efficiency is better than
the previous option since it does not store all training data in memory.

• Stochastic gradient descent, where the batch size considers only one random obser-
vation which is going to fit the loss function, (objective function in the optimization
problem). The weight updates process is fast, but since it varies from one obser-
vation to another, it presents huge oscillations and then it is hard to retrieve the
global minimum point, [44].

CHAPTER

THREE

METHODS

3.1 Drone experiment
During the work in the lab we have been provided, always from "Quanser" by a drone
called ’Qdrone 2’, showing in Figure 3.1.1.

Figure 3.1.1: QDrone 2

The experiments with it were forced to conclude since we realised that the drone presented
some failures at one oh his propeller engine, making the device unstable at every run of
the experiment making us lose his control, as shown in Figure 3.1.2 and 3.1.3.
In Figures 3.1.2, 3.1.3 we can see the Roll, pitch and yaw angles, that are terms commonly
used in aviation, aerospace and robotics to describe the rotational movements of an object.
Unfortunately in this very short simulation with, lasting just a few seconds, the drone
started to lose his controls after its take off. Eventually, as soon as we realised the risk
of the simulation, the experiment was immediately stopped.

35

CHAPTER 3. METHODS 36

Figure 3.1.2: Roll pitch and yaw degrees during the simulation

Figure 3.1.3: Gyroscope sensors during the simulation

3.2 Experiment description
Firs of all, the software that has been used from the company to develop and inte-
grate the robot is called "QUARC". QUARC generates real-time code directly from
Simulink-designed controllers and runs it in real-time on the Windows target, [3]. This
makes it possible to develop, deploy and validate real-time applications on hardware us-
ing Simulink.
First, the Qbot Simulink model, which is a Digital twin of the device, was modelled to
obtain meaningful signals that could be functional in identifying collisions. These signals
were then transformed into MATLAB variables for the next steps.
Since the robot collision was detected by all of three bumper sensors (left, centre and
right), our purpose was to a ML model that aimed to predict the right a real-time colli-
sions in order to completely replace or substitute the need of these sensors1.

1Qbot, robot, device were used with the same meaning

CHAPTER 3. METHODS 37

The first step was to collect a meaningful dataset in order to simulate the different uses
that the robot might be subjected in future scenarios.
The simulation has been set up to collect data from the robot every 0.01 seconds, meaning
that every 0.01 seconds the Digital twin of the Qbot Simulink model collects one signal
from different sensors, (i.e. one row of the dataset) .
Then, We obtained a dataset that was representative of a 20 minute simulation in order
to recreate every possible behaviour of the robot 2. Python was then used to process and
analyze this dataset.
The dataset was then processed through various ML algorithms to select the best candi-
date model with the highest score that best replicated the actual output of the bumper
sensor.
Once we have computed all the score for every model, the best model selected turned out
to be an artificial neural network (ANN) built using ’Keras’ library.
In the table 3.2.1 we can see the signals used as features to predict the binary target
variable called ’BUMP’, where:

y(t) = BUMPt =

{
1 if the Qbot hit something at the istant t

0 otherwise
(3.1)

ang_acc gyro lv_actual lv_comm lwheel lwheel_acc rv_actual rv_comm rwheel rwheel_acc BUMP

0.000 2.597 0.157 0.185 0.212 0.206 -0.473 -0.625 0.101 0.014 0
-0.960 2.587 0.156 0.185 0.212 -0.023 -0.476 -0.617 0.100 -0.080 0
0.000 2.587 0.157 0.185 0.214 0.158 -0.481 -0.617 0.101 0.028 0
0.000 2.587 0.157 0.185 0.213 -0.063 -0.481 -0.617 0.100 -0.068 0

-1.379 2.574 0.155 0.185 0.211 -0.244 -0.477 -0.617 0.099 -0.146 0
-0.873 2.565 0.154 0.185 0.211 -0.014 -0.478 -0.617 0.098 -0.040 1
0.000 2.565 0.155 0.185 0.212 0.159 -0.484 -0.617 0.099 0.032 1

Table 3.2.1: Dataset containing some values of all the features used to build the ML
models

We can summarize the meaning of the features we used:

Table 3.2.2: QBot 2e specifications

Name used Meaning
ang_acc angular acceleration
gyro gyroscope signal which is used to estimate the

robot’s orientation and the yaw angle
lv_actual, lv_comm linear velocity of the commanded (input) data

from the user and the actual (output) data from
the robot

lwheel, rwheel linear velocity of the left and the right wheel
lwheel_acc, rwheel_acc left wheel and right wheel acceleration
rv_actual, rv_comm rotational velocity of the commanded (input)

data from the user and the actual (output) data
from the robot

BUMP bumper sensors

2By the term behaviours, we refer to all the possible movements and speeds it can perform

CHAPTER 3. METHODS 38

First of all it is interesting to focus on 2 different signals and their interpretation: Re-
garding the signals characterised by commanded and actual, they are related respectively
to the input signal given by the user (from the joystick) and the output signal coming
from the Qbot.
The first one comes from the Kinematic model and describes how the robot’s position and
orientation change over time in response to control inputs, such as wheel velocity, without
considering the underlying physics of the robot. Instead, the actual signal comes from
the dead reckoning model and so is based on odometric data. The difference refers to the
dynamic circumstances that happen while the robot is interacting with the environment,
making the commanded signals slightly different from the actual one.

Figure 3.2.1: Commanded and actual linear velocity

Figure 3.2.2: Commanded and actual rotational velocity

As we can see in Figure 3.2.1 and 3.2.2 the goal of controlling system is to make the
difference between commanded and actual speed close to zero.
On the other hand, the gyroscope aims to estimate the robot’s orientation or yaw angle,
which is the angle XY, as shown in Figure 3.2.3. It can detect any sudden changes in
the robot’s angular velocity, allowing it to make quick adjustments to avoid tipping over

CHAPTER 3. METHODS 39

or losing its balance. Gyroscopes can also compensate for external forces acting on the
robot, such as vibrations or sudden impacts. This helps to maintain an accurate ori-
entation and minimizes deviations from the intended path, corresponding to a "pulse"
acceleration that is detectable by it.

Figure 3.2.3: Visualization of roll, pitch and yaw angles on a device, [45]

Taking the derivative d(gyro)
d(time)

we obtain an accelerometer that could be useful to detect
when the robot is physically bumped by changing in motion.
Since this is a binary classification problem, we moved the data to Python and we started
to run different appropriate ML models 3:

• Decision Tree

• Logistic Regression

• Naive Bayes

• KNN

• Artificial neural network

All the models have been run using ’scikit-learn’ library, except for the ANN model, which
we used ’Keras’. These models have been run several times, each time with different
parameters related to the model itself. Concerning the Decision tree we tested it with
different values of max_depth number of leaves. Afterwards in order to prune the tree,
we also selected the best α to evaluate the cost complexity pruning.
On the other hand for running KNN we tried different number of neighbors.
Regarding the ANN we selected each time different random values of hidden layers and
number of neurons.
After fitting each model to the training set and calculating a ’score’ for each based on
the test set, we selected an ANN as the model that best predicted the variable BUMP .

3It was decided to standardize the data before running the KNN and SVM models, as they are more
sensitive to outliers

CHAPTER 3. METHODS 40

In order to pass the ANN model to Simulink, we had to find a suitable way of doing this
so that it could actually be read and then managed to work during the simulation.
For this purpose, we decided to save and store the final ANN model in the ".hdf5" format.
It is possible to briefly summarise the uses and advantages of this format:

• It is designed to organize and manage data efficiently, making it suitable for storing
both the architecture (model structure) and weights (parameters) of deep learning
models.

• Increased interoperability with applications, providing a versatile choice for storing
and sharing ML models in different environments, as it is compatible with different
programming languages such as Python and MATLAB, [46].

Furthermore, various experimental data-driven ML approaches have been successfully
applied to solve different problems, such as data-driven physical models, [47].
Since in our work there was a need for greater interoperability in the AI tools commu-
nity, ONNX defines a common set of operators which involves the development of ML
and deep learning models. ONXX is common file format to enable AI developers to use
models with different frameworks, tools, runtimes, and compilers; exploiting also libraries
designed to maximize performance across hardware. [48].
As interoperability was a key requirement in our work, it was important how ONXX
integrates different software, such as Keras and MATLAB, and allows them to communi-
cate with each other. For this reason we took advantage of using ’Deep Learning Toolbox
Converter for ONNX Model Format’, which was able to exploit the trained model file
(ANN.h5).
Then we also installed the ’Deep Learning Toolbox Converter for TensorFlow Models’,
which allows us to import a previously trained TensorFlow model with its weights from
Python to Simulink.
The next step was to modify the Digital twin Simulink model environment so that it
could host the ANN that we had created.
Since the Qbot model in Simulink had exactly the hardware device as its "target", it was
necessary to act on QUARC blocks to find the right path for our purposes.
To pursue this, it was first created a Simulink file, acting as a server, where through
specific blocks capable of hosting the ANN model it was possible to elaborate signals in
real-time (i.e. every 0.01 s) during the simulation; while the default one acted as client.
The "Stream Client" QUARC block acts as the client in the communication process,
connecting to a local or remote host and sending and/or receiving data from that host.
On the other hand, the "Stream Server" QUARC block acts as the server in the commu-
nication process, it listens for and accepts a connection from a local or remote host and
sends and/or receives data from that host, [49].

CHAPTER 3. METHODS 41

Figure 3.2.4: Stream Client instance which involves the output of the ML model

Figure 3.2.5: Stream Server instance on the default model

The Figure 3.2.5 shows the Stream Server block that receives as input the signals
(features in our ML model) that were occurring during the simulation and then sends
them to the Stream Client block.
The purpose of the client block is to take them as input to the ANN model, send them
to the model which is present to the same file and eventually pass the final output back
to the server block (actually the roles of client and server are reversed in this case).
The signals taken as input of the ML model are represented by the first 10 columns of
the table 3.2.1.
This allowed the output from the ML model to be compared in real time with the reference
output from the sensor, thus obtaining:

CHAPTER 3. METHODS 42

1. Bumper sensors output, coming from the default Simulink model

2. ML model output

As a consequence of acting on the last point, the goal was to make the difference between
them as close to zero as possible.
Finally, it was possible to create and modify an empirical threshold placed after the ML
model to adjust the probability according to which the current value is classified, as better
explained in the next section. This final threshold is created with a MATLAB function
and it is basically an if-else condition. It refers to the output of the ML model according
to which the values will be classified with a probability.
The aim of it was the following: if during or after the simulation we realised that the ML
model is too sensible, ending with high percentage of false alarm (detecting too many
collisions) we could change the final threshold by increasing or decreasing it in order to
allow a better collision detection during the simulation.
Finally, the Digital virtual twin model of the QBot was ready to detect the collision and
also to estimate its duration, taking advantage of the sensors on the one hand and the
ML model on the other.
Here, in Figure 3.2.6 it is possible to see the corresponding experimental framework
according to what we have done:

Figure 3.2.6: Flowchart representing a conceptual framework of the work that has been
carried out

As introduced in the previous chapter, during the neural network fitting we want to
minimize the objective function of the actual problem.
Depending on the actual problem, some objective function, called also Loss function, are

CHAPTER 3. METHODS 43

more appropriate than others. In this case, in order to monitor the performance during
the model fitting, we used a binary cross-entropy loss function, which is described as
follows, [50]:

− 1

N

N∑
i=1

[yi log(p(yi)) + (1− yi) log(1− p(yi)] (3.2)

Where:

• N is the total number of observations in the training set

• yi is actual target of the ith observation

• p(yi) is the probability that the related class is classified as "1"

3.3 ANN Architecture
In order to build the best ANN possible, we tried to empirically change different param-
eters before fitting the model, such as:

• number of hidden layers

• number of units for each hidden layers

• learning rate

• batch size

At the end, after many attempts, the neural network model which gives the best perfor-
mance is the one shown in Figure 3.3.1.

16, Relu
32, Relu

2, Softmax𝑋1, … , 𝑋10

Target

Features

PROB(y(t) = 0)

PROB(y(t) = 1)

Figure 3.3.1: Architecture of the best neural network found

CHAPTER 3. METHODS 44

As we can see in Figure 3.3.1, the network is composed by 2 ReLu activation functions,
composed by 16 and 32 units, respectively and 1 Softmax activation function which in-
volves 2 units. For our scenario , softmax function has been the most suitable activation
function before the output layer, as we shall see.

Since the purpose of this problem was fitting a neural network which had the goal to
predict a binary classification response, the last activation function the was best suitable
for this problem is called Softmax activation function. The softmax function is often used
as the last activation function of a neural network to normalize the output of a network
to a probability distribution over predicted output classes, [51]. It converts the previous
weighted sum values to probabilities that sum to one, where each value in the output of
the softmax function is interpreted as a probability of belonging to each class, [52].
Finally The output is a vector with probabilities of each possible outcome. The output
probabilities sums to one for all possible outcomes or classes.
Softmax is defined as follows, [51]:

S(y)i =
eyi∑n
j=1 e

yj
(3.3)

Where yi comes as an input from the previous hidden layer and represent the likelihood
to the ith class, while n is the number of classes. This means that for each observation
we have as an output a vector consisting of 2 elements, each indicating the probability of
belonging to class ’0’ and class ’1’ respectively.
In this scenario, as already mentioned, these output will represent the probability of each
observation being "0" (no collision detected) and "1" (collision detected) respectively,
according to the simulation time fixed at 0.01 [s]. Since we wanted to know only a pure
classification for each observations, it was necessary to create an "artificial" layer before
the output one which aims to create a simple threshold function.
Eventually, this threshold function aims to assign the final classification value y(t) as
follows 4 5:

y(t) =

{
1 if S(y)i=1 >= 0.5

0 otherwise
(3.4)

3.4 ANN Enhancement
Once we had reached this point, we asked ourselves whether it would be possible to make
changes to the existing model in order to achieve a better final performance. Since it is
reasonable that a potential collision could be affected not only from the actual signals,
but also from the previous ones we came up with the following idea. Consequently, this
binary classification problem could also be modelled with the features from the previous
time step. As they could have an effect on the actual response variable, we focus on
integrating the study analysis towards a time series problem.6

4y(t) present in the equation 3.4 is not to be confused with y in the previous equation 3.3, where the
first refers to the final classification outcome of the model

5Since we get new observations "every time" during the simulation, we will consider y(t) as a function
along time for simplicity

6Here, target, response variable, y(t) are all synonyms used for the same thing

CHAPTER 3. METHODS 45

Later on, it was necessary to decide how many previous time steps we should take into
account to improve the model. This implies that at each time t, the response variable
y(t) is computed not only by the features X(t), but also by the features considered up
to K time step earlier. We can visualize this potential improvement by comparing the
differences between the existing ANN 3.5 to the new one, 3.6:

⋆
y(t)

fitting←−−− X(t) (3.5)

⋆

y(t)
fitting←−−− X(t) +

K∑
k=1

X(t− k) (3.6)

Where:

• y(t) is the final outcome at the instant t

• X(t) = X1(t), ..., X10(t) are the features at the instant t

• K refers to the maximum number of previous time steps considered, keeping in
mind that each time step means 0.01 seconds

Then the second model written in 3.6 is a generalization of the first one; both models
coincide when K = 0.
In this way, the new ANN score increased significantly, proving that the previously con-
sidered features did indeed have a strong influence on the actual target. The actual
detection of a collision is therefore best predicted if we also take into account the previ-
ous signals.

Since we originally started with the first 10 features, each time an additional k is con-
sidered, the model is trained with 10*K features. So we always have the same type of
signal, but for each k considered, the 10 features from the previous time step are added
to the ML model as an additional signal for each observation during the simulation.
As a consequence for the model fitting, the first k rows of the dataset will consequently
not be taken into account. However, this consideration is entirely negligible since the
original length of the dataset was composed by 116.620 rows.
The following question that stands out is then what is the best value of K to take.
To answer at this question we then trained the neural network by considering an addi-
tional k at each iteration. The estimation of the best value was carried out mainly by
considering the computational time taken to train the model and the actual improvement
of the model from the previous one.

Having reached this point, however, it was necessary to make the Simulink model of the
robot suitable for the neural network model in question. As a consequence, we used the
’Delay Time’ block to simulate a delay of the current signals to be added as input to the
neural network model in real time during the simulation.
Without taking into account the separation between the two actual Simulink models,
composed by Client and Server, which is essential for the correct real-time execution of
the neural network, the summary conceptual model (concerning only a part of the robot’s
digital twin) is shown in Figure 3.4.1.

CHAPTER 3. METHODS 46

This figure helps to give an idea of how the entire Digital Twin model works for K = 1
during the simulation:

Figure 3.4.1: Conceptual Simulink flowchart

Where:

• The HIL-Write block represents the interaction and control with the robot itself
from input signals.

• The HIL-Read block represents the possibility of storing output signals and then
possibly modifying them

In this way it is possible to also artificially modify the behaviour of the robot, for example
to make it turn back when it hits an obstacle, it would be enough to create intermediate
functions and link these two blocks together. In this scenario, the yellow blocks represent
the standard blocks that already exist, while the green blocks represent the blocks that
have been added to properly accommodate and validate our neural network model.
Finally, given the strong imbalance of the dataset between the two classes the undersam-
pling technique was implemented, which, however, did not prove effective in predicting
collisions in real time. It was therefore decided not to use these techniques to fit the
neural network model.

CHAPTER

FOUR

RESULTS AND DISCUSSION

4.1 Offline results

4.1.1 Timeseries problem

As offline results we refer to models performance retrieved on Python, before the actual
simulation.
Since the aim of this work was to find a suitable ML algorithm capable of completely
replacing the output of the robot’s bumper sensors, the focus was not only on detecting
a collision, but also on predicting its duration.
Before starting to build a ML model it is helpful to focus on the features available to
identify which are most important for predicting a collision.

Since Gyroscopes are crucial sensors for stabilizing the robot, a WMR can keep track of
its orientation and adjust its movements accordingly to them. They play a significant
role in enabling a WMR to move smoothly and respond to changes in its environment.
At this point, we focused mainly on them to see if there is a sort of correlation between
the gyroscope and a collision. As we can see from Figure 4.1.1, the entire original dataset
was split into two, depending on whether the data were collision related or not.
The importance of this feature can be seen from the different trend for the observations
in which the robot crashed. It can be seen that these observations have more pronounced
values, a sign that a collision could be a possible consequence of an abrupt change in
angular velocity.

47

CHAPTER 4. RESULTS AND DISCUSSION 48

Figure 4.1.1: Gyroscope trends

Furthermore, in order to see if there was any concrete correlation between the features of
the moments before the collisions and the collision itself the original dataset was modified
to predict only the impact of the robot. As a result, whereas previously the class assumed
a value of ’1’ throughout the entire time of collision, it now only assumes this value at
the first instant of the collision. In other words, the data relating to the persistence of
the collision after the impact has been eliminated, so that only the impact itself can be
predicted in this case.
As a result, the latter is composed as follows:

• "0" if the device follows its path without hitting an obstacle

• "1" if the device has just hit an obstacle, i.e. the first instant of collision

In this way, the fitting algorithm was run for each ML model, in which the target variable
is predicted at each time point by the features of previous time points. Therefore, it was
decided to run the model fitting algorithm from the current instant until the features
from two seconds earlier are considered, each time using these features to predict the
response variable of the current instant. This simple idea can be schematised:

⋆
y(t)

fitting←−−−− X(t− k) ∀k ∈ 1, ..., 200 (4.1)

Where t is the reference time and corresponds to a single row in the original dataset.
As can be seen from Figure 4.1.2, the best score (indicated by a yellow dot) was achieved
for features that came from a few instants earlier. More in detail, taking into account
the best ML model, which is a Decision tree, the best score to detect a collision is made

CHAPTER 4. RESULTS AND DISCUSSION 49

with the features that came K = 2, instant before than the impact1, suggesting that
it is indeed relevant to consider the previous features at the current time for a correct
implementation of the model.
Beyond this point, further increases in k show how the model tends to perform worse and
worse, where the worst performance is indicated by the cross cross.
Eventually, this general trends can be summarised in the importance of including instants
just before the present ones in the final model.

Figure 4.1.2: Models accuracy

A neural network was also run to support this reasoning. From the analysis of Figure 4.1.3,
it can be seen that the Loss function decreases to its global minimum when predictions
are made with a slightly earlier time (i.e. with a very small k-value). From here, we
can see how the loss function grows more and more, and thus how, from k values greater
than a certain threshold, the model no longer benefits, but actually gets worse and worse.
This consideration is in line with our assumptions, since it is reasonable to think that the
features of the moments just before, can be correlated with the present ones.
On the other hand, we also expected that there would be no advantage in considering
signals that were too far in the past. Beyond this point, it would be counterproductive
and computationally expensive to include additional features from even earlier instants.

1Here, the term instant refers to fixed-time of simulation, i.e. 0.01 seconds

CHAPTER 4. RESULTS AND DISCUSSION 50

Figure 4.1.3: Binary cross-entropy loss function

In Figure 4.1.3 the ANN was computed starting from predicting y(t) with X(t) and
finishing from predicting y(t) with X(t− 50), (i.e. 50 iterations of training model)2.
The loss function was retrieved at the end of the last epoch, (10 epochs selected in this
case).

4.1.2 Best ML model

The next step was therefore to build an ML model with the logic described in 3.6.3
The ML methods described above were then run, followed by different configurations of
neural networks. To find the best neural network, random parametric values of hidden
layers and neurons were chosen, identifying the neural network which gives better per-
formance .
On the one hand, it can be seen from Figure 4.1.4 that all the generated models improve
their score as the value of k considered increases, until it becomes largely irrelevant to
consider features from earlier instants. By this we mean, as before, that there is a certain
value of k that makes the model better than the standard one at 3.5. Otherwise, if we
cross this k value threshold, these models will not be able to improve anymore, resulting
only in more computation time for the algorithm.
In Figure 4.1.4, the x-axis is described, once again, by the number of features taken into
account for each run, i.e. X(t) +

∑K
k=1 X(t− k).

2In this scenario y(t)
fitting←−−−− X(t− k) ∀k ∈ 1, ..., 50

3We have referred to it as a neural network, although in this case it would be more accurate to refer
to it as deep learning rather than ML.

CHAPTER 4. RESULTS AND DISCUSSION 51

Figure 4.1.4: Models accuracy for different ML models

On the other hand, in order to evaluate the quality of the neural network in question, we
decided to analyze both its accuracy loss function during the validation set, as we can
see from Figures 4.1.5, 4.1.6. These metrics have been computed on the validation set in
order to assess how well an ANN is able to generalize to unseen data, allowing the model
itself to detect overfitting and ensuring the model’s ability to perform on new data.

Figure 4.1.5: Model accuracy on valida-
tion set

Figure 4.1.6: Binary cross-entropy loss
function on validation set

CHAPTER 4. RESULTS AND DISCUSSION 52

Where:

• val_k0 refers to the validation set about the ANN standard model described in(3.5)

• val_k1 refers to the validation set about the ANN that predicts y(t) taking into
account the features X(t) +X(t− 1)

• val_k2 refers to the validation set about the ANN that predicts y(t) taking into
account the features X(t) +X(t− 1) +X(t− 2)

Finally, the best model in Figure 4.1.4 turned out to be the KNN with a performance of
98.2%, present at K=34.
In contrast, the neural network achieved a performance of 98.7% at K=1 and 99.3% at
K=2, as shown in the confusion matrix in Figure 4.1.7.

Figure 4.1.7: Confusion matrix for the ANN with K=2

4.2 Online results
From the above results, we decided to consider both neural network models with K=1
and K=2, i.e:

⋆
y(t)

fitting←−−−− X(t) +X(t− 1) (4.2)

⋆
y(t)

fitting←−−−− X(t) +X(t− 1) +X(t− 2) (4.3)

From this point, it was finally possible to make the Digital twin model of the Qbot capable
of hosting the two models that had been built.
Furthermore, we have noticed that whenever we run the experiment, there is an initial
bias which takes a few seconds for the neural network model to function properly.
As described in the previous chapter, given the last activation function of the model,

4Actually, the SVM model also exhibited the same performance as the KNN, but was not taken into
account as it had it at K=7

CHAPTER 4. RESULTS AND DISCUSSION 53

3.4, a threshold function was then created to obtain an output corresponding to a single
classification value. The identification of an optimal threshold was done in a completely
empirical way, by evaluating a correct trade-off of the model’s performance between the
number of missed detection and the number of false alarms.
Since, as we saw at the beginning, this model was initially a little too sensitive to abrupt
speed changes, resulting in a high false alarm value, the best identified threshold function
can be described as follows:

y(t) =

{
1 if S(y)i=1 >= 0.7

0 otherwise
(4.4)

As we wanted to remain more cautious in the probability of predicting false alarms, this
value is slightly higher than the theoretically one expected (0.5), thus achieving a better
trade-off.

Once we have run the final simulation, which lasted for 2 minutes, we can first of all see
the Figures 4.2.1, 4.2.2 which represent the output of the robot’s bumper sensors on one
hand, and the output of the neural network model on the other, (first considering K=1,
then K=2).
As mentioned above, both models aim to detect not only the robot’s collisions but also
their duration. In essence, this model tries to emulate the behaviour of the bumper sensor
as closely as possible.

0 200 400 600 800 1000 1200
Time [0.01 s]

0.0

0.2

0.4

0.6

0.8

1.0

Co
llis

io
n

Sensors
ANN

Figure 4.2.1: Real-time collision detection for ANN with K=1

CHAPTER 4. RESULTS AND DISCUSSION 54

0 200 400 600 800 1000 1200
Time [0.01 s]

0.0

0.2

0.4

0.6

0.8

1.0
Co

llis
io

n

Sensors
ANN

Figure 4.2.2: Real-time collision detection for ANN with K=2

Finally, it was possible to run the simulation to verify the goodness of the model itself.
We then calculated these numerical indices of the real-time model’s performance:

1. Number of False alarms and Missed detection

2. Average Delay in collision detection

3. Average error in collision duration

Regarding the first two points in Table 4.2.1, the number of false alarms is the number of
predicted collisions that did not occur during the simulation, while the number of missed
detection is the number of collisions that occurred but were not predicted by the neural
network model. These metrics can be described by:

False Alarms =
Number of false collision detection

Number of actual collisions
(4.5)

Missed Detection =
Number of missed detection

Number of actual collisions
(4.6)

However, these two indicators are very sensitive to changes of even a few moments in
the prediction. For example, if two different collisions predictions occur within a few
moments of each other for the same collision detected by the sensor, this indicator will
count them as separate.

The second point in Table 4.2.1 was computed by taking into account only the difference
between the first instant of the collision perceived by the sensor and the first instant of

CHAPTER 4. RESULTS AND DISCUSSION 55

the collision detected by the neural network (i.e. the moment of impact).
In this way, we did not consider the duration of the collision, but we focused mainly on
detecting the exact moment of impact 5.

Instead, the last point refers to the average difference between the duration of the
collision predicted by the neural network and the duration of the collision detected by
the sensor during the simulation. In this case, we did not consider the delay to detect a
collision, but only its duration.
We can therefore summarise the results obtained in these real-time performance indicators
in Table 4.2.1, 6:

Performance indicator ANNK=1 ANNK=2

False alarms 0.153 0.46
Missed detection 0.07 0.07
Average Delay in collision detection 0.325 s 0.340 s
Average error in collision duration 0.148 s 0.098 s

Table 4.2.1: Performance real-time indicators

As we can see from Table 4.2.1, although the ANNK=2 model is more accurate in terms
of collision duration, it has a serious weakness in terms of the number of false alarms.
This model is therefore too sensitive and, as can be seen in Figure 4.2.2, predicts more
collisions than have actually occurred, resulting in a lower level of reliability.

On the other hand, the ANNK=1 model manages to perform very well in a real-time sim-
ulation for all the indicators considered, being very efficient both in the timely detection
of collisions, with an average delay of only 0.3 s, and in the correct estimation of their
duration.
As shown in Figure 4.2.1, this model manages to capture each real collision detected by
the sensor more accurately than the other neural network, (ANNK=2).

Finally, for all the reasons mentioned above, we believe that the ANNK=1 model is
the best alternative to support or replace the bumper sensor of the robot in case of
malfunction or failure.

5However, we assume that the average delay in detecting the robot’s impact is not only influenced by
the goodness of the model, but also by the computation time taken by the Simulink model of the robot’s
Digital twin itself

6The number of collisions that actually occurred was the same in both final simulations, (13)

CHAPTER

FIVE

CONCLUSIONS

5.1 Conclusion
When traditional bumper sensors fail or require maintenance, the robot may need to
be withdrawn from service, causing downtime. As a result, ML models can allow the
system to continue operating in the event of sensor failure, minimizing disruptions to
robot operations.
As these techniques can be applied to multiple WMRs, once a model has been trained and
validated, it can be used across a fleet of similar WMRs, potentially reducing maintenance
costs on a wider scale. Moreover, in a possible scenario where the bumper sensor shows
signs of degradation, the signals from the sensor itself could be replaced by those from
the developed neural network model. In this way, a user would still be able to send and
receive collision signals from the robot even if the bumper material is faulty and no longer
able to send or receive signals correctly, without noticing the difference.
In addition, our research has demonstrated the promising benefits of integrating ML
techniques into the collision detection system of WMRs. By replacing traditional bumper
sensors with ML algorithms, we have achieved improved adaptability and reliability. The
ML-based approach not only improves the robustness and fault tolerance of the WMR,
but also minimizes the impact of deterioration on the physical components, resulting in
long-term cost savings.
Summarising, the development and implementation of mechatronic systems incorporating
ML models has been found to reduce the reliance on preventive maintenance, thereby
reducing downtime due to sensor failure or replacement and improving the reliability and
durability of WMRs in industrial applications. In addition, the flexibility to continuously
update and evolve ML algorithms allows easy integration of enhancements over time
without the need to physically change hardware components.

5.2 Model limitation
As we have seen, the neural network model developed for this problem performed par-
ticularly well. However, it is important to highlight a critical aspect of our research: the
intrinsic variability of the simulations. Each simulation presented different conditions,
mainly because the robot was controlled by a joystick rather than following a pre-defined
standard path.

56

CHAPTER 5. CONCLUSIONS 57

This meant that we had to manage slightly different conditions in each simulation, with
different simulation parameters changing each time, such as the number of robot colli-
sions.
As a consequence, these limitations required the collection of a large dataset from which
to train the ML models, representing all the possible behaviours that the robot itself
might exhibit in the future. Consequently, the quality of the ANN model was not af-
fected by this restrictions.
Nevertheless, in order to better compare different experiments, the final performance met-
rics of the real-time model suffered from these limitations, as they should have been based
on a default number of collisions and possible movements of the robot, which actually
varied for each final simulation.

5.3 Future work
In the course of this thesis, we have investigated the challenges and advances in the field
of real-time collision detection for wheeled mobile robots.
While our work has achieved encouraging results, several opportunities for future research
remain to be explored.In this section, we will consider some potential research directions
that could further enhance the field of collision detection and enable wheeled mobile
robots to operate more effectively in complex environments.

5.3.1 Explainable neural network

Interpretability and explainability are two key factors that are extremely important for
applications such as autonomous cars and robots, where it is useful to understand why a
car has taken an action, especially if that car or robot is involved in an accident, [53].
Traditional neural networks excel at learning complex patterns and making predictions,
including collision detection. However, they often operate as ’black boxes’, giving users
and researchers limited insight about the reason why certain predictions are made.
A recent approach, called Explainable Neural Networks, (XNN), is based on existing deep
learning models, such as neural networks, but offers a new deep learning architecture that
combines reasoning and learning in synergy. The proposed approach can be described as
a feed-forward neural network with an incremental learning algorithm that autonomously
evolves its structure to reflect possible dynamic changes, [53].
These models are designed to bridge the gap between model performance and human
comprehension. By incorporating XNNs into a collision detection framework, there is an
opportunity to provide not only accurate predictions, but also transparent explanations
for those predictions, [54].
In dynamic environments where safety and reliability are critical, this opacity can be
a cause for concern, and it’s essential to understand why a robot might make certain
decisions.
Eventually the use of XNNs in real-time simulation dynamics promises to increase the
overall safety, reliability and usability of WMR systems, in addition to improving the
accuracy of collision detection. This symbiotic relationship between XNNs and real-time
collision detection corresponds to the changing robotics environment, where transparency
and reliability are key principles in the search for safer and more effective autonomous
systems.

CHAPTER 5. CONCLUSIONS 58

5.3.2 Sensor fusion

In this scenario, using a sensor fusion technique would be another possible way to achieve
high performance in real-time collision detection of a WMR.
Sensor fusion is a technique that combines data from several different sensors to produce a
final filtered data that reduces the effects of noise from each sensor used, [55]. In this way
it is possible to achieve a more accurate and reliable understanding of the environment
than what could be achieved using individual sensors alone.
By enhancing the perception, decision-making and overall accuracy of various systems,
this process significantly improves their performance. As a result, sensor fusion is widely
used in various fields and it is essential for many AI applications, such as robotics and
autonomous driving, [55].
Moreover, in production techniques each industrial robot could represent an hazard zone
that changes based on its location and trajectory, a real-time sensor-based approach is
becoming increasingly relevant for ensuring the safety of people in close proximity to
robots in an industrial workcell.
A possible approach could regard the fusion of data from multiple 3D imaging sensors of
different modalities into a volumetric evidence grid and segments the volume into regions
corresponding to background, robots, and people. manufacturing practices, [56]. Then,
sensor fusion can also be used to provide an improvement in fault tolerance in the event
of a malfunction or failure of a sensor. Therefore, the risk of accidents caused by sensor
failure is reduced because the system can continue to detect collisions even if one sensor
stops working reliably.
Finally, this technology ensures the safety of the WMR, reduces downtime and allows the
integration of future sensor technologies, making it a valuable enhancement for collision
detection.

REFERENCES

[1] Xinyu Gao et al. “Review of Wheeled Mobile Robots’ Navigation Problems and
Application Prospects in Agriculture”. In: IEEE Access 6 (2018), pp. 49248–49268.
doi: 10.1109/ACCESS.2018.2868848.

[2] Rajibul Huq et al. “QBOT: An educational mobile robot controlled in MATLAB
Simulink environment”. In: 2009 Canadian Conference on Electrical and Computer
Engineering. 2009, pp. 350–353. doi: 10.1109/CCECE.2009.5090152.

[3] Quanser. QUARC Real-Time Control Software. 2020. url: https://www.quanser.
com/products/quarc-real-time-control-software/#overview.

[4] Qbot 2e. Quanser. 2019.

[5] Amir Mosavi and Annamaria R. Varkonyi-Koczy. “Integration of Machine Learning
and Optimization for Robot Learning”. In: Recent Global Research and Education:
Technological Challenges. Ed. by Ryszard Jabłoński and Roman Szewczyk. Cham:
Springer International Publishing, 2017, pp. 349–355. isbn: 978-3-319-46490-9.

[6] Hugh F. Durrant-Whyte. “An Autonomous Guided Vehicle for Cargo Handling Ap-
plications”. In: The International Journal of Robotics Research 15.5 (1996), pp. 407–
440. doi: 10.1177/027836499601500501. url: https://doi.org/10.1177/
027836499601500501.

[7] Anthony Le et al. “Distributed Vision-Based Target Tracking Control Using Multi-
ple Mobile Robots”. In: 2018 IEEE International Conference on Electro/Informa-
tion Technology (EIT). 2018, pp. 0471–0476. doi: 10.1109/EIT.2018.8500184.

[8] Marc Vazquez, Mateusz Ardito-Proulx, and Sabiha Wadoo. “Lyapunov Based Tra-
jectory Tracking Dynamic Control for a QBOT-2”. In: 2020 IEEE Integrated STEM
Education Conference (ISEC). 2020, pp. 1–6. doi: 10.1109/ISEC49744.2020.
9397845.

[9] EXPERIMENT 2: LOCOMOTION AND KINEMATICS. Quanser. 2019.

[10] Tobias Fauser, Stephen B. H. Bruder, and Aly I. El-Osery. “A comparison of inertial-
based navigation algorithms for a low-cost indoor mobile robot”. In: 2017 12th
International Conference on Computer Science and Education (ICCSE) (2017),
pp. 101–106. url: https://api.semanticscholar.org/CorpusID:20630797.

[11] Howie Choset et al. Principles of robot motion: theory, algorithms, and implemen-
tations. MIT press, 2005.

59

https://doi.org/10.1109/ACCESS.2018.2868848
https://doi.org/10.1109/CCECE.2009.5090152
https://www.quanser.com/products/quarc-real-time-control-software/#overview
https://www.quanser.com/products/quarc-real-time-control-software/#overview
https://doi.org/10.1177/027836499601500501
https://doi.org/10.1177/027836499601500501
https://doi.org/10.1177/027836499601500501
https://doi.org/10.1109/EIT.2018.8500184
https://doi.org/10.1109/ISEC49744.2020.9397845
https://doi.org/10.1109/ISEC49744.2020.9397845
https://api.semanticscholar.org/CorpusID:20630797

REFERENCES 60

[12] A. Bonarini, M. Matteucci, and M. Restelli. “A kinematic-independent dead-reckoning
sensor for indoor mobile robotics”. In: 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 4. 2004,
3750–3755 vol.4. doi: 10.1109/IROS.2004.1389998.

[13] Mike Murray. HOW ROTARY ENCODERS WORK – ELECTRONICS BASICS.
2019. url: https://www.thegeekpub.com/245407/how- rotary- encoders-
work-electronics-basics/.

[14] Sebastian Dudzik. “Application of the motion capture system to estimate the ac-
curacy of a wheeled mobile robot localization”. In: Energies 13.23 (2020), p. 6437.

[15] Tom M Mitchell. “The need for biases in learning generalizations”. In: (1980).

[16] Thomas G Dietterich and Eun Bae Kong. “Machine learning bias, statistical bias,
and statistical variance of decision tree algorithms”. In: (1995).

[17] Sethu Vijayakumar. “Bias–variance tradeof”. In: (2007).

[18] Gareth James et al. An Introduction to Statistical Learning: with Applications in R.
Springer, 2013. url: https://faculty.marshall.usc.edu/gareth-james/ISL/.

[19] Leo Breiman. “Some properties of splitting criteria”. In: Machine learning 24 (1996),
pp. 41–47.

[20] Shagufta Tahsildar Chainika Thakar. Gini Index: Decision Tree, Formula, and Co-
efficient. 2022. url: https://ibkrcampus.com/ibkr-quant-news/gini-index-
decision-tree-formula-and-coefficient/.

[21] Jason Brownlee. Information Gain and Mutual Information for Machine Learning.
2019. url: https://machinelearningmastery.com/information-gain-and-
mutual-information/.

[22] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[23] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1 (1986), pp. 81–
106.

[24] James Lani. Homoscedasticity. 2013. url: https://www.statisticssolutions.
com/free-resources/directory-of-statistical-analyses/homoscedasticity/.

[25] Risma Febrianti, Yekti Widyaningsih, and Saskya Soemartojo. “The parameter es-
timation of logistic regression with maximum likelihood method and score func-
tion modification”. In: Journal of Physics: Conference Series 1725 (Jan. 2021),
p. 012014. doi: 10.1088/1742-6596/1725/1/012014.

[26] Pia Veldt Larsen. “In All Likelihood: Statistical Modelling and Inference Using
Likelihood”. In: Journal of the Royal Statistical Society Series D: The Statistician
52.3 (Aug. 2003), pp. 416–417. issn: 2515-7884. doi: 10.1111/1467-9884.00369_
20. eprint: https://academic.oup.com/jrsssd/article- pdf/52/3/416/
49946098/jrsssd_52_3_416a.pdf. url: https://doi.org/10.1111/1467-
9884.00369%5C_20.

[27] “PSEUDO-R 2 IN LOGISTIC REGRESSION MODEL”. In: Statistica Sinica 16.3
(2006), pp. 847–860. issn: 10170405, 19968507. url: http://www.jstor.org/
stable/24307577 (visited on 09/19/2023).

[28] Paul D. Allison. “Measures of Fit for Logistic Regression”. In: 2014. url: https:
//api.semanticscholar.org/CorpusID:13909621.

https://doi.org/10.1109/IROS.2004.1389998
https://www.thegeekpub.com/245407/how-rotary-encoders-work-electronics-basics/
https://www.thegeekpub.com/245407/how-rotary-encoders-work-electronics-basics/
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://ibkrcampus.com/ibkr-quant-news/gini-index-decision-tree-formula-and-coefficient/
https://ibkrcampus.com/ibkr-quant-news/gini-index-decision-tree-formula-and-coefficient/
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://machinelearningmastery.com/information-gain-and-mutual-information/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/homoscedasticity/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/homoscedasticity/
https://doi.org/10.1088/1742-6596/1725/1/012014
https://doi.org/10.1111/1467-9884.00369_20
https://doi.org/10.1111/1467-9884.00369_20
https://academic.oup.com/jrsssd/article-pdf/52/3/416/49946098/jrsssd_52_3_416a.pdf
https://academic.oup.com/jrsssd/article-pdf/52/3/416/49946098/jrsssd_52_3_416a.pdf
https://doi.org/10.1111/1467-9884.00369%5C_20
https://doi.org/10.1111/1467-9884.00369%5C_20
http://www.jstor.org/stable/24307577
http://www.jstor.org/stable/24307577
https://api.semanticscholar.org/CorpusID:13909621
https://api.semanticscholar.org/CorpusID:13909621

REFERENCES 61

[29] Statistics: a Bayesian perspective. Vol. 4. 1996.

[30] Daniel Berrar. “Bayes’ Theorem and Naive Bayes Classifier”. In: Jan. 2018. isbn:
9780128096338. doi: 10.1016/B978-0-12-809633-8.20473-1.

[31] Heibe Frank Ian H.Witten. Data Mining Practical Machine Learning Tools and
Techniques, 2 edition. Elsevier, 2011.

[32] Department of Computer Science / Finance K. Ming Leung POLYTECHNIC UNI-
VERSITY and Risk Engineering. Naive Bayesian Classifier. 2007. url: https://
cse.engineering.nyu.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.
pdf.

[33] Vikramaditya Jakkula. “Tutorial on support vector machine (svm)”. In: School of
EECS, Washington State University 37.2.5 (2006), p. 3.

[34] Anna-Lena Popkes. Extensive Guide to Support Vector Machines. 2021. url: https:
//www.inovex.de/de/blog/support-vector-machines-guide/.

[35] GRID inc. Inside the activation function. 2018. url: https://www.renom.jp/
notebooks/tutorial/basic_algorithm/activation/notebook.html.

[36] Marco Lippi. Machine Learning. 2021.

[37] Trong-Ton Pham. “MODELE DE GRAPHE ET MODELE DE LANGUE POUR
LA RECONNAISSANCE DE SCENES VISUELLES”. In: (Dec. 2010).

[38] GREGORY G. ENAS and SUNG C. CHOI. “CHOICE OF THE SMOOTHING
PARAMETER AND EFFICIENCY OF k-NEAREST NEIGHBOR CLASSIFICA-
TION”. In: Statistical Methods of Discrimination and Classification. Ed. by SUNG
C. CHOI. Pergamon, 1986, pp. 235–244. isbn: 978-0-08-034000-5. doi: https :
//doi.org/10.1016/B978- 0- 08- 034000- 5.50011- 3. url: https://www.
sciencedirect.com/science/article/pii/B9780080340005500113.

[39] Gongde Guo et al. “KNN Model-Based Approach in Classification”. In: On The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Ed. by
Robert Meersman, Zahir Tari, and Douglas C. Schmidt. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 986–996. isbn: 978-3-540-39964-3.

[40] Ravil Muhamedyev. “Machine learning methods: An overview”. In: Computer mod-
elling & new technologies 19.6 (2015), pp. 14–29.

[41] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc.,
2010.

[42] Waleed Yamany et al. “A New Multi-layer Perceptrons Trainer Based on Ant Lion
Optimization Algorithm”. In: Sept. 2015, pp. 40–45. doi: 10.1109/ISI.2015.9.

[43] Jason Brownlee. How to Control the Stability of Training Neural Networks With
the Batch Size. 2020. url: https://machinelearningmastery.com/how- to-
control-the-speed-and-stability-of-training-neural-networks-with-
gradient-descent-batch-size/.

[44] Sweta. Batch , Mini Batch and Stochastic gradient descent. 2020. url: https:
//sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-
descent-e9bc4cacd461.

[45] Code: Robotics. Accelerometer. 2019. url: https : / / docs . idew . org / code -
robotics/references/physical-inputs/accelerometer.

https://doi.org/10.1016/B978-0-12-809633-8.20473-1
https://cse.engineering.nyu.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf
https://cse.engineering.nyu.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf
https://cse.engineering.nyu.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf
https://www.inovex.de/de/blog/support-vector-machines-guide/
https://www.inovex.de/de/blog/support-vector-machines-guide/
https://www.renom.jp/notebooks/tutorial/basic_algorithm/activation/notebook.html
https://www.renom.jp/notebooks/tutorial/basic_algorithm/activation/notebook.html
https://doi.org/https://doi.org/10.1016/B978-0-08-034000-5.50011-3
https://doi.org/https://doi.org/10.1016/B978-0-08-034000-5.50011-3
https://www.sciencedirect.com/science/article/pii/B9780080340005500113
https://www.sciencedirect.com/science/article/pii/B9780080340005500113
https://doi.org/10.1109/ISI.2015.9
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
https://docs.idew.org/code-robotics/references/physical-inputs/accelerometer
https://docs.idew.org/code-robotics/references/physical-inputs/accelerometer

REFERENCES 62

[46] Mike Folk et al. “An overview of the HDF5 technology suite and its applications”. In:
Proceedings of the EDBT/ICDT 2011 workshop on array databases. 2011, pp. 36–
47.

[47] Chenguang Wan et al. “A Robust and Fast Data Management System for Machine-
Learning Research of Tokamaks”. In: IEEE Transactions on Plasma Science 50.12
(2022), pp. 4980–4986. doi: 10.1109/TPS.2022.3223732.

[48] Open Neural Network Exchange The open standard for machine learning interop-
erability. url: https://onnx.ai/.

[49] Quanser. Stream Client. 2019. url: https://docs.quanser.com/quarc/documentation/
quarc_communications_basic.html.

[50] Vishal Yathish. Loss Functions and Their Use In Neural Networks. 2022. url:
https://towardsdatascience.com/loss- functions- and- their- use- in-
neural-networks-a470e703f1e9.

[51] Kiprono Elijah Koech. Softmax Activation Function — How It Actually Works.
2020. url: https://towardsdatascience.com/softmax-activation-function-
how-it-actually-works-d292d335bd78.

[52] Jason Bronwlee. Softmax Activation Function with Python. 2020. url: https://
machinelearningmastery.com/softmax-activation-function-with-python/.

[53] Plamen Angelov and Eduardo Soares. “Towards explainable deep neural networks
(xDNN)”. In: Neural Networks 130 (2020), pp. 185–194. issn: 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2020.07.010. url: https://www.
sciencedirect.com/science/article/pii/S0893608020302513.

[54] Fatai Sado et al. “Explainable Goal-driven Agents and Robots-A Comprehensive
Review”. In: ACM Computing Surveys 55.10 (2023), pp. 1–41.

[55] Biswaindu Parida. Sensor Fusion: The Ultimate Guide to Combining Data for En-
hanced Perception and Decision-Making. 2023. url: https://www.wevolver.com/
article/what-is-sensor-fusion-everything-you-need-to-know.

[56] Paul Rybski et al. “Sensor fusion for human safety in industrial workcells”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012,
pp. 3612–3619. doi: 10.1109/IROS.2012.6386034.

https://doi.org/10.1109/TPS.2022.3223732
https://onnx.ai/
https://docs.quanser.com/quarc/documentation/quarc_communications_basic.html
https://docs.quanser.com/quarc/documentation/quarc_communications_basic.html
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://machinelearningmastery.com/softmax-activation-function-with-python/
https://doi.org/https://doi.org/10.1016/j.neunet.2020.07.010
https://www.sciencedirect.com/science/article/pii/S0893608020302513
https://www.sciencedirect.com/science/article/pii/S0893608020302513
https://www.wevolver.com/article/what-is-sensor-fusion-everything-you-need-to-know
https://www.wevolver.com/article/what-is-sensor-fusion-everything-you-need-to-know
https://doi.org/10.1109/IROS.2012.6386034

APPENDICES

1

2 #MAIN ALGORITHM FOR THE NEURAL NETWORK
3 import pandas as pd
4 import numpy as np
5 from matplotlib import pyplot as plt
6

7 from sklearn.model_selection import train_test_split
8 from sklearn.preprocessing import StandardScaler , MinMaxScaler
9 from sklearn.metrics import confusion_matrix

10 from seaborn import heatmap
11 import seaborn as sbn
12 from time import process_time
13

14 #For other ML models
15 from sklearn.linear_model import LogisticRegression
16 from sklearn.neighbors import KNeighborsClassifier
17 from sklearn.tree import DecisionTreeClassifier
18 from sklearn.naive_bayes import GaussianNB
19 from sklearn.svm import SVC
20

21 #For Neural network model
22 from keras.models import Sequential
23 from keras.optimizers import Adam
24 from keras.metrics import Recall
25 from keras.metrics import BinaryAccuracy
26 from keras.layers import Dense
27 from keras.callbacks import EarlyStopping
28

29

30

31 #Dataset retrieved from 20 minute Qbot simulation
32 df = pd.read_excel(’Qbot_Simulation.xlsx’)
33

34 #for plots
35 it = []
36 Accuracy = []
37 ValAccuracy = []
38 Loss = []
39 ValLoss = []

63

40

41 #inizialization
42 Xt = pd.DataFrame () #starting features dataframe
43 X = df.iloc[:,:-1]
44

45

46 #Neural network MODEL that takes into account also the "k"
47 features from the previous instant "t"
48 #y(t) is predicted by X(t)+X(t-1) +...+X(t-k)
49 #Since in real -time performance on Simulink we do not have
50 standardize signals , here the features are not standardized
51

52 y = df[’BUMP’] #target variable which refers to bumper sensors
53 X = df.drop([’BUMP’], axis =1)
54

55

56 k = 4 #parameter
57 for i in range(0, k):
58 Xt = pd.concat ([Xt, X.shift(i)], axis =1)
59 y = df[’BUMP’]
60 y = pd.get_dummies(y) #needed for this type of model
61

62 df_unito = pd.concat ([Xt, y], axis =1).dropna ()
63

64 it.append (10*i) #for future plot
65

66 #Splitting
67 Xtrain , Xtest , ytrain , ytest = train_test_split(df_unito.iloc

[:,:-2], df_unito.iloc[:, -2:], test_size = 0.3,
random_state =42)

68

69

70 model = Sequential ()
71 model.add(Dense(units = 16, input_dim=Xtrain.shape[1],

activation=’relu’))
72 model.add(Dense(units = 32, activation=’relu’))
73 model.add(Dense(units = 2, activation=’softmax ’))
74

75 model.compile(loss=’binary_crossentropy ’, metrics = [’acc’],
optimizer = Adam(learning_rate =0.001))

76 early_stop = EarlyStopping(monitor=’loss’, patience=5, verbose
=1)

77

78 #Fitting
79 history = model.fit(Xtrain , ytrain , validation_split =0.1,

epochs =20, batch_size =6, verbose=0,callbacks =[early_stop],
shuffle=False)

80

81 #For plotting
82 Accuracy.append(history.history[’acc’]) #sono: n_epoch for

each loop

64

83 ValAccuracy.append(history.history[’val_acc ’])
84 Loss.append(history.history[’loss’])
85 ValLoss.append(history.history[’val_loss ’])
86

87

88 ypred_test = model.predict(Xtest)
89 ypred_test = np.round(ypred_test)
90 ypred_test = pd.DataFrame(ypred_test)
91

92 #Retrasform from one -hot encoding format to one column with ’0’
and ’1’ values:

93 ypred_test = ypred_test.idxmax(axis =1)
94 ytest = ytest.idxmax(axis =1)
95

96 #Confusion matrix
97 cm = confusion_matrix(ypred_test , ytest)
98 plt.figure(figsize = (6,6))
99 plt.xlabel

100 heatmap(cm/sum(sum(cm)), annot = True , fmt = ’.2%’, cmap = ’Blues’
)

101 plt.xlabel(’Actual ’)
102 plt.ylabel(’Predicted ’)
103 plt.show()
104

105 #To make the Neural network readable on Simulink , (.h5 format)
106 model.save(’modelANN_k1.h5’)
107

108

109 #To import the neural network in Simulink (MATLAB SCRIPT)
110 file = ’modelANN_K1.h5’;
111 net = importKerasNetwork(file);
112 save(’modelANN_k1.mat’, ’net’)
113 #Then , the following neural network will go into the ’Predict ’

block of ’Deep Learning toolbox ’

65

	 Abstract
	 Contents
	 Abbreviations
	1 Introduction
	1.1 Hardware information
	1.2 Motivation
	1.3 Project Description

	2 Theory
	2.1 Motion models of Qbot 2e
	2.1.1 Kinematic model
	2.1.2 Dead reckoning model

	2.2 Bias and Variance
	2.3 Decision tree
	2.3.1 Algorithmic framework for Decision Trees
	2.3.2 Information Gain
	2.3.3 Gini Index
	2.3.4 Pre-pruning and post-pruning

	2.4 Logistic Regression
	2.4.1 LR Model

	2.5 Methods based on Bayes techniques
	2.6 Support vector machine
	2.6.1 Maximal margin hyperplane
	2.6.2 Soft margin hyperplane
	2.6.3 Kernel machines

	2.7 KNN
	2.8 Artificial neural network
	2.8.1 Structure
	2.8.2 Model training and backpropagation
	2.8.3 Model boosting

	3 Methods
	3.1 Drone experiment
	3.2 Experiment description
	3.3 ANN Architecture
	3.4 ANN Enhancement

	4 Results and Discussion
	4.1 Offline results
	4.1.1 Timeseries problem
	4.1.2 Best ML model

	4.2 Online results

	5 Conclusions
	5.1 Conclusion
	5.2 Model limitation
	5.3 Future work
	5.3.1 Explainable neural network
	5.3.2 Sensor fusion

	 References
	 Appendices

