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Abstract— The brain’s response to visual stimuli of different
colors might be used in a brain-computer interface (BCI)
paradigm, for letting a user control their surroundings by
looking at specific colors. Allowing the user to control certain
elements in its environment, such as lighting and doors, by
looking at corresponding signs of different colors could serve
as an intuitive interface. This paper presents work on the
development of an intra-subject classifier for red, green, and
blue (RGB) visual evoked potentials (VEPs) in recordings
performed with an electroencephalogram (EEG). Three deep
neural networks (DNNs), proposed in earlier papers, were
employed and tested for data in source- and electrode space.
All the tests performed in electrode space yielded better
results than those in source space. The best classifier yielded
an accuracy of 77% averaged over all subjects, with the best
subject having an accuracy of 96%.

Clinical relevance— This paper demonstrates that deep
learning can be used to classify between red, green and blue
visual evoked potentials in EEG recordings with an average
accuracy of 77%.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are systems built to
let the user control devices with their brain activity. Such
systems can be of great assistance for persons with physical
disabilities, as an alternative to traditional systems, which
often require physical interaction with the device. For a BCI
to be implemented, it requires some form of measurement of
brain activity. One common way of doing this is electroen-
cephalography (EEG). EEG can be non-invasive and it can
meet high real-time demands, making it a suitable component
for a BCI [1].

After recording the brain activity, the BCI also has to
interpret that data. This often involves classifying the data
into a set of classes, each corresponding to a desired action of
the BCI. Performing this classification is a crucial component
of the BCI. Without a robust classification method, the
actions performed by the BCI might be spurious, which
is unacceptable for most control systems. Creating a ro-
bust classifier for any signal requires firstly identifying the
features of the signal that are relevant to the task, and
secondly performing a classification based on these features.
Traditionally, feature extraction is done manually and the
classification by machine learning (ML). Understanding what
features are relevant for which tasks may require expertise
in the field, and can be very difficult for novel tasks. Deep
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learning is an interesting alternative to traditional ML, as it
learns both features and classification from data [2]. This
facilitates finding novel features for any task, as well as
lessening the need for expertise in the field.

For any BCI paradigm, one has to establish a set of brain
activities the user should exert, each different enough to be
distinguishable. Eliciting such signals may be nonintuitive
and difficult for the user [1]. Moreover, Allison et al. [1] point
out that the signals for different users might be very different,
even if attempting to elicit the same brain activity. As
humans, our response to colors is very well-trained, we can
identify whether something is blue or red without thinking.
Since color vision is such a primal part of human life and we
easily distinguish between colors, it is natural to assume that
color stimuli elicit distinguishable brain activity. A classifier
able to separate what color a subject is looking at could be
of use in a BCI. For instance, looking at signs of different
colors could allow control of the user’s environment, such
as opening and closing doors, and turning on and off lights.

Several previous studies have explored classification of
brain activity in subjects visually stimulated with red, green
and blue (RGB) colors. One study achieved an accuracy of
58%, for a naive Bayes RGB classifier [3]. In [4], the same
dataset used in this study was used to train and test machine
learning classifiers. Their best results were obtained with
a minimum distance to mean with geodesic filtering (Fg-
MDM) Riemannian classifier, yielding an average accuracy
of 74.48% per subject. In this study, in an attempt to better
untangle the encoded colors, source reconstruction, a method
for estimating the magnitude and location of neural activity
in the brain from EEG signals, was used in combination with
deep learning.

This paper is structured into four main sections: This
introduction, material and methods, results, and discussion.
The dataset used in this paper, the source reconstruction,
and classification methods are all described in the section
materials and methods. Finally, a conclusion is provided. A
more exhaustive report on this work is available online [5].

II. MATERIAL AND METHODS
A. DATASET

The classifiers developed in this work were trained and
tested on a dataset where the participants were exposed to
primary colors (RGB). The colors were displayed on a screen
in front of the participant for intervals of 1.3 seconds, in
random order with 140 repetitions for each color. Between
each repetition, a gray screen with a cross in the middle
was displayed for a random interval of 1.3-1.6 seconds. This
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Randomly select red,
green or blue.

Display red for 1.3
seconds.

Display green for
1.3 seconds.

Display blue for
1.3 seconds.

Display gray for a random interval
in the range 1.3-1.6 seconds.

Start

Fig. 1. The stimulus protocol during EEG recording.

protocol is illustrated in Fig. 1. The dataset consists of 60-
channel EEG recordings during color presentation and struc-
tural MRI from 31 participants (10 females) with an average
age of 28.8 (sd 7.4) years old, the participants had normal or
corrected-to-normal vision without color impairments. The
study was carried out in accordance with the Declaration of
Helsinki and all participants provided their informed consent
prior to participation. The study was approved by the Data
Protection Authority (NSD, reference number 968653). The
dataset was recorded at the Aalto NeuroImaging facility of
Aalto University.

B. PREPROCESSING

The raw EEG recordings were preprocessed before being
used to train and test the neural network classifiers. A notch
filter of 50Hz was applied, in order to reject the interference
from the powerline. A bandpass filter with the frequency
range 0.1-45Hz was applied, in order to filter out frequencies
not of interest. After the filtering, the data were downsampled
to 200Hz. The recordings were split into separate epochs, one
for each stimulus event. The epoch interval was chosen to
be from -0.2 seconds before the stimulus to 1.25 seconds

Validation Subject Test Subjects

Training Examples Validation Examples Model Architecture
and

hyperparameters

...

... ...

Model weights

Training Examples Test Examples

... ...

Model weights

Fig. 2. The structure of the dataset. The validation subject is used to test
different hyperparameters and architectures, and the best choice is selected
for testing. The validation subject (sub-18), was randomly selected.

after. Baseline correction was applied, by calculating the
mean of the 0.2 seconds of data from all channels and
then subtracting these means from their respective channels
throughout the whole epoch. Blinking artifacts were detected
by a peak-finding algorithm. Epochs were discarded if a blink
artifact was found within a 200ms interval centered around
the onset of the stimulus. Signal-space projection (SSP) was
employed to reduce the remaining blink artifacts. A criterion
for the maximal acceptable peak-to-peak amplitude of 150
µV within each epoch was set. Thus, any epoch where
the difference between the maximal and minimal value for
at least one EEG channel was larger than 150 µV, was
discarded. All preprocessing was done using MNE-Python
[6].

C. SOURCE RECONSTRUCTION

The forward model was created using individual magnetic
resonance imaging (MRI) data for each subject. Coregis-
tration was manually performed for each subject, such that
digitized electrode positions were best transformed into the
MRI frame for the forward modeling. A boundary element
model (BEM) was used to define the conduction of the
brain volume. The sources were distributed on the surface
of the white matter. The inverse problem was then solved
with the dSPM method [7]. The source space data were
aggregated into regions of interest (ROIs) using the automatic
parcellation of the brain volume proposed by [8], resulting
in 150 dipoles (75 in each hemisphere). In order to aggregate
the sources in a ROI into one single value, two steps were
taken: First, find the sign of the value for each source and
select the sign most represented as the dominant sign. Flip
all source values that do not have the dominant sign. Use
the mean of all resulting source values as the ROI value. For
most applications, the direction of the dipoles is not relevant
[9], rather the amplitude is the important information. By
flipping the signs, an average value of the amplitudes in
the ROI is obtained, avoiding the cancellation of opposing
signs during the averaging. The source reconstruction and
parcellation was done using MNE-Python [6].

D. CLASSIFICATION METHODS

The work was focused on exploring EEG classification
using source space representation. Since the data is of a
similar nature in both source- and electrode space (nchannels×
ntimes, with nchannels being the number of dipoles or electrodes
for source- and electrode space respectively), the same neural
network architectures can be used for both types of data,
by modifying the input layer of the network. Three neural
networks were employed in this work, using Keras [10]:

• Shallow EEG-GCNN (Graph Convolutional Neural
Network), [11]

• EEGNet (Convolutional Neural Network), [12]
• Deep ConvNet (Convolutional Neural Network), [13]

All three networks were implemented with the same hyper-
parameters as in the papers they were originally proposed
(except for some minor modifications necessary for integra-
tion). The graph convolutional neural network (GCNN) uses



an adjacency matrix to represent the data structure as a graph.
Each dipole is treated as a node and the time series of that
dipole is treated as its feature vector. The edges between
node i and j is represented by the value of element aij in
the adjacency matrix. In this work, if the ROIs represented by
two nodes i and j share a border, aij was set to 1, otherwise
it would be set to 0.

Only intra-subject classifiers have been explored in this
work. Hence, each classifier had to be trained and tested on
data from only one subject. To explore different configura-
tions and hyperparameters before testing, the following rou-
tine was developed: The subjects are randomly divided into
two groups: validation subject and test subjects. The dataset
from the validation subject are each randomly segmented into
its own training set and validation set. The datasets from the
test subjects are each randomly segmented into a training
set and a test set. Fig.2 depicts this structure. In practice,
the segmentation within each subject was done with cross-
validation. The purpose of separating into validation subject
and test subjects is to explore different DNN architectures
and hyperparameter configurations. Different configurations
can be trained on the validation subject, and then evaluated
on its validation set. Several configurations can be found by
iterating this process. However, the accuracy found for the
validation subject must be considered overly optimistic due
to possible overfitting. So the final configuration is tested on
the test subject, to see how well it generalizes.

Using only a subset of ROIs/electrodes for classification
may be beneficial. Some regions of the brain may be more
descriptive than others for the task at hand, thus using only
those could reduce the overall signal-to-noise ratio in the
data, and improve the classification. For instance, since the
aim is to discriminate visual evoked potentials (VEPs), the
occipital lobe might be such a region, as it is the brain area
that interprets visual stimuli [14]. No optimal selection was
performed to select a certain set of ROIs/electrodes in this
work, but two different configurations were tested: using all
ROIs/electrodes and using a selected set of ROIs/electrodes.
In source space, the selected set was all 24 ROIs of the
occipital lobe. In electrode space, the selected set was eight
electrodes placed in the vicinity of the occipital lobe.

III. RESULTS

EEGNet and deep ConvNet (DCN) classifiers were trained
and tested in both source- and electrode space. All these clas-
sifiers were developed for both channel configurations (all
channels and selected channels). The GCNN was only built
for source space using all ROIs. The results presented are the
accuracies and standard deviations of intra-subject classifiers
tested using a 5-fold cross-validation, those accuracies are
presented in Table II. Two trends can be observed from the
results: DCN performs better than EEGNet, and electrode
space classifiers tend to perform better than source space
classifiers. For all classifiers, especially those performing
well, there is a noticeable difference between the best and the
worst-performing subjects. This can be partially explained by
some subjects not having correct behavior during the EEG

recording. The subjects were observed during the recording,
and notes were taken of some subjects being sleepy or
moving excessively. The results show that these subjects
tend to perform worse than the average. In addition, for one
subject two of the EEG channels located in the vicinity of
the occipital lobe did not function correctly and delivered
no signal. This subject was among the worst-performing
subjects in all tests. In a previous study using the same
dataset [4], a choice was made to leave out a set of subjects.
The motivation for leaving out these subjects was a set of
requirements for a session to be allowed in their study, such
as correct behavior of the subjects and no flat channels on
the visual cortex. For the same subset of subjects used in
this previous study, the best results in this paper (using
deepConvnet with all electrodes) yield an average accuracy
of 84%. Table I compares the results of this study to those
reported in [4].

TABLE I
CLASSIFICATION RESULTS USING THE SAME SUBJECT SUBSET AS IN

[4]

This study Previous study [4]Electrode space Source Space
Best acc. 0.96 0.87 0.93
Average acc. 0.84 0.58 0.75
Average std. 0.04 0.05 0.08
Worst acc. 0.66 0.38 0.54

IV. DISCUSSION

All average performances of EEGNet and DCN were
better in electrode space than source space, regardless of
electrode and ROI selection. This was not the expected result,
seeing as the source space representation theoretically has a
higher spatial resolution [9], and thus different conditions
should be easier to discriminate. One possible explanation
for this unexpected result is that both networks were de-
veloped for electrode space classification. Although both
representations have a similar nature, it is not necessarily
the case that a given DNN architecture is equally suitable
for source- and electrode space. When averaging the sources
much of the spatial resolution might be lost. It is effectively
a spatial downsampling of the source space. Thus, some
of the advantages gained in spatial resolution, by using
source reconstruction, may be lost. As mentioned, the use
of only some specific ROIs may serve as a method for
improving classification. This method also has the advantage
of reducing data dimensionality. Instead of reducing the data
size by averaging into different regions, one could rather
select a subset of sources from the entire set of sources (ca.
8000). By selecting certain regions expected or demonstrated
to be relevant for decoding color stimuli, one could keep a
high spatial resolution in those areas, while also reducing the
data size.

The architectures evaluated in this study have been used
with their original hyperparameters, the results also serve
as an example that certain DNNs can be applicable across
different tasks. One of the concerns regarding deep learning,



TABLE II
CLASSIFICATION RESULTS

Classifier Accuracy best Accuracy average SD average Accuracy worst
DCN, source space (selected, 24) 0.87 0.54 0.05 0.38
DCN, source space (all, 150) 0.79 0.53 0.05 0.43
EEGNet, source space (selected, 24) 0.71 0.48 0.05 0.37
EEGNet, source space (all, 150) 0.68 0.53 0.05 0.42
GCNN, source space (all, 150) 0.47 0.36 0.05 0.29
DCN, electrode space (selected, 8) 0.96 0.77 0.04 0.46
DCN, electrode space (all, 60) 0.95 0.72 0.04 0.37
EEGNet, electrode space (selected, 8) 0.92 0.67 0.05 0.41
EEGNet, electrode space (all, 60) 0.88 0.59 0.06 0.34

raised in [2], is the often unjustified selection of param-
eters in DNNs, making it difficult to rule out that some
tuning based on the test set has occurred. That EEGNet
and DCN, with their original hyperparameters, classify with
higher accuracy than previous studies on RGB stimuli, is
further evidence that these architectures are suitable for EEG
decoding, and that their parameters are not overfitted to the
test sets of the original papers

There are several reasons to believe that further work
can achieve better performance than that reported in this
project. Both EEGNet and DCN performed reasonably well,
however, no modifications have been done to the design
or hyperparameters of these architectures. It is reasonable
to assume that these architectures could be tailored more
specifically to the task of classifying RGB stimuli, and
thus achieve better results. Such tailoring could for instance
involve testing different numbers and widths of layers in the
model.

The results show that choosing a subset of channels in
the vicinity of the occipital lobe does yield an increase in
performance. In light of this, it seems natural that there is an
optimal subset of channels to use. This should be explored
by employing a structured search for an optimal channel
subset. Not only could this help develop a better-performing
classifier, but choosing a subset of channels would also result
in less data and fewer electrodes needed. This would make
the classifier more applicable to a BCI, where few electrodes
and low computational cost are important factors.

Variability of light conditions and color tones were not
considered in this study. Towards a BCI implementation the
variability of these parameters should taken into account,
further studies should clarify the color classification in more
naturalistic scenarios. The color vision impairment can be a
limitation of the usability of a BCI based on colors, future
evaluations on color blind participants could help to clarify
the boundaries of this approach.

V. CONCLUSIONS

In conclusion, the results reported in this study suggest
that deep learning can be a suitable approach for classifying
RGB stimuli. All architectures employed in this project have
been implemented with minimal adaption to the task at
hand. Thus, the level of accuracy of both EEGNet and DCN
suggests that some DNNs can be suitable across different
tasks. Moreover, it is reasonable to believe that modifying
these architectures for the classification of RGB responses

would yield better results.
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Hämäläinen, “MEG and EEG data analysis with MNE-Python,” Fron-
tiers in Neuroscience, vol. 7, no. 267, pp. 1–13, 2013.

[7] A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Bel-
liveau, J. D. Lewine, and E. Halgren, “Dynamic statistical parametric
mapping: Combining fMRI and MEG for high-resolution imaging of
cortical activity,” Neuron, vol. 26, pp. 55–67, 4 2000.

[8] C. Destrieux, B. Fischl, A. Dale, and E. Halgren, “Automatic par-
cellation of human cortical gyri and sulci using standard anatomical
nomenclature,” NeuroImage, vol. 53, pp. 1–15, 10 2010.

[9] C. M. Michel and D. Brunet, “EEG source imaging: A practical review
of the analysis steps,” Frontiers in Neurology, vol. 10, p. 325, 4 2019.

[10] F. Chollet et al., “Keras,” https://keras.io, 2015.
[11] N. Wagh and Y. Varatharajah, “EEG-GCNN: Augmenting

electroencephalogram-based neurological disease diagnosis using a
domain-guided graph convolutional neural network.” Proceedings of
the Machine Learning for Health NeurIPS Workshop, vol. 136, p.
367–378, 2020.

[12] L. Xu, M. Xu, Z. Ma, al, B. Zang, Y. Lin, Z. Liu, V. J. Lawhern,
A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and
B. J. Lance, “EEGNet: a compact convolutional neural network for
eeg-based brain–computer interfaces,” Journal of Neural Engineering,
vol. 15, p. 056013, 7 2018.

[13] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer,
M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter,
W. Burgard, and T. Ball, “Deep learning with convolutional neural
networks for EEG decoding and visualization,” Human Brain
Mapping, vol. 38, no. 11, pp. 5391–5420, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730

[14] M. Bear, B. Connors, and M. Paradiso, Neuroscience: Exploring the
Brain, Enhanced Edition. Jones & Bartlett Learning, 2020.


