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ABSTRACT
This paper presents a novel method for the visual-based 3D mapping of underwater 
cultural heritage sites through marine robotic operations. The proposed methodology 
addresses the three main stages of an underwater robotic mission, specifically the 
planning phase, the mission-time and the offline processing phase. Initially, we 
approach mission planning through multi-vision sensor configurations and simulations 
of the underwater medium’s effects. Subsequently, we demonstrate a possibility 
for real-time 3D surface reconstruction and hole detection by using Poisson Surface 
Reconstruction (PSR) and the Ball Pivoting Algorithm (BPA), that allows for real-time 
quality assessment of the acquired data and control of the coverage of the site. Last, 
an offline photogrammetric workflow is discussed in terms of geometric reliability and 
visual appearance of the results. The presented three-step methodological framework 
has been developed and tested in both simulation and real-world environments for 
three wreck sites in the fjord of Trondheim, Norway, introducing among others novel 
marine robotic technology like the articulated robot Eelume.
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1. INTRODUCTION

By definition, Underwater Cultural Heritage (UCH) is 
inaccessible to archaeologists and the public without the 
application of technological help of some kind. Diving 
gear can allow human presence on the seabed for a 
limited time and in shallow waters, and has facilitated 
the development of marine archaeology as a sub-
discipline in that capacity. In areas that are too deep, or 
otherwise prohibits diving, the use of robots is often the 
only realistic option available for detecting, investigating, 
and experiencing underwater cultural heritage.

Although robots do not have the physiological 
limitations that humans have for being underwater for 
long durations, in practice time is still an important factor 
in terms of energy consumption (batteries) or operational 
costs (expensive surface vessels). Effectiveness is an 
important benchmark for methodological choices. The 
increasing capabilities of payload sensors for a variety 
of platform options, from Remote Operated Vehicles 
(ROVs) to fully autonomous ones like Autonomous 
Surface Vehicles (ASVs) and Autonomous Underwater 
Vehicles (AUVs), smoothen the path for the maritime 
archaeologist to pick the right tools for the right venture 
(Ludvigsen & Sørensen 2016; Ødegård et al. 2016a).

For surveying, mapping and investigation of UCH 
sites, acoustic sensors can provide large area coverage 
underwater, but lag behind optical sensors in resolution 
and photorealistic capabilities, two keystones when it 
comes to archaeological interpretations of a site (Ødegård 

et al. 2016b). Multiple underwater imaging systems 
mounted on Unmanned Underwater Vehicles (UUVs), 
as well as innovative computer vision approaches, offer 
significant potential in high-resolution data acquisition 
and mapping outcomes respectively for sites of high 
spatial and structural diversity (Figure 1).

The effective range of cameras for providing high 
quality images is limited by the inherent optical properties 
of the water column (total suspended matter, colored 
dissolved organic matter and phytoplankton) causing 
color absorption and backscatter. These limitations can 
be mitigated by navigating the instrument-carrying 
platforms close to the objects or areas of interest but 
would normally require detailed a priori knowledge of the 
area of operations. Recent literature (Karapetyan et al. 
2021; Leonardi et al. 2017; Palomeras et al. 2018; Sheinin 
& Schechner 2016; Wu et al. 2019) presents promising 
steps towards intelligent path planning approaches for 
optimal collection and online assessment of visual data, 
collision avoidance and operational cost effectiveness in 
underwater environments.

For remote intervention or even excavation with robots, 
the operator must have sufficient information for making 
appropriate decisions for operations. Sensor data, on the 
other hand, must provide a situational awareness that 
is sufficient for both scientific and navigational decision 
making. Maneuvering and operation of a robotic platform 
must be sufficiently precise and tactile to perform visual 
scanning in sites of delicate and fragile objects or in cases 
of high structural complexity like wreck sites.

Figure 1 Spatiotemporal graph of the 3D documentation and mapping of underwater archaeological sites of diverse scales and 
structural complexities via marine robotic operations. (SLAM: Simultaneous localization and mapping).
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The main goals of a non-intrusive mission of a wreck 
site documentation are threefold: to acquire high quality 
data, to reduce or even eliminate relevant risks for both 
the vehicle and the site, and to do so through the most 
cost-effective way. The scientific contribution of the 
proposed methodology is to address all these three 
main goals. Given a basic amount of existing a priori 
knowledge of a site’s environment, our method proposes 
the first runs of an underwater mapping mission within 
a simulation environment. Developing and working with 
synthetic datasets exceeds the cost-effectiveness of 
real-world missions, as (nearly) all salient parameters 
of the site’s geometry and prevailing conditions can be 
parameterized and controlled (Zwilgmeyer et al. 2021). 
The vehicle’s trajectories, the sensor’s distances, and 
viewpoints (sensors poses), the desired spatial resolution 
as well as the environmental conditions (visibility and 
illumination) can be pre-estimated and simulated 
precisely (Hodne et al. 2022).

The current work proposes a workflow for the three 
main phases of an underwater robotic mapping operation 
on a wreck site: the pre-mission phase, the main mission 
time and the post-mission phase (Figure 3). Mission 
planning, real-time evaluation of data acquisition, 
photogrammetric mapping and interpretation of UCH 
sites are investigated and implemented through vision-
sensing technologies, online and offline. First, the paper 
provides an overview of the state-of-the-art of marine 
technologies and algorithmic solutions for underwater 
archaeological documentation. Next, we present our 
method through samples of our ongoing research on 
visual-based mapping of underwater cultural heritage, 
in both simulation and real-world operations. The main 
contribution of this paper is the investigation of techniques 
that optimize photogrammetric data acquisition during 
a robotic mission at an underwater archaeological or 
historical site. The branches of this main contribution are:

•	 the emphasis on the importance of simulations 
before a robotic operation. Multiple sensor 
configurations (with a focus on optical sensors), 
the underwater medium’s effects and the robot’s 
path are first estimated and tuned into a simulation 
environment, thus significantly reducing the time 
on site, while increasing operational efficiency and 
collected data quality.

•	 the real-time evaluation of data, through real-time 
surface reconstruction and holes detection that 
ensures full coverage and prevents the need to revisit 
the site in case of gaps in the data quality.

•	 the investigation of the potential of breakthrough 
marine technology like the snake robot Eelume for 
marine archaeological research.

•	 the validation of the proposed three-phase workflow 
for UCH photogrammetric mapping in real-world 
experiments.

2. STATE OF THE ART IN MARINE 
ARCHAEOLOGY

The photogrammetric documentation of underwater 
archaeological sites via submersibles dates back to the 
1960s, when the Yassi Ada Byzantine wreck was surveyed 
without the necessity for human divers despite its non-
restrictive depth of 35 meters (Bass & Rosencrantz 1972). 
Throughout the late 1980s, Unmanned Underwater 
Vehicles (UUVs) began to be systematically deployed 
for the digital recording of marine archaeological sites 
in the Mediterranean (Ballard et al. 2000; Bingham et al. 
2010). Remote Operated Vehicles (ROVs) have exhibited 
their increased effectiveness in surveying multiple wreck 
site scenarios the last decades. Their umbilical provides 
extended, if not unlimited, power supply and seamless 
data transfer, thus facilitating deep-water surveys and 
real-time mapping results. Work class ROVs, mainly 
developed and utilized in offshore industry, are proficiently 
adopted by the field of marine archaeology, thanks to 
their high sensors payload capacity. The discovery and 
surveying of 65 wreck sites in a depth range from 40 to 
2,200 meters during the Black Sea MAP project (Pacheco-
Ruiz et al. 2019), the surveying of the 170 meters deep 
18th century wreck at Ormen Lange in Norway (Soreide 
& Jasinski 2005, Figure 2) and the photogrammetric 
mapping of the 330 meters deep Roman shipwreck Cap 
Benat 4 during the “The ROV 3D” project (Drap et al. 
2015) are three indicative examples of the successful use 
of such advanced offshore technology.

Work class ROVs can be challenging for maneuvering 
in tight spaces and gives less freedom to bring the 
instruments and sensors close to objects or areas of 
interest without risk to both vehicle and UCH. Mini-
ROVs (drones) are increasingly demonstrating the same 
capabilities when it comes to precision in positioning and 
navigation, and with adequate payload capabilities to 
carry selected sensors bespoke to purpose.

Recent advances in research on autonomous robotic 
operations has benefited underwater archaeological 
projects as well. AUVs, typically underactuated and 
torpedo-shaped, have been effectively employed for the 
mapping of diverse sites, like the shallow-waters Bronze 
Age city of Pavlopetri in Greece (Johnson-Roberson et al. 
2017) and the 90 meters deep 17th century shipwreck La 
Lune in France (Gracias et al. 2013). Due to the absence 
of direct GPS signal and data transfer, deploying AUVs 
for optical underwater surveying requires a delicate 
mission planning for the area of interest, which involves 
high accuracy navigation and positioning aids. AUVs 
normally use a combination of acoustic positioning 
and dead reckoning, using Doppler Velocity Logs (DVL) 
and Inertial Measurement Units (IMU) for estimating 
speed and orientation respectively, while in some 
cases Simultaneous Localization and Mapping (SLAM) 
techniques are applied (Leonardi et al. 2023). Research 
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in the field of autonomous operations is focused on 
optimizing visual-based navigation through Visual SLAM 
(VSLAM) and Visual Odometry (VO) techniques (Williams 
et al. 2016) and intelligent path planning methods that 
ensure full coverage of the surveying area (Karapetyan 
et al. 2021) and collision-free trajectories (Ochoa et al. 
2022), even for scenarios of sites without any a priori 
knowledge of their environment. For shallow waters or 
coastal UCH sites, ASVs are demonstrated as suitable 
platforms for documentation and mapping purposes 
(Vasilijevic et al. 2015).

In the last decade, articulated marine robots with 
increased kinematic degrees of freedom have been 
introduced to marine archaeology. The humanoid UUV 
Ocean One has been deployed on the La Lune wreck 
(Khatib et al. 2016), while the Eelume snake robot, with 
its high payload capabilities including multiple optical and 
acoustical sensors as well as a high accuracy positioning 
system, exhibits promising potential for its utilization in 
shipwreck mapping (Liljebäck & Mills 2017).

Underwater LiDAR has started to become popular in 
recent years. In the work of Akkaynak et al. (2022), they 
use underwater LiDAR to obtain the depth of the camera 
scene to restore the color of the underwater scene. This 
has much potential in obtaining incremental point clouds 
with high density and accuracy.

In parallel with the marine robotic platforms, 
significant progress has been showcased on underwater 
optical sensors. The triptych of a complete underwater 
imaging system consists of three main components: the 
camera sensor, the housing interface, and the additional 
artificial source of illumination. Song et al. (2022) list 
comprehensively the state of the art in subsea imaging 
systems with respect to parameters like the depth 
rating, the port type, and the diagonal field of view 
(FoV). As underwater photography is progressing, so 
does the possibility for high-resolution photogrammetric 
mapping of submerged archaeology. Even low-cost 
commercial action cameras with embedded Inertial 
Measurement Units (IMU) offer capabilities for detailed 

3D reconstructions through the recording of high-
definition videos with synchronized IMU measurements. 
The port types of housing interfaces are divided into 
two main categories: the flat ports and the dome ports. 
Although flat ports are cheaper construction-wise, dome 
ports’ main concept is to compensate for the refractive 
geometry of the system “camera-housing” and restore 
the basic principle of the pinhole camera. The thickness 
of the housing, especially in cases of housings made 
for deep waters that tolerate high pressure, needs to 
be taken into account (Song et al. 2022). Finally, for 
unbiased 3D measurements, the complicated refractive 
geometry of an underwater imaging system has to go 
through an accurate geometric calibration process.

In the following sections of this paper, we use selected 
case studies of shipwrecks in the Trondheimsfjord, 
Norway, to demonstrate steps in our proposed method. 
The cases are from the ongoing multidisciplinary research 
at NTNU’s Applied Underwater Robotics Laboratory 
(AUR-Lab):

•	 Tugboat M/S Herkules, which sank in 1957 outside 
Trondheim’s harbour, laying 50–60 meters deep, 
of limited archaeological interest, but serves 
well as a case study for exploring the challenges 
associated with navigation and mapping of modern 
and structurally intricate shipwrecks. The medium 
sized ROV SUB-Fighter 30K (Figure 4) was used for 
data acquisition in real conditions (Nornes et al. 
2015), while the snake robot Eelume was included 
in a simulation scenario of the photogrammetric 
scanning of the wreck (Figure 5).

•	 Schooner M/S Helma, which burned down and sank 
in 1927 off the Skogn coast in the northern part of 
Trondheimsfjord is a semi-disintegrated wreck site, 
that lays 55 meters deep. Its wooden parts have 
been mostly burned away, while parts like the boiler 
and the engine are better preserved. This wreck also 
demonstrates a list of challenges in mission planning 
for a complete photogrammetric documentation, like 

Figure 2 ROV operations in shipwreck environments. Left: ROV Minerva surveying the 18th ct. wreck at Ormen Lange, Norway, 170 m 
deep (Courtesy of Vitenskapsmuseet, NTNU). Right: ROV control room (Courtesy of AUR-lab, NTNU).
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protruding objects as obstacles or very fine elements 
for a 3D reconstruction (Diamanti et al. 2021). 
The medium sized ROV SUB-Fighter 30K (Figure 4) 
was used for data acquisition in real conditions, 
while supplementary data were collected by the 
underwater drone Blueye (Figures 4 and 6).

•	 Seaplane Heinkel He 115 wreck, which sank after 
an allied air attack in July, 1943, in Ilsvika area, 
south of the Trondheimsfjord, in a depth range of 
35–45 meters, is an easily approachable site with 
considerable dimensions – 17×22×6 meters- for 3D 
mapping experiments (Dykking 2023). The snake 
robot Eelume was deployed for the collection of 
videos and multibeam data (Figure 9).

3. THE PROPOSED METHOD

The proposed method introduces a mission timeline 
(Figure 3) that is structured as follows:

First, the planning phase involves:

•	 the definition of the mission’s scope and required 
results,

•	 the gathering of all a priori knowledge (if any) for the 
site,

•	 the selection of the most suitable UUVs and sensors,
•	 the configuration and calibration of all sensors,
•	 and the design and tuning of the mission within a 

simulation environment, where the effects of the 

inherent optical properties of the water column as 
well as the robot’s trajectories are simulated.

Second, the mission-time phase involves:

•	 the pre-planned real-world operation, 
•	 the real-time data visualization and assessment,
•	 and the real-time readjustment of the path, based on 

data quality, resolution, and coverage criteria.

Third, the post-mission phase involves:

•	 the post-processing of the collected data, including 
image preprocessing (image enhancement/ 
restoration), Structure from Motion processing, 
scaling and georeferencing,

•	 results evaluation in terms of geometric accuracy 
and texturing uniformity, based on objective and 
subjective criteria respectively,

•	 and the visualization and interpretation of the final 
outcomes.

3.1  PLANNING A MISSION
3.1.1  Defining sensor configurations
For the simulated and real-world experiments of this 
work, multiple imaging systems were considered for 
three different sensor-carrying platforms: the light 
work class ROV SUB-Fighter 30K, which has the highest 
payload capacity among the three UUVs, the compact 
Blueye underwater drone and the articulated snake robot 

Figure 3 Flowchart of the proposed method: The three phases of an underwater robotic operation for the documentation of UCH sites.
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Eelume. Three scenarios of multi-camera configurations 
for visual mapping, one for each vehicle, are presented 
(Figure 4):

•	 A 45°-down-looking stereo rig of two Allied Vision 
GC1380C cameras, a 45°-forward-looking ZED depth 
stereocamera and a down-looking GoPro camera, 
mounted on the 30K ROV.

•	 A down-looking stereo rig of two GoPros and an 
integrated HD wide lens camera in the Blueye ROV.

•	 Four GoPro cameras distributed along the modules of 
the Eelume ROV and two integrated cameras in the 
snake robot, one forward looking and one down-
looking in the middle module.

The concept behind the implementation of multi-camera 
systems, or multi-vision, facilitates all the basic needs of 
an underwater mapping mission. First, the extension of 
the Field of View offers higher potential for full coverage 
of the site, while it reduces the required movements and 
maneuvers, and respectively the dive time of the vehicle. 
Another advantage of the extended viewing frustum 

is the detection of obstacles to decrease the risk for 
collisions. Finally, in photogrammetric terms, a network 
of cameras of known relative locations and orientations, 
can provide scale to the 3D reconstruction. On the other 
hand, multi-vision systems, especially underwater, 
require a lot of planning in the setup of the additional 
lights, so that a consistency in illumination and color can 
be achieved. This planning is feasible within a simulation 
environment, as it is described in the proposed system of 
the following section. Moreover, the synchronization of 
all optical sensors within the same system is not always 
straightforward, referring especially to the sensors which 
are not connected to the control system of the vehicle, 
like the action cameras in our case. An example of a 
multi-camera photogrammetric mission at M/S Herkules 
wreck is depicted in Figure 5, where two recording 
scenarios are simulated: on the left, a vertical-sway path 
with the vehicle in a straight pose and in a 90 degrees 
roll so that cameras are capturing the hull sides of the 
ship, and on the right, a vertical-sway path, keeping the 
90 degrees roll configuration, but with the vehicle in a 
U-shape, following the bow’s geometry.

Figure 4 Left: A ZED stereo camera, a stereo rig of HD cameras and a GoPro camera mounted on SUB-Fighter 30K ROV. Middle: A 
down-looking stereo rig of GoPros mounted on a Blueye ROV. Right: Four GoPros mounted along the snake robot.

Figure 5 Left: Eelume snake robot scanning the hull of M/S Herkules wreck in a straight pose. Right: Eelume snake robot scanning the 
bow of M/S Herkules wreck in a U-shape.
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In cases of lack of synchronization, there are a few 
actions that can be taken so that footage from all 
sensors can be post-synchronized. One way is flashing 
the lights in a pattern and the measurement of the 
median intensity values for high frequency frames for 
each dataset, while another way can be based on the 
alignment of the vehicle’s trajectories for each dataset. 
The second, geometrical way of synchronization, can 
only be achieved in the first two multi-camera scenarios, 
where all cameras move as a rigid body in 3D space. 
For the snake robot scenario, cameras are synchronized 
roughly by their internal clocks and more accurately by 
light intensity measurements.

Camera calibration is also an important component of 
the mission planning (Pre-Mission phase in Figure 3). The 
cameras’ housings and their customized viewports cause 
refraction in the light beams and cancel the standard 
pinhole camera model. For offline photogrammetry, 
calibration data acquisition is not necessarily required 
before the main mission, but in cases of accurate real-
time reconstructions, the camera intrinsic parameters 
need to be pre-estimated. For the estimation of each 
camera’s intrinsic parameters, we follow the typical 
checkerboard data acquisition (Zhang 2000, Figure 6).

3.1.2  Simulating the underwater medium’s 
effects
Ocean optics involves a range of complex physical 
processes. One of the main challenges for realistic 
imaging is accurately simulating the propagation of light 
in the underwater environment. This pertains primarily 
to the effect of volumetric scattering of light, the effect 
of reflected light from surrounding objects, as well as 
camera settings. This can be accomplished using 3D 
modeling and rendering software such as Blender™ 
(blender.org), which allows for editing input data through 

nodes. A node in Blender is a collection of data and is 
used for tuning input data by different parameters 
to get desired outputs (Zwilgmeyer et al. 2021). This 
includes nodes with parameters that can be tuned for 
the simulation of volumetric light scattering. Zwilgmeyer 
et al. (2021) have created an underwater environment in 
Blender. This setup was used for simulating underwater 
conditions for the existing 3D model of the Herkules 
wreck from Nornes et al. (2015). A real underwater 
image was also used as a reference to tune the nodes’ 
parameters of the simulated underwater environment. 
There are mainly four parameters to tune:

•	 Volume density: Indicates how many particles are in 
a volume to mimic volumetric scattering.

•	 Scattering direction (anisotropy): Represents the main 
scattering direction.

•	 Scattering color: Represents the color of the light 
scattered by the water medium.

•	 Absorption color: Represents the color of the light 
passing through the water medium.

The 3D model of the Herkules and its reference image 
was used as an example (Figure 7). The 3D model was 
imported into Blender, and the Principled Volume node 
in Blender was used for mimicking volumetric scattering. 
The Principled Volume node in Blender is commonly used 
to simulate fog and smoke. The parameters of the node 
were intentionally tuned in order to make the synthetic 
image resemble the reference image as closely as 
possible. Since the Principled Volume node only alters the 
model’s surroundings to simulate the water medium, it 
should not have an impact on the 3D model itself. This 
implies that the tuned node’s parameters should be 
applicable to the rest of the reference images, even with 
a different camera location and orientation.

Figure 6 Calibration of the Blueye’s ROV integrated camera.
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Once the simulated image is close enough to the 
reference image, one can define the whole path of the 
virtual camera in the simulation software (Pre-mission 
phase in Figure 3). This will generate a sequence of images 
with and without the underwater medium’s effect, 
depth map image, and ground truth of camera location 
and orientation. This data can be used for verifying path 
planning algorithms or visual-SLAM algorithms.

3.2  RUNNING A MISSION
3.2.1  Real-time 3D point cloud data acquisition
Exploring the possibility of obtaining 3D point clouds 
incrementally enables qualitative evaluation during 
robot operation (Mission phase in Figure 3). In addition, 
several surface reconstruction methods can be applied 
to 3D point clouds to obtain a surface model.

This section discusses two possible sensor setups to 
obtain incremental 3D point clouds underwater:

•	 (Stereo-) camera(s) + Artificial light(s) + IMU
•	 Multibeam Echosounder (MBES)

(Stereo) images from (stereo-)camera(s) can be used 
with/without IMU for performing Visual-inertial SLAM 
(VISLAM). A VISLAM system processes a sequence of 
(stereo-)images in real time. It produces a camera 
trajectory (location and orientation) and a 3D point cloud. 
The point cloud and camera trajectory are frequently 
updated during the real-time process. Data association 
between the images is utilized to compute a new camera 
location and orientation. The process repeats to build the 
camera trajectory and point cloud incrementally. IMU 
data will further increase the robustness of VISLAM. A 
state-of-the-art VISLAM system, ORB-SLAM3 (Campos 
et al. 2021), was applied to the underwater sequence 
of the Herkules wreck (Figure 8b) without available IMU 
data. This experiment was performed offline, not during 
a mission; however, ORB-SLAM3 is able to perform real-
time processing given a frame rate of 24 frames per 
second (fps). The ORB-SLAM3 system was able to track 
the camera trajectory and constantly updated the point 
cloud during tracking. The system lost tracking after ten 

minutes in a scene containing mainly vast blue darkness 
with no distinct features. Dynamic objects, like fish, were 
mostly ignored by the ORB-SLAM3 system. Figure 8a 
shows the camera trajectory and point cloud at a given 
time during tracking. The 3D model of the Herkules 
shipwreck is shown in Figure 10.

Another way of obtaining a real-time 3D reconstruction 
that aids the path re-planning is the use of sonar data, 
like 3D bathymetry data from a multibeam echosounder. 
This acoustic sensor detects the distance between the 
sonar sensor and the object by the reflection of acoustic 
waves. The transmitter sends multiple acoustic waves 
across a surface per time instance, and the receiver 
receives the rebound signals. With the navigation data, 
the point cloud can be georeferenced for each time 
instance. Figure 9 shows a 3D point cloud of the WWII 
Heinkel He 115 seaplane wreck generated by MBES. MBES 
generally generates a much denser point cloud than 
most Visual SLAM methods in underwater environments.

3.2.2  Real-time surface reconstruction and data 
assessment
Surface reconstruction methods can be applied during 
mission time when real-time incremental 3D point cloud 
data is available (Mission phase in Figure 3). In the field 
of computer graphics, there are established surface 
reconstruction methods such as the Poisson Surface 
Reconstruction (PSR) (Kazhdan et al. 2006) method and 
the Ball Pivoting Algorithm (BPA) (Bernardini et al. 1999).

PSR reconstructs a watertight surface from the point 
cloud data. Regions with few or even no points will be 
reconstructed by interpolation and extrapolation and 
may therefore not represent the real-world model. This 
means it can fill holes even in the absence of point 
cloud data. Points around the local surface can be used 
for estimating the lacking information. The region of 
missing information is represented by a darker color; see 
Figures 10b and 11. In addition, the 3D points do not 
lie on the surface of the PSR exactly. One can consider 
the surface as an approximation of the ‘mean’ surface 
of the point cloud. This property suits well for very noisy 
data, but not outlier data. In contrast, BPA generates 

Figure 7 The 3D model was imported into Blender, and the Principled Volume node was used for mimicking volumetric scattering. 
The parameters were set as follows: scattering color to RGB (0.008, 0.012, 0.264); absorption color to RGB (0.628, 0.628, 0.628); 
density to 0.1, and anisotropy to 0.9. Left: Real Herkules image sequence serves as the reference image. Right: The 3D model of the 
wreck is utilized in Blender to simulate underwater images.
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from the point cloud data a surface with missing surface 
information (holes). These holes can be detected and 
directly indicate lack of information. Not all points are 
used for the reconstruction. Points that contribute to 
the surface lie precisely on the surface itself, as depicted 

in Figure 10a. This implies that noisy data will have a 
more significant influence on the surface reconstruction 
compared to the PSR method.

BPA is a conceptually incremental surface 
reconstruction method. In contrast, Poisson Surface 

Figure 8 Applying ORB-SLAM3 to real underwater footage of the Herkules wreck without IMU. a. The frequently updated point cloud 
and trajectory of the monocular camera. b. The green boxes are feature point regions recognized by ORB-SLAM3. Those are used to 
estimate camera’s location and orientation.

Figure 9 Digital Terrain Model (DTM) built from a point cloud of the WWII airplane wreck obtained by a multibeam echosounder 
sensor on the Eelume snake robot (Courtesy of Eelume AS).
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Reconstruction cannot handle incremental point cloud 
data since the surface is an isocurve of a solution to a 
Poisson equation. However, it seems PSR can be further 
developed in an incremental manner, shown by Yu et 
al. (2019). Both BPA and PSR require normal vectors 
of the point cloud as input. A normal vector of a point 
represents the infinitesimal surface orientation near the 
point. Usually, it is not simple to measure the normal 
vector of the detected point. However, there is a way to 
approximate it.

1.	 First, calculate the line-of-sight vector from the 
detected point to the simultaneous sensor. A line-
of-sight vector represents the direction from the 
detected 3D point to the sensor discovering it.

2.	 Second, the line-of-sight vectors can be refined by 
incorporating the information from neighboring 
points to improve the estimation of normal vectors. 
Open3D (Zhou, Park & Koltun 2018) provides such 
functionality.

Based on our experiments, the normal vector estimation 
gave satisfactory qualitative results due to the initial 
input of the line-of-sight vector. The estimated normal 
vectors were good enough to be used by the BPA and the 
PSR method.

An experiment was performed to apply the BPA and 
the PSR method to MBES point cloud data; see Figure 11. 
10,000 points were randomly selected. BPA generated 
holes, and PSR generated no holes but different colors of 
triangle vertices to indicate lack of information. Figure 11a 
shows holes generated by BPA. Using PSR, regions of 
missing information (no point cloud data information) in 
the same region of interest are filled by interpolation and 
represented by a darker color.

With BPA, all holes can be extracted; Figure 12b 
shows all the holes extracted from Figure 11. Principal 
Component Analysis (PCA) can be utilized to determine 
the hole’s position and dominant orientation. This is 
presented in Figure 12a with the red, green, and blue 
arrows with coordinates corresponding to X, Y, and Z, 
respectively. Since it is possible to obtain the position 
orientation of holes in real time, the robot can, in 
theory, autonomously target the hole and gather more 
information.

The PSR method processes two million points in 2.5 
seconds. However, when the point cloud accumulates 
over time during a large-scale mission, PSR will take 
too much computational time as it processes the entire 
point cloud at once, whereas BPA considers the local 
point cloud as it could, in theory, process the point 
cloud data incrementally. Our main goal here is to 
show the possibility of performing real-time 3D surface 
reconstruction and detection of missing surface data 
(holes) during an online mission. Currently, this approach 
was tested using simulated data, and it shows promising 
results. We will transfer it to a real experiment in the 
future. For the time being, PSR is preferable since we can 
execute PSR on the research vessel immediately after the 
first scanning. As illustrated in Figure 11b, this procedure 
enables us to evaluate the integrity of the triangular 
mesh generated by PSR. Consequently, it helps identify 
specific sections of the shipwreck that might need more 
detailed data collection before the research mission 
concludes. Regrettably, the ORB-SLAM3 system does 
not offer an API (Application Programming Interface) for 
accessing the point cloud, preventing us from conducting 
BPA and PSR.

3.3  PROCESSING A MISSION
3.3.1  Structure from Motion
Once the mission has been completed with respect to 
the initial documentation’s requirements and real-time 
evaluation of the quality of the data, offline processing 
begins (Post-mission phase in Figure 3). Before the 
initialization of a typical Structure from Motion (SfM) 
workflow all gathered data need to be filtered for their 
adequateness for 3D reconstruction. Visual data formats 
are still images and videos. Videos are pre-programmed 
to record in a standard frame rate for all cameras (usually 
at 30 fps), and video frames are extracted through the 
open-source software ffmpeg (Tomar 2006). Poor quality 
images (due to backscattering, overexposure, lack of 
features, etc.) are selected manually and removed. After 
the synchronization – if needed in the post-processing 
phase – all imagery data are named after the sequence 
“operation-platform-sensor-timestamp”.

To ascertain whether image preprocessing is 
necessary, data are evaluated during the visual inspection 

Figure 10 Demonstration of the intuition of BPA and PSR methods. a. BPA: The black lines represent the surface in 3D. The green 
circle is a ‘2D ball’ used for reconstructing the surface. Notice that there is no line in between because the gap is too big compared to 
the diameter of the ball. b. PSR: The lines represent the surface in 3D. The light orange line indicates good support from its neighbor 
points; the dark orange line indicates bad support from its neighbor points. Points do not lie on the surface in general.
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Figure 11 There are 2,159,476 points from the seaplane wreck (Figure 9). 10,000 points were extracted from it. The BPA and the 
PSR method from Open3D were applied to the extracted point cloud (Zhou et al. 2018). a. Ball Pivoting Algorithm with balls radii 0.5, 
0.7, 1.0 meters. All holes indicate lack of information. b. Poisson Surface Reconstruction with the level of detail 9. The reconstruction 
surface’s colors indicate the lack of information from violet to yellow. Violet indicates the least supported surface patch; yellow 
indicates the most supported surface patch. We use the plasma color scale from matplotlib (Hunter 2007).

Figure 12 Holes extracted from 11a. a. Holes with mean locations and orientations. b. Overview of all holes and the model boundary.
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process. This assessment is based on both objective and 
subjective criteria. Typical effects on underwater images 
like light and color absorption, suspended particles and 
turbidity are removed or corrected through two main 
categories of image processing algorithms: the image 
restoration ones, which refer to the objective criteria 
and assist the performance of the feature detection and 
matching algorithms, and the image enhancement ones, 
for reaching the subjective criteria, improving the visual 
appearance of the results, and facilitating finally the 
archaeological interpretation. Comprehensive surveys 
on underwater image restoration and enhancement 
techniques can be found in (Song et al. 2022; Yang et al. 
2019). Additional effects that are present in underwater 
archaeological sites are caustics and fish, which are 
effectively addressed in literature through deep learning 
approaches and convolutional neural networks, usually 
as a classification, masking, and removal problem (Forbes 
et al. 2018; He et al. 2017). For the purposes of our work, 
we have mainly applied the Contrast Limited Adaptive 
Histogram Equalization (CLAHE) (Reza 2004) algorithm, 
an image enhancement technique that is popular for its 
successful results on underwater data.

Next, the synchronized navigational data are used 
for the corresponding images as reference data, so that 
the first alignment of images can be speeded up. The 
computed intrinsic parameters, namely the perspective 
projection (focal length fx,fy, the principal point cx,cy and 
the distortion coefficients), are given for each camera. 
Concerning SfM software, we use either the open-source 
COLMAP (Schönberger & Frahm 2016) or the commercial 
Agisoft Metashape. The first scene graph is created by the 
extraction and matching of homologous features among 
overlapping images. This first sparse 3D point cloud is 
optimized through a global bundle adjustment, taking 
into account the camera parameters and the precision 
weights of the navigational measurements.

When the reprojection error of matches reaches 
the accuracy standards (optimally sub-pixel), a Multi-
View Stereo (MVS) algorithm is implemented for the 
densification of the first point cloud using the computed 
camera poses as input. The dense 3D reconstruction 
is then triangulated for the creation of a 3D surface, 
while the last step is the texturing of the surface by the 

oriented images, resulting in the final photorealistic 3D 
model (Figure 13). The open-source MeshLab (Cignoni et 
al. 2008) is then used for potential further editing of the 
3D point cloud and model (noise removal, holes filling, 
disconnected components removal, etc.) as well as for 
visualization and measuring purposes.

3.3.2  Accuracy and texturing assessment
One major issue related to the objective accuracy 
assessment of underwater datasets is the lack of 
ground truth. In land applications of archaeological 3D 
documentations, prior to the collection of images for 
photogrammetry, it is typical to establish a network of 
control points and then measure it with a Total Station. The 
accuracy of the surveyed control points then can be 1-2 
centimeters and the integration of the land measurements 
within the global bundle adjustment can yield equally 
accurate photogrammetric products. Alternatively, it is 
common to extract control points from models obtained 
by terrestrial 3D scanners or LiDAR systems with equally 
high reliability. Underwater, the sources of ground truth 
are the navigational data, where the accuracy depends on 
the performance of the underwater positioning system or 
sonar data, where a post-processing step is also needed 
in order to define the accuracy of the measurements. 
Therefore, the reliability of a proposed methodology or 
imaging system for an underwater application is usually 
tested in controlled environments like a test tank or a 
previously well 3D-documented space.

Given that the accuracy of the navigational data 
is known and correct, it is important to integrate this 
weighted accuracy in the final bundle adjustment. 
Pure computer vision SfM software like COLMAP does 
not offer this option, so we prefer more topographical 
solutions, like Metashape, for this step of the final global 
bundle adjustment. Moreover, the impact of refraction 
on the geometric accuracy of the final reconstruction 
is apparent in the absence of an accurate camera 
calibration. Although modern photogrammetric SfM 
software have built-in parameters for optimizing the 
lens distortions, the importance of importing a calibrated 
camera within the processing for accurate reconstruction 
results remains high. Finally, photometric invariances are 
usually addressed through the image pre-processing 

Figure 13 Photogrammetric reconstruction of M/S Helma wreck. Left: Original underwater image. Middle: 3D point cloud. Right: 
Simulated trajectory of 30K ROV and multi-camera system recording the wreck in Blender.



165Diamanti et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.147

stage, so that seamlines on mosaics and 3D models can 
be avoided.

4.  DISCUSSION & FUTURE WORK

Surveying extended geographic areas for the potential 
detection and classification of sites of UCH interest via 
autonomous robotic missions requires a lot of input data 
from the maritime archaeologist during the initialization 
phase. Once the mission is launched, a great challenge 
is to make the underwater vehicle’s visual perception 
able to re-evaluate the overall assessment process and 
classification libraries based on new, growing data in 
mission time.

An early goal for the pioneers in the field was to 
achieve the same scientific standards for fieldwork 
underwater as on dry land. Perhaps it is only natural then, 
that we regard the required technology as tools for doing 
the same job underwater as we do on land – namely 
archaeology. However, doing archaeology underwater is 
different not only regarding tools and methodology in a 
technical sense. Being underwater, the ability to ponder 
over an enigmatic structure or discuss a particular 
feature with colleagues is constrained by limited time 
and communication bandwidth. The ability to consult 
notes or literature while on the site is also significantly 
restricted. Jonathan Adams has reflected on the primacy 
of the visual, that is characteristic for the practice (Adams 
2003). Even our visual perception is distinctly different, 
as optical properties such as attenuation and turbidity 
affect the spectral perception and limits our field of view. 
We can therefore argue that archaeological fieldwork 

underwater is characterized by a focus on solving tasks 
through applying methods that are predefined and 
accepted as best practice, and largely decoupled from 
analysis and interpretation that are integrated elements 
in archaeological workflows on land. Not only are the 
tools different, but our way of doing fieldwork – iterations 
of reflection and action – is different.

By resolving an archaeological surveying mission 
into three phases and subsequent steps or processes as 
shown in Figure 3, we accentuate the operational and very 
task-based logic that is typical for the robotic domain but 
also arguably lends itself well to the praxis of underwater 
archaeology. As the human is gradually removed from 
the loop, it becomes necessary to define purposes, goals 
and actions that are perhaps tacit or heuristic for a diving 
archaeologist into explicit tasks that are executable by 
machines. In the method proposed in this paper we have 
adopted a very technical and challenge/solution-oriented 
view of underwater archaeological fieldwork. While this 
has helped to showcase our results and demonstrate 
the potential of the method, we acknowledge that it 
also entails oversimplifications and sometimes reductive 
representations of archaeological knowledge production. 
Table 1 summarizes the strengths and weaknesses 
of the presented three-phases workflow. The current 
technological development represents a huge 
potential for archaeological applications but should be 
complemented by more attention to theoretical issues 
that can bridge these new tools and methods to relevant 
discourses in archaeological research.

The future directions of our research move towards 
addressing the listed challenges (Table 1) as well as 
investigating and integrating more vision-aided methods 

Stre 
ngths:

•	 Cost effectiveness: Both the planning of operations into simulation environments and the ability for real-time data 
evaluation yield significant time savings on site, increased operational efficiency and minimization of the need for repeat visits. 

•	 Increased data quality: Adequate overlap, site coverage and detection of sensitive areas either because of high complexity 
or presence of obstacles, are achieved in real time, ensuring high quality data for post-processing. Multi-vision and sensor 
data fusion provide redundancy in data collection, the possibility for obstacle avoidance and control of geometric accuracy.

•	 Reliability: The application of the three-phase workflow in real-world experiments validates the practicality and general 
robustness of the methods for UCH mapping.

•	 Innovation: Marine archaeological research shows high adaptability towards new technologies coming from different 
scientific fields and industries.

•	 Autonomy: Although the marine archaeologist is present during all three phases of UCH documentation, decision making is 
mostly held during mission time through real-time data evaluation.

Weak 
nesses:

•	 ORB-SLAM3 system dependence on visual features: While the ORB-SLAM3 system is operational during a mission, it can 
falter if there are not enough visual features for a match. Although the system can resume tracking when adequate visual 
features are present, it initializes with a new map each time, posing continuity challenges.

•	 Underutilized incremental nature of BPA: The incremental characteristic of BPA remains untapped. Development is required 
to harness this feature effectively.

•	 Speed constraints with PSR: Even though PSR outpaces BPA for large point clouds, processing as many as two million 
points in 2 seconds in our tests, its efficiency may decrease with extremely large point clouds. Nevertheless, for shipwreck 
reconstructions, the speed is typically adequate.

•	 Lack of real-time footage from the externally mounted cameras, in real-world multi-camera scenarios: The assumption of 
full coverage and extended field of view comes from their pre-defined configuration on the robot on the simulation phase.

•	 Human operator in the loop: Currently a human operator needs to constantly track the robot’s trajectories, verify the site’s 
coverage and quality of images, detect obstacles, and take decisions.

Table 1 Strengths and weaknesses of the presented 3-phase workflow.
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to our system, so that the requirements for active human 
perception will be decreased and autonomy levels could 
be increased. We are also exploring the potentialities 
of multi-imaging configurations on the snake robot 
Eelume and its implementation in marine archaeological 
surveys. High degrees of freedom in maneuverability 
and vision are demonstrated as promising features for 
efficient photogrammetric reconstructions of UCH sites, 
while the sensor payload capacity of this robot yield 
advanced capabilities in multi-sensors (combination of 
acoustical with optical data, underwater hyperspectral 
imaging, etc.) mapping and data fusion. Decisions on the 
survey’s boundaries as well as relevance and levels of 
importance of detected targets will be potentially made 
exclusively by robots, pushing notably autonomy limits. 
The up-to-today fiction idea of surveying, detecting, and 
documenting an UCH site in the same dive is now highly 
considered.

5. CONCLUSIONS

This paper presents a methodological framework for 
the visual-based 3D documentation of underwater 
archaeological sites via marine robotic operations. 
The proposed techniques deal with the three main 
phases of an underwater robotic mission, namely 
the planning phase, the mission-time phase, and the 
offline processing one. First, we demonstrate how 
multi-vision sensors configurations and underwater 
effects on images can be pre-estimated for a mission 
within a simulation environment. Next, emphasis is 
given on the real-time assessment of the acquired 
data, targeting the maximization of the in-situ 
information gain. According to the proposed method, 
hole detection on the incremental 3D reconstruction is 
feasible in mission time, thereby allowing for the online 
re-planning of the robot’s path, while ensuring full 
coverage of the site. The method has been developed 
and tested in a simulation environment and the next 
step is to validate it in real-world experiments. Finally, 
an offline photogrammetric workflow is discussed in 
terms of geometric accuracy and visual appearance of 
the results.
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