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Abstract

For companies that purchase electricity in advance, achieving accurate predictions
of consumption is crucial. Using machine learning and historical data enables the
creation of predictive response models. The main topic in this thesis is to accur-
ately classify new customers into appropriate clusters/groups based on their initial
variables. The idea is that classification can develop effective prediction models for
new homes lacking historical hourly consumption data. Tibber, an energy company
operating in the Nordic region, has generously provided time series data related to
customers’ electricity consumption. The insights gained from the master analysis
are anticipated to provide valuable information for the energy company.

The primary goal of this thesis involves to evaluate a range of classification meth-
ods to determine if any models exhibit exceptional performance in delivering an
acceptable accuracy. Clusters were used as response variable to evaluate differ-
ent classification methods. These clusters were created based on the mean hourly
consumption within a subset of the data set. Several classification models have
been trained using the clusters as response variables, including K-Nearest Neigh-
bors (KNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), Support Vector Machine (SVM), Random Forest (RF), and Kernel Density
Classifier (KDC). Among these, LDA demonstrated the best performance on the
test set, leading to its selection for further analysis.

Later on, with the new customers together with the old customers, consumption
values were predicted using a Generalized Linear Model (GLM) and a Linear Model
(LM) for each group. The overall predicted consumption was then compared against
the actual overall consumption, measured by Mean Absolute Error (MAE). Given
the diverse variables and missing values in the data, various approaches to handle
the data were explored.

The final MAE value achieved with the LDA model, where 248 of 829 were con-
sidered new customers, was 165.7 kWh. When considering the entire data set as
one group, the MAE value was 218.3 kWh. Alongside with the linear model, an
additional variable was later incorporated, involving the consumption variable from
the previous day. This inclusion resulted in a MAE of 159.7 kWh for the clusters.
Consequently, the combination of clustering and classification methods resulted in
an improvement in accuracy compared to all the data as one single cluster.
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Samandrag

Det er avgjerande for bedrifter som kjøper straum p̊a førehand å oppn̊a nøyaktige
prognosar for forbruket. Ved å nytte maskinlæring og historiske data kan ein utvikle
prediktive responssmodellar. Hovudmålet med masteroppg̊ava er å klassifisere nye
kundar inn i passande klynger/grupper basert p̊a startvariablane deira. Tanken er
at klassifisering kan utvikle effektive prognosemodellar for nye kundar som mang-
lar historisk times forbruksdata. Tibber, eit energiselskap som opererer i Norden,
har velvillig levert oss tidsseriedata knytt til straumforbruket til kundane sine.
Kunnskapen fr̊a masteranalysen vil forh̊apentlegvis gje verdifull innsikt for ener-
giselskapet.

Dei viktigaste måla med denne oppg̊ava involverer å evaluere eit spekter av klassi-
fikasjonsmetodar for å avgjere om nokre modellar viser god ytelse med akseptabel
nøyaktigheit. Klynger vart nytta som responsvariabel for å evaluere ulike klassi-
fiseringsmetodar. Desse klyngene blei til fr̊a det gjennomsnittlege timesforbruket av
ei undergruppe av datasettet. Fleire klassifikasjonsmodellar vart trente ved å nytte
klyngene som responsvariablar, inkludert K-Nearest Neighbors (KNN), Linear Dis-
criminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector
Machine (SVM), Random Forest (RF) og Kernel Density Classifier (KDC). Blant
desse viste LDA den beste ytelsen p̊a testsettet, noko som førte til at den blei vald
for vidare analyse.

Etterp̊a vart forbruksverdiane, for nye og gamle kundar, predikert ved å nytte ein
Generalized Linear Model (GLM) og ein Linear Model (LM) for kvar gruppe. Det
samla predikerte forbruket vart deretter samanlikna med det faktiske samla for-
bruket, målt i Mean Absolute Error (MAE). Sidan datasettet inneheldt fleire vari-
ablar og manglande verdiar, vart det utforska ulike tilnærmingsm̊atar for å handtere
dataen.

Den endelege MAE-verdien oppn̊add med LDA-modellen for 248 nye kundar var
165.7 kWh. D̊a heile datasettet vart vurdert som ei gruppe, var MAE-verdien 218.3
kWh. Saman med den linære modellen vart det integrert ein ekstra variabel som
omfatta forbruket fr̊a dagen før. Denne inkluderinga resulterte i ein MAE p̊a 159.7
kWh for klyngene. Som eit resultat viste kombinasjonen av klynge- og klassifikas-
jonsmetodar å gi ei auka nøyaktigheit i forhold til å sj̊a p̊a alle dataane som ei
klynge.
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1 Introduction

Electricity plays a crucial role in the Norwegian energy market and is a fundamental
element of the ongoing transition to green energy in Norway. The accessibility and
affordability of electricity are of vital importance, particularly during the winter
months when electricity prices tend to rise. This can pose challenges for many
households, making it essential to seek continuous improvements in energy efficiency
and cost management.

The Nordic region is recognized as a unified electricity market divided into several
price areas, representing specific regions for power market transactions. Taking Nor-
way as an example, Oslo is located in price area NO1. Power prices are determined
by the Nord Pool power exchange, and since all Nordic countries trade from Nord
Pool, prices change based on supply and demand from neighboring countries. The
power and market conditions in each area are influenced by the power flow between
the spot market areas, allowing for the transfer of power from one region to another
based on demand. This segmentation into price areas aims to maintain balance in
the power marked and reduce the risk of local or regional power shortages [4, 20].

Tibber is a digital electricity company that try to provide as cheap and well-timed
electricty for their customers. They do this by forecasting the consumption of a
household based on earlier consumption pattern and outside factors that affect the
customers usage. They have a customer base of 400 000 people located in Norway,
Sweden, Germany and also the Netherlands. Rather than imposing a fixed fee on
customers, Tibber provides spot prices, refraining from any profit on customers’
consumption [22]. Additionally, they leverage smart home devices to enhance cost
savings for customers. While it is certainly feasible to forecast each individual
home’s consumption, this approach can be time-consuming. Hence, simplifying the
forecasting process and uncovering trends that may not be immediately evident
when examining individual homes, we aim to investigate the potential benefits of
clustering homes into groups for making forecasts.

The data sets utilized in this thesis have been supplied by Tibber, derived from their
Swedish customer base in price area SE3. Two data sets have been provided, one
containing time series data and the other comprising properties of various house-
holds. The first data set primarily consists of continuous variables, including 11
explanatory variables and a length of 9 117 535 rows. The second is predomin-
antly composed of categorical variables, containing 141 108 rows and 9 explanatory
variables. Although both data sets have been employed in the thesis, the primary
emphasis has been on the home properties data as they were used in the classifica-
tion. A more in-depth exploration of these data sets will be undertaken in Section
3.

Certain sections in this thesis have been adapted, with minor adjustments, from my
project thesis [16]. This is particularly evident in Chapter 1, including the problem
and motivation discription. In Chapter 2, Section 2.4 and Section 2.5 have been
added from [16] with alterations. Additionally, certain plots from [16] have been
included in both Chapter 2 and Chapter 4, appropriately credited as referenced.
The problem solving is based on the results of the project thesis and the same data
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set has also been used, thereas the same explanation of the data in Chapter 3.

1.1 Motivation

Tibber buy a large amount of electricity in advance based on the predicted con-
sumption of their customers. This is naturally a very large expense and there is a
lot of money that can go to waste if the forecast predicts poorly. In the event of an
underprediction, Tibber risks acquiring an insufficient amount of electricity, poten-
tially leaving customers without a satisfactory supply. Conversely, overprediction
results in unnecessary financial outlays for Tibber. Furthermore, there is a pref-
erence to maintain a balance between supply and demand within the price areas,
as previously mentioned, with the intention of minimizing the potential for power
shortages. Ensuring a reliable electricity supply for customers remains the top pri-
ority for an electricity company like Tibber. Figure 1 shows the marketing strategy
for their electricity offering to customers and offers a visual representation of the
app’s configuration.

Tibber derives its forecasts from the historical consumption patterns of its custom-
ers. However, a challenge arises when dealing with new customers for whom the
hourly consumption history is unknown. To provide an accurate estimate of their
consumption, the prediction model requires some time to adjust. Addressing this
issue is crucial for the company to obtain a reliable forecast of future electricity.
Despite the absence of historical hour consumption data for new customers, they
provide essential home properties information, including the size, type of their house-
hold and their annual consumption. Using this initial data, our aim is to categorize
new customers into appropriate groups, providing a reliable estimate of their future
consumption.

1.2 Outline

The goal of the master thesis is to address new customers properly, so that the
forecast is as good as possible from start of their Tibber subscription. Several
classification methods were examined, taking into account the presence of both
continuous and categorical variables in the problem. Certain models, such as LDA
and QDA, are limited to handling continuous variables exclusively. Furthermore,
when incorporating categorical variables into a classification method, it is necessary
to convert them, and in this context, the use of dummy variables has been explored.

The thesis is structured as followed. It begins with an introduction that presents
the problem and provides the motivation behind the research. This is followed
by Chapter 2, the theory section, that provides an in-depth understanding of the
various methods explored, including discussions on data transformation, as well as
explanations of classification and clustering techniques. Chapter 3 delves into the
details of the data set, providing insights into its structure, visual representation,
and addressing associated challenges. The method section, Chapter 4, outlines the
experimental implementation and the approach taken to address the data-related
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challenge. Subsequently, Chapter 5 is where the results and analysis are presented.
Chapter 6 is the final chapter that concludes the thesis and offers recommendations
for future work.

((a)) How they explain the usage of the electricity
profile of customers to buy electricity.

((b)) How a customer’s subscrip-
tion and usage are displayed in the
Tibber app.

Figure 1: Two images of the marketing on the website of Tibber, taken 11.10.23.
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2 Theoretical Background

This section delves into the different classification methods tested in this thesis.
The theory also includes various ways the data could be preprocessed and presented
before usage.

2.1 Continuous and categorical variables

There are two groups of variables that can be characterized, continuous or cat-
egorical also known as quantitative and qualitative. Continuous variables can have
different values as in age and size which can have an impact depending on the value.
Categorical variables are split into N different classes. These values are often inde-
pendent and will not affect each other. Variables like these can be an animal type,
a name or only binary answers (yes or no). Usually, problems with quantitative
response are solved with regression models, while classification models are mostly
used when the response is qualitative. There are, however, many different cases
and methods where both continuous and categorical variables have to be taken into
consideration. Many of the known statistical methods can handle both as long as
the variables are properly preprocessed and ready for usage [11].

2.2 Classification

Classification is a technique used to assign new objects to a predefined number
of groups. In this process, the chosen classification method’s goal is to categorize
objects into two or more labeled classes, with the primary aim being the optimal
assignment of new objects to these labeled classes [12]. Discriminants are often
used to seperate groups or collections as much as possible. Classification rules are
typically derived from training samples, which consist of randomly selected objects
with known associations to specific populations. As a result, the potential sample
outcomes are constrained to specific defined regions. For instance, in a scenario with
two regions, if a new observation falls into region 1 (R1), it is assigned to population
π1, and conversely, if it falls into R2, it is assigned to population π2.

For two groups, classification can stay rather simple as we only need to know which
class is above a given threshold, for example 50%. When dealing with more than
two groups, the situation becomes more complex. A challenge is that the behavior
of a linear statistics, for instance, depends significantly on where the population is
located [12].

Consider a classification problem involving g classes. Let fi(x) be the probability
density function associated with an observation x from population πi and pi denotes
the prior probability that an observation originates from πi, i = 1, 2, ..., g. Applying
Bayes’ Theorem allows for the calculation of the posterior probability when a specific
data point x0 is observed.
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P (πi|x0) =
f(πi ∩ x0)

f(x0)
=

f(x0 ∩ πi)∑q
i=1f(x0|πi)pi

=
f(x0|πi)pi∑q
i=1f(x0|πi)pi

=
fi(x0)pi∑q
i=1fi(x0)pi

(1)

Since the denominator remains consistent across all cases, it is natural to classify x0

to belong to the population πk which fulfills

pkfk(x0) > pifi(x0) ∀ i ̸= k. (2)

Now, let c(k|i) be the cost of allocating an observation to πk when it belongs to
πi ̸= πk. In classification, the Minimum Expected Cost of Misclassification Method
(ECM) is usually considered. This method calculates the cost of being classified
wrong for each class.

Misclassification of a x from π1 to one of the other groups π2, π3, ..., πg will make
ECM(1) =

∑g
k=2 P (classify to πk|π1)c(k|1). Here, we have

P (classify to πk|π1) = P (k|1) =
∫
Rk

f1(x)dx.

Similarly, the conditional expected costs of misclassification, ECM(2), ...,ECM(g),
can be calculated. Then, the total ECM =

∑q
i=1 piECM(i) can be computed as the

sum of each conditional ECM, multiplied by the prior probability.

ECM = p1ECM(1) + p2ECM(2) + ...+ pgECM(g)

=

q∑
i=1

pi (ECM(i)) =

q∑
i=1

pi

 g∑
i=1
i ̸=k

P (k|i)c(k|i)

 . (3)

Selecting the ideal classification approach involves choosing regions that are non-
overlapping and all-inclusive, in order to minimize Equation 3.

It can be shown that the ECM allocate x0 to the group πk where

g∑
i=1
i ̸=k

pifi(x)c(k|i)

has the lowest value [12]. Here, pi is the prior probability of the chosen group i,
fi is the density connected to the population and c(k|i) is the cost of assigning the
the group πk to the group πi. If the cost is equal for two or more groups, x can be
placed in any of those populations with the same, minimal cost.
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2.2.1 The Bayes Classifier

Bayes is a simple classifier that allocate the test observations to a class based on the
predictor values [11]. A new observation will be classified to the class for which the
probability

Pr(Y = j|X = x0), j = 1, 2, ..., g (4)

is the largest. Here, j is the class and x0 is the predictor value. In a simple
classification problem, where there are only 2 classes, the Bayes Classifier would
assign a test observation a class based on

Pr(Y = 1|X = x0) > 0.5.

In this case, the test observation would, according to the classifier, belong to class
1.

Figure 2 is an example from p. 38 in [11], where we can see how the classifier
works on simulated data. As the figure shows, there are two classes, orange and
blue, made from the training observations. There is a lined distinction between the
bright orange and blue shades, this shows which class a new test observation is more
likely to belong to. If a test point X is placed in the blue shade, this means that
Pr(Y = blue|X) > 0.5. Therefore, the test point will be assigned to class blue. The
dashed line is called the Bayes decision boundary and is where the probability is
50% for both classes.

Figure 2: How the Bayes Classifier operates on a two-dimensional space with the
predictors X1 and X2.

Source: Page 38 in [11]

In addition, the Bayes classifier finds the minimum test error rate, referred to the
Bayes error rate. The Bayer classifier selects the class with the highest value for
equation 4. The expectation involves averaging the probability across all possible
values of X.
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1− E

(
max

j
Pr(Y = j|X)

)
.

Several classification methods are built upon the Bayes Classifier, this includes both
in KDC and LDA, with a detailed description to follow later on.

2.2.2 K-nearest neighbour

The K-nearest neighbour (KNN) involves estimating the conditional distribution of
Y given X, determining the highest estimated probability for assigning to a specific
class. The KNN algorithm measures the distance between the observations using
Euclidean distance. For a test observation, the algorithm considers its closest neigh-
bors, where the integer K denotes the number of training observations nearest to x0

to be examined during the KNN process. The set of these K nearest neighbours is
denoted as N0. The method then calculates the conditional probability for class j
as the fraction of points in N0 where response values equal the class j. The target
class for the new observation is determined by the majority of the class within this
neighbourhood [11].

Pr(Y=j|X=x0) =
1

K

∑
i∈N0

I(yi = j) (5)

A disadvantage with KNN is that the amount of neighbours, K, compared with
the new object has to be identified at the beginning. Testing can certainly be per-
formed in this context, like applying the elbow method. This technique involves
executing KNN clustering with various K intergers to determine the optimal num-
ber of clusters. This involves setting up a loop using the training set, where the
KNN model is employed with different initial K values. Throughout this process,
the error rate is monitored by comparing the model’s predictions on the test set
against the actual values. The final results are visualized in a plot, where the x-
axis represents the integer K, and the y-axis depicts the corresponding error rates.
Typically, a distinctive ”elbow” shape emerges, and at the point where the slope
decreases minimally, you can identify the desired K value. This approach ensures
an appropriate number of clusters while preventing overfitting of the data set [7].
However, when testing for a lot of different data, the K integer might change for the
best fits, and it has a large effect on how the classifier is obtained.

Figure 3 shows how the K-Nearest Neighbour operate when it gets a new observation.
In this example, the method takes K=3 as input, indicating that it examines the
three closest neighbors of a new observation and subsequently selects the class based
on the highest estimated probability.
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Figure 3: How the KNN method operates.

Source: Page 40 in [11]

2.2.3 LDA and QDA

Linear- and Quadratic discriminant analysis, LDA and QDA respectively, are very
common methods to use when we are only considering continuous variables.

LDA is a popular classification method as it handles well-seperated classes well,
is stable and often used with more than two response classes. In the problem
of the master thesis, there are multiple response classes as well as multiple pre-
dictor variables. For LDA to work with a several predictors, it assumes that
X = (X1, X2, ..., Xp) is drawn from a multivariate Gaussian distribution. This dis-
tribution is a generalization of the normal density, designed for multiple dimensions
[12]. The probability density function is given as

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ(x− µ)

)
.

In this case, Σ is the covariance matrix of X, µ is the mean vector and x is the
observation vector.

The linear discrimination score can be found by maximizing pifi(x), i = 1, 2, ..., g,
as was shown in equation (2). Since maximizing pifi(x) is equivalent to maximizing
ln(pifi(x)), x should be classified to πk if

ln pkfk(x) = ln pk −
(p
2

)
ln 2π − 1

2
ln |Σ| − 1

2

(
(x− µk)

TΣ(x− µk)
)

= max
i

ln pifi(x).

The second term in the equation can be ignored, as this is constant for all the
populations i. When expressing the term, we obtain −1

2
ln |Σ| − 1

2
xTΣx, which can

be disregarded since it remains constant across δL1 (x), δ
L
2 (x), ..., δ

L
g (x). Disregarding

this term leaves us with a constant and a linear combination of components of x.
Therefore, the linear discrimination score for the i-th population can be defined as
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δLi (x) = xTΣ−1µi −
1

2
µT

i Σ
−1µi + ln pi, i = 1, 2, , ..., g.

The LDA classification works by comparing δLi (x), i = 1, 2, ..., g, and assign x to
the class for which δLi (x) is largest. An essential component for this approach
is the distinction in mean vectors for observations in different classes, while they
share a common covariance matrix. In practice, both µi and Σ, i = 1, 2, ..., g are
unknown. However, utilizing a training set with correctly classified observations
enables the construction of estimations for these parameters [12]. With nj as the
observations from πi and n =

∑g
j=1 nj, the estimated mean and covariance for a

normal population can be given as

µ̂i =
1

nj

nj∑
j=1

xji and Σ̂ =
1

n

n∑
j=1

(xj − x)(xj − x)T . (6)

Figure 4 shows how a LDA can look for three different classes. Here again, the
dashed line represents the Bayes boundary descision based on the true values of µi

and Σ. The colored ellipses regions the 95% probability of belonging to that specific
class. In this example the observations are drawn from a mulitvariate Gaussian
distribution with a specific mean vector of a chosen class and a common covariance
matrix. As earlier, the Bayer Classifier assign an observation a class depending
on where it is located. The image on the right-hand side shows the LDA descion
boundaries based on the estimated µi and Σ that are visualized with the black solid
lines.

Figure 4: How the LDA method operates. The left picture shows the region of the
classes, while the picture to the right shows the observations.

Source: Page 143 in [11]

Quadratic Discrimimant Analysis (QDA) is similar to LDA in many ways best differs
in the way that QDA, unlike LDA, assumes each class has their individual covari-
ance matrix. Therefore, for the quadratic discrimination score, the term −1

2
log |Σi|

cannot be taken out from pifi(x) and the dicriminant score becomes
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δQi (x) = −1

2
(x− µi)

TΣ−1
i (x− µi)−

1

2
log |Σi|+ log pi, i = 1, 2, ..., g.

We assign the observation to the class for which δQi (x) is largest.

Unlike the earlier LDA expression, it shows from this equation that the covariance
matrix is dependent on which class k that is considered. Also, observations will enter
in a quadratic manner. Hence, in QDA, a covariance matrix needs to be estimated
for each class. To accomplish this, there must be a sufficient number of training
observations within each class, allowing for a reliable estimation. The estimated
covariance matrix can be found by

Σ̂i =
1

nj

nj∑
j=1

(xij − xi)(xij − xi)
T .

The reason why there could be an advantage of choosing QDA instead of LDA is
because of the bias-variance trade-off. As QDA calculate a covariance matrix for each
class (Σi), there are gp(p+1)/2 parameters to estimate for the covariance matrices,
while as for LDA there are only p(p + 1)/2. For multiple classes these calculations
in QDA becomes larger. However, that also makes QDA much more flexible than
LDA. There are advantages and disadvantages to consider when deciding which
method to choose. As LDA assume g classes share a common covariance matrix,
LDA can suffer from high bias. In essence, LDA tends to perform more favorably
than QDA when dealing with a limited number of training observations, prioritizing
the reduction of variance. If the training data set is relatively large, diminishing the
impact of classifier variance, or assumption of distinct covariance matrices, QDA is
recommended.

Figure 5 display a possible outcome from utilitizing QDA and LDA on a simulated
data set. It really shows the diversity within the methods and the flexibility of QDA.

Figure 5: How the QDA method operates. The green line is QDA, the dotted black
is the LDA and the dashed read is Bayes Classifier where the distribution is known.

Source: Page 150 in [11]
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2.2.4 KDC

Kernel Density Clustering (KDC) is based on two things, Kernel Density Estimation
(KDE) and then clustering with a classifier. The method focused on in this thesis
is the Naive Bayes Classifier.

First, let us focus how the Kernel Density Estimation operates. KDE estimates the
PDF of each data point [23]. Numerous investigations aim to estimate f(x) using
a sample of observations x1, x2, ..., xn. The relationship between the probability
distribution and the PDF can be defined as

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx,

where X is a continuous-valued random variable and f(x) is the PDF.

The parametric approach assumes that the PDF of a data set belongs to a specific
parametric family of distributions. However, the main drawback of this approach is
its lack of flexibility, as it may not accurately capture the true underlying distribu-
tion. When flexibility and adaptability are essential, a non-parametric approach is
favored, as it allows for more adaptable and data-driven modeling of the distribution.

To estimate the PDF from data when the underlying distribution is unknown, it
is necessary to have both a weight function and a kernel. These components are
essential for conducting KDE. The weight function specifies how each data point
influences the estimation, while the kernel dictates the smoothing applied to the
data, shaping the approximation of the PDF. This function tells us the degree of
smoothness of the PDF.

First, we will examine KDE and the process of establishing the weight function.
From the definition of the PDF, denoted as f(x), for a random variable X, it follows
that

P (x−h < X < x+h) =

∫ x+h

x−h

f(t)dt ≈ 2hf(x) ⇒ f(x) ≈ 1

2h
P (x−h < X < x+h).

By examining the relative frequency, f(x) can be approximated

f̂(x) =
1

2h

data samples in (x− h, x+ h)

n
,

which can be rewritten as

f̂(x) =
1

n

n∑
i=1

w(x− xi, h).

In this case, the observed values are defined as x1, x2, ..., xn. Also, we can now
observe from the expression there has appeared a weight function as
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w(t, h) =

{
1
2h

for |t| < h,

0 otherwise.

There are various methods to articulate the weight function, but they all ultimately
trace back to the form of

w(t, h) =
1

h
K

(
t

h

)
.

Here, K, referred to as the kernel, is a function that depends on a single variable.
The kernel plays a large role in the shape of the weight function. While the band-
width parameter, also called smoothing constant, is presented as h. The bandwidth
determines the amount of smoothing to apply to the estimated PDF. The combin-
ation of the bandwidth and the kernel estimation produces the properties of f̂(x).

Some simple kernels are the Triangular and Rectangular kernels, respectively 1− |t|
for |t| < 1, 0 otherwise and 1

2
for |t| < 1, 0 otherwise. The most common kernel is

the Gaussian kernel, which is given as K(t) = 1√
2π
e−(1/2)t2 . Generally, any function

that possesses the following properties can serve as a kernel:

•
∫
K(z)dz = 1

•
∫
zK(z)dz = 0

•
∫
z2K(z)dz := k2 < ∞

Figure 6 show plots from an example in [23] of kernel estimates with a Gaussian
kernel and various bandwidth sizes.
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Figure 6: Example of kernel estiamtes with a Gaussian kernel and various inputs
for the bandwidth.

Source: page 10 in [23]

The aim is to identify the optimal bandwidth and kernels, determined through
an assessment of their efficiency based on the Measured Integrated Squared Error
(MISE),

MISE(f̂) = E

∫ ∞

−∞
(f̂(x)− f(x))2dx

=

∫ ∞

−∞

[
E(f̂(x)− f(x))2

]
dx =

∫ ∞

−∞
MSE(f̂(x))dx

=

∫ ∞

−∞

[
Bias2f̂(x) + Var(f̂(x))

]
dx =

∫ ∞

−∞
Bias2f̂(x)dx+

∫ ∞

−∞
Var(f̂(x))dx.

This is a measure of the global accuracy of f̂(x), indicating the quality of the density
estimator. A more detailed calculation of bias and variance can be found in [23].

2.2.5 Support Vector Machine

The Support Vector Machine (SVM) is a supervised machine learning algorithm
and is a well known method within classification. This method is referred to as
the maximal margin classifier, because of its simple and intituive classification style
[11]. The primary goal of the SVM algorithm is to identify the optimal hyperplane
within a p-dimensional space, which can effectively segregate data points across
various classes within the feature space [10]. A p-dimensional hyperplane with a
point X and beta parameters is defined as
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β0 + β1X1 + β2X2 + ...+ βpXp = 0.

Now, imagine there are points based on n training and p dimensions

x1 =

x11
...

x1p

 , ..., xn =

xn1
...

xnp

 .

Then the separating hyperplane classifies after

f(x) = β0 + β1xi1 + β2xi2 + ...+ βpxip > 0 if yi = 1

and
f(x) = β0 + β1xi1 + β2xi2 + ...+ βpxip < 0 if yi = −1,

for all i = 1, ..., n.

The support vectors represent the closest points to this hyperplane, and consequently,
they exert significant influence on determining the margin. The margin is defined
as the distance between the support vectors and the hyperplane. The primary
goal of the support vector machine algorithm is to maximize this margin because a
wider margin signifies improved classification performance. All these elements are
depicted in Figure 7, where the support vectors represent observations closest to
the hyperplane, and the margin illustrates the distance extending outward from the
hyperplane.

Figure 7: Visual representation of the support vectors, hyperplane, and margin.

Source: [9]

The distance between the hyperplane and the support vectors can be determined by

di =
xTβi + β0

||x||
,
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where the denominator indicates the Euclidean norm of x [10].

An example of how a separating hyperplane can act is shown in Figure 8. On
the left side, numerous potential hyperplanes capable of distinguishing between the
two classes are depicted. Meanwhile, the right-hand side illustrates the specific
hyperplane that the classifier ultimately selects.

Figure 8: Separating hyperplanes in SVM.

Source: page 340 in [11]

We opt for the hyperplane that maximizes the distance from itself to the nearest data
point on each side. If such a hyperplane can be found, it is termed the maximum-
margin hyperplane or hard margin. However, in cases where it is impossible to
completely separate the classes due to outliers, the SVM seeks to find the maximum
margin while imposing a penalty each time a data point crosses the margin. In such
situations, these margins are referred to as soft margins [10]. Therefore, there can
be two different optimization problem. First, for har margin linear SVM classifier

min
x,β0

1

2
xTx = min

x,β0

1

2
||x||2

subject to fi(x
Tβ + β0) ≥ 1 for i = 1, 2, ..., n.

Second, the optimization problem of a soft margin will look like

min
x,β0

1

2
xTx+ C

n∑
i=1

ζi

subject to fi(x
Tβ + β0) ≥ 1− ζi and ζi ≥ 0 for i = 1, 2, ..., n.

In this context, the term C ≥ 0 denotes the cost parameter, which regulates the
penalty obtained for misclassifying an observation. Additionally, ζi signifies the
permissible slack allowed for the given problem.
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2.2.6 Random Forests

A classification tree predicts for each observation to be in the same class as most
other training observations in its region. The trees grows by using recursive binary
splitting. This splitting method is a top-down, greedy approach. Meaning, it begins
from the top of the tree and works its way down, splitting by the best possible choice
in that particular step. Figure 9 displays how a decision tree can be structured.

Figure 9: Decision tree build on a recursive binary splitting approach.

Source: page 313 in [11]

Random Forests construct their decision trees using bootstrapped training samples.
During the process of building these decision trees, a random subset of n predictors
is selected as candidate predictors for each split, chosen from the complete set of p
predictors [11]. Typically, this random sample is chosen as n ≈ √

p. The advantage
of using random forests over other decison tree methods primarily attributed to
the introduction of randomness. In many cases, when a strong predictor dominates,
most decision tree methods tend to select it as the top split, resulting in very similar
trees. Random forests, by limiting each split to involve only a subset of predictors,
creates diversity in the collection of trees, diminishing the likelihood of depending
too heavily on a single dominant predictor.

When a Random Forest is used for classification, it takes a subset of data points and
constructs an individual decision tree for each sample. Each tree generates its own
prediction, and the chosen class for the overall classification is the one that appears
most frequently across all the trees [15].

2.2.7 Accuracy

For the classification accuracy, the response is no longer a numerical value. One can
simply find the accuracy rate by comparing the similarity between the training and
test observations.

1

n

n∑
i=1

I(yi = ŷi),
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where yi is the actual class and ŷi is the predicted class. I(yi = ŷi) is an indicator
variable and says if the prediction has been classified correctly. This means that
when the actual and the predicted class equals each other, the indicator variable
equals 1. The sum of correct placements over the amount of observations considered,
gives the accuracy rate of the classification model. The accuracy rate is the opposite
of the error rate, where the amount of misplaced classes are in focus instead.

A confusion matrix provides an effective output to present accuracy information.
A matrix representing the class sizes will be shown, with correctly placed classes
displayed along the diagonal. Figure 10 shows a very simple confusion matrix.
Here, the columns are the predicted class and the rows are the true class of the
observation.

Figure 10: An example of a confusion matrix.

2.3 Transformation

Several machine learning algorithms assumes that the given data set has a Gaussian
distribution, though this is often not the case for real data. Therefore, the data often
needs to be preproccesed before used. Often a data set gives us more information
if it is transformed somehow before being used. This will often make the machine
learning algorithm perform better. Even algorithms that do not expect variables to
have Gaussian distribution, often perform better when data are close to Gaussian.

2.3.1 Standarization

Standarization is a very usual data preprocessing method. This method tranforms
the variables to have a mean of 0 and a standard deviation of 1. This is done by
subtracting the sample mean from each observation and dividing the variable by its
standard deviation [17]. This is beneficial because it gives the data set the same
start construction.

2.3.2 Box-Cox

The Box-Cox transformation changes the output variables so that they are close to
having a Gaussian distribution. This means that the method stabilize the variation
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of the distribution. Box-Cox transformation is a method that helps choosing a good
lambda to transform the data set.

{
xλ−1
λ

if λ ̸= 0,

log(x) if λ = 0

The lambda ranges between 0 and 1, and indicates what type of transformation
should be done with the data set. For each column in the data set, it might be
a different optimal lambda. This helps us stabilize the variables with a zero mean
and a standard deviation of 1. Often, this tranformation leads to a more favorable
outcome.

The Box-Cox transformation can find a specific, numerical, optimal lambda, and it
can visualize a range of values where the lambda can be positioned, especially from
the most used transformations. An example of this visualization is shown in Figure
11. The most common Box-Cox transformations, written about in [2], are



λ = −1 ⇒ reciprocal transform,

λ = −0.5 ⇒ reciprocal square root transform,

λ = 0 ⇒ log transform,

λ = 0.5 ⇒ squareroot transform,

λ = 1 ⇒ no transformation.
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Figure 11: Shows how a Box-Cox transformation plot can look.

2.4 Clustering

Clustering is an approach that organizes data exhibiting comparable patterns into
cohesive groups. This allows us to reduce the number of models required, as op-
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posed to creating an individual model for each data point. Clustering analysis is
an example of unsupervised machine learning, eliminating the necessity to label in-
put and output values for the training data [19]. Two very common methods are
K-means and Hierarchical Clustering. Other methods worth mentioning include
Self-organising Map (SOM), Fuzzy K-means (FKM) and Support Vector Clustering
(SVC), where further information about all of these methods can be found in [16].

A clear distinction between classification and clustering to note is the knowledge of
the amount of groups. As written earlier, classification knows the number of classes
and assigns new observations to these already made classes [12]. Clustering, on
the other hand, take no assumptions of amount of groups or their structure. This
method forms groups based on the similarities of the data.

2.4.1 K-means

K-means stands as one of the most frequently utilized clustering techniques, designed
to minimize the pairwise distance between data points within each cluster [19].

The observations x1, ..., xn ∈ Rd are divided into K clusters C1, ..., Ck, which are
created based on the objective

min
C1,...,CK
µ1,...,µK

K∑
j=1

∑
i∈Cj

||xi − µj||22, (7)

where µl =
1

|Cl|
∑n

i∈Cl
. The cost function, |Cl|, is an average of the variance for each

cluster, taking into account their respective sizes.

The K-means clustering method entails selecting a specified number (K) of clusters,
with the initial center points of each cluster determined randomly. The number of
clusters can be predefined or established using cluster analysis. Each data point is
then assigned to the cluster with the nearest center, as determined by the Euclidean
distance formula:

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2,

which means that observations are placed in the cluster with the closest mean. Sub-
sequently, the variance for the clusters and their observations is computed and saved.
This process is iterated multiple times, and the final result is the cluster configura-
tion with the smallest overall variance within the clusters. This is accomplished by
minimizing the total within-cluster variation through the calculation of the squared
sum of the Euclidean distance between each observation and its associated cluster
center.

Lloyd’s algorithm, often referred to as the K-means algorithm, is a potential ap-
proach for addressing the K-means objective. This algorithm aims to minimize the
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following expression:
min
j

||xi − µj||22.

In this expression, xi represents the data points, and µj represents the cluster centers.
The algorithm iteratively updates the cluster assignments and the cluster centers to
minimize the overall distance between data points and their assigned cluster centers.
More of this algorithm and possible withdraws with the K-means approach can be
found in [16].

Figure 12 illustrates the appearance of a clustering plot after applying a K-means
approach to a set of observations. The figure displays the mean hourly consumption
for five distinct clusters derived from a three-month time interval. It underscores dif-
ferences between these clusters, showcasing variations in daily consumption patterns
among different households.

Figure 12: A visualization of a K-means clustering approach from the project thesis.

Source: [16]

2.4.2 Hierarchical Clustering

The hierarchical clustering technique is a widely used and straightforward method
for clustering. It operates through a sequence of either successive mergers or suc-
cessive divisions [12]. Initially, an equal number of clusters is created, matching the
number of objects, and these clusters are formed based on the similarities among the
objects. As the similarities decrease, subclusters are gradually merged into a single
cluster. The final clustering result is visualized in a dendrogram, a tree-structured
graph, with different colors representing larger subclusters. Figure 13 shows an ex-
ample of how a dendrogram can appear after applying hierarchical clustering to a
set of observations.
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Figure 13: A dendogram created from a hierarchical clustering approach from the
project thesis.

Source: [16]

Hierarchical clustering relies on linkage methods to determine cluster distances and
subsequently group the objects accordingly. These linkage methods are criteria
based on distance measurements to identify the nearest neighbors for each object.
The various methods offer different approaches to calculating distances between
observations, both within and outside the clusters. Some commonly used methods
for hierarchical clustering are single linkage, complete linkage, average linkage and
Ward linkage. For more knowledge of these methods, see [16].

2.5 Regression Analysis

Regression analysis is a statistical approach used for building relationships between
one or more dependent variables and a set of predictor independent variable values
[12]. The relationships can be used for explainations or predictions.

2.5.1 Linear and Non-Linear Models

A linear regression model is of the form

y = β0 + β1z1 + ...+ βrzr + ϵ. (8)

Here, y is the response, while the set of β are the unknown paramters and z1, z2, ..., zr
are r predictor variables meant to be associated to y. The random error variable is
expressed as ϵ ∼ N(0, σ2) and is assumed to be independent. The word linear comes
from the mean being a linear function of β [12].
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A model is regarded non-linear when the outcome is not a linear function in the
unknown parameters. A non-linear model may be expressed as followed

y = f(z, β) + ϵ.

2.5.2 Generalized Linear Models

Generalized linear models (GLM) are designed to handle univariate response vari-
ables that can be modeled using distributions from the exponential family [8]. This
method is widely employed in statistics and serves as a robust tool for constructing
predictive models. Distributions within the exponential family encompass gamma,
binomial, negative binomial, exponential, Poisson, Gaussian, inverse normal, and
geometric distributions. In contrast to linear models, GLMs introduce non-linearity,
offering flexibility that can be advantageous for fitting diverse types of data. While
linear models assume that the response variables are aligned with the explanatory
variables effects under the conditions of normality of errors and variance homogen-
eity, these assumptions are not mandatory for GLMs. Let Yi for i = 1, ..., n denote
the dependent response variables and let xi = (1, xi1, ..., xik)

T represent the explan-
atory variables. GLMs comprise three components: the random, the systematic, and
the link component. These elements are integrated into the GLMs’ linear predictor,
response variable distribution, and link function.

Members of the exponential family exhibit probability density functions expressible
as

f(y; θ, ϕ) = exp

{
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
, (9)

where a(·), b(·), and c(·) represent functions. In this context, θ denotes the canonical
parameter, and ϕ is the dispersion parameter. There are three components that build
the GLM and they are as followed [3, 8]:

1. The Random Component : This component comes from equation 9 and is the
probability distribution of the response variable Yi for i = 1, ..., n.

2. The Systematic Component : comes from the quantity

ηi(β) = xT
i β = β0 + β1xi1 + ...+ βkxik,

where ηi(β) is referred to the linear predictor and β = (β0, ..., βk)
T are un-

known parameters.

3. The Parametric Component : The link function comes from the relationship
between the mean µi of y and the linear predictor ηi found in step 2. The link
function is written as

g(µi) = ηi(β) = xT
i β.
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2.5.3 Distributions

The normal distribution, also called the Gaussian distribution, is one of the most
common and used distribution. When employing the normal distribution in a GLM,
no transformations are needed, resulting in a standard linear model [8]. In this con-
text, the use of the normal distribution implies that the response variable is assumed
to have a normal distribution and have a linear relationship with the predictor vari-
ables.

Consider equation 8 with ϵ ∼ N(0, σ2), then the density of the response variable y
can be written in exponential family form as

f(yi;µi, σ) = exp

{
yiµi − µ2

i

2

σ2
− 1

2

[
ln(2πσ2) +

y2i
σ2

]}
.

Then, when considering equation 9, it follows that θi = µi and ϕ = σ2 [3, 8]. Thereby,
the Gaussian distribution has the identity function as link function, meaning

g(µi) = xT
i β = µi.

The Gamma distribution is a continuous probability distribution and belongs to the
exponential family. For a given Yi ∼ Gamma(µi, ν), we have that E(Yi) = µi and

Var(Yi) =
µ2
i

ν
. The gamma distribution is characterized by its probability density

function, which is defined for Yi as

f(yi;µi, ν) =
1

Γ(α, β)

(yi
β

)α

e−
yi
β
1

yi
, (10)

where yi ≥ 0, α = ν > 0, β = µi

ν
> 0.

The normal distribution and the gamma distribution have different domains. The
gamma distribution exclusively selects random variables within the range [0,∞),
whereas the normal distribution considers variables from the entire range (−∞,∞).

The gamma distribution in GLM typically employs either the canonical link or the
log link. The log link is a common choice because, unlike the canonical link, it
ensures that estimated responses are not negative. The canonical link function for
the gamma distribution is an inverse power function, allowing the model of the mean
to be expressed as

1

µ
= xTβ. (11)

2.5.4 Maximum Likelihood Estimation

The regression parameters from model, β = (β1, β2, ..., βr)
T , are made through max-

imum likelihood estimation (MLE). The log likelihood in a GLM can be defined as

23



l(β, σ2) := log(L(β, σ2)) =
n∑

i=1

li(β, σ
2),

where y = (y1, ..., yn)
T is the observed data of Y and li(β, σ

2) denotes the log
likelihood for observation yi. To obtain the maximum likelihood estimates β̂ of β,
the unscaled score equations need to be solved. Numerical solutions are required for
these equations since they are nonlinear in β, and this entails the use of iterative
algorithms [8].

2.5.5 MAE and MAPE

Mean Absolute Error (MAE) is the absolute error between the predicted response
and the actual value and is given as

MAE =
1

n

n∑
i=1

|yi − ŷi|.

The MAE value will serve as an indicator of the accuarcy of the prediction model.

The expression for the Mean Absolute Percentage Error (MAPE) is given by

MAPE =
1

n

n∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣.
The MAPE is a valuable metric because it presents the error as a percentage, provid-
ing a more intuitive and easily interpretable measure compared to dealing with large
numerical values [13].

Given that Tibber aims to minimize the MAE, both the MAE and MAPE are
employed as the preferred error estimates in the subsequent analysis.
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3 The Data Set

In this section, we initially outline the process of data collection and provide an
introduction of the explanatory variables used in the analysis. Following this, we
visualize the correlation between the variables and address the need for data pre-
processing.

3.1 Data Description

Tibber has provided the used data set in the thesis. Tibber serves numerous cus-
tomers across the Nordic countries, each falling into different price areas according
to Nord pool [16]. For simplicity’s sake, only the SE3 price area has been utilized.
SE3 represents a price area in Sweden, encompassing regions such as Stockholm, see
Figure 14. The decision of only using the swedish customer data was made to focus
on developing effective models with a smaller data set initially, with the possibility
of expanding the data in future projects.

The data set consists primarily of two dataframes. The first dataframe includes
home-ids, serving as unique identifiers for each home, along with corresponding
property information that provides specific details about the contents of each home.
The second dataframe is a time series data set, with each home-id having approx-
imately one year of hourly data, that provides a wealth of information about the
surroundings and the specific events occurring at each given hour. This chapter
provides insight into how the data set is constructed through the use of display and
visualization techniques.

Figure 14: An image displaying the different price areas in Scandinavia.

Source: [1]
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3.2 Explanatory Variables

The two data sets given are one time series data set and one properties data set,
displayed in Figure 15 and 16. The time series data set was used in the project
thesis to cluster the home-ids after their consumption, while the master thesis placed
greater emphasis on the properties data set, supplemented by the inclusion of the
time series data.

Figure 15 represents an hourly time series data set comprising 12 variables. The
original data set consisted of 9 117 535 rows. In the present context, a smaller
dataframe is shown, resulting from the removal of rows containing NaN values for
consumption. This step was taken due to the clustering process relying on hourly
consumption values. The home-id variable serves as a unique identifier for each
customer’s home. For each hour, the data set includes data on home consumption,
given in kWh, and production, considering that some households may have solar
panels, enabling production. The weatherseries-id variable is linked to weather
forecasts, providing information about humidity, cloudiness, and temperature in
both Celsius and Kelvin for that specific time. It is worth noting that both humidity
and cloudiness are constrained to a range of 0 to 1, allowing for selection from only
five discrete values: 0, 0.2, 0.4, 0.6, 0.8, and 1.

The home properties data set is visualized in Figure 16. The initial data set consisted
of 141 108 rows. During the preprocessing stage, several rows were removed due to
the presence of duplicates. Furthermore, in consideration of the analysis, rows with
NaN values in the home annual consumption and home size columns were excluded.
However, the primary factor contributing to the substantial decrease in the home
properties data set occurred due to the evaluation of home-ids connected to the
time series data. Due to this step, numerous homes that were unsuitable for the
further analysis were removed. This dataframe is also associated with the home-
id variable and provides additional insights into household properties. The home
properties data set includes details like the presence of an electric vehicle (EV),
home size, residence type, heating source, and annual consumption. Moreover, the
smart heating enabled variable indicates whether the household utilizes the Tibber
app and its smart products, which adjust the home’s heating based on occupancy
[21]. The properties data set is a mixture of continuous and categorical variables.
The continuous variables are variables as home-size and home-annual-consumption,
where we have different numbers based on their size. Examples of categorical vari-
ables are type of home as ”apartment” and ”house”. The distinction between these
variables has played a crucial role in the thesis experimentation.
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Figure 15: Given time series data in pandas format.

Figure 16: Given property data in pandas format.

In consideration for the privacy security for the customers, a ”new homeid” as unique
identiy for the customers was added. This identifier also serves a future purpose for
Tibber, ensuring that it does not interfere with or alter the information they already
possess. See Table 1 and 2 for a description of the time series data and the home
properties data, respectively.
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Table 1: Explanation of variables from the time series data

Variable Name Explanation

new home-id The unique home-id to a household

latitude North-south coordinate

longitude East-west coordinate

time Date and hourly time

weatherseries-id Unique id for a geographic area connected to a weather fore-
cast

temp The hourly temperature in Celsius

humidity The amount of water vapor in the air

cloudiness How cloudy the sky is

tempk The hourly temperature in Kelvin

consumption The amount of electricity that is used in an hour

production The amount of electricity that has been self-produced in an
hour

Table 2: Explanation of variables from the home properties data

Variable Name Explanation

price area Geographic area with specific electricity price

city The city where the household is located

smart heating enabled If the home use smart products to control the heating
in the house

ev owner If the household contains an electric vehicle

home type What type of household it is, e.g. house, apartment,
etc.

home size The size of the household

home heating source Which type of source the household uses for heating,
e.g. district heating, electricity, etc

home annual consumption The yearly electricity consumption of the household

cluster This column is added afterward, calculated from the
electricity consumption data obtained from the time
series data
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3.3 Response

The primary aim of this master thesis is to effectively classify new households into
groups established by clustering the hourly consumption of the old households. The
response variable for this classification task is represented by these clusters, which
categorize customers based on their hourly consumption into five distinct groups.
The established clusters were incorporated into the dataframe as a distinct column,
each associated with its corresponding home-id. When classifying new customers,
the cluster column serves as the target variable. Given that we are utilizing a
classification model, our response variable is categorical. The properties associated
to the new customers do not have a specific meaning by themselves. Instead, their
importance lies in determining the group to which they belong. Consequently, we
are working with categorical variables.

3.4 Visualization

Figure 17 shows a correlation plot featuring three variables derived from the home
properties data. The plot illustrates a correlation at 0.67 between home size and
home annual consumption, two variables that have seen substantial usage in this
study. The variable ev owner has relatively lower correlations, with values of 0.27
for home size and 0.20 for home annual consumption.

Figure 17: Correlation heatmap of 3 numeric variables from the data properties

Figure 18 also illustrates a correlation heatmap for four categorical variables. In
this representation, the binary variable ev owner is transformed from yes/no to 1/0,
while the remaining variables are converted into dummy variables. This highlights
the challenge of dealing with categorical variables, particularly when the explanatory
variables have numerous categories. The resulting matrix becomes large, making it
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difficult to conduct a meaningful analysis of the correlations due to the multitude
of categories within each explanatory variable.

Some of the outliers that stand out, there is a notable correlation of 0.70 between
home heating sourcedistinct heating and home typeapartment. Furthermore, an as-
sociation is observed between EV owners and customers with houses, as indicated
by a correlation of 0.27. Additionally, it is worth noting that explanatory vari-
ables display expected negative correlations, as there is a -0.65 correlation between
house and apartment, reflecting the differences in home types. Several of the
variables demonstrate a tendency to become nearly uncorrelated. Notably, the
smart heating enabled variables stays in a range between +/- 0.2, except for the
negative correlation between true and false for the variable itself. A similar pattern
is observed among many of the home heating source variables.

Figure 18: Correlation heatmap of 4 categorical variables from the data properties
after being transformed to dummy variables.

Figure 19 shows again a correlation heatmap including ev owner, home type, home size,
smart heating enabled, and home annual consumption. One observation worth not-
ing is that the home type ”house” exhibits a slightly higher correlation with both
the size of the home at 0.61 and the annual consumption of electricity at 0.56. This
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correlation is logical, considering that houses are typically larger than other types
of homes, leading to a higher electricity consumption. In contrast, the home type
”apartment” demonstrates a negative correlation at -0.56 with annual consumption,
indicating that this particular home category likely consumes less electricity. It is
also notable that the three variables with the strongest correlation are consistent
with those highlighted in the first correlation plot (Figure 17).

Figure 19: Correlation heatmap of 2 categorical, 1 binary and 2 continous variables
from the data properties after being transformed to dummy variables.

3.5 Data Pre-Processing

Before utilizing the provided data sets and those created from the project task in
classification methods, a necessary step involves data pre-processing. Data pre-
processing involves manipulating raw data to make them accessible and ready to
analyse. Typically, data sets contain numerous missing values (NaN) which must
be addressed. This is a common problem in data analysis with real data. The most
important aspect is to understand the disadvantages and find ways to navigate
around the issues.
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3.5.1 Missing values

The collected data contain missing values, as is evident in both Figure 15 and Figure
16, where these are a substantial number of NaN values in certain columns. Below,
we provide visual representations of the missing data in the data set. These missing
values pose a challenge for the classification task, as we aim to assign homes to
clusters based on their properties. Without the home annual consumption inform-
ation, classifying a household becomes quite difficult. In some cases, like with the
smart heating enabled variable, it might be possible to find workarounds, introdu-
cing a third category instead of just a binary choice. As an example, rather than
having NaN values, an alternative is to substitute them with ”Unknown” or with
the most occuring group [14].

Figure 20 illustrates the count of missing observations for each explanatory variable
in the time series data set. This orginal data set is extensive, containing a total
of 9 117 535 entries. Our focus here is specifically on the outliers within the con-
sumption and production variables. During the earlier clustering, data points had
to be excluded due to missing values in consumption. Therefore, 30% of the initial
data was disregarded, which can be seen in the length of Figure 15. Although the
production variable has a missing value percentage exceeding 90%, its significance is
relatively lower. This is because: 1) we did not utilize the production information,
and 2) only 7.9 % of the given households engage in electricity production. It is
relatively uncommon for customers to generate electricity, as it is limited to homes
equipped with devices such as solar panels.

Figure 20: Plot of the number of missing values in the time series data.
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Figure 21 illustrates the number of missing observations for each explanatory vari-
able in the home properties data set. Given that the data set comprises 141 108
entries, the majority of explanatory variables exhibit a low percentage of missing
data. However, an exception is observed in the case of smart heating enabled, where
more than 90% of entries are missing, rendering the variable relatively unreliable.
In comparison, the next variable with the highest percentage of missing values is
home heating source, missing approximately 30%. As home size will be a key vari-
able in the subsequent phases of the thesis, it is not desirable for it to have a high
missing value rate.

Figure 21: Plot of the number of missing values in the home properties data.
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4 The Method of Experimentation

This chapter focuses on the practical implementation of the statistical methods in-
troduced in the theoretical framework. All aspects of classification and diagnostic
procedures are performed utilizing R, an open source flexible software environment
well known for its capabilities in statistical analysis and data visualization. It is
worth noting that previous project tasks were executed in Python, predominantly
utilizing Pandas for handling data in dataframe structures. Consequently, the final
stages involving the implementation of prediction models and error calculation, mir-
roring the approach taken in the project thesis, were also conducted using Python.

4.1 Problem Approach

The approach applied to the problem can be split into three distinct cases. Here,
one year of historical consumption data for a subset of customers has been used.
The data set is divided at a specific date, forming clusters based on data occuring
before that date, and predictions are made for the subsequent time interval.

1. One Cluster Approach:

Initially, we will treat all the data as a single cluster and forecast the con-
sumption for this entire cluster. Subsequently, we will evaluate the predicted
consumption against the actual consumption of customers at that specific
timestamp, using the MAE.

2. Historical Clustered Forecast Approach:

For the second approach, we will form clusters based on historical consump-
tion patterns until the given date. The hierarichical analysis use the hourly
mean consumption during a day to assign the data to distinct clusters. Then,
individual forecasts for each cluster is generated using GLM and linear models.
The predicted consumption for each cluster is calculated by multiplying the
number of homes in the cluster by its predicted consumption. The cluster pre-
dictions are summed to obtain the overall predicted consumption for the test
time interval. This consumption is compared against the actual consumption,
using the MAE. Then, we compare the MAE from this approach with the MAE
from the first approach. This was implemented in the project thesis, resulting
in a lower MAE for the second approach. Consequently, we proceeded with
further analysis based on this methodology.

3. Integrating ”New Customers” Approach:

We need to designate a subset of homes as ”new customers” from the given
data set and re-cluster using historical hourly consumption data, as was done
in approach 2. As with real new data, new homes lack historical information
of the hourly consumption data and pattern during the day. Therefore, new
homes need to be classified into their supposed clusters based on their home
properties using a classification method. We add the newly classified homes
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to the respective subclusters. Conduct a GLM or LM prediction and a MAE
calculation, following the procedure in approach 2. The MAE from this ap-
proach is compared with the MAEs from the previous two approaches. For
the result to be valuable for Tibber, the MAE from this approach should be
lower than the MAE from the first approach. This is the main purpose of our
investigation.

4.2 Clustering

As we are operating with the data set used in the project thesis [16], the necessity
to create new instances of customers, could only be derived from the existing data
set. In the previous analysis, all data had been clustered. However, because we
intend to set aside a portion of the data to represent new customers, a re-clustering
is necessary for the remaining data.

The clusters where made in Python with the imported package ”scipy.cluster.hierarchy”
[6]. The clusteres are formed by linking points using the Ward method and meas-
uring the Euclidean distance between the points. Figure 22 presents two dendro-
grams, one obtained through hierarchical analysis on the entire data set and another
where the ”new customers” of 248 households have been excluded. When looking
at a dendrogram, one can choose a preferred number of clusters by inspecting the
dendrogram or establish clusters by setting a threshold. For example, setting a
threshold of 60 would in these two dendrograms result in forming 3 clusters.

((a)) Dendrogram of the entire data set (829
households).

((b)) Dendrogram without new customers (248
households).

Figure 22: Displaying two dendrograms illustrating the clustering of the different
data sets.

As observed in the dendrograms, they exhibit a certain degree of similarity in the
overall structure of the clusters, but are not entirely identical. This may influence
the outcome of the predicted consumption. It is anticipated that clusters containing
all the data would likely provide a more robust fit for future data points, given their
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larger data set. However, this is not guaranteed, as outliers, for instance, could
potentially disrupt the formation of a well-defined general cluster.

4.3 Dummy Variables

To be able to use the categorical string values, we need to give them a number. Cat-
egorical variables, being distinct entities, pose challenges when assigned numerical
values as these numbers may lack inherent meaning. For instance, in the explanat-
ory variable home heating source, assigning ”ground” number 1 and ”electric boiler”
number 5 does not necessarily mean that ”electric boiler” has a greater impact on
consumption simply because it has a larger numerical value. Therefore, we make
our categorical values into dummy variables. Dummy variables transform the out-
put into a binary format, producing values of 0 or 1. When dealing with more than
two classes within a categorical column, the result is a matrix consisting of dummy
variables, each converted to 0 or 1 based on its truth value [5].

The dummy variables were generated in R using the dummyVar() function from the
”caret” package. Subsequently, the resulting dummy variables for categorical fea-
tures were combined with the continuous variables to form an integrated dataframe.

4.4 Exploration of the Home Properties Variables

As mentioned above, the ongoing exploration of the data set is based on both the
clusters established in the project thesis and the adjusted clusters. The clusters has
been formed through hierarchical clustering, where an explanation of this method
can be found in Section 2.4.2.

The analysis assessed the potential influence of various factors, including property
type and home size, on electricity consumption based on the home properties data.
It was hypothesized that these factors could significantly affect electricity usage, and
this relationship was further examined.

In the classification approach, the variables from the home properties data that were
considered for analysis are as follows:

• city

• smart heating enabled

• ev owner

• home type

• home size

• home heating source

• home annual consumption
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A more detailed description of the variables is given in Table 2. Numerous tests were
conducted using various combinations of the variables together and evaluating their
performance in the classification models. Each variable was individually tested, and
they were also evaluated in progressively larger combinations with other variables.

Certainly, one can anticipate variations in the different variables. For example,
individuals who own electric vehicles might naturally require additional electricity,
suggesting a potential correlation. However, customers may also employ smart heat-
ing systems that optimize charging when electricity prices are lowest until the next
use. Additionally, the size of a home is a relevant factor, with larger homes typic-
ally necessitating more electricity and, consequently, exhibiting higher consumption
levels. The type of dwelling is another consideration; apartment buildings can be-
nefit from shared heating between neighbour units, which differs from detached
houses. Moreover, if we have access to the home annual consumption data in home
properties, it offers insights into the overall annual consumption. Lastly, the city’s
geographic location, even within SE3, can have varying weather effects, impacting
electricity consumption patterns.

4.4.1 Backward Elimination of Categorical Variables

Dealing with the interplay of continuous and categorical variables has posed a per-
sistent challenge throughout the thesis. Struggling to strike the right balance in
determining which variables to include, we explored an innovative approach. Ob-
serving that categorical variables had minimal impact on accuracy rates due to
the dominance of continuous variables, we focused solely on the categorical ones.
Converting them into dummy variables, we constructed a linear model with the
home annual consumption as the response variable. Then, we performed backward
elimination using the output of the linear model as input to assess their significance.
This method aims to create a ”new” variable, incorporating the most influential
categorical factors. Therefore, we intended to integrate this variable into the clas-
sification alongside the continuous variables. It is worth noting that we excluded
city from this process since we confined our analysis to the same price area, and
considering all cities would result in a large and computationally intensive matrix
of dummy variables.

This process was executed using R, employing lm() and step() with the input para-
meter ’direction = ”backward”’ [18]. Both of these functions belong to the base
R package. In the linear model, the response variable was incorporated into the
backward model, and the significance of the variables was assessed. The significant
variables were retained, and the fitted values were introduced as a new response in
the subsequent modeling step.

4.4.2 Creating a Continuous Variable from a Linear Model

The backward elimination process reveals the most significant variables. With this
information, we can selectively include only the most impactful variables in the
matrix consisting of dummy variables. A response variable can then be created from
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the remaining variables through linear model fitting. The home annual consumption
is employed as the response variable in the linear model, with the chosen categorical
variables transformed into a matrix of dummy variables serving as predictors. This
yields a new variable that can be treated as continous and incorporated into the
classification models.

4.5 Training and Test Sets

To utilize our data set effectively, we must partition it into training and testing sets.
This division is crucial because evaluating the performance of our models based
predominantly on existing clustered customers does not address the main problem
of determining where to place new customers. We must examine how the model
performs with new customers, where we lack prior knowledge of their consumption
patterns. Our objective is to ensure that a new customer is accurately assigned to
the correct cluster from the beginning, allowing for optimal consumption predictions.

The process involves randomly dividing the existing home-ids into a 70% training
set, consisting of already clustered households, and a 30% test set representing ”new
customers.” The training labels serve as targets for the classification method, while
the test set receives predicted labels. Given that clusters had been assigned to
all home-ids up to a specific date in a previous stage, adjustments were necessary
for the clusters conducted in the project thesis. Since our data set is limited, we
treat the 30% test set as if it comprises entirely new customers with no historical
hourly consumption patterns. Therefore, we randomly select a set of home-ids from
the data, exclude them, and then create new clusters from the remaining data.
Consequently, when classifying these new homes, they are treated as entirely new
entities in terms of clustering.

As all households were previously clustered, we retain their original cluster labels
for accuracy verification. The predicted targets from the classification are then
compared to the existing test labels derived from earlier clustering, allowing us to
assess the accuracy rate of the classification model’s predictions.

4.6 Classification

The classification methods, as discussed in Section 2.2, were implemented in R.
The built-in functions employed include knn(), lda(), qda(), randomForest(), Na-
iveBayes(), and svm(). These functions are part of the packages ”class,” ”MASS,”
”randomForest,” and ”e1071”.

When employing these techniques, the models were trained on the training set, which
consisted of the included the home properties data, and the response variable. The
response variable was labeled as training labels, derived from the clusters generated
through hierarchical clustering. Subsequently, the trained model was applied to the
test set, and a predicted class for each observation was obtained. In this context,
the predicted class corresponds to the cluster to which the new home is assigned.
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4.7 Prediction

While we evaluate the test accuracies of various classification methods, it is neces-
sary to ascertain whether grouping contributes to improved predicted consumption,
especially if it aligns more closely with the true value of customers’ consumption.
In the project thesis, we developed a prediction model for clustered data and an-
other for treating all data as a single cluster. The comparison involved assessing
the MAE of these models against the actual consumption outcomes. Now, a similar
procedure is required for new households. When onboarding new customers, the
absence of historical information about the hourly consumption data hinders the
use of clustering for placement, making this approach of the new data insufficient.

Despite the positive results in the project thesis, it is essential to recognize that the
outcome may not guarantee success in this new setting. When considering more
extensive test sets, as in our case, classification models will not achieve flawless
categorization into presumed clusters. The classification model could potentially
assign a new home to a less fitted cluster. Because different prediction models exist
for the different clusters, this may lead to a lower MAE when considering all clustered
data compared to the combination of newly classified homes and the clustered data.
Additionally, since new clusters are formed of the data without incorporating the
new homes, there is no assurance that these new clusters will yield more accurate
predicted consumption than treating all the data as one single cluster.

When forecasting the future consumption of clustered customers, we employed a
straightforward GLM analysis based on ”temp,” ”humidity,”, ”cloudiness” and ”pro-
duction” from the time series data as explanatory variables (see Table 1 for details).
We constructed our prediction model using a GLM with the smf.glm() function
from the Python package statsmodels.formula.api. Initially, we employed a gamma
distribution for the model. However, as will be discussed later in the analysis, we
eventually transitioned to a normal distribution, effectively transforming our GLM
model into a linear model (LM). In addition, we introduced a new column named
”hour” in this data set, derived from the timestamp of each respective row. This
straightforward modification was intended to enhance the performance of our linear
model, as it is designed for predicting hourly consumption.

For new customers, integration into existing prediction models generated from the
clustering process is necessary. This involves utilizing the GLM models for the old
clustered data. However, when summarizing the consumption of each cluster, it is
crucial to account for any changes in the number of customers in a specific cluster
after classification. For instance, in cluster 1, we use the prediction model made for
cluster 1 based on the households without the new customers. We then multiply the
model’s predictions by the respective counts of old homes and new homes within
cluster 1, yielding an overall forecasted consumption for these homes in this specific
time interval.

Subsequently, we calculate the MAE based on the difference between the clusters
predicted consumption and the known actual consumption. This MAE will be com-
pared against the entire data as one single cluster and the old clustered data of
all the data to evaluate the degree of difference. Figure 23 illustrates the hourly
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consumption pattern for all homes over a year from the time series data set. The
specific date marking the split between the training and test sets is evident in the
plot where the colors transition from black to red. The forecasted consumption for
all data treated as a single cluster using the GLM with a gamma distribution is
visualized in the green plot.

Figure 23: Shows the predicted consumption by GLM with gamma distribution for
all the data as one cluster.

Source: [16]
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5 Results and Analysis

This chapter delves into the presentation and evaluation of the achieved results.
Initially, various experimented approaches will be introduced, followed by the final
chosen approach. Subsequently, the different prediction models and their corres-
ponding MAE results will be detailed.

5.1 Several Tried Approaches

5.1.1 Backward Elimination

As mentioned in Section 4.4.1, we employed a backward elimination method to
assess the significance of categorical variables, particularly as they were overshad-
owed by the continuous variables. Combining these distinct types of variables posed
challenges for classification methods to effectively process the input. Initially, the
categorical variables underwent transformation into dummy variables. Thereafter, a
linear model was constructed with home annual consumption as the response vari-
able. The backward elimination method was then applied to assess the significance
of various categorical variables, leading to the removal of those deemed uninterest-
ing. Figure 24 illustrates the outcome, highlighting the categorical variables that
were most significant. Notably, ”home typerowHouse” did not meet the criteria, and
the entire explanatory variable smart heating enabled also failed to qualify as sig-
nificant. Through backward elimination, we obtained an R-squared value of 0.4624,
utilizing AIC as it is the default criterion in the step() function.

Figure 24: Display of the summary of the Backward Elimination method applied to
the categorical variables.

After preserving the categorical variables, we constructed a linear model using these
variables to generate a continuous variable named ”new response.” This variable was
intended to be incorporated into the classification models as an additional continuous
feature. This experiment aimed to assess whether augmenting the data set with
more of the home properties data through an additional variable would enhance the
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performance of the classification methods. However, the results did not demonstrate
improvement.

5.1.2 Transformations

Various transformations, elaborated in Section 2.3, were tried out. One might as-
sume that Box-Cox would be a suitable transformation as it selects the best-fitted
lambda to make output variables more Gaussian-like. However, contrary to expect-
ations, this approach resulted in a higher MAE. Conversely, standardization signi-
ficantly enhanced the overall accuracy of predicted consumption. Consequently, we
proceeded to standardize the selected variables before incorporating them into the
classification methods. Standardization was also tested along with the backward
elimination method, yielding a small improvement. However, despite the enhance-
ment in this method, applying backward elimination still led to an overall higher
MAE. This became evident when incorporating the backward variable as an input
for the classification model, predicting the clusters, and subsequently comparing the
MAE with the values from Table 3.

5.1.3 Re-clustering

The thesis involved a comprehensive series of tests. Given the necessity to re-cluster
homes after excluding supposedly new homes, the optimal number of clusters could
vary. As detailed in Section 4.2, the clusters underwent slight changes following the
removal of new homes. Although the disparity seen from Figure 22 is not very large,
the distinction between clusters for the entire data set and the data set excluding
new homes increased notably based on the quantity of homes designated as ”new
customers.” Consequently, numerous tests were conducted with varying amounts
of new homes to determine the optimal configuration for predicting consumption.
Ultimately, we decided to include 248 households as new additions, comprising a 30%
subset of the total households considered in the thesis (829 homes). Additionally,
diverse cluster quantities were examined including 3, 4, 5, and 6 clusters, all of
which yielded acceptable outcomes. Nevertheless, in line with the project thesis,
five cluster groups were retained as they provided an overall improved consumption
result and were deemed reasonable upon analyzing the dendrograms.

Furthermore, considering the continuous variable home size as one of the home
properties input during the classification methods, we aimed at addressing some
missing values in this variable. It is important to subtract these values from the
start. If we only address this issue in the training and test sets for the classification
method, the count of ”clustered and classified” homes might be lower than for all the
homes in a single cluster. This is because that cluster relies solely on consumption
and not on the home properties. Consequently, it was necessary to eliminate NaN
values for home size for all home-ids within the cluster, resulting in a reduction of
the number of customers analyzed from 843 homes to 829 homes.
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5.2 Accuracy Rates

After experimenting with six distinct classification models, our choice ultimately
settled on using LDA. While the other methods are generally considered reliable,
their performance varied significantly throughout the entire testing phase of the
thesis. LDA is typically designed for continuous variables, but during extensive
testing, we opted to exclusively employ continuous variables and tested them to-
gether with the continuous variable derived from the categorical variables. This
decision was driven by the challenges encountered when combining continuous and
categorical variables. Ultimately, the categorical variables were excluded from the
models due to challenges arising from the complexity of managing the matrices in-
cluding the dummy variables. The size of this matrix and the minimal impact of the
categorical variables in the classification methods, made their inclusion less effective
in the context of classification models.

Figure 25 illustrates the accuracy rates of the different classification models tested.
In this particular scenario, we employed five clusters and identified 248 homes as
new homes. This configuration was chosen as our final test and it revealed that
LDA achieved the highest accuracy rate at 48.4%. Despite potential variations in
classification methods with the highest accuracy in different cases, LDA exhibited
greater stability across multiple tests, including cases with varying quantities of
new homes. In the final case, the classification involves the standardized variables
home size and home annual consumption, as these variables yielded the best MAE in
the end. Over an extended period, the explanatory variable ev owner was included.
Nevertheless, the MAE decreased by 8% when we excluded it and utilized only the
standardized variables home size and home annual consumption.

Figure 25: Display of the outcome of accuracy rates of different classification meth-
ods when assigning 248 new households to 5 distinct clusters.
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It is important to highlight once more that the accuracy rates presented here stem
from the comparison between the old cluster labels and the newly classified cluster
labels. However, since we have extracted a subset of customers to form new clusters,
the accuracy rates and old labels may not offer complete insights, as they reflect the
group labels of the all the data clustered into five groups (approach 2). Therefore,
the primary focus should be on the MAE output, as it offers a more meaningful
success rate of the model in this context.

Despite the modest accuracy, just slightly below 50%, this information remains valu-
able. Considering the task involves assigning new objects to five different clusters,
a 50% accuracy rate is noteworthy, as it surpasses the expected performance from
random placement.

Figure 26 illustrates the segregation of test observations into five classes using the
LDAmethod. Upon examining the variables home size and home annual consumption,
distinct patterns emerge. For instance, cluster 1 exhibits characteristic features in
LDA, such as a low annual consumption and a small household size. One can also
observe that the method appears to face challenges when assigning objects that lie
in the intermediate region between cluster 3 and 4. The plot indicates that these
two clusters share a similar range of home sizes, and both groups can have annual
consumption values around 20,000 kWh. The figure also illustrates that only one
observation has been assigned to cluster 5. Further examination seen in Figure
22(b), reveals that clusters 2 and 5 are notably the smallest. Consequently, in this
LDA separation with the test set, fewer points have been assigned to cluster 2 and
5. These two groups also appear to have home sizes above 200 m2 and annual
consumption above 20,000 kWh.

Figure 26: Display of the LDA separation of observations plotting for x = home size
and y = home annual consumption.
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5.3 Homes Classified to Clusters

The data in Figure 27 illustrate a comparison within the clusters between the total
count of households derived from cluster-based analysis and the count of households
from newly classified homes combined with the re-clustered old homes. A noticeable
difference is evident in the distribution of homes, marked by an increase in the
clusters 1, 3 and 4 for the newly classified homes, diverging from the clustered
results encompassing the entire data set. Simultaneously, there is a corresponding
decline in cluster 2 and 5. The figure might lead one to consider that four clusters
would be a more suitable choice, given the initial clustering indicates a relatively
low number of homes in the forth cluster. However, the MAE, to be presented
below, revealed that five clusters were actually preferred. This outcome might vary
depending on the selection of new homes, but in most instances, five clusters yielded
superior results. Hence, we proceeded with that number.

((a)) The count of cluster-based households in
the clusters.

((b)) The count of newly classified households
in the clusters.

Figure 27: The difference of count of households in the clusters.

It is important to note that there is no confirmation that the housing distribution
depicted in Figure 27(a) is the true solution. Instead, it highlights how employing
different methodologies can yield varied outcomes. Figure 28 displays the confusion
matrix obtained from the LDA separation applied to the test set. A noticeable
distinction is evident between the newly classified homes and their initial placement
of the test homes through hierarchical clustering. For instance, none of the test
observations have been assigned to cluster 2, where they were previously positioned.
However, a crucial step involves evaluating the MAE to determine the quality of
these results.
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Figure 28: The confusion matrix resulting from the application of the LDA method
on the test set.

5.4 Modelling

In the initial stages of the project thesis, GLM models were constructed using the
Gamma distribution. However, in the subsequent master’s thesis, it was observed
that employing the normal distribution yielded significantly improved MAE. Con-
sequently, the Gaussian distribution was adopted for the modeling of new clusters.

Figure 29, 30, 31, 32 and 33 displays the overview of the results from the GLM with
identity function as link function corresponding to distinct clusters. This pertains
to the linear model predictions generated for the data set excluding new customers,
as the new customers are required to utilize the prediction models established for
existing customers based on their cluster labels.

Figure 29: Summary of the linear model of the first cluster.
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Figure 30: Summary of the linear model of the second cluster.

Figure 31: Summary of the linear model of the third cluster.
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Figure 32: Summary of the linear model of the fourth cluster.

Figure 33: Summary of the linear model of the fifth cluster.
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Figure 34: Summary of the linear model of the entire data as one cluster.

At first glance, it is evident that, across all LM result summaries, humidity has the
most pronounced impact on the response variable, while the hour demonstrates a
relatively lower impact. However, it is crucial to consider how these explanatory
variables are presented. Given our intuitive expectation that humidity would have a
smaller impact than temperature, it is essential to delve deeper into this comparison
and explore the difference in range between these variables. Temperature is known
to vary considerably within a range of +/- 30 (and potentially beyond), and can
therefore have a large impact of the outcome. In contrast, both humidity and
cloudiness exhibit values between 0 and 1, with a difference of 0.2 (0, 0.2, 0.4, ..., 1).
Consequently, there is a much ”larger jump” for humidity to increase by 1 compared
to temperature, emphasizing the need to consider the scale and range of variables
when interpreting their impact on the model’s response.

Another notable observation is that temperature consistently exhibits a negative
coefficient in all the linear models. This can be interpreted to mean that a higher
temperature tends to a decreased consumption. Conversely, during colder weather,
individuals are more likely to utilize more electricity to heat their households,
thereby increasing consumption. Humidity, which has the highest coefficient across
the different models, varies between being positive and negative values. This implies
that within distinct clusters, an increase in humidity can either decrease or increase
consumption. The same applies to cloudiness, although it has a lower coefficient.
Naturally, the production value is negative because when the customers generate
their own electricity, they tend to consume less electricity from the company. The
hour coefficient is positive for all summaries excepts for cluster 5. For the rest of
the linear models that implies that consumption tends to increase hourly during the
day. For a more in-depth exploration of the relationships between all variables, see
Appendix A for the covariance matrices derived from the linear models.

Figure 35(a) and 35(b) shows for cluster 1 the predicted values in the test time
interval and their distribution, respectively. Afterwards, the remaining output for
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the clusters are presented in Figure 35 and 36. The plots reveal that the predictions
for cluster 1 stand out when compared to the other clusters. This is noticeable in the
wider spread of predicted values and a less pointed distribution. This observation
aligns with the linear models, where cluster 1 exhibited a model with relatively small
coefficients for both temperature and humidity. Cluster 5 also stands out compared
to the other clusters, not only because of a more widespread pattern in predicted
values but also due to a more skewed distribution. This could be attributed to the
fact that cluster 5 is the only cluster with a negative hour coefficient.

Figure 37 and 38 depict the residual plots for the clusters, and Figure 38(c) illustrates
a residual plot of the fitted model of the GLM with identity function as link function
for all the data treated as one cluster. This plot illustrates the relationship between
fitted values and residuals, showing the fitted values from the training set on the
x-axis and the residuals, represented as yi− ŷi, on the y-axis. In this representation,
both cluster 1 and 5 stand out. Cluster 1 exhibits smaller residuals compared to the
others, while the residual plot of cluster 5 has a more pronounced tilt to one side.
The visual representation of residuals against the fitted models reveals a no ideal
pattern. Nevertheless, in this thesis, the main focus has been on the predictions and
the resulting value of the MAE.
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((a)) Predicted Values - Cluster 1. ((b)) Distribution - Cluster 1.

((c)) Predicted Values - Cluster 2. ((d)) Distribution - Cluster 2.

((e)) Predicted Values - Cluster 3. ((f)) Distribution - Cluster 3.

Figure 35: The left-sided plots show the predicted consumption values of one house-
hold for each hour in the test time interval for the clusters 1-3. The right-sided plots
visualize the distribution of the predicted hour consumption values in the test time
interval to the clusters.
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((a)) Predicted Values - Cluster 4. ((b)) Distribution - Cluster 4.

((c)) Predicted Values - Cluster 5. ((d)) Distribution - Cluster 5.

((e)) Predicted Values - All as 1 cluster. ((f)) Distribution - All as 1 cluster.

Figure 36: The left-sided plot shows the predicted consumption values of one house-
hold for each hour in the test time interval for cluster 4, 5 and the entire data set
as one cluster. The right-sided plot visualizes the distribution of the predicted hour
consumption values in the test time interval for the clusters 4, 5 and the entire data
set as one cluster.
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((a)) Residualplot of the fitted LM model for cluster 1.

((b)) Residualplot of the fitted LM model for cluster 2.

((c)) Residualplot of the fitted LM model for cluster 3.

Figure 37: The left-sided plot shows the residualplot of the fitted GLM model with
the identity function as link function for cluster 1-3. The right-sided plot visualizes
the distribution of the residuals, r = yi − ŷi, for the corresponding clusters.
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((a)) Residualplot of the fitted LM model for cluster 4.

((b)) Residualplot of the fitted LM model for cluster 5.

((c)) Residualplot of the fitted LM model for all the data as one cluster.

Figure 38: The left-sided plot shows the residualplot of the fitted GLM model with
the identity function as link function for cluster 4, 5 and the entire data set as one
cluster. The right-sided plot visualizes the distribution of the residuals, r = yi − ŷi,
for the corresponding clusters.
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5.5 Comparization of MAE of the Different Approaches

After computing the MAE for the predicted consumption across the entire data set,
a comparison was made with the MAE of the predicted consumption within clusters,
including both old and new customers. A lower MAE is generally indicative of better
performance. However, the observed difference is not notably significant. Despite
the clustered and classified data exhibiting a lower error value compared to treating
all data as a single cluster, a substantial improvement was not found. It is worth
noting that while the LM may provide accurate predictions for certain clusters, its
performance may vary across others, and that the new homes might not align well
with the predictions of their assigned clusters. Although the results may not be
groundbreaking, there is a marginal enhancement in the clustered and classified
data that could be valuable for Tibber.

Figure 39 shows the predicted consumption values for the five clusters together with
the actual consumption values throughout the tested time interval. The illustra-
tion reveals that the predicted values exhibit a notably larger amplitude but remain
centered around the baseline of the actual consumption. Despite the model’s diver-
gence from the actual consumption, it consistently extends both above and below,
resulting in an acceptable MAE, which aligns with our primary focus. Addition-
ally, it is crucial to note that the employed LM is relatively straightforward and not
intended to serve as an actual prediction model. Instead, its purpose is to check
whether our clusters including classification, yield a better performance compared
to a single cluster for all the data.

Figure 39: A plot of the predicted consumption values together with the actual
consumption values in the test time interval when the five clusters were considered.
The x-axis represents the days over two months, while the y-axis shows the total
consumption of all households combined.
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Figure 40 shows the predicted consumption values together with the actual consump-
tion values throughout the tested time interval, but this time for the entire data set
as one cluster. Since our main goal was to evaluate whether multiple clusters led to
better predictions than a single-cluster approach, this comparison has been presen-
ted. An interesting observation is the near identical consumption patterns. The
most noticeable difference lies in the y-axis, where the one-cluster data tends to
overpredict more and have a larger amplitude span. While we expected more dis-
tinct differences in trends, this seems reasonable given that both approaches seem
to have a tendency to overpredict relative to actual values and utilize a relatively
simple GLM with identity function as link function. Figure 41 illustrates the dis-
parity between the predicted values of the two approaches, revealing a observable
difference that could impact the MAE. However, these variations are not substantial
when compared to the aggregated overall consumption for a day, thereby resulting
in minimal changes to the patterns observed in Figure 39 and 40. As illustrated
in these figures, daily consumption averages around 13 000 kWh, with one of the
lowest peaks at 5 000 kWh. Meanwhile, Figure 41 demonstrates that the difference
between the one-cluster approach and the five-cluster approach generally remains
around 500 kWh.

Figure 40: A plot of the predicted consumption values together with the actual
consumption values in the test time interval when the entire data as one cluster was
considered. The x-axis represents the days over two months, while the y-axis shows
the total consumption of all households combined.
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Figure 41: A plot of the difference in value between the predicted value for as one
cluster and the predicted value from the five clusters. The x-axis represents the days
over two months, while the y-axis shows the difference in consumption of the two
clustering approaches.

Figure 42 illustrates the predicted value treating all data as a single cluster, the pre-
dicted values for the five clusters and the actual values. The plot represents hourly
data within an interval, as it is easier for interpretation. It is evident that, for this
timestamp, the forecast aligns with the actual consumption pattern but tends to
overpredict. It is reasonable for linear models to show a wave-like pattern in daily
predictions, given that the model includes temperature as a variable, and temper-
ature will naturally have variations throughout the day. The disparity between the
two predicted forecasts is not substantial, considering their reliance on relatively
simple linear models. However, the forecast utilizing multiple clusters demonstrates
a slightly improved prediction. This pertains to the aggregated values at those hours.
In contrast, Figure 43 showcases the mean consumption for individual households,
providing a more accurate representation of hourly consumption for a home.
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Figure 42: Plot of the value of the predicted value for clusters, the predicted value
for all data as one cluster and the actual value. The x-axis represents the hours over
four days, while the y-axis shows the total consumption of all households combined
for each hour.

Figure 43: Plot of the value of the predicted value for clusters, the predicted value
for all data as one cluster and the actual value. The x-axis represents the hours over
four days, while the y-axis shows the mean consumption of one household for each
hour.

The final results are presented in Table 3. Notably, the newly classified households
exhibit a lower MAE and MAPE compared to considering the entire data set as a
single cluster. This aligns with our expectations, signifying the beneficial impact of
clusters for consumption prediction.

As outlined in Section 4.1, we explained three distinct approaches. In Table 3,
approach 2 is characterized as ”consumption of old clusters,” being the five clusters
formed from the entire data set. A surprising observation is that these old clusters
predicted a higher consumption than the data set combining old homes and new
homes. One might expect that providing the hierarchical method with more data
would lead to better-fitted clusters. However, our observations in this case did not
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align with this expectation. One thinkable explanation could be the presence of
outliers in the data set, affecting the optimality of the clusters. Figure 22(a) and
27(a) both highlight the relatively small size of cluster 4, suggesting a need for more
effective handling of this cluster. Another consideration is the potential advantage
of fitting households based on home size and home annual consumption rather than
the hourly consumption pattern. Alternatively, clustering homes based on their
properties and subsequently constructing prediction models for these clusters might
yield more effective results.

Table 3: Results Linear Model

Variable Name Value

Number of households 829

Number of new households 248

Consumption of the clustered and classified data 977476.352 kWh

Consumption of the all data in one cluster 1021067.467 kWh

Consumption of old clusters 1016490.277 kWh

Actual Consumption 840133.558 kWh

MAE of the clustered and classified data 165.673 kWh

MAE of the all data in one cluster data 218.256 kWh

MAE of the old clusters data 212.734 kWh

MAPE of the clustered and classified data 0.319

MAPE of the all data in one cluster data 0.407

5.5.1 Extended Model

In the final phase of this master’s thesis, an additional approach was explored, in-
volving the incorporation of a lagged consumption variable into the linear model.
This means incorporating the variables temperature, humidity, cloudiness, produc-
tion, and hour, along with this new variable representing the consumption from the
previous day. Since Tibber gets the historical data over time for their customers,
it becomes possible to include yesterday’s consumption starting from the second
day of their subscription. Therefore, the lagged consumption variable in the model
represents the consumption for the exact hour we are predicting, but from the day
24 hours prior. This was achieved using the pandas function shift(24) applied to the
consumption data. However, to address the issue of obtaining NaN values for the
first day with the shift function, the consumption values for that day were subtrac-
ted. Consequently, this adjustment resulted in a slightly lower overall consumption,
as depicted in Table 4.

Figure 44 and 45 exhibit distinct patterns compared to Figure 39 and 40. Moreover,
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these figures depict smaller consumption values than the earlier models.

Figure 44: A plot of the predicted consumption values together with the actual
consumption values in the test time interval when the five cluster with the modified
model were considered. The x-axis represents the days over two months, while the
y-axis shows the total consumption of all households combined.

Figure 45: A plot of the predicted consumption values together with the actual
consumption values in the test time interval when the entire data as one cluster
with the modified model was considered. The x-axis represents the days over two
months, while the y-axis shows the total consumption of all households combined.
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In Figure 46, the difference in predicted values between the one-cluster approach and
the five-cluster approach is illustrated. A notable difference observed in comparison
to Figure 41 is a subtle change in pattern, and notably, there is no negative differ-
ence. Furthermore, the modified model appears to exhibit slightly higher differences,
indicating more variation in predictions between the one-cluster and five-cluster ap-
proach achieved with the modified model.

Figure 46: A plot of the difference in value between the predicted value for as one
cluster and the predicted value from the five clusters with the modified model. The
x-axis represents the days over two months, while the y-axis shows the difference in
consumption of the two clustering approaches.

Figure 47 illustrates the predicted value treating all data as a single cluster, the
predicted values for the five clusters and the actual values. The time interval aligns
with the same x-axis as in Figure 43 and it seems as the extended linear model
is better a fit for this timestamp. The modified model also follows a consumption
pattern more closely aligned with the actual consumption. This is logical as the
model incorporates temperature as earlier, but also has information about yester-
day’s consumption. The LM results of the modified model, provided in Appendix B,
reveal that the consumption lag variable has a sizable coefficient for all the clusters,
indicating a substantial influence on the linear models.
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Figure 47: Plot of the value of the predicted value for clusters, the predicted value
for all data as one cluster and the actual value with the modified model. The x-axis
represents the hours over four days, while the y-axis shows the mean consumption
of one household for each hour.

Table 4 displays the values obtained for the modified linear model. We observe a
slight improvement in the MAE and MAPE for the five clustered data, incorporating
the new homes. As one day is excluded, the consumption values in the rows are
lower compared to those in Table 3. It is noteworthy that, for this model, the MAE
and MAPE increased when considering all the data as a single cluster.

Table 4: Results Modified Model

Variable Name Value

Consumption of the clustered and classified data 957960.644 kWh

Consumption of the all data in one cluster 1012297.217 kWh

Actual Consumption 825597.386 kWh

MAE of the clustered and classified data 159.666 kWh

MAE of the all data in one cluster data 225.211 kWh

MAPE of the clustered and classified data 0.311

MAPE of the all data in one cluster data 0.422
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6 Concluding Remarks

In this section, we will draw conclusions from the thesis and examine potential paths
for future research.

6.1 Conclusion

In this thesis, an analysis of the customer data provided by Tibber has been conduc-
ted. The training set, comprising 70% of the provided dataset has been clustered by
their hourly mean consumption for a day from the time series data set. Then, the test
set, representing new customers, has been classified into these established clusters
based on their home properties. The chosen home properties variables for classifying
new customers were home size and home annual consumption, both standardized.
This choice was made because these variables demonstrated to influence the assign-
ment of groups the most. Ultimately, the selected classification model was LDA,
given its consistent and high-performance results across various tests.

In our final trial, 248 households were randomly selected as new homes out of the 829
available households. The prediction was obtained using the five clusters prediction
models, multiplying the results by the number of homes in each cluster, including
both the already grouped homes and the newly classified ones. The MAE for the
five clusters including the new homes was documented at 165.7 kWh. This indicate
an improvement compared to the MAE of the entire data set treated as one cluster,
which was 218.3 kWh. The prediction outcome from the clustered and classified
households resulted in a MAPE of 0.319. Towards the end of the thesis, a variable
was added into our linear model, being a 24-hour prior consumption variable. This
modification led to an improvement for the five clusters, incorporating both old and
new homes, in the linear model. In this case, the MAE resulted in 159.7 kWh and
a MAPE of 0.311. Once again, the MAE was lower than the one-cluster approach
for the entire dataset. This emphasizes that in both cases, whether with the initial
linear model or the modified one, the approach with multiple clusters performed
better.

The discoveries of this master’s thesis propose that the results obtained from clas-
sifying new households could be beneficial for Tibber in enhancing their customers’
consumption predictions. While there may not be an overwhelmingly large dif-
ference between the several clusters and a single cluster, and the predictions may
not align perfectly with the actual consumption, the observed improvement is note-
worthy and could be of interest. Certainly, for Tibber’s benefit, it is advisable to
conduct additional tests and implement a testing phase to determine whether this
information is genuinely valuable and effective. It is essential to recognize that the
current findings represent only a subset of their customer base, and the results may
vary based on the country or price area.
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6.2 Recommendations for Future Work

The master thesis could have delved deeper into various aspects or considered ad-
ditional factors that might be of interest for future research.

While the classification methods focused solely on SE3 among the examined vari-
ables, future research could benefit from exploring other regions within Sweden and
investigating additional price areas within Tibber’s extensive customer base, consid-
ering that they have customers in other countries as well. Given the size of Tibber’s
customer base and the amount of available data, there is potential to broaden the
scope of analysis.

Moreover, the master thesis used the same clustering methods employed earlier
in the project, incorporating hierarchical clustering. However, there are numer-
ous alternative clustering techniques that could have been explored. Diversifying
the clustering approaches may offer new insights into the data. In the context of
clustering, the primary focus was on the hourly consumption as the key response
variable. Nevertheless, other variables could have been considered, and exploring
different clustering methods beyond consumption alone could enhance the analysis.
Additionally, clustering over a year of data was performed, but investigating seasonal
clustering might have provided more informative results, considering the potential
impact of seasonal variations.

There are, as always in data collecting, missing values. For new customers we
might not have all the information used in our analysis. In some rare occations, the
customer do not have their yearly consumption, which played a signifcant role in this
analysis. Therefore, there could have been more testing with different approaches,
considering the occasional unavailability of desired customer information.

Finally, the extended model presented in the end of the results could have been
further developed to achieve greater optimization. Since this model was only tested
in the concluding phase of the master’s thesis, there was insufficient time to explore
its full potential. In our current implementation, we incorporated only the 24-hour
prior consumption into the model. However, in practice, all hourly consumption
data from the initial subscription period could have been integrated into the model.
This could involve utilizing more advanced time series models, such as Autoregress-
ive (AR), Moving Average (MA), or a combination of both (ARMA). While the
primary focus of this study was not on identifying the best prediction model but
on investigating the potential benefits of predicting in clusters, delving deeper into
model optimization could be interesting for future research.
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Appendix

A Covariance matrices from LM Results

Cluster 1

Cluster 2

Cluster 3

Figure 48: Covariance matrices from the results of the GLM with identity function
as link function for the clusters 1-3.
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Cluster 4

Cluster 5

All the data as one cluster

Figure 49: Covariance matrices from the results of the GLM with identity function
as link function for cluster 4 and the entire data as one cluster.
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B LM Results from the Modified Model

Figure 50: Summary of the modified linear model of the first cluster.

Figure 51: Summary of the modified linear model of the second cluster.
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Figure 52: Summary of the modified linear model of the third cluster.

Figure 53: Summary of the modified linear model of the fourth cluster.
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Figure 54: Summary of the modified linear model of the fifth cluster.

Figure 55: Summary of the modified linear model of the entire data as one cluster.
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C Covariance matrices from Modified LM Results

Cluster 1

Cluster 2

Cluster 3

Figure 56: Covariance matrices from the results of the modified GLM with identity
function as link function for the clusters 1-3.
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Cluster 4

Cluster 5

All the data as one cluster

Figure 57: Covariance matrices from the results of the modified GLM with identity
function as link function for cluster 4 and the entire data as one cluster.

73



D Python Code Before Classification

#Homes considered as new customers.

HOMEIDS =

random.sample(consumption_and_weather["new_homeid"].unique().tolist(),

k = 250)

↪→

↪→

#Make train/test set

def fetch_train_test_for_clusters(homeid_and_cluster: pd.DataFrame,

cluster_id: int, consumption_and_weather: pd.DataFrame)->

tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, list]:

↪→

↪→

cluster_homeids =

homeid_and_cluster[homeid_and_cluster["cluster"] ==

cluster_id].new_homeid

↪→

↪→

cluster_consumption_and_weather =

pd.merge(consumption_and_weather,cluster_homeids, on

="new_homeid")

↪→

↪→

agg_cons_and_weather =

cluster_consumption_and_weather.groupby("time").mean()↪→

agg_cons_and_weather = agg_cons_and_weather.drop(["index",

"weatherseriesid","tempk"],axis=1)↪→

agg_cons_and_weather['production'] =

agg_cons_and_weather['production'].fillna(0)↪→

train_df = agg_cons_and_weather[agg_cons_and_weather.index <

pd.to_datetime('2022-07-10', format='%Y-%m-%d')]↪→

test_df = agg_cons_and_weather[agg_cons_and_weather.index >

pd.to_datetime('2022-07-10', format='%Y-%m-%d')]↪→

train_df = train_df.copy()

train_df["hour"] = train_df.index.hour

test_df = test_df.copy()

test_df["hour"] = test_df.index.hour

return train_df, test_df, cluster_consumption_and_weather,

cluster_homeids↪→

#The prediction model

def fit_and_predict_with_glm(train: pd.DataFrame, test: pd.DataFrame)

-> pd.Series:↪→

train["hour"] = train.index.hour

test["hour"] = test.index.hour

formula = 'consumption ~

temp+humidity+cloudiness+production+hour'↪→

glm_model = smf.glm(formula = formula, data = train, family =

sm.families.Gaussian())↪→

fitted_glm = glm_model.fit()

glm_prediction = fitted_glm.predict(test)

return glm_prediction, fitted_glm
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#The extended prediction model

def fit_and_predict_glm_with_lagged_consumption(train: pd.DataFrame,

test: pd.DataFrame, lags: int = 24) -> pd.Series:↪→

train["hour"] = train.index.hour

test["hour"] = test.index.hour

train["consumption_lag"] = train['consumption'].shift(lags)

test["consumption_lag"] = test['consumption'].shift(lags)

train = train.dropna()

test = test.dropna()

formula_with_lag = 'consumption ~ temp + humidity + cloudiness +

production + hour + consumption_lag'↪→

glm_model_with_lag = smf.glm(formula=formula_with_lag,

data=train, family=sm.families.Gaussian())↪→

fitted_glm_with_lag = glm_model_with_lag.fit()

glm_prediction_with_lag = fitted_glm_with_lag.predict(test)

return glm_prediction_with_lag, fitted_glm_with_lag

#Hierarchical clustering

def make_clusters(consumption_and_weather: pd.DataFrame) ->

pd.DataFrame:↪→

consumption_and_weather_vol2 =

clean_data_dataframe(consumption_and_weather[consumption_and_weather.time

< pd.to_datetime('2022-07-10', format='%Y-%m-%d')])

↪→

↪→

mean_hourly_consumption_per_home =

table_form(consumption_and_weather_vol2)↪→

plt.figure(figsize=(10, 7))

plt.title("Customers Dendrogram")

selected_data = mean_hourly_consumption_per_home[:1000].iloc[:,

1:25]↪→

clusters = shc.linkage(selected_data,

method='ward',

metric="euclidean")

shc.dendrogram(Z=clusters)

plt.show()

mean_hourly_consumption_per_home["cluster"] = fcluster(clusters,

5, criterion="maxclust")↪→
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homeids_and_cluster =

mean_hourly_consumption_per_home[["new_homeid","cluster"]]↪→

return homeids_and_cluster

#Remove "new customers"

consumption_and_weather_without_HOMEIDS =

consumption_and_weather[~consumption_and_weather['new_homeid'].isin(HOMEIDS)]↪→

#All the data clustered. Approach 2

clusters = make_clusters(consumption_and_weather)

#Clustering the data without considered new households. Approach 3

cluster_without_HOMEIDS =

make_clusters(consumption_and_weather_without_HOMEIDS)↪→
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E R Code Classification

#Make a dataframe of the desired variables

small_keep <- c("home_size","home_annual_consumption",

"cluster","new_homeid")↪→

smaller_keep <- c("home_size","home_annual_consumption","new_homeid")

smaller_frame <- new_homeids_frame[small_keep]

prop_frame <- properties_new_homes[smaller_keep]

#Test labels

find_old_cluster <- find_old_cluster[c("new_homeid", "cluster")]

#Standarization

smaller_frame$home_size <- scale(smaller_frame$home_size)

smaller_frame$home_annual_consumption <-

scale(smaller_frame$home_annual_consumption)↪→

prop_frame$home_size <- scale(prop_frame$home_size)

prop_frame$home_annual_consumption <-

scale(prop_frame$home_annual_consumption)↪→

#Train/Test set

train_frame <- subset(smaller_frame, select = -new_homeid)

train_set <- train_frame[, ! colnames(train_frame) %in% "cluster"]

train_labels <- train_frame$cluster

test_set <- subset(prop_frame, select = -new_homeid)

test_labels <- find_old_cluster$cluster

#Classification models

#K-nearest neighbour

knn_model <- knn(train = train_set, test = test_set, cl =

train_labels, k = 18)↪→

#Linear Discriminant Analysis

lda_model <- lda(train_labels ~ ., data = cbind(train_set,

train_labels))↪→

lda_predictions <- predict(lda_model, newdata = test_set)

#Random Forest

rf_model <- randomForest(train_labels ~ ., data = train_set, ntree=

40, mtry = sqrt(ncol(train_set)))↪→

rf_predictions <- predict(rf_model, newdata = test_set)

#KDC
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nb1 <- NaiveBayes(as.factor(train_labels) ~.,data=train_set,

usekernel=T)↪→

p1 <- predict(nb1, test_set)

#Quadratic Discriminant Analysis

qda_model <- qda(train_labels ~ ., data = cbind(train_set,

train_labels))↪→

qda_predictions <- predict(qda_model, newdata = test_set)

#Support Vector Maschine

svm_model <- svm(train_labels ~ ., data = train_set, kernel =

"radial")↪→

svm_predictions <- predict(svm_model, newdata = test_set)

#Accuracy Rate

accuracy_lda <- sum(lda_predictions$class == test_labels) /

length(test_labels)↪→

#Confusion Matrix

table(true = test_labels, predict = lda_predictions$class)

#Save predictions

new_frames = prop_frame

new_frames$new_cluster <- lda_predictions$class
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F Python Code After Classification

#Change fit_and_predict_with_glm with

fit_and_predict_glm_with_lagged_consumption to get the modified

model

↪→

↪→

#Prediction of consumption

def calculate_metrics(cluster_data: pd.DataFrame, train:

pd.DataFrame, test: pd.DataFrame, consumption_and_weather:

pd.DataFrame) -> tuple[float, float, float, list, list]:

↪→

↪→

#Splitting the data depending on cluster

one_train, one_test, one_data, one_home =

fetch_train_test_for_clusters(cluster_data, 1,

consumption_and_weather)

↪→

↪→

two_train, two_test, two_data, two_home =

fetch_train_test_for_clusters(cluster_data, 2,

consumption_and_weather)

↪→

↪→

three_train, three_test, three_data, three_home =

fetch_train_test_for_clusters(cluster_data, 3,

consumption_and_weather)

↪→

↪→

four_train, four_test, four_data, four_home =

fetch_train_test_for_clusters(cluster_data, 4,

consumption_and_weather)

↪→

↪→

five_train, five_test, five_data, five_home =

fetch_train_test_for_clusters(cluster_data, 5,

consumption_and_weather)

↪→

↪→

#Keep the prediction for each cluster

glm_models_clusters = [fit_and_predict_with_glm(one_train,

one_test)[0],fit_and_predict_with_glm(two_train,

two_test)[0],fit_and_predict_with_glm(three_train,

three_test)[0],fit_and_predict_with_glm(four_train,

four_test)[0],fit_and_predict_with_glm(five_train,

five_test)[0]]

↪→

↪→

↪→

↪→

↪→

#Keep the fitted model for each cluster

glm_fits_clusters = [fit_and_predict_with_glm(one_train,

one_test)[1],fit_and_predict_with_glm(two_train,

two_test)[1],fit_and_predict_with_glm(three_train,

three_test)[1],fit_and_predict_with_glm(four_train,

four_test)[1],fit_and_predict_with_glm(five_train,

five_test)[1]]

↪→

↪→

↪→

↪→

↪→

#Find the consumption in several clusters

consumption_of_clusters =

(sum(fit_and_predict_with_glm(one_train, one_test)) *

one_home.count() +

↪→

↪→
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sum(fit_and_predict_with_glm(two_train,

two_test)) * two_home.count() +↪→

sum(fit_and_predict_with_glm(three_train,

three_test)) * three_home.count() +↪→

sum(fit_and_predict_with_glm(four_train,

four_test)) * four_home.count() +↪→

sum(fit_and_predict_with_glm(five_train,

five_test)) * five_home.count()↪→

)

#Count homes

number_of_homes = one_home.count() + two_home.count() +

three_home.count() + four_home.count() + five_home.count()↪→

#Find consumption of all data as one single cluster

consumption_of_all_as_one_cluster =

sum(fit_and_predict_with_glm(train,test))*number_of_homes↪→

#Find actual consumption

actual_consumption = (

one_data[one_data.time > pd.to_datetime('2022-07-10',

format='%Y-%m-%d')].consumption.sum() +↪→

two_data[two_data.time > pd.to_datetime('2022-07-10',

format='%Y-%m-%d')].consumption.sum() +↪→

three_data[three_data.time > pd.to_datetime('2022-07-10',

format='%Y-%m-%d')].consumption.sum() +↪→

four_data[four_data.time > pd.to_datetime('2022-07-10',

format='%Y-%m-%d')].consumption.sum() +↪→

five_data[five_data.time > pd.to_datetime('2022-07-10',

format='%Y-%m-%d')].consumption.sum()↪→

)

return consumption_of_clusters,

consumption_of_all_as_one_cluster, actual_consumption,

glm_models_clusters, glm_fits_clusters

↪→

↪→

#Calculating difference

def calculate_mae(actual_consumption: float,

consumption_of_all_as_one_cluster: float,

consumption_of_clusters: float) -> tuple[float, float]:

↪→

↪→

only_one_cluster_mae = mean_absolute_error([actual_consumption],

[consumption_of_all_as_one_cluster])/829↪→

clusters_mae = mean_absolute_error([actual_consumption],

[consumption_of_clusters])/829↪→

return only_one_cluster_mae, clusters_mae

#To find the predicted consumption with the old prediction models

with the old and new homes included↪→
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clus_and_class_cons_clusters =

(sum(clustered_few_homes_glm_models[0]) *

clustered_and_classified_homes[clustered_and_classified_homes["cluster"]

== 1].count()[0] +

↪→

↪→

↪→

sum(clustered_few_homes_glm_models[1]) *

clustered_and_classified_homes[clustered_and_classified_homes["cluster"]

== 2].count()[0] +

↪→

↪→

sum(clustered_few_homes_glm_models[2]) *

clustered_and_classified_homes[clustered_and_classified_homes["cluster"]

== 3].count()[0] +

↪→

↪→

sum(clustered_few_homes_glm_models[3]) *

clustered_and_classified_homes[clustered_and_classified_homes["cluster"]

== 4].count()[0] +

↪→

↪→

sum(clustered_few_homes_glm_models[4]) *

clustered_and_classified_homes[clustered_and_classified_homes["cluster"]

== 5].count()[0])

↪→

↪→

#Dataframes for plotting

single_cluster_vs_actual_consumption = pd.DataFrame({"time" :

mean_consumption_all.index, "Predicted Value" :

mean_consumption_all*829, "Actual Value":

actual_consumption_frame.consumption})

↪→

↪→

↪→

several_clusters_vs_actual_consumption = pd.DataFrame({"time" :

mean_consonsumption_cluster.index, "Predicted Value" :

mean_consonsumption_cluster, "Actual Value" :

actual_consumption_frame.consumption})

↪→

↪→

↪→

#Calculating MAE, MAPE and plotting

def hourly_plot(single_cluster_vs_actual_consumption,

several_clusters_vs_actual_consumption):

plt.figure(figsize=(16, 6))

mae1 = sum(single_cluster_vs_actual_consumption['Predicted

Value']/829 - single_cluster_vs_actual_consumption['Actual

Value']/829)

↪→

↪→

mae2 = sum(several_clusters_vs_actual_consumption['Predicted

Value']/829 - several_clusters_vs_actual_consumption['Actual

Value']/829)

↪→

↪→
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mape1 = (sum((single_cluster_vs_actual_consumption['Predicted

Value'] - single_cluster_vs_actual_consumption['Actual

Value'])/single_cluster_vs_actual_consumption['Actual

Value'])) / 829

↪→

↪→

↪→

mape2 = (sum((several_clusters_vs_actual_consumption['Predicted

Value'] - several_clusters_vs_actual_consumption['Actual

Value'])/several_clusters_vs_actual_consumption['Actual

Value'])) / 829

↪→

↪→

↪→

print(mae1, mae2, mape1, mape2)

plt.plot(single_cluster_vs_actual_consumption['time'],

single_cluster_vs_actual_consumption['Predicted Value'],

marker='o', label='Predicted Value All As One Cluster')

↪→

↪→

plt.plot(single_cluster_vs_actual_consumption['time'],

single_cluster_vs_actual_consumption['Actual Value'],

marker='o', label='Actual Value')

↪→

↪→

plt.plot(several_clusters_vs_actual_consumption['time'],

several_clusters_vs_actual_consumption['Predicted Value'],

marker='o', label='Predicted Value Several Clusters')

↪→

↪→

plt.xlabel('Time')

plt.ylabel('Values')

plt.title('Actual vs Predicted Values Over Time')

plt.legend()

plt.grid(True)

plt.show()
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