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Abstract. The hand motor activity can be identified and converted into
commands for controlling machines through a brain-computer-interface
(BCI) system. Electroencephalography (EEG) based BCI systems em-
ploy electrodes to measure the electrical brain activity projected at the
scalp and discern patterns. However, the volume conduction problem at-
tenuates the electric potential from the brain to the scalp and introduces
spatial mixing to the signals. EEG source imaging (ESI) techniques can
be applied to alleviate these issues and enhance the spatial segregation of
information. Despite this potential solution, the use of ESI has not been
extensively applied in BCI systems, largely due to accuracy concerns over
reconstruction accuracy when using low-density EEG (ldEEG), which is
commonly used in BCIs. To overcome these accuracy issues in low chan-
nel counts, recent studies have proposed reducing the number of EEG
channels based on optimized channel selection. This work presents an
evaluation of the spatial and temporal accuracy of ESI when applying
optimized channel selection towards ldEEG number of channels. For this,
a simulation study of source activity related to hand movement has been
performed using as starting point an EEG system with 339 channels.
The results obtained after optimization show that the activity in the con-
cerned areas can be retrieved with a spatial accuracy of 3.99, 10.69, and
14.29mm (localization error) when using 32, 16, and 8 channel counts
respectively.
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1 Introduction

The human primary motor cortex (M1) has been identified as the area respon-
sible for commanding the execution of hand movements [18]. This area is char-
acterized for exhibiting mainly a mu rhythm (frequencies around 8–12 Hz) at
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rest. An attenuation of the power of this rhythm, also called event-related desyn-
chronization (ERD), in the contralateral cortex is presented during the execu-
tion/imagination of hand movements [18, 17]. This particular phenomenon in the
mu rhythm has been exploited by brain-computer-interfaces (BCIs) to discern
the hand that was executing an actual or imagined movement and convert those
motor events into commands for a human peripheral system [10, 9, 19].

Most of the BCIs are based on the analysis performed using the information
registered by the electrodes on the scalp (electrode space) [13], which is charac-
terized by the low spatial resolution due to the volume conduction effect. In this,
the potential generated by the electrical activity in the brain gets mixed and at-
tenuated due to the different layers and their different conductivity properties
before reaching the scalp. EEG Source imaging (ESI) methods can accurately
retrieve the source activity and unmix the signals registered at the scalp; result-
ing in a better spatial discrimination of the underlying activity [10]. However,
ESI requires high-density EEG (hdEEG) and a volume conduction model of
the head, to perform accurate estimations [15]. Those requirements, in addition
to computational concerns, might have contributed to fewer implementations
of BCIs systems based on source activity. Despite this concern, multiple studies
have demonstrated that source-centered BCIs are feasible in online scenarios [14,
2] and can outperform the electrode only based BCIs [3, 7, 23]. However, ldEEG
is still preferable in BCIs due to its lower cost, increased wearability, and ease
of use.

Regarding the use of ldEEG in ESI, a recent study [21], presented an au-
tomated framework for optimal selection of ldEEG electrode positions that at-
tained higher spatial accuracy than coverage-based electrode distribution and
close to hdEEG accuracy. In [12], the authors used ldEEG, 26 channels, and
source space to detect lower limb movements. Although ldEEG was utilized, no
optimal electrode selection was conducted and electrodes were placed based on
scalp coverage criteria. Inspired by those, here we propose an evaluation of the
reconstruction accuracy with optimized channels with the purpose of exploring
the boundaries of ldEEG for estimating the source activity of hand movement-
related areas. To perform such evaluation, first, we simulated source activity in
the region of interest (ROI). Then, we applied the framework of optimal selec-
tion of electrode location from [21] and introduced new constraints to evaluate
the performance of symmetrical and non-symmetrical electrode distributions.
The contribution of this paper is to conduct an evaluation of how accurate can
the estimation of the source activity be in the cortical hand movement-related
areas, and provide information that can facilitate closing the gap between ESI
and BCIs.

2 Simulation of source activity in the hand
movement-related areas

To simulate activity we made use of the EEG forward equation that defines the
EEG:
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y = Mx+ ε (1)

In it, the matrix y represents the EEG channel data. The matrix x represents
the time courses of the source activity. The matrix M , often called the lead field
matrix, represents the morphology and conductivity of the brain and contains
the linear relationship between the cortical sources and the signals at the scalp.
The matrix ε represents the noise registered in the measurements. We followed
these steps for the simulations: forward modeling, ROI definition, simulation of
source time courses, EEG computation, and noise addition.

Forward Modeling: To obtain the lead field matrix M , we computed a
boundary element method (BEM) model based on the MRI images of a 27-year-
old subject. The MRI images were processed and segmented using Freesurfer
[4], and the BEM surfaces of the scalp, skull, and brain were generated using
Freesurfer and MNE-python [8]. A set of 339 electrodes named and positioned
according to the international 10-05 system were co-registered and projected
into the scalp. Then, the lead field matrix for the 10-05 set was computed using
the BEM surfaces and the projected electrodes. The number of sources was
defined as 4098 per hemisphere, and the default MNE-python conductivities of
0.3, 0.006 , and 0.3 S/m were used for scalp, skull, and brain, respectively.

Fig. 1. Simulation procedure of the source activity in the hand movement-related areas.
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ROI Definition: Previous studies [1, 3, 24, 10] have identified the sensory-
motor cortex as the source regions where the upper limp movements take place,
in particular, the so-called hand knob of the precentral gyrus has been found
common across these studies. To define the ROI in the hand knobs we inspected
the 3D surface of the cortex and manually labeled the center of the hand knob
in each hemisphere. Two sets of sources around the markers were established
by selecting the 20 closest sources to each marker. The 40 source locations and
hand knobs ROIs are depicted in figure 1.

Simulation of source time-courses: Two epochs of 2 s were simulated per
each source in the ROIs, resulting in 80 epochs. In each epoch three sources were
activated: the main source within the ROIs and two more background sources
outside them. The sources were generated using a sinusoidal Gaussian windowed
activity as in [22, 21], by using the following equation:

xi(t) = aie
− 1

2 (
t−ci

σ )2sin(2πfit) (2)

The time course of the i−th source is defined by the maximum amplitude ai,
the time center ci, frequency fi, and window width σi. The three activities were
centered at 1 s. The main source was simulated with a frequency of 10Hz and
width 0.12. The background sources were simulated outside the ROIs to emulate
brain activity from other areas and generate interference to the ESI algorithms,
their location was randomly selected and they should be at least 3 cm from the
main source. Their amplitude was 10% of the amplitude of the main source,
with a width of 0.12 and frequencies of 5 and 20Hz.

EEG computation and noise addition: The EEG was computed using
the forward equation 1, and the matrices M and x generated at forward mod-
eling and source time courses simulation stages. After obtaining the matrix y,
Gaussian noise was added to represent the noise in the measurements, three
different levels of signal-to-noise ratio were used 10, 5, and 0 dB.

Figure 1 summarizes the procedure of simulation of source activity in the
hand movement-related areas.

3 Optimal selection of EEG Channels

To select and reduce the number of channels, we used the automatic method-
ology for electrode selection presented in [21]. In it, the non-dominated sorting
genetic algorithm II (NSGA-II) is combined with ESI algorithms. The number
of channels used during ESI and the localization error are minimized in a multi-
objective optimization problem. In the genetic algorithm each channel position
is represented by a binary value, and the set of channels by a binary vector,
when the binary value corresponding to a channel is one, the channel is used
during ESI, otherwise the channel is not used and its information is zeroing.
The NSGA-II generates and tests multiple channel combinations while evolving
them to find the ones with lower channel counts and the lower localization error.

Algorithm modification: In the original work, authors applied the method-
ology over epochs, therefore combinations of channels were optimized in each



EEG source imaging of hand movement-related areas 5

epoch. In this work, we introduced a main modification: the optimization is per-
formed over all epochs to obtain a single combination instead of an epoch-wise
combination.

Constraints: We performed multiple tests in an attempt to identify com-
binations that leads to the lower reconstruction errors: constraining the search
space to the 10-10 standard electrode placement, without search space constraint,
adding a symmetricity constraint to maintain the number of channels equal be-
tween both hemispheres and performed cascade search optimization. In the cas-
cade search, we performed three nested optimizations for 32, 16, and 8 channels,
the second and third optimization were constrained to the previous combination
found.

ESI algorithms: The standardized low-resolution electromagnetic tomog-
raphy (sLORETA) [16] and weighted minimum norm estimation (wMNE) [6]
were used to estimate the source activity during NSGA-II optimization. These
algorithms were selected based on the results of previous work in [20, 21], where
multiple ESI algorithms were evaluated in ldEEG conditions, and it was found
that wMNE and sLORETA consistently obtained the lowest source localization
errors. Both algorithms are based on minimum norm estimation, where the ESI
problem can be considered as an optimization problem as follows:

J = argmin(x){||Mx− y||22} (3)

As the number variables to estimate (source activity x) is much higher that
the number of observations (EEG channels y) the problem is mathematically ill-
posed and ill-conditioned [11]. This means that infinite solutions for the source
activity x can be found to minimize J and fit with the EEG data y. To find a
unique solution, the algorithms make use of Tikhonov-Phillips regularization by
including a regularization parameter λ that weights the norm of the estimated
solution:

J = argmin(x,λ){||Mx− y||22 + λ2||x||22} (4)

The ESI solutions of wMNE and sLORETA are given by the following equa-
tions:

x̂wMNE = W−1MT (MW−1MT + λ2I)−1y (5)

x̂sLOR =

√
1

[Sx]ii
MT (MMT + λ2I)−1y (6)

The solution of wMNE uses a weighting matrix W to influence the weight of
the deep sources, resulting in a better localization of the source activity of the
deeper sources [5]. Its value is computed using the following equation:

W−1 = diag

[
1

∥l1∥2
,

1

∥l2∥2
, ...,

1

∥ls∥2

]
(7)
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where W is a diagonal matrix, and ∥ls∥2 the Euclidean norm of the s-th
column of M

The solution of sLORETA is usually smooth (estimations are blurry and
widespread over large areas) but it is recognized by its zero localization error
in the absence of noise [16]. In its solution sLORETA introduces a non-linear
standardization of the solution using the variance of the estimated activity Sx,
this variance is defined by:

Sx = MT (MMT + λ2I)−1M (8)

The Eucledian distance was used to compute the localization error by com-
paring the position of the ground-truth source Px and the estimated source
position Px̂ using the follow equation:

LocE = ∥Px − Px̂∥2 (9)

Where Px̂ is selected from the estimated source activity x̂ by selecting the
location of the source with the highest power value.

4 Results

A summary of the performed tests is presented in table 1. The localization
error presented is the mean of the localization error across all epochs. We first
evaluated the dataset with the three levels of added noise and constrained the
search space to the 10-10 standard electrode placement. The localization error
between the three levels of noise was similar, i.e. for 8 channels the errors were
between 15.45 to 16.07mm for sLORETA and 16.08 to 17.01mm for wMNE.
As the difference is less than 1mm between the highest and lowest error for all
electrode counts, we decided to continue the evaluations only with the dataset
of higher noise level (0 dB).

The less accurate results were obtained when adding multiple constraints,
in particular, the case when the optimization was performed in cascade with
hemispherical symmetricity and search within the 10-10 system. The effect of
these constraints increased the localization error between 2.01 and 3.34mm in the
lower channel counts of 8 and 16 channels when compared with only applying the
10-10 system constraint. On the contrary, when fewer constraints were imposed,
the accuracy increased. As shown in the table 1, the highest accuracy values were
obtained when no constraint was imposed or when only applying symmetricity
constraint. These results coincide with the bigger search space of 339 channels,
as no 10-10 system constraint was imposed in both cases. In these two cases, the
localization error was lowered between 1.63 and 2.67mm when compared with
the 10-10 system constraint. The Pareto fronts when constraining the search
space to 10-10 system and without constraint, search space of 339 channels, are
presented in figure 2. It is noticeable that the Pareto fronts of sLORETA and
wMNE were more accurate when not limiting the search space.
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Dataset 10dB 5dB 0dB

Constraint

Type

10-10 system

10-10 system,

Symmetricity,

Cascade search

Symmetricity No constraints
10-10 system,

Cascade search

8 chs
sLORETA 15.87 (10.54) 15.45 (9.03) 16.07 (10.11) 18.59 (7.97) 14.29 (5.04) 14.74 (7.24) 16.75 (11.68)

wMNE 16.08 (8.87) 16.19 (9.22) 17.01 (13.05) 19.49 (10.69) 14.94 (7.69) 14.80 (10.84) 16.64 (12.12)

16 chs
sLORETA 12.66 (9.10) 12.58 (9.04) 13.11 (8.77) 16.45 (9.58) 11.56 (5.57) 10.69 (6.61) 12.61 (9.09)

wMNE 12.90 (8.92) 13.62 (8.82) 13.64 (8.89) 15.65 (8.87) 12.63 (5.11) 12.01 (5.74) 13.91 (9.19)

32 chs
sLORETA 7.80 (8.70) 7.85 (8.42) 7.74 (8.68) 8.42 (8.81) 6.02 (7.38) 5.07 (5.64) 8.41 (8.49)

wMNE 7.30 (8.74) 7.32 (8.31) 6.45 (7.82) 7.20 (8.39) 3.99 (6.37) 5.18 (6.29) 6.62 (8.60)

72 chs

(10-10 system)

sLORETA 4.00 (7.15) 4.01 (7.15) 4.05 (7.16) 4.05 (7.16) - - 4.05 (7.16)

wMNE 3.77 (6.99) 3.75 (6.98) 3.65 (6.99) 3.65 (6.99) - - 3.65 (6.99)

339 chs
sLORETA - - - - 0.00 (0.00) 0.00 (0.00) -

wMNE - - - - 0.00 (0.00) 0.00 (0.00) -

Table 1. Localization error (mm) and standard deviation of the optimization test. The
values remarked correspond to the best result with a given number of channels and
ESI method.

Fig. 2. Comparison of Pareto fronts for SNR 0dB dataset when constraining the search
space to the 10-10 positioning system and without constraining (search space of 339
positions).

The 8 channel combinations for the cases with the search space of 339 chan-
nels with and without symmetricity for sLORETA are presented in figure 3.
From them, it can be seen that the electrodes were found close to the motor
cortex areas, in both cases with one electrode slightly separate from the others.
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Fig. 3. Combinations of 8 channels for sLORETA without constraints and with sym-
metricity constraint.

5 Discussion and Conclusion

The localization error is an indication of the spatial accuracy, here, in the best
evaluation cases we obtained 14.29mm (8 channels, sLORETA, and only sym-
metricity constraint), 10.69mm (16 channels, sLORETA, and no constraints),
and 3.99mm (32 channels, wMNE, and only symmetricity constraint). As in
[22], we confirmed that the channel optimization with NSGA-II enables us to
find channel combinations that led to the closest values to hdEEG accuracy val-
ues, in particular, the combination with 32 channels is less than 0.5mm from
the accuracy obtained with 72 channels in 10-10 system.

This research provides a pipeline to optimize the number of channels and
identify ldEEG channel combinations for an individual subject that reduces the
gap between hdEEG and ldEEG spatial accuracy. This systematic search for the
best electrode positions was done as a first step in the design of dedicated EEG
systems that can monitor the cortical source activity and facilitate the imple-
mentation of BCI systems for assisting in the rehabilitation of hand movement
in stroke survivors. The previous studies in [3, 7, 12, 23] demonstrated that the
source space can outperform the sensor space. Here, our results indicate that 16
channels could provide an accurate reconstruction to be used in BCIs related to
hand movements.

The level of accuracy required for source-based BCIs for hand movements
might depend on the type of imagined movements to classify. The boundaries
of the applications should be clarified in further studies, i.e. it is noticeable that
classifying between right or left hand might require lower spatial accuracy than
classifying within wrist movements of the same limb.
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The results indicate that when a bigger search space is used, better accuracy
could be obtained. This should be considered in BCI systems, exploring electrode
locations outside the standard positioning systems towards a personalized set of
combinations can be valid in a BCI context if it leads to a better classification,
future works should explore individual channel distributions and their classifi-
cation performance. Here, we demonstrated that the use of electrode locations
outside the standard led to lower reconstruction errors.

This work was limited to areas related to hand movements, the ROI was re-
duced to the hand knobs. Although the same procedure can be evaluated in other
limbs or other regions of the brain. For example, to estimate the source activity
of hearing-, visual-, or attention-related areas. To the best of our knowledge, no
other studies have been conducted to evaluate the ESI properties on particular
brain regions using ldEEG with optimized channel selection, and this framework
can be generalized to particular ROIs. Here, the EEG simulation was limited to
sinusoidal Gaussian activity and this may not fully capture the complex behav-
ior of a real EEG recording. However, the simulation framework serves as basis
to evaluate the spatial accuracy in the context of ldEEG source imaging, consid-
ering that the reduced spatial sampling has been one of the arguments against
the use of source estimated activity in BCI systems. It is debatable whether
increasing the complexity of the simulated signal will affect the spatial resolu-
tion, especially when considering that non-linear mix imposed by the volume
conduction has been included during forward modeling.

In conclusion, this study explores the use of optimized ldEEG for estimating
the source activity of the hand movement related areas and investigates the
accuracy under multiple optimization scenarios. In this work, several key findings
are reported. Firstly, optimized channel selection in ldEEG setups demonstrated
potential as a viable alternative to hdEEG, offering a comparable accuracy when
retrieving the source space of the particular ROI. This finding is significant as it
paves the way for source-centered BCI systems with low EEG channel counts.

Moreover, we presented a comprehensive pipeline to perform channel opti-
mization in the context of ESI. The pipeline can be used to identify the channels
that can accurately estimate the sources in a ROI and to be used in developing
customized EEG solutions for a particular user when using individual MRI for
forward modeling.

Furthermore, as a result of the reduction of channels, the optimized ldEEG
can improve the practicality of EEG in real-world scenarios, as fewer sensors
often leads to wearable and easy-to-use devices. It can be argued that the esti-
mation of the sources increases computational complexity, especially for online
systems. However, pre-calculated forward models and inverse operators can serve
to speed up the computations.

This work provides insights on the use of optimized ldEEG in retrieving
sources towards BCI systems. However, several questions are still open and are
required to be solved prior to implementation in BCI systems. Further studies
should be performed to clarify the role of ESI with optimized sensors and to
develop source-centered BCIs that can complement current BCI sytems based
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on only scalp recordings. Also, to analyze the effect of optimized channels in
the classification accuracy when using source and sensor space. Further efforts
should be made to verify the implications of the source computation in online
settings, and clarify whether to apply forward modeling on individual basis or to
use brain structural information from template heads can be accurate enough.
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