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Probing Majorana localization in minimal Kitaev chains through a quantum dot
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Artificial Kitaev chains, formed by quantum dots coupled via superconductors, have emerged as a promising
platform for realizing Majorana bound states. Even a minimal Kitaev chain (a quantum dot–superconductor–
quantum dot setup) can host Majorana states at discrete sweet spots. However, unambiguously identifying
Majorana sweet spots in such a system is still challenging. In this work, we propose an additional dot coupled to
one side of the chain as a tool to identify good sweet spots in minimal Kitaev chains. When the two Majorana
states in the chain overlap, the extra dot couples to both and thus splits an even-odd ground-state degeneracy
when its level is on resonance. In contrast, a ground-state degeneracy will persist for well-separated Majorana
states. This difference can be used to identify points in parameter space with spatially separated Majorana
states, using tunneling spectroscopy measurements. We perform a systematic analysis of different relevant
situations. We show that the additional dot can help distinguish between Majorana sweet spots and other trivial
zero-energy crossings. We also characterize the different conductance patterns, which can serve as a guide for
future experiments aiming to study Majorana states in minimal Kitaev chains.
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I. INTRODUCTION

Majorana bound states that emerge at the ends of one-
dimensional topological superconductors [1] have attracted
significant attention due to their exotic physical proper-
ties and their potential applications in quantum technologies
[2–8]. Superconductor-semiconductor nanowires have been
proposed as a platform for engineering these states [9,10]
and experimental signatures consistent with their existence
have been observed [11], relying on transport measurement
of zero-energy states [12–15], nonlocal conductance [16,17],
and state localization [18]. However, these observations can
also be mimicked by trivial states originating from alternative
mechanisms such as disorder and smooth confining potentials
[19–29]. Thus, a key challenge in the field is to mitigate the
effects of disorder.

In recent years, arrays of quantum dots coupled to
nanoscale superconductors have emerged as a promising
alternative for probing Majorana physics, thanks to their ro-
bustness to disorder in the material [30]. In the simplest
configuration, two quantum dots couple to a single supercon-
ductor that facilitates crossed Andreev reflection (CAR). This
setup was previously studied in the context of Cooper pair
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splitters [31–36]. The central superconductor also allows the
transference of single electrons via elastic cotunneling (ECT).
This setup, a so-called minimal Kitaev chain, can host “poor
man’s Majorana states” (PMMs) at specific gate configura-
tions [37]. While PMMs are not topologically protected, they
share certain topological properties with genuine topological
Majoranas, including non-Abelian characteristics [38,39].

Initial experiments have successfully demonstrated the
existence of “sweet spots” where the measured local and
nonlocal conductances align with theoretical predictions for
PMMs [37,40–42]. While the basic physics of a single PMM
system captured in a toy model agrees with experimental find-
ings, real experiments involve additional complexities, such
as interactions, finite Zeeman splitting, excited states, and
potentially strong coupling between the dots and the central
superconductor [43]. These additional factors make the over-
all picture more intricate, leading to low-quality sweet spots,
i.e., zero-energy crossing with overlapping Majorana states.
The Majorana polarization (MP) provides a measurement for
the Majorana localization [44–46] and, therefore, the quality
of the sweet spots. The unambiguous identification of sweet
spots with high MP (good Majorana localization) based solely
on transport measurements remains a challenge. This neces-
sitates the development of alternative approaches to identify
high-MP PMM regimes before embarking on more complex
experiments involving topological qubits, fusion, or braiding
[38,39,47,48].

In this work, we investigate the idea to use an additional dot
to measure the Majorana quality and localization. A coupling
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between two Majorana states splits the ground-state degen-
eracy associated with the fermionic mode that they define.
However, it is possible to find regimes where two spatially
overlapping Majoranas remain uncoupled and thus at (almost)
zero energy; see, for example, [19–21]. An additional quan-
tum dot coupled to one side of the system can then mediate
a coupling between the Majoranas, lifting the ground-state
degeneracy. This mechanism thus provides a way of testing
the Majorana localization at the end of nanowires [49–53].
When the energy of the dot level is swept, local conductance
spectroscopy typically shows a “diamond” or “bowtie” pat-
tern, depending on whether the tunneling to the dot or the
direct coupling between the Majorana states dominates [19].
In contrast, well-separated Majorana states show up as persis-
tent zero-energy conductance peaks, independently from the
on-site energy of and tunnel coupling to the additional dot.

Here, we take inspiration from these previous works on
proximitized nanowires and extend the study to minimal Ki-
taev chains, where all relevant parameters are tunable through
electrostatic gates; see, also, [38]. We find similar physics
to the nanowire case, suggesting that spectroscopy through
an additional quantum dot is indeed a method to identify
high-MP sweet spots. By tuning the energy of the PMM dots,
we find different patterns, including the predicted bowtie and
diamond structures, thus providing a way to characterize the
Majorana overlap in the system. Using a simple toy model
for the combined dot-PMM system, we develop an analytic
understanding of the structure of these patterns, also providing
a deeper insight into the physics underlying the quantum dot-
Majorana wire coupling, studied before [49–53].

The article is structured as follows. First, we introduce the
model Hamiltonian in Sec. II. We then present the toy model
and explore the physics of the single quantum dot coupled to
a minimal Kitaev chain, where we disregard the spin degree
of freedom and ignore interactions. In Sec. III A, we use the
toy model to get deeper analytic insight in the mechanisms
underlying the so-called diamond and bowtie patterns in the
level structure. At the end of the article, in Sec. III B, we
numerically study the model introduced in Sec. II, which
includes the spin degree of freedom, finite Zeeman field,
on-site interactions, and a bound state mediating CAR and
ECT between the PMM dots. We still find features that are
in qualitative agreement with the predictions from the toy
model. However, when adding the spin degree of freedom,
the exact spin structure of the low-energy modes (character-
ized by “Majorana spin canting angles” in previous works
[50,52]) plays a role and can influence the appearance of the
patterns around the two (different spin-state) crossings. The
patterns appearing around the two crossings are qualitatively
similar, although details depend on the spin structure of the
low-energy modes. We furthermore study the effect of the
interdot Coulomb interaction. Finally, the main conclusions
are summarized in Sec. IV.

II. MODEL

The system we consider consists of a linear setup of four
tunnel-coupled quantum dots, as sketched in Fig. 1(a). Dot S
is proximitized by a grounded superconductor, leading to the
appearance of localized Andreev bound states (ABSs). In the

FIG. 1. (a) Sketch of the dot-PMM system. Four quantum dots
are coupled in series, with one of them being strongly proximitized
by a grounded superconductor (blue rectangle). Electrostatic gates
control the on-site potentials on all dots and the system is connected
to normal-metal reservoirs at its ends, allowing for tunneling spec-
troscopy. (b) Cartoon of the simplified model of the four-dot system,
where dot S has been integrated out, yielding the effective parameters
t and � that capture ECT and CAR processes between dots 1 and 2.

regime where the outer PMM dots are weakly coupled to S,
the ABSs facilitate ECT between them. They also allow for
CAR, where a Cooper pair in the superconductor splits up into
a correlated singlet pair on dots 1 and 2, or, reversely, a singlet
pair on dots 1 and 2 combines into a Cooper pair in the su-
perconductor [54]. In the presence of a large Zeeman splitting
and significant spin-flipping tunneling due to strong spin-orbit
interaction, these two processes can effectively mimic the
tunneling and p-wave pairing terms in a Kitaev chain [30,37].
The part of the system inside the red dashed rectangle in
Fig. 1(a) can thus behave as a two-site Kitaev chain, i.e.,
a minimal Kitaev chain, with Majorana modes emerging on
dots 1 and 2 when the ECT and CAR processes are tuned
to be equally strong. The system is coupled to an additional
dot D, as indicated in Fig. 1, and the combined dot-PMM
system is embedded in a transport setup by connecting it to
two normal-metal reservoirs NL,R.

We describe the combined dot-PMM system with the
Hamiltonian

Hsys = HQDs + HABS + HT. (1)

The first term,

HQDs =
∑

j=D,1,2

∑
σ

ε jσ d†
jσ d jσ

+
∑

j=D,1,2

Uj

2
n j (n j − 1) + VD1nDn1, (2)

describes the three normal quantum dots D, 1, and 2. Here, d†
jσ

is the creation operator for an electron with spin σ =↑,↓ on
dot j and n j = d†

j↑d j↑ + d†
j↓d j↓ is the number operator on dot

j. We assume the orbital level splitting on the dots to be large
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enough so that it suffices to only consider a single orbital on
each dot, meaning that n j = 0, 1, 2. The on-site potentials ε jσ

include a Zeeman splitting ε j↑,↓ = ε j ± 1
2 EZ, where the ε j are

assumed to be tunable via the nearby gate electrodes Vj ; see
Fig. 1(a). The on-site charging energy is parametrized by Uj

and we also added an interdot charging energy VD1 between
dots D and 1 (the interaction between dots 1 and 2 is screened
by the superconductor).

The virtual coupling between dots 1 and 2 is assumed to
be mediated by a discrete ABS on the proximitized dot S. We
describe this state with the term

HABS =
∑

σ

εSσ d†
Sσ dSσ + �Sd†

S↑d†
S↓ + �∗

SdS↓dS↑. (3)

The energies εS↑,↓ = εS ± 1
2 EZ,S again include a Zeeman

splitting, and the superconducting proximity effect is de-
scribed by the last two terms, where �S is the induced pairing
potential on the dot. We include two additional effects of the
proximity of the superconductor: (i) The Zeeman energy EZ,S

can be renormalized as compared to EZ, due to the much
smaller g factor of the superconductor compared to the semi-
conductor used to define the quantum dots. (ii) The on-site
interactions on dot S will be efficiently screened by the super-
conductor due to its high electron density. For simplicity, we
thus neglect the Zeeman field and the charging energy in the
region below the central superconductor. Finally, we note that
the existence of additional bound states in the proximitized
region will renormalize the values for ECT and CAR between
the outer dots, but not qualitatively change the physics.

The coupling between neighboring dots is described by

HT =
∑

σ

(tD1d†
Dσ d1σ + t1Sd†

1σ dSσ + tS2d†
Sσ d2σ )

+
∑

σ

sσ

(
tSO
D1 d†

Dσ d1σ̄ + tSO
1S d†

1σ dSσ̄ + tSO
S2 d†

Sσ d2σ̄

)
+ H.c., (4)

where σ̄ is the opposite spin to σ and s↑,↓ = ±1. The energies
ti j (tSO

i j ) set the amplitude for spin-conserving (spin-flipping)
tunneling between dots i and j. In writing HT, we have as-
sumed the spin-flipping tunneling to be caused by an effective
spin-orbit field BSO that is oriented along the y axis, perpen-
dicular to the direction of the external Zeeman field B, which
we have taken to be along z (cf. Ref. [55]); this results in a
real Hamiltonian Hsys.

The full Hamiltonian, including the normal reservoirs, be-
comes H = Hsys + Hres + Hcoup, where

Hres =
∑

k,σ,r=L,R

εrkσ c†
rkσ

crkσ (5)

describes the electrons in the leads, where εrkσ is the energy
of an electron in level k with spin σ in lead r (relative to the
Fermi level). Similarly to the central superconducting region,
we neglect the Zeeman field in the leads as a strong coupling
to a metallic lead will suppress it. The coupling between the
system and the reservoirs is described by

Hcoup =
∑
k,σ

(λLDd†
Dσ cLkσ + λR2d†

2σ cRkσ + H.c.), (6)

where λr j is the coupling strength of the levels in lead r
to the level on dot j, which we will assume to be spin
and energy independent for convenience. This results in a
typical tunneling rate to the reservoirs, � = 2πλ2νres, with
νres the effective density of states of the reservoirs. We have
neglected spin-orbit tunneling effects in Eq. (6), which will
only renormalize the tunnel amplitudes, while the presented
results remain qualitatively invariant. For our numerical sim-
ulations of transport experiments, we always focus on the
regime where the tunneling rates to the reservoirs are the
smallest energy scale and solve for the current with a rate-
equation approach [56]. The tunnel couplings between the
dots are included in a nonperturbative way and can be strong.

Spinless toy model

A way to simplify the model presented above is to work in
the limit of a large Zeeman splitting on all dots and a large in-
duced pairing potential |�S|. In this case, (i) the dots become
spin polarized and one can disregard the excited spin state
and (ii) the ECT and CAR tunneling processes between dots 1
and 2 can be well described within second-order perturbation
theory in ti j/|�S| and tSO

i j /|�S|. This yields an effectively
spinless and noninteracting model, similar to the one used in
Ref. [37].

The energy level diagram for the effective model is
sketched in Fig. 1(b) and described by the simplified Hamil-
tonian,

H̃sys =
∑

j=D,1,2

ε̃ jd
†
j d j + VD1nDn1

+ (tDd†
Dd1 + t d†

1 d2 + � d†
1 d†

2 + H.c.). (7)

The parameters t and � are effective, resulting from ECT
and CAR processes, respectively, and the on-site energies ε̃ j

include a renormalization due to the coupling to the higher-
energy states that have been integrated out.

When focusing on the PMM part of the system, i.e.,
when setting VD1 = tD = 0 and disregarding dot D, this model
reduces to the one used in Ref. [37]. It hosts a so-called
sweet spot at ε̃1 = ε̃2 = 0 and � = t , where the lowest-energy
fermionic mode has zero energy and has a corresponding cre-
ation operator that can be written as f †

0 = 1
2γ1 + i

2 γ̃2, in terms
of the Majorana operators γ j = d†

j + d j and γ̃ j = i(d†
j − d j ),

i.e., the system hosts two well-localized zero-energy Majo-
rana modes.

Away from the sweet spot, the degeneracy of the lowest-
energy even and odd modes is lifted. In the simplified model,
the energy splitting is

δẼPMM
eo = 1

2

[√
ε̃2− + 4t2 −

√
ε̃2+ + 4�2Big], (8)

where ε̃± = ε̃1 ± ε̃2. Such a finite energy splitting is relatively
straightforward to detect in an experiment, via local tunneling
spectroscopy. Also, the “Majorana purity” of the parts of the
lowest-energy-mode wave function living on dots 1 and 2 may
be reduced when moving away from the sweet spot. One way
to quantify this purity is to introduce the MP on each dot
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[38,43],

M̃ j = 〈o|γ j |e〉2 − 〈o|γ̃ j |e〉2

〈o|γ j |e〉2 + 〈o|γ̃ j |e〉2

= −4t�

ε̃+ε̃− ∓
√

(ε̃2− + 4t2)(ε̃2+ + 4�2)
, (9)

where |o〉 and |e〉 are the lowest-energy states with even and
odd fermion parity, respectively. Direct signatures of a high
MP are much harder to obtain and usually involve identifying
fine features in nonlocal conductance measurements across
the PMM system [43].

III. RESULTS

A. Analytic results for spinless toy model

In this work, we explore in detail the possibility to use the
extra quantum dot D added to the PMM setup to indirectly
assess the Majorana quality of the lowest-energy mode on the
PMM system, via local tunneling spectroscopy only. In the
search for Majorana states in proximitized bulk nanowires,
the addition of such an extra dot yielded features in the
low-energy part of the spectrum that were interpreted as sig-
natures of the absence or presence of low-energy modes with
high Majorana localization [49–51]. A numerical investiga-
tion using the model introduced in Ref. [43] indicated that
the dot-PMM setup indeed shows very similar physics to the
bulk case, and could potentially reveal information about the
quality of the Majorana modes on the PMM part of the system
[38].

We thus investigate the full simplified Hamiltonian H̃sys as
given in Eq. (7), first setting the interdot interaction to zero,
VD1 = 0, for simplicity. The two sectors in this Hamiltonian
describing the states with total even or odd occupancy of the
system are uncoupled. The energy difference δẼeo between
the ground states in these two sectors corresponds to the
lowest threshold for current to flow through the system [51].
At the sweet spot, where ε̃1 = ε̃2 = 0 and t = �, the even
and odd Hamiltonians are identical, meaning that δẼeo = 0,
irrespective of the tuning of ε̃D. In this case, one thus expects
a robust zero-bias transport signal over an extended range of
ε̃D.

When deviating from the sweet spot, either by tuning ε̃1,2

away from zero or having t �= �, the even and odd sectors
become different. To capture the leading-order effects of such
deviations, we diagonalize the Hamiltonian H̃sys analytically
at the sweet spot and then treat the deviations perturbatively,
calculating the shift of all energy levels up to second order.
This leads to a small splitting between the two ground states,

δẼ (2)
eo = ε̃2 cos θ + τ sin θ sin φ − ε̃1ε̃2

2t
sin3 θ sin φ, (10)

where we introduced τ = t − � and the two angles φ =
arctan(ε̃D/tD) and θ = arctan([2t

√
t2
D + ε̃2

D]/t2
D).

In Fig. 2, we show the calculated splitting between the
even and odd ground states ±δẼeo as a function of ε̃D, for
several different sets of parameters. In all plots, the solid
lines were obtained using the perturbative result of Eq. (10),
whereas the dots are the result of numerical diagonalization

×

FIG. 2. Approximate analytical [solid lines, given by Eq. (10)]
and numerical (dots) calculations of the splitting ±δẼeo between the
even and odd ground states of the Hamiltonian (7) as a function
of ε̃D. We plot both +δẼeo and −δẼeo for comparison with the
conductance plots presented below. (a) The splitting at the sweet
spot (green), when ε̃2 = 0.2 � (red) and when τ = t − � = 0.02 �

(blue). (b) When both on-site potentials ε̃1,2 are detuned away from
zero, the pattern becomes asymmetric; we show ε̃1 = 0.1 � and
ε̃2 = 0.2 � in red and ε̃1 = −0.1 � and ε̃2 = 0.2 � in blue. In all
plots, we have set the tunnel coupling to the extra dot tD = 0.2 � and
we neglect the interdot charging energy VD1.

of the Hamiltonian (7). Figure 2(a) shows the splitting at the
sweet spot (green) and for the case where only one parameter
deviates (red: ε̃2 = 0.2 �; blue: τ = 0.02 �). In Fig. 2(b), we
investigate the splitting when both ε̃1 and ε̃2 are detuned from
zero, causing the second-order correction in (10) to contribute:
in red we show the case ε̃1 = 0.1 � and ε̃2 = 0.2 � and in
blue ε̃1 = −0.1 � and ε̃2 = 0.2 �. Throughout the plots, we
used a tunnel coupling tD = 0.2 �.

First of all, we see that the perturbative expression (10)
captures the low-energy level structure of the Hamiltonian
(7) very well. Second, we note that we observe the same
phenomenology in the level structure as for the case of the
continuous wire [50,51], which is flat [green in Fig. 2(a)]
or showing a “diamond” pattern (red in the same figure), a
“bowtie” pattern (blue in the same figure), or something in
between [Fig. 2(b)], depending on the tuning of ε̃1,2, t , and
�. These different shapes were connected to the interplay
between the energy splitting of the two Majorana modes and
the degree of their localization on their respective ends of the
wire. A diamondlike line shape indicates a vanishing energy
splitting between the Majoranas, but a significant direct cou-
pling of the dot level to the Majorana at the far (right) end of
the system, whereas a bowtie structure suggests the opposite
situation (significant splitting but no coupling of the left dot
to the Majorana at the right end of the system) [50]. Ideal
Majorana modes are expected to produce a robust zero-energy
response, independent of the tuning of the parameters ε̃D and
tD.

Due to the simplicity of our model, we can make this
connection more explicit in our case and test the qualitative
statements given above against the analytic expressions for
δẼPMM

eo and M̃ j that we gave in Eqs. (8) and (9). At the sweet
spot, the splitting is zero and the MPs are ±1, as expected.
When ε̃2 is tuned away from zero and t = � [diamond pattern
in Fig. 2(a)], the splitting of the PMM system remains zero,
while M̃1 = −2t2/(2t2 + ε̃2

2 ) and M̃2 = 1. This is consistent
with having finite weight of Majorana 2 (the right one) on
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dot 1, but zero weight of Majorana 1 on dot 2. In this case,
the extra dot can couple to both Majorana modes and thus
hybridize them, lifting the ground-state degeneracy close to
ε̃D = 0. In contrast, when instead ε̃1 is tuned away from zero,
the even-odd degeneracy is not affected, as the extra dot now
couples to the dot with unit MP, meaning that it couples only
to one of the Majorana modes. When both on-site energies are
still tuned to zero but there is a finite mismatch τ = t − � �=
0 [bowtie shape in Fig. 2(a)], we find M̃1,2 = ∓1 but now
δẼPMM

eo = τ �= 0. Therefore, the Majoranas are well localized
in this case, although they have a finite energy splitting. This
results in a constant even-odd energy splitting, except near
ε̃D = 0.

We thus corroborate the findings and their interpretation
presented in Refs. [50,51], adding deeper insight into the
underlying physics through our simple analytic results. Fur-
thermore, this suggests that analogously to the case of the
continuous wire, investigating the low-energy level structure
of a combined dot-PMM system through straightforward local
tunneling spectroscopy can, in principle, allow one to inde-
pendently determine the residual splitting between the PMM
Majorana modes, as well as their degree of localization on the
two ends of the system.

However, if no special care is taken with the design of the
experiment, VD1 will in general be nonzero since there are
no superconducting elements in between dots D and 1 that
would screen the interactions. The nearest-neighbor interdot
charging energy is of the order of ∼e2/(4πεrε0d ), with εrε0

the dielectric permittivity of the surroundings and d the in-
terdot distance, typically yielding VD1 ∼ 0.1−1 meV, which
can make VD1 in fact a dominating energy scale in our model.
To understand the effect of significant interdot interactions,
we thus revisit our simplified Hamiltonian (7) now assuming
VD1 to be large. In that limit, the two states |1; 10〉 and |1; 11〉
(using the notation |nD; n1n2〉) will have a much higher energy
than the other six states that we consider and can thus be
disregarded.

The remaining three-level Hamiltonians for the even and
odd sectors can straightforwardly be diagonalized and, in
Fig. 3, we show the calculated splitting between the even and
odd ground states for different sets of parameters, all close to
the sweet spot. Figure 3(a) confirms that the splitting consis-
tently vanishes at the sweet spot, independent of ε̃D. Indeed,
the effect of the interaction can be understood as a conditional
upward shift of the level ε̃1 depending on the occupation of
dot D, and we thus do not expect a finite δẼeo to emerge at
the sweet spot as long as ε̃2 = 0 [see Eq. (10)]. When we tune
the parameters away from the sweet spot [Figs. 3(b)–3(d); see
the caption for plot parameters], asymmetric patterns of δẼeo

appear.
The structure of these patterns can easily be understood by

investigating the ε̃D-dependent level structure in more detail.
At large negative ε̃D, the even and odd ground states are the
states that involve occupation of the extra dot, |1; 01〉 and
|1; 00〉, respectively. The even-odd ground-state splitting is, in
this case, always equal to ε̃2. In the limit of large and positive
ε̃D, the states |1; 01〉 and |1; 00〉 now have high energy and can
thus be disregarded. What is left are the states |0; 00〉, |0; 11〉,
|0; 10〉, and |0; 01〉, i.e., the system is equivalent to the original
PMM system without the extra dot attached; the ground-state

×
×

FIG. 3. Energy splitting δẼeo between the lowest even and odd
state of H̃sys as given by (7) in the limit of large VD1. (a) At the
sweet spot ε̃1 = ε̃2 = τ = 0, we still see a persistent degeneracy.
(b) Tuning ε̃2 = 0.1 � (blue line) or τ = 0.03 � (red line) away
from the sweet spot no longer results in the characteristic diamond or
bowtie patterns, but rather a degeneracy on one side of the plot that
is split up on the other side. Tuning both ε̃1 and ε̃2 away from zero
[ε̃1 = −ε̃2 = 0.1 � in (c); ε̃1 = ε̃2 = 0.1 � in (d)] results in a finite
splitting both at large positive and negative ε̃D, with a zero crossing
around ε̃D ≈ 0 only for different signs of ε̃1 and ε̃2. In all plots, we
have set tD = 0.2 �.

splitting for large positive ε̃D then simply becomes δẼPMM
eo as

given by Eq. (8). We thus find the limiting values for δẼeo,

δẼeo =
{

ε̃2 for ε̃D → −∞
δẼPMM

eo for ε̃D → ∞.
(11)

The effect from the nonlocal interaction between the dots D
and 1 when D is filled can be compensated by shifting the
energy of dot 1.

Comparing this result to Fig. 3, we see that it explains the
limiting values of all patterns of δẼeo, both at the sweet spot
and away from it. The subtle difference between Figs. 3(c)
and 3(d) (the presence or absence of an apparent zero crossing
of δẼeo) can also be understood from Eq. (11) by comparing
the sign of the two limiting values. Indeed, when ε̃1 = ε̃2 =
0.1 � and t = � [Fig. 3(c)], we have ε̃2 > 0 and δẼPMM

eo <

0 [see Eq. (8)], whereas for ε̃1 = −ε̃2 = −0.1 � and t = �

[Fig. 3(c)], one finds that both ε̃2, δẼPMM
eo > 0.

These results thus suggest that within the simplified model,
the sweet spot can still be distinguished in the presence of
significant interdot Coulomb interactions since the sweet spot
is the only point in parameter space where δẼeo remains zero
regardless of the value of ε̃D.

B. Numerical results

We now turn to the full model presented in Sec. II
to investigate how much of the phenomenology described
above survives in a spinful model with finite Zeeman ener-
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gies and on-site Coulomb interactions. The main results are
summarized in Table I. To understand the transport through
the system, we diagonalize Hsys (1), sketched in Fig. 1, includ-
ing finite charging energy, and use rate equations to calculate
the transport. In this case, to assess the Majorana quality of
the eigenmodes, we need to use a more general version of a
MP that includes both spin states. We will thus use the MP
defined as [43–46]

Mj =
∑

σ

(
w2

σ − z2
σ

)
∑

σ

(
w2

σ + z2
σ

) , (12)

with wσ = 〈o|(d jσ + d†
jσ )|e〉 and zσ = 〈o|(d jσ − d†

jσ )|e〉, to
quantify the Majorana quality of the lowest-energy mode. In
the presence of interactions and finite Zeeman energy, true
sweet spots with both an even-odd ground-state degeneracy
and ideal Majoranas in each of the dots, i.e., |M1,2| = 1, do not
exist. However, it is possible to find sweet spots with even-odd
degeneracy and MP well over 0.95 for experimentally relevant
parameters [43].

First, we will investigate how the additional dot can be used
to distinguish these high-MP sweet spots from situations with
lower MP. In the ideal case, the outer dots of the PMM system
host perfectly localized Majorana states, and sweeping the
additional level εD cannot split the even-odd degeneracy since
dot D couples to only one of the two states [50,51]. In the case
of high-quality sweet spots with near-unit polarization, we
still expect the ground-state splitting to be strongly reduced
and indiscernible in transport measurements due to, e.g., finite
resolution and temperature.

In Fig. 4, we show numerical results exploring the maxi-
mum splitting observed as a function of MP. In all cases, we
tuned the PMM system to a sweet spot with even-odd degener-
acy and quadratic protection with maximum MP, varying the
Zeeman splitting across Figs. 4(a)–4(d). We plot the calcu-
lated conductance measured at the right side of the system as
a function of εD and applied bias voltage V , for decreasing EZ.
We see that decreasing the Zeeman splitting (i) brings excited
spin states down in energy, (ii) lowers the quality of the sweet
spot [see Fig. 4(e)], and (iii) increases the maximum ground-
state splitting observed in the conductance. Indeed, when the
MP is substantially lower than 1, the lowest fermionic mode
on the PMM system no longer separates into well-localized
Majorana states on the outer dots. In this case, the connec-
tion to an external quantum system can split the even-odd
degeneracy by coupling to both Majorana components of the
mode, thereby effectively yielding a coupling between the two
Majoranas and thus lifting their degeneracy. We note that this

TABLE I. Summary of the low-energy conductance features for
V1D = 0. The cases with finite V1D are shown in Fig. 6.

Case Conductance feature Fig.

Sweet spot Zero-bias peak 4(a)
MP<1 Diamond shape 4(b)–4(d)
Detuning ε1 Zero-bias peak 5(a)
Detuning ε2 Diamond shape 5(b)
Detuning ε1 & ε2 Bowtie shape 5(c)
Detuning εS Bowtie shape 5(d)

FIG. 4. [(a)–(d)] Numerically calculated local conductance mea-
sured at the right end of the system, for different MP. The black lines
show the voltage threshold for zero temperature, i.e., |V | = δEeo.
The blue tics mark the energies where a spin-split level on the
additional dot crosses zero energy. (e) Maximum energy splitting
(black dots) and MP (red) for increasing Zeeman splitting. In all
panels, we used UD = U1 = U2 = 5 �, US = VD1 = EZ,S = 0, t1S =
t2S = 2tD1 = 0.5 �, and tSO

1S = tSO
2S = 2tSO

D1 = 0.1 �. We vary the Zee-
man splitting between the different panels, choosing EZ = 1.5, 0.4,
0.25, and 0.15 (all in units of �) for [(a)–(d)], respectively. The
configurations of all gate-tuning parameters are given in Table II in
Appendix A for every sweet spot. To calculate the conductance, we
assume the tunnel rates to the leads, �, to be the smallest energy scale
and we set the temperature to T = 0.005 �. The results shown in (a),
(d), and (e) were also presented in Ref. [38].

is generally true, independent of the nature of the additional
quantum system, as long as it can mediate a coherent coupling
between the Majoranas. The lowest conductance line shows
a diamondlike pattern with a maximum when one of the
spin-split levels of the additional dots crosses zero energy.
Decreasing the MP increases the maximum splitting in the
conductance, illustrated in Fig. 4(e), where we show the max-
imum ground-state splitting (black dots) and MP (red dots)
as a function of the Zeeman splitting. These results confirm
that also in the more realistic case, an insensitivity of the
ground-state degeneracy to εD indicates a high MP on the
PMM system.

Previously, the nonlocal conductance has served as a main
tool for identifying Majorana sweet spots in minimal Kitaev
chains [41]. However, discerning between high- and low-MP
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FIG. 5. Conductance through the right dot for a high-MP PMM.
Parameters are the same as in Fig. 4(a), except for the variables
indicated in the top right of each panel that are shifted away from
the sweet spot by the value given.

sweet spots has proven challenging due to their similarities in
nonlocal conductance patterns. The results presented in Fig. 4
show that the additional dot we introduced to the setup offers
complementary insights into the localization of the Majorana
state, resulting in distinct qualitative outcomes for high- and
low-MP sweet spots, also for the more realistic case with finite
Zeeman and Coulomb energy.

We now turn to the behavior of the conductance spectrum
away from the sweet spot, comparing it to the simple analytic
results presented in Sec. III A; see, also, the blue and red lines
in Fig. 2. Detuning the energy level of one of the dots away
from the sweet spot increases the weight of the “detuned”
Majorana on the opposite dot without lifting the ground-state
degeneracy [37]. The additional dot, sensitive to the local
Majorana components, can lift the even-odd degeneracy by
providing an effective coupling between the two Majoranas.
This is confirmed in Figs. 5(a) and 5(b), showing that the
extra quantum dot coupled to the left side of the PMM system
is only sensitive to deviations in the right dot of the PMM
system. The splitting of the ground state follows the same di-
amondlike pattern as found from the toy model [see Fig. 2(a)]
and is qualitatively similar to the pattern found for low-MP
sweet spots; see Fig. 4. Shifting the energy of both dots of
the PMM system lifts the even-odd degeneracy, leading to a
bowtielike pattern in the local conductance, as illustrated in
Fig. 5(c) [cf. Fig. 2(b)], where the relative splitting at negative
and positive εD again depends on the sign of ε1,2. A similar
pattern is observed when the relative values of the coupling
in the even and odd subspaces (CAR and ECT in the weak
tunneling regime) are changed [see Fig. 5(d)], achieved by
detuning the energy level of the central PMM dot εS that
controls the properties of the central ABS. Again, the pattern
looks very similar to the one predicted by the toy model; see
the blue results in Fig. 2(a).

FIG. 6. Conductance through the right dot for a high-MP PMM.
Parameters are the same as in Fig. 4(a), with VD1 = 0.4U2, except for
the parameters indicated in the top right of each panel.

We finally explore the role of interdot Coulomb interac-
tions, again assuming that the interactions between dots 1
and 2 are strongly screened by the grounded superconductor
and thus only considering interactions between dots D and
1; see Fig. 1(a). The results are shown in Fig. 6 and are
again qualitatively similar to the results found for the toy
model investigated in Sec. III A. At a high-MP sweet spot,
the additional Coulomb interaction cannot split the ground-
state degeneracy [see Fig. 6(a)]; it merely leads to a shift of
the energy level on dot 1, depending on the occupation of
dot D, which does not affect the degeneracy, as explained
above. It does, however, quench the local conductance when
the additional dot is filled, as can be clearly seen from the
reduced intensity of the conductance peaks at negative εD.
This is due to an effective energy renormalization of the left
PMM dot that brings it away from the sweet spot. Away from
the sweet spot [Figs. 6(b)–6(d)], the nonlocal charging energy
affects the conductance patterns in a very similar way to what
we found from the toy model in Sec. III A. For instance, the
diamondlike pattern, originating from two Majorana states
having finite weight in the same dot due to a nonideal MP,
opens up for negative εD, as shown in Fig. 6(b). We again
explain this behavior in terms of an effective detuning of ε1

due to the interaction with the electron on dot D. Similarly,
the bowtie pattern found for ε1 = ε2 becomes asymmetric
in εD, due to a renormalization of the dot energy when the
additional dot D fills up; see Fig. 6(c). Finally, the bowtie
pattern can also open up when the CAR and ECT amplitudes
become different, which we do by detuning εS; see Fig. 6(d).
In all of the described cases, the phenomenology can again be
understood in terms of the simple analytic model investigated
in Sec. III A, and the limiting splittings we observe for large
|εD| are consistent with Eq. (11).

We thus conclude from our numerical calculations that the
analytic insight in the structure of the even-odd splitting that
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we gained in Sec. III A still provides a qualitative understand-
ing of the underlying physics of the dot-PMM system when
including realistic ingredients such as finite Zeeman splitting,
strong coupling between the PMM dots, and Coulomb inter-
actions.

IV. CONCLUSION

In this work, we have shown that an additional quantum
dot can help assess the localization of Majorana states in
minimal Kitaev chains. We have shown that adding an addi-
tional quantum dot to the chain can help distinguish situations
with well-localized Majoranas from other cases where an even
number of Majoranas overlap. In the latter case, the additional
dot couples to the overlapping Majorana states, thereby lifting
the even-odd degeneracy, which is measurable using local
transport or microwave measurements. We have performed
analytic and numerical calculations to understand the change
of the ground state due to the coupling to the additional dot
and we studied its effect on the conductance. The system
remains degenerate for the case where the dot couples to a sin-
gle Majorana state, resulting in a robust zero-energy feature,
and the degeneracy splits when the dot couples to multiple
Majorana states, showing either a diamond or a bowtie shape,
depending on whether the PMM system’s ground state is
degenerate when the measurement dot is decoupled. The mea-
surement of these three patterns in a small region of parameter
space can thus increase the confidence in the quality of the
sweet spot associated with the degeneracy. We further note
that our proposed method to identify Majorana sweet spots
should also work for longer chains hosting single PMM pairs
at their ends; assessing multiple PMMs individually in more
complex structures with our method might, however, be chal-
lenging from a device geometry point of view.

This work contributes to the efforts to find and characterize
Majorana sweet spots in minimal Kitaev chains, and provides
a deeper understanding of the physics underlying the coupling
of external quantum dots to Majorana states. How to distin-
guish between true sweet spots and other energy crossings
where the local wave function does not have a Majorana
character is a central question in the field and will be essential
for progress toward experiments demonstrating the presence
of non-Abelian quasiparticles in condensed matter systems.
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APPENDIX A: SWEET SPOT PARAMETERS

Table II presents the gate configurations used for the differ-
ent sweet spots presented in the main text, using the full model

TABLE II. Tuning parameters for the sweet spots for the dif-
ferent values of the Zeeman splitting on the outer PMM dots
investigated in the main text. All energies are in units of �.

EZ ε1 εS ε2 MP

0.15 −0.30603 −0.56442 −0.30603 0.66080
0.2 −0.29419 −0.50301 −0.29419 0.76204
0.25 −0.28088 −0.46116 −0.28088 0.82205
0.3 −0.26818 −0.43133 −0.26818 0.86044
0.4 −0.24629 −0.39260 −0.24629 0.90556
0.75 −0.19795 −0.34183 −0.19795 0.96076
1.5 −0.15355 −0.32894 −0.15355 0.98559
3 −0.12292 −0.34221 −0.12292 0.99486

that includes finite Zeeman splitting and on-site Coulomb
repulsion. We find these sweet spots by maximizing the MP
with respect to the values of the on-site potentials of the dots,
while staying at the even-odd ground-state degeneracy. We
keep the tunnel rates in the PMM system symmetric, implying
that all sweet spots occur for ε1 = ε2.

APPENDIX B: NONLOCAL CONDUCTANCE

In recent years, the nonlocal conductance has emerged
as a useful probe to determine the local BCS charges of
bound states [57] and to measure the gap reopening after
the topological transition in superconducting nanowires [58].
In this Appendix, we present additional results comparing

FIG. 7. (a),(b) Local conductance at the left side, GLL , and
(c),(d) nonlocal conductance GRL through the dot-PMM system as
a function of εD and V . We included results for a (a),(c) high- and
a (b),(d) low-quality sweet spot. All parameters are the same as the
ones used in Figs. 4(a) and 4(d). Features appear at twice the bias
voltage in the top row, as the bias is applied symmetrically to the
system, in contrast to the lower row, where the bias is applied in the
left lead while keeping the right one at zero voltage.
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the local and nonlocal conductance through the dot-PMM
system.

We define the local and nonlocal conductance through

Gαβ = Iα (VL,VR)

dVβ

, (B1)

with α, β = L, R and Iα the current that enters the system
through lead α. For the local conductance, we assume that
VL = −VR = V/2, while for the nonlocal conductance, we use
Vβ = V and Vα = 0.

In Fig. 7, we show the calculated GLL and GRL for a
high- and a low-MP sweet spot, as a function of εD and
V . [In Figs. 4(a) and 4(d), we showed the corresponding
conductance through the right side of the system, GRR.] The

conductance GLL through the left side [Figs. 7(a) and 7(b)] has
its maximum values close to V = 0 for values of εD where one
of the spin-split levels on the additional dot is close to zero
energy. Indeed, in this situation, resonant tunneling of elec-
trons between the left lead and the additional dot is allowed
for V = 0. The nonlocal conductance [Figs. 7(c) and 7(d)]
shows very similar features, with only a few small differences.
For instance, GLR and GRL are identically zero close to zero
bias for ideal sweet spots independently from εD (results not
shown). (We obtain these ideal sweet spots from the full model
by considering a very large Zeeman splitting in dots 1 and 2
of the PMM system.) Deviations from the ideal Majorana case
lead to an additional nonlocal conductance signal at low bias,
which increases with decreasing MP, as can also be seen in
Figs. 7(c) and 7(d).
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