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The left heart and exact hull
of an additive regular category

Ruben Henrard, Sondre Kvamme, Adam-Christiaan van Roosmalen and
Sven-Ake Wegner

Abstract. Quasi-abelian categories are abundant in functional analysis and repre-
sentation theory. It is known that a quasi-abelian category E is a cotilting torsionfree
class of an abelian category. In fact, this property characterizes quasi-abelian cate-
gories. This ambient abelian category is derived equivalent to the category E , and
can be constructed as the heart LH .E/ of a t -structure on the bounded derived cate-
gory Db.E/ or as the localization of the category of monomorphisms in E .

However, there are natural examples of categories in functional analysis which
are not quasi-abelian, but merely one-sided quasi-abelian or even weaker. Examples
are the category of LB-spaces or the category of complete Hausdorff locally convex
spaces. In this paper, we consider additive regular categories as a generalization of
quasi-abelian categories that covers the aforementioned examples. Additive regular
categories can be characterized as those subcategories of abelian categories which
are closed under subobjects.

As for quasi-abelian categories, we show that such an ambient abelian category
of an additive regular category E can be found as the heart of a t-structure on the
bounded derived category Db.E/, or as the localization of the category of monomor-
phisms of E . In our proof of this last construction, we formulate and prove a version
of Auslander’s formula for additive regular categories.

Whereas a quasi-abelian category is an exact category in a natural way, an addi-
tive regular category has a natural one-sided exact structure. Such a one-sided exact
category can be 2-universally embedded into its exact hull. We show that the exact
hull of an additive regular category is again an additive regular category.

1. Introduction

Quasi-abelian categories are a well-behaved class of additive categories, generalizing the
notion of an abelian category. They are preabelian categories such that the class of all
kernel-cokernel pairs satisfies the axioms of a Quillen exact category. Quasi-abelian cate-
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gories occur often in functional analysis, and motivating examples include the categories
of Banach spaces and of Fréchet spaces [57].

In [8,62,68], a characterization of a quasi-abelian category is given as follows: quasi-
abelian categories are precisely those categories which occur as a cotilting torsionfree
class in an abelian category. For a quasi-abelian category E , such an ambient abelian
category A is (essentially) unique. A construction is given in §1.2 of [68]: one can obtain
the category A as the heart of a t-structure on the bounded derived category Db.E/. This
t-structure is called the left t-structure by Schneiders in [68], and the associated heart is
then called the left heart, denoted by LH .E/. Furthermore, Schneiders shows that the
embedding E ! LH .E/ lifts to a triangle equivalence D.E/

'
! D.LH .E//, essentially

reducing homological properties of the quasi-abelian category E to those of the abelian
category LH .E/. Schneiders also shows that LH .E/ is equivalent to a localization of the
monomorphism category of E with respect to the bicartesian squares (see Corollary 1.2.21
in [68]).

For several quasi-abelian categories arising in functional analysis, such as the category
of Banach spaces, this last construction of the left heart can already be found in [72],
before the introduction of t-structures in [6]. Indeed, it is noted in Exemple 1.3.24 of [6]
that Waelbroeck’s construction can be recovered using t-structures.

Waelbroeck’s approach nonetheless suggests similar ambient abelian categories could
also be found in non-quasi-abelian settings. Indeed, in [73] this was done for what was
there called Waelbroeck categories. These include categories such as the non-quasi-abelian
category LB of LB-spaces (see Section 9).

This leads to the following natural question: how similar is the situation to that of
quasi-abelian categories? Specifically, one can ask the following questions.

Question 1.1. (1) Can these ambient abelian categories be obtained as the heart of a t-
structure on some natural triangulated category?

(2) What characterizes the embedding E ! LH .E/?

When trying to solve the above question for LB, one might be tempted to search an
appropriate exact structure on LB (so that the derived category is well defined) such that
the ambient abelian category is obtained as the heart of a natural t-structure. In fact, the
category LB has several natural exact structures; we will recall some of these in Section 9.
However, we show in Theorem 9.6 that this approach cannot be successful: none of these
exact structures yield a well-suited derived category. Instead, we relax the conditions of an
exact category and take the derived category of such a weaker structure. Our starting point
is the recent observation in [31] that the category LB is left quasi-abelian and, as such,
carries a natural one-sided exact structure. It is possible to construct the derived category
of LB with respect to this one-sided exact structure. In this paper, we show that this derived
category provides a good framework to answer the above questions.

Before addressing the above questions or describing the results in this paper, we sketch
the setting more accurately. We work with a slight generalization of a left quasi-abelian
category, namely with additive regular categories. An additive regular category is an
additive category where (i) every morphism has a cokernel-monomorphism factorization,
and (ii) cokernels have pullbacks and the pullback of a cokernel is again a cokernel. The
difference between a left quasi-abelian category and an additive regular category is that
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the latter need not have cokernels. An additive regular category is an additive category
which is regular in the sense of [4, 11].

Whereas a quasi-abelian category is an exact category, an additive regular category (or
even a left quasi-abelian category) need only satisfy those axioms of an exact category
that pertain to the cokernel-side of the exact sequences: it is a deflation-exact category
(see Section 2.2 for a detailed definition). Even though the axioms of a deflation-exact
category are weaker than those of an exact category, deflation-exact categories still satisfy
many attractive homological properties similar to those of an exact category, such as the
‘short five lemma’, the ‘snake lemma’, and the ‘nine lemma’ (see [5, 37]). One possible
explanation for this nice behavior is given by the existence of the exact hull ([34, 61]): a
deflation-exact category E can be embedded in a 2-universal way in an exact category Eex;
this embedding lifts to a derived equivalence Db.E/! Db.Eex/.

The exact hull of a left quasi-abelian category need not be quasi-abelian (or even
pre-abelian). In contrast, we show that the exact hull of an additive regular category is
again additive regular. Similarly, we show that additive regular categories are stable under
taking quotients (in the sense of [35]). Furthermore, the following proposition (see Propo-
sition 4.14 in the text) gives a straightforward source of examples.

Proposition 1.2. Let E be an additive regular category. Any full subcategory E 0 � E

which is closed under subobjects, is also additive regular.

As abelian categories are additive regular, the previous proposition gives an easy way
to find additive regular categories inside an abelian category. In fact, it follows from The-
orem 1.3 below that every additive regular category occurs in this way.

We mentioned that an additive regular category E has a natural structure of a deflation-
exact category. As such, one can consider the bounded derived category Db.E/; we recall
the construction in §2.3. In this setting, the construction of the left heart for quasi-abelian
categories given in [68] generalizes to the setting of additive regular categories. We obtain
the following theorem directly generalizing the properties we mentioned for quasi-abelian
categories.

Theorem 1.3. Let E be an additive regular category. There is an embedding of E into an
abelian category LH .E/, characterized by the following properties:
(1) E is closed under subobjects in LH .E/,

(2) every object in LH .E/ is a quotient of an object in E .

The embedding E ! LH .E/ lifts to a triangle equivalence D*.E/! D*.LH .E//, for
� 2 ¹¿;�; bº.

The characterization in this theorem follows from combining Propositions 5.2 and 5.7;
the last statement follows from Proposition 5.9.

In Section 8, we show that the left heart LH .E/ of an additive regular category E can
be obtained by localizing the category of monomorphisms hMon.E/ in E (up to homo-
topy) at the bicartesian squares. This recovers Waelbroeck’s construction as well as the
construction of the left heart of the LB-spaces as in [73] (see Section 9 for more details on
the latter). The following theorem provides a construction of the left heart LH .E/ that
does not refer to the derived category Db.E/.
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Theorem 1.4. Let hMon.E/ be the category whose objects are monomorphisms ıE WE�1

,! E0 in E , and whose morphisms are commutative squares

E�1 E0

F �1 F 0

ıE

u�1 u0

ıF

up to homotopy (meaning that there is a morphism t WE0 ! F �1 in E such that u�1 D
t ı ıE and u0 D ıF ı t /.

(1) The set S of all morphisms which are bicartesian squares is a multiplicative system
in hMon.E/.

(2) The localization hMon.E/ŒS�1� is equivalent to the left heart LH .E/.

Our proof of Theorem 1.4 is based on Auslander’s formula (see Sections 7 and 8) and
follows [62]. We consider the category mod E of finitely presented functors on E . As E

has kernels, mod E is an abelian category. We show that the subcategory eff E of efface-
able functors is a hereditary torsion class in mod E; the corresponding torsionfree class is
the category mod1.E/ of objects of projective dimension at most one. Using the Yoneda
embedding E ! mod E , it is straightforward to show that hMon.E/ ' mod1.E/. The
proof of Theorem 1.4 then follows from studying the composition hMon.E/ ' mod1.E/

! mod.E/! mod.E/= eff.E/ ' LH .E/.

2. Preliminaries

This section is preliminary in nature. We summarize some results of [5, 34, 35] in a
convenient form. Throughout the paper, all categories are assumed essentially small. Fur-
thermore, all categories and functors will be additive.

2.1. The category of finitely presented functors

Let E be an additive category. We denote by Mod.E/ the category Fun.Eı;Ab/ of con-
travariant additive functors E!Ab. We write Y WE!ModE for the contravariant Yoneda
functor E 7! Y .E/ D Hom.�; E/:

We say that M is finitely presented if M Š coker Y .f /, where f is a morphism in E .
We write mod.E/ for the category of finitely presented objects in Mod.E/. If E has weak
kernels, then mod.E/ is abelian. The category of finitely presented objects satisfies the
following universal property (see [46], Universal Property 2.1).

Theorem 2.1. Let F W E ! A be a functor between additive categories. Assume that A

has cokernels. There exists, up to a natural equivalence, a unique right exact functor
F Wmod.E/! A such that F D F ı Y .

Proposition 2.2. Let A be an abelian category and let E be an additive category with
kernels. If a functor F W E ! A commutes with kernels, then the lift F Wmod.E/! A is
exact.
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Proof. Following Lemma 2.5 in [46], it suffices to show the following property: for each
exact sequenceX! Y !Z of projective objects in mod.E/, the corresponding sequence
F.X/! F.Y /! F.Z/ is exact.

As E has kernels (and hence is idempotent complete), every projective in mod.E/ is
of the form Y .E/, for some E 2 E . Hence, the sequence X ! Y ! Z is isomorphic

to a sequence of the form Y .A/! Y .B/! Y .C / (for some sequence A
f
�! B

g
�! C ).

Saying that Y .A/! Y .B/! Y .C / is exact is equivalent to im Y .f / D ker Y .g/. As E

has kernels, we find ker Y .g/ Š Y .ker g/. In particular, ker Y .g/ is projective. Hence,
Y .A/! Y .kerg/ is a split epimorphism.

We find a split epimorphism A ! ker g and hence a split epimorphism F.A/ !

F.kerg/. As F commutes with kernels, we also find an exact sequence 0! F.kerg/!

F.B/
F.g/
���! F.C/. Combining these sequences, we see that F.A/! F.B/! F.C/ is

exact, as required.

For any functor F WE ! F between additive categories, there is an obvious restriction
functor

� ı F W Mod.F /! Mod.E/

which sends an M 2 Mod.F / to M ı F 2 Mod.E/. The restriction functor has a left
adjoint

�˝E F W Mod.E/! Mod.F /

which is the (essentially unique) cocontinuous functor which sends the projective genera-
tors Y .E/ of Mod.E/ to Y .F.E//. Note that �˝E F WMod.E/!Mod.F / restricts to a
functor mod.E/! mod.F /.

Let E be an additive category with kernels (in particular, mod E is abelian). We write
mod1.E/ for the subcategory of mod.E/ consisting of all objects of global dimension at
most one. The following description of the objects of mod1.E/ is standard.

Proposition 2.3. Let E be an additive category with kernels. The following are equivalent
for an object M 2 mod.E/:
(1) M has projective dimension at most one,

(2) there is a monomorphism f in E such that M Š coker Y .f /,

(3) every morphism f in E for which M Š coker Y .f / factors as f D m ı p, where p
is a retraction and m is a monomorphism.

Proof. Straightforward adaptation of Proposition 1.1 in [2].

The following proposition (see Proposition 3.4 in [33]) will be used multiple times
throughout the text.

Proposition 2.4. Let E be an additive category and write Y WE!Mod.E/ for the Yoneda
embedding. Consider a commutative diagram

A
ˇ
//

f

��

C

g

��

B
˛ // D
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in E such that g admits a kernel kW ker.g/! C and such that the cospan B
˛
! D

g
 C

admits a pullback E. Write F D coker.Y .f //, G D coker.Y .g// and �WF ! G for the
induced map. Consider the commutative diagram

(2.1) ker.g0/

k0

��

ker.g/

k

��

ker.g/˚ A
. 0 1 /

//

. k0 ˇ 00 /

��

A
ˇ 00

//

f

��

E
ˇ 0

//

g 0

��

C

�
1
0

�
//

g

��

C ˚ B

. g ˛ /

��

E
g 0

// B B
˛ // D D;

where ECBD is a pullback square and ˇ D ˇ0ˇ00. Applying Y and taking the cokernel of
the vertical maps induces the epi-mono factorization

ker.�/ // // F // // im.�/ // // G // // coker.�/

of �WF ! G in Mod.E/.

It will be convenient to state the following corollary.

Corollary 2.5. Let E be an additive category. Let f W A ! B be any morphism in E

with factorization f D m ı p, where m is a monomorphism. There is an associated exact
sequence in mod.E/,

0! coker Y .p/! coker Y .f /! coker Y .m/! 0:

Proof. The given factorization gives the following commutative diagram in E:

A A E

E B B:

p f

p

m

m

Applying the Yoneda embedding Y W E ! mod.E/ and then taking the cokernels of the

vertical maps, we find a sequence F
�
! G

 
! H in mod.E/, where F D coker.Y .p//

and H D coker.Y .m//. By Proposition 2.4 (where g0 D m and ˇ00 D p), we find that

0! F
�
! G

 
! H ! 0 is a short exact sequence.

2.2. One-sided exact categories

One sided-exact categories are obtained via a weakening of the axioms of a Quillen exact
category [5, 28, 64].

Definition 2.6. A conflation category is an additive category E together with a chosen
class of kernel-cokernel pairs, called conflations, such that this class is closed under iso-
morphisms. The kernel part of a conflation is called an inflation and the cokernel part
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of a conflation is called a deflation. We depict inflations by the symbol �, and defla-
tions by�. Moreover, we depict monomorphisms by ,!. A morphism X ! Y is called
admissible if it admits a deflation-inflation factorization X�Z�Y:

An additive functor F WC ! D between conflation categories is called (conflation-)
exact if conflations are mapped to conflations. We say that F is left (conflation-)exact if

any conflationA
f
�B

g
�C is mapped to a sequence F.A/

F.f /
� F.B/

F.g/
! F.C/, where

F.g/ is admissible and F.f / D ker.F.g//:

Definition 2.7. A deflation-exact category E is a conflation category satisfying the fol-
lowing axioms:
R0 For each X 2 E , the map X ! 0 is a deflation.
R1 The composition of two deflations is a deflation.
R2 The pullback of a deflation along any morphism exists and deflations are stable under

pullbacks.
Dually, an inflation-exact category is a conflation category E satisfying the following
axioms:
L0 For each X 2 E , the map 0! X is an inflation.
L1 The composition of two inflations is an inflation.
L2 The pushout of an inflation along any morphism exists and inflations are stable under

pushouts.

Definition 2.8. Let E be a conflation category. In addition to the properties listed in Def-
inition 2.7, we will also consider the following axioms:
R3 If i WA! B and pWB ! C are morphisms in E such that p has a kernel and p ı i

is a deflation, then p is a deflation.
R3C If i WA!B and pWB!C are morphisms in E such that p ı i is a deflation, then p

is a deflation.
The axioms L3 and L3C are defined dually. A deflation-exact category satisfying R3

is called strongly deflation-exact. Dually, an inflation-exact category satisfying axiom L3
is called a strongly inflation-exact category.

Remark 2.9. (1) Inflation-exact and deflation-exact categories are called left or right
exact categories in the literature. However, as the use of left and right is not consistent, we
prefer to use the above terminology to avoid possible confusion.

(2) It follows from Proposition 2.5 in [40] that a deflation-exact category is an additive
single ƒ-topology, where ƒ is the class of deflations.

(3) Axioms R0 and L0 are slightly stronger than their counterparts in [5, 34, 35]. The
above definition ensures that all split kernel-cokernel pairs are conflations in a one-sided
exact category.

(4) An exact category in the sense of Quillen (see [58]) is a conflation category E

satisfying axioms R0 through R3 and L0 through L3. In Appendix A of [42], Keller
shows that axioms R0, R1, R2, and L2 suffice to define an exact category.

(5) Axioms R3 and L3 are sometimes referred to as Quillen’s obscure axioms (see
[14, 71]).
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(6) For a conflation category, the following implication holds: R3C) R3 .
(7) For a deflation-exact category E , axiom R3C is equivalent to E being weakly

idempotent complete and satisfying axiom R3 (see Proposition 7.1 in [35]).

The following theorem highlights the importance of axioms R3 and R3C.

Theorem 2.10 ([37], Theorems 1.1 and 1.2). Let E be a deflation-exact category.

(1) The category E satisfies axiom R3 if and only if the nine lemma holds.

(2) The category E satisfies axiom R3C if and only if the snake lemma holds.

The following observation is essentially contained in [62].

Proposition 2.11. Let E be a conflation category. If every kernel-cokernel pair is a con-
flation and E satisfies axiom R2, then E is deflation-exact.

Proof. As all kernel-cokernel pairs are conflations, E satisfies axiom R0. That E satisfies
axiom R1 follows from Proposition 5.11 in [43] (in the terminology of [43] and assum-
ing axiom R2, axiom R1 is equivalent to saying that the composition of totally regular
epimorphisms is again a totally regular epimorphism).

Definition 2.12. We recall that a pre-abelian category is an additive category where every
morphism has a kernel and a cokernel. We say that a pre-abelian category is deflation
quasi-abelian (or left quasi-abelian) if the class of all kernel-cokernel pairs endow it with
the structure of a deflation-exact category. Dually, a pre-abelian category is inflation quasi-
abelian (or right quasi-abelian) if the class of all kernel-cokernel pairs endow it with the
structure of an inflation-exact category.

Remark 2.13. (1) A quasi-abelian category is called an almost abelian category in [62].
(2) For a pre-abelian category to be deflation quasi-abelian, it suffices that the pullback

of a cokernel is a cokernel, see Propositions 1 and 2 in [62].
(3) A pre-abelian category is idempotent complete. A deflation quasi-abelian category

satisfies axiom R3C, see Proposition 2 in [62].

2.3. Derived categories of one-sided exact categories

The derived category of a one-sided exact category was studied in [5, 28, 34]. We recall
the definition of the derived category, starting with the notion of an acyclic complex.

Definition 2.14. Let E be a conflation category. A complex X� 2 C.E/ is called acylic
(or exact) in degree n if dn�1X WXn�1 ! Xn factors as

Xn�1
dn�1X //

pn�1

$$ $$

Xn

ker.dnX /
;;

in�1

;;

where the deflation pn�1 is the cokernel of dn�2X and the inflation in�1 is the kernel of dnX .
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A complexX� is called acyclic or exact if it is acylic in each degree. We write AcC.E/

for the full subcategory of C.E/ consisting of acyclic complexes. We write AcK.E/ for
the full subcategory of K.E/ given by those complexes which are homotopy equivalent to
an acyclic complex (thus, AcK.E/ is the closure of AcC.E/ under isomorphisms in K.E/).
We simply write Ac.E/ for either AcC.E/ or AcK.E/ if there is no confusion. The bounded
versions are defined by Ac�C.E/ D AcC.E/ \ C�.E/ and Ac�K D AcK.E/ \K�.E/.

The subcategory AcC.E/ of K.E/ is not replete, i.e., it is not closed under isomor-
phisms in K.E/. Nonetheless, it is a triangulated subcategory of K.E/.

Lemma 2.15 ([5], Lemma 7.2). For each map f WX� ! Y � in AcC.E/, we have that
cone.f �/ 2 AcC.E/. In particular, the category AcC.E/ is a triangulated subcategoy
of K.E/ which is not necessarily closed under isomorphisms.

Analogously to exact categories, one can define the derived category D.E/ as the
Verdier localization K.E/= hAc.E/ithick of the bounded homotopy category by the thick
closure of the triangulated subcategory of acyclic complexes. The bounded versions are
defined analogously. The following theorem summarizes some useful properties of the
derived category.

Theorem 2.16 ([34], Theorem 1.2). Let E be a deflation-exact category.

(1) The natural embedding i WE ! D.E/ is fully faithful.

(2) For all X; Y 2 E and n > 0, HomD.E/.†
niX; iY / D 0.

(3) Every conflation X� Y �Z in E maps to a triangle iX ! iY ! iZ ! †iX

in D.E/.

With regard to the derived category, axioms R3 and R3C have useful interpretations.

Proposition 2.17 ([34], Propositions 3.11 and 6.2, and [37], Theorems 1.1(4) and 1.2(2)).
Let E be a deflation-exact category.

(1) Axiom R3 is equivalent to: a sequence X ! Y ! Z in E is a conflation if and only
if i.X/! i.Y /! i.Z/! †i.X/ is a triangle in Db.E/.

(2) If E satisfies axiom R3C, then Acb
C.E/ is a thick triangulated subcategory of Kb.E/.

(3) If E satisfies axiom R3 and is idempotent complete, then AcC.E/ is a thick triangu-
lated subcategory of K.E/.

Remark 2.18. Proposition 2.17 implies that, if E satisfies axiom R3C, any complex
which is homotopic to an acyclic complex, is acyclic itself.

Theorem 2.19 (Horseshoe lemma). Let E be a deflation-exact category which satisfies
axiom R3. LetX�Y�Z be a conflation in E . If P �X ! X and P �Z !Z are projective
resolutions of X andZ, respectively, then there is a projective resolution P �Y ! Y , fitting
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in a commutative diagram

:::
:::

:::

P�1X P�1Y P�1Z

P 0X P 0Y P 0Z

X Y Z:

Moreover, for each i � 0, the sequence P iX�P iY�P iZ is a split kernel-cokernel pair.

Proof. The proof of Theorem 12.8 in [14] for exact categories holds verbatim in the
deflation-exact setting. One can replace the reference to Corollaries 3.2 and 3.6 in [14]
by references to a deflation-exact version, see Lemma 4.2 (2) and Theorem 4.1 in [37] (or
the duals of Lemma 5.10 and Proposition 5.11 in [5]).

2.4. Preresolving subcategories

This subsection is a brief summary of [38]. We recall the following definition.

Definition 2.20. Let E be a deflation-exact category. A full additive subcategory A � E

is called preresolving if the following two conditions are met:
PR1 For every E 2 E , there exists a deflation A�E with A 2 E .
PR2 The subcategory A � E is deflation-closed, i.e,. for every conflation X�Y�Z

in E with Y;Z 2 A, we have X 2 A as well.
If A � E satisfies PR1, we define the A-resolution dimension of an object E 2 E ,

denoted by res:dimA.E/, as the smallest integer n � 0 for which there exists an exact
sequence

0! A�n ! A�nC1 ! � � � ! A�1 ! A0�E ! 0

where all Ak 2 A. If such an n does not exist, we write res:dimA.E/ D1.
Furthermore, we set res:dimA.E/ D supE2E res:dimA.E/.
A preresolving subcategory A � E is called finitely preresolving if for all E 2 E ,

res:dimA.E/ <1 and is called uniformly preresolving if res:dimA.E/ <1.

Deflation-closed subcategories of deflation-exact categories inherit a deflation-exact
structure.

Proposition 2.21 (Proposition 3.6 in [38]). Let E be a deflation-exact category and let
A � E be a full additive subcategory. If A � E is deflation-closed, then A inherits a
deflation-exact structure from E (the conflations are precisely the conflations in E with
terms in A/. Furthermore, if E satisfies axioms R3 or R3C, then so does A.

The following theorem is an extension of Lemma I.4.6 in [29].



The left heart and exact hull of an additive regular category 449

Theorem 2.22 ([38], Theorem 1.1). Let E be a deflation-exact category and let A � E

be a full additive subcategory.

(1) If A is preresolving, the embedding A! E lifts to a triangle equivalence D–.A/
'
�!

D–.E/.

(2) If A is finitely preresolving, the embedding A! E lifts to a triangle equivalence
Db.A/

'
�! Db.E/.

(3) If A is uniformly preresolving, the embedding A! E lifts to a triangle equivalence
D.A/

'
�! D.E/.

2.5. The exact hull

The following is based on [34], Section 7; the exact hull of a one-sided exact category also
appeared in Proposition I.7.5 of [61].

Definition 2.23. Let E be a deflation-exact category. The exact hull Eex of E is the exten-
sion closure of i.E/ � Db.E/.

The conflation structure on Eex is given as follows (based on [24]): a sequenceA
f
�!B

g
�!C in Eex is a conflation if and only if there is a triangleA

f
�!B

g
�!C !†.A/ in Db.E/.

With this conflation structure, the canonical embedding j WE ! Eex is conflation-exact.

Theorem 2.24 ([34], Section 7). Let E be a deflation-exact category.

(1) The embedding j W E ,! Eex is fully faithful, and is 2-universal among conflation-
exact functors to exact categories.

(2) The embedding j lifts to a triangle equivalence Db.E/
'
! Db.Eex/.

(3) For every Z 2 Eex, there is a conflation X�Y�Z in Eex with X; Y 2 i.E/.

Furthermore, if E satisfies axiom R3, then the embedding j reflects conflations.

When working with the exact hull, it is often useful to describe objects of the exact
hull Eex as iterated extensions of objects in E: For this, the following notation will be
useful.

Notation 2.25. For a deflation-exact category E , we write E0 for the full subcategory
of Db.E/ consisting of stalk complexes concentrated in degree 0. The subcategories En
are recursively defined as all objects B which fit into a triangle A! B ! C ! †A with
A 2 En�1 and C 2 E0.

With this notation, we have Eex D
S
n�0 En; this uses Lemme 1.3.10 in [6].

Lemma 2.26. Let E be a deflation-exact category. Let f WX ! Y be a morphism in E .
Then f is a monomorphism (respectively, epimorphism) if and only if j.f / is a monomor-
phism (respectively, epimorphism).

Proof. As j is fully faithful, it is clear that j reflects epimorphisms and monomorphisms.
We first show that j preserves monomorphisms. For this, consider a monomorphism
f WX ! Y in E . Let t W T ! X be a map in Eex such that f ı t D 0 in Eex. As T 2 Eex,
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there exists an n such that T 2 En. We proceed by induction on n. If n D 0, then t D 0
as f is a monomorphism in E0. Assume now that n � 1. By construction, there is a con-

flation A
i
� T

p
� B in Eex with A 2 En�1 and B 2 E0. By the induction hypothesis,

we have t ı i D 0. It follows that there is a unique map uWB ! X such that u ı p D t .
Note that f ı t D f ı u ı p D 0 and thus f ı u D 0 as p is a deflation (and hence an
epimorphism). The induction hypothesis implies that u D 0 and thus t D u ı p D 0. This
shows that j.f / is a monomorphism.

To show that j preserves epimorphisms, consider an epimorphism f WX ! Y . Let
t WY ! T be a map in Eex such that t ı f D 0 in Eex. As T 2 Eex, there exists an n such

that T 2 En. Consider a conflationA
i
� T

p
�B withA 2 En�1 andB 2 E0. Using that f

is an epimorphism in E ' E0, we obtain from p ı t ı f D 0 that p ı t D 0 and hence
t WY ! T factors through i WA! Y: Using an induction argument as before, one can show
that t D 0. This shows that j.f / is an epimorphism in Eex.

If E satisfies axiom R3C, the embedding j WE ! Eex satisfies additional properties.

Theorem 2.27 (Theorem 5.7 in [38]). Let E be a deflation-exact category. If E satisfies
axiom R3C, E �Eex is a uniformly preresolving subcategory such that res:dimE.E

ex/� 1.
In particular, the derived equivalences of Theorem 2.22 hold.

2.6. t-Structures and their hearts

Let T be a triangulated category with suspension functor †. A t-structure on T is a pair
.T �0; T �0/ of full and replete (i.e., closed under isomorphisms) subcategories satisfying
the following properties:
(1) HomT .T

�0; †�1T �0/ D 0.
(2) If X 2 T �0, then †X 2 T �0. Similarly, if Y 2 T �0, then †�1Y 2 T �0.
(3) For any C 2 T , there exists a triangle X ! C ! †�1Y ! †X with X 2 T �0 and

Y 2 T �0.
We write T �i WD†�iT �0 and T �i WD†�iT �0. Given a t-structure .T �0;T �0/ on T ,

the heart of T is defined as the subcategory T ~D T �0 \ T �0. The following proposition
is standard (see [6]).

Proposition 2.28. Given a t-structure .T �0; T �0/ on a triangulated category T . The
categories T �0 and T �0 are closed under extensions and the heart T ~ is an abelian

subcategory. Moreover, a sequence 0 ! X
f
�! Y

g
�! Z ! 0 is a short exact sequence

in T ~ if and only if there is a triangle X
f
�! Y

g
�! Z ! †.X/ in T :

3. The left t-structure and left heart

The left t-structure and the left heart were introduced in [68] for quasi-abelian categories.
In this section, we show that these constructions and many of the properties lift to a weaker
setting, namely that of a deflation-exact structure on an additive category E with kernels.
We follow the same outline as Section 1.2 of [68].
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We will assume that the deflation-exact structure is strong (that is, satisfies axiom R3).
This is a purely technical condition: as E has kernels, one can take the closure of E under
the axiom R3 without changing the derived category (see [37]).

3.1. A t-structure on K.E/

As in [68], we start by considering a t-structure on the homotopy category K.E/. In this
subsection, we only use the additive structure on E . We will use the following truncation
functors.

Definition 3.1. LetC � be a complex in E . As E has kernels, every differential dn�1C WC n�1

! C n factors as

C n�1
pn�1

���! ker.dn/
in�1

���! C n

where in�1 is the kernel of dnC . The canonical truncation ��nC � is a complex together
with a morphism ��nC � ! C � given by:

��nC �

��

� � � // C n�3 // C n�2 // C n�1
pn�1
// ker.dnC / //

in�1

��

0 //

��

� � �

C � � � � // C n�3 // C n�2 // C n�1 // C n // C nC1 // � � �

and the canonical truncation C � ! ��nC1C � is similarly defined by:

C �

��

� � � // C n�3 //

��

C n�2 //

��

C n�1 //

pn�1

��

C n // C nC1 // � � �

��nC1C � � � � // 0 // 0 // ker.dnC /
in�1 // C n // C nC1 // � � �

The following is Proposition 3.13 in [34].

Proposition 3.2. Let E be an additive category with kernels. Let C � 2 C�.E/, where � 2
¹�;C; b;¿º. For each n 2 Z, the following triangle is a distinguished triangle in K�.E/:

��nC � ! C � ! ��nC1C � ! †.��nC �/:

In other words, C � is an extension of the canonical truncation ��nC1C � by ��nC �

in K�.E/.

We can now consider the t-structure .K�0.E/;K�0.E// on the homotopy category
K.E/, where

K�0.E/ D ¹X� 2 K.E/ j ��1X� Š 0º;

K�0.E/ D ¹X� 2 K.E/ j ���1X� Š 0º:

In other words, K�0.E/ is given by those complexes X� such that ker d i�1X ! X i�1 !

ker d iX is a split kernel-cokernel pair for all i � 1: Likewise, X� 2 K�0.E/ if and only if
ker d i�1X ! X i�1 ! ker d iX is a split kernel-cokernel pair for all i � �1.
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3.2. Induced t-structures on the derived category

In this subsection, we show that the above t-structure on K.E/ induces a t-structure on
D.E/DK.E/=Ac.E/. For this, we use the following statement from [68], Lemma 1.2.17.

Proposition 3.3. Let .T �0; T �0/ be a t-structure on a triangulated category T , and let
N � T be a thick subcategory. Write QW T ! T =N for the corresponding quotient.
The pair .Q.T �0/; Q.T �0// is a t-structure on T =N if and only if for any triangle
X1! X0! N ! †X1 with X1 2 T �1, X0 2 T �0, and N 2 N , we have X1; X0 2 N .

The following proposition is a convenient strengthening of Lemma 7.2 in [5].

Proposition 3.4. Let f WX�! Y � in C.E/. If X� is acyclic in degree n and Y � is acyclic
in degrees n � 1 and n, then cone.f �/ is acyclic in degree n � 1.

Proof. The proof follows that of Lemma 7.2 in [5] closely. As X� is acyclic in degree n,
we know that in�1X W ker dnX�Xn is an inflation. By Proposition 4.4 in [37], this implies

that dnWXn!XnC1 has a deflation-mono factorization:Xn coim dnC1X XnC1
pnX m .

We find the following commutative diagram:
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3.2. Induced t-structures on the derived category
In this subsection, we show that the above t-structure on K(E) induces a t-structure on
D(E) = K(E)/Ac(E). For this, we use the following statement from [68, Lemma 1.2.17]

Proposition 3.3. Let (T ≤0,T ≥0) be a t-structure on a triangulated categoryT . LetN ⊆ T
be a thick subcategory and write 𝑄 : T → T/N for the corresponding quotient. The pair
(𝑄(T ≤0), 𝑄(T ≥0)) is a t-structure on T/N if and only if for any triangle 𝑋1 → 𝑋0 →
𝑁 → Σ𝑋1 with 𝑋1 ∈ T ≥1, 𝑋0 ∈ T ≤0, and 𝑁 ∈ N , we have 𝑋1, 𝑋0 ∈ N

The following proposition is a convenient strengthening of [5, Lemma 7.2].

Proposition 3.4. Let 𝑓 : 𝑋•→ 𝑌• in C(E). If 𝑋• is acylic in degree 𝑛 and 𝑌• is acyclic in
degrees 𝑛 − 1 and 𝑛, then cone( 𝑓 •) is acyclic in degree 𝑛 − 1.

Proof. The proof follows that of [5, Lemma 7.2] closely. As 𝑋• is acyclic in degree 𝑛, we
know that 𝑖𝑛−1

𝑋 : ker 𝑑𝑛𝑋↣ 𝑋𝑛 is an inflation. By [37, Proposition 4.4], this implies that

𝑑𝑛 : 𝑋𝑛 → 𝑋𝑛+1 has a deflation-mono factorization: 𝑋𝑛 coim 𝑑𝑛+1𝑋 𝑋𝑛+1𝑝𝑛
𝑋 𝑚 . We

find the following commutative diagram

𝑋𝑛−2 𝑋𝑛−1 𝑋𝑛 𝑋𝑛+1

ker 𝑑𝑛−1
𝑋 ker 𝑑𝑛𝑋 coim 𝑑𝑛+1𝑋

ker 𝑑𝑛−1
𝑌 ker 𝑑𝑛𝑌 coim 𝑑𝑛+1𝑌

𝑌𝑛−2 𝑌𝑛−1 𝑌𝑛 𝑌𝑛+1

𝑑𝑛−2
𝑋

𝑓 𝑛−2

𝑝𝑛−1
𝑋

𝑑𝑛−1
𝑋

𝑓 𝑛−1

𝑝𝑛
𝑋

𝑑𝑛
𝑋

𝑓 𝑛 𝑓 𝑛+1𝑔𝑛−1

𝑖𝑛−2
𝑋

𝑔𝑛

𝑖𝑛−1
𝑋

𝑔𝑛

𝑚

𝑖𝑛−2
𝑌 𝑖𝑛−1

𝑌
𝑝𝑛−2
𝑌

𝑑𝑛−2
𝑌

𝑝𝑛−1
𝑌

𝑑𝑛−1
𝑌

𝑝𝑛
𝑌

𝑑𝑛
𝑌

where the morphisms 𝑔𝑛−1, 𝑔𝑛, and 𝑔𝑛+1 are uniquely determined. We can apply [35,
Proposition 3.9] (or the dual of [5, Proposition 5.2]) to the maps (𝑔𝑛−1, 𝑓 𝑛−1, 𝑔𝑛) and
(𝑔𝑛, 𝑓 𝑛, 𝑔𝑛+1) between conflations to obtain the following commutative diagram (the squares

where the morphisms gn�1, gn and gnC1 are uniquely determined. We can apply Propo-
sition 3.9 in [35] (or the dual of Proposition 5.2 in [5]) to the maps .gn�1; f n�1; gn/ and
.gn; f n; gnC1/ between conflations to obtain the following commutative diagram (the
squares marked with BC are bicartesian squares):
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marked with BC are bicartesian squares):

𝑋𝑛−2 𝑋𝑛−1 𝑋𝑛 𝑋𝑛+1

ker 𝑑𝑛−1
𝑋 ker 𝑑𝑛𝑋 coim 𝑑𝑛+1𝑋

𝐶𝑛−2 𝐶𝑛−1 𝐶𝑛

ker 𝑑𝑛−1
𝑌 ker 𝑑𝑛𝑌 coim 𝑑𝑛+1𝑌

𝑌𝑛−2 𝑌𝑛−1 𝑌𝑛 𝑌𝑛+1

𝑑𝑛−2
𝑋

𝑓 𝑛−2
1

𝑝𝑛−1
𝑋

𝑑𝑛−1
𝑋

𝑓 𝑛−1
1

𝑝𝑛
𝑋

𝑑𝑛
𝑋

𝑓 𝑛1

𝑓 𝑛+1𝑔𝑛−1

𝑖𝑛−2
𝑋

BC
𝑔𝑛

𝑖𝑛−1
𝑋

BC
𝑔𝑛

𝑚

𝑓 𝑛−2
2

𝑞𝑛−2

BC

𝑓 𝑛−1
2

𝑞𝑛−1

BC
𝑓 𝑛2

𝑞𝑛

BC

𝑖𝑛−2
𝑌

𝑗𝑛−2

𝑖𝑛−1
𝑌

𝑗𝑛−1

𝑝𝑛−2
𝑌

𝑑𝑛−2
𝑌

𝑝𝑛−1
𝑌

𝑑𝑛−1
𝑌

𝑝𝑛
𝑌

𝑑𝑛
𝑌

Additionally, we have added the pullback of the cospan 𝑌𝑛−2 ker 𝑑𝑛−1
𝑌 ker 𝑑𝑛−1

𝑋

𝑝𝑛−2
𝑌 𝑔𝑛−1

.
By the dual of [5, Propositions 5.4 and 5.5], we have the conflations

𝐶𝑛−2 𝑋𝑛−1 ⊕ 𝑌𝑛−2 𝐶𝑛−1

(
𝑖𝑛−2
𝑋 𝑞𝑛−2

− 𝑓 𝑛−2
2

)
( 𝑓 𝑛−1

1 𝑗𝑛−2 𝑝𝑛−2
𝑌 )

and

𝐶𝑛−1 𝑋𝑛 ⊕ 𝑌𝑛−1 𝐶𝑛

(
𝑖𝑛−1
𝑋 𝑞𝑛−1

− 𝑓 𝑛−1
2

)
( 𝑓 𝑛1 𝑗𝑛−1 𝑝𝑛−1

𝑌 )

Hence, to show that cone( 𝑓 •) is acyclic in degree 𝑛− 1, we only need to show that𝐶𝑛−1↣𝑋𝑛 ⊕
𝑌𝑛−1 is the kernel of 𝑋𝑛 ⊕𝑌𝑛−1→ 𝑋𝑛+1 ⊕𝑌𝑛. For this, it suffices to show that

(
𝑚𝑞𝑛

𝑓 𝑛2

)
: 𝐶𝑛→

𝑋𝑛+1 ⊕ 𝑌𝑛 is a monomorphism. To verify this last claim, consider the following commu-
tative diagram

ker 𝑑𝑛𝑌 𝐶𝑛 coim 𝑑𝑛+1𝑋 𝑋𝑛+1

ker 𝑑𝑛𝑌 𝑌𝑛.

𝑗𝑛−1 𝑞𝑛

𝑓 𝑛2

𝑚

𝑖𝑛−1
𝑌

Let 𝑡 : 𝑇→𝐶𝑛 be a morphism for which
(
𝑚𝑞𝑛

𝑓 𝑛2

)
◦ 𝑡 = 0. As𝑚 is a monomorphism, it follows

from 𝑚𝑞𝑛𝑡 = 0 that 𝑡 = 𝑗𝑛−1 ◦ 𝑡′. As 𝑖𝑛−1
𝑌 is a monomorphism, it follows from 𝑖𝑛−1

𝑌 ◦ 𝑡′ =
𝑓 𝑛2 ◦ 𝑗𝑛−1 ◦ 𝑡′ = 0 that 𝑡′ = 0. Hence, 𝑡 = 0 and we find that

(
𝑚𝑞𝑛

𝑓 𝑛2

)
: 𝐶𝑛 → 𝑋𝑛+1 ⊕ 𝑌𝑛 is a

monomorphism.
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Additionally, we have added the pullback of the cospan

Y n�2 ker dn�1Y ker dn�1X

pn�2Y gn�1

:

By the dual of Propositions 5.4 and 5.5 in [5], we have the conflations

C n�2 Xn�1 ˚ Y n�2 C n�1

0@in�2X qn�2

�f n�22

1A
.f n�11 j n�2pn�2Y /

and

C n�1 Xn ˚ Y n�1 C n:

0@in�1X qn�1

�f n�12

1A
.f n1 j n�1pn�1Y /

Hence, to show that cone.f �/ is acyclic in degree n � 1, we only need to show that
C n�1�Xn ˚ Y n�1 is the kernel of Xn ˚ Y n�1 ! XnC1 ˚ Y n. For this, it suffices
to show that

�
mqn

f n2

�
WC n ! XnC1 ˚ Y n is a monomorphism. To verify this last claim,

consider the following commutative diagram:

ker dnY C n coim dnC1X XnC1

ker dnY Y n:

j n�1 qn

f n2

m

in�1Y

Let t W T ! C n be a morphism for which
�
mqn

f n2

�
ı t D 0. As m is a monomorphism, it

follows from mqnt D 0 that t D j n�1 ı t 0. As in�1Y is a monomorphism, it follows from

in�1Y ı t 0 D f n2 ı j
n�1 ı t 0 D 0 that t 0 D 0. Hence, t D 0 and we find that

�
mqn

f n2

�
WC n !

XnC1 ˚ Y n is a monomorphism.

Proposition 3.5. Let E be a strongly deflation-exact category with kernels. There is a
t-structure on D.E/ given by

D�0.E/ D ¹X� 2 D.E/ j ��1X� Š 0º;

D�0.E/ D ¹X� 2 D.E/ j ���1X� Š 0º:

Proof. Let QWK.E/! K.E/=Ac.E/ be the Verdier localization. We see that D�0.E/ D
Q.K�0.E// and D�0.E/ D Q.K�0.E//. Hence, to prove this proposition, it suffices to
show that the conditions of Proposition 3.3 are satisfied for T D K.E/ and N D Ac.E/.
As E has kernels and satisfies axiom R3, we know by Proposition 2.17 that Ac.E/ is a
thick subcategory of K.E/. The rest follows directly from Proposition 3.4.

Definition 3.6. Let E be a strongly deflation-exact category with kernels. We call the t-
structure .D�0.E/;D�0.E// from Proposition 3.5 the left t-structure. We write LH .E/

for the heart D~.E/ D D�0.E/ \ D�0.E/ and LHi WD ��0 ı ��0 ı†i WD.E/! LH .E/

for the corresponding cohomology functors.
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Remark 3.7. As an alternative description, we have X� 2 D�0.E/ if and only if, for all
i � 1, the sequence ker d i�1X ! X i�1 ! ker d iX is a conflation. Likewise, X� 2 D�0.E/
if and only if, for all i � �1, the sequence ker d i�1X ! X i�1 ! ker d iX is a conflation.

3.3. Embedding into the left heart

We now turn our attention to the heart of the left t-structure (see Definition 3.6) on D.E/.

Proposition 3.8. LetC � 2D.E/. The nth cohomology LHn.C �/ is the three-term complex

� � � ! 0! ker.dn�1/ ,! C n�1 ! ker.dn/! 0! � � �

with ker.dn/ in degree 0.

Proof. This follows directly from LHi D ��0 ı ��0 ı†i .

Via the embedding i WE ! D.E/, the category E can be considered as a subcategory
of the left heart LH .E/. We write �WE ! LH .E/ for the corresponding embedding.

Proposition 3.9. The embedding �WE ! LH .E/ commutes with kernels.

Proof. Let f WX ! Y be any map in E: Let C be the cone of the corresponding mor-
phism i.f /W i.X/! i.Y / in D.E/. Applying the cohomology functors LH�, we find the
following exact sequence in LH.E/:

0! LH�1.C /! LH0.iX/! LH0.iY /! LH0.C /! 0.

As C is the complex � � � ! 0! X
f
�! Y ! 0! � � � (with Y in degree 0), we find that

LH�1.C / D ��0 ı ��0 ı†�1.C / D i.kerf /:

Corollary 3.10. An object C � 2 D.E/ belongs to the heart LH .E/ of the left t-structure
if and only if it is isomorphic to a complex of the form

� � � ! 0! kerf
k
,! X

f
�! Y ! 0! � � �

with Y in degree 0. For such an object C �, there is an exact sequence

0! �.kerf /
�.k/
���! �.X/

�.f /
���! �.Y /! C � ! 0

in LH .E/.

Proof. If C � belongs to the heart, then it must be isomorphic to LH0.C �/, for some C � 2
D.E/. By Proposition 3.8, it is isomorphic to a complex of the required form. Conversely,
it is easy to see that any such complex must be in the heart.

Let D be the cone of the morphism i.f /W i.X/! i.Y / in D.E/. As in the previous
proof, we find an exact sequence

0! LH�1.D/! LH0.iX/! LH0.iY /! LH0.D/! 0

in LH.E/. Using the definition of the cohomology functors, we recover the exact sequence

0! �.kerf /
�.k/
���! �.X/

�.f /
���! �.Y /! C � ! 0 in LH .E/.
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Proposition 3.11. Let E be a deflation-exact category with kernels. Assume that E satis-
fies axiom R3.

(1) The embedding � is an exact and fully faithful embedding that reflects conflations.

(2) For every object Z 2 LH .E/, there exists an epimorphism Y ! Z with Y 2 E .

(3) The embedding � preserves and reflects monomorphisms.

Proof. (1) By Theorem 2.16, the embedding � is fully faithful and exact. Proposition 2.17
now shows that � reflects exactness.

(2) This follows directly from the exact sequence in Corollary 3.10.
(3) As � is fully faithful, it reflects monomorphisms. As � commutes with kernels, it

also preserves monomorphisms.

Theorem 3.12. Let E be a deflation-exact category with kernels and assume that E

satisfies axiom R3. The category E is a uniformly preresolving subcategory of LH .E/

with res:dimE.LH .E// � 2. Consequently, the embedding lifts to a triangle equivalence
ˆWD*.E/! D*.LH .E// for � 2 ¹�; b;¿º.

Proof. By Proposition 3.9, we know that E � LH .E/ is deflation-closed (and hence
axiom PR2 is satisfied). Corollary 3.10 implies that axiom PR1 is satisfied, as well as
res:dimE.LH .E// � 2. Hence, E � LH .E/ is uniformly preresolving. That � lifts to a
derived equivalence now follows from Theorem 2.22.

Proposition 3.13. Let A be an abelian category. Let E � A be a full subcategory satis-
fying condition PR1 (thus, every object in A is a quotient of an object in E/. If for any
morphism f in E , we have kerf 2 E , then LH .E/ ' A.

Proof. As E satisfies axiom PR1 and is closed under kernels, we find that E is a uniformly
preresolving subcategory of A (with res:dimE.A/ � 2). By Proposition 2.21, we know
that E is a strongly deflation-exact category. It now follows from Theorem 2.22 that the
natural functor D.E/! D.A/ is an equivalence. In particular, every complex with terms
in A is quasi-isomorphic to a complex with terms in E . Using the explicit form of the
truncation functors on D.E/ from Definition 3.1, we see that the equivalence D.E/ !
D.A/ maps the left t-structure on D.E/ to the standard t-structure on D.A/. This now
gives the equivalence LH .E/ ' A.

3.4. Universal properties of the left heart

The left heart of a strongly deflation-exact category E with kernels can be characterized
via a universal property. The first universal property we give is analogous to that of Propo-
sition 12 in [62].

Proposition 3.14. The embedding �WE!LH .E/ is 2-universal among conflation-exact
functors to abelian categories that preserve kernels, that is to say, the functor

� ı � W Funex.LH .E/;A/! Funex.E;A/

is a fully faithful functor whose essential image consists of those functors E ! A that
preserve kernels. Here, Funex.�;�/ stands for the category of conflation-exact functors.
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Proof. The required fully faithful functor is given by this diagram:

E //

�

��

A

LH .E/:

;;

Let F W E ! A be any exact functor. Deriving this functor gives a triangle functor
F WDb.E/! Db.A/, given by taking a complex E� 2 Db.E/ and applying F pointwise.
As F preserves kernels, it maps the heart LH .E/ of the left t-structure to the heart of
the standard t-structure on Db.A/: That is, F restricts to an exact functor LH .E/! A:

Thus, for any exact F WE ! A, we find an exact functor

LH .E/! Db.E/! Db.A/
H0
�! A:

This shows that F can be lifted to LH .E/! A along �:
To see that the functor � ı �WFunex.LH .E/;A/! Funex.E;A/ is faithful, it suffices

to see that every natural transformation F ) G between functors F; GWLH .E/! A

is completely determined by the restriction F ı � ) G ı �. This is true since, by Theo-
rem 3.12, every objectX 2LH .E/ has a resolutionA�B!C�X withA;B;C 2 E:

Finally, we show that � ı �W Funex.LH .E/;A/! Funex.E;A/ is full. For this, we
consider the arrow category AŒ1� of A, that is, the objects of AŒ1� are arrows A! B in A

and morphisms are given by commutative diagrams. An exact functor E ! AŒ1� is given
by two exact functors F; GW E ! A, together with a natural transformation �WF ) G;
indeed, given such �WF ) G, we construct a functor E 7! .�E WF.E/! G.E//: The
fact that � ı �WFunex.LH .E/;A/! Funex.E;A/ is full follows from the lifting property
of � ı �W Funex.LH .E/;AŒ1�/! Funex.E;A

Œ1�/:

Remark 3.15. If E is left quasi-abelian, the above proposition and Proposition 12 in [62]
imply that LH .E/ ' Ql .E/, where Ql .E/ is the left abelian cover as defined in [62].

The following proposition is a generalization of Proposition 1.2.34 in [68]. For confla-
tion categories E;F , we write Rex.E;F / for the category of right exact functors E! F .

Proposition 3.16. Let E be a strongly deflation-exact category with kernels. For any
abelian category A, the inclusion functor �W E ! LH .E/ induces an equivalence of
categories

�0 W Rex.LH .E/;A/! Rex.E;A/:

Under this equivalence, conflation-exact functors correspond to conflation-exact functors.

Proof. The proof of Proposition 1.2.34 in [68] carries over to this setting. We only note
that, since A is abelian, that a right exact functor E ! A maps admissible morphisms to
admissible morphisms.

Remark 3.17. If E is an exact category with kernels, then Proposition 3.16 shows that
�WE ! LH .E/ is the right abelian envelope of E in the sense of Definition 4.2 in [7].
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3.5. The left heart as a localization

Our final result in this section is a description of the left heart of E as a quotient of the
category mod.E/. To describe this quotient, we first recall the notion of an effaceable
functor.

Definition 3.18. Let E be a deflation-exact category. We say that an object M 2 mod.E/
is effaceable if M Š coker Y .f / for a deflation f in E . We write eff.E/ for the category
of effaceable functors.

Proposition 3.19. Let E be a strongly deflation-exact category. If E has kernels, then the
category eff.E/ is a Serre subcategory of mod.E/.

Proof. This is similar to Lemma 2.3 in [53]. Alternatively, using the horseshoe lemma, one
readily verifies that eff.E/ is extension-closed in Mod.E/. It follows from Proposition 2.4
that eff.E/ is closed under subobjects and quotients in mod.E/.

We start with the embedding �WE ! LH .E/. By the universal property of mod.E/,
we find a natural functor �Wmod.E/! LH .E/:

Theorem 3.20. Let E be strongly deflation-exact category with kernels. The natural right
exact functor �Wmod.E/! LH .E/ extending �W E ! LH .E/ induces an equivalence
mod.E/= eff.E/! LH .E/.

Proof. Write QWmod.E/! mod.E/= eff.E/ for the quotient functor. We show that Q ı
Y WE!mod.E/=eff.E/ satisfies the universal property of �WE!LH .E/ given in Propo-
sition 3.14.

Let F W E ! A be a conflation-exact functor, preserving kernels, to an abelian cat-
egory A. We consider the lift F Wmod.E/! A given by the universal property (Theo-
rem 2.1). As F commutes with kernels, we know that F is exact (Proposition 2.2).

SinceF .eff.E//Š 0, we find thatF factors throughQWmod.E/!mod.E/=eff.E/. It
remains to show thatQ ı Y preserves kernels and conflations. As bothQ and Y commute
with kernels, so does the composition Q ı Y . To see that Q ı Y preserves conflations,

consider a conflation X� Y
f
� Z in E: As the Yoneda functor is left exact, we find

an exact complex 0 ! Y .X/ ! Y .Y /
Y.f /
� Y .Z/ ! coker Y .f / ! 0 in mod E . As

coker Y .f / 2 eff.E/, we have Q.coker Y .f // D 0: As QWmod E ! mod.E/= eff.E/ is
exact, we find thatQ ıY applied to the conflationX�Y�Z gives a conflation (=short
exact sequence) in mod.E/= eff.E/. This shows that Q ı Y preserves conflations.

Remark 3.21. In Theorem 2.9 of [53], Ogawa shows that mod.E/= eff.E/ ' lex.E/ for
any extriangulated category E with weak kernels (any exact category is extriangulated in
the sense of [52]). In Theorem 6.11 of [25], Fiorot shows that Theorem 3.20 holds for
any (n-)quasi-abelian category E . Hence, for any quasi-abelian category E , we have the
following equivalent characterizations of the left heart LH .E/:

LH .E/ ' mod.E/= eff.E/ ' lex.E/ ' Ql .E/;

where Ql .E/ is the left abelian cover as defined in [62, 65].
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Example 3.22. (1) If E is abelian, then the left t-structure is the standard t-structure; the
heart of the standard t-structure is E itself.

(2) If E is quasi-abelian, then the t-structure given here is the left t-structure from
Definition 1.2.18 in [68].

(3) If E is equipped with the split conflation structure (thus, the only conflations are the
split kernel-cokernel pairs), then D.E/ D K.E/ ' D.mod E/, where this last equivalence
uses that objects in mod E have projective dimension at most two (as E has kernels). The
left t-structure is the canonical t-structure on D.mod E/. We see that the heart is equivalent
to the category mod E of finitely presented functors (see also Theorem 3.20).

4. Additive regular categories, admissible kernels, and the admissible
intersection property

In this section, we consider additive regular categories (see Definition 4.1 below). We
show that, endowing an additive regular category E with the class of conflations consisting
of all kernel-cokernel pairs, E has the structure of a deflation-exact category. In fact, the
conflations of a deflation-exact category are given by the kernel-cokernel pairs of a regular
category if and only if one of the following equivalent conditions hold: E has admissible
kernels (Definition 4.6) or E has admissible intersections (Definition 4.7). This will be
shown in Proposition 4.12.

As a deflation-exact category, E admits a derived category D.E/ and the construction
of the left heart LH .E/ as in Section 3 goes through: we show that E is a uniformly
preresolving subcategory of LH .E/ so that the embedding E ,!LH .E/ lifts to a derived
equivalence.

4.1. Additive regular categories and their conflation structure

We start by defining an additive regular category. This definition is an additive version of
a regular category, as defined in [4, 11].

Definition 4.1. An additive category is called additive regular if
Reg1 every morphism f has a factorization f D m ı p, where p is a cokernel and m is

a monomorphism, and
Reg2 the pullback along every cokernel exists and the pullback of a cokernel is a coker-

nel.
The dual of an additive regular category is called an additive coregular category.

Remark 4.2. (1) In [19] (based on [59, 69]), a cokernel c was called semi-stable if pull-
backs along c exist and the pullback of c is a cokernel. With this terminology, one can
reformulate axiom Reg2 as: all cokernels are semi-stable.

(2) In [4], p. 122, a regular category is a (not necessarily additive) finitely com-
plete category where the class of regular epimorphisms satisfies the following properties:
(i) every morphism f has a factorization f D m ı p, where p is a regular epimorphism
and m is a monomorphism, and (ii) the pullback of a regular epimorphism is a regular
epimorphism. As additive regular categories are finitely complete (see Proposition 4.4(1)
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below), we see that additive categories are precisely those categories which are both addi-
tive and regular.

Note that a regular epimorphism is an epimorphism that occurs as the coequalizer of
a pair of parallel morphisms (Definition 4.3.1 in [9]). Hence, in a (pre)additive category,
regular epimorphisms are precisely the cokernel maps.

(3) Let E be an additive regular category. We write E for the class of cokernels and M
for the class of monomorphism. As an additive regular category is regular (see (2) above),
it follows from [44] that the pair .E;M/ defines a factorization system on E (in the
sense of Definition 5.5.1 (i) in [9], also called a factorization (Section 2.2 of [26]), or
an orthogonal factorization system, see Section 11.2 of [60]).

Remark 4.3. Not all authors require a regular category to be finitely complete (see, for
example, Definition 2.1.1 in [10] and p. 4 of [4]). These two definitions of a regular cate-
gory coincide when the category is additive (see Lemma 2.6.6 in [10]).

Proposition 4.4. Let E be an additive regular category.

(1) Each morphism in E admits a kernel.

(2) Each kernel admits a cokernel.

(3) Each cokernel is the cokernel of its kernel, and each kernel is the kernel of its coker-
nel.

(4) The cokernel-monomorphism factorization in axiom Reg1 is unique up to isomor-
phism.

Proof. As cokernels have pullbacks in E , every cokernel pWX ! Y admits a kernel; this
kernel can be found as the pullback along 0! Y: Let f WX ! Y be any morphism, and
let f D m ı p be a cokernel-mono factorization. We find that ker p D ker f , so that f
does admit a kernel. Moreover, p D coker.kerf / so that all kernel maps have cokernels.

The third statement is standard (see, for example, Proposition I.13.3 in [51] together
with its dual). For the last statement, let f WX ! Y be any morphism in E with cokernel-
mono factorizationX

p
�! I

m
�! Y: By (3), we see that p D coker.kerp/. As kerp D kerf ,

the uniqueness follows.

Proposition 4.5. Any additive regular category is a deflation-exact category (where the
conflations are given by all kernel-cokernel pairs) satisfying axiom R3C.

Proof. Choosing the class of all kernel-cokernel pairs as conflations, every cokernel is a
deflation; this follows from Proposition 4.4. The fact that this conflation structure satisfies
axiom R2 is just axiom Reg2. Hence, by Proposition 2.11, this conflation structure gives
a deflation-exact category. It follows from Proposition 5.12 in [43] that axiom R3C is
satisfied as well.

4.2. On admissible kernels and admissible intersections

In the previous subsection, we started with an additive regular category and endowed it
with a conflation structure. In this subsection, we start with a deflation-exact category E

and find two properties which are equivalent to E being additive regular. The first property
we consider has already been mentioned in [6], §1.3.22, for exact categories.
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Definition 4.6. Let E be a conflation category. We say that E has admissible kernels if
every morphism admits a kernel and kernels are inflations. Having admissible cokernels
is defined dually.

In [56], the admissible intersection property is introduced for exact categories (see [15]
for some corrections), and in [13, 30] for pre-abelian exact categories. It is shown in The-
orem 6.1 of [31] that a pre-abelian exact category satisfying the admissible intersection
property is quasi-abelian. However, the admissible intersection property can be defined
for general conflation categories.

Definition 4.7. Let E be a conflation category. The category E satisfies the admissible
intersection property if for any two inflations f WX�Z and gW Y �Z, the pullback
of f along g exists and is of the following form:

P Y

X Z:

PB g

f

The admissible cointersection property is defined dually.

The following lemma (based on Proposition 4.8 in [13]) shows that the property of
having admissible kernels and the admissible intersection property coincide for conflation
categories.

Lemma 4.8. Let E be a conflation category such that all split kernel-cokernel pairs are
conflations. The following are equivalent:
(1) The category E satisfies the admissible intersection property.

(2) The category E has admissible kernels.

Proof. Assume that the admissible intersection property holds. Let gW Y ! Z be a mor-
phism in E . As all split kernel-cokernel pairs are conflations, the sequences

Y

�
1
g

�
���! Y ˚Z

.�g 1 /
�����! Z and Y

�
1
0

�
��! Y ˚Z

. 0 1 /
���! Z

are conflations. By the admissible intersection property, we have the following pullback
diagram:

P Y

Y Y ˚Z Z:

f

f 0 PB
�
1
g

�
�
1
0

�
.0 1/

As the bottom row is a kernel-cokernel pair and the square is a pullback, it follows that
f D ker.. 0 1 /

�
1
g

�
/ D ker.g/.

The reverse implication follows immediately from Proposition I.13.2 in [51], where it
is shown that f is the kernel of . 0 1 /

�
1
g

�
and f 0 is the kernel of .�g 1 /

�
1
0

�
.
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Remark 4.9. The conflations of a conflation category E having admissible kernels, are
given by all kernel-cokernel pairs. Moreover, as every cokernel is the cokernel of its ker-
nel, all cokernels are deflations.

For deflation-exact categories, the above lemma can be extended (the proof is an adap-
tation of Proposition I.1.4 in [68]).

Proposition 4.10. Let E be a deflation-exact category. The following are equivalent:
(1) The admissible intersection property holds.

(2) The category E has admissible kernels.

(3) Every morphism has a deflation-mono factorization, i.e., any morphism gW Y ! Z

factors as Y� coim.g/ ,! Z.

Moreover, a factorization as in (3) is unique up to isomorphism.

Proof. By Remark 2.9, all split kernel-cokernel pairs are conflations in E . The equivalence
(1), (2) now follows from Lemma 4.8.

Assume (2). Let gW Y ! Z be a map. As g admits a kernel which is an inflation, we

find a sequence ker.g/
f
� Y

h
� coim.g/

k
�! Z such that k ı h D g. We claim that k

is a monomorphism. To that end, let t W T ! coim.g/ be a map such that k ı t D 0. By
axiom R2, the pullback of t along the deflation h exists and we obtain the following
commutative diagram:

ker.g/

P Y Z

T coim.g/ Z:

f

t 0

h0

9Šu

h

g

t k

By the commutativity of the diagram, g ı t 0 D 0 holds and thus there exists a unique map
uWP ! ker.g/ such that f ı uD t 0. It follows that t ı h0D h ı t 0D h ı f ı uD 0. Since h0

is a deflation, it is epic, and thus t ı h0 D 0 implies that t D 0. This shows that k is monic
and thus (3) holds. The implication (3)) (2) and the uniqueness of a deflation-mono
factorization are straightforward to show.

Remark 4.11. (1) Every left quasi-abelian category is a deflation-exact category having
admissible kernels, or equivalent, satisfying the admissible intersection property. Despite
Theorem 6.1 in [31], such a category need not be quasi-abelian as it might fail to be exact.
Such an example is given by the category LB (see Theorem 3.4 in [31] or Section 9).

(2) Despite Theorem 6.1 in [31], an exact category with the admissible intersection
property might fail to be quasi-abelian as well. Indeed, in Example 7.18 of [34] it shown
that the exact hull Iex of the Isbell category I need not be pre-abelian. On the other hand,
Iex is exact and has the admissible intersection property by Proposition 4.10 and Corol-
lary 5.12.

Proposition 4.12. The following are equivalent for an additive category E .

(1) E is an additive regular category,
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(2) E is a deflation-exact category with admissible kernels, and

(3) E is a deflation-exact category with admissible intersections,

where the conflation structure is given by the class of all kernel-cokernel pairs.

Proof. This follows from Proposition 4.5 and Proposition 4.10.

Remark 4.13. Being an additive regular category is a property of an (additive) category.
In contrast, being a deflation-exact category with admissible kernels (or equivalently,
admissible intersections) is a property of a conflation category. We have shown that an
additive regular category endowed with the maximal conflation structure is deflation-exact
with admissible kernels.

Later in this article, for example in Proposition 4.14, we consider results which pro-
duce a deflation-exact category having admissible kernels. This is slightly stronger than
producing an additive regular category. Indeed, the former means that we get an additive
regular category with a conflation structure, and states on top, that this conflation structure
is maximal.

4.3. Some examples

We now provide some examples of deflation-exact categories with admissible kernels. We
start with an easy criterion.

Proposition 4.14. Let E be a deflation-exact category having admissible kernels. If F �E

is a subcategory closed under subobjects, then F is deflation-exact and has admissible
kernels.

Proof. Assume that F � E is closed under subobjects. In particular, F � E is deflation-
closed and thus inherits a deflation-exact structure by Proposition 2.21. Let f WX ! Y be

a morphism in F . By Proposition 4.10, f admits a deflation-mono factorization X
f 0

�

coim.f /
f 00

,! Y in E . By assumption, ker.f /; coim.f / 2 F . The result then follows from
Proposition 4.10 as ker.f /�X� coim.f / is a conflation in F and the map f 00 is a
monomorphism in F .

Example 4.15. For any category A, a preradical functor T is a subfunctor of the iden-
tity functor on A. Let A be a conflation category. Consider a preradical functor T with
embedding �W T ! 1A. Assume now that for each A 2 A, the given monomorphism
�AWT .A/!A is an inflation in A. To any such a preradical functor T , one assigns the full
subcategory T consisting of those objects C 2 A such that �C WT .C /! C is an isomor-
phism. Using the naturality of T ! 1A, one readily verifies that T � A is closed under
epimorphic quotients (see, for example, Proposition 2 in [16]). Indeed, let f WA!B be an
epimorphism in A with A 2 T . Naturality of � gives the following commutative diagram:

T .A/ T .B/

A B

�A

T.f /

�B

f
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As �AWT .A/!A is an isomorphism, we find that the composition f ı �A D �B ı T .f / is
an epimorphism and, hence, so is �B WT .B/�B . This shows that �B is an isomorphism
so that B 2 T :

If A is inflation-exact with admissible cokernels and T is a normal preradical func-
tor on A (that is, the monomorphisms �AW T .A/�A are inflations), then the dual of
Proposition 4.14 yields that T is an inflation-exact category having admissible cokernels.

As a more specific example, letR be a ring and let I GR be a left ideal. Let Mod.R/ be
the category of rightR-modules. The functor T mappingM 2Mod.R/ to T .M/DMI is
a normal preradical functor. The corresponding subcategory T D¹M2Mod.R/ jMDMI º
of Mod.R/ is an inflation-exact category having admissible cokernels.

Example 4.16. Let R be a commutative artin ring and let A be an artin R-algebra. Let
M 2 mod.A/ be a finitely generated module. Denote by fac.M/ the full additive subcat-
egory of mod.A/ consisting of factor modules of finite direct sums of M . It follows from
Proposition 4.14 that fac.M/ is an inflation-exact category with admissible cokernels. If
HomA.M; �M/ D 0, that is, M is � -rigid (see Definition 0.1 in [1]), then fac.M/ is an
extension-closed subcategory of mod.A/ and hence exact (see Theorem 5.10 in [3]).

Example 4.17. Let E be a deflation-exact category and let J be any small category. The
category EJ WD Fun.J;E/ inherits a deflation-exact structure from E in the following way:
a sequence F ! G ! H in EJ is a conflation if and only if F.J /! G.J /! H.J / is
a conflation, for every J 2 Ob.J/: If E has admissible kernels, then so does EJ :

5. The left heart and the exact hull

Let E be a deflation-exact category with admissible kernels. In this section, we have a
closer look at the bounded derived category Db.E/ and study two subcategories of Db.E/:
the left heart and the exact hull.

5.1. The left heart

In Section 3, we described the left heart of a deflation-exact category with kernels. We did
not require any compatibility between the exact structure and the kernels. In this section,
we narrow the scope and consider only those cases where the kernels are inflations. This
allows us to strengthen some results presented in Section 3.

Throughout this section, let E be a deflation-exact category with admissible kernels.
The following proposition is a straightforward adaptation of Proposition 1.2.19 in [68],

and strengthens Proposition 3.8.

Proposition 5.1. Let E be a deflation-exact category with admissible kernels. Let C � 2
D.E/. The complex LHn.C �/ is isomorphic to the complex

� � � ! 0! coim.dn�1/ ,! ker.dn/! 0! � � �

with ker.dn/ in degree 0.

Proof. By Proposition 3.8, the complex LHn C � D ��n��nC � is given by

� � � ! 0! ker.dn�1/! C n�1 ! ker.dn/! 0! � � �
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We consider the deflation-mono factorization C n�1
ˇ
� coim.dn�1/


,! ker.dn/ from

Proposition 4.10, giving us the following commutative diagram:

� � � 0 ker.dn�1/ C n�1 coim.dn�1/ 0 � � �

� � � 0 ker.dn�1/ C n�1 ker.dn/ 0 � � �

˛ ˇ



˛

We interpret this diagram as a morphism between complexes: f �WD� ! LHn C �; the
complexes here are given by the rows in the previous diagram. As the top row is an acyclic
complex, the morphism LHnC �! cone.f �/ is a quasi-isomorphism. It is easy to see that
cone.f �/ is given by the complex � � � ! 0! coim.dn�1/ ,! ker.dn/! 0! � � � , with
ker.dn/ in degree 0, up to homotopy.

Proposition 5.2. Let E be a deflation-exact category with admissible kernels. Let �WE !
LH .E/ be the canonical embedding.

(1) The subcategory E � LH .E/ is closed under subobjects.

(2) For every objectZ 2LH .E/, there exists a short exact sequenceX�Y�Z with
X; Y 2 E .

Proof. (1) Let f WX ,! Y be a monomorphism in LH .E/ with Y 2 E . It follows from
Proposition 3.11(2) that there is an epimorphism gWB ! X in LH .E/ with B 2 E . Con-
sider the deflation-mono factorization B� coim.f ı g/ ,! Y of the morphism f ı g

in E . Embedding this factorization in LH .E/ gives a deflation-mono factorization of
f ı g in LH .E/ (this uses Proposition 3.11(1) and (3)). Since such a factorization is
unique in the abelian category LH .E/, we find X Š coim.f ı g/ 2 E .

(2) As Z 2 LH .E/, we know, by Proposition 5.1, that Z can be represented by a
complex

� � � ! 0! X
f
,! Y ! 0! � � �

This gives a triangle i.X/
i.f /
���! i.Y / ! Z ! †i.X/ in D.E/, where i W E ! D.E/ is

the canonical embedding. The long exact sequence coming from the cohomology func-
tors LHi now give the required short exact sequence.

Remark 5.3. For any map f WX ! Y in E , the deflation-mono factorization in E (see
Proposition 4.10) coincides with the epi-mono factorization of f in the abelian cate-
gory LH .E/.

Corollary 5.4. Let E be a deflation-exact category with admissible kernels. The cate-
gory E is a uniformly preresolving subcategory of LH .E/ with res:dimE.LH .E// � 1.
Consequently, the embedding lifts to a triangle equivalence ˆWD*.E/! D*.LH .E// for
� 2 ¹�; b;¿º.

Proof. The only improvement over Theorem 3.12 is that res:dimE.LH .E// � 1. This
follows from Proposition 5.2.
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Proposition 5.5. Let E be a deflation-exact category with admissible kernels and let A

be any abelian category. For a conflation-exact functor F W E ! A, the following are
equivalent:
(1) F commutes with kernels,

(2) F maps monomorphisms to monomorphisms.

Proof. A morphism is a monomorphism if and only if the kernel is zero. This shows the
implication (1)) (2). For the other implication, let f WX ! Y be any morphism in E:

Let X
p
� coimf

i
,! Y be the deflation-mono factorization. We have

kerF.f / D ker.F.i/ ı F.p//
.�/
D kerF.p/

.��/
D F.kerp/ D F.kerf /;

where we have used that F preserves monomorphisms (*) and that F is conflation-
exact (**). This shows that F commutes with kernels, as required.

The previous proposition allows for a reformulation of the 2-universal property of the
left heart (see Proposition 3.14).

Corollary 5.6. Let E be a deflation-exact category with admissible kernels. The embed-
ding �WE!LH .E/ is 2-universal among conflation-exact functors to abelian categories
that preserve monomorphisms.

The following proposition is somewhat of a converse to Corollary 5.4.

Proposition 5.7. Let A be an abelian category. Let E �A be a full subcategory satisfying
condition PR1 (thus, every object in A is a quotient of an object in E/. If E is closed under
subobjects, then E has admissible kernels and LH .E/ ' A.

Proof. As E is closed under subobjects, we know that E is a uniformly preresolving sub-
category of A. By Proposition 4.14, we know that E is a deflation-exact category with
admissible kernels. The rest follows from Proposition 3.13.

Remark 5.8. In the language of Definition 1.1 in [48], the previous result, together with
Proposition 5.2, implies that additive regular categories axiomatize subcategories of abe-
lian categories which are generating (that is, satisfying axiom PR1) and are closed under
subobjects.

5.2. The exact hull

Recall from Proposition 4.12 that an additive regular category E is a deflation-exact cat-
egory with admissible kernels. As a deflation-exact category, it admits an exact hull Eex

(see Section 2.5). In this subsection, we show that the exact hull Eex has admissible ker-
nels as well. In other words, the property of having admissible kernels inherits to taking
the exact hull. This means that the exact hull of an additive regular category is still an
additive regular category.

The exact hull of E is defined as the extension-closure of E in the derived cate-
gory Db.E/. In the following proposition, we describe the exact hull as a subcategory
of the left heart of E:
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Proposition 5.9. There is a fully faithful conflation-exact functor kW Eex ! LH .E/ for
which the diagram

E
�

//

j
  

LH .E/

Eex

k

;;

is essentially commutative. In particular, the category Eex is a full and extension-closed
subcategory of LH .E/. Furthermore, �;j and k all lift to derived equivalences D*.E/!

D*.Eex/! D*.LH .E// for � 2 ¹¿; b;�º.

Proof. By the universal property of the embedding j WE ! Eex (see Theorem 2.24), the
functor � factors (essentially uniquely) as

E
j
�! Eex k

�! LH .E/;

where k is an exact functor. As � and j are fully faithful, so is k. To see that Eex is
a full and extension-closed subcategory of LH .E/, it suffices to note that LH .E/ is
an extension-closed subcategory of D.E/ and that Eex is the extension-closure of E �

LH .E/ in D.E/. Furthermore, as the embeddings � and j lift to triangle equivalences
D*.E/! D*.LH .E// and D*.E/! D*.Eex/ for � 2 ¹¿; b;�º (see Theorem 2.27 and
Corollary 5.4), so does k.

In the following proposition, we use the categories En from Notation 2.25.

Proposition 5.10. Let E be a deflation-exact category with admissible kernels. The sub-
category Eex is closed under subobjects in LH .E/.

Proof. Consider a monomorphismX ,! Y in LH .E/ and assume that Y 2 Eex. We need
to show that X 2 Eex. By construction, Y 2 En for some n � 0. We show, by induction
on n, that X 2 En as well.

For n D 0, Proposition 5.2 (1) yields that X 2 E0.
Now assume that n � 1. By definition, there is a conflation A�Y�B in Eex with

A 2 En�1 and B 2 E0. Consider the following commutative diagram in LH .E/:

P X I

A Y B:

Here, I is the image of the composition X ,! Y ! B and P ! X is the kernel of
X ! I: In particular, the top line in this diagram is an exact sequence in LH .E/, and
thus corresponds to a triangle in Db.E/. By Proposition I.13.2 in [51], the left square is
a pullback and hence the induced map P ! A is a monomorphism (as the pullback of
a monomorphism is a monomorphism, see Proposition I.7.1 in [51]). By the induction
hypothesis, P 2 En�1 and the base case yields that I 2 E0. It follows that X 2 En, as
required.
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Theorem 5.11. Let E be a deflation-exact category with admissible kernels. The exact
hull Eex of E also has admissible kernels.

Proof. This follows from Proposition 4.14 and Proposition 5.10.

Corollary 5.12. (1) The functor kWEex ! LH .E/ maps monomorphisms to monomor-
phisms.

(2) The subcategory E � Eex is closed under subobjects.

(3) The embedding j WE ! Eex commutes with kernels.

(4) A morphism X ! Y in E is a deflation if and only if it is a deflation in Eex.

(5) Exact categories with admissible kernels are precisely the extension-closed subcate-
gories of abelian categories that are closed under subobjects.

Proof. (1) Consider a monomorphism f WX ,! Y in Eex � LH .E/. Take a morphism
t WT !X such that f ı t D 0: By Proposition 3.11 (2), there is an epimorphism pWZ! T

with Z 2 E � Eex. As f is a monomorphism in Eex, it follows from f ı t ı p that
t ı p D 0. As p is an epimorphism, we find that f D 0. This shows that f is a monomor-
phism in LH .E/.

(2) Consider a monomorphism f WX ,! Y in Eex with Y 2 E: We have shown that f
is also a monomorphism in LH .E/. It follows from Proposition 5.2 (1) that X 2 E:

(3) Follows directly from the fact that �WE ! LH .E/ preserves kernels.
(4) Consider the conflation K�X� Y in Eex. As E � Eex is closed under subob-

jects, we find K 2 E . We can now use that j W E ! Eex reflects conflations (see Theo-
rem 2.24).

(5) Clearly any extension-closed subcategory of an exact category is exact. Combining
this fact with Proposition 4.14 yields that any extension-closed subcategory of an abelian
category closed under subobjects is an exact category with admissible kernels. Conversely,
any exact category E equals its hull E Š Eex. Additionally, if E has admissible kernels,
then E � LH .E/ is closed under subobjects by Proposition 5.10. By construction, Eex

lies extension-closed in LH .E/. This concludes the proof.

It follows from Lemma 2.26 that a morphism f WX ! Y in a deflation-exact category
that becomes an inflation in Eex is necessarily a monomorphism. However, it gives no cri-
terion for which monomorphisms become inflations. The following result provides such
a criterion for deflation-exact categories with kernels; these kernels need not be admissi-
ble.

Proposition 5.13. Let E be a deflation-exact category satisfying axiom R3. Assume that E

admits all kernels. Any inflation f WX� Y in Eex with X; Y 2 E is a finite composition
of inflations in E .

Proof. We show that for any conflation X� Y �Z in Eex with X; Y 2 E , the map
X ! Y is a finite composition of inflations in E . As Z 2 Eex, there is an n � 0 such that
Z 2 En. We proceed by induction on n � 0. If n D 0, X� Y is an inflation in E as the
embedding j WE ! Eex reflects exactness (see Theorem 2.24). If n � 1, then there exists
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a conflation A�Z�B in Eex such that A 2 En�1 and B 2 E . Consider the following
commutative diagram:

X // // P // //
��

��

A��

��

X // // Y // //

����

Z

����

B B

in Eex, where the upper-right square is bicartesian. By Proposition 5.5 in [38], we know
that E lies deflation-closed in E: As Y;B 2 E , we find that P 2 E . The induction hypoth-
esis now shows that X�P is a finite string of inflations.

6. Quotients of additive regular categories

In [34, 35], a quotient/localization theory for (one-sided) exact categories at percolating
subcategories is studied. This localization theory simultaneously generalizes localization
theories for exact categories developed in [18, 67] and provides new examples (even for
exact categories). As additive regular categories are deflation-exact, this framework allows
to take quotients of additive regular categories. The main result is that a quotient of an
additive regular category is again regular as an additive category, and that the induced
deflation-exact structure on the quotient consists of all kernel-cokernel pairs. In addition,
we provide an easy characterization of percolating subcategories for additive regular cat-
egories (see Proposition 6.6).

6.1. Basic definitions and results

We recall the basic definitions and results from [34, 35].

Definition 6.1. Let E be a conflation category. A non-empty full subcategory A of E is
called a deflation-percolating subcategory of E if the following axioms are satisfied:
P1 A is a Serre subcategory, meaning:

If A0�A�A00 is a conflation in E , then A 2 A if and only if A0; A00 2 A:

P2 For all morphisms X ! A with X 2 E and A 2 A, there exists a commutative dia-
gram

A0

X A

with A0 2 A and where X�A0 is a deflation.
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P3 For any composition X //
i //Y

t //T which factors through A, there exists a
commutative diagram

X Y

A P

T

i

f f 0

t
i 0

with A 2 A and such that the square XYAP is a pushout square.

P4 For all mapsX
f
! Y that factor through A and for all inflationsA

i
�X (withA2A/

such that f ı i D 0, the induced map coker.i/! Y factors through A.
By dualizing the above axioms, one obtains a similar notion of an inflation-percolating

subcategory or an inflation-percolating subcategory.

Remark 6.2. If E is exact, axiom P3 in the above definition is redundant (see Remark 4.4
in [35]).

Definition 6.3. Let A be a full additive subcategory of E . A morphism f 2 Mor.E/ is
called a weak A-isomorphism if it is a finite composable string of inflations with cokernels
in A and deflations with kernels in A. The weak A-isomorphisms are denoted by SA.

The following theorem summarizes the results of [34,35]. We write i WE ! Db.E/ for
the canonical embedding.

Theorem 6.4. Let E be a deflation-exact category and let A � E be a deflation-percola-
ting subcategory.

(1) The set SA is a right multiplicative system.

(2) The smallest conflation structure on EŒS�1
A
� such that the localization functor QWE

! EŒS�1
A
� is conflation-exact, is a deflation-exact structure.

(3) The functor Q satisfies the 2-universal property of the quotient E=A of deflation-
exact categories.

(4) The localization sequence A! E ! E=A induces a Verdier localization sequence

Db
A.E/! Db.E/! Db.E=A/I

here Db
A
.E/ is the thick triangulated subcategory of Db.E/ generated by i.A/.

If, in addition, E is two-sided exact, then EŒS�1
A
�ex satisfies the 2-universal property of

a quotient of exact categories. We write EŒS�1
A
�ex D E==A to distinguish it from the one-

sided quotient.

6.2. Percolating subcategories of deflation-exact categories having admissible
kernels

We start with the following proposition, stating that having admissible kernels is stable
under quotients.
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Proposition 6.5. Let E be a deflation-exact category. Let A � E be a deflation-percolat-
ing subcategory. If E has admissible kernels, so does E=A. Furthermore, EŒS�1

A
�ex has

admissible kernels as well.

Proof. By Theorem 6.4, the quotient E=A is a deflation-exact category. By Proposi-
tion 4.10, it suffices to show that E=A admits kernels and that kernels are inflations.
Since SA is a right multiplicative system, the localization functor

QWE ! E=A ' EŒS�1A �

commutes with kernels. Hence every morphism in E=A has a kernel, moreover, as Q is a
conflation-exact functor and every kernel in E is an inflation, kernels in E=A are inflations
as well. The last part follows from Theorem 5.11.

Proposition 6.6. Let E be a deflation-exact category having admissible kernels and let
A � E be a strictly full additive subcategory. If either E is exact, or if E is pre-abelian,
the following are equivalent:
(1) A � E is a deflation-percolating subcategory.

(2) A � E is a Serre subcategory which is closed under subobjects.

Proof. Assume first that A � E is a deflation-percolating subcategory. In particular, A is

a Serre subcategory. Consider a monomorphism X
f
,! A in E with A 2 A. By axiom P2,

f factors asX�A0! A with A0 2A. As f is monic, so isX�A0 and hence this map
is an isomorphism, thus X 2 A.

Conversely, assume that A is a Serre subcategory which is closed under subobjects.
Axiom P1 holds by assumption, whereas Axiom P2 follows immediately from Proposi-
tion 4.10 (3).

We now show axiom P4.
Let f WX ! Y be a map which factors through an object B 2 A, and let i WA�X

be an inflation such that f ı i D 0. We first claim that we may assume X ! B to be a
deflation and B ! Y to be a monomorphism. Indeed, by axiom P2, the map X ! B fac-
tors as X�B 0 ! B with B 0 2 A. By Proposition 4.10 (3), we find that the composition
B 0 ! B ! Y factors as B 0�B 00 ,! Y . By axiom P1, B 00 2 A and by axiom R1, the
composition X�B 0�B 00 is a deflation. This shows the claim. Let pWX�X 0 be the
cokernel of i WA�X . As f ı i D 0, we obtain a factorizationX�X 0! Y of f . Again,
by Proposition 4.10 (3), the map X 0 ! Y factors as X 0�X 00 ,! Y . By axiom R1, we
obtain the deflation-mono factorization X�X 00 ,! Y of f . As deflation-mono factor-
izations are unique, we conclude that X 00 Š B and thus axiom P4 holds.

It remains to verify axiom P3.
If E is exact, axiom P3 is automatic (see Remark 6.2) and there is nothing to prove.
Now assume that E is pre-abelian. Let i WX� Y be an inflation and let t W Y ! T be

a map such that t ı i factors as X ! A! T with A 2 A. By axiom P2, we may assume
that X ! A is a deflation. Write K�X�A for the corresponding conflation. As E is
pre-abelian, the cokernel P of the composition K�X�Y exists. Hence we obtain the
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following commutative diagram:

K K

X Y Z

A P Z:

Axiom R3, which is satisfied by Proposition 4.5, implies that P ! Z is a deflation. Write
L� P�Z for the corresponding conflation. By Proposition 3.7 in [35], the square
XYLP is bicartesian. In particular, ker.X!L/ŠM Š ker.Y !P /. As the mapX!L

factors through A, we find that coim.X ! L/ 2A. We write B D coim.X ! L/ and we
write Q D coim.Y ! P /. We obtain the following commutative diagram:

M M

X Y Z

B Q Z

L P Z:

Here B�Q�Z is a conflation by the nine lemma. It is now straightforward to check
that XYBQ is the desired square for axiom P3.

Example 6.7. Consider the category LCA of locally compact abelian groups and let LCAD

� LCA be the full subcategory of discrete abelian groups. By [39], LCA is a quasi-abelian
category. As LCAD � LCA is a Serre subcategory closed under subobjects, Proposition 6.6
yields that LCAD � LCA is a deflation-percolating subcategory. By Proposition 6.5, the
quotient LCA=LCAD is a deflation-exact category having admissible kernels. In particular,
it is an additive regular category.

Furthermore, Corollary 6.6 in [34] yields that LCA=LCAD is in fact two-sided exact.
Thus LCA=LCAD' LCA==LCAD. By Pontryagin duality, the quotient LCA=LCAC is an exact
category having admissible cokernels. Here, LCAC � LCA is the full subcategory of com-
pact abelian groups.

6.3. Admissibly percolating subcategories

We recall the following special kind of percolating subcategories from [35]. This type of
percolating subcategories will appear in the next section.

Definition 6.8. Let E be a conflation category. An admissibly deflation-percolating sub-
category is a subcategory A � E such that the following axioms hold:
A1 A is a Serre subcategory (see Definition 6.1).
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A2 Every morphismX !AwithA 2A is admissible with image in A (that is, the mor-
phism f WX ! A has a deflation-inflation factorization X�A0�A with A0 2 A.)

A3 If f WX�A is a deflation with A 2 A and gWX� Y is an inflation, the pushout
of f along g exists and is of the following form:

X Y

A P:

g

f f 0

i 0

An admissibly inflation-percolating subcategory is defined dually. A two-sided admissibly
percolating subcategory is both admissibly inflation-percolating and admissibly deflation-
percolating.

Remark 6.9. For an exact category E , any subcategory A satisfies axiom A3 (see the
dual of Proposition 2.15 in [14]).

Example 6.10. Given a filtered ring FR, one can consider a type of filtered representation
theory called glider representations as in [17]. The category Glid.FR/ of glider represen-
tations is obtained as a quotient of the quasi-abelian category Preglid.FR/ of pregliders
by the subcategory Mod.R/ (see [36]). Here, the subcategory Mod.R/ � Glid.FR/ is an
admissibly deflation-percolating subcategory. It follows that Glid.FR/ is a deflation-exact
category having admissible kernels.

Following [36], there is an embedding Glid.FR/! Mod.FR/ of Glid.FR/ into an
abelian category Mod.FR/ which reflects kernels and lifts to a derived equivalence (here,
FR is the filtered companion category, see Definition 3.1 in [36]). It follows that this
lift restricts to an equivalence on the left hearts, i.e., LH .Glid.FR// ' Mod.FR/. This
recovers and generalizes Theorem 4.20 in [66].

The following proposition explains the terminology (see Section 6 of [35]).

Proposition 6.11. Let E be a deflation-exact category and let A � E be an admissibly
deflation-percolating subcategory. The following properties hold.

(1) The category A is abelian and is a deflation-percolating subcategory of E .

(2) The weak A-isomorphisms are precisely the admissible morphisms f 2Mor.E/ with
kerf; cokerf 2 A.

(3) The set SA of weak isomorphisms satisfies the 2-out-of-3-property and is saturated.

We conclude this section by recalling two useful properties of two-sided admissibly
percolating subcategories of an exact category.

Theorem 6.12 (Theorem 2.16 in [33]). Let E be an exact category and let A � E be
a two-sided admissibly percolating subcategory. A map f WX ! Y is admissible in E if
and only if Q.f / is admissible in E=A. In other words, the exact localization functor Q
reflects admissible morphisms.

We end this section with a criterion for percolating subcategories using the language
of torsion pairs in a conflation category, which is a direct adaptation from the abelian [20],
the exact [35, 70], the extriangulated [32], and the homological [12] setting.
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Definition 6.13. Let C be a conflation category. A torsion pair or a torsion theory is a
pair .T ;F / of full and replete subcategories of C such that
(1) Hom.T; F / D 0 for all T 2 T and F 2 F ,
(2) every object M 2 E fits into a conflation T�M�F with T 2 T and F 2 F .

A torsion pair .T ;F / is said to be hereditary if T is closed under subobjects.

Proposition 6.14 (Proposition 2.22 in [33]). Let E be an exact category with a torsion
pair .T ; F /. If T � E satisfies axiom A2, then the subcategory T � E is two-sided
admissibly percolating.

7. Constructions using Auslander’s formula

Throughout this section, let E be a deflation-exact category with admissible kernels.
Auslander’s formula (see [50], p. 1, or [47], Theorem 2.2) states that any small abelian
category A can be recovered as the quotient mod.A/= eff.A/. The description of the left
heart given in Theorem 3.20 as LH .E/ ' mod.E/= eff.E/ has the same flavor. In this
section, we consider two subcategories, modw:adm.E/ and modadm.E/, and consider simi-
lar quotients by the subcategory of the effaceable functors. In addition, we show that the
effaceable functors form a torsion subcategory of these categories.

More specifically, we show that eff E is a torsion class in mod E; the corresponding
torsionfree class is the full subcategory mod1.E/ consisting of all modules of projective
dimension at most one. This observation will play a part in the next section.

The main idea is the following. By Corollary 2.5, the deflation-mono factorization
f D m ı p of a morphism f in E gives rise to a short exact sequence 0! coker Y .p/!
coker Y .f / ! coker Y .m/ ! 0 in mod.E/. It will follow that Y .m/ 2 mod1.E/ and
Y .p/ 2 eff.E/, so that this sequence gives the required decomposition of Y .f / into a
torsion submodule and a torsionfree quotient module.

We also identify two interesting subcategories of mod E by imposing further condi-
tions on the presenting morphism f D m ı p: we consider modadm E of objects of the
form coker Y .f /, wherem is an inflation in E , and the subcategory modw:adm E consisting
of those objects of the form coker Y .f /, where m is the composition of inflations in E .

The torsion theory .eff.E/;mod1.E// in mod E then induces a torsion theory .eff.E/;
mod1

adm.E// in modadm E , and a torsion theory .eff.E/;mod1
w:adm.E// in modw:adm E .

Finally, the categories modadm E and modw:adm E are not abelian, but one can nonethe-
less consider their quotients by the subcategory of eff E of effaceable functors. By taking
these quotients, the inclusions modadm E � modw:adm E � mod E give a sequence E �

Eex � LH .E/.

7.1. Preparatory notions

We start by formally introducing the categories modadm.E/ and modw:adm.E/ mentioned
before.
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Definition 7.1. (1) A morphism in E which is the composition of a finite string of infla-
tions is called a weak inflation. A morphism X ! Y is called a weakly admissible mor-
phism if it is the composition of a deflation X�Z and a weak inflation Z ! Y:

(2) We write modadm.E/ for the full subcategory of mod.E/ consisting of those func-
tors F Š coker.Y .f // where f is admissible in E . We write mod1

adm.E/ for the full
subcategory of modadm.E/ consisting of those functors F Š coker.Y .f // where f is an
inflation.

(3) We write modw:adm.E/ for the full subcategory of mod.E/ consisting of those func-
tors F Š coker.Y .f // such that f is weakly admissible in E . We write mod1

w:adm.E/

for the full subcategory of modw:adm.E/ consisting of those functors F Š coker.Y .f //
where f is a weak inflation.

Remark 7.2. We have eff.E/ � modadm.E/ � modw:adm.E/ � mod.E/.

The following proposition explains the notation of mod1
adm.E/ and mod1

w:adm.E/.

Proposition 7.3. For any deflation-exact category E with admissible kernels, we have:
(1) mod1

adm.E/ D mod1.E/ \modadm.E/,

(2) mod1
w:adm.E/ D mod1.E/ \modw:adm.E/.

Proof. We only show the first statement, the proof of the second statement is similar. We
start by showing the inclusion mod1

adm.E/�mod1.E/\modadm.E/. LetM 2mod1
adm.E/,

say M Š coker Y .f / for an inflation f in E . As f is a monomorphism, we have M 2
mod1.E/ by Proposition 2.3 and, as f is admissible, we have M 2 mod1.E/.

For the inclusion mod1.E/\modadm.E/�mod1
adm.E/, letM 2modadm.E/, sayM Š

coker Y .f / for an admissible f Dm ı p in E . Here, p is a deflation andm is an inflation.
SinceM 2mod1.E/, we know, by Proposition 2.3 and the uniqueness of a deflation-infla-
tion factorization, that p is a retraction. Hence coker Y .f / D coker Y .m/ 2 mod1

adm.E/.

The following lemma is an adaptation of Lemma 3.27 in [33].

Lemma 7.4. Let G Š coker Y .g/ 2 mod E for some morphism gWB ! C in E . If G 2
eff.E/, then

(1) there is a B 0 2 E such that .g 0/WB ˚ B 0�C is a deflation,

(2) if E satisfies axiom R3, then gWB�C is a deflation.

Proof. AsG 2 eff.E/, there is a conflationX�Y
f
�Z such thatG Š coker.Y .f //. By

the comparison theorem (Theorem 12.4 in [14]) and the fact that the Yoneda embedding
is fully faithful, the sequence 0! ker.g/! B ! C ! 0 is homotopy equivalent to the
acyclic sequence 0! X�Y�Z ! 0.

If E satisfies axiom R3, then by Proposition 2.17, we find that gWB! C is a deflation.
Without the assumption of axiom R3, we may still enlarge the conflation structure on E

until it satisfies axiom R3 (as E is weakly idempotent complete, we obtain the closure
under axiom R3 as the closure under axiom R3�, see Proposition 3.3 and Corollary 7.14
in [37]). We can now use Proposition 2.17 to see that 0! ker.g/! B ! C ! 0 is a
conflation in the new conflation structure. By Proposition 7.18 in [37], we find that there
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exists an object B 0 2 B such that 0! ker.g/˚ B 0�B ˚ B 0�C ! 0 is a conflation
in the original conflation structure.

7.2. A torsion theory for exact categories

Let F be an exact category with admissible kernels. Our main example will be F D Eex,
where E is a deflation-exact category with admissible kernels. We show that the subcate-
gory eff.F / of effaceable functors is a torsion class in mod.F /. This serves as a starting
point for the other torsion pairs we will give in this section.

Proposition 7.5. Let F be an exact category with admissible kernels. There is a heredi-
tary torsion pair .eff.F /;mod1.F // on mod.F /.

Proof. It follows from Proposition 3.19 that eff.F / is a Serre subcategory of mod.F /.
Corollary 2.5 shows that every M 2 mod.F / is the extension of a torsion-free module
by a torsion module. We only need to show that Hom.eff.F /;mod1.F // D 0: For this,
consider a morphism �W F ! G with F 2 eff.F / and G 2 mod1.F /. We can choose
projective presentations of F and G as follows:

Y .A/
Y.f /

//Y .B/ //F //0 and Y .C /
Y.g/

//Y .D/ //G //0;

where f WA�B is a deflation and gWC ,!D is a monomorphism. A morphism �WF !G

lifts to a commutative diagram

A C

B D:

ˇ

f g

˛

Note that E admits all pullbacks as it has admissible kernels. Using the notation of Propo-
sition 2.4, we find that g0 is an isomorphism as it is both a monomorphism (as pullback of a
monomorphism) and a deflation (by applying axiom R3C to the composition f D g0 ıˇ00).
It follows that im.�/ D 0 and hence that Hom.F;G/ D 0.

7.3. A torsion theory on mod E

By Proposition 7.5, we know there is a hereditary torsion theory .eff.Eex/;mod1.Eex//

on mod.Eex/. We intersect this torsion theory with mod.E/ � mod.Eex/ to find a torsion
theory on mod.E/.

Remark 7.6. For any E deflation-exact category with admissible kernels. As j WE ! Eex

commutes with kernels, the natural fully faithful functor �˝E EexWmod.E/! mod.Eex/

is exact (see Lemma 2.6 (2) in [46]).

Lemma 7.7. Let E be a deflation-exact category with admissible kernels. We have

(1) eff.E/ D eff.Eex/ \mod.E/, and

(2) mod1.E/ D mod1.Eex/ \mod.E/.
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Proof. (1) The inclusion eff.E/� eff.Eex/\mod.E/ uses only that j WE! Eex is confla-
tion-exact. For the inclusion eff.Eex/ \mod.E/ � eff.E/, let us consider an object M Š
coker Y .f / 2 mod.E/, where f is a morphism in E . By Lemma 7.4, we know that f is a
deflation in Eex. Hence, by Corollary 5.12 (4), we know that f is a deflation in E .

(2) Again, the inclusion mod1.E/ � mod1.Eex/ \mod.E/ uses only that j WE ! Eex

preserves monomorphisms (see Corollary 5.12 (3)). To check the other inclusion, letM 2
mod1.Eex/\mod.E/. AsM 2mod.E/, we know thatM Š cokerY .f / for a morphism f

in E � Eex. It follows from Proposition 2.3 that f D m ı p in Eex, where p is a retraction
and m a monomorphism. As E is closed under subobjects in Eex, we find that the fac-
torization f D m ı p also holds in E . The statement now follows from the isomorphism
coker Y .f / Š coker Y .m/.

Proposition 7.8. Let E be a deflation-exact category with admissible kernels. There is a
hereditary torsion pair .eff.E/;mod1.E// on mod.E/.

Proof. It follows from Corollary 2.5 that every object in mod.E/ is the extension of a
torsion-free object by a torsion object. The other properties (i.e., that eff.E/ is a Serre
subcategory and that Hom.eff.E/;mod1.E//D 0) follow easily from eff.E/D eff.Eex/\

mod.E/ and mod1.E/ D mod1.Eex/ \mod.E/.

7.4. The exact hull and a torsion theory on modw:adm.E/

In this subsection, we consider the category modw:adm.E/, given as the full subcategory of
mod.E/ consisting of those objects with are presentable by a weak admissible morphism
in E . We will show in Proposition 7.11 that this is an extension-closed subcategory, and
hence exact. Next, we show that .eff.E/;mod1

w:adm.E// is a torsion theory on modw:adm.E/

by intersecting the torsion theory from Proposition 7.5 with modw:adm.E/. Finally, we con-
sider the quotient modw:adm.E/= eff.E/ and show that it is equivalent to the exact hull Eex.

Lemma 7.9. Let E be a deflation-exact category with admissible kernels. We have

(1) eff.E/ D eff.Eex/ \modw:adm.E/, and

(2) mod1
w:adm.E/ D mod1.Eex/ \modw:adm.E/.

Proof. The same argument as in Lemma 7.7 works.

In addition, we have the following description of modw:adm.E/.

Lemma 7.10. Let E be a deflation-exact category with admissible kernels. Then we have
modw:adm.E/ D modadm.E

ex/ \mod.E/.

Proof. The inclusion modw:adm.E/ � modadm.E
ex/ \ mod.E/ only uses that j WE ! Eex

is conflation-exact and that Eex satisfies axiom L1. For the other inclusion, take M 2
mod.E/ \ modadm.E

ex/. As M 2 modadm.E
ex/, we can write M Š coker.Y .f //, where

f 2HomEex.X;Y / is an admissible morphism in Eex. AsM 2mod.E/, we can write F Š
coker.Y .g// for some g 2 HomE.U; V /. By the comparison theorem (see Theorem 12.4
in [14]), the two resolutions of M are homotopy equivalent in mod.Eex/. As the Yoneda
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embedding is fully faithful and left exact, we obtain the following commutative diagram
in Eex which defines a homotopy equivalence between the rows:

kerf X Y coker.f /

kerg U V coker.f /:

f

g

As the lower row is acyclic in Eex, Proposition 10.14 in [14] (or Proposition 2.17) implies
that the upper row is acyclic in Eex as well (this uses that Eex has kernels, see Theo-
rem 5.11 and hence is weakly idempotent complete). In particular, g is an admissible
morphism in Eex. As E � Eex is closed under subobjects (see Corollary 5.12), one sees
that ker.g/; coim.g/ 2 E . By Proposition 5.13, the map coim.g/! V is a finite compo-
sition of inflations in E . This shows that M Š coker.Y .g// 2 modw:adm.E/.

Proposition 7.11. The category modw:adm.E/ lies extension-closed in mod.E/. In partic-
ular, modw:adm.E/ is an exact category.

Proof. By Proposition 3.5 in [33], the category modadm.E
ex/ lies extension-closed in

Mod.Eex/. The statement now follows from the equality modw:adm.E/ D modadm.E
ex/ \

mod.E/ (see Lemma 7.10).

Proposition 7.12. .eff.E/;mod1
w:adm.E// is a hereditary torsion pair in modw:adm.E/. The

category eff.E/ is a two-sided admissibly percolating subcategory of modw:adm.E/.

Proof. It follows from Corollary 2.5 that every object in modw:adm.E/ is the extension of
an object in mod1

w:adm.E/ by an object in eff.E/. The other properties of a torsion pair
follow easily from combining Proposition 7.5 and Lemma 7.9 (taking F D Eex).

To show that eff.E/ is a two-sided percolating subcategory of modw:adm.E/, it suf-
fices to check that it satisfies axiom A2 (see Proposition 6.14). To that end, consider a
map �WF ! G in modw:adm.E/ with G 2 eff.E/. By Proposition 3.6 in [33], eff.Eex/ �

modadm.E
ex/ satisfies axiom A2. Hence we obtain a sequence

ker.�/�F� im.�/�G� coker.�/

in modadm.E
ex/, with coker.�/; im.�/ 2 eff.Eex/. Note that coker.�/ 2mod.E/ as mod.E/

is closed under cokernels. Hence, by Lemma 7.10, we know that coker.�/ 2modw:adm.E/.
As mod.E/ is closed under kernels in mod.Eex/, we find that im.�/; ker.�/ 2 mod.E/ \
eff.Eex/ and hence, by Lemma 7.7, im.�/; ker.�/ 2 eff.E/. This shows axiom A2. By
Proposition 6.14, we know that eff.E/ is a two-sided admissibly percolating subcate-
gory of modw:adm.E/. Specifically, we know that that eff.E/ is a Serre subcategory of
modw:adm.E/ and thus .eff.E/;mod1

w:adm.E// is a hereditary torsion theory. This concludes
the proof.

Corollary 7.13. The quotient modw:adm.E/= eff.E/ is an exact category. Moreover, the
exact categories modw:adm.E/= eff.E/ and Eex are equivalent.



R. Henrard, S. Kvamme, A.-C. van Roosmalen and S.-A. Wegner 478

Proof. By Proposition 7.12, Theorem 6.4 and its dual, modw:adm.E/= eff.E/ is an exact
category. We write QWmodw:adm.E/! modw:adm.E/= eff.E/ for the corresponding local-
ization functor.

We first claim that the composition

E
Y
! modw:adm.E/

Q
! modw:adm.E/= eff.E/

is a conflation-exact functor. To that end, let X
f
� Y

g
� Z be a conflation in E . As

the Yoneda embedding is left exact, we obtain an exact sequence Y .X/� Y .Y / !
Y .Z/� coker.Y .g// in modw:adm.E/. Applying Q to this sequence, we obtain the con-
flation QY .X/�QY .Y /�QY .Z/ as coker.Y .g// 2 eff.E/. This shows that Q ı Y
is conflation-exact.

We show thatQ ıY satisfies the universal property of j WE! Eex and thus the desired
equivalence. LetˆWE! F be a conflation-exact functor to an exact category F . We con-
struct an exact functor ˆWmodw:adm.E/! F as follows. By the universal property of the
exact hull, there is a unique (up to isomorphism) exact functor ˆexWEex ! F such that
ˆex ı j D ˆ. By Theorem 3.9 in [33], there is a unique (up to isomorphism) exact func-
tor ˆexWmodadm.E

ex/! F such that ˆex ı Y ex D ˆex. Here, Y exWEex ! mod.Eex/ is the
Yoneda embedding of Eex. Clearly, ˆex.eff.Eex// Š 0. The restriction of the functor ˆex

to modw:adm.E/ is still an exact functor and maps eff.E/ to zero. Therefore, this func-
tor further factors through QWmodw:adm.E/! modw:adm.E/= eff.E/ via an exact functor
ˆWmodw:adm.E/= eff.E/! F as required. This concludes the proof.

7.5. One-sided Auslander’s formula

Let E be a deflation-exact category with admissible kernels. We start with the following
straightforward observation.

Lemma 7.14. (1) Inflation and admissible morphisms are stable under pullbacks in E .
(2) Weak inflation and weak admissible morphisms are stable under pullbacks in E .

Proof. Since kernels are stable under pullbacks and E has admissible kernels, the pullback
of an inflation is an inflation. That weak inflations are stable under pullbacks follows from
the first statement together with the pullback lemma. That (weak) admissible morphisms
are stable under pullbacks then follows from the pullback lemma, axiom R2, and the first
statement.

Proposition 7.15. The subcategory modadm.E/ of mod.E/ is closed under subobjects. In
particular, modadm.E/ inherits a deflation-exact structure having admissible kernels.

Proof. Let �WF ,! G be a monomorphism in mod.E/ and assume that G 2 modadm.E/.
Let f WA! B and gWC ! D be morphisms in E such that F Š coker.Y .f // and G Š
coker.Y .g//. We may assume that g is admissible in E . The map �WF ,! G induces a
commutative square

A //

f

��

C

g

��

B
h // D
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in E . By Proposition 2.4, F Š coker Y .f 0/, where f 0 is the pullback of g along h. The
result now follows from Lemma 7.14.

Lemma 7.16. Let E�P�H be a short exact sequence in mod.E/. If E 2 eff.E/ and
H 2 modadm.E/, then P 2 modadm.E/.

Proof. Let pWA! B and hWC ! D be maps in E such that P Š coker.Y .p//, H Š
coker.Y .h// and h is admissible. By Proposition 2.4, the map P�H induces the fol-
lowing commutative diagram in E:

ker.h/˚ A
. 0 1 /
// //

˛

��

A //

p

��

Q //

h0

��

C

h

��

Q
h0 // B B // D;

where the right square is a pullback square, and E Š coker.Y .˛//. As E 2 eff.E/, ˛ is
a deflation, by Lemma 7.4. Since h0 is obtained from the admissible morphism h via a
pullback, h0 itself is admissible (see Lemma 7.14). Hence, using axiom R1, we see that

h0 ı ˛ is admissible and hence so is the composition ker.h/˚ A
. 0 1 /
���! A

p
�! B . Hence,

this composition is equal to a composition ker.h/˚A
Œ0;p0�
���! B 0

p00

�! B , where Œ0; p0� is a
deflation and p00 is an inflation. Since E satisfies axiom R3C by Proposition 4.5, it follows
from Theorem 1.2 in [37] that p0WA! B 0 is a deflation. Since p D p0 ı p00, this shows
that p is admissible.

Proposition 7.17. The pair .eff.E/;mod1
adm.E// defines a torsion pair in modadm.E/ and

eff.E/ is an admissibly deflation-percolating subcategory of modadm.E/.

Proof. Since we have mod1
adm.E/ � mod1

w:adm.E/, it follows from Proposition 7.12 that
Hom.eff.E/;mod1

adm.E// D 0: The existence of a torsion/torsion-free sequence follows
again from Corollary 2.5.

It remains to show that eff.E/ � modadm.E/ is an admissibly deflation-percolating
subcategory. Axiom A1 follows directly from Proposition 7.12. For axiom A2, consider a
morphism f WF ! E with F 2 modadm.E/ and E 2 eff.E/. As eff.E/ satisfies axiom A2
in modw:adm.E/, it suffices to show that ker f 2 modadm.E/. This is automatic since
modadm.E/ is closed under subobjects in mod.E/, see Proposition 7.15.

It remains to show axiom A3. To that end, consider a conflation F �G�H in
modadm.E/ and a map F�E with E 2 eff.E/. We obtain the following commutative
diagram in Mod.E/

F // //

����

G // //
��

��

H

E // // P // // H;

where the left square is a pushout. By Lemma 7.16, P 2 modadm.E/ as required. This
completes the proof.
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Theorem 7.18. (1) The Yoneda embedding Y W E ! modadm.E/ is left conflation-exact
(see Definition 2.6) and maps admissible morphisms to admissible morphisms.

(2) If F is a deflation-exact category having admissible kernels and ˆW E ! F is a
left exact functor that preserves admissible morphisms, then there exists a func-
tor ˆWmodadm.E/ ! F , unique up to isomorphism, which is exact and satisfies
ˆ ı Y D ˆ.

Proof. We show that the Yoneda embedding Y W E ! modadm.E/ maps admissible mor-
phisms to admissible morphisms; the remainder of the proof is then a straightforward
adaptation of Theorem 3.9 in [33]. Let f WX ! Y be any admissible morphism in E , and
let kWK�X be the kernel. Using Proposition 2.4, starting from the commutative square

0 //

��

0

��

X
f
// Y

gives a diagram

0 // Y .K/ // Y .X/
Y.f /

//

%%

Y .Y / // cokerY .f / // 0

coker Y .k/

99

in Mod E: As the objects in this diagram all lie in modadm.E/, we see that the morphism
Y .f /W Y .X/ ! Y .Y / factors as Y .X/� coker Y .k/� Y .Y /. This establishes that
Y .f / is admissible.

Corollary 7.19. Let E be a deflation-exact category having admissible kernels. The Yone-
da embedding Y WE!modadm.E/ has a left adjoint, sending an objectM Š cokerY .f /2
modadm.E/ to coker.f /, for each admissible morphism f 2 E .

Proof. The proof is as that of Corollary 3.10 in [33]. The left adjoint LWmodadm.E/! E

is obtained by applying Theorem 7.18 to the identity E ! E , that is, L ı Y Š 1. The
explicit description is obtained using that L commutes with cokernels.

Theorem 7.20. Let E be a deflation-exact category having admissible kernels. The Yone-
da embedding Y WE ! modadm.E/ induces an equivalence E ' modadm.E/= eff.E/.

Proof. It follows from the above description of LWmodadm.E/! E that L.eff.E// D 0.
Hence, by the universal property of the quotient, L factors as

modadm.E/
Q
�! modadm.E/= eff.E/

L
�! E:

We find that Q ı Y is left adjoint to L (see Lemma 1.3.1 in [27] with F D L, G D Q,
and D D Y , or Proposition 2.11(1a) in [36] with F D Y , G D Q, and H D L).
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As L ı Q ı Y Š 1E , we know that Q ı Y is fully faithful. We only need to show
that Q ı Y is essentially surjective. For this, take an arbitrary M 2 Ob.modadm.E// D

Ob.modadm.E/= eff.E//. Let f WX ! Y be an admissible morphism in E with M Š
coker Y .f /.

From the deflation-inflation factorizationX
p
�X 0

m
� Y of f , we obtain the following

conflation (see Corollary 2.5):

0! coker Y .p/!M
g
�! coker Y .m/! 0:

As coker Y .p/ 2 eff.E/, the map gWM ! coker Y .m/ is a weak isomorphism, i.e., Q.g/

is an isomorphism. Consider now the conflation X 0
m
� Y

q
� Z in E . As the Yoneda

embedding is left conflation-exact, we get the following diagram:

Y .X 0/ Y .Y / Y .Z/

coker.m/:

Y.m/ Y.q/

h

As coker.h/Š coker Y .q/ 2 eff.E/, we see that h is a weak isomorphism as well. We find
that Q.M/ Š Q.coker Y .m// Š Q ı Y .Z/: Hence, Q ı Y W E ! modadm.E/= eff.E/ is
essentially surjective, as required.

Corollary 7.21. Let E be a deflation-exact category having admissible kernels.

(1) The Yoneda embedding Y WE ! modadm.E/ induces triangle equivalences K*.E/!

D*.modadm.E// for � 2 ¹b; -;¿º.
(2) There is a natural commutative diagram

Dbeff.E/.modadm.E// //

'

��

Db.modadm.E// //

'

��

Db.modadm.E/= eff.E//

'

��

Acb.E/ // Kb.E/ // Db.E/:

Proof. (1) As every object of mod.E/ has projective dimension at most two, we can apply
Theorem 2.22.

(2) By Theorem 6.4, one obtains the upper row. The right equivalences follow from
the above. By Proposition 2.17, Acb.E/ is a thick triangulated subcategory of Kb.E/ and
thus Dbeff.E/.modadm.E// is equivalent to Acb.E/ as both categories are obtained as the
kernel of the same Verdier localization.

7.6. Some derived equivalences

Let E be a deflation-exact category with admissible kernels. In Definition 7.1, we have
introduced modadm.E/ and modw:adm.E/, as well as their subcategories mod1

adm.E/ and
mod1

w:adm.E/ of objects of projective dimension at most one. We now show that these
categories are derived equivalent. We start with the following observation.
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Lemma 7.22. The subcategory modw:adm.E/ of mod.E/ is closed under subobjects.

Proof. As in Proposition 7.15, now using that the pullback of a weakly admissible mor-
phism is weakly admissible (see Lemma 7.14).

Proposition 7.23. Let E be a deflation-exact category with admissible kernels. For each
� 2 ¹b; -;¿º, there are triangle equivalences

D*.modadm.E// D*.modw:adm.E// D*.mod.E//

D*.mod1
adm.E// D*.mod1

w:adm.E// D*.mod1.E//:

' '

' ' '

Proof. Note that mod.E/ has enough projective objects. As these projective objects are
contained in modw:adm.E/, it follows that the embedding modw:adm.E/!mod.E/ satisfies
axiom PR1. By Lemma 7.22, the category modw:adm.E/ is closed under subobjects in
mod.E/, hence axiom PR2 holds. In fact, res:dimmodw:adm.E/ mod.E/ � 1. The required
triangle equivalence D*.modw:adm.E//! D*.mod.E// holds by Theorem 2.22.

The other equivalences are shown in a similar way. For the equivalence D*.modadm.E//

! D*.modw:adm.E//, we use Proposition 7.15. For the vertical maps, we use, from left to
right, Proposition 7.17, Proposition 7.12, and Proposition 7.8.

8. The left heart as a localization of hMon.E/

Let E be an additive regular category. In Section 7, we showed that the left heart LH .E/

can be obtained as the quotient mod.E/= eff.E/. When E is quasi-abelian, then it has been
shown in [68,73] that the left heart of E can be described as a localization of the category
hMon.E/ of monomorphisms in E (up to homotopy). In this section, we give a similar
description of the left heart of a deflation-exact category with admissible kernels.

Our approach is the following. Let .T ;F / be a hereditary torsion theory in an abelian
category A. It follows from Proposition 8.1 below that the quotient A=T can be described
as a localization of the torsionfree class F ; specifically, one formally inverts all bimor-
phisms in F .

Applying this to the torsion pair .eff E;mod1 E/ in mod E shows that the quotient
mod E= eff E.' LH .E// can be obtained as a localization of mod1.E/ at the class of all
bimorphisms (= morphisms that are both epimorphisms and monomorphisms). All that is
left, is then to study the map Mon.E/! mod1.E/.

The following observation allows us to obtain Theorem 8.8 from the results in Sec-
tion 7.

Proposition 8.1. Let .T ;F / be a hereditary torsion theory in an abelian category A. Let
†T � A be the set of all morphisms f such that kerf; cokerf 2 T .

(1) †T \Mor F is a multiplicative system in F ,

(2) f 2 Mor.F / lies in †T if and only if f is a bimorphism in F ,

(3) the functor F ! A induces an equivalence F Œ.†T \Mor F /�1�
'
�! AŒ†�1

T
�.
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Proof. As T is a Serre subcategory of A, we know that†T is a multiplicative system. By
Proposition 3.1 in [27], the localization functor QWA! AŒ†�1

T
� commutes with kernels

and cokernels (and thus is exact). Now write tWA! T for the torsion functor and write
fWA! F for the torsion-free functor. For any object A 2 A, the short exact sequence
t.A/�A� f.A/ is mapped to 0�Q.A/�.Q ı f/.A/ under Q. This shows that
the natural transformation Q ! Q ı f is a natural isomorphism. Note that F has ker-
nels (these coincide with kernels in A) and cokernels (these are given by f ı cokerA).
Hence, QjF WF ! AŒ†�1

T
� commutes with kernels and cokernels. It now follows from

Proposition I.3.4 in [27] that †T \Mor F is a multiplicative system in F .
Note that a morphism f 2Mor.F / lies in†T if and only if kerA.f /;cokerA.f / 2 T ,

which is equivalent to kerF .f /; cokerF .f / D 0. This is then equivalent to f being both
a monomorphism and an epimorphism in F .

The last statement follows from Corollary 7.2.2 in [41].

Definition 8.2. We write Mon.E/ for the category of monomorphisms in E , that is, the ob-
jects are monomorphisms ıE WE�1 ,! E0 in E , and morphisms are commutative squares.
Consider the ideal I in Mon.E/ consisting of all squares

E�1 E0

F �1 F 0

ıE

u�1 u0

ıF

for which there exists a morphism t WE0! F �1 satisfying t ı ıE D u�1 and ıF ı t D u0:
We define the category hMon.E/ as Mon.E/=I:

Remark 8.3. There is a natural full embedding Mon.E/! C.E/, mapping a monomor-
phism ıE WE

�1 ,! E0 in E to a complex with E�1 and E0 in degrees �1 and 0, respec-
tively, and zero elsewhere. For the category hMon.E/, there is a similar full embedding
into K.E/.

Proposition 8.4. The functor cokerıY WhMon.E/!mod.E/, mapping a monomorphism
ıE WE

�1 ,!E0 to cokerY .ıE / 2mod.E/, induces an equivalence hMon.E/!mod1.E/.

Proof. This follows from the comparison theorem (see Theorem 12.4 in [14]).

Remark 8.5. By Proposition 7.8, mod1.E/ is a cotilting torsion-free class in mod.E/ and
thus Proposition B.3 in [8] yields that hMon.E/ ' mod1.E/ is a quasi-abelian category.
By Theorem 2.22, we have D*.hMon.E// ' D*.mod.E// ' K*.E/, for � 2 ¹¿; b;�º.

Proposition 8.6. A morphism ıE ! ıF in Mon.E/ is a bimorphism in hMon.E/ if and
only if it is a bicartesian square.

Proof. By Proposition 8.4, it suffices to show that bicartesion squares in hMon.E/ cor-
respond to bimorphisms in mod1.E/ under the functor coker ıY W hMon.E/! mod.E/.
Since .eff.E/;mod1.E// is a torsion pair in mod.E/, a bimorphism in mod1.E/ is a mor-
phism �WF ! G such that ker�; coker� 2 eff.E/, equivalently, such that ker� D 0 and
coker� 2 eff.E/.
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Consider first a morphism �WF ! G in mod1.E/. Let f WA ,! B and gWC ,! D be
monomorphisms in E such that coker Y .f / Š F and coker Y .g/ Š G. The morphism �

can be lifted to a commutative diagram

A
ˇ
//

f

��

C

g

��

B
˛ // D

in E . We show that this square is bicartesian. Since coker � 2 eff.E/, it follows from
Lemma 7.4 and Proposition 2.4 that

�
g ˛

�
WC ˚ B ! D is a deflation. Next we take

the pullback of g along ˛ and use the notation from Proposition 2.4. Using that � is a
monomorphism and that ker.g/D 0, we have that ˇ00WA!E is a retraction. Furthermore,
using that g0 ı ˇ00 D f is a monomorphism, we see that ˇ00 is an isomorphism. This shows
that the square ABCD is a pullback. Hence, A! C ˚ B is the kernel of the deflation
C ˚B�D, so that A�C ˚B�D is a conflation and may conclude that the square
ABCD is both a pullback and a pushout.

The other implication, that a bicartesion square in E corresponds to a bimorphism in
mod1.E/, follows easily from Proposition 2.4.

The previous proposition motivates introducing the following notation.

Notation 8.7. We write S for those morphisms uW ıE ! ıF such that

E�1 E0

F �1 F 0

ıE

u�1 u0

ıF

is a bicartesian square. Furthermore, we write � W hMon.E/! K.E/ for the embedding
functor in Remark 8.3, mapping a monomorphism ıE WE

�1 ,! E0 in E to a complex
with E�1 and E0 in degrees �1 and 0, respectively, and zero elsewhere.

By Proposition 5.1, there is a natural functor hMon.E/! LH .E/.

Theorem 8.8. In the category hMon.E/, the class S of all bicartesian squares is a left and
right multiplicative system. The natural functor hMon.E/! LH .E/ induces an equiva-
lence hMon.E/ŒS�1�! LH .E/.

Proof. Proposition 7.8 gives that the pair .eff.E/;mod1.E// is a hereditary torsion pair
in mod.E/. Let S 0 be the class of all bimorphisms in mod1.E/. It follows from Propo-
sition 8.1 that S 0 is a multiplicative system in mod1.E/ and that mod1.E/Œ.S 0/�1� '

mod.E/= eff.E/.
By Propositions 8.4 and 8.6, we have mod1.E/Œ.S 0/�1�' hMon.E/ŒS�1�, and by The-

orem 3.20 we have LH .E/ ' mod.E/= eff.E/. This finishes the proof.

Lemma 8.9. Let uW ıE ! ıF be a morphism in hMon.E/. Then �.u/ is a quasi-isomor-
phism if and only if u 2 S .
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Proof. Consider a morphism uW ıE ! ıF given by the commutative diagram:

E�1 E0

F �1 F 0:

ıE

u�1 u0

ıF

The cone of �.u/ is given by

� � � // 0 // E�1

�
�ıE
u�1

�
// E0 ˚ F �1

.u0 ıF /// F 0 // 0 // � � �

Combining Proposition 4.5 and Proposition 2.17, we see that u is a quasi-isomorphism if
and only if cone.u/ 2 Ac.E/. Hence, u is a quasi-isomorphism if and only if

E�1

�
�ıE
u�1

�
// E0 ˚ F �1

.u0 ıF /// F 0

is a conflation (equivalently, a kernel-cokernel pair by Remark 4.9). The latter is clearly
equivalent to requiring the above square to be bicartesian. This completes the proof.

Remark 8.10. We turn our attention back to the category Mon.E/. Let N be the class of
all objects X ,! Y which are isomorphisms, and let ŒN � be the ideal of Mon.E/ consist-
ing of all morphisms factoring through an object of N . It is straightforward to verify that
hMon.E/'Mon.E/=ŒN �. It follows from Proposition 8.6 that the set S �Mor.Mon.E//
of bicartesian squares is precisely the set of all bimorphisms in hMon.E/. In this case, the
localization Mon.E/ŒS�1� has also been denoted by Mon.E/=N in [63] (this notion dif-
fers from the one used in Section 6 as N is neither an inflation- nor deflation-percolating
subcategory of Mon.E/).

With a small abuse of notation, we write S for the class of bicartesian squares in both
Mon.E/ and hMon.E/, cf. Notation 8.7.

Proposition 8.11. The quotient functor Mon.E/ ! hMon.E/ induces an equivalence

Mon.E/ŒS�1�
'
�! hMon.E/ŒS�1�:

Proof. Consider a map uWıE ! ıF in Mon.E/ and assume that u is null-homotopic. Then
there exists a map hWE0 ! F �1 such that the diagram

E�1 F �1

E0 F 0

u�1

ıE ıF

u0

h

commutes. It follows that u factors as follows:

E�1 F �1 F �1

E0 F �1 F 0:

u�1

ıE ıF

h ıF
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As the square
F �1 // 0

��

F �1 // 0

is bicartesian, uD 0 in Mon.E/ŒS�1�. From this one readily deduces that Mon.E/ŒS�1�'
hMon.E/ŒS�1�, and the result follows.

Similar results now hold for the full subcategories hWInf.E/ (or hInf.E/) of hMon.E/
consisting of objects ıE WE�1 ,! E0 which are weak inflations (or inflations).

Corollary 8.12. (1) The set ShWInf.E/ WD S \ Mor.WInf.E// is a right multiplicative
system in hWInf.E/. Moreover, we have hWInf.E/ŒS�1hWInf.E/� ' Eex:

(2) The set ShInf.E/ WD S \Mor.Inf.E// is a right multiplicative system in hInf.E/. More-
over, we have hInf.E/ŒS�1hInf.E/� ' E:

Proof. Following Lemma 7.14, we know that weak inflations are stable under pullbacks.
Hence, for any morphism f W ıE ! ıF in hMon.E/, if f is a pullback square and ıF 2
hWInf.E/, we know that ıE 2 hWInf.E/. It now follows from Proposition 7.2.1 in [41]
that ShWInf.E/ is a right multiplicative set and the induced functor hWInf.E/ŒS�1hWInf.E/�!

hMon.E/ŒS�1� is fully faithful.
It follows from Theorem 2.24 that every objectZ2Eex fits in a conflationX�Y�Z

in Eex, with X; Y 2 E . Then it follows from Proposition 5.13 that the inflation X� Y

in Eex is a finite composition of inflations in E . Therefore the restriction of the func-
tor coker ıY W hMon.E/ ! LH .E/ to the subcategory hWInf.E/ gives an equivalence
between hWInf.E/ŒS�1hWInf.E/� and the subcategory Eex of LH .E/.

The second statement is proven in a similar fashion.

9. The heart of the LB-spaces

For this section, let k be either the field of real or the field of complex numbers. Let
us denote by LB the category of LB-spaces. Its objects are by definition all those Haus-
dorff locally convex topological k-vector spaces .X; �/ that can be represented by an
N-indexed direct limit of Banach spaces, meaning that there are Banach spaces X0 ,!
X1 ,!X2 ,! � � � with continuous injective linking maps such thatX D

S1
nD1Xn holds as

linear spaces and � is the finest linear topology that makes all inclusion mapsXn ,! .X;�/

continuous. A morphism between LB-spaces is by definition a linear and continuous map.
It is well known that LB is a pre-abelian category. Indeed, given a morphism f WX!Y ,

then its cokernel is given by coker.f /W Y ! Y=f .X/, where f .X/ is the topological
closure of f .X/ and where Y=f .X/ is endowed with the locally convex quotient topology
(this is then again of the LB-type explained above). Its kernel is given by ker.f /W f �1.0/
! X where f �1.0/ carries the direct limit topology of the sequence X0 \ f �1.0/ ,!
X1 \ f

�1.0/ ,! X2 \ f
�1.0/ ,! � � � of Banach spaces. The latter can be strictly finer

than the subspace topology, see Example 6.8.13 in [54] for an example. To indicate that
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we are not using the subspace topology, we will write f �1.0/[ for the kernel in LB. From
this discussion, it follows that a pair of composable morphisms

X
f
�! Y

g
�! Z

is a kernel-cokernel pair in LB if and only if f is injective, g is surjective and f .X/ D
g�1.0/ holds as linear spaces. Observe that, in this case, f .X/ � Y is automatically
closed, but that f .X/ (or, equivalently, g�1.0/) endowed with the induced topology of Y
is in general not an LB-space. We write Call for the class of all kernel-cokernel pairs in LB.

Theorem 9.1. The category LB is a deflation-exact category with respect to the conflation
structure Call of all kernel-cokernel pairs. In particular, .LB;Call/ has admissible kernels.
The conflation structure Call is not exact.

Proof. By Theorem 3.4 in [31], which had been mentioned without proof in p. 540 of [45],
the category LB is deflation quasi-abelian but not inflation quasi-abelian. This means
explicitly that in every pullback diagram

A B

C D;

a

b PB c

d

a is a cokernel whenever this is true for d , and that there exists a pushout diagram

A B

C D

a

b PO c

d

in which a is a kernel but d is not. The latter statement implies immediately that Call

cannot be an exact structure.

Remark 9.2. At first sight, and in light of Lemma 4.8, the previous result might appear to
be inconsistent with Theorem 6.1 in [31], which reads ‘every pre-abelian category with the
admissible intersection property is quasi-abelian’. Notice, however, that in Theorem 6.1
of [31] the admissible intersection property is required with respect to a conflation struc-
ture which is exact.

Applying our results from the previous sections, the category LB admits a heart which
is by Theorem 8.8 equivalent to the localization of its monomorphism category modulo
homotopy (denoted earlier in this paper by hMon.LB/) by the class of bicartesian squares.
Writing the latter down explicitly for the LB-spaces gives

LH .LB/ ' .hMon LB/Œ¹bicartesian squaresº�1�

where the right hand side coincides with the category that was defined in an ad hoc fashion
and established to be abelian in Theorem 10 and Proposition 14 of [73] (see also [68]).
In addition to recovering this ad hoc approach, our results show that the category defined
in [73] is indeed derived equivalent to the category we started with.



R. Henrard, S. Kvamme, A.-C. van Roosmalen and S.-A. Wegner 488

Theorem 9.3. With respect to the conflation structure Call, the embeddings LB! LBex!

LH .LB/ lift to triangle equivalences D*.LB/ ! D*.LBex/ ! D*.LH .LB// with � 2
¹�; b;¿º.

Proof. By Theorem 9.1, the category LB is deflation-exact and has admissible kernels.
Thus, Theorem 3.12 and Proposition 5.9 imply the result.

Remark 9.4. It is shown in Theorem 8.8 that the class S of all bicartesian squares is
a multiplicative system in hMon.LB/. It follows from Proposition 8.11 that LH .LB/ '
Mon.LB/ŒS�1�, so one can opt to describe LH .LB/ starting from Mon.LB/ instead of
hMon.LB/: However, the class of bicartesian squares S is not a multiplicative system in
Mon.LB/. Indeed, the localization Mon.LB/ ! Mon.LB/ŒS�1� does not commute with
kernels as can be seen from the following example. Let E 2 LB be a nonzero object and
consider the following two objects in Mon.LB/: the zero morphism ıW 0 ! E and the
identity ı0WE ! E: The morphism f W ı ! ı0 given by

0
ı //

f �1

��

E

f 0

E
ı 0 // E

is a monomorphism in Mon.LB/ (as both components of f W ı! ı0 are monomorphisms),
but not in Mon.E/ŒS�1� (as ı0 is zero in Mon.LB/ŒS�1� but ı is not). This implies that the
localization Mon.LB/! Mon.LB/ŒS�1� does not commute with kernels.

In addition to the natural, but non-exact, conflation structure Call, the category LB
admits at least two natural conflation structures that are exact. Let us denote by Etop the
class of topologically exact sequences which consists by definition of all pairs .f; g/ of
composable morphisms that form an exact sequence of vector spaces in which f is closed
and g is open. Notice that, due to the open mapping theorem for LB-spaces, the second
condition is satisfied automatically. On the other hand, let us write Emax for the conflation
structure given by all kernel-cokernel pairs .f; g/ in which every pushout of f is again a
kernel and every pullback of g is again a cokernel. By [59, 69], the latter is the maximal
exact structure.

Proposition 9.5. Consider the category LB of LB-spaces.

(1) (Proposition 3.3 in [22]) The conflation category .LB;Etop/ is exact and we have

Etop D ¹.f; g/ 2 Call j g
�1.0/[ D g�1.0/ as topological spacesº

where we understand that g�1.0/ carries the subspace topology.

(2) (Proposition 2.2.4 and Remark 2.2.6 in [21]) The conflation category .LB;Emax/ is
exact, we have

Emax D ¹.f; g/ 2 Call j Hom.g�1.0/[; k/ D Hom.g�1.0/; k/ as vector spacesº

and Etop � Emax is a proper subclass.
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Let us mention that the exact structure Etop is inherited by LB from the category of
all Hausdorff locally convex spaces, see [22]. The latter category is quasi-abelian and its
topologically exact sequences are precisely all kernel-cokernel pairs. Our final theorem
shows however, that no exact structure on LB does induce a derived equivalence with
.LB;Call/.

Theorem 9.6. Let E be any exact structure on LB. Then .LB;E/! .LB;Call/ does not
lift to a triangle equivalence D*.LB;E/! D*.LB;Call/. Consequently, none of the natural
functors D*.LB;Etop=max/! D*.LH .LB;Call// is a triangle equivalence, either.

Proof. As E�Call, the identity .LB;E/! .LB;Call/ lifts to a triangle functor D*.LB;E/!
D*.LB;Call/. As .LB;Call/ is not exact, there is a conflation X� Y �Z in .LB;Call/

which is not a conflation in .LB;E/. Extending the above conflation to a complex U �,
Proposition 2.17 implies that U � 2 Ac.LB;Call/ but U � … Ac.LB;E/ by Proposition 2.17.
It follows that D*.LB;E/! D*.LB;Call/ is not faithful.

Remark 9.7. As the proof indicates, the statement of Theorem 9.6 holds after replac-
ing LB with any additive regular category which is not an exact category (when endowed
with the maximal conflation structure). The dual statement holds for additive coregular
categories.

We conclude this article by outlining that the dual situation, i.e., inflation-exact cate-
gories having admissible cokernels (or, thus, additive coregular categories), appear natu-
rally in the functional analytic context as well.

Example 9.8. The category COM of complete Hausdorff locally convex spaces, furnished
with linear and continuous maps as morphisms, is inflation quasi-abelian and not deflation
quasi-abelian, see Theorem 3.3 in [31]. As in the proof of Theorem 9.1 it follows that the
latter category is inflation-exact and has admissible cokernels if endowed with the confla-
tion structure consisting of all kernel-cokernel pairs. The latter contains the maximal exact
structure as a proper subclass. Consequently, the embedding .COM;Call/! RH .COM/
lifts to an equivalence of bounded derived categories, whereas the functor .COM;Emax/!

RH .COM/ does not.

Example 9.9. Let Topsc
Z be the category of complete and separated topological groups

with linear topology. Likewise, for a field k, we write Topsc
k

for the category of complete
and separated topological k-vector spaces with linear topology. It is shown in Propo-
sition 8.3 of [55] that the categories Topsc

Z and Topsc
k

are inflation quasi-abelian (thus,
inflation-exact categories with admissible cokernels, or equivalently, satisfying the admis-
sible cointersection property) but not quasi-abelian.

Example 9.10. Let PLS be the category of countable projective limits of Silva spaces
(see [23]); examples of PLS-spaces include the space of distributions and the space of
real analytic functions. It is shown in Theorem 7 of [49] that the category PLS is infla-
tion quasi-abelian (but not quasi-abelian). Hence, PLS is an additive coregular category.
Similar statements hold for the categories PLN and PLSW.
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