
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Sondre Haugen Elgaaen

Evolving Biologically Plausible
Recurrent Neural Networks for
Temporal Prediction

Master’s thesis in Informatics
Supervisor: Zenas C. Chao
Co-supervisor: Keith L. Downing, Felix B. Kern, Shoji Takeuchi
November 2023

Sondre Haugen Elgaaen

Evolving Biologically Plausible
Recurrent Neural Networks for
Temporal Prediction

Master’s thesis in Informatics
Supervisor: Zenas C. Chao
Co-supervisor: Keith L. Downing, Felix B. Kern, Shoji Takeuchi
November 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sondre Haugen Elgaaen

Evolving Biologically Plausible Recurrent
Neural Networks for Temporal Prediction

Master’s thesis, Summer 2023

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

Contents

1 Introduction 7
1.1 Motivation and Background . 7
1.2 Goals and Research Questions . 7

2 Background Theory 9
2.1 Time Series Analysis . 9
2.2 Temporal Prediction . 9

2.2.1 Hazard Function . 10
2.2.2 Foreperiod Task . 10

2.3 Machine Learning . 11
2.3.1 Unsupervised Learning . 12

2.4 Artificial Neural Networks . 12
2.4.1 Recurrent Neural Networks . 12

2.5 Evolutionary Algorithms . 12
2.5.1 Genetic Algorithm . 12
2.5.2 Speciation . 13
2.5.3 Neuroevolution . 13

2.6 Neuroevolution of Augmenting Topologies . 13
2.6.1 The Competing Conventions problem . 13
2.6.2 Genetic Encoding and Historical Markings . 13
2.6.3 Crossover . 15
2.6.4 Incremental Growth from Minimal Structure 16

2.7 Hebbian Learning . 16

3 Related Work 18
3.1 Systematic Literature Review . 18
3.2 τ -NEAT . 18
3.3 Learning Spatiotemporal Signals Using a Recurrent Spiking Network That Discretizes

Time . 20

4 Methodology 23
4.1 Network Implementation . 23

4.1.1 Model Limitations . 24
4.2 NEAT Implementation . 25

4.2.1 Hyperparameters . 25
4.3 Ready-Go Task . 26

5 Experiments and Results 28
5.1 Model Performance . 28
5.2 Interpreting The Hebbian . 29
5.3 Running Without Hebbian Learning . 31
5.4 Interpreting the Networks . 33

6 Discussion and Future Work 35
6.1 Discussion . 35
6.2 Conclusion . 36
6.3 Future Work . 36

1

Bibliography 37

A Results of Preliminary Testing 39

B Detailed results of Network B 42

C Detailed results of Network C 45

D Results of Network D 47

2

List of Figures

2.1 Hazard function example . 11
2.2 The foreperiod task . 11
2.3 The competing conventions problem . 14
2.4 NEAT genome to phenome . 14
2.5 NEAT crossover . 15
2.6 Hebbian learning rule . 16

3.1 Example τ -NEAT network . 19
3.2 MSE of best τ -NEAT and NEAT networks . 19
3.3 τ -NEAT and NEAT parameters . 19
3.4 Maes et al. model architecture. 21
3.5 Maes et al. read-out weight matrix . 21

4.1 NEAT HRNN procedure . 25
4.2 Ready-Go task trial structure . 27

5.1 Network A and outputs . 29
5.2 Hebbian weight change . 30
5.3 Correlation of Hebbian weights and foreperiod . 30
5.4 Network A-C weight, Hebbian standard deviation and omission trials 32
5.5 Omission trials of networks with and without Hebbian learning 33

A.1 Preliminary network and corresponding network output for a binomial distribution . . 39
A.2 Preliminary network and corresponding network output for a rising linear distribution 40
A.3 Preliminary network and corresponding network output for a sinking linear distribution 40
A.4 Preliminary network utilizing Hebbian learning . 41

B.1 Network B and outputs . 42
B.2 Hebbian weight change . 43
B.3 Correlation of Hebbian weights and foreperiod . 44

C.1 Network C and outputs . 45
C.2 Hebbian weight change . 46
C.3 Correlation of Hebbian weights and foreperiod . 46

D.1 Network D and outputs . 47

3

List of Tables

4.1 NEAT hyperparameters . 26
4.2 Experiment parameters . 27

4

Abstract
Inspired by research on temporal prediction in the human brain and a fascination with neuroevolu-
tionary techniques, this thesis seeks to examine the potency of the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm when tasked with evolving neural network structures that are mini-
malistic, biologically plausible and capable of predicting simple temporal sequences effectively. For
this purpose NEAT’s hyperparameters are tuned to evolve small Recurrent Neural Networks, which
are combined with Hebbian learning. The networks are tested on a variant of the foreperiod task,
dubbed the Ready-Go task, in which fitness is evaluated based on the ability to accurately predict
the timing of a Go signal.

The thesis demonstrates that this approach makes it possible to evolve small biologically plausible
networks that perform well on simple temporal tasks, but also identifies some inherent weaknesses
in using NEAT for this purpose. Lastly, the thesis delves into analysis and interpretation of the
networks, identifying key structures in the networks that facilitate temporal prediction. This analysis
further reveals that the effect of Hebbian learning is inconsequential compared to the weights of the
evolved networks, indicating that other neuroplastic processes may be better suited for the problem
domain.

5

Preface
This master thesis was written in the summer of 2023 for the completion of the degree Master of
Science in Informatics with a specialization in artificial intelligence at the Norwegian University of
Science and Technology. The thesis was written during a one-semester exchange to the University
of Tokyo, during which the research topic was decided. In this distractingly exciting and foreign
country, this thesis was only made possible due to the academic, administrative and social aid of
many people that I would like to thank.

First and foremost, from the International Research Center for Neurointelligence at the University of
Tokyo, I would like to thank Zenas C. Chao and Felix B. Kern for their ardent guidance during my
project, as well as Kantaro Fujiwara for his help with accessing and using their computational servers.

From the Biohybrid Systems Laboratory, I would like to thank Shoji Takeuchi for his patient guidance
and allowing me to study at his lab, Kazuki Nishimoto for helping me transition to life in Japan, and
Morie Watanabe for her help with official matters at the University of Tokyo.

From the Norwegian University of Science and Technology, I would like to thank Keith L. Downing
for his sporadic yet precise guidance during my project, Pauline C. Haddow for her strict yet kind
guidance before she had to go on leave, as well as my significant other, Emma L. Eikemo, for her
motivating banter and help with proofreading.

Lastly, I would like to thank ChatGPT for reducing the burden on my tendonitis-riddled arms by
providing a number of almost factually correct paragraphs to act as starting points for my writing.

6

Chapter 1

Introduction

1.1 Motivation and Background
Temporal sequence learning, the ability to recognize and reproduce information sequences over time,
is a complex cognitive process widely observed in the animal kingdom. It underlies various intricate
behaviors, from humans learning musical compositions to birds memorizing and recreating intricate
song patterns. However, in the fields of Neuroscience and Artificial Intelligence, the mechanics of
temporal sequence learning remains a scarcely understood research subject.

Several unique Artificial Neural Network (ANN) models made for temporal tasks have been sug-
gested over the years, with various levels of success. However, balancing the demands of high-level
performance and biological plausibility presents a challenge. Several effective machine learning meth-
ods such as LSTMs (Hochreiter et al., 1997) and other novel approaches (Chung et al., 2014, Lea
et al., 2016) may not align with the constraints inherent in biological settings. Furthermore, as the
complexity of models increases, their interpretability is often diminished, leading to the ”black box”
problem where the underlying workings of the networks are opaque.

Countering this trend, there has been a rise into research on biologically plausible neural networks
the last few years. Two hand-crafted, and therefore relatively interpretable, models utilizing Hebbian
Learning in Maes et al., 2020 and Maes et al., 2021 have shown good performance when faced with
temporal tasks. However, these models are inflexible in regards to the problem domain, needing the
tasks to be limited to specific trial lengths. Meanwhile, other similar research has primarily focused
on the utilization of variants of backpropagation for learning, involve thousands of connections, or
both.

An essential goal of this research is to investigate the possibility of generating biologically plausible
ANNs that are both interpretable and flexible. Interpretable networks not only bolster the trust
and verification process in the artificial intelligence realm, but also provide an understanding of
the networks’ decision-making process. This, in turn, provides an avenue to study the produced
networks to gain a better understanding of the underlying processes in their biological counterparts.
The proposed model for this purpose is designed as a semi-biologically plausible model serving as
preliminary research into this subject, and will be referred to as NEAT HRNN (NEAT of Hebbian
Recurrent Neural Networks) throughout the thesis.

1.2 Goals and Research Questions
This thesis is centered around the following goal and research questions.

Goal Explore the potential of using NEAT to develop interpretable biologically plausible neural net-
works capable of temporal prediction

There is a large volume of research on creating deep Recurrent Neural Networks and Spiking
Neural Networks for temporal tasks. However, while these networks have been able to perform well
on progressively more and more complex problems, their activity patterns are difficult to interpret.
It’s with this in mind that this thesis aims to create networks of small sizes, such that the structures
underlying temporal prediction can be better understood.

7

RQ1 What are the strengths of NEAT for the purposes of evolving biologically plausible and inter-
pretable neural networks capable of temporal prediction?

RQ2 What are the limitations of NEAT for the purposes of evolving biologically plausible and inter-
pretable neural networks capable of temporal prediction?

RQ3 How do RNNs encode prediction over time for temporal prediction tasks?

RQ4 How does changes in Hebbian weights correlate to different foreperiods?

RQ1 and RQ2 ties directly into the goal, and are crucial to answer in the light of potential future
research. RQ3 delves into questions of how both topology and connection weights affect networks’
ability to store information over time. RQ4 deals with both exploring and questioning the role of
Hebbian learning as a mechanism contributing to temporal prediction, and gives insight into how
plasticity affects such tasks.

8

Chapter 2

Background Theory

This chapter establishes the core concepts and techniques needed to understand the contents of this
thesis. 2.1 briefly introduces time series analysis, which leads directy in to 2.2 presenting key concepts
in the domain of temporal prediction and the foreperiod task. 2.3 introduces Machine Learning (ML)
as a concept and the particular branch of ML this thesis is focused on, which leads into 2.4 introducing
Artificial Neural Networks (ANNs). 2.5 then delves into Evolutionary Algorithms, with 2.6 presenting
the core algorithm of this thesis. Lastly, Hebbian Learning is introduced in 2.7.

It should be noted that parts of this chapter are based on previous joint work by me and Markus
Hvidsten Kristoffersen (Kristoffersen et al., 2022).

2.1 Time Series Analysis
Time series analysis refers to the process of forecasting future events or states based on sequential
data points observed over time, and is fundamental in various fields such as meteorology, finance,
and neuroscience. A time series is a sequence of data points recorded at successive, usually equally
spaced, time intervals. The essence of time series analysis lies in detecting regularities and trends in
these sequences and using this information to make educated guesses about what the next entry in
the sequence will be. This task can be extremely complex, depending on the nature of the data and
the time scale over which predictions are made.

The nature of a time series is often divided into four distinct components; trends, seasons, cycles
and irregularities. Trends represents the long-term progression of the series, either upward, downward,
or stable, and indicate consistent increases or decreases over time. Seasons are regular, periodic
fluctuations in a time series, often influenced by factors like seasons, quarters, or other recurring
cycles. Cycles are long-term fluctuations without fixed periods, unlike seasonality, and can vary in
duration. And lastly, irregularities are unpredictable, erratic fluctuations that cannot be attributed
to trend, seasonality, or cycles.

In neuroscience, time series analysis is instrumental in studying brain activity patterns. Techniques
like electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) produce time
series data reflecting neural activity. Analyzing these data can reveal insights into brain function,
neural responses to stimuli, and patterns associated with different cognitive states or disorders.

2.2 Temporal Prediction
Temporal prediction is a subset of time series analysis used within neuroscience to describe predictions
focusing on the timing of particular events, rather than output values at particular timesteps. In the
biological world, the capacity for temporal prediction is crucial for survival, as temporal prediction
is intimately linked to reaction time. In both human and animal behavior, the ability to predict
when an event will occur enables a more rapid response, with research showing a strong correlation
between the anticipation of an event occurring and the speed at which subjects react to the event
(Janssen et al., 2005, Herbst et al., 2018). For example, a sprinter’s reaction time at the start of
a race is greatly enhanced by their ability to anticipate the starter’s signal. This predictive timing
streamlines the neural processing involved in initiating movement, allowing for quicker off-the-mark
action. Similarly, a predator’s ability to anticipate the movements of its prey can be the difference

9

between a successful capture and a missed opportunity. Reaction time, therefore, isn’t just about
raw speed but also about how effectively an organism can predict and then respond to events.

In the brain, there are several cortical regions that have been identified to be involved with
temporal prediction. In particular, the prefrontal cortex and the inferior parietal cortex are believed
to be integral to processing temporal information. Furthermore, regions such as the basal ganglia and
cerebellum are involved with fine-tuning the timing of motor actions. The precise neural mechanisms
underlying temporal prediction and reaction time are an area of ongoing research, but it is the
interaction between these regions that is key to our understanding of temporal prediction and reaction
time.

One of the missing pieces in understanding temporal prediction in the brain is the nature and
topologies of the circuits in and connecting these cortical regions. Advancements in technology are
enabling more accurate analysis and modeling of these regions, leading to the high-level commu-
nication between these regions being relatively well understood. However, the precise mechanisms
of collaboration and mutual influence among these areas during temporal prediction tasks remain
elusive, and is a vital area for research.

2.2.1 Hazard Function
The hazard function is a statistical concept that contributes to our understanding of how the brain
might process temporal predictions. It represents the probability that an event will occur at a
particular time given that it has not yet occurred. Unlike the probability density function (PDF),
which describes the probability of an event at a specific time, the hazard function considers the history
up to time t and provides the conditional risk of the event occurring in the next instant.

The hazard function is a crucial tool in various fields, including medical research for modeling
patient survival times, engineering for understanding system failures, and in actuarial science for risk
assessment. It is particularly valuable in cases where the risk of the event is not constant over time,
which is common in real-world scenarios.

In neuroscience, the hazard function is an important tool for understanding the timing of events,
such as neural spikes, responses to stimuli, or the occurrence of certain behaviors. It is especially
relevant in the study of how neural systems process and predict temporal information. In particular,
research suggests the hazard function may model the changing expectation of an event over time
within the brain, influencing reaction times.

Mathematically, it can be expressed as a function the PDF divided by the survival function, which
is given by:

S(t) = 1−
∫ t

0

p(u) du (2.1)

Which in turn gives the hazard function as:

h(t) =
p(t)

S(t)
(2.2)

The survival function indicates the probability of an event not having occurred by timestep t. As
an example, a computer program that has a uniform chance of crashing within 10 seconds of starting
could be described by Figure 2.1.

From the figure, we can clearly see how the hazard function drastically increases over time, as the
odds of a program instance still running decreases. The hazard function even clearly increases past 1
in the y-axis, which might seem weird at first glance. However, what the hazard function effectively
encodes for in this example is the expected number of crashes within the next timestep, given that no
crashes have occurred. In this example, the hazard function will eventually approach infinity, though
it should be noted that distributions such as the one presented are extremely uncommon in real life,
and most hazard functions will stay within more natural values.

2.2.2 Foreperiod Task
The foreperiod task is a widely used experimental paradigm in cognitive neuroscience and psychology
research to investigate the neural mechanisms underlying temporal expectation and motor prepara-
tion. In this task, participants are required to make a response, usually a motor action like pressing a
button, as soon as a certain stimulus is presented. The key feature of the task is the interval between

10

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Seconds

crash(t)
running(t)

crash(t|not_crashed)

Figure 2.1: Probability Density Function p(t), Survival Function running(t) and Hazard function
crash(t|not_crashed) of a program with a uniform chance of crashing between timesteps 0 and 10

a warning signal and the imperative stimulus (that prompts the response), which is known as the
foreperiod.

Figure 2.2: The foreperiod task. The Ready signal prompts the subject to predict the Go signal,
and then the response time from the Go signal to the subject pressing the button is recorded.

A trial begins with a warning signal that alerts the participant to the impending imperative
stimulus. This signal indicates that the participant should be ready to respond. After the warning
signal, there is a waiting period before the imperative stimulus appears. This foreperiod can vary in
length, either being fixed across trials or randomly varied to prevent the participant from predicting
the stimulus onset. The imperative stimulus then follows the foreperiod, and requires the participant
to perform a predefined action as quickly and accurately as possible. This marks the end of a trial,
with data such as the participant’s response time, accuracy and brain activity being recorded. Such
trials are then repeated a number of times, usually with a small break between each trial.

Among many of the interesting discoveries made through the foreperiod task, is that brain activity
closely follows the hazard function for different foreperiods after training (Bueti et al., 2010). If the
foreperiod is fixed and known to the participant (prior probability), the hazard rate for the stimulus
presentation increases rapidly near the end of the foreperiod. Meanwhile, with variable foreperiods
(posterior probability), the hazard function initially increases as time progresses because the likelihood
of stimulus presentation increases with the passage of time. However, if the foreperiod goes beyond
the average or expected range, the hazard rate may plateau or even decrease, reflecting a drop in
expectation or readiness caused by temporal uncertainty. This phenomenon is also observable in
the participants’ reponse times, as response time is highly correlated to the inverse of the hazard
function (Bueti et al., 2010). Furthermore, researchers have found that different brain regions show
increased activity when faced with prior or posterior probability tasks respectively (Coull et al., 2016),
suggesting that the brain might process the two task types differently.

2.3 Machine Learning
Machine learning (ML) is a subfield of artificial intelligence (AI) that emphasizes the development
of systems capable of learning from data without explicit programming. Essentially, the objective
is to derive patterns or relationships from raw data, and then make predictions or decisions based
on this derived knowledge. Machine learning is commonly divided into the three main subdomains

11

supervised learning, unsupervised learning, and reinforcement learning. For the scope of this thesis,
the primary focus will be on unsupervised learning.

2.3.1 Unsupervised Learning
Unsupervised learning is a type of machine learning that trains on unlabeled data, striving to discern
underlying patterns within it. The fundamental premise is to derive inherent structures from the
data without any external guidance, that is, without the use of explicit labels or categories. Common
algorithms under this umbrella include clustering, where data points are grouped based on similar-
ity, and dimensionality reduction, where the aim is to reduce the number of variables in a dataset
while preserving as much information as possible. The essence of unsupervised learning is to find
representations for the data that can help in understanding its structure and subsequently using this
understanding for various applications like anomaly detection or data visualization.

2.4 Artificial Neural Networks
At the intersection of biology and computation, artificial neural networks (ANNs) stand as compu-
tational models inspired by the brain’s interconnected neuron structure. By mimicking the intercon-
nected nature of neurons, ANNs provide a robust framework to tackle complex, non-linear problems.
In essence, they are directed graphs where nodes (neurons) are connected by edges (synapses). These
connections hold weights that get adjusted as the network learns. In the computational structure,
the nodes are categorized into input, hidden, and output layers, and some might include bias nodes
without any inputs for better performance. To calculate the output of the network, the input values
are propagated through the hidden nodes to the output nodes. The value of each node’s output when
propagating through the network is given by

y = f(

n∑
i=1

wixi + b) (2.3)

where xi are the values of the incoming connections, wi are the corresponding weights, b is the
bias and f is an activation function.

2.4.1 Recurrent Neural Networks
With standard ANNs being exclusively feed-forward, they cannot retain information from previous
network inputs and outputs. Recurrent Neural Networks (RNNs) are a class of Artificial Neural
Networks designed to recognize patterns in sequences of data, such as text, speech, or time series.
Unlike feed-forward neural networks, RNNs possess connections that form directed cycles, creating
an internal state that allows them to exhibit dynamic temporal behavior. However, traditional RNNs
can struggle with long-term dependencies due to the Vanishing Gradient problem, making it difficult
to learn from information in earlier time steps when using backpropagation or similar techniques to
train the network.

2.5 Evolutionary Algorithms
Drawing inspiration from the process of natural selection, evolutionary algorithms (EAs) have estab-
lished themselves as powerful optimization and search algorithms. The basic tenets revolve around
the principles of selection, crossover (recombination), and mutation to find optimal or near-optimal
solutions to problems. This section delves deeper into genetic algorithms, a popular subset of EAs,
and explores some nuanced variations of it.

2.5.1 Genetic Algorithm
Genetic algorithms stand as testament to the power of bio-inspired computation. Based on the
concepts of genetics and evolution, these algorithms iteratively evolve a population of candidate
solutions to refine and approach an optimal solution. The process starts with the initialization of
a random population of individuals. Over successive generations, individuals are selected based on
their fitness, mated to produce offspring, and subjected to mutations to introduce variability. The

12

iterative process refines the population, aiming for convergence towards an optimal or near-optimal
solution.

2.5.2 Speciation
Incorporating the concept of species from biology, speciation in genetic algorithms aims to promote
diversity and protect innovative solutions. By categorizing solutions into different species based on
similarities and ensuring competition within species rather than across them, speciation ensures that
newly emerging solutions aren’t prematurely discarded. This process leads to more exploration of the
solution space, nurturing innovation and preventing premature convergence.

2.5.3 Neuroevolution
Neuroevolution is the intersection of ANNs and Evolutionary Algorithms, where an EA is used to
evolve the weights and/or structure of an ANN. This concept mirrors how the structure of neurons
in the natural brain has evolved over millions of years and is encoded in our DNA.

The field can be largely divided into two categories. In the first category, the ANN topology is
predetermined, and the EA is only used to evolve the weights of the network. The second category
deals with Topology and Weight Evolving Neural Networks (TWEANNs), where both the topology
and weights are developed by the EA.

2.6 Neuroevolution of Augmenting Topologies
This section will focus on a specific neuroevolution algorithm called Neuroevolution of Augmenting
Topologies (NEAT), introduced in the work of Stanley and Miikulainen (Stanley et al., 2002), and
some of the algorithms that build upon it. NEAT is a TWEANN algorithm for evolving ANNs
through a combination of the Genetic Algorithm and historical markings .

In NEAT, networks are expressed by a genome consisting of all connections in the network,
with each connection receiving a unique historical marking upon creation. These markings allow for
crossover between networks without loss of information, leading to a gradually complexifying search
through network topologies, optimizing for those that perform best for a given task. This simple yet
effective design has seen great success throughout the years and has given rise to a large family of
algorithms that expand on it Papavasileiou et al., 2021.

2.6.1 The Competing Conventions problem
Before the introduction of NEAT, the predominant method of crossover for TWEANN was subgraph
swapping. This technique is based on the idea that a segment of a neural network, or a subgraph,
functions as a discrete unit. Swapping and merging subgraphs from varying networks seemed logical
for performing crossover, as it essentially combined different functional units. However, the techniques
of that era did not ensure that the chosen subgraphs were appropriate for producing functional
offspring. Specifically, they did not take into account the competing conventions problem.

The competing conventions problem arises when two phenotypically similar networks can be rep-
resented by different genotypes. When this occurs, the resulting offspring can be compromised, losing
some functionality inherited from the parents. Figure 2.3 exemplifies this: the crossover of the parents
[A, B, C] and [C, B, A] yields an offspring [C, B, C], which lacks the information encoded by A in
its parent structures. The challenge is further intensified with TWEANNs, as their flexible structure
means equivalent networks might be represented by an even wider array of genotypes.

The competing conventions problem also causes issues when attempting to introduce speciation
in TWEANNs. As described in section 2.5.2, there needs to be a compatibility function to compare
the solutions in order to group solutions into species. The competing conventions problem makes
it really hard to find this function because very similar phenotypes that should belong to the same
species can have vastly different genotypes.

2.6.2 Genetic Encoding and Historical Markings
NEAT’s solution to the competing conventions problem lies in its genetic encoding. The genome
consists of two different types of genes, node genes and connection genes. Node genes are simple

13

Figure 2.3: The competing conventions problem. Although the two networks have the
same structure their chromosomes are different, which makes the offspring defect when perform-
ing crossover. (Stanley et al., 2002)

Figure 2.4: An example of a genome in NEAT and its corresponding phenotype network. Stanley
et al., 2002

and only contain a number for the node and the type of node it is - input/sensor, output or hidden.
Connection genes contain the node number for the two nodes it connects, the weight of the connection,
a flag that allows the connection to be enabled or disabled, and an innovation number. The innovation
number is a historical marking that is assigned when the connection is first created, and then never
changed. The innovation numbers are kept track of globally so that a previously assigned number will
never be assigned to a newly created gene in any individual. This is what allows NEAT to circumvent
the competing conventions problem, as different individuals now have a historical marking for each
connection that shows which connections originate from the same mutation and thus are equivalent.
Figure 2.4 shows a visual representation of a NEAT genome and its corresponding phenotype.

The mutations that occur in NEAT affect the weights or structure of the network. Weight mu-
tations are simple, with each weight either being changed or unchanged with a certain probability.
There are four types of structural mutations, one for creating a connection between existing nodes,
one for adding a node, as well as two for deleting connections and nodes in the network. When
creating a connection between existing nodes a new connection gene is simply added to the genome.
In the mutation for adding nodes, the node is always added by splitting an existing connection and
adding the node in between. The previous connection gene is set as disabled and two new connection
genes are added - one from the input node of the previous connection to the new node and one from
the new node to the output node of the previous connection - as well as a new node gene. The
connection into the new node gets a weight of 1, and the connection out gets the same weight as the
previous connection. This ensures that the function of the network won’t drastically change after
applying this mutation.

14

2.6.3 Crossover
Historical markings, specifically innovation numbers, make it possible to identify corresponding genes
in different individuals during the crossover process. During crossover, genes are categorized into:
matching genes (present in both parents); disjoint genes (present in only one parent but within the
range of the innovation numbers of both); and excess genes (those that are beyond the range of the
other parent’s innovation numbers). The matching genes are randomly selected from either parent.
If the fitness levels of the two parents are equal, disjoint and excess genes are chosen randomly.
Otherwise, they are taken from the fitter parent. An illustration of the crossover between two parents
producing an offspring is shown in Figure 2.5.

Figure 2.5: An example of crossover between two genomes in NEAT. Matching genes are chosen
randomly, while disjoint and excess genes are taken from the fittest parent. In this example fitness is
assumed equal, so disjoint and excess genes are also chosen randomly. (Stanley et al., 2002)

Speciation

The introduction of historical markings solves the issue of finding a compatibility function for TWEANNs,
because they say something about how much genetic history two individuals share. In NEAT, the
compatibility distance δ is a linear combination of the number of excess genes E and disjoint genes
D, and the average difference in the weight of the matching genes, W :

δ =
c1E

N
+

c2D

N
+ c3 ·W (2.4)

The coefficients c1, c2 and c3 gives a weight for the importance of each factor, and N is the total
number of genes in the largest of the two genomes.

To decide whether two individuals belong to the same species the value of δ is compared to
a compatibility threshold δt. Every individual is placed into a species at the beginning of each
generation. The existing species are taken from the previous generation, with each species getting
a random genome belonging to it in the previous generation as a representative. Every genome of
the new generation then iterates through these representatives and are placed in the first species

15

for which the compatibility distance is below the threshold. If no compatible species is found for a
genome, a new one is created with that genome as its representative.

NEAT uses explicit fitness sharing (Goldberg et al., 1987), meaning the fitness is shared between
the members of a species, preventing one species from taking over the population. The formula for
the adjusted fitness function f

′

i for individual i is

f
′

i =
fi∑n

j=1 sh(δ(i, j))
. (2.5)

sh(δ(i, j)) is a sharing function whose value is 0 if δ is greater than δt or 1 if δ is less than
δt, meaning

∑n
j=1 sh(δ(i, j)) is the number of individuals belonging to the same species as i. Each

species is given a number of offspring proportional to the sum of adjusted fitness of its members.
The individuals with lowest fitness are then removed, and the members of the species for the next
generation are produced through reproduction between the remaining individuals.

2.6.4 Incremental Growth from Minimal Structure
Another hallmark of NEAT, setting it apart from other TWEANN methodologies, is its commitment
to maintaining solutions as streamlined as possible. This is achieved by beginning with simplistic
solutions and methodically adding complexity as required. Starting with overly complex random ini-
tializations usually results in many non-functional structures. Since mutations tend to either retain
or add complexity, these ineffective structures persist, rendering the resultant ANNs needlessly intri-
cate. By launching with a bare-bones structure, NEAT ensures that only those structural mutations
which prove advantageous during the evolutionary process influence the final ANN design.

2.7 Hebbian Learning
Hebbian learning, a biological learning principle stating that ”neurons that fire together, wire to-
gether,” has found valuable applications in training ANNs, RNNs and SNNs. It is an abstraction
of synaptic plasticity, the ability of synapses to strengthen or weaken over time, which is crucial for
learning and memory formation in the brain. This approach facilitates unsupervised learning by ad-
justing synaptic weights based on the correlation of activity between pre-synaptic and post-synaptic
neurons. When applied to RNNs, it allows learning without falling into the Vanishing Gradient
problem.

Figure 2.6: A simple representation of the Hebbian learning rule, with a form of Long Term Depression
for uncorrelated firing.

There are many variations of the Hebbian learning rule, with different strengths, weaknesses, and
application areas. Highly biologically accurate models such as Spiking Neural Networks (SNNs) typ-
ically evaluate Hebbian updates based on the timing of spiking patterns between nodes. Meanwhile,
ANNs normally consider the output values of the presynaptic and postsynaptic nodes at the same
timestep t. However, most implementations can be described by the following equation:

16

Hebbi,j(t+ 1) = (1− l)Hebbi,j(t) + lPi,j(t) (2.6)

Where l is the network’s Hebbian learning rate, and Pi,j(t) signifies the pre- and post-synaptic
activities of the connection. A key notion of most implementation of this rule is that the magnitude
of change in the Hebbian weights scales with the proximity of rapid firing between the neurons.

In its basic form, Hebbian learning continually strengthens the synaptic weights between neurons
that are simultaneously active. However, without a mechanism to control this strengthening, synap-
tic weights can grow indefinitely, leading to issues like saturation where a neuron becomes overly
responsive. For this purpose, a multitude of weight normalization techniques are employed, which
can be roughly divided into multiplicative normalization and subtractive normalization techniques.

Multiplicative normalization involves adjusting the synaptic weights entering a neuron so that
their total strength remains within a magnitude range. Examples include, vector normalization,
in which each connection weight is divided by the sum of all incoming weights to the neuron, and
Oja’s rule, in which Hebbian updates are inhibited by abnormally strong node activity (Oja, 1982).
Meanwhile, subtractive normalization adjusts the threshold needed for Hebbian weight changes to
take place. This threshold can either be static or dynamic, and could the same for the whole network
or have different values for each neuron, such as in the BCM rule (Bienenstock et al., 1982).

17

Chapter 3

Related Work

This chapter covers especially relevant research, algorithms and frameworks for the development of
the proposed model. First is an outline of the literature review process is outlined in 3.1, before the
subsequent sections delve into related work. 3.2 introduces τ -NEAT, a variant of NEAT with modi-
fications to improve performance in temporal tasks. While 3.3 introduces a hand-crafted biologically
plausible Recurrent Spiking Neural Network for sequence learning.

3.1 Systematic Literature Review
A literature review was conducted both in the preparatory phase of the thesis, as well as during
review to find potential relevant papers that were missed. This was conducted with the following
goals:

1. Establish a good understanding of temporal prediction within the field of AI

2. Obtain an overview of NEAT usage within the field of temporal prediction

3. Obtain an overview of biologically plausible AI models

Two separate techniques were used sequentially in the search for relevant papers; a general breadth-
first search, followed by a more pointed depth-first search. During the breadth-first search phase,
relevant keywords such as ”NEAT”, ”temporal prediction” and ”biologically plausible” were input
into Google Scholar. By searching wide in this fashion, several unique papers and ideas would present
themselves during the search. This was followed by filtering the found papers to a few core papers,
from which a depth-first search was made by following the citations found in the papers, as well as in
the cited papers. In doing this, a deeper understanding of the core concepts used in the thesis could
be attained. During both phases, when considering a paper for inclusion, each paper was evaluated
by referring to the literature review goals.

3.2 τ-NEAT
Caamaño et al., 2015 is one of very few papers that explore using NEAT in a purely temporal
domain, highlighting it as a paper of particular interest for this thesis. The paper introduces τ -
NEAT, a specialized variant of the NEAT algorithm designed to enhance the performance of neural
networks in handling temporal tasks, developed for use in time-series analysis. τ -NEAT achieves
this enhancement by introducing variable delays within the synapses of the networks constructed by
NEAT. The variable synaptic delays are introduced into the NEAT chromosome and are modeled
through a FIFO buffer containing the last n input values to a synapse, thus adding a temporal
dimension to the synaptic interactions. The length of each buffer can be modified through mutations
in the genome, within a predetermined range, making it part of the evolutionary process of τ -NEAT.

In the paper, the authors apply τ -NEAT to three different time-series analysis tasks of increasing
complexity: the logistic map chaotic series, the Henon attractor series, and the Mackey-Glass time
series. In all three tasks τ -NEAT outperforms NEAT, though NEAT just barely falls behind for the
Henon attractor series, as seen in Figure 3.3.

18

Figure 3.1: Example τ-NEAT network. Each connection in the network has both a weight and a
variable-size FIFO buffer, representing the synaptic delays. (Caamaño et al., 2015 - with permission)

Figure 3.2: MSE of best τ-NEAT and NEAT networks (Caamaño et al., 2015 - with permission)

These experiments and their results provide a good window into the performance of NEAT for
temporal tasks. Furthermore, since the temporal prediction tasks in this thesis can be modeled as
a subset of time series analysis, a lot of relevant knowledge for my thesis can be extracted from the
paper. One key takeaway is that their results make it clear that NEAT can perform well when faced
with temporal tasks. However, some limitations of NEAT are also made apparent throughout the
τ -NEAT paper.

Their study aims for optimal performance in their chosen problem domains, potentially at the cost
of increased network complexity and size. While the τ -NEAT models in the paper achieve good results
in the designated tasks, there is no discussion of the developed topologies. However, by inspecting the
chosen hyperparameters, as seen in Figure 3.3, it becomes clear that the networks likely are of signif-
icant size. In particular the absence of the remove node mutation, and the high difference between
add connection rate and remove connection rate is telling. This focus on performance might
lead to network bloat, where evolved topologies become large and complex, potentially obscuring
their functional transparency.

This is not a problem given their research goals, however my research seeks to identify mini-
malistic network structures capable of predicting simple temporal patterns, that could possibly be
repeated throughout the brain. As such, this size and complexity not only hinder the interpretability

Figure 3.3: τ-NEAT and NEAT parameters. (Caamaño et al., 2015 - with permission)

19

of the networks, a critical aspect when aiming for biologically plausible models, but also means that
the developed networks likely aren’t the sort of minimal networks my research is focused on. Fur-
thermore, although the concept of synaptic delay exists in the brain, the difference in delay length
between different neurons normally vary in small amounts. Meanwhile, the synaptic delays in the
τ -NEAT model are limited to discrete timesteps, meaning there could be several orders of magnitude
in difference in synaptic delay between connections.

In conclusion, the τ -NEAT model offers valuable insights into harnessing NEAT for temporal
tasks, which aren’t easily found elsewhere. It could serve as an inspiration for future research of my
model, particularly if standard NEAT proves insufficient. Nevertheless, given their results showing
that standard NEAT already is capable of performing impressively in temporal tasks prompt a re-
consideration of the need for the added complexity of such large synaptic delays. With that said,
given the hypothesis that generalized motifs for temporal prediction in the brain are likely small and
simplistic, and considering the typically short synaptic delays in neuronal systems, it seems prudent
to explore a more streamlined approach.

3.3 Learning Spatiotemporal Signals Using a Recurrent Spik-
ing Network That Discretizes Time

In search of biologically plausible neural networks dealing with temporal prediction, Maes et al., 2020
stood out as particularly interesting. Their work introduced a handcrafted biologically plausible Spik-
ing Recurrent Neural Network (SRNN) capable of learning spatiotemporal patterns, which inspired
parts of this thesis. Their work focused on developing a computational model to understand how the
brain learns and encodes spatiotemporal sequences, addressing the gap in current models which often
lack realistic, biologically-plausible learning mechanisms.

The model is designed to address the challenge of bridging the gap between the millisecond
time scale at which individual neurons operate and the longer behavior time scales spanning several
milliseconds to hundreds of milliseconds. This is crucial because many neural tasks and behaviors
involve learning and producing flexible spatiotemporal sequences, such as the sequential motor tasks
in songbirds and other animals. Their model is compromised of two main modules; a driver SRNN
consisting of excitatory and inhibitory neurons, and a read-out layer.

The SRNN is organized into clusters of excitatory neurons and a central cluster of inhibitory
neurons, designed to encode the dimension of time, discretizing it into sequential intervals. The exci-
tatory neurons follow adaptive exponential integrate-and-fire dynamics, while the inhibitory neurons
follow a leaky integrate-and-fire model. The output of the driver SRNN is then mapped onto an-
other dimension, such as space or phase, through all-to-all feedforward connections from the exitatory
neurons of the SRNN to the read-out layer.

The read-out layer consists of neurons that are driven by these excitatory neurons. These neurons
are not interconnected among themselves, but are solely driven by output from the SRNN, and
encodes for the spatial dimension of the problem domain.

For learning, the model leverages Spike-timing-dependent plasticity (STDP), a variant of the
Hebbian learning rule, allowing for the learning and encoding of various spatiotemporal patterns in a
biologically plausible manner. They train the model using STDP in two distinct stages; learning to
exhibit sequential dynamics, and learning the target sequence in the read-out layer.

In the first stage of learning, the network learns to generate sequential activity that operates as a
’neuronal clock,’ providing a temporal backbone that drives the learning of the read-out layer. During
this stage, all neurons in each cluster of the recurrent network receive the same input sequentially. This
process creates the sequential dynamics of the clusters, effectively discretizing time in the recurrent
network.

After establishing the sequential dynamics of the SRNN, network is ready for the second stage of
learning. During this stage, neurons in the read-out layer receive additional input which modulate
their activity in tune with the desired sequence at the appropriate timesteps. For example, to teach
the network to output A during [ti, ti+1], the corresponding read-out neuron would receive activation
signals during training for that slice of time, but inhibitory signals otherwise. This updates the read-
out weight matrix, representing the weights of the connections between the SRNN and the read-out
layer, according to STPD. After training, the relationship between SRNN cluster activity and read-
out layer output according to the desired sequence will be embedded in the weight matrix, and the
additional inputs to the read-out layer are turned off.

20

Figure 3.4: Maes et al. model architecture. (A) The driver RNN, consisting of clusters of
excitatory (red) neurons and a single cluster of inhibitory (blue) neurons. (B) An example of voltage-
based STDP in the model. When two neurons j and i fire together a lot, they will form a bidirectional
connection strenghtening both Wij and Wji. When neuron j fires before i, Wji will be unidirectionally
strengthened. (C) The sum of all incoming exitatory connections to a node will be normalized, keeping
the sum of all excitatory weights to the node constant. (D) Potentiation of read-out synapses are
linearly dependent on weight. This, combined with weight normalization, gives a soft upper bound
for the weights. (Maes et al., 2020)

Figure 3.5: Read-out weight matrix for the sequence ABCBA after training. (Maes et al., 2020)

They claim that this setup makes the network capable of learning non-Markovian sequences, which
requires that information about previous network states are stored in the network. With only learning
one sequence, limited in duration by the sequential dynamics embedded in the network, it could be
argued that explicit information about previous network states do not need to be encoded in the
network activity to learn Markovian sequences. However, the network was able to learn two different
sequences when presented to it sequentially, given that each sequence had its own dedicated read-out
neurons. This suggests that the network activity does in fact encode for previous network states.

However, there is still one further limitation that the sequence must adhere to. That is, it cannot
exceed the duration of one cycle of the sequential dynamics of the SRNN. In their follow-up study
(Maes et al., 2021), they expand on the model by simulating two neuronal clocks, one fast and one
slow. Furthermore, they replace the read-out neurons with small networks encoding sequence motifs,
which are short sequences synced with the fast clock. Although these changes alleviate the problems
native to the model, they are still not eliminated.

Lastly, although their model was able to learn a single sequence when each cluster was reduced

21

in size to just one neuron, the topology of the networks are highly specific in terms of function.
Especially in regards to the limitations imposed by the neuronal clock. This makes it unlikely that
their handcrafted topology is repeated throughout the brain, as such microcircuit motifs should
necessarily be relatively general in their function.

Nevertheless, their model offered three key inspirations for the development of this thesis. Firstly,
the property of these networks to encode information of previous network states reinforced the idea
of using RNNs for prediction. Secondly, the paper showcased the power of Hebbian learning clearly,
inspiring its use in this thesis. And lastly, the desire to overcome some of the limitations posed by
the neuronal clock helped shape the Ready-Go task.

22

Chapter 4

Methodology

The model proposed in this thesis combines the techniques introduced in the Background Theory
section. The NEAT of Hebbian Recurrent Neural Networks (NEAT HRNN) model is developed to
create biologically plausible and interpretable RNNs. Its primary aim is to aid in the understanding
of temporal sequence learning processes within biological neural networks.

4.1 Network Implementation
The networks developed by this model are all RNN networks utilizing Hebbian learning. An essential
aspect I considered when designing the model is that it should not aim to find the most optimized
networks for specific problems, but to uncover networks that are biologically plausible, interpretable,
and perform satisfactorily. The reason being that developing such networks facilitates the emergence
of network topologies that can be studied to gain insights into the related biological processes.

For this reason, Hebbian learning was incorporated to introduce plasticity into the networks,
allowing the weights to adapt over time in a manner that is biologically plausible, while the network
topology remains constant. For the networks in my model, the Hebbian weight is defined as:

Hebbi,j(t+ 1) = (1− l)Hebbi,j(t) + l((yi(t)− yth)(yj(t)− yth)) (4.1)

Where l is the network’s Hebbian learning rate, yi(t) and yj(t) indicate the output of the connected
nodes, and yth indicates the firing threshold for a node to be considered firing. Weight changes only
apply if at least one of the nodes’ outputs exceed the firing threshold, meaning that the updates can
be both positive and negative. This implementation is a form of subtractive weight normalization,
where the firing threshold is subtracted from the node activities when performing weight updates. In
doing this, the magnitude of the positive and negative changes are kept in balance, as negative changes
would otherwise naturally be lower than positive. Note that only excitatory connections have their
weights change through Hebbian learning, while inhibitory have static weights. This design decision
was made based on the prevalence of plasticity in positive connections in the brain, relative to that of
negative connections. Although these aspects are quite standard for implementations of the Hebbian
learning rule, there are some nuances to how these updates are applied to the network.

Notably, the model batches together all the Hebbian weight updates of a trial, instead of apply-
ing them immediately. With each trial of the Ready-Go experiment being evaluated over several
timesteps, as opposed to instantaneously, updating the Hebbian weight at every timestep could af-
fect the network output during the trial. To avoid any unstability this might cause, the updates for
each timestep of the trial τ are simply summed together and applied before the evaluation of the
subsequent trial τ + 1:

Hebbi,j(τ + 1) =
∑
t∈τ

Hebbi,j(t) (4.2)

Furthermore, I have taken inspiration from an implementation detail of Miconi et al., 2018, in
which each Hebbian weight is multiplied by a corresponding Hebbian magnitude factor evolved for
each connection. As in their implementation, the Hebbian weights are limited within the range [−1, 1],
though in my implementation, the Hebbian magnitude factor is instead evolved for each node. This
fine-tunes the influence the Hebbian factor imparts on node outputs and showing similarities to how

23

different neurons are affected differently by plasticity. Consequently, a connection in the network is
evaluated on the basis of three components: static weight, Hebbian magnitude factor, and Hebbian
weight, giving the following equation for the connection activity level at time t:

pi,j(t) = wi,j + αjHebbi,j(τ) (4.3)

Where wi,j is the weight of the connection between node i and j, αj is the node’s Hebbian
magnitude factor, and Hebbi,j(t) is the connection’s Hebbian weight at trial τ . Lastly, when evaluating
a node output, the sum of the acticity level of each connection is provided as input to the node’s
activation function, σ:

yj(t) = σ

 ∑
i∈ inputs to j

pi,j(t)

 (4.4)

With σ being the logistic function, as implemented in the NEAT-Python library (McIntyre et al.,
n.d.), in which the exponent of e is modulated to make the function converge faster towards 0 or 1:

σ(x) =
1

1 + e−5x
(4.5)

Do note that there is no holdover of node activity between timesteps. Meaning that the node activ-
ity at one timestep is not taken into account when evaluating the same node at subsequent timesteps.
This decision was made with the assumption that if holdover is important for temporal prediction,
NEAT should be able to find through mutations that add excitatory self-recurrent connections.

When making these node evaluations, the network progresses one step at a time for each timestep.
This is done to ensure that information in the network doesn’t travel through every node at each
activation, as that would make time-sensitive predictions trivial. With this in mind, the network is
also limited to avoid direct connections between the input and output nodes.

Finishing off, a fairly common implementation detail of this model is keeping the Hebbian weight
seperate from the original weight values, ensuring they remain unchanged. Maintaining the Hebbian
factor as an independent entity from the weights allows for resetability between runs and generations,
ensuring non-interference with the operations of the NEAT algorithm, and preserving the integrity
of the evolutionary process.

4.1.1 Model Limitations
Although the model aims to generate biologically plausible networks, there are some limitations that
hinder this goal. Most notably, the model evolves Recurrent Neural Networks, rather than Recurrent
Spiking Neural Networks. An RSNN could give more accurate simulations and is included in the
Neat-Python library the project is based on, but would also be more difficult to set up. As the aim
of this project was to examine the feasability of using Neuroevolution to find biologically plausible
neural network topologies, a decision was made to reduce the complexity of the model in favor of ease
of development.

Secondly, the model does not distinguish between different types of neurons. Although the be-
haviour of different neuron types might be loosely modeled through node attributes, the model places
no restrictions on the outgoing connections of nodes to be either positive or negative. This is in
contrast with biological neurons, which have the sign of all outgoing connections determined by the
neuron type. While this deviation from biological plausibility exists, a theoretical split of each node
into two imaginary nodes following this model’s rules would yield equivalent outputs, mitigating
concerns over biological coherence.

Although modifying the NEAT implementation to develop networks with signed nodes was con-
sidered, it was quickly discovered that such a change would be incompatible with the algorithm. An
effect of adding a new node through mutation is that a connection is split in two, with a connection
with a weight of 1 being connected from the outgoing node of the original connection to the new
node. This is done to avoid perturbing the function of the network too much when such mutations
are made, ensuring stable and progressive evolution. However, it also means that adding a node along
the outgoing connection of a negative node would either require the negative node to swap sign, or
the mutation would perturb the network function a great deal. As such, the implementation is left
without this modification to ensure its stability.

24

4.2 NEAT Implementation
The model employs NEAT due to its well-recognized effectiveness as an evolutionary algorithm. I
chose to base the implementation on the NEAT-Python library due to three factors. First and
foremost, I had already explored using the Pureples library, which is based on the NEAT-Python
library. This is because some very early testing was done with ES-HyperNEAT (Risi et al., 2010),
before it was concluded that standard NEAT would converge faster towards good solutions for the
Ready-Go task. Secondly, my familiarity with Python and its active use in AI-related fields would
make it easy to develop in. And lastly, the library had a variant of NEAT that develops RNNs, which
are well-suited to address problems in timing- and history-sensitive domains, and are more analogous
to biological neural networks than standard ANNs.

The networks, during the evaluation phase, are subjected to one or multiple temporal sequence
learning tasks, where connection weights are adjusted following the Hebbian learning rule. In early
experiments, I observed that the networks can perform well on single foreperiod tasks without the
need for Hebbian learning. However, to ensure that the networks maintain flexibility and adaptability
in response to changes in the problem domain, such as adjusting the foreperiod, the implementation
of Hebbian learning was deemed necessary.

Figure 4.1: Procedure of the NEAT HRNN model

In addition to changing the implementation to include Hebbian learning, I made a few other alter-
ations to the NEAT-Python implementation. The response parameter of NEAT-Python, normally
being an evolved scalar that node output of specific nodes is multiplied by, was left unused. Due to
this, and the ease of conversion, I repurposed it as the Hebbian magnitude factor. Futhermore, in
order to guarantee the needed network limitation that no direct connections between the input and
output nodes were made, the mutation that add new connections was adjusted accordingly. This
restriction was necessary, as a direct connection between input and output nodes would trivialize the
problem domain of this thesis, as well as many other timing-based problem domains.

4.2.1 Hyperparameters
Certain hyperparameters can have a large impact on the size and diversity of the generated networks.
In order to control the generation of networks towards diverse populations of interpretable networks,
it was important to generate both a wide range of species and compact individuals.

To achieve this, I took inspiration from Bloat Free NEAT (BF-NEAT) (Trujillo et al., 2014)
when configuring the hyperparameters for NEAT. The parameters available between the NEAT im-
plementation used by BF-NEAT and the NEAT-Python library differs slightly, so some flexibility
was needed. With this in mind, the hyperparameters in Table 4.1 have been used when configuring
the NEAT algorithm.

The odds of adding and removing connections and nodes are controlled by conn_add_prob and
conn_delete_prob, and node_add_prob and node_delete_prob respectively. These parameters were
low to allow individuals to explore different balances between weight, hebbian magnitude and bias for

25

Hyperparameter Value
compatibility_disjoint_coefficient 1.0
compatibility_weight_coefficient 0.0

conn_add_prob 0.2
conn_delete_prob 0.3

node_add_prob 0.1
node_delete_prob 0.15

compatibility_threshold 3.0
max_stagnation 100
species_elitism 10

elitism 10
survival_threshold 0.2

Table 4.1: Core NEAT hyperparameters used for generating networks

each topology. Furthermore, deleting connections and nodes usually disrupt the network more than
adding them, and as such those mutations are often less favored, leading to more complex network
topologies over time. By having a higher chance of delete mutations rather than add mutations,
networks with reduced complexity are explored more often, increasing the odds of simpler networks
surviving.

The compatibility coefficient parameters control speciation, by affecting how much certain factors
contribute to genetic distance. Here, compatibility_disjoint_coefficient affects genetic distance
gained from disjointed and excess genes, while compatibility_weight_coefficient affects genetic
distance gained from the weight, bias, and node response factors. As finding unique topologies
is prioritized, the compatibility_weight_coefficient factor is set to 0 to avoid differentiating
between weights.

Speciation between differing topologies is then taken advantage of by implementing a relatively
low compatibility_threshold, which is the genetic distance threshold for differentiating between
different species, and high species_elitism, which ensures the top n species don’t go extinct even if
they stagnate. This combination ensures a diverse population of species are kept each run, and that
new species are discovered frequently. It should be noted that such a low compatibility_threshold
diverges from the standard BF-NEAT hyperparameters, but given the reduced size of the networks
developed using this model, the genetic distance between networks will generally be much lower to
begin with. Lastly, by having a relatively high max_stagnation parameter, which sets the threshold
for how many generations a species can live without improving, newly discovered species have time
to explore many solutions before potentially going extinct.

In addition to the hyperparameters in focus here there are many more that vary between runs.
These can be found in the NEAT configuration files alongside the relevant results in the GitHub
repository1.

4.3 Ready-Go Task
The Ready-Go task was made as a problem domain for this research, based on the foreperiod task.
When adapting the foreperiod task to an AI environment, I split the Ready and Go signals into two
separate input nodes. Both the Ready and Go nodes will output 0 at all timesteps except for when
they are set to fire, at which the respective node will output 1.

The Ready signal marks the start of a trial, representing the cue, and prepares the network for
the coming Go signal. Then the Go signal, being the target for prediction, is provided after a delay
selected from a predetermined distribution. Lastly, a random amount of delay selected from a uniform
distribution is inserted before the next trial begins. In time series analysis terms, this could be seen
as introducing irregularities into the dataset, but in the temporal dimension. This is done to ensure
that the generated network responds to the Ready and Go signals respectively, instead of generating
networks that simply output a static pattern. The networks are then given 5 trials for the Hebbian
weights to update before being evaluated based on their average fitness across all trials thereafter.

Such trials are repeated a number of times for each foreperiod, called a block. The Hebbian
weights and network state is kept between each block, and measures are taken to ensure the networks

1https://github.com/SondreElg/thesis

26

Figure 4.2: Structure of each trial in the Ready-Go task

adapt properly to each block, rather than developing patterns based on the block order. First, the
ordering of the blocks are randomized, but never in an order of strictly rising or sinking foreperiod.
Then the reverse ordering of the blocks are appended to the blocks, ignoring the last entry. This
minimizes the advantage given to certain species and individuals during evolution caused by ordering,
and ensures proper adaptation to the problem domain.

Lastly, an omission trial is ran using an updated copy of the network after each block. The goal
of these omission trials is to get data on how the network behaves in the absence of a Go signal,
providing insight into the inner workings of the network activity. These trials are ran using only a
copy of the network to avoid affecting the internal network state and Hebbian weight updates in the
event one wants to inspect the first few trials at the start of a block. By keeping the omission trials
separate from the other trials, it’s fully possible to observe how the network output and Hebbian
weights naturally adapt to new foreperiods.

When running these experiments, various parameters took on different values depending on the
goal, chosen from a limited list of options. For the networks produced in this thesis, the parameters
found in Table 4.2 were used.

Experiment parameter Values used
Foreperiods [1, 2, 3, 4, 5]
Block length 50
Trial length 6
Trial delay [0, 3]

Table 4.2: Parameters used for the experiment

The fitness of each block was determined by taking the mean squared error of the expected and
actual output of the network at each timestep. Since only one output during a trial was expected
to not be 0, networks could achieve relatively high fitness when only outputting 0. However, this
also meant that good network mutations could improve the relative network performance quickly.
When determining how to evaluate the fitness of the network as a whole, two main strategies were
considered: the minimum block fitness, and the mean of block fitnesses. A key observation for making
this choice was that the ordering of foreperiod blocks could affect some networks more than others
during evaluation. With this in mind, mean block fitness was chosen to minimize the impact ordering
of foreperiod blocks would have on the network fitness and evolution.

27

Chapter 5

Experiments and Results

Before the model was finished, I performed preliminary tests using NEAT to develop RNNs without
Hebbian learning. These networks were tested on a variant of the Ready-Go task where the Go signal
followed a random distribution, rather than given at a single point in time. These early results seemed
promising, with the network topologies for some different distributions being identical (Appendix A).
This suggested that weight changes, such as those caused by Hebbian learning, could allow the evolved
networks to learn different distributions with the same topology. Shortly afterwards I implemented
Hebbian learning, but saw lackluster results compared to what was expected (Appendix A).

Realizing that the difference between the optimal output for the different distributions may be
too small to easily learn, it was at this point that I adjusted the Ready-Go experiment to test simple
foreperiods. The idea being that compared to random distributions, the optimal output for different
foreperiods would be easier to distinguish both during training and when interpreting the results.
Around the same time, I was granted access to the computing servers of the International Research
Center for Neurointelligence (IRCN) at the University of Tokyo. With these new resources available,
I was able to scale up the experiments, with every run of NEAT from this point onwards running
over 2500 generations for a population of 2000 individuals.

Many runs of my model, with various unique combinations of hyperparameters and experiment
setups, have yielded a diverse array of network architectures. Having established the foundational
parameters and settings for my experiments, the next phase of my research centered on exploring the
capabilities of these evolved networks. In the following sections, I will start with presenting a single
network, network A, for the purpose of introducing typical performance and output, to get an idea of
what these look like. Then, when delving into inspecting Hebbian values and topology, I will expand
the selection with two more networks, networks B and C, totalling three networks from three distinct
species. The networks were chosen based on a subjective selection process factoring in their fitness,
structural complexity, and ensuring all networks run on the same model parameters for the sake of a
fair comparison and ease of interpretation.

5.1 Model Performance
In order to start the network analysis, let’s take a look at what some typical network outputs look
like. To achieve a comprehensive understanding, I will initially focus on the per-trial outputs of a
representative network, Network A, before delving deeper into the ouputs of its omission trials. This
particular network was selected for its intermediate positioning in terms of structural complexity and
fitness among the selected networks. This choice ensures that the results presented in this section
reflects the normal characteristics and behaviors of networks developed by the model, providing a
balanced perspective on its capabilities and limitations. Nevertheless, the same results as those
discussed for network A are made available for networks B and C in Appendix B and C respectively.

From these graphs, we can see that the actual output matches the expected output quite well, as
expected given the fitness. However, it’s clear to see that leading up to the Go signal, the network
deviates somewhat from the expected output in the form of ramp-up behaviour. This behavior,
characterized by the gradual increase in output magnitude as the foreperiod extends, diverges from the
anticipated pattern based on the hazard function of a prior distribution. Interestingly, the emergence
of this behaviour might not be entirely negative, as it could be argued that it’s reminiscent of the
subjective hazard function caused by temporal uncertainty.

28

ready

key 7184
bias -0.116
α 0.962

-0.238

key 18515
bias -0.440
α 0.396

0.303

key 117952
bias 0.037
α 0.241

0.371

go

0.964

-0.214

-0.992
output

bias -0.204
α 0.938

-0.106

-0.258

-1.000

0.841

-1.000

-0.598

0.888

0.484

1.000

-0.026

0.681

(A) (B)

Figure 5.1: Network A. (A) Topology and weights of Network A, with a fitness of 0.980. (B)
Network output for each foreperiod trial of network A, in order.

Meanwhile, the omission trial for each of the foreperiods generally follow the same patterns as the
network output until the expected Go signal. Following the Go signal, the output keeps increasing
until it plateaus near 1 and starts to slowly sink. This is one of two frequently seen pattern of
behaviours among evolved networks, with the other pattern being a delayed rapid decrease in output
after the expected foreperiod (Appendix B). The emergence of this sort of pattern was usually linked
to a strong inhibitory connection directly affected by the activation levels of the output node.

These patterns don’t affect the fitness of the network, as the omission trials are performed out-
side of training and evaluation. However, as research into the hazard function has revealed similar
responses as the second patterns in human subjects, whether or not networks display this pattern
should be taken into consideration when selecting networks for analysis.

5.2 Interpreting The Hebbian
Having established and explored what typical network output of the evolved networks might look
like, it’s time to shift focus to one of the most integral components of the thesis, that is, the Hebbian
mechanisms within these networks. Exploring several aspects of the Hebbian weights such as mag-
nitude, correlation with the foreperiod and rate of change can provide insight into how the Hebbian
weights shape the changes in network output. As such, this section will first explore the Hebbian
changes across trials for network A, before establishing the variance of the Hebbian weights in the
connections of networks A-C.

We can see from Figure 5.2 that most Hebbian weights settle very quickly at the start of each
trial and stay relatively stable near that value. Among the connections in the figure, especially the
connection between the Ready input and Node 117952 and the self-excitatory connection of Node
7184 are of particular interest. The connection from Ready to Node 117952 shows a clear increase
in weight when the foreperiod is short, causing a more rapid spike in output. Meanwhile, the self-
excitatory connection of Node 7184 see the most change over time, and fluctuate wildly at times.
This could indicate that the learning rate of the network is too high, as well as that the internal

29

Figure 5.2: Hebbian weight change for network A. Each graph indicates the change in Hebbian weight
of the outgoing connections from the node in the graph title to the node indicated by the plot color.
Only positive connections are included and values are scaled based on the input node’s Hebbian
magnitude factor. Vertical bars indicate the start of a new foreperiod block, which are in the order
[3, 1, 5, 2, 4].

Figure 5.3: Correlation of Hebbian weights and foreperiod. Correlation is calculated by taking
the average Hebbian weight of the last 40 trials of each block for each connection and comparing those
averages to the foreperiod.

dynamics of the network is greatly affected by the random delay between each trial.
However, when inspecting Figure 5.3, the connection between the Ready node and node 1815

stands out as having very high correlation to the foreperiod. This correlation is not immediately
clear from Figure 5.2, as the weight changes are very slight. Despite this, the high correlation

30

might indicate that the very slight changes in weight have a significant effect on the network output.
However, we can expand on this with the observation that the Hebbian weight changes are overall
very small. Aside from Node 7184’s connection maxing out near 0.4 for a brief moment, but most
weights max out near 0.1.

Moving on to the correlation plot between the Hebbian weights and foreperiods in Figure 5.3, a
number of interesting patterns stand out. First of all, it’s clear that the self-excitatory connections
have little correlation, a pattern is common among most of the generated networks. Furthermore, the
very high correlation of the connection from Go to 117952 reflect the higher need for inhibition after
Go for long cycles. This is reinforced by the highly negative correlation from Ready to nodes 18515
and 117952. Node 117952’s function is very clear as the sole node with an excitatory connection to
the output, as well as an inhibitory connection to node 7186, lessening the inhibition it imparts on
the output. Meanwhile, node 18515 acts as a balancer of the activity levels between nodes 7186 and
177952. Considering this, the high negative correlation to foreperiod length makes a lot of sense, as
you for longer foreperiods want slower ramp-up behaviour.

Expanding on this, we can see that the overall pattern of correlation favors positive correlation for
connections that directly or indirectly excite the output, but favors negative correlation for connec-
tions that directly or indirectly inhibit the output. With this, it would seem that Hebbian learning
have an overall positive effect on the ability of the networks to perform temporal prediction, as their
signs and, to a lesser degree, their magnitude directly correlate to what would be expected from the
foreperiod.

Given these observations, looking at a more holistic view of how the Hebbian weights change over
time could provide further insight into how they affect the output. At the same time, introducing
more networks for comparison can help with interpreting these results, as there are many factors that
can affect the need for and impact of Hebbian weight changes in a network. With this in mind, it is
time to examine the standard deviation for each connection between all trials for networks A-C, as
detailed in Figure 5.4.

Inspecting these figures, it’s obvious that the Hebbian weight changes in each of the networks
are overall quite small. While it is true that small changes in network weights can cause ripple
effects leading to large changes to the output, especially in RNNs, I still found these results curious.
Moreover, by performing the same analysis of the correlation heatmaps for network B and C (see
Appendix B and C), I noticed that the Hebbian weight changes in network B seemed sporadic, and
might even hurt the performance of the network. It was with this in mind that I decided to try
running the same networks without any Hebbian learning rules, and observe how they perform.

5.3 Running Without Hebbian Learning
Since the preliminary tests showed that the same topologies could learn different distributions by
adjusting the network weights, I had worked with the assumption that Hebbian learning was needed
in order for the networks to adapt to different foreperiods. However, in making this assumption, I
disregarded RNNs’ inherent ability to encode historical information in network activity. By stripping
away the Hebbian mechanisms, we can directly observe and assess the inherent capabilities and
limitations of the network topologies themselves. This comparison between network A-C and what I
will call networks A’-C’ will offer a clearer perspective on whether the observed outputs and fitness
levels were predominantly a product of the evolved network structures, or a result of the dynamic
adaptations afforded by Hebbian learning.

Looking at the plots and fitness results in Figure 5.5, led to a shocking discovery. Not only was
the same networks, trained for temporal prediction with Hebbian learning, able to predict the Go
signal nearly as well without Hebbian learning. Network A’ even outperformed network A by a slight
margin, demonstrating that Hebbian learning could some times worsen the results of these networks.
There are multiple possible explanations for why this phenomenon occurs.

The Hebbian weights might be too large, creating unstable dynamics within the networks. Al-
though, it’s already been established that the weights are relatively small, it should be noted that
the only network that performed noticably better with Hebbian learning, network C, also had the
smallest max weight for the Hebbian weights (see Appendix C), so there is some credibility to this
theory.

Hebbian learning, or this thesis’ implementation of it, might be ill suited for the Ready-Go task.
As the Hebbian learning rule is based on mutual activity between nodes, with the very sparse input
of the task, there simply may not be enough reliable activity that the rule can act on. Even though

31

(A) Fitness: 0.980 (B) Fitness: 0.976 (C) Fitness: 0.980

N
et

wo
rk

s

ready

key 7184
bias -0.116
α 0.962

-0.238

key 18515
bias -0.440
α 0.396

0.303

key 117952
bias 0.037
α 0.241

0.371

go

0.964

-0.214

-0.992
output

bias -0.204
α 0.938

-0.106

-0.258

-1.000

0.841

-1.000

-0.598

0.888

0.484

1.000

-0.026

0.681

ready

key 2923
bias 0.457
α 0.973

-0.361
key 131602
bias -0.581
α 0.026

1.000

go

key 42178
bias -0.735
α 0.730

-0.935

0.952

output
bias 0.227
α 0.438

-0.860

0.518

0.204

0.946

-0.967

-0.983

0.791

0.231

-0.677

0.916

key 69010
bias -0.093
α 0.960

0.993

0.428

0.081

ready

key 6493
bias -0.642
α 0.130

-0.725

key 8493
bias -0.453
α 0.406

0.768

go

0.996

key 100
bias -0.383
α 0.636

0.987
output

bias 0.561
α 0.332

-0.111

-0.996

0.956

-1.000

0.945

0.904

-0.519

-0.352

0.780

N
et

wo
rk

s
w

ith
SD

ready

key 7184
bias -0.116
α 0.962

key 18515
bias -0.440
α 0.396

0.007

key 117952
bias 0.037
α 0.241

0.072

go

0.012

output

bias -0.204
α 0.938

0.032

0.023

0.016

0.017

0.026

ready

key 2923
bias 0.457
α 0.973

key 131602
bias -0.581
α 0.026

0.002

go

key 42178
bias -0.735
α 0.730

0.018

output
bias 0.227
α 0.438

0.014

0.010

0.064

0.038

0.016

0.016

key 69010
bias -0.093
α 0.960

0.019

0.029

0.032

ready

key 6493
bias -0.642
α 0.130

key 8493
bias -0.453
α 0.406

0.003

go

0.020

key 100
bias -0.383
α 0.636

0.012
output

bias 0.561
α 0.332

0.046

0.040

0.051

0.016

O
m

iss
io

n
tr

ia
ls

Figure 5.4: Network A-C weight, Hebbian standard deviation and omission trials. From top
to bottom for A-C: Network with weights, network with standard deviation (SD) of Hebbian weights
across all blocks, output of omission trials. When calculating the SD, the weights were divided into
10-trial bins in which the weights were averaged. The first bin of each trial was discarded. This
minimizes the impact of intra-trial fluctuations and ensures the SD values focuses on the difference
between different foreperiods.

32

W
ith

H
eb

bi
an

(A) Fitness: 0.980 (B) Fitness: 0.977 (C) Fitness: 0.982
W

ith
ou

t
H

eb
bi

an

(A’) Fitness: 981 (B’) Fitness: 977 (C’) Fitness: 0.981

Figure 5.5: Omission trials of networks with and without Hebbian learning

Hebbian learning performs well in many RNN models and in Spiking Neural Networks, commonly
used for various temporal tasks, it might be that the combination of using a regular RNN for a
temporal task is an ill fit for Hebbian learning.

Nevertheless, this means that even a tiny network of just 3 hidden nodes is able to encode for
network history in such a way that it remembers how long to wait between the Ready and Go signals.
However, before making this conclusions, one other alternative must be crossed out.

What if the networks don’t time their output based on the Ready signal, but rather by waiting for
an entire cycle after the Go signal? This sort of behaviour would’ve easily been possible if each trial
stopped after the maximum foreperiod, but that is not the case for given the design of the Ready-Go
task. With the random delays introduced at the end of each trial, the output of the networks would’ve
fluctuated a great deal, sometimes having a clear spike before the Go signal. When inspecting the
network output for each trial in Figure 5.1, some effect from the variable delay is visible in the
discrepancy between the ramping behaviour of the network during the last trial and the omission
trial. However, this discrepancy is much smaller than what would be caused by this phenomenon,
and it can therefore be ruled out.

With this, it’s clear that the network itself is able to encode temporal information within its
activity patterns. Even though the Hebbian weights might help fine-tune the connection weights in
some cases, the networks are fully capable of learning to predict the Go signal without plastic learning
rules. As such, a deeper dive into the topology, as well as the node and connection parameters of
these networks is a natural next step.

5.4 Interpreting the Networks
When inspecting these networks, there are a few common points that stand out. First of all, excitatory
self-recurrent connections are extremely common, with every single hidden nodes having one across
all three networks. Moreover, all but one of these connections have relatively high weight. This could
indicate the importance of ramp-up behaviour, where the network builds up its output when nearing
the foreperiod. Futhermore, the connections act as a sort of memory structure by keeping a large
portion of the last node activity for the next timestep, essentially implementing holdover of previous
node activity. When combined with outgoing inhibitory connections, these sort of self-recurrent
connections could also be important for balancing the network activity.

Interestingly, the output node has no self-recurrent connection. This is highly surprising, as I had
expected to see the output node having an inhibitory self-reccurent connection to help quickly lower
output after predicting the Go signal. However, it might be that the output of the output node helps
regulate more of the overall network activity, meaning that inhibiting it could cause other parts of
the network to fire uncontrollably.

Furthermore, each network has some level of mirroring between the outgoing from the Ready and

33

Go inputs. At least one node in each network has an excitatory or inhibitory connection from Ready,
and the opposite sort of connection from Go as input to it. This is especially apparent in network
A, in which every connection from one has a mirrored connection. This makes a lot of sense, as the
networks have learned that the Ready signal means it should fire soon, while the Go signal means
that it should cease firing, meaning the signals provide the opposite effect from each other.

One more observation relating to the topology itself is that each network has at least one node
that doesn’t connect to the output directly, but rather seems to modulate the output of the nodes
that do. Node 188515 has already been discussed in Section 5.2, and the balancing holds true when
running without Hebbian learning. In network B, node 131602 performs this function in the same
manner, matching the positive-positive and negative-negative connections from it to the output node
through the nodes it modulates, but differs in that there is no direct connection from the Go input.
Meanwhile, network C diverges slightly from the pattern set by A and D, by having only inhibitory
connections to the output node, which is only excited by its own bias. A modulating node is also
present in the network in the form of node 8493, but as there are no excitatory connections to the
output, it instead has two negative-negative chains to the output through the nodes it modulates.

Lastly, the node bias is generally quite large in each of the evolved networks. Network A sees the
least bias out of them all, but the bias magnitude across the networks overall averages to about 0.4,
a significant amount of activity for each timestep. It could be argued that the bias factor reduces
biological plausibility and complicates interpretation of the networks. However, by imagining the bias
as the result of a weighted connection from an always-on input, which in this case can be interpreted
as the brain being in ”trial mode”, alleviates the first concern. As for the second concern, I did run
some simulations with no bias factor to ascertain their efficacy. The produced networks performed as
well as those selected, but most were considerably larger, and therefore more difficult to interpret.

In conclusion, these observations of the topology reveal a few core patterns that stand out as being
important for the networks to function properly. Self-recurrent connections are important for hidden
nodes in order to keep a sort of local history of previous activity. Furthermore, a mirroring between
the Ready and Go inputs ensure the network responds properly to each of these signals, and one or
more modulatory nodes reinforces this behaviour and scales the network’s ramp-up behaviour over
time. Lastly, high node bias indicates the importance of an always-on input to the network, which
can be likened to the brain keeping different regions active for different tasks.

34

Chapter 6

Discussion and Future Work

6.1 Discussion
For discussing the results of this thesis, let us return to the research questions posed at the beginning.

RQ1 What are the strengths of NEAT for the purposes of evolving biologically plausible and inter-
pretable neural networks capable of temporal prediction?

Since NEAT starts from a minimal structure which is progressively complexified as the population
evolves, it is possible to create very compact networks that lend themselves more easily to interpreta-
tion compared to networks generated by other techniques. Furthermore, as NEAT evolves both the
topology and the weights of the network together, no further training is required to establish good
weights after evolution.

Lastly, the speciation schemes utilized in NEAT make it possible to simultaneously evolve a number
of different well-performing species. This is a great boon when searching for potential topologies, as
a single run of the algorithm can reveal multiple possible solutions. These solutions can then be
compared to find commonalities between the networks, aiding the analysis of what makes certain
topologies effective.

RQ2 What are the limitations of NEAT for the purposes of evolving biologically plausible and inter-
pretable neural networks capable of temporal prediction?

The performance of NEAT heavily depends on the choice of hyperparameters, such as mutation
rates and speciation thresholds. Finding the right set of parameters often requires extensive ex-
perimentation, and the optimal settings might not be clear, especially when aiming for biological
plausibility.

Furthermore, the algorithm being incompatible with the notion of excitatory and inhibitory nodes,
as opposed to excitatory and inhibitory connections, introduces extra steps for the interpretation of
any evolved network. A proposed interpretation of the networks, in which each node is split into
a positive and negative node, retaining the corresponding outgoing connections of the original node
was mentioned in the model section. Nevertheless, generating networks in which outgoing node con-
nections are exclusively positive or negative depending on the node could have several benefits. Most
notably, it could reduce the complexity of the evolved networks when compared to the interpreted
networks of the current implementation. In addition, implementing such a restriction might cause
the network to evolve in a more natural manner.

RQ3 How do RNNs encode prediction over time for temporal prediction tasks?

It is clear from the results that the evolved networks’ structure inherently facilitated the encoding
of temporal information, demonstrating RNNs’ capability to process and predict temporal sequences.
These predictions are made possible through a complex relationship of a number of factors. Mirrored
connections from the Ready and Go nodes mark the start and end of trials, and cause large changes
to the network activity. A combination of always-on signals in the form of node bias, as well as
activity holdover in the form of excitatory self-recurrent connections help keep the network state
stable. Meanwhile, one or more modulatory neurons assist with this, while excerting control over the
ramp-up behaviour of the networks.

35

RQ4 How does changes in Hebbian weights correlate to different foreperiods?

The investigation into Hebbian weight changes in relation to different foreperiods revealed that
these changes were generally very small. Although some Hebbian weights displayed high correlation
to the foreperiod, the positive effect granted by these changes are dubious, as Hebbian learning in
general provided small but unpredictable changes to fitness. Given the complex nature of RNNs
and temporal prediction, linear correlation might not be the best measure of how Hebbian weight
changes contribute to adaptation in such domains, a notion that is reinforced by the mixed results
of running the networks with Hebbian learning. However, the results highlight that there might be
other neuroplastic techniques that are better suited for temporal domains.

Futhermore, although the networks’ performance generally didn’t change much with or without
Hebbian learning, they all utilized Hebbian learning during evolution. As such, it’s possible that
running NEAT with similar hyperparameters, but without Hebbian learning, could result in networks
that perform even better when evaluated without Hebbian learning.

Such an experiment has actually already been made, resulting in a best fitness of 0.986 at the
cost of having twice as many hidden nodes, outperforming the best of the networks presented in this
thesis. I will not go into a detailed discussion of the network, as that is outside the scope of this
thesis. However, it is included for reference as Appendix D for those interested.

6.2 Conclusion
Although there are still many ways to improve the biological plausibility of the model, the experiments
conducted in this thesis demonstrate that NEAT can effectively be used to evolve biologically plausible
neural networks capable of temporal prediction, which are also relatively interpretable. The ability
of these networks to adapt to different foreperiods both with and without minimal Hebbian learning
highlights NEAT’s efficacy in evolving robust networks where the architecture itself is primarily
responsible for learning and prediction in temporal domains, aligning well with the objectives of
biologically plausible neurocomputation. This was made possible through a combination of optimizing
the hyperparameters of NEAT for creating compact networks, together with making the foreperiods
of the Ready-Go task clearly distinct from each other. However, given the restrictions of NEAT,
exploring different neuroevolutionary techniques for network generation should be considered in the
future.

6.3 Future Work
There are many possible paths this research can take in the future. However, based on the finding in
this thesis, there are a few immediate steps that can be taken to better understand how small RNNs
perform temporal prediction.

The networks presented in this thesis were all primarily tested on a single problem domain,
utilizing the same foreperiods. Experimenting not only with more variations of foreperiod patterns,
lengths and spacings, but also more distributions, could grant deeper insight into the adaptability of
the networks generated by this model, and how this adaptability is expressed in the topology.

However, to better understand the networks, one of the most significant drawbacks of NEAT for
this thesis should be adressed. That being the inability of NEAT to develop networks with signed
nodes. Either finding a solution to make NEAT evolve networks with signed nodes, or exploring other
neuroevolutionary techniques would be a natural step towards generating more biological plausible
and interpretable networks.

Lastly, seeing as the networks were able to perform well even without employing Hebbian Learn-
ing, doing more experiments utilizing other potential forms of learning could grant insight into how
different neuroplastic techniques affect temporal prediction.

36

Bibliography

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neu-
ron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of
Neuroscience, 2(1), 32–48. https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982

Bueti, D., Bahrami, B., Walsh, V., & Rees, G. (2010). Encoding of Temporal Probabilities in the
Human Brain. Journal of Neuroscience, 30(12), 4343–4352. https : / / doi . org / 10 . 1523 /
JNEUROSCI.2254-09.2010

Caamaño, P., Bellas, F., & Duro, R. J. (2015). Τ-NEAT: Initial experiments in precise temporal
processing through neuroevolution. Neurocomputing, 150, 43–49. https://doi.org/10.1016/j.
neucom.2014.04.077

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014, December 11). Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. arXiv: 1412.3555 [cs]. https://doi.org/
10.48550/arXiv.1412.3555

Coull, J. T., Cotti, J., & Vidal, F. (2016). Differential roles for parietal and frontal cortices in fixed
versus evolving temporal expectations: Dissociating prior from posterior temporal probabili-
ties with fMRI. NeuroImage, 141, 40–51. https://doi.org/10.1016/j.neuroimage.2016.07.036

Goldberg, D. E., Richardson, J., et al. (1987). Genetic algorithms with sharing for multimodal function
optimization. Genetic algorithms and their applications: Proceedings of the Second Interna-
tional Conference on Genetic Algorithms, 4149.

Herbst, S. K., Fiedler, L., & Obleser, J. (2018). Tracking Temporal Hazard in the Human Elec-
troencephalogram Using a Forward Encoding Model. eNeuro, 5(2), ENEURO.0017–18.2018.
https://doi.org/10.1523/ENEURO.0017-18.2018

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735–80.
https://doi.org/10.1162/neco.1997.9.8.1735

Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque
area LIP. Nature Neuroscience, 8(2), 234–241. https://doi.org/10.1038/nn1386

Kristoffersen, M. H., & Elgaaen, S. H. (2022, December 31). Combining des-hyperneat with gradient
descent [NTNU Project Assignment].

Lea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016, August 29). Temporal Convolutional Networks:
A Unified Approach to Action Segmentation. arXiv: 1608.08242 [cs]. https://doi.org/10.
48550/arXiv.1608.08242

Maes, A., Barahona, M., & Clopath, C. (2020). Learning spatiotemporal signals using a recurrent
spiking network that discretizes time. PLOS Computational Biology, 16(1), e1007606. https:
//doi.org/10.1371/journal.pcbi.1007606

Maes, A., Barahona, M., & Clopath, C. (2021). Learning compositional sequences with multiple
time scales through a hierarchical network of spiking neurons. PLOS Computational Biology,
17(3), e1008866. https://doi.org/10.1371/journal.pcbi.1008866

McIntyre, A., Kallada, M., Miguel, C. G., Feher de Silva, C., & Netto, M. L. (n.d.). neat-python.
Miconi, T., Rawal, A., Clune, J., & Stanley, K. O. (2018). Backpropamine: Training self-modifying

neural networks with differentiable neuromodulated plasticity. Retrieved August 30, 2023,
from https://openreview.net/forum?id=r1lrAiA5Ym

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3), 267–273. https://doi.org/10.1007/BF00275687

Papavasileiou, E., Cornelis, J., & Jansen, B. (2021). A Systematic Literature Review of the Succes-
sors of “NeuroEvolution of Augmenting Topologies”. Evolutionary Computation, 29(1), 1–73.
https://doi.org/10.1162/evco_a_00282

37

https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1523/JNEUROSCI.2254-09.2010
https://doi.org/10.1523/JNEUROSCI.2254-09.2010
https://doi.org/10.1016/j.neucom.2014.04.077
https://doi.org/10.1016/j.neucom.2014.04.077
https://arxiv.org/abs/1412.3555
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1016/j.neuroimage.2016.07.036
https://doi.org/10.1523/ENEURO.0017-18.2018
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nn1386
https://arxiv.org/abs/1608.08242
https://doi.org/10.48550/arXiv.1608.08242
https://doi.org/10.48550/arXiv.1608.08242
https://doi.org/10.1371/journal.pcbi.1007606
https://doi.org/10.1371/journal.pcbi.1007606
https://doi.org/10.1371/journal.pcbi.1008866
https://openreview.net/forum?id=r1lrAiA5Ym
https://doi.org/10.1007/BF00275687
https://doi.org/10.1162/evco_a_00282

Risi, S., Lehman, J., & Stanley, K. O. (2010). Evolving the placement and density of neurons in the
hyperneat substrate. Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, 563–570. https://doi.org/10.1145/1830483.1830589

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10(2), 99–127. https://doi.org/10.1162/106365602320169811

Trujillo, L., Muñoz, L., Naredo, E., & Martínez, Y. (2014). NEAT, There’s No Bloat. In M. Nicolau, K.
Krawiec, M. I. Heywood, M. Castelli, P. García-Sánchez, J. J. Merelo, V. M. Rivas Santos, &
K. Sim (Eds.), Genetic Programming (pp. 174–185). Springer. https://doi.org/10.1007/978-
3-662-44303-3_15

38

https://doi.org/10.1145/1830483.1830589
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1007/978-3-662-44303-3_15
https://doi.org/10.1007/978-3-662-44303-3_15

Appendix A

Results of Preliminary Testing

-1

326

-2

0

(A) The nodes labeled -1
and -2 represent the Go and
Ready nodes respectively,
while the 0 node is the out-
put node. Red connections
have positive weight, blue
connections have negative
weight.

(B) Y-axis represents output magnitude, X-axis
represent time steps

Figure A.1: Preliminary network and corresponding network output for a binomial distribution

39

-1

3985

-2

0

Figure A.2: Preliminary network and corresponding network output for a rising linear distribution

-1

510

-2

0

Figure A.3: Preliminary network and corresponding network output for a sinking linear distribution

40

Figure A.4: Priliminary network utilizing Hebbian learning and corresponding network output for
three distributions: sinking linear, rising linear, and binomial

41

Appendix B

Detailed results of Network B

ready

key 2923
bias 0.457
α 0.973

-0.361
key 131602
bias -0.581
α 0.026

1.000

go

key 42178
bias -0.735
α 0.730

-0.935

0.952

output
bias 0.227
α 0.438

-0.860

0.518

0.204

0.946

-0.967

-0.983

0.791

0.231

-0.677

0.916

key 69010
bias -0.093
α 0.960

0.993

0.428

0.081

(A) (B)

Figure B.1: Network B. (A) Topology and weights of Network B, with a fitness of 0.977. (B)
Network output for each foreperiod trial of network B, in order.

42

Figure B.2: Hebbian weight change for network B. Each graph indicates the change in Hebbian weight
of the outgoing connections from the node in the graph title to the node indicated by the plot color.
Only positive connections are included and values are scaled based on the input node’s Hebbian
magnitude factor. Vertical bars indicate the start of a new foreperiod block, which are in the order
[3, 1, 5, 2, 4].

43

Figure B.3: Correlation of Hebbian weights and foreperiod. Correlation is calculated by taking
the average Hebbian weight of the last 40 trials of each block for each connection and comparing those
averages to the foreperiod.

44

Appendix C

Detailed results of Network C

ready

key 6493
bias -0.642
α 0.130

-0.725

key 8493
bias -0.453
α 0.406

0.768

go

0.996

key 100
bias -0.383
α 0.636

0.987
output

bias 0.561
α 0.332

-0.111

-0.996

0.956

-1.000

0.945

0.904

-0.519

-0.352

0.780

(A) (B)

Figure C.1: Network C. (A) Topology and weights of Network C, with a fitness of 0.982. (B)
Network output for each foreperiod trial of Network C, in order.

45

Figure C.2: Hebbian weight change for network C. Each graph indicates the change in Hebbian
weight of the outgoing connections from the node in the graph title to the node indicated by the
plot color. Only positive connections are included and values are scaled based on the input node’s
Hebbian magnitude factor. Vertical bars indicate the start of a new foreperiod block, which are in
the order [3, 1, 5, 2, 4].

Figure C.3: Correlation of Hebbian weights and foreperiod. Correlation is calculated by taking
the average Hebbian weight of the last 40 trials of each block for each connection and comparing those
averages to the foreperiod.

46

Appendix D

Results of Network D

ready

key 3217
bias -0.044
α 1.000

-0.194
key 12151
bias -0.575
α 1.000

1.000

go

key 4875
bias -0.887
α 1.000

0.844
key 7056

bias -0.786
α 1.000

1.000

0.902

output
bias 0.339
α 1.000

0.238

key 215175
bias -0.147
α 1.000

0.074

0.451

-0.266

-1.000

0.274

key 36175
bias -0.810
α 1.000

1.000

0.531

-0.419

0.930

0.928

-1.000

0.962

0.941

0.438

-0.703

0.904

(A) (B)

Figure D.1: Network D. (A) Topology and weights of Network D, with a fitness of 0.986. (B)
Network output for each foreperiod trial of Network D, in order.

47

	Introduction
	Motivation and Background
	Goals and Research Questions

	Background Theory
	Time Series Analysis
	Temporal Prediction
	Hazard Function
	Foreperiod Task

	Machine Learning
	Unsupervised Learning

	Artificial Neural Networks
	Recurrent Neural Networks

	Evolutionary Algorithms
	Genetic Algorithm
	Speciation
	Neuroevolution

	Neuroevolution of Augmenting Topologies
	The Competing Conventions problem
	Genetic Encoding and Historical Markings
	Crossover
	Incremental Growth from Minimal Structure

	Hebbian Learning

	Related Work
	Systematic Literature Review
	-NEAT
	Learning Spatiotemporal Signals Using a Recurrent Spiking Network That Discretizes Time

	Methodology
	Network Implementation
	Model Limitations

	NEAT Implementation
	Hyperparameters

	Ready-Go Task

	Experiments and Results
	Model Performance
	Interpreting The Hebbian
	Running Without Hebbian Learning
	Interpreting the Networks

	Discussion and Future Work
	Discussion
	Conclusion
	Future Work

	Bibliography
	Results of Preliminary Testing
	Detailed results of Network B
	Detailed results of Network C
	Results of Network D

