
Johann Alexander D
irdal

D
octoral theses at N

TN
U

, 2024:79

ISBN 978-82-326-7752-8 (printed ver.)
ISBN 978-82-326-7751-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2024:79

Johann Alexander Dirdal

Signal-based sea state estimation: 
A phase-time-path-difference 
approach
A new shipboard wave estimation approach

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f 
Ph

ilo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 

an
d 

El
ec

tr
ic

al
 E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
s



Signal-based sea state estimation: 
A phase-time-path-difference 
approach
A new shipboard wave estimation approach

Thesis for the degree of Philosophiae Doctor

Trondheim, March 2024

Norwegian University of Science and Technology
Faculty of Information Technology 
and Electrical Engineering
Department of Engineering Cybernetics

Johann Alexander Dirdal



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology 
and Electrical Engineering
Department of Engineering Cybernetics

© Johann Alexander Dirdal

ISBN 978-82-326-7752-8 (printed ver.)
ISBN 978-82-326-7751-1 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

ITK-report: 2024-02 -W

Doctoral theses at NTNU, 2024:79

Printed by Skipnes Kommunikasjon AS 

NO - 1598



Abstract

The safety and efficiency of marine operations at sea rely on accurate information
about the sea state, which includes the dominant wave height, wave direction, and
wave period. Unfortunately, many areas at sea lack this crucial data due to a scarcity
of measuring instruments or inadequate measurement resolution. However, ships have
the potential to address this issue since they are omnipresent at sea and situated near
the waves, making them optimal platforms for both measuring and reporting wave
conditions.

Shipboard sea state estimation uses sensor measurements of the sea surface from a
vessel to determine important wave characteristics through model-based or signal-
based approaches. Signal-based approaches have several advantages over model-based
methods as they estimate waves directly from sensor measurements without the need
for any complex ship model. However, these approaches often rely on expensive
instruments and expert assistance for installation and maintenance.

This doctoral thesis investigates a relatively new and unexplored signal-based approach
for shipboard wave estimation that is cost-effective and easy to implement. The
approach uses the phase-time-path-differences (PTPDs) between an array of inertial
measurement units (IMUs) to infer the directionality and frequency characteristics of
waves. Only a few works have considered using a PTPD approach for wave estimation
based on shipboard IMUs. However, these studies are restricted to model-ship wave
tank testing in regular waves, and its application appears to overlook the differences
between sensor delays on a rigid body and those directly obtained from sensors
situated on the ocean. Moreover, it is presently unclear how many IMUs are needed,
how far they should be separated, and how they should be geometrically arranged to
determine the prevailing sea state.

The present study proves that the main wave direction and wave number can be
uniquely determined from a minimum of two independent phase differences. Although
measurements of the latter can be obtained from a minimum of three noncollinear

i



IMUs, this work demonstrates that a single IMU is sufficient by utilizing a rigid-body
measurement transformation to generate the other measurements needed. Moreover,
a comprehensive theoretical assessment of the validity of the PTPD approach is
conducted, determining the conditions under which it may be safely applied to model
rigid body sensor delays. These conditions are validated experimentally through
extensive testing with a model ship in a wave tank.

As a ship moves forward in following seas, it is a well-known problem that each
encountered wave frequency can correspond to three distinct absolute wave frequen-
cies, making it challenging to accurately determine the correct wave frequency during
movement. However, through the observability results presented in this thesis, we
prove that the absolute wave frequency can be uniquely determined while the vessel is
moving using the PTPD approach. This interesting result is validated experimentally
in a wave tank with a model ship exposed to various regular and irregular waves.

An inherent drawback of using measured ship motions to determine wave characteris-
tics is that they are susceptible to distortions caused by the effect of vessel low-pass
filtering when the waves are sufficiently short. To address this challenge, a novel
analytical expression of the frequency bandwidth of undistorted waves is derived
based on the main vessel dimensions. This frequency bandwidth aids in identifying
the wave components that are safe to consider and those to avoid. This frequency
bandwidth is incorporated into our proposed methodology for implementing the PTPD
approach, which comprises a fast Fourier transform and an unscented Kalman filter.
Moreover, with our proposed methodology, we are able to yield estimates of the wave
direction and wave number/period close to real-time, with updates given every three
minutes after an initial six-minute startup period.

The validation of the proposed approach is carried out through model-scale and full-
scale field experiments. The latter involves a research vessel with a commercial wave
radar operating alongside various wave buoys under diverse sea state conditions. The
results of these experiments show strong agreement with wave reference systems,
confirming the competitiveness of our theory and method against existing wave
measurement technology. Notably, our proposed method offers advantages in cost-
effectiveness, simplicity, and environmental resilience, thereby establishing it as a
promising alternative or complementary aid within the field.
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1 | Introduction

“The basic law of the seaway is the apparent lack of any law.”

– Lord Rayleigh, Kinsman, B. (1965)

1.1 Motivation

Observing waves has been an essential aspect of human activity for thousands of years,
dating back to ancient times when sailors and fishermen relied on their knowledge of
the ocean and its waves to navigate safely and make a living. The importance of this
activity has not changed, and information about waves and the sea state continues to
be paramount for the operational safety, efficiency, and sustainability of many ocean-
related activities. For activities such as maritime navigation and shipping, significant
waves may delay voyages and spell disaster for ships, their cargo, and personnel
safety.1 To avoid such disasters, real-time measurements of the prevailing sea state
can facilitate real-time decision-making on ships to enhance safety and time and fuel
efficiency.

Information about the local sea state is also vital for accurate weather forecasting,
which, in turn, is crucial for the planning and execution of marine operations at
sea. However, despite the importance of marine weather forecasts, there are vast
areas at sea where information about local weather and waves is lacking and, as a
result, represents a significant risk for ships traversing these regions. In such areas,
satellites do not always provide the level of detail of the ocean conditions needed for
meteorological institutions to give accurate and reliable weather reports. Although
weather buoys do provide the level of detail needed, they are not everywhere and are

1As recent as 2015, the American-flagged cargo ship SS El Faro sank with its entire crew after
hitting the eyewall of Hurricane Joaquin. Furthermore, in 2021, the bulk carrier MV Arvin broke in two
and sank due to heavy seas, losing half its crew.
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Introduction

Figure 1.1: A screenshot of the National Data Buoy Center (NDBC) website displaying
the current operational network of weather buoys [1]. Yellow buoys represent stations
with recent data, while red buoys denote stations lacking data in the past 8 hours.

usually constrained to near-shore positions for cost-effective service and maintenance
(Figure 1.1).

On the other hand, ships are everywhere, constantly traversing the high and deep
seas (Figure 1.2). Employing voyaging ships to observe local weather and waves will
significantly increase the availability of marine weather forecasts in the deep ocean,
thereby enhancing overall safety and efficiency at sea. The Voluntary Observing Ship
(VOS) program has applied this idea and enlists crew members around the world to
report observations of the local weather conditions during their voyage [3]. Using
various instruments and the naked eye, the crew members report values of the air
temperature, sea temperature, sea state, visibility, barometric pressure, wind speed,
and wind direction in a standardized format to meteorological institutions worldwide
as an endeavor to enhance marine weather forecasting.

However, some significant drawbacks of the VOS program are: (i) observations are
made every six hours, thus yielding scarce measurements; (ii) there are significant
uncertainties in the parameters obtained through visual observations (e.g., the sea state),
and (iii) it requires considerable human effort. In reality, for the weather forecasts
to be reliable, they require frequent and accurate measurements of the local ocean
conditions, which, in turn, requires a high degree of automation. As a preliminary
attempt to facilitate frequent, accurate, and autonomous observations of the sea state,
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1.1. Motivation

Figure 1.2: A snapshot of the global marine traffic based on AIS (automatic identifica-
tion system) [2].

this thesis is concerned with utilizing the ship itself and its wave-induced motions.
Instead of relying on visual observations by VOS observers to measure the sea state, a
more effective method is to equip the ship with sensors that autonomously measure
waves directly or indirectly.

Two types of approaches exist for measuring the sea surface from shipborne sensors:
model-based and signal-based. Model-based approaches consider the vessel as a
floating wave buoy and determine the sea state indirectly by using the measured
wave-induced ship motions and a mathematical model of the ship. The wave-buoy
analogy [4] dominates the research on sea state estimation from ships, mainly because
these approaches only (in theory) require the measured ship responses, which can be
obtained from inexpensive shipboard sensors. However, despite this advantage, they
have failed to materialize in industrial applications due to several ongoing challenges
[5], some of which include:

• The need for response amplitude operators (RAOs): RAOs are transfer func-
tions that model the interactions between waves and vessel responses. These
functions should generally be determined for each unique ship using hydrody-
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Introduction

namic software codes or extensive model wave tank testing, requiring substantial
effort. Furthermore, since RAOs are transfer functions, their theoretical validity
is constrained to linear systems, which correspond to mild and moderate wave
conditions for ships at sea.

• Time-delayed sea-state estimations: The sea-state estimations yielded by
methods based on the wave-buoy analogy can be delayed up to 10-15 min [6],
as they usually require long time windows for the underlying spectral analysis.
Given the dynamic and rapidly changing nature of the ocean, such delayed sea
state estimates might not accurately capture the current ocean conditions. This,
in turn, poses challenges for decision-support systems needing to promptly
respond to real-time events.

• The effect of vessel low-pass filtering: If the waves are sufficiently short
compared to the vessel size, the vessel will act as a low-pass filter and distort the
waves passing through it. When this happens, the measured vessel responses
will be nonlinear with the incident waves and cannot be relied upon for accurate
sea state estimation.

• Ambiguous wave-frequency estimation in following seas: For a ship moving
with forward speed, the experienced wave frequency will generally differ from
the actual wave frequency due to the Doppler effect. Although, in most cases,
the absolute wave frequency can be uniquely resolved from the encountered
frequency, this is not always true for following seas. In such circumstances, the
encountered wave frequency can map to three distinct absolute wave frequen-
cies.

While model-based methods have many challenges, signal-based approaches for
shipboard wave estimation are less susceptible to the issues above as most of these
methods use a marine radar and/or laser altimeter to measure the ocean surface directly.
Although such instruments are very accurate and commercially available, they tend to
be expensive, sensitive to environmental impact, and challenging to install without
expert help.

1.2 Research objectives and scope

The underlying motivation for this doctoral thesis is the challenge of autonomous sea
state estimation from ships and the effective sharing of this information among ships
and meteorological institutions to improve global maritime safety and efficiency. The
primary concern during voyages is adverse weather conditions manifested as hazardous
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1.2. Research objectives and scope

Global Sea State Database

Ship Ship . . . Ship

Weather Forecasting

Figure 1.3: A network of ships sharing sea state and spatiotemporal information with
a common global database. This data is also valuable for meteorological institutions
to improve marine weather forecasts, which, in turn, can also be used by shipboard
decision support systems.

ocean waves. To mitigate this risk, a proposal is made: If all ships worldwide
measure the waves they encounter and share this data, the potential for disasters can
be significantly reduced (Figure 1.3). This cooperative approach would allow ships to
adapt their routes in real-time to avoid areas with reported or predicted dangerous wave
conditions. However, making this idea a reality requires fulfilling two key conditions:

1. All ships need to measure and report local wave conditions close to real-time.

2. The accuracy of wave condition estimations must meet a satisfactory standard.

Presently, meeting these prerequisites is challenging due to the high cost and com-
plexity associated with accurate shipborne wave measurement technology. To address
these challenges and move closer to achieving the goal of globally distributed sea state
information, the overarching objective of this doctoral thesis is as follows:
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Introduction

General objective
Develop a sea state estimation approach that is both affordable and feasible to
implement on ships while still maintaining accuracy comparable to commercial
wave measurement technologies.

As we shall see, this ambitious objective can be realized through the utilization of
inexpensive inertial measurement units (IMUs) for shipboard wave measurement.
IMUs are small, lightweight, compact, and robust sensors that can measure vessel
motion responses when exposed to waves with a very high data sampling rate. The
approach considered in this Ph.D. work involves distributing multiple IMUs across
a ship and using the phase-time-path delays between these sensors to determine
important wave characteristics.2 This signal-based wave estimation approach is new
and almost unexplored, which avoids many of the challenges faced with current model-
based and signal-based methods. Although this concept has been applied to distributed
sensors situated directly on the water, there has been limited research investigating
this approach within the context of shipborne sensors. Given this research gap and the
advantages of IMUs, the main research objective of this thesis emerges:

Main thesis objective
Develop and validate a novel shipboard sea state estimation method based on the
phase-time-path-differences (PTPDs) between an array of inertial measurement
units (IMUs). Investigate the feasibility and accuracy of this approach in
determining the main wave propagation direction and wave number for various
scenarios. Additionally, the performance of this approach should be compared
to existing wave measurement technologies.

The proposed PTPD method is applicable across vessels of all sizes. However, when
the waves are very short compared to the vessel size, the measured vessel responses
will be nonlinear with the incident waves, making accurate wave estimation challeng-
ing. Consequently, the frequency bandwidth of waves unaffected by vessel-lowpass
filtering is naturally narrower in large vessels compared to smaller vessels. As we shall
see, one of the contributions of this Ph.D. work is explicit formulas (i.e., Eqs. (3.14)
and (3.15)) quantifying the frequency bandwidth of ocean waves based on the main
ship dimensions. These formulas serve as important tools for assessing the reliability
of wave estimation across vessels.

The main thesis objective is realized through multiple smaller specific research objec-
tives:

2Although model-based approaches typically employ such sensors, these approaches have important
challenges that need to be addressed before they can be utilized in the industry (see Section 1.1).
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1.2. Research objectives and scope

Specific research objectives
1. Theoretically assess the validity of the PTPD approach to model sensor

delays on a rigid body.

2. Derive a general kinematic PTPD model for vessels with constant forward
speed.

3. Determine the minimum sensor requirements and configuration needed
to successfully implement the PTPD method.

4. Develop a methodology to estimate the PTPDs between IMU measure-
ments obtained in real ocean waves and determine the wave direction and
wave number from the estimated PTPDs as close to real-time as possible.

5. Investigate the capability of the PTPD method to uniquely resolve the
absolute wave frequency for vessels moving with constant forward speed
in following waves.

6. Develop a strategy on how to handle high-frequency waves distorted by
the effect of vessel low-pass filtering.

7. Assess the validity of the approach in a wave tank involving a stationary
and moving model ship exposed to various regular and irregular waves.

8. Assess the validity of the approach in real ocean waves and compare
its performance to commercial wave measurement systems, including a
maritime wave radar and wave buoy.

The research scope of the present thesis encompasses the following aspects:

• Main wave direction and wave number/period estimation: The primary
focus of this research is to estimate the main wave direction and wave number
or period associated with the dominant wave component. The aim is to identify
and quantify the key characteristics of the most significant wave within a given
scenario. It is important to note that the scope does not extend to estimating the
entire directional wave spectrum.

• Vessels with constant forward speed and stationkeeping: The study will
specifically consider vessels that maintain a consistent forward speed and also
engage in stationkeeping.

• Wave tank experiments: The research will involve conducting wave tank
experiments encompassing a range of parameters, including various wave direc-
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tions, wave frequencies, wave heights, and vessel speeds. These experiments
will serve as controlled environments for systematic investigation and analysis.

• Full-scale experiments: The scope also includes full-scale experiments con-
ducted in real-world conditions. These experiments will explore various wave
directions and sea states to assess the applicability and accuracy of the proposed
method in practical maritime settings. Also, the proposed method will be com-
pared to commercial wave measurement technology such as a maritime wave
radar and wave buoy.

• Unimodal seas: The performance of our proposed method is exclusively as-
sessed in unimodal wave environments, i.e., long-crested waves. This limitation
arises from the constraints of the wave basin in the MC-lab, which only allows
the generation of long-crested waves. Additionally, during the full-scale field
experiments, the prevalent wave conditions were mainly swell-dominant.

Notably, the estimation of wave height is excluded from the current research scope
due to limited time. However, a potential strategy for estimating wave height within
the existing framework is discussed in Section 4.3.2. The primary emphasis of the
research remains on wave direction and wave number/period estimation.

1.3 Contributions at a glance

This doctoral thesis comprises two accepted journal papers, listed as Paper A and
Paper B, respectively:

(A) Johann A. Dirdal, Roger Skjetne, Jan Roháč, and Thor I. Fossen. “Online wave
direction and wave number estimation from surface vessel motions using
distributed inertial measurement arrays and phase-time-path-differences.”
Ocean Engineering, vol. 249, 2022. DOI: 10.1016/j.oceaneng.2022.110760

(B) Johann A. Dirdal, Roger Skjetne, Jan Roháč, and Thor I. Fossen. “A phase-
time-path-difference approach for online wave direction and wave number
estimation from measured ship motions in zero and forward speed using a
single inertial measurement unit.” Ocean Engineering, vol. 288, Part 2, 2023.
DOI: 10.1016/j.oceaneng.2023.116131

Collectively, these papers address the research objectives outlined in Section 1.2. The
technical contributions of Papers A and B to the field of shipboard wave estimation
are listed below.
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1.3. Contributions at a glance

1. A rigorous theoretical assessment of the validity of the PTPD method in mod-
eling sensor delays on a rigid body is presented. It is shown that the proposed
method is valid when sensor separations are sufficiently short, and ocean waves
are sufficiently long. These conditions are experimentally verified with a model
ship in a wave tank. (Paper B)

2. A novel PTPD model derivation for wave direction and wave number estimation
based on measured inertial ship motions in zero and constant forward speed is
introduced. (Papers A & B)

3. An observability analysis is provided in Paper A, demonstrating that the pro-
posed PTPD state-space model is observable from a minimum of two indepen-
dent phase difference measurements. Although three noncollinear shipboard
IMUs can provide these measurements, it is shown in Paper B that a single
IMU is sufficient by using a rigid-body transformation to generate the other
measurements needed.

4. An observability analysis in Paper B shows that the absolute wave frequency
can be uniquely resolved from a vessel with constant forward speed in following
waves, addressing the mapping ambiguity between encountered and absolute
frequency domains. This insight is experimentally validated during wave tank
testing with a model ship in both regular and irregular waves.

5. A novel frequency bandwidth measure is proposed, quantifying when vessel
filtering is likely to distort sensor measurements and indicating which wave
components can be used for wave estimation. (Papers A & B)

6. A methodology that combines a fast Fourier transform, an unscented Kalman
filter, and the frequency bandwidth threshold is introduced to successfully
implement the PTPD approach for online wave direction and wave number
estimation. (Paper B)

7. The proposed theory and method are experimentally validated on IMU data
gathered from a model ship with zero and constant forward speed in regular and
long-crested irregular waves. (Papers A & B)

8. The methodology is experimentally validated on full-scale IMU data involving
the research vessel Gunnerus and several wave reference systems, including a
commercial wave radar and multiple wave buoys. (Paper B)

A graphical overview of the research papers is shown in Figure 1.4, illustrating how
they contribute to each of the outlined research objectives in Section 1.2.
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Paper A

Paper B

Zero speed

Forward speed

Zero speed

Forward speed

Single IMU

Multiple IMUs

Observability
proof

High-frequency
waves

Zero speed

Forward speed

Single IMU

Mulitple IMUs PTPD model
validation

Wave frequency
ambiguity

(following seas)

Full-scale experiments
with RV Gunnerus

Model ship wave tank
experiments

Regular waves

Irregular waves

Figure 1.4: A graphical overview of the contributions of Papers A and B to the research
objectives.

1.4 Thesis outline

The organization of this doctoral thesis is as follows:

• Part I: Background.

– Chapter 2: Measuring and quantifying ocean waves.
In this chapter, fundamental theory on ocean waves including formal defi-
nitions of a wave, sea state parameters, and the wave spectrum is presented.
Furthermore, a brief account of existing techniques and technology for
measuring waves is provided.

– Chapter 3: Shipboard sea state estimation.
In this chapter, current literature utilizing shipboard sensor measurements
for sea state estimation is presented and reviewed. The advantages and
disadvantages of existing approaches are addressed.

– Chapter 4: Phase-time-path-differences: A new approach for ship-
board wave estimation.
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1.4. Thesis outline

In this chapter, the PTPD approach is presented—our contribution to
shipboard wave estimation—which includes the basic idea, the main con-
tributions of this thesis, a discussion about the wave height, conclusive
remarks, and comments about future work.

• Part II: Publications.
In this part, the publications of this doctoral thesis are listed.

While this thesis is presented as a compilation of papers, its organization may occa-
sionally resemble that of a monograph. This resemblance arises from the inclusion
of certain chapters that provide foundational explanations about ocean waves and
shipboard estimation techniques. The rationale behind this structure is to ensure that
the thesis is self-contained, facilitating readers who are newcomers to the field of
ocean wave modeling. By reading Part I initially, these readers can comprehend
the content within the included papers without the need to refer to external sources.
However, individuals already familiar with ocean wave basics and shipboard sea state
estimation have the flexibility to skip Chapters 2 and 3 without disrupting the overall
coherence of the material.
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2 | Measuring and quantifying
ocean waves

If we consider undulations of the sea surface to be ocean waves, the underlying
causes for these vertical motions are the winds, the sun and moon, and underwater
earthquakes. These natural forces constitute different portions or bands of the energy
spectrum of ocean waves (Figure 2.1). From this spectrum, it is clear that most of the
energy is contained in wind-generated surface waves and tides, which, in effect, are the
waveforms commonly observed by the naked eye. When dominated by local winds,
wind-generated waves take on an irregular short-crested shape, known as wind sea.
After leaving the generation area, these waves become more regular and long-crested
and are called swell. Wind-generated waves are the main subject of this thesis and are
usually the prime focus of most research endeavors concerned with ocean modeling
and sea state estimation.

2.1 Definition of sea state parameters

A sea state is a collective term used to describe the state or condition of the sea surface
at a specific location and moment. It is usually characterized by parameters such as the
main wave height, wave direction, and wave period. By main, we usually refer to the
wave height, direction, and period associated with the primary modal period/frequency
of the wave energy spectrum (i.e., the period/frequency in which the wave spectrum
attains its maximum value). In this section, the definition of wave height, period, and
direction is given based on a time series of the sea surface elevation to facilitate a
more in-depth understanding of these quantities. However, before this can be done, a
more precise definition of what a wave is needs to be provided.
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Figure 2.1: The vertical motions of the sea surface can be grouped into different wave
categories depending on the range of wave periods/frequencies considered (after [7]).

2.1.1 What is a wave?

Many think of a wave as the instantaneous surface elevation relative to the mean
equilibrium level of the water. However, this is false in the present context, and
it is important to distinguish between a wave and surface elevation. A wave is
defined as the surface elevation profile existing between two consecutive downward
zero-crossings (Figure 2.2). In contrast, a surface elevation is a number (positive or
negative) representing the elevation of the surface above some reference level at any
moment in time. It is also possible to define a wave based on two successive upward
zero-crossings instead; however, this definition does not include breaking waves and
conflicts with visual estimates of the wave height, which is taken to be the relative
distance between the crest and preceding trough [7].

2.1.2 Wave height

Based on the definition of a wave, the corresponding wave height H is defined as the
vertical distance between the highest and lowest surface elevations in a wave (Figure
2.2). Hence, a wave has only one wave height.

In a time series of the surface elevation comprising N waves, the average wave height
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T0

H

S
u
rf
ac
e
el
ev
at
io
n

Time

Downward zero-crossing

Figure 2.2: Definitions of a wave, wave height H , and wave period T0.

H̄ is simply

H̄ =
1

N

N∑
i=1

Hi,

where i is the sequence number of each wave height Hi (i.e., i = 1 is the first wave
height in the record, i = 2 is the second, etc.). In practice, however, the mean wave
height is not so commonly used. Instead, most engineers and scientists refer to the
significant wave height when addressing the magnitude of waves. The significant
wave height is defined as the average wave height of the one-third highest waves in a
surface elevation time series, i.e.,

H1/3 =
1

N/3

N/3∑
j=1

Hj , (2.1)

where H1/3 is the significant wave height and j is the rank number of wave Hj (i.e.,
j = 1 represents the highest wave in the record, j = 2 the second highest, etc.). The
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significant wave height is a popular metric as it agrees very well with the wave height
obtained from visual observations of the ocean surface [7]. It is worth mentioning that
there are several other metrics for quantifying the wave height; however, these are not
considered in the works of the present thesis and have, consequently, been omitted.

2.1.3 Wave period and wave number

Following the same definition of a wave, the wave period is simply the duration of
the wave, i.e., the time interval between the zero-crossings (Figure 2.2). Since the
time period is based on zero-crossings, it is referred to as the zero-crossing period T0.
Following the same procedure as the wave height, the mean zero-crossing period T̄0

and significant wave period T1/3 are defined, respectively, as

T̄0 =
1

N

N∑
i=1

T0,i and T1/3 =
1

N/3

N/3∑
j=1

T0,j ,

where i and j denote the respective sequence and rank numbers of the wave (based on
the wave height). There are several other important wave periods that are defined in
terms of the wave spectrum (see Section 2.2), which is a statistical representation of
waves by considering them as a sum of a large number of harmonic wave components.
One important such wave period is the peak/modal period Tp. The peak period is
simply the wave component (frequency) that attains the highest spectral energy in the
spectrum (see Figure 2.5).

The wave number is the spatial analog to the wave frequency and is defined as the
number of complete cycles of a wave over its wavelength, i.e.,

k =
2π

λ
,

where k is the wave number and λ denotes the wavelength. Linear wave theory shows
that the wave number and wave period are connected through the dispersion relation,
i.e.,

ω2 = kg tanh(kd), (2.2)

where ω = 2π/T is the angular frequency expressed in terms of the wave period T ,
water depth d, and gravitational constant g. For deep waters, the relationship above
simplifies to

k =
ω2

g
.
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2.1. Definition of sea state parameters

Figure 2.3: The structure of a random sea can be regarded as a sum of propagating
cosine waves moving in different directions. Classical drawing from [8].

2.1.4 Wave propagation direction

Up to now, our study of waves has been based on a one-dimensional time series of
surface elevation at a single geographical location. In reality, however, waves move
in different directions through horizontal x, y-space. A common way to model the
movement of short-crested ocean waves is to consider them a superposition of many
propagating harmonic wave components with different wave amplitudes, frequencies,
and directions (Figure 2.3). When the majority of wave components propagate in
the same direction, the waves are regarded as long-crested. The wave propagation
direction of a wave component is orthogonal to its wave crest and defined relative
to the positive x-axis of an arbitrarily defined coordinate system in horizontal space
(Figure 2.4). For wave observation systems, the relative wave propagation direction
may be defined as the angle at which the waves approach or leave the observation
instrument. In this thesis, we consider the wave direction to be the angle at which the
waves leave the vessel in question.
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Figure 2.4: Definition of the wave propagation direction β.

2.2 The wave spectrum

Linear wave theory states that for deep waters, the sea surface elevation η at time t and
spatial coordinates (x, y) is a superposition of many propagating regular harmonic
waves (Figure 2.3) differing in amplitude a, frequency ω, direction β, and phase ε, i.e.,

η(x, y, t) =

N∑
i=1

M∑
j=1

aij cos(ωit− ki(x cosβj + y sinβj) + εij), (2.3)

where ki denotes the wave number and is related to the frequency ωi through the
dispersion relation (2.2). Due to the apparent complex and chaotic behavior of wind-
generated waves, the surface elevation is regarded as a stochastic process, meaning
that each individual observation (i.e., surface elevation time series) recorded at sea is
treated as one possible realization of the random sea. The randomness of the surface
elevation (2.3) is reflected in the phase component εij , which is considered uniformly
distributed between 0 and 2π. Hence, by assuming that the wave components in Eq.
(2.3) are independent random variables, the central limit theorem tells us that the
surface elevation η is a Gaussian random process with zero mean and variance σ2
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2.2. The wave spectrum

given by

σ2 = E[η2] =

N∑
i=1

M∑
j=1

a2
ijE
[

cos2(ωit− ki(x cosβj + y sinβj) + εij)
]

=
N∑
i=1

M∑
j=1

1

2
a2
ij , (2.4)

where E[·] denotes the mathematical expectation.

We want to evaluate the statistical characteristics of the random sea surface (2.3).
This is usually done in the frequency domain by evaluating the wave spectral density
function or wave spectrum as it is often called, which is the fundamental quantity used
for analyzing the statistical properties of random ocean waves (wave-by-wave analysis
in the time domain is difficult). The 2-D directional wave spectrum is defined by

E(ω, β) = lim
∆ω→0

lim
∆β→0

1

∆ω∆β
E[η2], (2.5)

and shows how the variance of the sea surface elevation is distributed over a continuum
of frequencies and directions. It is important to note that Eq. (2.5) is a modification of
Eq. (2.4) as it considers a continuum of frequencies and directions to represent the
fact that all frequencies and directions are present at sea. The variance is considered as
it is closely related to the total wave energy—a physical property of great interest. In
fact, the wave energy density spectrum is obtained by scaling Eq. (2.5) by ρg, where
ρ represents the water density.

In order to completely describe the statistical properties of random ocean waves, the
following two assumptions are needed:

(i) The waves are a wide-sense stationary process (i.e., its mean and variance are
independent of time).

(ii) The waves are an ergodic random process (i.e., time averaging is the same as
ensemble averaging).

Together, these assumptions ensure that a single time record of the sea surface elevation
contains sufficient statistical variation that the statistical properties of the local ocean
waves can be completely described at the location in which the measurement is taken.
In reality, however, ocean waves are never really stationary, meaning that a wave
record of the surface elevation needs to be divided into quasi-stationary segments and
processed individually.
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2.2.1 Spectral analysis of random waves

In general, there are two ways of computing the wave spectrum from a recorded time
series of the surface elevation: (i) evaluating the auto-correlation function (single wave
record) and/or cross-correlation function (multiple simultaneous wave records) and
taking the Fourier transform of the result or (ii) taking the Fourier transform of the
wave record(s) directly. In the following discussion, we only consider a single-point
measurement of the sea surface, which contains the time history of all waves passing
that location without reference to wave directionality. Hence, we do not consider
any cross-spectral analysis, which is needed to evaluate the directional characteristics
of ocean waves. The interested reader is referred to [9] for a detailed treatment of
cross-spectral analysis from multiple simultaneous wave records.

The auto-correlation function is defined as

R(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t+ τ)dτ, (2.6)

and expresses the degree of similarity between observations (random variables) as
a function of the time difference τ . The Wiener-Khinchin theorem states that the
auto-correlation function (2.6) and the spectral density S(ω) (i.e., the wave spectrum)
with angular frequency ω are Fourier transform pairs, i.e.,

S(ω) =
1

π

∫ ∞
−∞

R(τ)e−jωτdτ,

R(τ) =
1

2

∫ ∞
−∞

S(ω)e−jωτdω.

(2.7)

Alternatively, the spectral density function can be obtained directly from the Fourier
transform of x(t), i.e.,

S(ω) = lim
T→∞

1

2T

∣∣XT (ω)
∣∣2, (2.8)

where

XT (ω) =

∫ T

−T
x(t)e−jωtdt

is the Fourier transform of x(t). Whether Eq. (2.7) or (2.8) is used, the resulting
wave spectrum will consist of either a single peak or multiple peaks depending on
how many wave systems are present in the record. Figure 2.5 shows an example of a
bimodal wave spectrum consisting of swell and wind sea. Wind sea refers to waves
generated by the local wind, while swell is wind sea that has traveled from a distant
storm and gradually dissipated some of its energy along the way. In general, the swell
will manifest itself as a low-frequency, narrow-banded peak, symbolizing a regular

22



2.2. The wave spectrum
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Figure 2.5: A one-dimensional bimodal wave spectrum S(ω) consisting of swell and
wind sea. The peak wave frequency ωp is the frequency in which S(ω) attains its
maximum value.

and long-crested appearance. Wind sea, on the other hand, carries a broader shape and
is usually higher in frequency, appearing as short-crested and irregular waves.

From the wave spectrum, several statistical parameters describing the sea state
can be obtained. The most important parameter is the significant wave height, which,
under the assumption that the wave height is Rayleigh distributed, is given by

Hs = 4
√
m0, (2.9)

where

m0 = σ2 =

∫ ∞
0

S(ω)dω, (2.10)

is the zeroth moment and also the total variance of the surface elevation. The significant
wave height Hs is very important as it represents the sea severity. It is worth noting
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that the significant wave height computed from its definition in Eq. (2.1) and from Eq.
(2.9) will generally differ by a small amount (i.e., H1/3 6= Hs) [7].

Other important parameters are the peak/modal period Tp, average period T1, and
average zero-crossings period Tz . The peak period Tp is obtained through

dS(ω)

dω

∣∣∣∣∣
ωp

= 0, (2.11)

with Tp = 2π/ωp, where ωp is the peak frequency (Figure 2.5). The average wave
period T1 and average zero-crossings period Tz are defined by

T1 = 2π
m0

m1
and Tz = 2π

√
m0

m2
, (2.12)

where m0, m1, and m2 denote the zeroth, first, and second moments, computed by

mn :=

∫ ∞
0

ωnS(ω)dω.

2.2.2 Practical considerations

In practice, an actual time record of the surface elevation differs in many ways from
the theoretical formulation underlying the spectrum analysis in Section 2.2.1. Some
of the differences are: (i) the measured wave record is a discrete quantity, (ii) the
duration of the wave record is finite, (iii) there is usually only one wave record, and
(iv) the wave record is contaminated with sensor noise. In the following, we give a
brief account of each of these limitations and how they may be alleviated.

For a point measurement on the ocean surface, the discrete-time wave record
is obtained by periodically sampling the surface elevation. It is important to sample
the ocean at a sufficiently high rate to ensure that the effect of aliasing is minimized.
Ideally, the sampling rate should be greater than or equal to twice the bandwidth of the
process to avoid aliasing (Nyquist sampling theorem). However, since all frequencies
are present at sea, there will always be some aliasing present in the wave spectrum.
Nevertheless, the rapidly decreasing tail of ocean wave spectra implies that the ocean
waves are almost bandlimited, meaning that aliasing is not a big issue, provided the
ocean is sampled at a sufficiently high rate.

The fact that the wave record is of finite duration T (and not infinite as suggested in
the equations in Section 2.2.1) implies that there will be details within the frequency
interval or resolution ∆f = 1/T that cannot be seen. To ensure that most details
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are seen, it is important that the duration T be sufficiently long while, at the same
time, making sure the waves are stationary within T . For ocean waves, stationarity is
generally maintained for up to 15-30 min [7].

A discrete and finite wave record also implies that the discrete Fourier trans-
form (DFT) is needed to transform the record from the time to frequency domain.
Since the record is finite, the DFT implicitly assumes that the entire data sequence is
one period of a periodic signal. In most cases, there will be a discontinuity between
the first and final data samples in the wave record, leading to spectral leakage (i.e.,
energy in one frequency bin is leaked into adjacent frequency bins). The effect
of spectral leakage can be reduced by employing various window functions (e.g.,
Hanning window) to smoothly decrease the signal values to zero near the endpoints.

As seen in Eq. (2.8), the spectral density can be obtained by taking the Fourier
transform of the wave record and squaring the result. However, since the wave record
is discrete and finite, we rely on the DFT to carry out this transformation, which yields
an estimate of the wave spectral density. This estimate is called the periodogram and
is not a consistent estimator (i.e., the variance does not approach zero as the sample
length approaches infinity). Since we usually only have one wave record, the variance
can be improved by splitting the data into p blocks, computing the periodogram of each
block, and averaging the result (Figure 2.6). However, care must be exercised when
performing this operation, as increasing p leads to a decreasing frequency resolution.

In general, there will be a discrepancy between the true sea surface elevation and the
corresponding measurement owing to the measurement technique, the instrument,
and the processing of the raw signal. The discrepancy resulting from these factors is
collectively termed noise and usually exhibits a low-frequency and high-frequency
character. In some cases, the low-frequency behavior will manifest itself as a slowly
varying bias, which may be mitigated by subtracting the average of the wave record
from the record itself. The high-frequency behavior can be reduced by employing a
low-pass filter with a cut-off frequency above the bandwidth of the considered waves.

2.3 Overview of measurement techniques

The wave height, wave direction, and wave period are generally computed directly
or indirectly from time records of the surface elevation at one or more geographic
locations. Time records of the ocean surface elevation may be obtained through
various instruments, which can be classified as either in situ or remote sensing devices.
In this section, we give a brief account of these instruments and the measurement
principles they rely on.
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Figure 2.6: Dividing a wave record of duration T into p blocks, computing the
periodogram of each block, and averaging the result leads to an improved estimate of
the wave spectral density with the cost of reduced frequency resolution ∆f = p/T .

2.3.1 In-situ instruments

In-situ wave measurement techniques comprise instruments such as wave buoys, wave
poles/probes, pressure transducers, current meters, and echo sounders. A characteristic
feature of these instruments is that they are in contact with the water, either at the sea
surface (e.g., wave buoys), below the sea surface (e.g., pressure transducers mounted
to a fixed underwater structure or inverted echo sounder installed on the seabed) or
semi-submerged in the sea (e.g., wave poles extending from an offshore structure into
the sea). Most of these instruments record the up-and-down motion of the sea surface
at one geographic location.

The wave buoy is the most common instrument used for observing ocean surface
waves. Situated at the ocean surface and anchored to the seabed, the vertical motion
of the buoy is considered one-to-one with the ocean waves owing to its relatively
small size and buoyancy. For this reason, the vertical buoy displacement and sea
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surface elevation are generally regarded as equivalent. There are, in general, different
techniques for obtaining the vertical buoy displacement. The most common approach
is integrating the acceleration (computed from measurements of specific force) or
velocity of the buoy to determine its vertical position. The acceleration and velocity
are usually obtained from accelerometers (typically as part of an inertial measurement
unit mounted inside the buoy) or through GPS by using the Doppler shift of the
satellite signal. It is also possible to use the vertical position measurement from the
GPS receiver directly as an estimate of the buoy displacement. However, for the latter
to be accurate, a nearby base station is generally needed to enhance the received signal
(this approach is known as differential GPS or DGPS).

Although the vertical buoy displacement is sufficient for determining the height and
period of waves in the local region, this motion is not by itself sufficient to provide
directional wave information. For this purpose, we need additional information about
the roll and pitch motion or horizontal motion (surge and sway) of the buoy.

2.3.2 Remote sensing instruments

In contrast with in-situ instruments, remote sensing devices are not in direct contact
with the water but are usually mounted remotely on a body, observing the ocean surface
from afar. Remote sensing instruments include radars, laser altimeters, and cameras,
traditionally installed on a fixed or moving platform, which may be an observation
tower, satellite, airplane, or ship. These instruments emit electromagnetic radiation
(visible light, infrared light, or radar energy) and use the reflections to produce spatial
and temporal representations of the ocean surface. A concise account of marine radars
and laser altimeters for wave measurement from ships is given in Section 3.2.1.
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3 | Shipboard wave estimation

Information about ocean waves is crucial for ships currently out at sea or for those
charting a course for their next journey. As we have seen, when it comes to gathering
information about the sea state, there are a variety of instruments at our disposal. In-
situ instruments such as wave buoys are known for their accuracy, providing valuable
data about wave heights, directions, and frequencies. However, wave buoys are often
strategically placed near shore for cost-effective service and maintenance rather than
covering vast areas. Satellites, on the other hand, offer a broader perspective, enabling
us to gather information about the sea over extensive regions. However, they may not
always provide the level of detail required at specific local sites.

Ships have the potential to combine the best of both worlds. They are omnipresent at
sea and situated on the sea surface, which grants them the ability to capture detailed
and localized information about ocean waves and distribute this information worldwide
to other vessels and institutions in need of it. Indeed, many people and organizations
have recognized the potential of this idea, sparking extensive research into using
ships as platforms for measuring ocean waves. As we shall see, the research on
shipboard wave estimation comprises several methods, each with its own advantages
and disadvantages.

3.1 Model-based approaches

Ships, with their characteristic behavior resembling wave buoys, respond to the forces
of the ocean by oscillating up and down. One early and successful attempt to exploit
the wave-induced up-and-down motion of ships to measure waves was reported by
Tucker [10]. He developed the first-generation shipborne wave recorder, a system
comprising a pressure transducer and vertical accelerometer. The pressure transducer
is located at a point inside the hull and measures the sea pressure to give the height of
the water surface above the point, which is added to the vertical displacement of the
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Figure 3.1: A conceptual illustration of model-based shipboard wave estimation.
Waves, depicted as a surface elevation time series, cause ship motions recorded by
an onboard inertial measurement unit (IMU). Ship motion responses, such as heave,
combined with the ship response amplitude operators (RAOs), enable the inference of
incident waves through an inverse problem-solving approach. This problem can be
solved in either the time domain or frequency domain.

point, obtained by integrating the output from the heave accelerometer twice. These
instruments are strategically positioned near the center of flotation to minimize the
influence of vessel roll and pitch motions on the wave height measurements.

Although ships exhibit buoy-like behavior, their motion responses are usually
not one-to-one with the incident waves owing to the ship’s size and geometry.
Unfortunately, shipborne wave recorders do not account for ship properties such as
geometry and mass, which has led to inaccuracies in their wave height measurements
[11]. Recognizing the limitations of shipborne wave recorders for measuring wave
heights, Takekuma and Takahashi [12] explored the possibility of improving wave
estimation by considering the ship’s response amplitude operators (RAOs). RAOs
are complex transfer functions that act as a type of scale factor between the incident
waves and vessel responses but vary with different wave frequencies, amplitudes, and
directions. If the RAOs in, e.g., heave, roll, and pitch are known for a specific ship,
they can be combined with the corresponding measured ship response to determine the
waves causing the motions (Figure 3.1). Since Takekuma and Takahashi’s published
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work [12], numerous studies have investigated using this model-based approach to
extract information about the incident waves [13–17], which remains a key focus.

Recent literature on the subject can be divided into two categories: studies fo-
cusing on stationary vessels for wave estimation [18–25] and those considering
vessels with forward speed [26–34]. When a ship is stationary at sea (zero speed),
the frequency of its heave, roll, and pitch motions correspond to the wave frequency,
simplifying the problem significantly. However, when the vessel is in motion, the
encountered wave frequency is affected by the Doppler effect, resulting in a frequency
shift. This effect introduces complexities, especially for following seas, where
the encountered frequency may map to multiple absolute frequencies, making it
challenging to determine the true wave frequency [35, 36].

Despite these challenges, the utilization of ships as wave measurement plat-
forms, together with RAO analysis, continues to be a vibrant area of research. In the
following subsections, we discuss the problem of estimating the sea state based on
vessel RAOs in greater detail, which can be formulated either in the frequency or time
domain [4].

3.1.1 Frequency-domain formulation

The waves and wave-induced vessel responses are generally considered linear for mild
and moderate wave climates. The linearity assumption is essential as it allows the
waves and vessel responses to be related through complex-valued transfer functions
known as RAOs. Each ship generally has its own RAO model for each vessel response
(e.g., sway, heave, roll, and pitch) and is usually obtained through computational
methods or model tests. Computational methods involve using hydrodynamic codes
based on strip theory (e.g., ShipX) or 3-D panel methods (e.g., WAMIT) to simulate
the ship’s behavior in waves for various amplitudes, frequencies, and directions.
Model tests involve physically testing a scaled model of the ship in a wave basin or
towing tank, measuring the responses, and extrapolating the results to the full-scale
ship.

Let J = {1, 2, 3, 4, 5, 6} be the index set corresponding to the translational
and rotational rigid-body motions {surge, sway, heave, roll, pitch, yaw}, respectively.
Furthermore, let I ⊆ J be the subset of vessel motion responses considered, which
comprises a total of Nd responses. If the ship RAOs are known for the pair of vessel
responses {i, j} ∈ I, the relationship between waves (input) and vessel responses

31



Shipboard wave estimation

m = 1

m = 2

m = Nω

k = 1

k = 2

k = 3

k = 4

k = 5

k = Nβ

∆β

∆ω

Figure 3.2: Polar diagram showing how the wavefield is discretized into Nω frequen-
cies and Nβ directions.

(output) can be described mathematically in the frequency domain as

Sij(ω) =

∫ π

−π
Φi(ω, β)Φj(ω, β)E(ω, β)dβ, (3.1)

where Sij(ω) denotes the cross-spectrum between the ith and jth vessel response
at angular wave frequency ω, Φi and Φj represent the RAOs of the ith and jth
vessel response, and E(ω, β) is the directional wave spectrum as function of ω and
wave direction β. The response cross-spectrum Sij(ω) is obtained by computing
the cross-correlation between the time series of the measured vessel responses i and
j. This result is then transformed to the frequency domain by application of a fast
Fourier transform (FFT) or multivariate autoregressive (MAR) model.

The main goal is to retrieve the directional wave spectrum E(ω, β) from Eq.

32



3.1. Model-based approaches

(3.1) using the computed response cross-sprectra Sij(ω) and known ship RAOs
Φi(ω, β) and Φj(ω, β). To do this, the wavefield must be discretized into Nβ ×Nω

points (Figure 3.2), where Nβ and Nω represent the number of respective wave
directions and wave frequencies considered. Such a discretization implies that Eq.
(3.1) can be rewritten into the following discrete form

Sij(ωm) = ∆β

Nβ∑
k=1

Φi(ωm, βk)Φj(ωm, βk)E(ωm, βk), (3.2)

where ωm = ω0 + (m− 1)∆ω and βk = (k − 1)∆β are the pre-computed discrete
wave frequencies and wave directions for m = 1, 2, . . . , Nω and k = 1, 2, . . . , Nβ ,
respectively, and ∆β = 2π/Nβ and ∆ω = (ωf − ω0)/Nω, where [ω0, ωf ] represents
the considered frequency range. The cross-spectra Sij(ωm) can either be real (i.e.,
when i = j) or complex valued (i.e., when i 6= j), meaning that for each i and
j, Eq. (3.2) can be divided into three separate parts: Sii(ωm), Re{Sij(ωm)}, and
Im{Sij(ωm)}. Hence, for each frequency component ωm, we can rewrite Eq. (3.2)
into the following compact form

bm = Amfm, (3.3)

where

bm :=



Sii(ωm)
...

Re{Sij(ωm)}
...

Im{Sij(ωm)}
...


︸ ︷︷ ︸

N2
d×1

, fm :=


E(ωm, β1)
E(ωm, β2)

...
E(ωm, βNβ )


︸ ︷︷ ︸

Nβ×1

,

Am := ∆β
. . . |Φi(ωm, βk)|2 . . .

...
. . . Re{Φi(ωm, βk)}Re{Φj(ωm, βk)}+ Im{Φi(ωm, βk)} Im{Φj(ωm, βk)} . . .

...
. . . Im{Φi(ωm, βk)}Re{Φj(ωm, βk)} − Re{Φi(ωm, βk)} Im{Φj(ωm, βk)} . . .


︸ ︷︷ ︸

N2
d×Nβ

.
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Generalizing Eq. (3.3) to account for all frequencies Nωm , yields the final affine
equation

b = Af , (3.4)

where b = [b>1 ,b
>
2 , . . . ,b

>
Nω

]> ∈ RN2
dNω , A = diag{A1,A2, . . . ,ANω} ∈

RN2
dNω×NβNω , and f = [f>1 , f

>
2 , . . . , f

>
Nω

]> ∈ RNβNω . The overall goal is to find an
f that minimizes the difference between the left-hand and right-hand sides of Eq.
(3.4), i.e.,

min
f
||Af − b||2, (3.5)

where in this case, we have considered minimization in the least-squares sense, which
is most common. However, in practice, the system (3.4) generally possesses fewer
equations than unknowns (i.e., N2

dNω < NβNω), rendering it an underdetermined
system. To overcome this issue and make Eq. (3.4) uniquely solvable, some con-
straints must be imposed. The latter is achieved by realizing that the directional wave
spectrum is positive, smooth, and diminishes to zero for sufficiently low and high
frequencies. There exist two different approaches for incorporating such constraints
into the optimization problem (3.5), which are termed parametric and nonparametric
approaches. Parametric approaches [19, 29, 32, 37, 38] assume a predefined wave
spectrum shape that depends only on a few parameters. For example, a 10-parameter
bimodal wave spectrum is considered in [19, 38], where

E(ω, β) =
1

4

2∑
i=1

(((4λi + 1)/4)ω4
p,i)

λi

Γ(λi)

H2
s,i

ω4λi+1
A(si)

× cos2si

(
β − β̄i

2

)
exp

{
−4λi + 1

4

(ωp,i
ω

)4
}
, (3.6)

where Hs is the significant wave height, λ denotes the shaping parameter of the
spectrum, β̄ is the mean wave direction, ωp is the peak wave frequency, s is a spreading
parameter, Γ is the Gamma function, and

A(s) =
22s−1Γ2(s+ 1)

πΓ(2s+ 1)

is a normalization factor for the area under a cos2s curve. The representation in Eq.
(3.6) implicitly preserves the positiveness, smoothness, and boundary constraints
above. On the other hand, nonparametric approaches [24–28, 39, 40] do not place any
assumptions on the shape of the wave spectrum, and instead introduce the positiveness,
smoothness, and boundary constraints directly into the optimization problem (3.5) and
solve the system using convex optimization. Following such an approach, a typical
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cost function with constraints is given by

min
f
||Af − b||2 + ||CLf ||2

s.t. f ≥ 0,

f1 = 0,

fNω = 0,

(3.7)

where C denotes a diagonal positive definite matrix of weights (penalty parameters)
and L is a matrix containing the smoothness constraints [40]. For more details on the
differences between parametric and nonparametric methods, the reader is referred to
[28] and references therein.

It is worth stressing that the representation given in Eq. (3.1) applies only for
stationkeeping vessels (i.e., zero forward speed). It is, however, possible to account
for forward speed in Eq. (3.1) by considering the wave encounter frequency ωe
instead, i.e.,

Sij(ωe) =

∫ π

−π
Φi(ωe, β)Φj(ωe, β)E(ωe, β)dβ, (3.8)

where
ωe = |ω − kU cosβ|, (3.9)

with U denoting the vessel forward speed, ω the absolute wave frequency, k the wave
number, and β the wave encounter angle (Figure 3.3). A drawback of Eq. (3.8) is
that the directional wave spectrum E(ωe, β) is formulated in the encounter frequency
domain and not in terms of absolute frequency, i.e., E(ω, β). Although the computed
significant wave height (and wave direction) is equivalent in both frequency domains
due to the conservation of energy, the wave frequencies differ. The absolute wave
frequencies can be obtained from the encounter domain by applying the transformation
(3.9) to map the encounter frequencies to absolute frequencies [28]. However, for
following seas (i.e., when the vessel is moving with the general propagation direction
of the waves), each ωe generally maps to three different ω (Figure 3.4). The 1-to-3
mapping problem implies that the integral (3.8) should map to three parts to maintain
each potential absolute frequency, leading to an ambiguous solution. Some works have
addressed this issue [35, 36], proposing various pseudo algorithms and optimization
techniques based on parameterized wave spectra.

3.1.2 Time-domain formulation

Although most of the research using RAO-model approaches for shipboard sea state
estimation is carried out in the frequency domain, there are some works [23, 24]
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β = 180◦

Head sea

β = 150◦
Bow sea

β = 120◦

Beam sea

β = 60◦

β = 30◦
Quartering sea

β = 0◦

Following sea

Figure 3.3: Definition of wave encounter angle β.

who have formulated the problem in the time domain as a state-space model and
solved it using a Kalman filter. As we saw earlier, RAO approaches in the frequency
domain usually involve minimizing an error cost function using iterative optimization
procedures, which may require some computational effort. As we shall see, by instead
formulating the problem in the time domain and employing a Kalman filter, the speed
of estimation can be increased as cross-spectral calculations are not performed, and
the wave amplitudes are estimated directly in real-time. In addition, with the Kalman
filter framework, it is easy to fuse data from several sources and incorporate process
and measurement noise into the estimation procedure. The latter is important as it
provides an uncertainty measure in the estimated wave quantities, indicating whether
they can be trusted or not.

Recall from Section 2.2 that the ocean surface elevation can be considered a super-
position of a large number of harmonic wave components differing in amplitude,
frequency, and direction. Assuming that the considered vessel response is linear with
the incident waves, the response r can be modeled in the time domain as a weighted
sum of harmonic wave components over a range of wave frequencies and directions
[23, 24], i.e.,

r = Re


Nf∑
m=1

Nβ∑
n=1

Φ(ωm, βn)A(ωm, βn)
(

cos(ωmt+ εmn) + j sin(ωmt+ εmn)
),

(3.10)
where Φ(ωm, βn) denotes the RAO of the vessel response computed at discrete wave
frequencies and directions ωm and βn, respectively,A(ωm, βn) represents the complex
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Figure 3.4: Relationship between wave encounter frequency ωe and ω given by Eq.
(3.9), where k = ω2/g (deep waters) and ψ := U/g cosβ. If ωe < 1/4ψ, it maps to
three different solutions of the wave frequency ω.

wave amplitude, and εmn is the random phase. Introducing state variables x2m−1,n

and x2m,n to represent the real and imaginary parts of A(ωm, βn) and neglecting εmn,
Eq. (3.10) can be rewritten as

r =

Nf∑
m=1

Nβ∑
n=1

(
Re{Φmn} cos(ωmt)− Im{Φmn} sin(ωmt)

)
x2m−1,n

−
Nf∑
m=1

Nβ∑
n=1

(
Im{Φmn} cos(ωmt) + Re{Φmn} sin(ωmt)

)
x2m,n,

where Φmn := Φ(ωm, βn) for compactness. For Nr vessel responses, the discrete-
time Kalman filter state-space model can be formulated as

xk+1 = xk + wk, wk ∼ N (0,Qk),

rk = Ckxk + vk, vk ∼ N (0,Rk),
(3.11)
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where xk = [x1,1, x1,2, . . . , x1,Nβ , x2,Nβ , . . . , x2Nf−1,Nβ , x2Nf ,Nβ ]> ∈ R2NfNβ is
the state vector consisting of wave amplitudes at sample number k, rk ∈ Nr is the
measured vessel responses, wk and vk denote white Gaussian process and measure-
ment noise with covariances Qk and Rk, respectively, and

Ck =


Re{Φ1,11} cos(ω1kT )− Im{Φ1,11} sin(ω1kT )
Re{Φ2,11} cos(ω1kT )− Im{Φ2,11} sin(ω1kT )

...
Re{Φi,11} cos(ω1kT )− Im{Φi,11} sin(ω1kT )

...

−(Im{Φ1,11} cos(ω1kT ) + Re{Φ1,11} sin(ω1kT )) . . .
−(Im{Φ2,11} cos(ω1kT ) + Re{Φ2,11} sin(ω1kT )) . . .

...
−(Im{Φi,11} cos(ω1kT ) + Re{Φi,11} sin(ω1kT )) . . .

...


where Φi,mn represents the RAO of the ith vessel response and t(kT ) := kT where
T is the sampling time. In order for the Kalman filter to work, the state-space model
(3.11) needs to be observable. However, as discussed in Section 3.1.1, the number of
unknowns generally exceeds the number of measurements, leading to a singular or
badly conditioned observability matrix. When this happens, the state estimates will
fail to converge to the correct values. A solution proposed by [23, 24], is to include
past measurements in the measurement vector, incrementing Nr in proportion to the
number of lags. For details on the latter procedure and how the noise covariance
matrices were tuned, the reader is referred to [23, 24] and references therein.

3.1.3 The effect of vessel low-pass filtering

Whenever the incident waves are sufficiently short, multiple wave crests (and troughs)
will affect the vessel simultaneously as the waves move through it (Figure 3.5). When
this happens, the vessel will distort the waves, and the observed vessel responses will
generally no longer be linear with the incident waves. Indeed, this characteristic low-
pass filtering ship behavior [33, 34, 41–43] implies that for waves of sufficiently high
frequency, information about the prevailing sea state cannot be accurately obtained
from measured ship motions. To understand when the measured vessel motions
can be reliably utilized to determine the sea state, our recent study [44] proposed a
frequency threshold quantifying the frequency bandwidth of waves not distorted by
the vessel. The frequency bandwidth is based on the main vessel length L and breadth
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Incoming waves

Wave crest

W = L

λ

Incoming waves

Wave crest

W = B

λ

Figure 3.5: The wave trajectory distance W (represented by dashed lines) depends on
the relative wave direction β. When β = 180◦ (left), the vessel will filter the waves
(shown in blue) passing through it as the wavelength λ < W = L, where L is the
vessel length. However, when β = 90◦ (right), the vessel motion responses will be
unaffected by filtering as λ > W = B, where B is the vessel beam.

B dimensions and the relative wave direction β, quantified by

W = L| cosβ|+B| sinβ|, (3.12)

where W is the projected wave trajectory distance through the vessel (Figure 3.5).
Hence, whenever the wavelength λ exceeds Eq. (3.12), the vessel motions are deemed
linear with the incident waves (i.e., the vessel behaves like a wave buoy). An easy and
quick way to assess whether λ > W holds for all β is to evaluate Eq. (3.12) when the
wave trajectory distance is maximum, which for a box-shaped vessel occurs whenever
it is parallel with the diagonal distance of the corners, i.e.,

W =
√
L2 +B2. (3.13)

Hence, based on Eq. (3.13), the frequency of bandwidth of waves not distorted by the
vessel in question becomes [45]

fmax =

√√√√ g/2π√
L2 +B2

tanh

(
2πd√
L2 +B2

)
, (3.14)

where g is the gravitational constant and d is the water depth. The relationship above
was derived by equating (3.13) with λ = 2π/k, and inserting the resulting expression
for k into the dispersion relation (2.2) and solving it in terms of the linear frequency
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f . It is worth noting that Eq. (3.14) applies only for stationary vessels (i.e., U = 0).
For vessels with constant forward speed U > 0, Eq. (3.14) can be extended to address
such situations by considering the wave encounter frequency. Rewriting Eq. (3.9) in
terms of linear frequency and substituting fmax into it, yields the adjusted maximum
frequency threshold fe,max given in terms of forward speed [45], i.e.,

fe,max =
∣∣∣fmax ±

UL

L2 +B2

∣∣∣, (3.15)

where we have used k = 2π/
√
L2 +B2 and cosβ = ±L/

√
L2 +B2 (worst case

scenario in which the wave trajectory distance is maximum). The latter component on
the right-hand side of Eq. (3.15) should be added or subtracted depending on whether
the vessel is following or moving against the waves, respectively.

3.2 Signal-based approaches

Although most of the literature on shipboard sea state estimation is dominated by
model-based approaches using the wave-buoy analogy, they have not yet materialized
in industrial applications due to several challenges [5]. Firstly, they rely on RAOs,
which should generally be determined for each unique ship, requiring substantial
effort. Also, since RAOs are transfer functions, they require linearity between
the waves and vessel responses to be valid, which is generally true for mild and
moderate wave climates. Secondly, many of the sea state estimates from these
methods are usually time-delayed by 10-15 min due to the underlying spectral
analysis [6], posing challenges for decision-support systems requiring real-time data.
Thirdly, high-frequency waves are effectively ignored when considering vessel motion
responses for sea state estimation since the ship acts as a low-pass filter.

On the other hand, signal-based approaches are not constrained by the size of
the waves and do not require any ship model, meaning they can be directly applied to
any vessel. These approaches typically use shipboard wave radars and/or distance
altimeters to measure the ocean directly by analyzing reflections of electromagnetic
radiation from the sea surface, offering real-time estimations. Furthermore, these
approaches are capable of measuring high-frequency waves, as they are not sensitive
to vessel low-pass filtering. Some more recent studies have also investigated the
possibility of using machine learning algorithms to determine the sea state by learning
a direct mapping between the vessel responses and waves. In the following discussion,
we will explore the advantages and disadvantages of these signal-based approaches,
shedding light on their potential benefits and limitations.
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3.2.1 Radar and laser altimetry

Most ships at sea are equipped with a marine X-band radar, which serves as a valuable
tool for obstacle detection and collision avoidance. However, when the radar range
setting is adjusted to measure objects within short distances, it often generates a noise
signal called “sea clutter,” which appears on the plan position indicator display. Sea
clutter arises from the backscatter of electromagnetic waves by the ripples on the sea
surface (i.e., capillary waves), primarily caused by local wind activity. These capillary
waves are typically modulated by longer waves that carry the information we are
interested in. By carefully examining the time evolution of recorded radar images, it
becomes possible to discern the underlying low-frequency modulation pattern from
the changes in the sea clutter.

To extract the directional wave spectrum, a common approach involves transforming
the time series of radar images into the spectral domain using a three-dimensional
Fourier transform. This transformation allows for the analysis of the various
frequencies present in the radar data, helping to identify the characteristics of the
waves and their directional properties. For a more detailed understanding of this
procedure, interested readers are encouraged to consult [46–48] and the associated
references within.

Although commercial marine X-band radars are popular tools for inferring in-
formation about the local waves, they are not perfect. Firstly, if there is little to no
wind, the underlying low-frequency modulation pattern cannot be observed, and we
get little to no wave information. Secondly, radar emissions and returns are susceptible
to environmental influences such as precipitation (e.g., rain or snow). Thirdly, they
are not very suitable for wave estimation near shore where landmasses and other
obstacles may obstruct returns. Finally, the radars, installation, and associated
software packages for wave processing are generally quite expensive. For instance,
the Miros WaveX and RangeFinder radar-based systems employed in our experiments
[45] cost roughly 20 000 dollars for a one-year leasing period.

Downward-looking distance altimeters are popular tools for measuring the sea
surface directly [49, 50]. These altimeters, based on either radar or laser technology,
are typically mounted over the bow of a vessel and measure the vertical distance
from the instrument to the sea surface by a mechanism known as specular reflection.
However, a drawback of these instruments is that they generally only provide
one-dimensional wave spectra, meaning that only significant wave height and peak
wave period can be obtained and not directional information. Also, the measurements
from shipboard altimeters will generally be influenced by the roll and pitch motions of
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the vessel. Although this unwanted influence can be corrected by employing an IMU
separately to estimate the roll and pitch angles [49], the latter study shows that the
wave estimation results were not very sensitive to the vessel roll and pitch motions.

3.2.2 Machine learning

Recently, there has been a significant surge of interest in shipboard wave estimation
approaches based on machine learning [51–63]. These approaches are gaining
attention due to their ease of application, ability to learn direct mappings from ship
responses to sea state parameters without RAOs, and real-time estimation capabilities.
Various types of deep neural networks, including convolutional neural networks and
general adversarial networks, are commonly used in these approaches.

One key aspect that differentiates these methods is whether they treat sea state
estimation as a classification or regression task. In the classification approach, the
possible value ranges of sea state parameters are divided into discrete bins. For
example, the wave direction parameter can be divided into 360 discrete bins, with
each bin representing a possible wave direction. On the other hand, regression
involves directly determining the continuous value of the sea state parameter. Another
distinguishing factor among machine learning approaches for sea state estimation is
whether they consider ship motion data in the time domain or frequency domain. This
choice affects the model’s ability to capture relevant features and extract meaningful
information for accurate sea state estimation.

Despite the growing potential of machine learning approaches, there are still
several challenges that need to be addressed before they can be practically imple-
mented. The primary challenge lies in the availability of training data. Since machine
learning models typically learn in a supervised manner, a substantial amount of
training data with accurate reference sea state information is required to cover the
wide range of scenarios possible at sea. However, obtaining such reference data is
not straightforward. While marine wave radars have been used to collect sea state
data, this technology is expensive and not feasible for all vessels. For this reason, the
majority of the current research only considers simulated sea state and ship motion
response data. Also, to ensure the generalization power of the models, it is necessary
to collect ship motion data with corresponding sea state references from multiple
vessels of different sizes and geometries. By doing so, a general sea state model can
be trained using transfer learning techniques.

In summary, machine learning approaches are attractive as they do not require any
ship RAO models, are easy to implement, and have real-time estimation capabilities.
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However, the need for real training data poses a significant challenge in developing
a general sea state model that can be applied to any ship. Acquiring the necessary
training data is complex, requiring accurate sea state references, which are only
available for some vessels typically using wave radars. While effective, wave radars
are not universally accessible due to their cost.
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4 | Phase-time-path-differences:
A new approach for shipboard
wave estimation

As we have seen, model-based approaches for shipboard wave estimation assume
linearity between vessel responses and incident waves, allowing the use of response
amplitude operators (RAOs) to model wave-response interactions. However, this
assumption generally holds true for mild to moderate wave conditions, and obtain-
ing motion RAOs for each ship requires considerable effort. Conversely, signal-
based approaches are ship-independent and not constrained by the size of the waves.
Nonetheless, these methods also have their limitations. Machine learning approaches
necessitate extensive training data sets, and wave radars and laser altimeters, while
accurate, are often costly, prone to environmental influences, and challenging to install
without expert assistance.

In this section, we introduce our contribution to shipboard wave estimation: A signal-
based phase-time-path-difference (PTPD) approach, which utilizes the delays between
a group of sensors on board a vessel to infer frequency and directional information
about the incident waves. As we shall see, this approach only considers measurements
from a single inertial measurement unit (IMU) as input, rendering the approach ship-
independent (i.e., no vessel motion RAOs are needed), inexpensive, robust against
environmental impact, and easy to implement on any vessel.

4.1 Main idea

The main idea or concept of this Ph.D. work is rooted in array signal processing. To
provide a solid foundation for this concept, we begin by illustrating a simple example
from the latter domain, allowing us to build intuition. With this foundation in place,
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Figure 4.1: An antenna array consisting of two antennas separated by a distance d.
The propagating waveforms (shown in red) approach the array at propagation angle β.

we then proceed to ocean waves, demonstrating how the concept can be applied there.
Finally, we explain how this concept may be applied to shipboard IMUs, which, as we
shall see, is considerably more practical.

4.1.1 Example from array signal processing

Array signal processing is a field within signal processing that deals with the analysis,
processing, and interpretation of signals received by an array of spatially distributed
sensors or antennas [64]. In array signal processing, the signals received by multiple
sensors are combined and processed to extract useful information about the incident
waveforms. A particularly important area of array signal processing is signal character-
ization, which aims to describe in a quantitative way the signals received by the array.
One characteristic property of such signals is the direction of propagation, which is
of fundamental importance in many applications measuring either electromagnetic,
acoustic, or seismic waves. To show how the propagation direction of a propagating
signal may be resolved from distributed sensor arrays, consider the antenna array
illustrated in Figure 4.1. The array consists of two antennas separated by a distance
d, receiving electromagnetic energy at an angle β relative to ground. Compared to
antenna 2, we notice that the waveforms need to travel an additional distance to get to
antenna 1. Using basic trigonometry, this extra path difference d12 can be expressed
as

d12 = d cosβ. (4.1)

The extra travel distance (4.1) will cause a corresponding time delay between the
measurements in each antenna, given by

t12 =
d12

c
=
d

c
cosβ, (4.2)
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where t12 is the time delay/difference between antenna 1 and 2, with c denoting the
speed of light. It is more common to express the delay t12 as a phase difference Θ12

by using the fact that Θ12 = ωt12, which together with Eq. (4.2), yields

Θ12 = kd cosβ, (4.3)

where we have used that c = ω/k, with ω denoting the angular frequency and k the
wave number. Hence, if we can measure the phase, time, or path difference (PTPD)
between the measurements in each antenna, it is possible to determine the propagation
direction β from one of the equations above.

4.1.2 The PTPD concept applied to the sea surface

If we substitute the electromagnetic waves and antennas from the previous example
with physical ocean waves and sensors situated on the ocean, we can apply the same
PTPD concept to resolve the propagation direction (and wave number) of ocean waves.
To see this, consider a spatially distributed array of sensors (e.g., wave poles) in
the ocean, as illustrated in Figure 4.2. The separation distance d12 between sensors
{s1} and {s2} along the wave propagation direction causes a delay between the wave
elevation time series recorded in each sensor. The path difference d12 is simply the
x-component of the position vector ~rs1s2 expressed in the wave tangent frame {w},
obtained by

rws1s2 = Rw
s1r

s1
s1s2 , (4.4)

where rs1s1s2 = [x12, y12, z12]> denotes the coordinate position vector of {s2} relative
to {s1} expressed in the sensor frame {s1} and Rw

s1 is the rotational transform between
frames {s1} and {w} given by

Rw
s1 =

cosβ sinβ 0
sinβ − cosβ 0

0 0 −1

 .
Carrying out the multiplication in Eq. (4.4) and extracting the x-component of the
resulting vector, yields the path difference

d12 = x12 cosβ + y12 sinβ. (4.5)

Following the same procedure as in Section 4.1.1, the corresponding time delay
between the measurements in {s1} and {s2} then becomes

t12 =
d12

c
=
x12 cosβ + y12 sinβ

c
, (4.6)
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Figure 4.2: Two arbitrary sensors labeled s1 and s2 situated on the ocean surface with
sensor axes (xsi , ysi , zsi) for i = {1, 2} (z-axis not shown, but points down into the
page) exposed to long-crested waves with propagation speed c. The wave tangent
frame {w} is defined with xw-axis pointing in the same direction as the propagating
waves, with the origin coinciding with the (arbitrarily chosen) reference sensor s1.
The wave propagation direction β is defined as the counterclockwise angle from xw

to xs1 (chosen as 180◦ in this case). The position of s2 relative to s1 is denoted by the
vector ~rs1s2 , where d12 is the x-component of the latter expressed in {w}.

where t12 is the time difference and c is the wave celerity or phase velocity as it is also
called. Assuming a regular harmonic wave, the latter expression can be converted to
a phase difference by substituting c = ω/k, where ω and k denote the angular wave
frequency and wave number, respectively, into Eq. (4.6), which yields

Θ12 = k(x12 cosβ + y12 sinβ), (4.7)

with Θ12 := ωt12.

The phase difference (4.7) can also be derived directly from the definition of
the surface elevation (2.3) by considering the surface elevation at two separate
spatial locations. Let {s1} and {s2} denote two distinct locations on the sea surface
with horizontal spatial coordinates (x1, y1) and (x2, y2), respectively. Assuming a
propagating harmonic wave with relative wave direction β, the surface elevations at
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{s1} and {s2} at time t can be expressed as

η(x1, y1, t) = a cos(ωt− k(x1 cosβ + y1 sinβ) + ε),

η(x2, y2, t) = a cos(ωt− k(x2 cosβ + y2 sinβ) + ε),

where a is the wave amplitude and ε is the random phase. The phase difference Θ12

is obtained by subtracting the arguments in the expressions above from each other,
which yields

Θ12 = k
(
(x2 − x1) cosβ + (y2 − y1) sinβ

)
= k(x12 cosβ + y12 sinβ),

which indeed is identical to Eq. (4.7).

Unless prior information is known about the general propagation direction, the wave
direction obtained from a pair of sensors will be ambiguous (it is unknown whether
the waves approach the sensors from the left or right). To overcome such ambiguities,
we introduce another sensor {s3} into the sensor array, which, in turn, gives us an
additional phase difference Θ13.1 Grouping the phase differences into a vector, we
can extend and express Eq. (4.7) more compactly as[

Θ12

Θ13

]
= k

[
x12 y12

x13 y13

] [
cosβ
sinβ

]
. (4.8)

Applying the 2× 2 inverse matrix to the left and right-hand side above gives us[
cosβ
sinβ

]
=

1

k(x12y13 − x13y12)

[
y13 −y12

−x13 x12

] [
Θ12

Θ13

]
. (4.9)

Hence, the analytical expression for the relative wave propagation direction becomes

β = arctan

(
[x12Θ13 − x13Θ12]/sgn(D)

[y13Θ12 − y12Θ13]/sgn(D)

)
, (4.10)

where
D = k(x12y13 − x13y12). (4.11)

The above analysis shows that β can be uniquely resolved from Eq. (4.10) provided
that (i) a minimum of three sensors are used, and (ii) they do not reside on a straight
line—thus ensuring that Eq. (4.11) is non-zero.

1Actually, we get two additional phase difference Θ13 and Θ23, but only one of them is needed for
the present analysis.
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The analytical solution (4.10) is widely considered the standard method for
calculating the mean wave direction using arrays [65–72]. However, this approach has
significant limitations that make it unsuitable for applications that need real-time or
online wave direction estimates. One major drawback is that the analytical solution
does not account for uncertainties in the wave direction estimates, even though there
can be errors in the measured phase differences and sensor locations. Additionally, it
does not provide an estimate of the wave number, even though this information can be
derived from the same set of measurements [73]. Furthermore, the analytical solution
lacks a convenient framework for incorporating additional measurements.

Most studies that focus on estimating wave direction using the PTPD concept
primarily examine stationary arrays deployed in the ocean [65–68]. These arrays
typically consist of sensors like pressure transducers, wave probes, lasers, echo
sounders, and current meters, which are positioned either on the sea surface or the
seabed. However, there are significant practical limitations associated with these
arrays. They are often expensive, challenging to install, and geographically confined,
offering limited flexibility for design modifications once installed.

4.1.3 The PTPD concept applied to shipboard sensors

A shipboard array of sensors offers many advantages over stationary sensor arrays
on the sea surface or seabed. It is more cost-effective, flexible, easier to install, and
considerably more practical as ships provide a portable platform for measuring waves.
However, despite these advantages, there have been limited efforts [74–76] exploring
the potential of using a group of sensors on board a vessel and the PTPDs between
their measurements to extract important wave properties. For instance, in a previous
study [74], an array of ultrasonic distance altimeters was mounted over the bow of
the vessel, allowing phase-lagged measurements of surface elevation. Based on these
measurements, the wave height and frequency were determined from the surface
elevations themselves, whereas the wave direction was resolved from the PTPDs.
Although this approach using ultrasonic altimeters is cheaper than stationary arrays
embedded in the ocean, they still pose challenges in terms of cost, installation, and
configuration.

On the other hand, IMUs offer an attractive alternative. IMUs are inexpensive, small,
lightweight, robust, and compact sensors that are easy to install and integrate with
existing systems (if not already present). Rigidly attached to the vessel, an IMU
measures the angular velocity and specific force of the ship with a high data sampling
rate. By employing an array of distributed IMUs around the vessel, it becomes possible
to utilize the PTPDs between the specific force measurements to infer the frequency
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and directional characteristics of the waves. However, despite the cost-effectiveness
and practicality of using IMUs for wave measurement, only one study [75] has to
our knowledge, attempted to investigate the potential capabilities of this approach. In
the latter study, the author distributed multiple IMUs along the hull of a model ship
and used the measured time differences between the estimated heave accelerations to
determine the direction of incoming regular waves. Despite showing some success,
the study above is far from complete. More work is needed to establish the theoretical
foundation of the PTPD method to model sensor delays on a rigid body for both
stationary and moving vessels in regular and irregular waves. Additionally, it is
presently unclear from the previous study how many IMUs are needed, how far they
should be separated, or how they should be arranged to obtain reliable wave estimates.

4.2 Main contributions

In this section, the main contributions of this Ph.D. work are presented. The contribu-
tions are listed as individual subheadings, followed by a brief but concise description.
For a more in-depth treatment of each contribution, the reader is referred to the papers
in Part II of this thesis.

4.2.1 Theoretical assessment of the PTPD approach for rigid bodies

The PTPD model derived in Section 4.1.2 was based on a group of sensors directly
situated on the water. In such a situation, the sensor measurements are independent of
each other as when a wave strikes the first sensor, the second sensor is unaware of this
event until the wave strikes it a few moments later. However, for a group of sensors
on a rigid body, all sensors will be simultaneously affected when the wave strikes the
body. Although a sensor delay will be perceived between the measurements in both
situations, the magnitude of the delay will generally differ. In the first situation, the
delay is determined solely by the distance between sensors, the speed of the waves,
and the angle at which the waves pass through them. In the second situation, however,
the angular displacement of the body governs the perceived sensor delays. Despite the
clear distinction between the situations above, previous studies [44, 75, 76] directly
apply the PTPD approach for ocean-borne sensors to model sensor delays on a rigid
body. In general, there can be significant deviations between the delays measured
between a pair of sensors on a rigid body and a corresponding pair of sensors on the
ocean. In [45], we rigorously assess the PTPD approach for modeling sensor delays on
a rigid body and identify sufficient conditions for the method to be accurately applied.
In short, for the PTPD approach to be applicable, the sensor separation distances need
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to be sufficiently short and the wavelength of the ocean waves passing through the
body containing the sensors sufficiently long.

4.2.2 A forward speed PTPD model for surface vessels

In most cases, it is more convenient for the captain and crew of a ship to measure ocean
wave characteristics while the ship is in motion. Up to now, however, the application
of the PTPD approach has been limited to stationary wave arrays or stationary ships.
This limitation is addressed in [45], where a new PTPD model is derived to account for
the forward speed of the vessel, enabling the estimation of waves both when the ship is
moving and when it is stationary. Additionally, the model takes into consideration the
vessel’s roll and pitch motions induced by the waves, making it a time-varying model.
Nevertheless, since the average roll and pitch motions of the vessel are typically close
to zero, these motions can be neglected to simplify the PTPD model. For trimmed
vessels with nonzero roll and pitch angles, it is possible to substitute the average offset
values for these angles (if known) directly into the time-varying model and use this
model instead.

4.2.3 Observability proof: Minimum sensor requirements

For wave arrays situated on the ocean, it is a well-known fact that a minimum of two
independent phase differences (i.e., three sensors) are needed to resolve the wave
propagation direction uniquely [65]. However, a lesser-known fact is that the wave
number/frequency can also be uniquely resolved from the same PTPD data. We prove
this interesting fact in [44] by showing that our nonlinear PTPD model is observable for
a minimum of three noncollinear sensors (i.e., they do not lie on a straight line). The
results from the observability analysis can be generalized to shipboard IMUs, provided
that the IMUs are sufficiently close together and that the waves are sufficiently long.
Also, if IMUs are considered primary sensors and assuming that the vessel can be
regarded as a rigid body, then the minimum sensor requirements can be relaxed to a
single IMU [45]. This important and exciting result significantly increases the practical
utility of the PTPD method as additional hardware and time-synchronization between
measurements are made redundant. Moreover, the latter result also implies that ships
already equipped with an IMU may obtain directional and frequency characteristics of
the waves today by implementing our proposed PTPD method. However, the validity
of the rigid-body assumption should be assessed, e.g., by a hydroelastic analysis of
the characteristic vessel.
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4.2.4 Determining the ambiguous wave frequency in following seas

As discussed in Section 3.1.1, the encountered wave frequency in following seas will
generally map to three distinct (absolute) wave frequencies, making it challenging to
determine the correct one during forward motion [35, 36]. However, the observability
results above imply that the absolute wave frequency can be uniquely resolved from
the PTPDs of our proposed method in any sea by using the dispersion relation (2.2)
to map the estimated wave number to the wave frequency. This interesting result is
validated experimentally in a wave tank with a model ship exposed to various regular
and irregular waves [45].

4.2.5 Quantifying the frequency bandwidth of waves

As discussed in Section 3.1.3, very short waves pose problems for ships relying on
the measured vessel responses to infer important wave characteristics. When the
waves are sufficiently short, the vessel acts as a low-pass filter and distorts the waves,
causing a large discrepancy between the recorded vessel motion responses and the
actual waves. When this happens, we cannot trust the measured vessel responses to
yield the desired wave information. Although the effect of vessel low-pass filtering is
a known problem [33, 34, 41–43], no one has to our knowledge, attempted to quantify
explicitly when this effect is likely to occur based on the main vessel dimensions and
the wave direction. In [44], we derive an explicit formula of the frequency bandwidth
of waves, assuming a box-shaped vessel. The frequency bandwidth gives an upper
limit of the wave frequencies unaffected by the effect of vessel filtering. Moreover, in
[45], we incorporate this frequency bandwidth directly into our methodology (Figure
4.3) to avoid any wave components potentially distorted by the vessel (an irregular
sea will always contain some wave components that are naturally high in frequency).
The general expression of the frequency bandwidth for a vessel with forward speed is
given by Eq. (3.15).

4.2.6 Methodology: A measurement transform, an FFT, and a UKF

Based on the outlined theory of the PTPD approach, we propose a novel methodology
comprising a rigid body measurement transformation, a fast Fourier transform (FFT),
and an unscented Kalman filter (UKF) to estimate the desired wave quantities (see
Figure 4.3). As briefly mentioned in Section 4.2.3, we use a rigid-body measurement
transformation to transform the measurements obtained from a single (physical)
IMU to different locations on the vessel to represent measurements from the other
virtual IMUs. A minimum of two additional measurements are needed to adhere to
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Figure 4.3: Our proposed PTPD approach comprises a rigid-body measurement
transformation, a fast Fourier transform (FFT), and an unscented Kalman filter (UKF).
The measurements from a single inertial measurement unit (IMU) are transformed to
different locations on the vessel and supplied to the FFT. The FFT computes the phase
differences within the desired frequency bandwidth, which are then given to the UKF.
The UKF then estimates the wave direction and wave number, β̂ and k̂, respectively.

the minimum sensor requirements imposed by the observability analysis. After the
measurements needed have been generated, an FFT is applied to obtain the phase
response of each of them, from which the phase differences are estimated. The phase
differences are then supplied as input to a UKF algorithm (recall that the PTPD
state-space model is nonlinear), which estimates the wave direction and wave number.

The Kalman filter framework offers several benefits over the standard analytical
solution presented in Eq. (4.10). Some of these benefits are: (i) the wave direction and
wave number can be estimated simultaneously from the PTPD data; (ii) it is possible
to include uncertainties in the PTPD measurements into the estimation procedure,
which, in turn, yields an estimate of the error associated with the computed wave
quantities, indicating whether they can be trusted or not; (iii) it is straightforward to
incorporate and handle additional measurements from an arbitrary number of sensors.

With the methodology above, we are able to yield accurate estimates of the main wave
direction and wave number/frequency in real ocean waves close to real-time, with
updates given every three minutes after a initial six-minute startup period [45].

4.2.7 Model-scale and full-scale experimental validation

Previous studies [44, 75, 76] investigating the capabilities of the PTPD approach with
shipboard IMUs are limited to a stationary model ship in a wave tank with regular
waves. We extend experimental testing by considering a model ship with multiple
IMUs advancing with forward and zero speed in a wave tank with regular and irregular
waves. Motivated by the promising results from the wave basin testing, a full-scale
experimental campaign was conducted outside the west coast of Norway with the
research vessel Gunnerus (Figure 4.4) to assess the performance of our proposed
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Figure 4.4: The research vessel Gunnerus used in the full-scale field experiments.

PTPD method in real ocean waves and different sea states [45]. The research vessel
was also equipped with a marine wave radar and operated in proximity to several
wave buoys, providing the necessary wave reference systems. The results from the
experimental IMU data show very good agreement with the wave reference values
provided by the wave radar and wave buoys, suggesting that our proposed PTPD
approach is competitive with existing wave measurement technology while being
cheap, easy to implement, and robust against environmental impact.

4.3 Wave height

The PTPD approach can only provide directional and frequency information about
the waves. However, as previously mentioned, the wave height is a vital sea state
parameter, and understanding it is paramount for evaluating the severity of ocean
waves. To maintain a signal-based framework for estimating sea state parameters, we
propose two additional methods in this section that can be employed alongside our
PTPD method to gather information about the wave height.
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4.3.1 Laser altimetry

One of the most precise approaches for acquiring wave height information involves
installing a laser altimeter at the front of the vessel, which directly measures the
vertical distance to the sea surface. To compensate for roll and pitch movements, a
separate attitude heading reference system (AHRS) based on IMU measurements can
be implemented to obtain the roll and pitch angles [77], which can be supplied to the
motion correction formulas in [49, 50] to get the correct surface elevations. However,
despite their accuracy, laser altimeters tend to be relatively expensive instruments and
usually require expert assistance for installation.

4.3.2 Harmonic oscillator in heave and pitch

For mild and moderate waves, the wave-induced vessel responses in heave, roll, and
pitch can be considered linear with the incident waves. Based on this notion, it is
possible to express the vessel responses as decoupled analytical functions driven by a
sinusoidal forcing term. If we assume regular harmonic waves, the general steady-state
solution for heave zn (expressed in the navigational frame {n}), roll φ, and pitch θ is
given by [77] as

zn =
F3

(m+ACF
33 (ω3))Zm,3 ωe

cos(ωet+ ε3),

φ =
F4

(ICF
x +ACF

44 (ω4))Zm,4 ωe
cos(ωet+ ε4),

θ =
F5

(ICF
y +ACF

55 (ω5))Zm,5 ωe
sin(ωet+ ε5),

(4.12)

where Fi denotes the amplitude of the forcing terms, ACF
ii represents the frequency-

dependent added mass at the natural frequencies ωi expressed in the center of flotation
(CF), m is the mass of the vessel, ICF

x and ICF
y are the moments of inertia about the x

and y axes, respectively, ωe is the wave encounter frequency, and Zm,i and εi are the
absolute impedances and phase shifts given by
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√
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(4.13)
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where ζi denotes the relative damping factors. However, despite the compactness of
these expressions, they rely on frequency-dependent added mass, natural frequency,
relative damping factors, and unknown driving force amplitudes, all of which are not
trivial to obtain.

If we assume a monohull box-shaped vessel, the expressions (4.12) can be simplified
to yield closed-form expressions for the heave, roll, and pitch responses in regular
waves. The closed-form expressions are derived by [78] and only require the main
vessel dimensions (length L, breadth B, draught T ) together with the vessel speed U ,
relative wave direction β, and wave number k. The closed-form steady-state analytical
expressions for heave and pitch are given by [77] as

zn = ζa
ω2
n

Zmwe
F cos(ωet+ ε),

θ = ζa
ω2
n

Zmwe
G sin(ωet+ ε),

(4.14)

where ζa is the wave amplitude, and the impedance Zm and phase shift are given by

Zm =

√
(2ζωn)2 +

1

ωe
(ω2
n − ω2

e)
2, ε = arctan

(
2ζωnωe
ω2
n − ω2

e

)
.

The heave and pitch oscillators have a common relative damping ratio and natural
frequency

ζ =
A2

Bα3
√

8k3T
, ωn =

√
g

2T
,

where A is the sectional hydrodynamic damping

A = 2 sin

(
1

2
kBα2

)
exp
{
−kTα2

}
,

where α = ωe/ω is the ratio between the wave encounter frequency and absolute
wave frequency. The forcing functions F and G are given by

F = κf
sinσ

σ
,

G = κf
6

Lσ

(
sinσ

σ
− cosσ

)
,

where σ = keL/2, κ = exp{−keT}, ke = k| cosβ|, and

f =

√√√√(1− kT )2 +

(
A2

kBα3

)2

.
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Figure 4.5: Cascaded signal-based framework for estimation of sea state parameters.
The estimated parameters are the wave direction β, the wave number k, and the wave
amplitude ζa. (Estimated quantities are indicated by a hat.)

Hence, if we measure the heave and pitch response of the vessel in question, we
can obtain an estimate of the wave amplitude ζa by comparing the amplitude of the
considered response with Eq. (4.14). The vessel pitch motion can be acquired by
implementing an AHRS based on the IMU measurements, as briefly discussed in
Section 4.3.1. Although the heave motion can be estimated from the specific force
measurements of an IMU using a Kalman filter [79], it is more convenient to process
the z-component of specific force to yield an estimate of the heave acceleration and
compare this directly with the double derivative of zn, i.e.,

z̈n = −ω2
ez
n = −ζa

ω2
nωe
Zm

F cos(ωet+ ε). (4.15)

Based on Eq. (4.15) and the processed heave acceleration from an IMU, we can
implement a wave amplitude estimator in cascade with our PTPD methodology as
shown in Figure 4.5. The amplitude ω2

nωeF/Zm is computed using the estimated
wave direction, wave number, and wave encounter frequency. The estimated amplitude
of the heave acceleration is then divided by the latter result to obtain an estimate of the
wave amplitude ζa. It is worth emphasizing that the signal-based framework illustrated
in Figure 4.5 is also applicable to long-crested irregular waves as the FFT will extract
a single sinusoid corresponding to the most dominant wave component within the
specified frequency bandwidth.

Compared to using laser distance altimeters, the proposed wave amplitude estimation
method is simple, cheap, and requires no additional hardware (all wave quantities are
estimated from a single IMU). However, the proposed method is only theoretically
valid for mild to moderate wave conditions and assumes a box-shaped vessel, implying
that the estimation results will generally be less accurate than those obtained by direct
measurement of the sea surface.
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4.4 Summary and future recommendations

In this doctoral thesis, a novel and relatively unexplored signal-based approach for
estimating the sea state from ships has been investigated. The approach considers
the phase-time-path delays between an array of shipboard IMUs to determine the
directionality and frequency characteristics of waves. As demonstrated, the proposed
method is cost-effective and can be easily implemented on any vessel without ship
RAOs, thereby avoiding many challenges associated with current model-based and
signal-based approaches.

The potential capabilities of the PTPD approach were rigorously investigated in this
thesis. Firstly, it was shown that the PTPD concept can effectively model sensor
delays on a rigid body, given that the sensors are sufficiently close and the waves
sufficiently long. Secondly, a novel PTPD model was derived for shipboard sensors,
accounting for forward vessel speed. By conducting observability analysis on this
model, it was shown that a minimum of three noncollinear arranged IMUs enables
the wave direction and wave number/period to be uniquely determined. These results
also imply that the wave period can be exactly identified in following seas, thereby
resolving the 1-to-3 mapping ambiguity between encounter and absolute frequency
domains. Moreover, it was demonstrated that the minimum sensor requirements could
be relaxed to a single IMU by utilizing a rigid-body measurement transformation,
significantly increasing the practical feasibility of the proposed method. Finally, the
PTPD method and underlying theory were validated using IMU data from model-scale
and full-scale field experiments involving a vessel at zero and forward speeds in
various sea states.

While the PTPD method has shown great promise, several aspects still merit fur-
ther investigation. As outlined in the accompanying papers, some of these future
recommendations include:

• Wave height estimation: Although the proposed PTPD method can produce
accurate estimates of the wave direction and wave number/period, it does not
provide any information about the wave height, an essential sea state parameter.
To preserve a signal-based framework that is cost-effective and requires minimal
hardware, a simple wave amplitude estimation approach based on monohull
box-shaped vessels was proposed in Section 4.3.2. However, due to limited
time, it was not possible to test the performance of this approach.

• More forward speed testing in real ocean waves: In our full-scale field ex-
periments with the research vessel Gunnerus, the forward speed trials were
abruptly ended due to ship operational reasons. Therefore, we could not assess
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the performance of our proposed method with forward speed in real waves for
other boat headings except head sea. It would be interesting to confirm the
validity of the approach for other wave angles in real seas, especially following
sea, where the 1-to-3 mapping problem between the encounter and absolute
frequency domains generally persists.

• Investigation of other methods to improve real-time performance: One of
the main drawbacks of our PTPD method is that it relies on an FFT for the
phase difference estimation. The FFT introduces a trade-off between real-time
performance and accuracy, both of which are crucial for practical feasibility.
This trade-off arises because the FFT requires windowed data segments as input.
In order to enhance the practical utility of our method, it is recommended that
future studies explore alternative procedures to the FFT that are less restrictive
in this trade-off. Two promising approaches that warrant closer examination are
the Hilbert-Huang transform (HHT) and a real-time phase difference tracking
filter [80]. The HHT approach can provide instantaneous frequency and phase
difference information for non-stationary data, while the latter approach yields
the same information in real-time but relies on a single sinusoid.

• Extending the PTPD framework to work in short-crested environments:
The primary wave environments studied in this doctoral thesis have been long-
crested regular and irregular waves. It is important to note that the PTPD method
can be extended to work in more short-crested wave environments comprising
multiple modes by recursively applying the method to each modal frequency.
The identification of modal frequencies can be achieved through various peak
detection algorithms, such as those based on wavelet analysis [81].
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Online wave direction and wave number estimation from surface vesselmotions using distributed inertial measurement arrays andphase-time-path-differencesJohann A. Dirdal a,∗, Roger Skjetne b, Jan Roháč c, Thor I. Fossen a
a Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norwayb Department of Marine Technology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norwayc Dept. of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
A R T I C L E I N F O
Keywords:Kalman filterShipboard wave estimationIMUPhase-time-path-differenceMarine cybernetics

A B S T R A C T
A common approach for finding the direction of ocean waves is to use the phase-time-path-differences (PTPDs)between a static array of various types of sensors mounted on either the sea surface or seabed. However,some practical drawbacks of such arrays are that they tend to be expensive, difficult to install, and fixedin location. We show that the PTPD approach can be generalized to a portable shipboard array of spatiallydistributed sensors rendering it more practical. In this respect, we derive a nonlinear PTPD model for shipboardsensor arrays and prove that the wave direction and wave number can be resolved from a minimum ofthree noncollinear sensors using observability analysis. Moreover, based on our PTPD model, we propose anunscented Kalman filter algorithm for online estimation of the wave direction and wave number, which offersa convenient framework for adding multiple measurements and incorporating uncertainties. Our experimentalresults from model basin testing with a model ship equipped with several inertial measurement units (IMUs)confirm that the wave direction and wave number can be estimated from the wave-induced motions of asurface vessel with a minimum of three noncollinear IMUs. In this study, we consider parameter estimationfor regular waves and assume a dynamically positioned surface vessel with small roll and pitch angles.

1. Introduction
The physical separation distance between two local sensors embed-ded on the sea surface introduces a delay between the recorded wavespassing through them. This delay manifests itself as either a phase,time, or path difference (PTPD) between the wave signals recorded ineach sensor. A common technique for finding the direction of oceanwaves is to use the PTPDs between the recorded wave signals fromseveral such sensors (e.g., pressure transducers, wave staffs, waveprobes, lasers, echo sounders, current meters) mounted on either thesea surface or seabed. This configuration of sensors in the ocean isgenerally called a wave array, and several works have been reportedanalyzing the capabilities of such arrays to resolve the wave direction(Esteva, 1976, 1977; Fernandes et al., 1988, 2000; Draycott et al.,2015, 2016, 2018; Luo et al., 2020). However, some important practicaldrawbacks of wave arrays are that they tend to be expensive, difficultto install, and fixed in location with little flexibility to changes in thedesign after installation.

∗ Corresponding author.E-mail addresses: johann.a.dirdal@ntnu.no (J.A. Dirdal), roger.skjetne@ntnu.no (R. Skjetne), xrohac@fel.cvut.cz (J. Roháč), thor.fossen@ntnu.no(T.I. Fossen).

Shipboard arrays, on the other hand, are more practical, offer-ing a portable platform that is generally not location restricted andconsiderably more flexible when it comes to making changes to theinstallation. Furthermore, shipboard arrays can be used for wave esti-mation without ship information since the PTPD approach is inherentlysignal-based (i.e., estimation is done directly from sensor measure-ments). This useful feature distinguishes the PTPD approach from othersignal-based methods using machine learning (Mak and Düz, 2019;Duz et al., 2019), which require ship-specific datasets, thus limiting itsgeneralization to other vessels. The PTPD approach also differs fromshipboard model-based methods, which are based on the wave buoyanalogy (Waals et al., 2002; Tannuri et al., 2003; Nielsen, 2006; Pascoaland Guedes Soares, 2009; Nielsen, 2017; Brodtkorb et al., 2018) anduse sensor measurements together with response amplitude operators(RAOs). RAOs are ship-dependent transfer functions that enable theestimation of the amplitude and direction of waves. However, withoutship information, the wave amplitude cannot be estimated in the PTPD
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approach with shipboard arrays. Moreover, to our knowledge, only afew studies have considered using a shipboard array of sensors for waveestimation (Fu et al., 2011; Udjus, 2017; Heyn et al., 2017), and thesestudies only consider the wave direction, although it is theoreticallypossible to obtain the wave number from the same PTPD data (Donelanet al., 1996; Fernandes et al., 2001).A prerequisite for the success of both shipboard and standard wavearrays is accurate measurements of the PTPDs. The PTPD is susceptibleto several sources of error such as sensor noise, sensor imperfections(e.g., nonlinear sensitivity character and non-orthogonality and mis-alignment character between the inner sensitive axes), inexact sensorlocations and alignment when installed, and, most prominently, thesensor sampling rate. Although some of the literature mentioned abovehas shown awareness of some of these errors, only a few works haveattempted a formal analysis investigating their quantitative impact(Pascal et al., 2009; Pascal and Bryden, 2011). However, those analyzesare mainly restricted to sensor positioning errors with little accounttaken for the other abovementioned sources. Additionally, despite theprevalence of these errors, there currently does not seem to exist amethod indicating the expected uncertainty in the wave estimates.One of the main goals of the present study is to promote someof the attractive features of inertial measurements units (IMUs) thatmake them particularly suitable as sensors for shipboard wave arrays.IMUs may add more design flexibility and PTPD accuracy since they aresmall, lightweight, cheap, easy to install, and have high sampling rates.Despite its attractive features, only a few works have, to our knowledge,considered using shipboard IMU arrays for wave direction estimation(Udjus, 2017; Heyn et al., 2017). In the latter, the authors mountmultiple IMUs along the hull of a model-ship and use the PTPD fromestimated heave accelerations to determine the direction of incomingharmonic waves. However, it is not clear from the previous study howmany IMUs are needed, how far they should be separated, or how theyshould be arranged to attain reliable estimates of the wave direction.In this paper, we extend earlier results by the following contri-butions: First, we derive a nonlinear PTPD model for surface vesselsand prove using observability analysis that the wave number can, inaddition to the wave direction, also be resolved from a minimum ofthree noncollinear sensors measuring regular harmonic waves, assum-ing a dynamically positioned surface vessel with small roll and pitchangles. Second, we propose an unscented Kalman filter (UKF) algorithmfor online estimation of the wave direction and wave number. Third,we offer an extended error analysis discussing and quantifying severalsources of error associated with shipboard arrays. Some of these errorsare then reflected in the error covariance of the UKF, which givesan estimate of the uncertainty to be expected in the computed waveestimates. To our knowledge, we are the first to offer this type oferror analysis and propose a method capable of yielding uncertaintiesin the wave estimates. Fourth, we highlight some important practicalconsiderations regarding the number, separation, and arrangement ofsensors from traditional wave arrays that should also be consideredwhen designing shipboard arrays. Finally, the estimation results fromseveral wave tank experiments considering regular waves and a modelship equipped with several IMUs are shown. The results, in general,verify that the wave direction and wave number can be estimated froma minimum of three IMUs.
2. Methodology

It takes time for a wave to travel from one location to another. Thistravel time induces a phase-time-path-difference (PTPD) between thewave elevation signals recorded at each (sensor) location, which, inturn, can be used to uniquely determine the wave direction and wavenumber. In this section, we derive a kinematic PTPD model for surfacevessels and prove that the relative wave direction and wave number canbe resolved uniquely from a minimum of three noncollinear arrangedsensors, assuming regular harmonic waves and small roll and pitch

angles. The small-angle assumption, which we deem appropriate forroll and pitch angles up to 2◦, represents a first step in the researchon wave estimation from shipboard sensor arrays utilizing the PTPDconcept.
2.1. A phase-time-path-difference model for surface vessels

The PTPD between two signals recorded at two spatially separatedlocations on a surface vessel can be modeled by considering the dis-tance a wave must travel to get from one sensor to another. Thegeneral scenario is depicted in Fig. 1: A dynamically positioned vesselis being struck by long-crested waves that must travel a distance 𝑑12in the tangent plane {𝑤} to get from sensor {𝑠2} to {𝑠1}, which, inturn, creates a delay between the signals in these sensors. The delay,represented by the distance or path difference 𝑑12, is time-varyingbecause of the wave-induced vessel roll and pitch motions (the distancebetween the sensors in the tangent plane {𝑤} changes as the vesselbegins to tilt due to the wave passing through it; see Fig. 1b) and canbe expressed mathematically by transforming the body-fixed positionvector 𝑝𝑠1𝑠2 to the tangent plane and extracting the 𝑥-component of thisvector, i.e.,
𝐩𝑤𝑠1𝑠2 = 𝐑𝑤𝑠1𝐩

𝑠1
𝑠1𝑠2 , (1)

where 𝐩𝑤𝑠1𝑠2 is the position of {𝑠2} relative {𝑠1} expressed in {𝑤}, 𝐩𝑠1𝑠1𝑠2is the coordinate vector of {𝑠2} relative {𝑠1} expressed in {𝑠1}, and 𝐑𝑤𝑠1is a rotation matrix representing a coordinate transformation from {𝑠1}to {𝑤}. The matrix 𝐑𝑤𝑠1 can be described by a sequence of principalrotations based on the 𝑧𝑦𝑥-convention (Fossen, 2021) with angles 𝛽, 𝜋,
𝜃, and 𝜙 (Fig. 2). Following this convention, the resulting transform canthen be expressed as
𝐑𝑤𝑠1 = 𝐑𝑧,𝛽𝐑𝑥,𝜋𝐑𝑦,𝜃𝐑𝑥,𝜙 =

⎡
⎢⎢⎣

𝑐𝛽𝑐𝜃 𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙 𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙
𝑠𝛽𝑐𝜃 𝑠𝛽𝑠𝜃𝑠𝜙 − 𝑐𝛽𝑐𝜙 𝑠𝛽𝑠𝜃𝑐𝜙 + 𝑐𝛽𝑠𝜙
𝑠𝜃 −𝑐𝜃𝑠𝜙 −𝑐𝜃𝑐𝜙

⎤
⎥⎥⎦
,

where 𝑠 ⋅ = sin(⋅) and 𝑐 ⋅ = cos(⋅). Using the rotational transform above,an expression for the position vector 𝐩𝑤𝑠1𝑠2 can be obtained by carryingout the multiplication given by (1), which yields
𝐩𝑤𝑠1𝑠2 =

⎡⎢⎢⎣

𝑅12
(
𝑐𝛽𝑐𝜃𝑐𝛼12 + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12 + 𝑠𝛽𝑐𝜙𝑠𝛼12

)
+ 𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

∗
∗

⎤⎥⎥⎦
,

(2)
where the body-fixed coordinate vector 𝐩𝑠1𝑠1𝑠2 is given in terms ofcylindrical coordinates (𝑅12, 𝛼12, 𝑧12) which, respectively, represent theradial distance, angular displacement in the horizontal plane, and sen-sor height separation of {𝑠2} with respect to {𝑠1}. The path difference
𝑑12 is simply the 𝑥-component of (2) and the time it takes the wave totravel from {𝑠2} to {𝑠1} is given by
𝑡12 =

𝑑12
𝑐

=
𝑅12

(
𝑐𝛽𝑐𝜃𝑐𝛼12 + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12 + 𝑠𝛽𝑐𝜙𝑠𝛼12

)
+ 𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

𝑐
, (3)

where 𝑡12 represents the time difference between the recorded signals in
{𝑠1} and {𝑠2}. The wave celerity 𝑐 (also known as the phase velocity) isgiven in terms of the wave frequency 𝜔 and wave number 𝑘 by 𝑐 = 𝜔∕𝑘.Using this fact, the time difference (3) can instead be expressed as aphase difference in the case of a harmonic wave, i.e.,
𝛩12 = 𝑘𝑅12

(
𝑐𝛽𝑐𝜃𝑐𝛼12+𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼12+𝑠𝛽𝑐𝜙𝑠𝛼12

)
+𝑘𝑧12(𝑐𝛽𝑠𝜃𝑐𝜙−𝑠𝛽𝑠𝜙), (4)

where 𝛩12 = 𝜔𝑡12 is the time-varying phase difference between {𝑠1}and {𝑠2} as a function of 𝑘, 𝛽, 𝜙, and 𝜃. For small 𝜙 and 𝜃 angles(characteristic of large vessels in moderate sea states), (4) reduces tothe following expression
𝛩12 ≈ 𝑘𝑅12 cos(𝛽 − 𝛼12), (5)
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Fig. 1. Snapshots showing three independent situations of a dynamically positioned surface vessel being struck by long-crested waves. The induced rigid body vessel motions arerecorded by two spatially distributed sensors denoted {𝑠1} and {𝑠2} with sensor axes (𝑥𝑠1 , 𝑦𝑠1 , 𝑧𝑠1 ) and (𝑥𝑠2 , 𝑦𝑠2 , 𝑧𝑠2 ) aligned with the body frame {𝑏}. The position of {𝑠2} relative to
{𝑠1} is denoted by the body-fixed vector 𝑝𝑠1𝑠2 and angle 𝛼12. The tangent plane {𝑤} moves up and down with the vessel and is defined by its 𝑥𝑤, 𝑦𝑤, and 𝑧𝑤 axes with the origincoinciding with the chosen reference sensor (here {𝑠1}). The 𝑥𝑤 axis is defined such that it points in the same direction as the propagating waves, the 𝑧𝑤 axis points upwards,and the 𝑦𝑤 axis completes the right-handed coordinate system. The distance 𝑑12 between {𝑠1} and {𝑠2} causes a delay in the recorded signals which depends on the roll (𝜙), pitch(𝜃), and relative wave direction (𝛽) angles. The relative wave direction 𝛽 is defined as the counterclockwise angle from 𝑥𝑤 to 𝑥𝑠1 projected onto the tangent plane {𝑤}. Starboardincident waves are defined by 𝛽 ∈ (−180, 0]◦, whereas port incident waves are defined by 𝛽 ∈ (0, 180]◦. When 𝛽 = 0◦, the waves hit the stern first as the boat heading axis (𝑥𝑠1 ) isoriented in the same direction as the waves (𝑥𝑤).

Fig. 2. The rotation matrix from {𝑠1} to {𝑤} can be described by a combination of two rotation sequences based on the 𝑧𝑦𝑥-convention: A sequence from tangent plane {𝑤} tointermediate tangent plane {2} (with 𝑧-axis pointing downwards) and a sequence from {2} to {𝑠1}. The principal rotations are given in terms of angles 𝛽, 𝜋, 𝜃, and 𝜙.
which is the standard (constant) phase difference equation commonlyfound in the literature on wave arrays using the PTPD concept andis the main research focus of this article. Several experiments wereperformed verifying the correctness of the small-angle assumption. Inall experiments considered, the vessel roll and pitch angles were withinthe range ±2◦ (Section 5.2), and the height separation between thelowest and highest sensor was measured to be around 16 cm. Together,these values justify the transition from (4) to (5), and our experimentalresults (Section 5.5.1) also confirm that the small-angle model workedwell for those values. However, it is presently unclear how far the rolland pitch angles can be extended before the small-angle assumption isviolated.
2.2. Analytical solution

For small roll and pitch angles, an analytical solution of the wavedirection can be found by adding an additional sensor {𝑠3} to thesurface vessel in Fig. 1, which yields an additional phase difference

measurement, i.e.,
𝛩13 ≈ 𝑘𝑅13 cos(𝛽 − 𝛼13). (6)
Expanding (5) and (6), and grouping the measurements into a 2 × 1
matrix, yields the system
[
𝛩12
𝛩13

]
= 𝑘

[
𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [
cos 𝛽
sin 𝛽

]
.

The wave direction can be isolated by applying the 2 × 2 inverse to the
right-hand side above, thus leaving us with
[
cos 𝛽
sin 𝛽

]
= 1
𝑘𝑅12𝑅13 sin(𝛼13 − 𝛼12)

[
(𝑅13 sin 𝛼13)𝛩12 − (𝑅12 sin 𝛼12)𝛩13
(𝑅12 cos 𝛼12)𝛩13 − (𝑅13 cos 𝛼13)𝛩12

]
.

Hence, the analytical expression of the wave direction becomes
𝛽 = arctan

(
[(𝑅12 cos 𝛼12)𝛩13 − (𝑅13 cos 𝛼13)𝛩12]∕sgn(𝐷)
[(𝑅13 sin 𝛼13)𝛩12 − (𝑅12 sin 𝛼12)𝛩13]∕sgn(𝐷)

)
, (7)
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where
𝐷 = 𝑘𝑅12𝑅13 sin(𝛼13 − 𝛼12). (8)
The above analysis shows that the wave direction can be uniquelydetermined from (7) provided that (i) a minimum of three sensors areused, and (ii) they are arranged in a noncollinear configuration on thevessel—thus ensuring that (8) is non-zero.Eq. (7) is arguably the de facto standard for computing the meanwave direction with arrays (Esteva, 1976, 1977; Fernandes et al., 1988,2000; Draycott et al., 2015, 2016, 2018; Luo et al., 2020). However,this approach has some important drawbacks that render it unsuitablefor applications requiring real-time or online estimates of the wavedirection. In particular, the analytical solution (7) neither provides ameasure of uncertainty in the wave direction estimates (despite thephase difference and sensor locations being subject to error) nor anestimate of the wave number, although, as we shall see, can be obtainedfrom the same set of measurements. Also, the analytical solution doesnot offer a convenient framework for adding additional measurements.The Kalman filter framework will alleviate all these issues.
2.3. Kalman filter state–space model

Let 𝑅𝑖𝑗 and 𝛼𝑖𝑗 be the polar coordinates of sensor {𝑠𝑗} (slave) relativeto sensor {𝑠𝑖}, where {𝑠𝑖} is taken to be the chosen master/referencesensor. Using this notation, (5) and (6) can be expressed more generallyas
𝛩𝑖𝑗 = 𝑘𝑅𝑖𝑗 cos(𝛽 − 𝛼𝑖𝑗 ), (9)
where 𝛩𝑖𝑗 represents the phase difference between the heave signalsrecorded by sensors {𝑠𝑖} and {𝑠𝑗}. Expanding (9) and introducing thestate vector 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, the expression can be reformulatedinto
𝛩𝑖𝑗 =

[
𝑅𝑖𝑗 cos 𝛼𝑖𝑗 𝑅𝑖𝑗 sin 𝛼𝑖𝑗

] [𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
.

For 𝑁 ≥ 3 (number of sensors), the final Kalman filter state–spacemodel becomes
𝐱̇ = 𝟎,

𝐳 = 𝐡(𝐱) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

⋮ ⋮
𝑅1𝑁 cos 𝛼1𝑁 𝑅1𝑁 sin 𝛼1𝑁
𝑅23 cos 𝛼23 𝑅23 sin 𝛼23

⋮ ⋮
𝑅2𝑁 cos 𝛼2𝑁 𝑅2𝑁 sin 𝛼2𝑁

⋮ ⋮
𝑅(𝑁−1)𝑁 cos 𝛼(𝑁−1)𝑁 𝑅(𝑁−1)𝑁 sin 𝛼(𝑁−1)𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟configuration matrix

[
𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
,

(10)
where 𝐳 = [𝛩12, 𝛩13,… , 𝛩1𝑁 , 𝛩23, … , 𝛩2𝑁 , … , 𝛩(𝑁−1)𝑁 ]⊤. Thedimension of 𝐳 is given by the maximum number of distinct phasedifference measurements associated with 𝑁 , which can be calculatedusing (23).
2.4. Observability results

It was shown in Section 2.2 that a minimum of three noncollineararranged sensors is needed to determine the wave direction uniquely.The analysis, however, does not show that the wave number mayalso be resolved from the same set of measurements, which—basedon the reported literature (Donelan et al., 1996; Fernandes et al.,2001)—seems to be a less known fact. This interesting fact can beproved by showing that the state–space model in (10) is observable

for a minimum of two distinct PTPD measurements (three noncollinearsensors). The results from the observability analysis (see Appendix A)are summarized in the following theorem:
Theorem 1 (Minimum Sensor Configuration). Consider a single harmonicwave with wave number 𝑘 and relative wave direction 𝛽 (Fig. 1), then 𝑘and 𝛽 can be uniquely determined from a dynamically positioned surfacevessel with small roll and pitch angles using a minimum of three noncollinearspatially distributed sensors measuring the vessel’s heave motion.
Proof. See Appendix A.
3. Estimation algorithm and error analysis

The PTPD state–space model (10) is by nature nonlinear, indicatingthat nonlinear estimation techniques should be considered to find thewave direction and wave number. It is worth emphasizing that thewave number should be positive, which introduces a constraint on thestate estimate. In this section, we look at two different methods forachieving the above goals, namely, the extended Kalman filter (EKF)and unscented Kalman filter (UKF) algorithms (Brown and Hwang,1997; Julier and Uhlmann, 2004). Although the EKF is more renownedand conceptually easier to grasp, the UKF has advantages for highlynonlinear systems containing state constraints.
3.1. Extended vs. unscented Kalman filter

When a state–space representation contains nonlinearities in eitherthe process model, measurement model, or both, the EKF algorithmhas proven to be a viable option, capable of providing reliable stateestimates for a wide range of applications. However, despite its success,the EKF suffers from some serious limitations.In short, the EKF algorithm linearizes all nonlinear transformationsrelated to the noise covariance progressions and inserts them in placeof the linear transformations of a regular Kalman filter. While thisestimation strategy has proven successful for many systems, in partic-ular those whose dynamics can be considered almost linear, the EKFhas not demonstrated the same level of success for highly nonlinearsystems (Julier and Uhlmann, 2004). The reason for this is mainlydue to its inherent use of linearization, which loses accuracy as thetransformations become increasingly nonlinear.When constraints are imposed on states, the state estimates froman EKF do not always converge to the true values (Kandepu et al.,2008). The standard way of handling constraints in the EKF is known as‘‘clipping’’ (Haseltine and Rawlings, 2005), which involves projectingthe estimates onto the boundary of the feasible region whenever theyare outside it. The drawback of this strategy is that the constraintinformation has no effect on the covariances of the EKF estimates.The UKF overcomes the aforementioned limitations by eliminatingthe need for linearization altogether, while simultaneously updating thecovariances to account for constraints. In short, the UKF samples a fixednumber of points around the mean (called sigma points) and propagatesthese points through the associated nonlinear transforms to obtain newsample points—from which new estimates of the mean and covarianceare obtained. If the sampled points are outside the feasible region, theyare projected onto the boundary, similar to ‘‘clipping’’, except that theupdated covariance is based on these points instead.
3.2. UKF algorithm

The UKF may be applied to systems of the form
𝐱𝑘+1 = 𝐟 (𝐱𝑘) + 𝐰𝑘, 𝐰𝑘 ∼  (𝟎, 𝐐𝑘),
𝐳𝑘 = 𝐡(𝐱𝑘) + 𝐯𝑘, 𝐯𝑘 ∼  (𝟎, 𝐑𝑘),

(11)
where 𝐟 and 𝐡 represent nonlinear vector fields, 𝐱𝑘 ∶= 𝐱(𝑘𝑇𝑠) and
𝐳𝑘 ∶= 𝐳(𝑘𝑇𝑠) constitute the sampled state and measurement vectors
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with 𝑇𝑠 and 𝑘 being the respective sampling time and number (not tobe confused with the wave number), and 𝐰𝑘 and 𝐯𝑘 represent whiteGaussian process and measurement noise with covariance 𝐐𝑘 and 𝐑𝑘,respectively. Discretizing (10) and comparing it with (11) shows thatthe former fits the required model form, with 𝐟 (𝐱𝑘) = 𝐱𝑘 and 𝐯𝑘 and 𝐰𝑘discussed in Sections 3.3 and 3.4.Our UKF wave estimation algorithm is outlined in Algorithm 1;for relevant background material on the UKF and constraint handling,we refer to Brown and Hwang (1997), Julier and Uhlmann (2004),Kandepu et al. (2008) and Simon (2010) and references therein.The UKF uses a deterministic sampling scheme to select its sampleor sigma points, as it is commonly called. In this paper, we have chosenthe following set of sigma points
𝑋(𝑖)
𝑘 =

⎧⎪⎪⎨⎪⎪⎩

𝐱̂−𝑘 , 𝑖 = 0

𝐱̂−𝑘 +
√

(𝐿 + 𝜆)𝐏̂−
𝑘 , 𝑖 = 1,… , 𝐿

𝐱̂−𝑘 −
√

(𝐿 + 𝜆)𝐏̂−
𝑘 , 𝑖 = 𝐿 + 1,… , 2𝐿

(12)
where
𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿
𝐿 = dimension of state 𝐱𝑘
𝛼 = spread of samples about the mean
𝜅 = scaling factor
If the sigma points are outside the feasible region, they are projectedonto the boundary using the projection
𝑃 (𝑥̂2) =

{
𝜖, 𝑥̂2 < 𝜖
𝑥̂2, otherwise (13)

where 𝑥̂2 is the wave number estimate and 𝜖 is a small positive numberrepresenting the boundary of the feasible region. The sigma pointsare then propagated through the nonlinear transform (10) to yielda new cloud of transformed points. The statistics of these points arethen computed by weighting them together using the following sets ofweights
𝑊 (0)
𝜇 = 𝜆

𝜆 + 𝐿
, 𝑊 (0<𝑖≤2𝑁)

𝜇 = 1
2(𝜆 + 𝐿)

, (14)
𝑊 (0)
𝜎 = 𝑊 (0)

𝜇 + 1 − 𝛼2 + 𝛾, 𝑊 (0<𝑖≤2𝐿)
𝜎 = 1

2(𝜆 + 𝐿)
. (15)

3.3. Error analysis
Several sources of error are associated with shipboard arrays thatmay inhibit high-quality wave estimates from the UKF. The errors cangenerally be grouped as (a) errors caused by sensor imperfections andoscillatory and/or transient effects on the sensors due to structuralvibrations (e.g., from the engine) and external environmental condi-tions, and (b) errors caused by the array construction (e.g., inexactsensor locations and alignment). These errors ultimately affect theobtained phase differences, which, in turn, are used to estimate thewave direction and wave number. It is, therefore, essential to eitherremove these errors or quantify the uncertainties caused by them sothat we may confidently decide whether or not to rely on the waveestimates. In Sections 3.3.1 and 3.3.2 we quantify and discuss strategiesfor removing the errors caused by (a) and (b), respectively.

3.3.1. Sensor errorsThe noise 𝐯𝑘 in (11) reflects the uncertainty associated with themeasurement 𝐳𝑘, which, in this case, is the measured phase difference
𝛩𝑖𝑗 . The error in 𝛩𝑖𝑗 can be linked to three primary sources: (i) high-frequency sensor noise and oscillatory and transient effects causedby structural vibrations and/or external environmental conditions, (ii)deterministic sensor imperfections such as axis misalignment, nonlinear

Algorithm 1 Wave algorithm
procedure UKF(𝐱̂−𝑘 , 𝐏̂−

𝑘 , 𝐳𝑘)
𝑋(𝑖)
𝑘 ← Sigma(𝐱̂−𝑘 , 𝐏̂−

𝑘 ) ⊳ Compute sigma points using (12)
𝑋(𝑖)
𝑐 ← 𝑃 (𝑋(𝑖)

𝑘 ) ⊳ Project sigma points using (13)
𝐱̂−𝑘 ←

∑2𝐿
𝑖=0𝑊

(𝑖)
𝜇 𝑋(𝑖)

𝑐 ⊳ Compute the apriori state estimate with(14)̂
𝐏−
𝑘 ←

{∑2𝐿
𝑖=0𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − 𝐱̂−𝑘 )(𝑋
(𝑖)
𝑐 − 𝐱̂−𝑘 )

⊤} +𝐐𝑘 ⊳ Compute theapriori error covariance with (15)
𝑍(𝑖)
𝑘 ← 𝐡

(
𝑋(𝑖)
𝑐
)

⊳ Propagation of sigma points using (10)
𝐳̂−𝑘 ←

∑2𝐿
𝑖=0𝑊

(𝑖)
𝜇 𝑍(𝑖)

𝑘 ⊳ Predicted measurement
𝐒̂𝑘 ←

{∑2𝐿
𝑖=0𝑊

(𝑖)
𝜎 (𝑍(𝑖)

𝑘 − 𝐳̂−𝑘 )(𝑍
(𝑖)
𝑘 − 𝐳̂−𝑘 )

⊤} + 𝐑𝑘 ⊳ Compute theinnovation covariance
𝐏̂𝐱𝐳
𝑘 ←

∑2𝐿
𝑖=0𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − 𝐱̂−𝑘 )(𝑍
(𝑖)
𝑘 − 𝐳̂−𝑘 )

⊤ ⊳ Compute thecross-covariance
𝐊𝑘 ← 𝐏̂𝐱𝐳

𝑘 𝐒̂−1𝑘 ⊳ Compute the Kalman gain
𝐱̂𝑘 ← 𝐱̂−𝑘 +𝐊𝑘(𝐳𝑘 − 𝐳̂−𝑘 ) ⊳ Compute posterior state estimate
𝐏̂𝑘 ← 𝐏̂−

𝑘 −𝐊𝑘𝐒̂𝑘𝐊⊤
𝑘 ⊳ Compute posterior error covariancereturn 𝐱̂𝑘, 𝐏̂𝑘end procedure

sensitivity character, and stochastic bias behavior, and (iii) insufficientsensor sampling rate. Although temporal aliasing due to (iii) may alsobe a concern, the effect is usually minimized by the high inner samplingrates (typically ≥ 1 kHz) employed in today’s IMU technology.The high-frequency noise content related to (i) may be alleviated byapplying a digital lowpass filter, which attenuates noise residing out-side the predefined passband (in this application, the cut-off frequencywas selected above the maximal wave frequency).The effects of (ii) will generally manifest themselves as a bias in thespecific force measurements of the accelerometers, further impactingthe computed phase difference. One possible strategy to resolve theaxis misalignment offset is to compare the measured specific force withthe gravitational vector during some time when the average linearacceleration of the vessel is known to be zero, and the vessel is assumedto be well balanced (i.e., 𝜙 = 𝜃 = 0). This approach will work when thesensor biases can be considered negligible. Assuming that the aboveassumptions hold, the angle offset in roll and pitch between the sensorand body frames can then be estimated through
𝛿𝜙 ≈ arctan

(
𝑓𝑦
𝑓𝑧

)
, 𝛿𝜃 ≈ arctan

(
𝑓𝑥√
𝑓 2
𝑦 + 𝑓 2

𝑧

)
,

where 𝛿𝜙 and 𝛿𝜃 are the respective roll and pitch offset angles, and
(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) denote the specific force measurements from the accelerom-eters (Fossen, 2021). The heading angle offset can, in general, not bedetermined from accelerometers alone, but may be estimated from amagnetometer. The error related to the nonlinear sensitivity behavioris deemed minimal due to the high-quality sensor technology beingemployed.The error from (iii) can be quantified by examining in detail how thephase difference is defined and how it is actually measured. The phasedifference between {𝑠𝑖} (master) and {𝑠𝑗} (slave) is defined through therelationship
𝛩𝑖𝑗 = 𝜔𝑡𝑖𝑗 , (16)
where 𝜔 is the frequency of the wave and 𝑡𝑖𝑗 is the time difference(i.e., the time it takes the wave to travel from {𝑠𝑗} to {𝑠𝑖}). The timedifference is estimated by measuring the lag (number of samples) 𝐷𝑖𝑗
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between the recorded signals and multiplying it by the sampling time
𝑇𝑠, i.e., 𝑡𝑖𝑗 = 𝑇𝑠𝐷𝑖𝑗 . Assuming that the effects from (i) and (ii) arehandled and do not affect 𝐷𝑖𝑗 , the error resulting from the samplingtime 𝑇𝑠 can be bounded by
|𝑡𝑖𝑗 − 𝑡𝑖𝑗 | ≤ 𝑡max ∶=

𝑇𝑠(𝐷𝑖𝑗 + 1) − 𝑇𝑠𝐷𝑖𝑗

2
=
𝑇𝑠
2
.

The division by two is a property of the algorithm1 we use to obtain
𝐷𝑖𝑗 . If we assume further that 𝜔 is known precisely, then the maximumphase error due to 𝑇𝑠 can be quantified as
|𝛩𝑖𝑗 − 𝛩̂𝑖𝑗 | ≤ 𝛩max ∶=

𝜔𝑇𝑠
2
. (17)

The phase difference error bound to (17) implies that the true phasedifference can be located within the interval [−𝜔𝑇𝑠∕2, 𝜔𝑇𝑠∕2] of thecorresponding phase estimate. Based on this knowledge, it is possibleto use a uniform distribution to model the worst-case phase differenceerror. However, when the error character can be considered rathersimilar to jitter, a Gaussian distribution is more appropriate over thatspecific interval and can be adopted with the same variance as theuniform distribution. The variance is computed as
𝜎2𝛩max = 1

12

(
𝜔𝑇𝑠
2

−
(
−
𝜔𝑇𝑠
2

))2

= 1
12
𝜔2𝑇 2

𝑠 , (18)
and, hence, the measurement covariance 𝐑𝑘 can finally be quantifiedas
𝐑𝑘 = 𝜎2𝛩max𝐼𝑃 ,where 𝐼𝑃 is a 𝑃 × 𝑃 identity matrix with 𝑃 denoting the number ofdistinct phase difference measurements.
3.3.2. Sensor positioning errorsIn general, the exact position of each shipboard sensor will besubject to uncertainty. We can analyze how this uncertainty influencesthe predicted phase difference (9) by carrying out the analysis inSection 2.1 again, but with errors associated with each sensor location.Consider again the vessel in Fig. 1 and let (𝑥12, 𝑦12, 𝑧12) denote theexact coordinate location of sensor {𝑠2} (slave) with respect to sensor
{𝑠1} (reference/master), which forms the origin of the local frame withaxes perfectly aligned with the vessel body frame. Further, if we define
(𝑥̂12, 𝑦̂12, 𝑧̂12) to be the corresponding estimated sensor location, then thecoordinates of {𝑠2} with respect to {𝑠1} can be written as
𝑥12 = 𝑥̂12 + 𝜖𝑥, 𝑦12 = 𝑦̂12 + 𝜖𝑦, 𝑧12 = 𝑧̂12 + 𝜖𝑧,where we have introduced Gaussian distributed errors 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 withzero mean and variance 𝜎2 (representative of uncertainties of Type A,whereas Type B is considered negligible). The relationships above canbe expressed more compactly using vector notation, i.e.,
𝐩𝑠1𝑠1𝑠2 =

⎡
⎢⎢⎣

𝑥12
𝑦12
𝑧12

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

𝑥̂12
𝑦̂12
𝑧̂12

⎤
⎥⎥⎦
+
⎡
⎢⎢⎣

𝜖𝑥
𝜖𝑦
𝜖𝑧

⎤
⎥⎥⎦
.

Following the exact same derivation as in Section 2.1, the (time-varying) phase difference equation between {𝑠1} and {𝑠2} with locationuncertainty becomes
𝛩12 = 𝑘

(
𝑥̂12𝑐𝛽𝑐𝜃 + 𝑦̂12(𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑠𝜙)

)
+ 𝑘𝑧̂12(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

+𝑘
(
𝜖𝑥𝑐𝛽𝑐𝜃 + 𝜖𝑦(𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑠𝜙)

)
+ 𝑘𝜖𝑧(𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙),

and assuming small roll and pitch angles (i.e., 𝜙 ≈ 0 and 𝜃 ≈ 0), theexpression above reduces to
𝛩12 ≈ 𝑘(𝑥̂12 cos 𝛽 + 𝑦̂12 sin 𝛽) + 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽).

1 For more details see: https://se.mathworks.com/help/signal/ref/finddelay.html.

Fig. 3. Bias standard deviation of (20) vs. wave period for various 𝜎. The wave number
𝑘 is computed for the displayed wave periods using the dispersion relation (21) withconstant water depth, 𝑑 = 1.5 m. The results are almost identical for larger waterdepths.

If we let 𝛩̂12 = 𝑘(𝑥̂12 cos 𝛽 + 𝑦̂12 sin 𝛽) be the estimated phase difference,then the phase error can be written as
𝛩12 − 𝛩̂12 ≈ 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽). (19)
From (19), it is clear that the location uncertainty of each sensormanifests itself as a constant bias in the estimated phase difference.In the following, we determine the noise characteristics (i.e., mean andvariance) of (19) to have a better understanding of its impact on waveestimation.If we let 𝑏(𝑘, 𝛽) = 𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽) denote the state-dependentconstant bias, then, when calibrated and compensated, the mean canbe considered as
E[𝑏(𝑘, 𝛽)] = E[𝑘(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽)]

= 𝑘 cos 𝛽E[𝜖𝑥] + 𝑘 sin 𝛽E[𝜖𝑦]
= 0,

where we have utilized the Gaussian zero-mean assumption of thesensor positioning errors. Doing the same for the variance, yields
E[𝑏(𝑘, 𝛽)2] = E[𝑘2(𝜖𝑥 cos 𝛽 + 𝜖𝑦 sin 𝛽)2]

= 𝑘2
(
cos2 𝛽E[𝜖2𝑥] + 2 sin 𝛽 cos 𝛽E[𝜖𝑥𝜖𝑦] + sin2 𝛽E[𝜖2𝑦 ]

)

= 𝑘2𝜎2,

where we have utilized that 𝜖𝑥 and 𝜖𝑦 are independent random vari-ables. The noise characteristics above can be generalized to 𝑃 measure-ments (assuming the same mean and covariance of the location errorfor each sensor pair), yielding the mean and covariance information
E[𝐛(𝑘, 𝛽)] = 𝟎𝑃×1

E[𝐛(𝑘, 𝛽)𝐛(𝑘, 𝛽)⊤] = 𝑘2𝜎2𝐼𝑃 ,
(20)

where 𝐛(𝑘, 𝛽) = [𝑏1(𝑘, 𝛽), 𝑏2(𝑘, 𝛽),… , 𝑏𝑃 (𝑘, 𝛽)]⊤, 𝑏𝑖(𝑘, 𝛽) =
𝑘(𝜖𝑥𝑖 cos 𝛽 + 𝜖𝑦𝑖 sin 𝛽), 𝜖𝑥𝑖 and 𝜖𝑦𝑖 ∼  (0, 𝜎2), and 𝐼𝑃 is a 𝑃 × 𝑃 identitymatrix.The bias impact on wave estimation can be seen in Fig. 3, whichshows that the standard deviation of the bias is inversely proportionalto the wave period. This result suggests that, for sufficiently long waveperiods (small frequencies), the biases may be neglected from analysiswithout incurring substantial errors in the phase difference estimates.It is worth mentioning that the bias is, in general, not observ-able as each new sensor introduces another location error and, conse-quently, a new bias. This can be verified by augmenting the state–space



Ocean Engineering 249 (2022) 110760

7

J.A. Dirdal et al.
Table 1A summary of the initial state estimates, covariances, and internal parameters used inthe UKF.UKF initialization 𝐱̂−0 = [0, 0.05]⊤

𝐏̂−
0 = diag([ 𝜋2

3
, 2])

Process and measurement covariance 𝐐𝑘 = 𝟎2×2
𝐑𝑘 =

( 1
12
𝜔2𝑇 2

𝑠 + 𝑘2𝜎2
)
𝐼𝑃UKF parameters 𝐿 = 2, 𝛼 = 0.01, 𝛾 = 2, 𝜅 = 0

model in (10) to include the bias as an unknown state and checkingobservability.
3.4. Summary

A summary of the initialization, covariance matrices, and internalparameters used in our UKF algorithm can be found in Table 1. It isworth stressing that faster convergence may be achieved by initializingthe wave number to the value given by the dispersion relation, i.e.,
𝜔2 = 𝑘𝑔 tanh(𝑘𝑑), (21)
where 𝑔 is the gravitational constant and 𝑑 is the water depth. In thispaper, however, we chose the initial values in Table 1 to demonstratethe validity of Theorem 1.The initial estimated error covariance 𝐏̂−

0 was selected by modelingthe initial wave direction error as a uniform distribution over theinterval (−𝜋, 𝜋] and approximating it by a Gaussian distribution withthe same variance. The wave number variance was chosen heuristicallybut relatively large, reflecting our uncertainty in the actual value.The process covariance 𝐐𝑘 was considered zero due to the statesin the process model (10) and conditions of the experiments performedbeing (more or less) constant. However, this value is not universal as 𝐐𝑘should, in general, be adapted to reflect any discrepancy between thestate model and the properties of the sea environment being considered.The measurement covariance 𝐑𝑘 was chosen based on our analysis inSection 3.3.1.
4. Shipboard wave array design

In this section, we highlight some important practical considerationswhen designing shipboard wave arrays. As we shall see, care mustbe exercised when selecting (a) the separation distance between eachsensor, (b) the geometry of the sensor array, (c) sensor type, and (d)number of sensors. All these features ultimately contribute towards ourdesired end goal—the attainment of accurate estimates of the wavedirection and wave number.To facilitate analysis, we consider two different types of sensorarrays (Fig. 4). These arrays will aid us in demonstrating the key issueswith some of the features mentioned above.
4.1. Barber and Doyle criterion

As pointed out by Fernandes et al. (1988, 2000), the criterionof Barber and Doyle (1956) plays a crucial role in the design andconstruction of wave arrays. The criterion states that the separationdistance 𝐷 between two wave sensors should not exceed half thewavelength 𝜆 of the wave passing through them, i.e.,
𝐷 < 𝜆∕2, (22)
in order for the phase difference between these sensors to be resolvedunambiguously. In other words, as long as (22) is satisfied, the theo-retical phase difference between the sensors will be restricted to theinterval (−𝜋, 𝜋), thus correctly representing the physical situation. Themaximum sensor separation imposed by (22) ultimately implies that the

wave direction and number cannot be resolved for a range of frequen-cies (Fig. 5). It is thus important to have an idea of the frequency rangeof the expected waves and design the separation distances accordinglyusing (22). For wind-generated surface gravity waves, the wave periodsgenerally range between 0.25 and 30 s.
4.1.1. Case studyThe problems associated with (22) are illustrated by considering thepolygonal array in Fig. 4a and choosing a wave period for which wewant to resolve the wave direction and number. If we select 𝑇 = 1.0s and 𝐷 = 1.33 m as our desired wave period and separation distance,it can be seen that some of the phase differences associated with thisfrequency become ambiguous for certain choices of reference sensor(Fig. 6). When selecting sensor 1 as reference, the separation distance tosensor 2 and 4 exceeds the limit imposed by 𝑇 = 1.0 s (i.e., 𝑅12 = 𝑅14 =
𝐷 = 1.33 > 0.7806 m), whereas when sensor 3 is chosen as reference,all separation distances (𝑅31 = 𝑅32 = 𝑅34 = 𝐷′ = 0.768 < 0.7806 m) arewithin the boundary. Hence, if sensor 1 is naively chosen as a reference,a range of wave directions cannot be resolved no matter how the sensorpairs are selected. It is, however, worth emphasizing that the latter isvalid in relation to the imposed period 𝑇 = 1.0 s. There will always bea range of periods (and, consequently, wave directions) that cannot beresolved based on the sensor configuration (Fig. 5), which implies thatthe wave period(s) should also be considered a design criterion of thesystem.
4.2. Errors due to sampling rate and sensor location

Unfortunately, the satisfaction of (22) alone is no guarantee to avoidambiguity in the computed phase difference. As we saw earlier inSection 3.3, the sensor sampling rate and location error will induceerrors in the phase difference, which may cause it to exceed the interval
(−𝜋, 𝜋)—especially if the separation distance is close to the limit givenby (22). The situation can be simulated by considering the case studyin Section 4.1.1 and adding random Gaussian noise with variancesgiven by (18) and (20) to the theoretical phase difference (9). Thesimulation results (Fig. 7) confirm that errors from the sampling rateand sensor locations can potentially ‘‘push’’ the phase difference outsidethe desired range, making it increasingly challenging to resolve the truewave direction and wave number. Therefore, one should consider usingsensors with a sufficiently high sampling rate (e.g., IMUs) and ensurethat their positioning is known accurately as possible when designingshipboard arrays. A high sampling rate (e.g., 1 kHz) will also reducethe amount of temporal aliasing.
4.3. Multiple measurements

We emphasize that although the wave direction and wave numbercan be resolved from a minimum of three noncollinear sensors, thisnumber only represents a theoretical lower bound for harmonic wavesand does not, in general, reflect optimality. It is, therefore, interestingto study how additional sensors and measurements may impact waveestimation.Consider the polygonal array in Fig. 4a with 𝐷 = 1.33 m again.The array consists of four sensors yielding a total of six distinct phasedifference measurements, as calculated by
𝑃max(𝑁) = 𝑁(𝑁 − 1)

2
, (23)

where 𝑁 is the number of sensors and 𝑃max(𝑁) is the maximum numberof distinct phase difference measurements associated with 𝑁 (assumingnonlinear arrays). The phase measurements are generated using (9) formultiple wave directions, and Gaussian random noise with variancesgiven by (18) and (20) is added to simulate the uncertainties causedby the sensor sampling rate and location errors (see Sections 3.3.1and 3.3.2). By applying the UKF algorithm (Algorithm 1) to this dataand inspecting the resulting error covariance 𝐏̂𝑘, it is possible to see
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Fig. 4. An illustration of the different sensor arrays considered in the analysis of Section 4. The sensors {1, 2, 4} in (a) form an equilateral triangle on the horizontal plane withlength 𝐷 and a circumscribed circle at {3} with radius 𝐷′ = 𝐷∕
√
3.

Fig. 5. Maximum sensor separation vs. wave period for water depths 𝑑 = 1.5 and
𝑑 = 150 m. The wave number 𝑘 = 2𝜋∕𝜆 has been substituted into (22) and plottedagainst a range of wave periods using (21). The maximum separation distances forwhich the phase difference can be resolved unambiguously are indicated for waveperiods 𝑇 = 1.0, 1.5, 2.0, 2.5 s, and 𝑑 = 1.5 m. The indicated periods and water depthwere chosen to correspond with the periods and water depth used in experiments(discussed later).
Table 2The standard deviation of the wave direction error estimates vs. # phase differencemeasurements (𝑃 ) based on the polygonal array (Fig. 4(a)) with 𝐷 = 1.33 m and
𝑁 = 4. The particular sensor pairs considered in each simulation are indicated in theparentheses next to each number in the column 𝑃 with (—"—) representing the sensorpairs in the above row. The standard deviations (deg) are computed from 100×

√
𝐏̂𝑘(1, 1)at simulation time 𝑡 = 1000 s, where 𝐏̂𝑘(1, 1) is the estimated error covariance of theUKF corresponding to the wave direction estimate. The multiplication factor of 100 isused to highlight the overall trend. For each wave direction, the UKF was applied tophase difference data generated by (9) with wave period 𝑇 = 2.0 s and added Gaussianrandom noise with variances given by (18) and (20) with parameters 𝑇𝑠 = 0.1 s and

𝜎 = 1 cm, respectively. The initial conditions and UKF parameters were identical foreach run (see Table 1).
𝑃 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

2 : (1-2,1-3) 3.47 8.48 12.9 14.0 11.3 6.05 3.623 : (—"—,1-4) 3.41 4.62 5.17 4.65 3.42 2.67 3.434 : (—"—,2-3) 2.89 3.72 4.28 4.10 3.30 2.64 2.895 : (—"—,2-4) 2.58 2.67 2.77 2.85 2.79 2.59 2.586 : (—"—,3-4) 2.58 2.58 2.58 2.59 2.60 2.59 2.58

how the accuracy and covariance of the wave estimates change withthe number of phase difference measurements. The simulation results(Table 2) indicate that the estimated error covariance decreases byincreasing 𝑃 , which corresponds to the number of independent phasedifference measurements. The results also suggest that after a certainnumber of measurements, the improvement in the error variance isminimal. Hence, additional sensors may have benefits, but only up toa specific limit.Furthermore, as 𝑃 (≤ 𝑃max(4) = 6) increases, the estimated errorcovariances approach similar values on all wave directions, culminatingin similarity at 𝑃 = 6. It is worth emphasizing that this pattern is notgeneral but a coincidence resulting from the geometry of the consideredsensor array (Fig. 4a). Due to the symmetry of the sensors, the errorcovariance becomes progressively independent of the wave directionas 𝑃 → 6. This pattern is, in general, not duplicated for asymmetricalsensor arrays, which produce a greater spread of values.
4.4. Linear arrays

In general, the wave direction and wave number cannot be resolveduniquely from a linear shipboard configuration of two or more sensors.For instance, if a harmonic wave passes through two sensors at thesame time, a zero phase difference will be detected and a third non-collinear sensor is needed to determine the direction. Without this thirdnoncollinear sensor, there will be a 180◦ ambiguity in the directionsince we do not know whether the wave is approaching from left orright. However, in the special case where information about the generalwave direction is known beforehand (e.g., close to the shoreline suchas in Hardisty (1988)), shipboard linear arrays may be used to find thewave direction (Fig. 8). As seen in Fig. 8, the wave direction can bedetermined from two sensors alone, provided that we know which sidethe waves are approaching. In this case, if the waves suddenly changedirection to the other side (i.e., between 0 and −𝜋), we get an ambiguitywithin a mirror symmetry (Fernandes et al., 1988, 2000). Also notethat for linear arrays to work, the wave number should be known inadvance.
5. Experimental verification

In this section, we give experimental verification of the UKF al-gorithm by applying it to experimental data from multiple shipboardIMUs. The raw IMU data needs to be processed through several stepssuch as data processing, choice of reference sensor, and wave frequencyand phase difference estimation to ensure that the phase differences are
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Fig. 6. The theoretical phase difference is plotted against the wave direction using (9) for two different choices of reference sensor in the polygonal array (Fig. 4a) with 𝐷 = 1.33m and 𝐷′ = 0.768 m. For sensor pairs 1–2 and 1–4, several of the phase differences lie outside (−𝜋, 𝜋), whereas for sensor pairs 3-1, 3-2, and 3-4, all reside within (−𝜋, 𝜋).

Fig. 7. Gaussian random noise with variance given by (18) and (20) has been added separately to the phase differences in Fig. 6b. In (a) and (b) we can see how the sensorsampling time (𝑇𝑠) and location error (𝜎), respectively, may cause some of the phase differences to become ambiguous.

Fig. 8. Online estimates of the wave direction given by the UKF algorithm (Algorithm1) with the linear array shown in Fig. 4b (𝐷 = 0.5 m). The phase differences weresimulated using (9) with wave period 𝑇 = 2.0 s and Gaussian random noise withvariance given by (18) and (20) with 𝑇𝑠 = 0.01 s and 𝜎 = 0.5 cm, respectively. Thewave estimates are based on two sets of measurements (i.e., sensor pair 1–2 and allsensor pairs 1–2, 1–3, 1–4) with sensor 1 as reference. The wave number is assumedknown.

obtained with as little error as possible. In the following subsections,we discuss each of these steps. The experimental data considered in this

work was originally collected as part of the Master’s thesis of Udjus(2017).
5.1. Experimental design

As explained in Udjus (2017), the authors equipped a 1:90 scaledmodel C/S Inocean Cat I Drillship (CSAD) (Fig. 9) with four spatiallydistributed ADIS16364 IMUs along the hull to record the vessel motionscaused by waves. The IMU array configuration considered in the exper-iments is illustrated in Fig. 10. Each IMU is connected to an Arduinomicroprocesser, which is responsible for sampling the IMU data. Thetime synchronization of all four IMUs was handled by an interruptsignal from one (master) Arduino microprocessor to the other (slave)Arduinos. We refer to the Master’s thesis of Udjus (2017) and referencestherein for additional details on the hardware and experimental design.The experiments were carried out in the NTNU Marine Cyberneticslaboratory, which contains a 1.5 m deep wave basin equipped with awavemaker. The wavemaker is a 6-meter wide paddle operated by anelectrical servo actuator and has a DHI wave synthesizer for producingregular and irregular waves.2 The CSAD position and orientation wasconfined using ropes with 1 kg weights attached to each end (Fig. 9).This setup ensured that motions in surge, sway, and yaw were limited,while still allowing nearly free motions in heave, roll, and pitch.A total of 52 regular wave experiments were carried out in the wavebasin. For each relative wave direction {0◦, 30◦, 60◦, 90◦, 120◦, 150◦,
2 For more details see: https://www.ntnu.edu/imt/lab/cybernetics.
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Fig. 9. The model ship C/S Inocean Cat I Drillship (CSAD) used in experiments. The position and orientation were held fixed by ropes with 1 kg weights attached to each end.Image reproduced with courtesy of Udjus (2017).

Fig. 10. An illustration of the sensor configuration used in the wave experimentsby Udjus (2017). IMUs 1, 2, 3, and 4 are denoted {𝑠1}, {𝑠2}, {𝑠3}, and {𝑠4}, respectively.The location of each sensor is given in millimeters with respect to the body-fixedreference frame {𝑏}, which is defined midships with the 𝑧-axis pointing downwards(into the page).

180◦}, regular waves with wave periods {1.0 s, 1.5 s, 2.0 s, 2.5 s} lyingwithin the frequency range of wind-generated surface gravity waves(Holthuijsen, 2007), were tested. A wave height of 5 cm was consideredin all wave basin experiments, which, in reality, corresponds to a 4.5 mwave height (using Froude scaling with model scale 1:90). Althougha 4.5 m wave height can be considered a very rough sea state (Priceand Bishop, 1974), the roll and pitch responses in the experimentswere small owing to the large vessel size.3 According to the authors,the beach was not functioning as intended during the day of exper-imentation and, to avoid the impact of reflected waves, experimentswere stopped after approximately 50 s, which, consequently, becamethe time duration of the recorded IMU data.
5.2. Data processing

In this section, we discuss some data processing steps needed to ob-tain an estimate of the vessel heave acceleration from the specific force
3 The model drillship corresponds to a 232 m × 40 m × 19 m vessel whichare the standard dimensions of many drillships.

measurements of each IMU. As we shall see, the heave accelerations areneeded to compute the phase differences, which, in turn, will be usedto estimate the desired wave quantities.The accelerometers in an IMU measure the specific force 𝐟𝑎 withrespect to the inertial reference frame {𝑖}. The readings are expressedin the accelerometer frame {𝑎}, defined by the orientation of theaccelerometer-sensitive axes. The {𝑎}-frame may be non-orthogonaland misaligned and can be compensated via the rotation matrix 𝐑𝑠𝑎,which converts raw measurements into the IMU sensor frame {𝑠}defined by the IMU manufacturer. The {𝑠}-frame may suffer frominstallation errors caused by the alignment and inner distances of thesensor array. In order to align the {𝑠}-frame with the body frame {𝑏},which is the referential frame used in the evaluation of the followingheave acceleration, an additional rotation matrix 𝐑𝑏𝑠 is required. Thematrices 𝐑𝑠𝑎 and 𝐑𝑏𝑠 can be respectively obtained via the calibrationprocedures available at the site of the IMU manufacturer and after theIMUs have been installed into the array on the vessel. The sensor arraypositioning errors and their effects are discussed in Section 3.3.2.For an ideal three-axis accelerometer, the specific force is given by
𝐟𝑏𝑖𝑠 = 𝐚𝑏𝑖𝑠 − 𝐠𝑏 = 𝐑𝑏𝑠𝐑

𝑠
𝑎𝐟
𝑎,

where 𝐚𝑏𝑖𝑠 is the linear acceleration of the IMU sensor frame {𝑠} withrespect to the inertial frame {𝑖} expressed in {𝑏}, and 𝐠𝑏 is the gravityvector expressed in {𝑏}. In practice, after treating the deterministicsensor imperfections discussed in Section 3.3.1, the measurementsfrom a three-axis accelerometer are, in general, still subject to severalstochastic errors. A common approach is to separate these errors andmodel them, respectively, as additive zero-mean Gaussian white noiseand a drifting bias term. Following this approach, we can use thestandard three-axis accelerometer sensor model from Fossen (2021),i.e.,
𝐟𝑏𝑖𝑠 = 𝐚𝑏𝑖𝑠 − 𝐠𝑏 + 𝐛𝑏acc + 𝐰𝑏acc, (24)
where 𝐛𝑏acc and 𝐰𝑏acc denote the respective bias and noise of the three-axis accelerometer. In general, (24) should be transformed to thenavigational frame {𝑛} such that the linear heave acceleration from eachsensor can be extracted and used to compute the phase differences.However, since we are only considering small roll and pitch angles, itis sufficient in this case to only consider the 𝑧-component of (24), i.e.,
𝑓 𝑏𝑧,𝑖𝑠 = 𝑎𝑏𝑧,𝑖𝑠 − 𝑔 cos𝜙 cos 𝜃 + 𝑏𝑏𝑧,acc +𝑤𝑏𝑧,acc, (25)
where 𝜙 and 𝜃 are the roll and pitch angles between {𝑛} and {𝑏}, and
𝑔 is the gravitational constant. In the following, we walk through thesteps needed to obtain an estimate of the linear acceleration 𝑎𝑏𝑧,𝑖𝑠, whichcorresponds to the heave acceleration when assuming small angles.As explained in Udjus (2017), a separate camera-based trackingsystem called Qualisys was used to obtain measurements of the rolland pitch angles. These measurements showed that, in all experiments,
𝜙 and 𝜃 were less than 1◦ during the first 15 s and less than 2◦ for



Ocean Engineering 249 (2022) 110760

11

J.A. Dirdal et al.
Table 3The separation distance 𝑅𝑖𝑗 in meters between sensors {𝑠𝑖} and {𝑠𝑗} for the experimentalconfiguration in Fig. 10.

𝑗

𝑅𝑖𝑗 1 2 3 4
𝑖

1 - 0.4293 1.2452 0.91532 0.4293 - 0.9855 0.77463 1.2452 0.9855 - 0.41014 0.9153 0.7746 0.4101 -

the remaining time of the experiments with wave excitation. Since
cos(2◦)2 ≈ 1, (25) can be approximated by
𝑓 𝑏𝑧,𝑖𝑠 ≈ 𝑎𝑏𝑧,𝑖𝑠 − 𝑔 + 𝑏

𝑏
𝑧,acc +𝑤𝑏𝑧,acc. (26)

The initial bias in each accelerometer was estimated by computing theexpected value of (26) and assuming that the accelerometers were leveland at rest. Applying these assumptions to (26), yields
E
[
𝑓 𝑏𝑧,𝑖𝑠

]
= E

[
𝑎𝑏𝑧,𝑖𝑠 − 𝑔 + 𝑏

𝑏
𝑧,𝑎𝑐𝑐 +𝑤

𝑏
𝑧,𝑎𝑐𝑐

]

E
[
𝑓 𝑏𝑧,𝑖𝑠

]
= E

[
𝑎𝑏𝑧,𝑖𝑠

]
⏟⏟⏟

=0

−𝑔 + 𝑏𝑏𝑧,𝑎𝑐𝑐 + E
[
𝑤𝑏𝑧,𝑎𝑐𝑐

]
⏟⏞⏞⏟⏞⏞⏟

=0

𝑏𝑏𝑧,𝑎𝑐𝑐 = E
[
𝑓 𝑏𝑧,𝑖𝑠

]
+ 𝑔, (27)

where 𝑤𝑏𝑧,𝑎𝑐𝑐 vanishes due to the Gaussian zero-mean assumption. Sincethe vessel only underwent wave excitation for 30–35 s, it is assumedthat the initial sensor bias remained more or less constant throughouteach experiment. This assumption is validated by the accelerometerAllan Variance curve found in the ADIS16364 datasheet, which statesthat for a 30 s time interval the in-run bias stability is around ±0.1 m𝑔.The high-frequency noise components were removed by lowpassfiltering the specific force measurements above the maximal wavefrequency, resulting in the final estimated acceleration signal
𝑎̂𝑏𝑧,𝑖𝑠 = 𝑓 𝑏𝑧,𝑖𝑠 + 𝑔 + 𝑏̂

𝑏
𝑧,acc, (28)

where 𝑓 𝑏𝑧,𝑖𝑠 is the lowpass filtered specific force and 𝑏̂𝑏𝑧,acc is the initialbias estimate obtained through (27).
5.3. Choice of reference sensor

To resolve the wave direction and wave number associated withall the experimental wave periods {1.0 s, 1.5 s, 2.0 s, 2.5 s}, care mustbe exercised when selecting the reference sensor. As we shall see, theappropriate reference IMU can be chosen by examining the criterion(22) for each wave period and checking which IMU has all its neigh-boring separation lengths within the imposed limits. As discussed inSection 4.1, abidance to this criterion ensures that the theoretical phasedifferences are restricted to (−𝜋, 𝜋), thus avoiding spatial aliasing.A comparison between the separation distances given by the exper-imental configuration (Table 3) and the separation limits imposed byBarber and Doyle (Fig. 5) reveals that only some of the IMUs can beused to resolve waves with period 𝑇 = 1.0 s. In particular, we see thatIMU 2 or 4 should be considered as a reference along with sensor pairs2-1 and 2-4 or 4-2 and 4-3. With these choices, the Barber and Doylecriterion (22) is (in theory) satisfied for all experimental wave periodswith the given IMU configuration.
5.4. Wave frequency and phase difference estimation

We have in the analysis thus far tacitly assumed the wave frequency
𝜔 to be perfectly known. The reliance on 𝜔 can be seen in the computa-tion of the phase difference (16), the measurement covariance relatedto (18) and (20), and implicitly in the lowpass filtered accelerationsignals (28). Hence, the wave frequency is an important cornerstoneand requires accurate determination in order for our wave algorithmto function optimally.

For regular waves it is reasonable to assume that the vessel acceler-ation (28) can be modeled by a single sinusoid and perturbation of theform
𝑎̂𝑏𝑧,𝑖𝑠(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜖) + 𝛿(𝑡), (29)
where 𝐴, 𝜔, 𝜖, and 𝛿 represent the respective amplitude, frequency,phase, and perturbation of the acceleration signal pertaining to sensor
{𝑠}. Hence, the task at hand is to find an accurate estimate of 𝜔 from
𝑎̂𝑏𝑧,𝑖𝑠 assuming it can be modeled according to (29) with unknownparameters 𝐴, 𝜔, 𝜖, and bounded perturbation 𝛿(𝑡). In the followingthree subsections, we describe three different methods that can be usedto achieve this goal.
5.4.1. Averaging the time intervals between successive peaksA straightforward approach to finding the frequency of a sinusoid isto average the time intervals between the (detected) successive peaks ofthe signal. The averaged time intervals should be identical to the periodgiven that the signal in question is a simple sinusoid. A prerequisite forthis approach to work on signals of the form (29) is that the amplitudeof the perturbation term 𝛿 is significantly smaller than the amplitude 𝐴.In other words, the signal (29) should have a sufficiently high signal-to-noise ratio (SNR). A high SNR will help prevent noisy spikes frombeing detected and confused as the actual signal peaks. In cases wherethe signal is significantly corrupted by noise, the SNR may be improvedthrough various filtering techniques.
5.4.2. The Aranovskiy frequency estimatorThe frequency identification algorithm of Aranovskiy et al. (2007)is designed based on a sinusoid of the form (29) and is attractive fortwo reasons. First, it offers a real-time implementation, rendering itsuitable for many applications in need of quick frequency estimateswhere the measured signal can be approximated by a sinusoid. Second,it has shown robustness in the presence of unaccounted perturbationsin the measurement signal.The algorithm comprises an auxiliary filter and an adaptive observerof the form
𝜉̇1 = 𝜉2,

𝜉̇2 = −2𝜔𝑓 𝜉2 − 𝜔2
𝑓 𝜉1 + 𝜔

2
𝑓𝑤(𝑡),

̇̂𝜃 = 𝑘𝜉1(𝜉̇2 − 𝜃̂𝜉1),

(30)
where 𝑤(𝑡) = 𝑎̂𝑏𝑧,𝑖𝑠(𝑡) is the measured signal (here chosen as theestimated acceleration signal), 𝜔𝑓 is the user-specified filter cut-offfrequency, 𝑘 > 0 is the observer gain (not to be confused with thewave number), and 𝜃 ∶= −𝜔2. Both 𝜔𝑓 and 𝑘 affect the convergencerate and steady state error of 𝜃̂ to 𝜃 and should be selected basedon the desired performance. In general, small 𝜔𝑓 and 𝑘 will result ina slower convergence rate, whereas larger values will result in fasterconvergence but with some induced oscillation in steady-state (Belleteret al., 2015).For marine craft operating in situations with little wave excitation,algorithm (30) can be modified to include an adaptive gain-switchingmechanism for the observer gain 𝑘, as proposed by Belleter et al.(2015). This mechanism enables 𝑘 to be switched between a high anda low gain depending on the amplitude of the measured roll, pitch,or heave responses, which may improve the convergence rate of theestimator. The reader is referred to Belleter et al. (2015) for additionaltheory and implementation details of the gain-switching mechanism.
5.4.3. The fast Fourier transformIn reality, ocean waves are usually irregular, exhibiting a broadspectrum of frequencies. In such situations, the time-averaging andAranovskiy frequency estimator algorithms may be limited due to theirinherent single-frequency model assumption. Unless the wave spectrumis sufficiently narrow, these approaches may struggle to identify thedominant (peak) frequency, which is the frequency component often
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Fig. 11. The phase difference 𝛩𝑖𝑗,𝑘 between IMUs {𝑠𝑖} and {𝑠𝑗} at time 𝑡𝑘 can beestimated online by considering the linear heave acceleration signals within a window,before being passed on to the UKF. In this time window, the lag (i.e., the numberof samples) between the respective heave signals is estimated by computing the cross-correlation between them and converting it to a phase difference using (16). The initialwidth of the window is set equal to the wave period and increases from 𝑡0 as the signalscontinue to develop.

sought in marine applications. For a signal comprising multiple fre-quencies, the fast Fourier transform (FFT) can be used to deconstruct itsspectral composition and identify any potential peaks. Unlike the abovemethods, the FFT does not make any assumptions on the structureor shape of the signals considered, thus making it a more viableoption for analyzing signals comprising multiple frequencies. However,a drawback of this approach is that it cannot be implemented in real-time as it relies on back-dated information, which, as a consequence,produces a lag in the estimation.Despite the attractive features of the Aranovskiy frequency esti-mator, the FFT was selected as the main method in this paper. Thisdecision was based on two points: First, the FFT gave the most con-sistent frequency estimates for all experimental wave periods, in closeagreement with the ground truth values, whereas the Aranovskiy esti-mator was somewhat less accurate and had difficulties identifying waveperiod 𝑇 = 1.0 s (the reasons are discussed in Section 5.5.3). Second,as a proof of concept of Theorem 1 and in the compromise betweenaccuracy and computational lag, we currently deem a higher accuracyin the wave estimates more important than real-time performance.
5.4.4. Phase difference estimationAfter an estimate of the wave frequency has been obtained us-ing either of the approaches described in Sections 5.4.1–5.4.3, thephase difference between the respective heave acceleration signals (28)can be estimated by computing the cross-correlation between them.This operation can be performed online by considering the heaveacceleration signals within an increasing time window (Fig. 11).
5.5. Results and discussion

In this section, we present the results from our UKF wave algorithmon the experimental IMU data of Udjus (2017). The raw IMU datawas processed according to the previous subsections to ensure thatthe phase differences could be obtained with as little error as possibleand reduce the risk of ambiguities before being passed on to the UKFalgorithm (Fig. 12). In the following results, the reference wave numberwas computed using the dispersion relation (21) with pool depth 𝑑 =
1.5 m and the true wave period (i.e., the wave period used as input tothe wavemaker machine). The reference wave direction was computedby fixing the boat heading (Fig. 9) and confirming this value with theQualisys camera system.

5.5.1. Experimental verification of Theorem 1The experimental results (Fig. 13) show that in 91% and 86% ofexperiments considered, the absolute wave direction and wave numbererrors based on three IMUs are less than 5◦ and 0.1 m−1, respectively.These numbers provide strong evidence in favor of Theorem 1 and alsovalidate the UKF capabilities in estimating those quantities. Experimen-tal verification of Theorem 1 extends previous findings (Udjus, 2017;Heyn et al., 2017), which only seem to consider the wave direction,and not the wave number—although, as we have now shown, canalso be determined simultaneously from the same data. Additionally,we have demonstrated that as few as three IMUs are in theory suffi-cient, provided that they are noncollinearly arranged and separated inaccordance with (22).The experimental results (Fig. 13) also show that in 71% and 52%of experiments considered, the measurement set {𝛩23, 𝛩24} (yellow)constitutes the largest error in each wave quantity, with some errorssignificantly exceeding the other sets of phases within each experiment.The large deviations observed can be linked to large errors in theestimated phase differences 𝛩̂23 and 𝛩̂24, which, in turn, are causedby several potential sources of error affecting IMUs {𝑠3} and {𝑠4}. Ingeneral, the error between the estimated and actual phase differencescan be attributed (either directly or indirectly) to one or more ofthe following sources: sensor imperfections, inexact sensor positioningand alignment, insufficient sensor sampling rate, shortcomings in theexperimental design (e.g., from using ropes to confine boat headingand position), modeling errors due to small-angle approximation, wavefrequency estimation, and oscillations and/or transient effects on thesensors due to structural vibrations and external environmental influ-ences. From the above list, however, only inaccuracies in the sensorpositioning and alignment of {𝑠3} and {𝑠4} may realistically explain thesignificant separation of errors within the sets of some experiments (weexpect the errors caused by the other sources to manifest themselvesroughly equally among the phase differences). As we have seen earlier,errors in the sensor locations can produce significant biases in the phasedifference estimates (especially for short wave periods; see Fig. 3),which may translate to biases in the wave direction and wave numberestimates. In order to test this theory, we have conducted a small simu-lation study investigating how the positioning errors of sensors {𝑠3} and
{𝑠4} may impact the wave estimate errors associated with measurementsets {𝛩21, 𝛩23}, {𝛩21, 𝛩24}, and {𝛩23, 𝛩24}. The results (Fig. 14) exhibita similar error pattern to the results in Fig. 13, indicating that thelocation uncertainty of {𝑠3} and {𝑠4} is a plausible cause for the largeseparation of errors observed. This argument is further substantiatedby Udjus (2017), which states that the sensor positions were obtainedusing a folding ruler and that some measurement errors may transpirebecause of this.
5.5.2. Multiple independent phase measurementsThe experimental results also suggest that using additional indepen-dent phase measurements by adding more IMUs may reduce overallerrors by having an ‘‘averaging’’ effect on the various measurementsets. Indeed, by studying the errors in Fig. 13 carefully, we see thatthe error obtained from the set of all six phase measurements is, ingeneral, lower than the worst performing set constituting two phases.The reasons for this can be linked to the error variance, which isdiscussed in Section 4.3.
5.5.3. High-frequency wavesContrary to wave periods 𝑇 = 1.5 s, 2.0 s, and 2.5 s, obtainingaccurate estimates of the wave direction and wave number proveddifficult for the IMU data corresponding to 𝑇 = 1.0 s (Fig. 15). Thesignificant errors observed are caused by large errors in the estimatedphase differences (Fig. 16), which, in turn, can be linked to severalsources of error. In the following, we discuss some potential sourcesthat we believe can have contributed to the deviations observed inFig. 16.
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Fig. 12. A block diagram illustrating the general procedure of going from raw IMU measurements to obtaining estimates of the wave direction 𝛽 and wave number 𝑘. Theprocedure can be summarized in three steps: (a) data processing, (b) PTPD estimation, and (c) state estimation. In (a) sensor biases and high-frequency (HF) noise are removedfrom the IMU measurements, yielding an estimate of the linear heave acceleration associated with each IMU (assuming small roll and pitch angles). The HF noise is filtered using alowpass filter with cut-off above 𝜔̂, obtained from a fast Fourier transform (FFT) applied to the entire data sequence. In (b) we estimate the phase difference 𝛩̂ online by followingthe procedure explained in Fig. 11. Finally, in (c) we apply the UKF algorithm to obtain the desired wave estimates.
A close look at some of the IMU data corresponding to 𝑇 = 1.0 s(Fig. 17a) shows that the heave responses are non-sinusoidal, indicatingthat some distortion has taken place. This suspicion is confirmed bythe corresponding FFTs of the data (Fig. 17b), which reveal additionalfrequencies in proximity to the expected single peak frequency. Theexistence of additional frequencies is a violation of the fundamentalregularity/single-frequency assumption that our PTPD model is builton and may, as a result, be the reason for the poor estimation quality.The distortion observed in Fig. 17a can most likely be attributedto the lowpass wave filtering characteristics of a ship (Nielsen, 2007,2008; de Souza et al., 2018; Nielsen et al., 2019; Nielsen and Dietz,2020), which occur whenever the waves are sufficiently short. For suf-ficiently short waves, multiple wave crests (and troughs) will affect thevessel simultaneously, resulting in a non-sinusoidal (filtered) response.This high-frequency filtering effect happens when the wavelength isshorter than the length of the wave trajectory through the vessel(i.e., the vessel length as seen by the waves). As seen in Fig. 18, thelength of the wave trajectory depends on the orientation of the vesselrelative to the waves, meaning that high-frequency filtering will notnecessarily happen for all wave directions when considering waves ofa given wavelength. It can be shown (see Appendix B) that the wavetrajectory distance 𝑊 through a box-shaped vessel along the wavepropagation axis 𝑥𝑤 (see Fig. 1 for definition) is

𝑊 = 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (31)
where 𝛽 is the relative wave direction, and 𝐿 and 𝐵 are the respectivelength and beam dimensions of the vessel. In order to avoid the high-frequency filtering effect, the wavelength 𝜆 should ideally be largerthan 𝑊 for a given 𝛽. This result can be generalized for all 𝛽 if 𝜆 > 𝑊for 𝛽 = arctan(𝐵∕𝐿) (see Appendix B for proof).To quantitatively assess the potential occurrence of high-frequencyfiltering in our experiments, (31) was computed for all wave directionsand compared to the wavelengths associated with each wave period(Fig. 19). In all the conducted experiments with 𝑇 = 1.0 s (𝜆 = 1.5613m), except for 𝛽 = 90◦, 𝑊 exceeds the wavelength, thus confirming thepresence of high-frequency filtering in the vessel dynamics. Moreover,this result corresponds well with the observed estimation errors inFig. 15, which shows significant errors for all wave directions except
𝛽 = 90◦.The effect of high-frequency filtering is a known problem and,in general, a core limitation of wave estimation methods based onwave-induced vessel motions (Nielsen, 2007, 2008; de Souza et al.,2018; Nielsen et al., 2019; Nielsen and Dietz, 2020). Unfortunately,the problem can, as of now, only be alleviated by considering otherresponses that are less affected by filtering (Nielsen, 2008; de Souzaet al., 2018). However, this requires additional complementary sensorsnot installed on the ship in the present study.Phase ambiguities resulting from a precarious selection of sensorpairs represent another potential error source for wave period 𝑇 = 1.0

Table 4The sum of wave direction 𝛽 and wave number 𝑘̃ errors corresponding to ‘‘All’’ phasesin Figs. 13 and 15 for each respective wave period 𝑇 . The total errors 𝛽 and 𝑘̃ aregiven in degrees and m−1, respectively. Notice that the total errors decrease as thewave period gets longer and vice versa.
𝑇 𝛽 𝑘̃

1.0 366.23 27.121.5 74.05 0.952.0 44.80 0.622.5 41.74 0.56

s. As discussed in Section 5.3, only sensor pairs 2-1 and 2-4 will (intheory) satisfy the Barber and Doyle criterion (22), thus guaranteeingthat phase differences 𝛩21 and 𝛩24 are within (-𝜋, 𝜋). This result canbe seen from Fig. 16, which also shows that the theoretical phasedifference 𝛩23 is outside (-𝜋, 𝜋) for wave directions {0◦, 30◦, 150◦, 180◦},indicating that 𝛩23 should not be relied upon in the computation ofthose values. Nevertheless, the theoretical values of 𝛩23 were computedunder the assumption that the sensor locations given in Fig. 10 arecorrect. However, as pointed out in Section 5.5.1, this is not necessarilytrue, meaning that the actual 𝛩23 may be within the range of (-𝜋, 𝜋)for several wave directions. In particular, we suspect that this may bethe case for wave directions {0◦, 30◦, 150◦}, since the estimated phasesremain somewhat close to the theoretical values and should ideallyhave been wrapped to angles of opposite sign.Recall from the analysis of Section 3.3.2 that inexact sensor po-sitions produce a bias in the computed phase difference that growsexponentially as the wave period becomes smaller (Fig. 3). This effectmay be one of the reasons for the overall growth of errors observedin the wave estimates when comparing them with the respective waveperiods (Table 4). The bias caused by the sensor positioning may alsorender some of the phase differences ambiguous by ‘‘pushing’’ themoutside the range (-𝜋, 𝜋), as discussed in Section 4.2. Studying Fig. 16closely, it is possible that this may have occurred for 𝛩24 at wavedirections {120◦, 150◦, 180◦} since the angles below the boundary -𝜋wrap to values in proximity to the estimates of 𝛩24.
5.5.4. Future workToday, most shipboard wave estimation methods are based onresponse amplitude operators (RAOs) that are capable of producing es-timates of the complete directional wave spectrum (Waals et al., 2002;Tannuri et al., 2003; Pascoal and Guedes Soares, 2009; Brodtkorb et al.,2018). These methods differ from our approach, which is signal-based(i.e., it requires no ship information) and built on regular harmonicwaves, thus limiting it to information about the main (dominant) wavedirection and wave number. It is currently unknown how well thismethod will work for more irregular wave patterns comprising manyfrequencies and directions. Hence, future investigations will aim at
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Fig. 13. Results from wave experiments with wave periods 𝑇 = 1.5 s, 2.0 s, 2.5 s, and sampling time 𝑇𝑠 = 0.01 s (100 Hz). The various sets of phase difference measurements are
{𝛩21 , 𝛩23}, {𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} (all) corresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with differentcolors. For each set of IMUs, the bar plots show the absolute error between the wave estimates (after convergence) and the true values. (For interpretation of the references tocolor in this figure legend, the reader is referred to the web version of this article.)
experimental testing of the UKF in such wave environments, with thepossibility of extending the algorithm to utilize the complete phasemodel (4) with roll-pitch compensation such that the UKF may beapplied to all vessels in both moderate and higher sea states.The transition from geographically fixed wave arrays to portableshipboard wave arrays has increased the practical usefulness of thePTPD approach. As a next research step, the possibility of using thePTPD approach for moving vessels with a non-zero forward speed shallbe investigated. In order to accommodate this capability, the forwardvessel speed should be considered in the PTPD model derivation, whichgenerally causes frequency shifts in the measured vessel motions due tothe Doppler effect. Hence, future work will also target wave directionestimation for underway vessels by extending our PTPD approach toconsider the shifted wave (encounter) frequency.

6. Conclusions
This paper has added several extensions to the existing literatureon shipboard and traditional wave arrays considering the phase-time-path-difference (PTPD) concept. We have shown (through observabilityanalysis and experimental data) that both the wave direction andwave number can be obtained from a minimum of three noncollinearsensors (e.g., IMUs) measuring regular harmonic waves, assuming adynamically positioned surface vessel with small roll and pitch angles.In this regard, we proposed a signal-based unscented Kalman filter(UKF) algorithm to estimate these wave quantities, which offers severalbenefits over the standard analytical solution (7) in terms of address-ing uncertainties and incorporating multiple measurements. We havediscussed and quantified several sources of error related to the sensors(e.g., sensor imperfections, insufficient sampling rate, and oscillations
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Fig. 14. Results from simulation with sensor positioning errors. The various sets of phase difference measurements are {𝛩21 , 𝛩23}, {𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩21 , 𝛩23 , 𝛩24} (all)corresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with different colors. For each set of IMUs, the bar plots show the absoluteerror between the wave estimates (after convergence) and the true values. The respective phase differences {𝛩21 , 𝛩23 , 𝛩24} were simulated using (9) with 𝑇 = 1.5 s, sampling time
𝑇𝑠 = 0.01 s, and adding positioning errors to all sensors (configured according to Fig. 10). The errors were added as Gaussian random noise to the configuration matrix of (10)with variance given by (20) using 𝜎21 = 2 cm, 𝜎23 = 10 cm, and 𝜎24 = 10 cm. (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

Fig. 15. Results from wave experiments with wave period 𝑇 = 1.0 s and sampling time 𝑇𝑠 = 0.01 s (100 Hz). The various sets of phase difference measurements are {𝛩21 , 𝛩23},
{𝛩21 , 𝛩24}, {𝛩23 , 𝛩24}, {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} (all) corresponding to IMUs {𝑠1 , 𝑠2 , 𝑠3}, {𝑠1 , 𝑠2 , 𝑠4}, {𝑠2 , 𝑠3 , 𝑠4}, {𝑠1 , 𝑠2 , 𝑠3 , 𝑠4}, respectively, and are shown with different colors. Foreach set of IMUs, the bar plots show the absolute error between the wave estimates (after convergence) and the true values. (For interpretation of the references to color in thisfigure legend, the reader is referred to the web version of this article.)

and transient effects) and array construction (e.g., inexact sensor loca-tions) and shown how some of these errors can be incorporated into theUKF to yield the estimated uncertainty in the wave estimates. Finally,we have shown how the Barber and Doyle criterion (22), togetherwith some of the errors above, should be considered in the design ofshipboard wave arrays.Our proposed PTPD model and UKF algorithm hinge on regular har-monic waves, meaning that the practicality of this approach is currentlyrestricted to ocean waves resembling such wave patterns (e.g., narrow-banded wave trains such as swell). It is presently unknown how wellthe UKF will work in more complex sea environments. Future studywill aim at experimental testing of the UKF in such environments, withthe possibility of extending the algorithm to estimate vessel roll andpitch motions, thus enabling the complete phase model (4) to be usedinstead. Such an extension will render the UKF algorithm appropriate toany surface vessel in moderate and higher sea states. Future work willalso target wave direction estimation for underway vessels by extendingour PTPD approach to consider the wave encounter frequency.
CRediT authorship contribution statement

Johann A. Dirdal: Conceptualization, Methodology, Software, In-vestigation, Formal analysis, Writing, Visualization. Roger Skjetne:

Conceptualization, Writing – review & editing. Jan Roháč: Conceptual-ization, Writing – review & editing. Thor I. Fossen: Conceptualization,Writing – review & editing, Supervision.
Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared toinfluence the work reported in this paper.
Acknowledgments

The work was sponsored by the Research Council of Norway (RCN)through the Centre of Excellence on Autonomous Marine Operationsand Systems (NTNU AMOS, RCN project 223254), and partly throughthe Centre for Research-based Innovation, SFI MOVE (RCN project237929). The research was also partially funded by the ESIF, EUOperational Programme Research, Development and Education, andfrom the Center of Advanced Aerospace Technology(CZ.02.1.01/0.0/0.0/16 019/0000826) carried out at the Faculty ofMechanical Engineering, Czech Technical University in Prague.



Ocean Engineering 249 (2022) 110760

16

J.A. Dirdal et al.

Fig. 16. The theoretical (solid) vs. estimated (dotted) phase differences {𝛩21 , 𝛩23 , 𝛩24}for wave period 𝑇 = 1.0 s and sensor configuration given by Fig. 10 using {𝑠2} asreference. The theoretical values were computed using (9), whereas the correspondingestimates were calculated from cross-correlations (Fig. 11) between the processed IMUdata for 𝑇 = 1.0 s.

Appendix A. Observability analysis
In this appendix, we show that the relative wave direction 𝛽 andwave number 𝑘 of a harmonic wave can be uniquely determined from aminimum of three noncollinear sensors, given a dynamically positionedsurface vessel with small roll and pitch angles. In the following analysis,we consider two separate cases: wave number 𝑘 known and wavenumber 𝑘 unknown. As we shall see, the minimum sensor requirementsstated in Theorem 1 apply in both cases. Theorem 1 shall be provenby showing that the nonlinear state–space model (10) is (locally) ob-servable for a minimum of two phase difference measurements, whichcorresponds to three sensors. The forthcoming observability analysishinges on the definitions of nonlinear observability (Nijmeijer, 1990;Marino and Tomei, 1996), which are stated below for convenience.

Definition 1. The system
𝐱̇ = 𝐟 (𝐱), 𝐱 ∈ R𝑛,

𝐳 = 𝐡(𝐱),
(A.1)

is said to be locally observable in 𝑈0, a neighborhood of the origin, if
rank{𝑑𝐡,… , 𝑑(𝐿𝑛−1𝐟 𝐡)} = 𝑛, ∀𝐱 ∈ 𝑈0, (A.2)
If (A.2) holds for every 𝐱 ∈ R𝑛 we say that the system is observable.
Definition 2. The observation space O of the system (A.1) is the linearspace (over R𝑛)
O = span{𝐿𝑛−1𝐟 ℎ𝑖}, 𝑖 = 1,… , 𝑝.

The observability codistribution is given by the observation space by
𝑑𝐡 = span{𝑑𝐇(𝐱) ∶ 𝐇 ∈ O},

where
𝑑𝐇 = 𝜕𝐇

𝜕𝑥1
𝑑𝑥1 +

𝜕𝐇
𝜕𝑥2

𝑑𝑥2 +⋯ + 𝜕𝐇
𝜕𝑥𝑛

𝑑𝑥𝑛.

Case A: Wave number known
Sensors 𝑁 = 2If we assume the wave number to be a known quantity, then thestate–space model in (10) can be reduced to the following scalar system

𝑥̇ = 0,

𝑧 = ℎ(𝑥) = 𝑘
[
𝑅12 cos 𝛼12 𝑅12 sin 𝛼12

] [cos 𝑥
sin 𝑥

]
,

(A.3)
where 𝑧 = 𝛩12 and 𝑥 = 𝛽 ∈ (−𝜋, 𝜋]. The measurement equation can beexpanded and written more compactly as
𝑧 = 𝑘𝑅12 cos(𝑥 − 𝛼12),which, for a single phase difference 𝑧 = 𝛩12 (two sensors), has twosolutions given by ±(𝑥 − 𝛼12). Hence, (A.3) is not observable from asingle pair of sensors.
Sensors 𝑁 = 3Adding an additional sensor, (A.3) now becomes
𝑥̇ = 0,

𝐳 = 𝐡(𝑥) =
[
𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [
cos 𝑥
sin 𝑥

]
,

(A.4)
where 𝐳 = [𝛩12, 𝛩13]⊤ and 𝑥 = 𝛽 ∈ (−𝜋, 𝜋]. The system above can becondensed by defining constants 𝑎1, 𝑎2, 𝑏1, 𝑏2 such that
𝐡(𝑥) =

[
ℎ1
ℎ2

]
=
[
𝑎1 𝑏1
𝑎2 𝑏2

] [
cos 𝑥
sin 𝑥

]
=
[
𝑎1 cos 𝑥 + 𝑏1 sin 𝑥
𝑎2 cos 𝑥 + 𝑏2 sin 𝑥

]
.

The observation space O (Definition 2) of (A.4) is determined bycomputing the Lie derivatives up to 𝑛 = 1, i.e.,
𝐿0
𝑓𝐡 = [ℎ1, ℎ2]⊤,which yields the observation space

O = span{ℎ1, ℎ2}
= span{𝑎1 cos 𝑥 + 𝑏1 sin 𝑥, 𝑎2 cos 𝑥 + 𝑏2 sin 𝑥}.Using this result, the observability codistribution can be formed as

𝑑𝐇 = 𝜕𝐡
𝜕𝑥
𝑑𝑥 =

[
𝜕ℎ1
𝜕𝑥

𝜕ℎ2
𝜕𝑥

]⊤
𝑑𝑥

=
[
−𝑎1 sin 𝑥 + 𝑏1 cos 𝑥
−𝑎2 sin 𝑥 + 𝑏2 cos 𝑥

]
𝑑𝑥

=
[
−𝑎1 𝑏1
−𝑎2 𝑏2

] [
sin 𝑥
cos 𝑥

]
𝑑𝑥,

and, finally, we get
𝑑𝐡 = span{𝑑𝐇}

= span{[
−𝑎1 𝑏1
−𝑎2 𝑏2

] [
sin 𝑥
cos 𝑥

]
𝑑𝑥

}
.

The observability codistribution 𝑑𝐡 will have full rank as long as theabove coefficient matrix is non-singular. This condition can easily bechecked by evaluating when the determinant is zero, i.e.,
det([

−𝑎1 𝑏1
−𝑎2 𝑏2

])
= −𝑎1𝑏2 + 𝑏1𝑎2 = 0.

Inserting the expressions for 𝑎1, 𝑎2, 𝑏1, 𝑏2 into the above expression andsimplifying it, yields
𝑘2𝑅12𝑅13 sin(𝛼12 − 𝛼13) = 0.

Since 𝑘,𝑅12, 𝑅13 > 0, the above expression is zero only when the sensorslie on the same line, i.e., 𝛼12 = 𝛼13. Hence, for 𝑁 = 3 (three sensors)we have from Definition 1 that
rank{𝑑𝐡} = 1 = 𝑛 ∀𝑥 ∈ (−𝜋, 𝜋] ⊆ R,

as long as the sensors are arranged in a noncollinear configuration.Since 𝑥 is only defined between (−𝜋, 𝜋], which is a subset of R, thesystem (A.4) is by definition locally observable.
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Fig. 17. (a) Heave accelerations (after processing) for wave experiments with period 𝑇 = 1.0 s and wave directions {0◦ , 30◦ , 180◦}, and (b) the corresponding FFTs. The FFTs werenormalized by dividing all values in each respective plot by the corresponding maximum. The peak wave frequency in all the FFTs is located at 𝑓 = 1.015 Hz, which correspondsto a wave period 𝑇 = 0.985 s.

Case B: Wave number unknown
Sensors 𝑁 = 2If we assume the wave number to be an unknown quantity, then thestate–space model in (10) reduces to
𝐱̇ = 𝟎,

𝑧 = ℎ(𝐱) =
[
𝑅12 cos 𝛼12 𝑅12 sin 𝛼12

] [𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
,

(A.5)

where 𝑧 = 𝛩12, 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, and 𝑥1 ∈ (−𝜋, 𝜋] and
𝑥2 ∈ R+. The measurement equation can be expanded and written morecompactly as
𝑧 = 𝑅12𝑥2 cos(𝑥1 − 𝛼12),

which, for a single phase difference 𝑧 = 𝛩12 (two sensors), has multiplesolutions. Hence, the system (A.5) is not observable from a single pairof sensors.
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Fig. 18. The length of the wave trajectory 𝑊 (represented by dashed lines) depends on the relative wave direction 𝛽. When 𝛽 = 180◦ (left), the vessel will filter the waves (shownin blue) passing through it as the wavelength 𝜆 < 𝑊 = 𝐿, where 𝐿 is the vessel length. However, when 𝛽 = 90◦ (right), the vessel motion responses will be unaffected by filteringas 𝜆 > 𝑊 = 𝐵, where 𝐵 is the vessel beam.

Fig. 19. The wave trajectory distance 𝑊 (solid blue line) computed from (31) vs.experimental wavelengths 𝜆 (dashed lines). The value of 𝑊 associated with eachexperimental wave direction 𝛽 is indicated with an asterisk. The length and beamdimensions of the model ship used in the experiments are 𝐿 = 2.58 m and 𝐵 = 0.44 m,respectively. For each wave period 𝑇 = 1.0 s, 1.5 s, 2.0 s, and 2.5 s, the correspondingwavelength 𝜆 = 2𝜋∕𝑘 is computed using (21) with 𝑑 = 1.5 m.

Sensors 𝑁 = 3Adding an additional sensor, (A.5) now becomes
𝐱̇ = 𝟎,

𝐳 = 𝐡(𝐱) =
[
𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

] [
𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
,

(A.6)
where 𝐳 = [𝛩12, 𝛩13]⊤, 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤, and 𝑥1 ∈ (−𝜋, 𝜋] and
𝑥2 ∈ R+. The system above can be condensed by defining constants
𝑎1, 𝑎2, 𝑏1, 𝑏2 such that
𝐡(𝐱) =

[
ℎ1
ℎ2

]
=
[
𝑎1 𝑏1
𝑎2 𝑏2

] [
𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
=
[
𝑎1𝑥2 cos 𝑥1 + 𝑏1𝑥2 sin 𝑥1
𝑎2𝑥2 cos 𝑥1 + 𝑏2𝑥2 sin 𝑥1

]
.

The observation space O (Definition 2) of (A.6) is then determined bycomputing the Lie derivatives up to 𝑛 = 2, i.e.,
𝐿0
𝐟 𝐡 = [ℎ1, ℎ2]⊤,

𝐿1
𝐟 𝐡 = 𝜕𝐡

𝜕𝐱
𝐟 = 𝟎, since 𝐟 (𝐱) = 𝟎,

which yields the observation space
O = span{ℎ1, ℎ2}

= span{𝑎1𝑥2 cos 𝑥1 + 𝑏1𝑥2 sin 𝑥1, 𝑎2𝑥2 cos 𝑥1 + 𝑏2𝑥2 sin 𝑥1}.Using this result, the observability codistribution can be formed as
𝑑𝐇 = 𝜕𝐡

𝜕𝑥1
𝑑𝑥1 +

𝜕𝐡
𝜕𝑥2

𝑑𝑥2 =

[ 𝜕ℎ1
𝜕𝑥1

𝜕ℎ1
𝜕𝑥2

𝜕ℎ2
𝜕𝑥1

𝜕ℎ2
𝜕𝑥2

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜕𝐡∕𝜕𝐱

[
𝑑𝑥1
𝑑𝑥2

]

=
[
−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1 𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1
−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1 𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1

] [
𝑑𝑥1
𝑑𝑥2

]
,

with
𝑑𝐡 = span{𝑑𝐇}.

The observability codistribution 𝑑𝐡 will have full rank as long as theJacobian 𝜕𝐡∕𝜕𝐱 is non-singular. This condition can easily be checkedby evaluating the determinant, i.e.,
det([

−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1 𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1
−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1 𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1

])

= (−𝑎1𝑥2 sin 𝑥1 + 𝑏1𝑥2 cos 𝑥1)(𝑎2 cos 𝑥1 + 𝑏2 sin 𝑥1)
− (𝑎1 cos 𝑥1 + 𝑏1 sin 𝑥1)(−𝑎2𝑥2 sin 𝑥1 + 𝑏2𝑥2 cos 𝑥1)

= −𝑎1𝑏2𝑥2(sin2 𝑥1 + cos2 𝑥1)
+ 𝑏1𝑎2𝑥2(sin2 𝑥1 + cos2 𝑥1)

= 𝑥2(−𝑎1𝑏2 + 𝑏1𝑎2).Inserting the expressions for 𝑎1, 𝑎2, 𝑏1, 𝑏2 into the equation above, sim-plifying, and equating it to zero, yields
𝑥2𝑅12𝑅13 sin(𝛼12 − 𝛼13) = 0.

Since 𝑥2, 𝑅12, 𝑅13 > 0, the above expression is zero only when thesensors lie on the same line, i.e., 𝛼12 = 𝛼13. Hence, for 𝑁 = 3 (threesensors), we have from Definition 1 that
rank{𝑑𝐡} = 2 = 𝑛 ∀𝑥1 ∈ (−𝜋, 𝜋], ∀𝑥2 ∈ R+,

as long as the sensors are arranged in a noncollinear configuration.Since 𝑥1 and 𝑥2 are only defined in (−𝜋, 𝜋] and R+, respectively, whichare both subsets of R, the system in (A.6) is by definition locallyobservable.
Appendix B. Finding an expression of the wave trajectory distance

In this appendix, we derive an analytical expression of the wavetrajectory distance through the vessel (i.e., the vessel length as seenby the waves) for a box-shaped vessel. With this expression, we canquantitatively assess when high-frequency filtering due to the vessel islikely to influence the measured motion responses for different waveperiods and wave directions.
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Fig. B.20. A vessel with length 𝐿 and beam 𝐵 dimensions measured at the waterline,oriented at an angle 𝛽 relative to the incoming harmonic waves (wave crests shown inblue). The vessel hull has been approximated with a rectangle of length 𝐿 and width
𝐵 to simplify analysis. The definitions of the wave direction 𝛽, the tangent wave frame
{𝑤} with wave propagation axis 𝑥𝑤, and reference sensor {𝑠1} with sensor axis 𝑥𝑠1are given in Fig. 1. The wave trajectory distance 𝑊 is the distance the wave shouldtravel across the vessel (i.e., the total distance in which the wave is in contact withthe vessel).

Consider a vessel with length 𝐿 and beam 𝐵 measured at thewaterline, oriented at an angle 𝛽 relative to the incoming harmonicwaves, as shown in Fig. B.20. In general, the first point on the vesselthat the wave will affect is the corner closest to the initial wave,whereas the final exit point will be the diagonally-opposite corner.Using rudimentary trigonometric identities, the distance between thesepoints along the wave propagation axis 𝑥𝑤 can be expressed as
𝑊 = 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (B.1)
where 𝑊 is the wave trajectory distance and 𝛽 is the relative wavedirection. The maximum wave trajectory distance can be determinedby taking the derivative of (B.1) with respect to 𝛽, which yields thefollowing expression
𝑑𝑊
𝑑𝛽

= 𝐿

(
−cos 𝛽 sin 𝛽

| cos 𝛽|

)
+ 𝐵

(
cos 𝛽 sin 𝛽
| sin 𝛽|

)
= 0

⇒ | tan 𝛽| = 𝐵
𝐿
,

and has four possible solutions
𝛽 = ±arctan(𝐵∕𝐿) and 𝛽 = 𝜋 ± arctan(𝐵∕𝐿). (B.2)
When the vessel is oriented at each of these wave directions, two of thecorners will be furthest apart along the axis 𝑥𝑤. Hence, the wavelength
𝜆 should ideally be greater than 𝑊 when 𝛽 is given by (B.2) to avoidhigh-frequency filtering for all wave directions in the recorded motionresponses.
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a Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norwayb Department of Marine Technology, Norwegian University of Science and Technology (NTNU), NO-491 Trondheim, Norwayc Department of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
A R T I C L E I N F O
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A B S T R A C T
This study investigates the potential capability of a relatively new and unexplored signal-based approachfor shipboard wave estimation. The approach uses the phase-time-path-differences (PTPDs) from an arrayof shipboard sensors to uniquely resolve the wave propagation direction and wave number. We derive akinematic PTPD model accounting for forward vessel speed and assess its theoretical foundation to modelthe sensor delays on a rigid body. The forward-speed PTPD model is structurally equivalent to the zero-speedmodel considered in previous works, thus retaining the same observability results provided by a noncollineararray of a minimum of three sensors. Moreover, based on the outlined theory and PTPD model, we propose amethodology to estimate the main wave propagation direction and wave number online by employing a fastFourier transform (FFT), an unscented Kalman filter (UKF), and a rigid-body measurement transformation basedon a single inertial measurement unit (IMU). Provided that the vessel in question can be considered a rigid body,a single IMU is sufficient to obtain the desired wave quantities instead of three IMUs, as initially proposed inour previous work. Additionally, our methodology incorporates a novel frequency threshold to avoid distortedwave components caused by the effect of vessel filtering. The performance of our PTPD method is evaluated ondata collected from a wave tank and full-scale experiments involving a vessel with zero and non-zero forwardspeed. The results show very good agreement with the reference wave values reported from a commercial waveradar and wave buoys operating in proximity to the vessel, indicating that our proposed method is competitivewith existing wave measurement technology in terms of accuracy and online performance while being cheap,easy to install, flexible, and robust against environmental influences.

1. Introduction
Accurate information about the propagation direction and fre-quency characteristics of ocean waves is essential for various maritimeactivities. Ship captains rely on this data to chart safer and moreefficient routes, reducing wave-related impacts and potential danger.Notably, the risk of wave-induced rolling – particularly parametricrolling – is a chief concern, capable of causing cargo loss and, inextreme cases, vessel capsizing. Additionally, in dynamic position-ing (DP) applications, knowing the wave direction aids in aligningthe vessel with the wave disturbance (a process known as weather-vaning (Kim and Kim, 2014)) to minimize control forces and increasestability and safety onboard. In the context of DP, the wave frequencyalso plays a crucial role for filtering out oscillatory motions from

∗ Corresponding author.E-mail addresses: johann.a.dirdal@ntnu.no (J.A. Dirdal), roger.skjetne@ntnu.no (R. Skjetne), xrohac@fel.cvut.cz (J. Roháč), thor.fossen@ntnu.no(T.I. Fossen).

entering the feedback loop, thereby improving fuel efficiency andreducing actuator wear (Fossen, 2021). Moreover, knowledge aboutthe wave propagation direction and wave number/frequency can, ingeneral, serve as valuable input to several existing sea state estimationframeworks (e.g., Brodtkorb et al. (2018)) to improve the quality ofwave estimations.The physical distance between a pair of sensors situated on theocean surface induces a delay between the wave elevation measure-ments recorded by them. This delay manifests itself as either a phase,time, or path difference (PTPD), which depends on the distance betweenthe sensors, the propagation speed of the waves passing through thebodies containing the sensors, and the angle at which the waves ap-proach them. Many studies have investigated the capabilities of using
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the PTPDs between a group of sensors to determine the main wavepropagation direction (Esteva, 1976, 1977; Fernandes et al., 1988,2000; Draycott et al., 2015, 2016, 2018; Luo et al., 2020). However,some practical drawbacks of these works are that they do not considerthe wave number – although it can also be resolved from the samedata (Donelan et al., 1996; Fernandes et al., 2001) – and they relyon a fixed stationary array of sensors, confining wave estimation to aspecific geographical site. A more practical approach is to bring thesensors onboard a vessel and use the measured PTPDs to resolve thewave direction (and wave number) at any desired location, stationaryor while moving. However, only a few studies have considered ashipboard PTPD approach (Fu et al., 2011; Udjus, 2017; Heyn et al.,2017; Dirdal et al., 2022). Hence, the capabilities of such an approachstill need more exploration in the context of shipboard wave estimation(i.e., the field concerned with inferring statistics about ocean wavesfrom sensor measurements taken onboard a ship) by considering morerealistic wave conditions.Most of the research on shipboard wave estimation is dominatedby approaches based on the wave buoy analogy (Waals et al., 2002;Tannuri et al., 2003; Nielsen, 2006; Pascal et al., 2009; Nielsen, 2017a;Brodtkorb et al., 2018). However, a significant practical drawback ofsuch approaches is that they rely on ship-dependent transfer functionsknown as response amplitude operators (RAOs), which should be de-termined for each ship using various hydrodynamic codes. Althoughsome recent research activities have addressed this issue by proposingstrategies for more accurate RAO tuning (Nielsen et al., 2021; Mounetet al., 2022), such transfer functions are not trivial to obtain andgenerally subject to many uncertainties. The fact that RAOs are trans-fer functions also limits the theoretical validity of these model-basedapproaches to linear systems, which for ships at sea, is only consideredvalid for mild and moderate wave conditions. In contrast, signal-basedapproaches (e.g., PTPD) are not constrained to any particular waveclimate and require no ship information, rendering them consider-ably more practical as wave estimation is done directly from sensormeasurements. However, only a handful of signal-based techniquesare commercially available and hinge on wave radars and/or laseraltimeters, which are expensive, sensitive to environmental influences,and challenging to install without expert help. Although shipboardwave estimation techniques based on machine learning (Mak and Düz,2019; Duz et al., 2019; Han et al., 2022; Mittendorf et al., 2022) arealso considered signal-based, they require ship-specific datasets, thusrestricting generalization to other vessels.The PTPD approach, on the other hand, is inherently signal-basedand, when coupled with inertial measurement units (IMUs) as primarysensory devices, alleviate many of the practical concerns listed above bybeing inexpensive, robust against environmental impact, and easy to in-stall; without requiring any detailed ship information. Despite the manyadvantages, current PTPD approaches using IMUs (Udjus, 2017; Heynet al., 2017; Dirdal et al., 2022) have only been tested with stationarymodel ships in wave tanks involving regular waves. Consequently, thePTPD approach with IMUs needs further investigation in more realisticwave conditions and forward speed to solidify their potential. In thisregard, extending the present PTPD framework to account for forwardvessel speed will significantly improve the practical feasibility of theapproach, which to our knowledge, is yet to be considered.Accurate measurements of the PTPDs are a prerequisite for success-ful wave estimation using the PTPD approach. In general, the PTPDsare susceptible to several sources of error, including sensor noise,sensor imperfections (e.g., nonlinear sensitivity character and non-orthogonality and misalignment between inner sensitive axes), inexactsensor locations and alignments when installed, low data sampling rate,and modeling uncertainties. Although some of the literature above hasacknowledged some of these errors, only one study (Dirdal et al., 2022)has attempted a quantitative analysis in the context of shipboard IMUs.However, the latter study does not account for modeling errors causedby mismatches in the PTPD dynamics when measured on a vessel (rigid

body) rather than on the sea surface. The magnitude of such errors maybe significant and can explain some of the deviations observed in thewave estimation results of the latter study. Hence, it is important toconsider the properties of a rigid body in the theoretical foundation ofthe PTPD approach for shipboard sensors.A practical disadvantage of current PTPD approaches is that theyrequire much hardware in the form of multiple IMUs and cables thatshould be connected, synchronized in time, and distances betweenthem measured before they can be applied. When multiple sensors areconsidered, a reduction in the sensors’ sampling rate from their maxi-mum possible value is usually required to accommodate the increasedinformation load associated with multiple simultaneous measurements.However, decreasing the sensor sampling rate will inadvertently affectthe accuracy of the measured PTPDs (Dirdal et al., 2022), which, inturn, will affect wave estimation quality. It is, however, possible toreduce the amount of hardware to a single IMU by employing a rigidbody measurement transformation to generate the remaining (virtual)IMU measurements. Although such a measurement transformation isnot novel (Zappa et al., 2001; Kjerstad and Skjetne, 2016), no workhas yet attempted to use this transformation to facilitate PTPD waveestimation.In general, implementing a methodology based on the PTPD con-cept requires two main procedures: estimating the PTPDs from thesensor measurements and estimating the wave direction and wavenumber from the PTPDs. Although there are numerous ways of realizingsuch a methodology, a practically feasible methodology must lever-age two essential factors: accuracy and real-time/online estimationperformance—the focal points of most studies considering shipboardwave estimation. However, another factor that needs to be addressedis the lowpass wave filtering characteristics of a ship, which occurwhenever the waves passing through it are sufficiently short. When thishappens, the waves become distorted by the vessel, and the measuredvessel responses no longer accurately reflect the true wave conditions.Although many works have shown awareness of this problem (Nielsen,2007, 2008; de Souza et al., 2018; Nielsen et al., 2019; Nielsen andDietz, 2020), most of the discussions are qualitative, with the mainremedy being to consider other responses measured by additional com-plementary sensors, which are less affected by filtering (Nielsen, 2008;de Souza et al., 2018). A quantitative measure is introduced in a recentstudy (Dirdal et al., 2022) showing when the effect of vessel filteringis likely to occur based on the length and breadth dimensions of thevessel and its orientation relative to the incoming waves. However,there currently does not seem to exist a procedure for avoiding thedistorted portion of the measured vessel responses caused by high-frequency waves, which is inevitable for any irregular sea as some ofthe constituent wave components are naturally high in frequency.In this study, we extend previous findings by the following con-tributions. First, the theoretical foundation of the PTPD approach isrigorously assessed. From this assessment, the circumstances underwhich the PTPD approach may be used to model the phase differencebetween a pair of sensors on a rigid body are carefully identified. Theseconditions are also verified experimentally from data collected duringwave tank experiments with a model ship in regular and irregularwaves. Second, we derive a new PTPD model for vessels with short-timeconstant forward speed and verify it experimentally on data collectedfrom forward speed experiments in a wave tank involving regular andirregular waves. This PTPD model is structurally equivalent to ourprevious zero-speed model and, hence, observable for a minimum ofthree noncollinear-spaced sensors. Third, based on the theory outlined,we propose a methodology for resolving the wave propagation direc-tion and wave number online, which comprises an FFT, UKF, and arigid-body measurement transformation based on a single IMU. Ourmethodology incorporates a novel frequency threshold derived fromthe length and breadth dimensions of the vessel to avoid distortedwave components due to the filtering effect. Finally, we assess thecapabilities of our proposed method in practice by considering data
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Fig. 1. Two sensors denoted 𝑠𝑖 and 𝑠𝑗 situated on (a) the ocean surface and (b) a rigid body. The distance between the sensors is labeled 𝑑𝑖𝑗 .

Fig. 2. A bird’s-eye view of two sensors {𝑠𝑖} and {𝑠𝑗} positioned on the sea surfacewith a long-crested regular wave (shown in blue) passing through them with speed 𝑐.The wave should travel a distance 𝑑𝑖𝑗 to get from {𝑠𝑗} to {𝑠𝑖}, which causes a constantdelay between the wave elevation time series recorded in each sensor. The distance 𝑑𝑖𝑗is expressed in the wave tangent frame {𝑤} with axes (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) and is attached tothe (arbitrarily chosen) reference sensor {𝑠𝑖}. The 𝑥𝑤 axis points in the same directionas the propagating waves, 𝑧𝑤 points upwards (out of the page), and 𝑦𝑤 completes theright-handed coordinate system (not shown, but coincides with 𝑦𝑠𝑖 ). The relative wavedirection 𝛽 is defined as the counterclockwise angle from 𝑥𝑤 to 𝑥𝑠𝑖 (chosen arbitrarilyas 180◦ in this example). The position of {𝑠𝑗} relative to {𝑠𝑖} is denoted by 𝑟𝑠𝑖𝑠𝑗 .

gathered from a model wave tank and full-scale experiments. The full-scale experiments involve a research vessel equipped with multipleIMUs and a commercial wave radar, operating in proximity to severalwave buoys on the west coast of Norway. The wave estimation resultsshow that our proposed method is competitive with existing wavemeasurement technology in terms of accuracy and online performancewhile costing a fraction, being portable, flexible, and robust againstenvironmental impact.
2. Theory
2.1. Main idea

A pair of spatially distributed sensors in the water will generallyexperience a different delay than those on a rigid body. On the oceansurface, the sensors are decoupled from each other, meaning that thedelay between the wave elevation measurements is solely determinedby the distance between the sensors and the propagation angle andspeed of the waves passing through them (Fig. 1(a)). On a rigid body,however, the sensors are interrelated, meaning that as soon as thewaves come in contact with the body, all sensor measurements will beaffected simultaneously (Fig. 1(b)).The differences between the sensor delays in the aforementionedsituations can be shown quantitatively through some simple kinematics.Consider the situation in Fig. 1(a) but from a bird’s-eye view later intime as illustrated in Fig. 2. The delay between the measurements insensor {𝑠𝑗} and {𝑠𝑖} manifests itself as either a phase, time, or path

difference (PTPD). The path difference 𝑑𝑖𝑗 is simply the distance alongthe wave propagation direction the wave must travel to get from {𝑠𝑗}to {𝑠𝑖}. We obtain an expression for 𝑑𝑖𝑗 by decomposing the positionvector 𝑟𝑠𝑖𝑠𝑗 in the wave tangent frame {𝑤}, and extracting the resulting
𝑥-component. This operation is represented mathematically by
𝐫𝑤𝑠𝑖𝑠𝑗 = 𝐑𝑤𝑠𝑖𝐫

𝑠𝑖
𝑠𝑖𝑠𝑗 , (1)

where 𝐫𝑠𝑖𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ denotes the coordinate position vector ofsensor {𝑠𝑗} relative to {𝑠𝑖} expressed in the sensor frame {𝑠𝑖} and 𝐑𝑤𝑠𝑖is a rotational transform between {𝑠𝑖} and {𝑤} given by
𝐑𝑤𝑠𝑖 =

⎡⎢⎢⎣

cos 𝛽 sin 𝛽 0
sin 𝛽 −cos 𝛽 0
0 0 −1

⎤⎥⎥⎦
.

Carrying out the multiplication in Eq. (1) with the rotation matrixabove, yields 𝐫𝑤𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽, ∗, ∗]⊤, where we have omittedthe 𝑦 and 𝑧 components as they are not relevant. Hence, the pathdifference, which is the 𝑥-component of 𝐫𝑤𝑠𝑖𝑠𝑗 , becomes 𝑑𝑖𝑗 = 𝑥𝑖𝑗 cos 𝛽 +
𝑦𝑖𝑗 sin 𝛽, and the time it takes the wave to complete 𝑑𝑖𝑗 is simply
𝑡𝑖𝑗 =

𝑑𝑖𝑗
𝑐

=
𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽

𝑐
, (2)

where 𝑡𝑖𝑗 is the time difference between the measurements in {𝑠𝑗} and
{𝑠𝑖}, and 𝑐 is the wave celerity or phase velocity, as it is also called. Fora regular harmonic wave, the wave celerity is given by
𝑐 = 𝜔

𝑘
, (3)

where 𝜔 and 𝑘 denote the angular wave frequency and wave number,respectively. Substituting Eq. (3) into Eq. (2), yields
𝛩𝑖𝑗 = 𝑘(𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽), (4)
where 𝛩𝑖𝑗 ∶= 𝜔𝑡𝑖𝑗 is the phase difference between the measurements insensors {𝑠𝑗} and {𝑠𝑖}.Unfortunately, it is not straightforward to find a similar expressionas Eq. (4) for the situation where the sensors are mounted on a rigidbody (Fig. 1(b)). If the sensor output is evaluated as acceleration, thedifference in acceleration between two arbitrary points (here labeledas 𝑠𝑗 and 𝑠𝑖) on the rigid body is modeled by
𝑎𝑛𝑠𝑗 − 𝑎𝑛𝑠𝑖 =

̇⃗𝜔𝑛𝑏 × 𝑟𝑠𝑖𝑠𝑗 + 𝜔⃗𝑛𝑏 × (𝜔⃗𝑛𝑏 × 𝑟𝑠𝑖𝑠𝑗 ), (5)
where 𝑎𝑛𝑠𝑗 and 𝑎𝑛𝑠𝑖 are the accelerations of {𝑠𝑗} and {𝑠𝑖} relative to thenavigational frame {𝑛},1 𝜔⃗𝑛𝑏 represent the angular rates of the bodyframe {𝑏} relative to {𝑛}, ̇⃗𝜔𝑛𝑏 is the angular acceleration, and 𝑟𝑠𝑖𝑠𝑗 isthe position vector of {𝑠𝑗} relative to {𝑠𝑖}. It is interesting to see fromEq. (5) that if the body simply oscillates up and down without anyangular displacement (i.e., 𝜔⃗𝑛𝑏 = ̇⃗𝜔𝑛𝑏 = 0⃗), the accelerations in bothsensors will be identical (i.e., zero delay). Hence, the measurement

1 The navigational or North-East-Down frame {𝑛} is a local tangent framewith origin defined at the center of gravity of the navigated object and coordi-nates associated with Earth’s reference ellipsoid. We consider the navigationalframe to be Earth-fixed, which, for low-speed applications such as marine craft,enables {𝑛} to be approximated as an inertial frame of Ref. Fossen (2021).
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delay perceived between sensors on a rigid body is caused by angulardisplacements about the body’s roll, pitch, and yaw axes.Although the cause of the sensor delays in Figs. 1(a) and 1(b) are in-herently different (one is caused by the time it takes the wave to transitbetween the sensors, while the other is governed by the angular ratesof the body induced by waves), they both share a common parameter,namely, the sensor separation distance 𝑟𝑠𝑖𝑠𝑗 . If we decompose Eq. (5) in
{𝑏} and introduce the coordinate vectors 𝝎𝑏𝑛𝑏 = [𝑝, 𝑞, 𝑟]⊤, 𝝎̇𝑏𝑛𝑏 = [𝑝̇, 𝑞̇, 𝑟̇]⊤,and 𝐫𝑏𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤, we can rewrite Eq. (5) in terms of the sensorseparation as
𝑎𝑏𝑛𝑠𝑗 ,𝑧 − 𝑎

𝑏
𝑛𝑠𝑖 ,𝑧

= (𝑝𝑟 − 𝑞̇)𝑥𝑖𝑗 + (𝑝̇ − 𝑞𝑟)𝑦𝑖𝑗 + (𝑞2 − 𝑝2)𝑧𝑖𝑗 , (6)
where we have only considered the 𝑧-components of the accelerationsas these are most relevant. As can be seen by studying Eqs. (4) and (6),the sensor separation 𝐫𝑏𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ and difference in acceleration(manifested as a difference in amplitude and phase between the signals)are linearly proportional. Using this fact, it is possible to apply the PTPDmodel to the situation in Fig. 1(b) by making the sensor separationsufficiently small. In this way, the sensor delays will become smallenough that the models (4) and (6) almost yield the same result, andwe can use the former to model the phase difference between a pair ofsensors on a rigid body.2
2.2. A phase-time-path-difference model for surface vessels with constantforward speed

An important limitation of Eq. (4) is that it is based on a stationarypair of sensors, meaning that the model can only be applied to sta-tionary vessels. As we shall see, we can generalize the phase differencemodel to account for speed such that it may be applied to situations inwhich the vessel is either stationary or moving.In the following model derivation, consider the situation shown inFig. 3, which depicts an underway vessel with a pair of distributedsensors, oriented at an angle relative to some incoming long-crestedharmonic waves. Recall from Section 2.1 that the PTPD model was de-rived by projecting the relative sensor positions onto the wave tangentframe {𝑤} and extracting the resulting 𝑥-component to get the pathdifference 𝑑𝑖𝑗 . To carry out this operation for sensors on a rigid body,the rotational transform must be modified to account for the vesselroll and pitch angles induced by the waves (when the vessel oscillatesdue to the waves passing through it, the path difference 𝑑𝑖𝑗 changes,see Fig. 3(b)). Hence, a kinematic expression for 𝑑𝑖𝑗 can be obtainedby transforming the body-fixed position vector 𝑟𝑠𝑖𝑠𝑗 from {𝑠𝑖} to {𝑤}using the rotational transform 𝐑𝑤𝑠𝑖 according to Eq. (1), where 𝐫𝑠𝑖𝑠𝑖𝑠𝑗 =
[𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]⊤ denotes the body-fixed sensor coordinates expressed in
{𝑠𝑖} and 𝐑𝑤𝑠𝑖 is now defined by two sequences of intermediate rotationsbased on the 𝑧𝑦𝑥-convention (Fossen, 2021), i.e.,
𝐑𝑤𝑠𝑖 = 𝐑𝑧,𝛽𝐑𝑥,180◦𝐑𝑦,𝜃𝐑𝑥,𝜙 =

⎡⎢⎢⎣

𝑐𝛽𝑐𝜃 𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙 𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙
𝑠𝛽𝑐𝜃 𝑠𝛽𝑠𝜃𝑠𝜙 − 𝑐𝛽𝑐𝜙 𝑠𝛽𝑠𝜃𝑐𝜙 + 𝑐𝛽𝑠𝜙
𝑠𝜃 −𝑐𝜃𝑠𝜙 −𝑐𝜃𝑐𝜙

⎤⎥⎥⎦
,

(7)
where 𝑠 ⋅ = sin(⋅) and 𝑐 ⋅ = cos(⋅). Inserting Eq. (7) into Eq. (1) andcarrying out the multiplication, yields 𝐫𝑤𝑠𝑖𝑠𝑗 = [𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗

(
𝑐𝛽𝑠𝜃𝑠𝜙 +

𝑠𝛽𝑐𝜙
)
+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙), ∗, ∗]⊤, where we have omitted the 𝑦 and 𝑧components as they are not relevant. The path difference 𝑑𝑖𝑗 is simply

2 For sensors on a rigid body, the sensor separation and phase differenceare only proportional in a limited distance range. When the sensor separationgrows to infinity, the phase difference will converge to ±180◦, at which pointthe sensor measurements will be anti-phase.

the 𝑥-component of 𝐫𝑤𝑠𝑖𝑠𝑗 and the time it takes a wave to complete thedistance 𝑑𝑖𝑗 is given by
𝑡𝑖𝑗 =

𝑑𝑖𝑗
𝑢𝑟

=
𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗

(
𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙

)
+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

𝑢𝑟
, (8)

where 𝑡𝑖𝑗 and 𝑢𝑟 denote the corresponding time difference and 𝑥-component of the relative velocity between the waves and the vessel,respectively. In general, the velocity of the waves relative to the vesselcan be expressed in the wave tangent frame {𝑤} as
𝐯𝑤𝑏𝑤′ = 𝐯𝑤𝑛𝑤′ − 𝐯𝑤𝑛𝑏 = 𝐯𝑤𝑛𝑤′ − 𝐑𝑤𝑏 𝐯

𝑏
𝑛𝑏 = [𝑐 − 𝑈 cos 𝛽 cos 𝜃, ∗, ∗]⊤, (9)

where 𝐯𝑤𝑛𝑤′ = [𝑐, 0, 0]⊤ and 𝐯𝑏𝑛𝑏 = [𝑈, 0, 0]⊤, respectively, representthe wave {𝑤′} and vessel {𝑏} velocities relative to the Earth-fixednavigational frame {𝑛}, represented by the wave celerity 𝑐 and forwardvessel speed 𝑈 . The rotational transform 𝐑𝑤𝑏 is identical to Eq. (7) since
{𝑏} and {𝑠𝑖} are aligned (see Fig. 3). Substituting 𝑢𝑟 in Eq. (8) with thefirst component of Eq. (9), yields the time difference
𝑡𝑖𝑗 =

𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗
(
𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙

)
+ 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

𝑐 − 𝑈𝑐𝛽𝑐𝜃
. (10)

The time difference can be converted to a phase difference 𝛩𝑖𝑗 byinserting Eq. (3) into Eq. (10), which gives
𝛩𝑖𝑗 = 𝑘

(
𝑥𝑖𝑗𝑐𝛽𝑐𝜃 + 𝑦𝑖𝑗 (𝑐𝛽𝑠𝜃𝑠𝜙 + 𝑠𝛽𝑐𝜙) + 𝑧𝑖𝑗 (𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙)

)
, (11)

where 𝛩𝑖𝑗 ∶= (𝜔 − 𝑘𝑈 cos 𝛽 cos 𝜃)𝑡𝑖𝑗 . For well balanced vessels, the rolland pitch angles will on average be close to zero, i.e., 𝜙̄ = E[𝜙(𝑡)] ≈ 0and 𝜃̄ = E[𝜃(𝑡)] ≈ 0, where E[⋅] denotes the expected value. Based onthis notion, we can derive the mean phase difference 𝛩̄𝑖𝑗 by insertingthe values 𝜙̄ = 0 and 𝜃̄ = 0 into Eq. (11), which yields
𝛩̄𝑖𝑗 = 𝑘(𝑥𝑖𝑗 cos 𝛽 + 𝑦𝑖𝑗 sin 𝛽), (12)
where the mean phase difference 𝛩̄𝑖𝑗 ∶= 𝜔𝑒𝑡𝑖𝑗 is now defined in termsof the wave encounter frequency 𝜔𝑒 = 𝜔 − 𝑘𝑈 cos 𝛽. By focusing onthe average phase difference, we have conveniently circumvented therestrictive small-angle assumption considered in Dirdal et al. (2022). Aquantitative assessment of the error impact due to the transition fromEq. (11) to Eq. (12) is given in Appendix. In the remainder of this study,we consider the phase difference as the principal sensor delay, as thisquantity is most commonly treated in the literature.
2.3. Forward speed state-space model

The phase difference model (12) can be formulated into a state-space model by introducing the state vector 𝐱 = [𝑥1, 𝑥2]⊤ = [𝛽, 𝑘]⊤and polar coordinates (𝑥𝑖𝑗 = 𝑅𝑖𝑗 cos 𝛼𝑖𝑗 , 𝑦𝑖𝑗 = 𝑅𝑖𝑗 sin 𝛼𝑖𝑗), and rewritingEq. (12) into the vector form
𝛩̄𝑖𝑗 =

[
𝑅𝑖𝑗 cos 𝛼𝑖𝑗 𝑅𝑖𝑗 sin 𝛼𝑖𝑗

] [𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
.

For 𝑁 ≥ 3 number of sensors, the continuous-time state-space modelcan be written compactly as
𝐱̇ = 𝟎,

𝐳 = 𝐡(𝐱) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅12 cos 𝛼12 𝑅12 sin 𝛼12
𝑅13 cos 𝛼13 𝑅13 sin 𝛼13

⋮ ⋮
𝑅1𝑁 cos 𝛼1𝑁 𝑅1𝑁 sin 𝛼1𝑁
𝑅23 cos 𝛼23 𝑅23 sin 𝛼23

⋮ ⋮
𝑅2𝑁 cos 𝛼2𝑁 𝑅2𝑁 sin 𝛼2𝑁

⋮ ⋮
𝑅(𝑁−1)𝑁 cos 𝛼(𝑁−1)𝑁 𝑅(𝑁−1)𝑁 sin 𝛼(𝑁−1)𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟sensor configuration matrix

[
𝑥2 cos 𝑥1
𝑥2 sin 𝑥1

]
,

(13)
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Fig. 3. Three independent situations of an underway vessel (rigid body) with constant forward speed 𝑈 equipped with two sensors {𝑠𝑖} and {𝑠𝑗}, oriented at an angle 𝛽 relativeto incoming long-crested harmonic waves with propagation speed 𝑐. The position of {𝑠𝑗} relative to {𝑠𝑖} is represented by 𝑟𝑠𝑖𝑠𝑗 . The sensor axes point in the same direction as thevessel body frame {𝑏} (slightly faded). The tangent wave frame {𝑤} is attached to the vessel with axes (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) and origin coinciding with the (arbitrarily chosen) referencesensor {𝑠𝑖}. The 𝑥𝑤 axis points in the same direction as the propagating waves, 𝑧𝑤 points upwards, and 𝑦𝑤 completes the right-handed coordinate system. The distance the wavemust travel to get from sensor {𝑠𝑗} to {𝑠𝑖} along the wave propagation direction is denoted 𝑑𝑖𝑗 and depends on the roll (𝜙), pitch (𝜃), and relative wave encounter (𝛽) angles.The wave encounter angle 𝛽 is defined as the angle from 𝑥𝑤 to the projection of 𝑥𝑠𝑖 onto the tangent plane {𝑤}. Starboard incident waves are defined by 𝛽 ∈ (−180, 0]◦, whereasport incident waves are defined by 𝛽 ∈ (0, 180]◦. When 𝛽 = 0◦, the waves hit the stern first and we have following sea.
where 𝐳 = [𝛩̄12, 𝛩̄13, … , 𝛩̄1𝑁 , 𝛩̄23, … , 𝛩̄2𝑁 , … , 𝛩̄(𝑁−1)𝑁 ]⊤. Thedimension of 𝐳 is 𝑃𝑁 × 1, where 𝑃𝑁 is the maximum number ofindependent phase difference measurements associated with 𝑁 , which,for nonlinear arrays, can be computed from
𝑃𝑁 = 𝑁(𝑁 − 1)

2
. (14)

The state-space model (13) is observable for a minimum of two inde-pendent phase differences, i.e., three noncollinear sensors (see Dirdalet al. (2022) for proof). As we shall see, if the sensor is an IMU,it is sufficient to only consider a single IMU and use the rigid-bodymeasurement transform (5) to generate the remaining measurementsneeded in Eq. (13) to uniquely resolve the wave encounter angle andwave number. It is worth emphasizing that the state-space model (13)is observable in shallow and deep waters as it only utilizes the generalequation for wave celerity (phase velocity) in its derivation. Hence, thePTPD approach is valid for all water depths, provided that the vesselundergoes sufficient wave excitation.
2.4. High-frequency waves

The wave undulations on the sea surface will trigger a heave re-sponse from the vessel as they move through it. If the waves aresufficiently long, the heave response will be similar to the wave el-evation, except scaled in amplitude. However, if the waves are veryshort, the heave response will be dissimilar from the waves due tothe effect of vessel lowpass filtering (Nielsen, 2007, 2008; de Souzaet al., 2018; Nielsen et al., 2019; Nielsen and Dietz, 2020; Dirdal et al.,2022). The effect of vessel filtering occurs whenever the wavelength ofa particular wave is shorter than the projected wave trajectory distance

through the vessel (Dirdal et al., 2022). When this happens, multiplewave crests will affect the vessel simultaneously, resulting in a distortedheave response. Hence, in order to avoid the effect of filtering, thewavelength 𝜆 should exceed the wave trajectory distance for a givenwave direction 𝛽, i.e.,
𝜆 > 𝐿| cos 𝛽| + 𝐵| sin 𝛽|, (15)
where 𝐿 and 𝐵 represent the respective length and beam dimensionsof the vessel. A quick and easy way to assess whether (15) holds for all
𝛽 is to check if the given wavelength is larger than the diagonal lengthof the vessel (the maximum wave trajectory distance), i.e.,
𝜆 >

√
𝐿2 + 𝐵2. (16)

If Eq. (16) holds, the effect of vessel filtering is avoided for all 𝛽 andthe vessel heave response will resemble the wave elevation (in otherwords, the vessel behaves like a buoy).It is worth emphasizing that the effect of vessel filtering on sensormeasurements is not accounted for by the PTPD model. As discussedin Section 2.1, the PTPD model merely uses the travel distance, prop-agation angle, and speed of the waves to quantify sensor delays andneglects any rigid body effects. It is, therefore, important to exercisecaution when applying Eq. (13) to model the delay between ship-board sensors, especially if filtering is occurring. As we shall see inSection 3.3.3, this potential issue can be circumvented by employingcriterion (16) in the estimation procedure.
2.5. Theoretical results

To summarize, a pair of sensors on the sea surface generally ex-perience a different delay than those on a rigid body. However, the
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Fig. 4. A block diagram illustrating the four procedures involved in our wave estimation methodology. The input data comprises the specific force, 𝐟 𝑏imu, and angular rates, 𝝎𝑏imu,from a shipboard IMU expressed in the vessel body frame {𝑏}. The input data is processed to yield estimates of the linear acceleration, 𝐚̂𝑏𝑛𝑠𝑖 , and angular velocity, 𝝎̂𝑏𝑛𝑏, which arethen transformed to other locations on the vessel based on the desired lever arms 𝐫𝑏. The 𝑧-components of the transformed accelerations are grouped into an acceleration matrix
𝐲𝑧 and the phase differences 𝜣̂ between them are estimated based on the frequency bandwidth 𝑓e,max. Finally, the phase differences are supplied to an unscented Kalman filterwhich yields estimates of the wave encounter angle ̂̄𝛽 and wave number ̂̄𝑘.
delays in both situations are proportional to the sensor separation upto a certain distance, although with different gradients. We conjecturethat the forward speed PTPD model, which is simple, explicit, and ob-servable in terms of the wave propagation direction and wave number,can be used to model the sensor delays on a rigid body given that thesensor separation distances are sufficiently small, and the waves aresufficiently long. These speculations can be compactly formulated intothe following assumption:
Assumption 1. If Eq. (15) holds for a given 𝜆 and 𝛽 and the separationdistance between a pair of sensors on a rigid body is sufficientlysmall, then the state-space model (13) can accurately model the phasedifference between the heave measurements in each sensor.

If Assumption 1 holds, then we are guaranteed by the observabilityproof of our state-space model that the relative wave propagationdirection and wave number can be uniquely determined from phasedifferences between a group of sensors on a surface vessel (rigid body),which leads to the following theorem:
Theorem 1. Consider a rigid body with constant forward speed 𝑈 ≥ 0,oriented at an angle 𝛽 relative to the propagation direction of a regular wave(Fig. 3) with wave number 𝑘. If Assumption 1 holds, then 𝛽 and 𝑘 can beuniquely resolved from a minimum of three noncollinear sensors measuringthe body’s heave displacement or heave acceleration.
Proof. See Dirdal et al. (2022).
It is worth mentioning that the vessel roll and pitch motion cannot beutilized with the PTPD approach as these motions do not exhibit anyphase difference across various points on the body (recall that for arigid body, angular motions are uniform for all points).Suppose the sensors comprise a tri-axial accelerometer and gyro-scope, such as an IMU. In that case, the minimum sensor requirementsimposed by Theorem 1 can be relaxed to a single sensor by employingthe acceleration transformation (5) to generate the other accelerationsneeded. This interesting result can be formulated into the followingcorollary:
Corollary 1.1. If the sensor is an inertial measurement unit (IMU), then
𝛽 and 𝑘 can be uniquely resolved from a single IMU.

Before we can assess the validity of these theoretical claims ex-perimentally, we need to develop a methodology that enables us totransform the IMU measurements to different ship locations, extract thephase differences between the various measurements, and resolve thewave direction and wave number from the phase differences.
3. Methodology

Experimental verification of the theoretical results presented inSection 2.5 poses two crucial questions, namely, how to measurethe phase difference between a pair of sensors and how to estimate

the wave direction and wave number from the phase differences. Inthis section, we address these questions by proposing a methodology(Fig. 4) for estimating the desired wave quantities. As we shall see, ourmethodology comprises a sequence of procedures, each of which willbe discussed in the following subsections.
3.1. Data processing

The data processing steps performed on the raw IMU data involvedata segmentation, DC-removal, and lowpass filtering. These steps arenecessary to preserve the time-localization of events and clean the databy mitigating unwanted biases and high-frequency noise.
3.1.1. Data segmentationThe ocean surface behavior is a non-stationary process, which im-plies that its statistical parameters, such as wave height, direction, andfrequency, are time-varying. It is paramount to account for this timevariability when computing these parameters to correctly assess thepresent ocean state. For instance, if we consider a very long data timeseries and apply an FFT to this data, it becomes difficult to associatewhich peak frequencies (and consequently which wave directions)correspond to the actual time instances in which the events took place.Hence, to preserve the time-localization of events using an FFT, it isnecessary to divide the data series into (quasi-stationary) segments andprocess each data segment individually. This strategy is applied to theinput IMU data in the estimation procedure (Fig. 4).The specific force and angular velocity data are segmented by mul-tiplying the developing time series with a (moving) Hanning windowof a predefined length. The Hanning window alleviates the effect ofspectral leakage by smoothly decreasing the input to zero near theendpoints, reducing potential discontinuities between the first and finaldata samples. However, since the lower and upper tails of the Hanningwindow are close to zero, a significant portion of the time series willeffectively be ignored in the analysis. To ensure that all information isconsidered in the analysis, we use a 50% overlap between subsequentsegments, which is common for Hanning windows.When segmenting the data for FFT analysis, a compromise ulti-mately arises between the time and frequency resolution of the re-sulting periodograms. The compromise between time and frequencyis regulated by the length of the window function considered (a longwindow generally implies good frequency resolution but uncertainty inthe time resolution, and vice versa). An upper bound for the windowlength can be established if the time intervals where the waveforms arequasi-stationary are known. For ocean waves, stationarity is generallypreserved for up to 15–30 min (Holthuijsen, 2007).
3.1.2. DC removal and lowpass filteringIn general, the IMU measurements are subject to several stochasticerrors, which are typically separated and modeled as additive zero-mean Gaussian white noise and a time-varying bias term. Adhering to
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this approach, we can use the standard three-axis accelerometer andgyroscope sensor models from Fossen (2021), which are given as
𝐟𝑏imu = 𝐚𝑏𝑛𝑠𝑖 − 𝐠𝑏 + 𝐛𝑏acc + 𝐰𝑏acc,
𝝎𝑏imu = 𝝎𝑏𝑛𝑏 + 𝐛𝑏ars + 𝐰𝑏ars, (17)
where 𝐟𝑏imu and 𝝎𝑏imu are the respective specific force and angularvelocity measurements, 𝐚𝑏𝑛𝑠𝑖 and 𝝎𝑏𝑛𝑏 are the linear acceleration andangular velocity of the sensor frame {𝑠𝑖} with respect to {𝑛} (consideredEarth-fixed and assumed inertial), 𝐛𝑏acc and 𝐛𝑏ars denote the respectivesensor biases, 𝐰𝑏acc and 𝐰𝑏ars denote the respective sensor noises, and 𝐠𝑏denotes the gravitational acceleration. All quantities are expressed in
{𝑏}.As can be seen by studying Eq. (17), the IMU measurements aregenerally centered around a non-zero value due to the sensor biasesand force of gravity. If left unaccounted for, this non-zero value orDC-offset will show up in the first frequency bin of the FFT spectrumand may leak power into adjacent bins, affecting other low-frequencycomponents. Hence, it is advantageous to remove the DC-offset beforeFFT processing. The latter can be achieved by simply averaging eachmeasurement time series and subtracting the average from itself. Inorder to reduce the effect of high-frequency noise on the average andthe angular velocity (which shall be differentiated later), we applya lowpass filter with a cut-off frequency above the bandwidth ofthe considered waves (for how to select this cut-off frequency, seeSection 3.3.3) to the IMU measurement segment. Hence, the finalestimated acceleration and angular velocity segments are given by
𝐚̂𝑏𝑛𝑠𝑖 = 𝐟𝑏imu − E[𝐟𝑏imu],
𝝎̂𝑏𝑛𝑏 = 𝝎̄𝑏imu − E[𝝎̄𝑏imu], (18)
where 𝐟𝑏imu and 𝝎̄𝑏imu are the lowpass filtered signals and E[⋅] denotes theexpected value. The averaging operation in Eq. (18) tacitly assumes thatthe accelerometer and gyroscope biases in Eq. (17) remain more or lessconstant for the duration of each considered data segment. The validityof this assumption can be assessed by evaluating the accelerometer andgyroscope in-run bias stabilities found in the IMU datasheet for the timeduration of the data segments. We assess the bias stability for the IMUsconsidered in the wave tank and full-scale experiments in Sections 4.1.3and 5.1.2, respectively.
3.2. Measurement transformation

The acceleration at one specific point on a rigid body can be trans-formed to any other location, provided that the body’s angular velocityand angular acceleration are known. This measurement transformationis given in Eq. (5) and can be decomposed in the body frame {𝑏} asfollows
𝐚𝑏𝑛𝑠𝑗 = 𝐚𝑏𝑛𝑠𝑖 + 𝝎̇𝑏𝑛𝑏 × 𝐫𝑏𝑠𝑖𝑠𝑗 + 𝝎𝑏𝑛𝑏 × (𝝎𝑏𝑛𝑏 × 𝐫𝑏𝑠𝑖𝑠𝑗 ), (19)
where 𝐚𝑏𝑛𝑠𝑗 is the transformed linear acceleration of virtual sensor {𝑠𝑗},
𝐚𝑏𝑛𝑠𝑖 is the physical linear acceleration of sensor {𝑠𝑖}, 𝝎̇𝑏𝑛𝑏 is the angularacceleration, and 𝐫𝑏𝑠𝑖𝑠𝑗 is the position of {𝑠𝑗} relative to {𝑠𝑖}. If wereplace 𝐚𝑏𝑛𝑠𝑖 and 𝝎𝑏𝑛𝑏 in Eq. (19) with our estimated quantities 𝐚̂𝑏𝑛𝑠𝑖 and
𝝎̂𝑏𝑛𝑏 from Section 3.1.2, we can use Eq. (19) to generate any virtualmeasurements needed by supplying the desired lever arms (sensorseparation distances) 𝐫𝑏𝑠𝑖𝑠𝑗 . The main challenge with this approach,however, is that it requires an accurate estimate of 𝝎̇𝑏𝑛𝑏, which isnot usually measured. In this study, we obtain estimates of the latterquantity by numerically differentiating 𝝎̂𝑏𝑛𝑏. The data processing stepsaddressed in Section 3.1.2 ensure that the noise in 𝝎̂𝑏𝑛𝑏 will not besignificantly amplified by differentiation. After the desired amount ofvirtual accelerations have been generated, we extract the 𝑧-componentsof all of them and place them into an acceleration matrix 𝐲𝑧 ∈ R𝑁×𝐿,consisting of 𝑁 𝑧-accelerations of length 𝐿.

Algorithm 1 Phase difference estimationprocedure PD(𝐲𝑧, 𝑓e,max)
𝐘̂𝑧 ← fft(𝐲𝑧) ⊳ Compute the FFT
𝜣̂𝑧 ← atan2

(imag(𝐘̂𝑧), real(𝐘̂𝑧)) ⊳ Compute the phase response
𝐟𝑝 ← max |𝐘̂𝑧|

0≤𝑓≤𝑓e,max ⊳ Store the peak frequencies (within 𝑓e,max) in a
vector

for 𝑓 in 𝐟𝑝 do
[𝛩̂1, 𝛩̂2,… , 𝛩̂𝑁 ]⊤ ← 𝜣̂𝑧(𝑓 ) ⊳ Extract the phase values at

frequency 𝑓
𝛩̂𝑖𝑗 = 𝛩̂𝑖 − 𝛩̂𝑗 , 1 ≤ 𝑖 ≤ 𝑁 − 1, 2 ≤ 𝑗 ≤ 𝑁, 𝑖 < 𝑗 ⊳ Compute

the phase differences for all 𝑖 and 𝑗
𝜣̂(𝑘) ← [𝛩̂12, 𝛩̂13, … , 𝛩̂(𝑁−1)𝑁 ]⊤ ⊳ Store the phase

differences for each 𝑓 in a matrix
𝑘← 𝑘 + 1

end for
return 𝜣̂

end procedure

3.3. Phase difference estimation
We estimate the phase differences between the measured waveformsby employing an FFT with a frequency threshold to avoid wave com-ponents potentially distorted by the vessel in question. The estimationprocedure is shown in Algorithm 1 and compromises the followingsequence of steps:

1. Compute the FFTs and phase responses of 𝐲𝑧.2. Find the peak frequency of each magnitude response within amaximum frequency threshold 𝑓e,max.3. Extract the phase values for each peak frequency.4. Compute the phase differences.
In this procedure, it is tacitly assumed that the dominant frequencyof the forced oscillation in heave aligns with the frequency of theexternal wave force. This assumption is generally valid when the shipencounters a fully developed sea with sufficiently large wave ampli-tude and wavelength (see Assumption 1). In the following subsections,we elaborate on additional implementation details not mentioned inAlgorithm 1.
3.3.1. Zero paddingThe input to Algorithm 1 is the acceleration matrix 𝐲𝑧 ∈ R𝑁×𝐿. If 𝐿is a power of two, radix-2 FFT algorithms can be used to compute thefrequency responses, which are very efficient and can reduce processingtime. If 𝐿 is not a power of two, radix-2 FFT algorithms may still beapplied by appending zeros at the end of the time domain signals suchthat the total signal length becomes a power of two.
3.3.2. Tolerance thresholdThe inverse tangent function used to obtain the phase response inAlgorithm 1 is highly susceptible to rounding errors. As a result, the
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rounding errors typically appear as noisy spikes in the computed phaseresponse. A common strategy used to mitigate this problem is to definea tolerance threshold 𝜖 and zero out the values of 𝐘̂𝑧 for which |𝐘̂𝑧| < 𝜖.
3.3.3. Frequency thresholdAs discussed in Section 2.4, the vessel will distort wave componentspassing through it if the wavelengths are sufficiently short. In reality,an irregular sea comprises multiple wave components, some of whichhave wavelengths shorter than the wave trajectory distance throughthe vessel. It is, therefore, essential to avoid such wave componentswhen processing the heave response. The latter can be achieved byonly considering the frequency components within the upper threshold
𝑓e,max of the FFT spectrum. Apart from scaling, sinusoidal componentswithin this range are deemed unaffected by the vessel.For stationkeeping vessels (i.e., 𝑈 = 0), the zero-speed upperthreshold 𝑓max is the frequency in which the right hand side (RHS) andleft hand side (LHS) of Eq. (15) become equal, which occurs when
𝑓max =

√√√√ 𝑔∕2𝜋√
𝐿2 + 𝐵2

tanh

(
2𝜋𝑑√
𝐿2 + 𝐵2

)
, (20)

where 𝑔 is the gravitational constant and 𝑑 is the water depth. Therelationship above is derived by rewriting Eq. (15) in terms of the wavenumber (i.e., 𝑘 = 2𝜋∕𝜆), and inserting the resulting expression for 𝑘 intothe dispersion relation
𝜔2 = 𝑘𝑔 tanh(𝑘𝑑). (21)

For underway vessels (i.e., 𝑈 > 0), the frequency threshold (20)needs to be adjusted to account for the Doppler shift given by
𝜔𝑒 = |𝜔 − 𝑘𝑈 cos 𝛽|, (22)
where 𝜔𝑒 is the Doppler shifted encounter frequency. Rewriting Eq. (22)in terms of linear frequency and 𝑓max, yields the adjusted maximumfrequency threshold 𝑓e,max given in terms of forward speed, i.e.,
𝑓e,max = |||𝑓max ± 𝑈𝐿

𝐿2 + 𝐵2
|||, (23)

where we have used 𝑘 = 2𝜋∕
√
𝐿2 + 𝐵2 and cos 𝛽 = ±𝐿∕

√
𝐿2 + 𝐵2(worst case scenario in which the wave trajectory distance is maxi-mum). The latter component on the RHS of (23) should be added orsubtracted depending on whether the vessel is following or movingagainst the waves, respectively.

3.4. Unscented Kalman filter
The state-space model (13) is inherently nonlinear, which requiresnonlinear estimation techniques to resolve the desired wave quantities.Although it is possible to solve the wave direction analytically fromEq. (12), the Kalman filter framework offers several benefits over suchan approach. With the Kalman filter, it is easy to incorporate uncer-tainties into the estimation procedure, handle multiple measurements,and simultaneously estimate the wave direction and wave numberonline (Dirdal et al., 2022). It is, however, necessary for the wavenumber to be positive, posing a constraint on the state estimate.As discussed in Dirdal et al. (2022), the unscented Kalman filter(UKF) has certain advantages over the extended Kalman filter (EKF)when constraints are imposed on the state estimates. In short, the UKFaccounts for constraints when updating the error covariance, which theEKF ultimately neglects. For this reason, the UKF was selected as ourmain algorithm and the following subsections explain how it may beapplied to yield the desired wave quantities.

3.4.1. AlgorithmThe UKF algorithm may be applied to discrete-time nonlinear dy-namical systems of the form
𝐱𝑘 = 𝐟 (𝐱𝑘−1) + 𝐰𝑘, 𝐰𝑘 ∼  (𝟎,𝐐)
𝐳𝑘 = 𝐡(𝐱𝑘) + 𝐯𝑘, 𝐯𝑘 ∼  (𝟎,𝐑)

(24)
where 𝐱𝑘 ∶= 𝐱(𝑘𝑇𝑠) and 𝐳𝑘 ∶= 𝐳(𝑘𝑇𝑠) constitute the sampled stateand measurement vectors for sample time 𝑇𝑠 and number 𝑘 (not to beconfused with the wave number), 𝐟 and 𝐡 represent nonlinear transitionfunctions, and 𝐰𝑘 and 𝐯𝑘 denote white Gaussian process and measure-ment noise with covariance 𝐐 and 𝐑, respectively. If we discretize thecontinuous-time state-space model (13) and compare it with Eq. (24),it is clear that the former fits the required model form with 𝐟 (𝐱𝑘−1) =
𝐱𝑘−1 and 𝐡(𝐱𝑘) as before. The process and measurement noise 𝐰𝑘 and
𝐯𝑘 represent the expected deviation between reality and our processand measurement models. They are characterized statistically throughtheir covariance matrices 𝐐 and 𝐑, which are discussed in detail inSections 3.4.2 and 3.4.3, respectively.The UKF algorithm with state constraints is given in Algorithm 2;for relevant background material regarding the UKF and constrainthandling, the reader is referred to Brown and Hwang (1997), Julierand Uhlmann (2004), Kandepu et al. (2008), and Simon (2010) andreferences therein. As a general rule, the UKF uses a deterministicsampling scheme to select its sigma points. In this paper, we havechosen the following set of sigma points
𝑋(𝑖)
𝑘 =

⎧⎪⎪⎨⎪⎪⎩

𝐱̂−𝑘 , 𝑖 = 0

𝐱̂−𝑘 +
√

(𝑀 + 𝜆)𝐏̂−
𝑘 , 𝑖 = 1,… ,𝑀

𝐱̂−𝑘 −
√

(𝑀 + 𝜆)𝐏̂−
𝑘 , 𝑖 =𝑀 + 1,… , 2𝑀

(25)
where
𝜆 = 𝛼2(𝐿 + 𝜅) −𝑀
𝑀 = dimension of state 𝐱𝑘
𝛼 = spread of samples about the mean
𝜅 = scaling factor

Sigma points outside the feasible region are projected onto the bound-ary using the projection
𝑃 (𝑥̂2) =

{
𝜖, 𝑥̂2 < 𝜖
𝑥̂2, otherwise (26)

where 𝑥̂2 is the wave number estimate and 𝜖 is a small positive numberrepresenting the boundary of the feasible region. The sigma pointsare then propagated through the nonlinear transform (13) to yielda new cloud of transformed points. The statistics of these points arethen computed by weighting them together using the following sets ofweights
𝑊 (0)
𝜇 = 𝜆

𝜆 +𝑀
, 𝑊 (0<𝑖≤2𝑀)

𝜇 = 1
2(𝜆 +𝑀)

, (27)
𝑊 (0)
𝜎 = 𝑊 (0)

𝜇 + 1 − 𝛼2 + 𝛾, 𝑊 (0<𝑖≤2𝑀)
𝜎 = 1

2(𝜆 +𝑀)
. (28)

3.4.2. Process noise covarianceThe conditions of the ocean environment, including wave directionand wave number, are generally time-varying. Assuming that the de-sired wave quantities are slowly varying, we can accommodate thisvariability by modifying the state-space model (13) to include whiteGaussian noise with variance 𝜎2𝑤. The modified state-space model nowbecomes a Gaussian random walk process of the form
𝐱̇ = 𝐀𝐱 +𝐆𝐰, 𝐰 ∼  (𝟎,𝐃𝛿(𝑡 − 𝜏)), (29)
where 𝐀 = 𝟎2 (2 × 2 zero matrix), 𝐆 = 𝐼2 (2 × 2 identity matrix),
𝐃 = 𝜎2𝑤𝐼2, and 𝛿(𝑡 − 𝜏) is the Dirac delta function. For simplicity, we
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Algorithm 2 Unscented Kalman filter
procedure UKF(𝐱̂−𝑘 , 𝐏̂−

𝑘 , 𝐳𝑘)
𝑋(𝑖)
𝑘 ← Sigma(𝐱̂−𝑘 , 𝐏̂−

𝑘 ) ⊳ Compute sigma points using Eq. (25)
𝑋(𝑖)
𝑐 ← 𝑃 (𝑋(𝑖)

𝑘 ) ⊳ Project sigma points using Eq. (26)
𝐱̂−𝑘 ←

∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜇 𝑋(𝑖)

𝑐 ⊳ Compute the apriori state estimate withEq. (27)
𝐏̂−
𝑘 ←

{∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − 𝐱̂−𝑘 )(𝑋
(𝑖)
𝑐 − 𝐱̂−𝑘 )

⊤} +𝐐 ⊳ Compute theapriori error covariance with Eq. (28)
𝑍(𝑖)
𝑘 ← 𝐡

(
𝑋(𝑖)
𝑐
)

⊳ Propagation of sigma points using Eq. (13)
𝐳̂−𝑘 ←

∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜇 𝑍(𝑖)

𝑘 ⊳ Predicted measurement
𝐒̂𝑘 ←

{∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑍(𝑖)

𝑘 − 𝐳̂−𝑘 )(𝑍
(𝑖)
𝑘 − 𝐳̂−𝑘 )

⊤} + 𝐑 ⊳ Compute theinnovation covariance
𝐏̂𝐱𝐳
𝑘 ←

∑2𝑀
𝑖=0 𝑊

(𝑖)
𝜎 (𝑋(𝑖)

𝑐 − 𝐱̂−𝑘 )(𝑍
(𝑖)
𝑘 − 𝐳̂−𝑘 )

⊤ ⊳ Compute thecross-covariance
𝐊𝑘 ← 𝐏̂𝐱𝐳

𝑘 𝐒̂−1𝑘 ⊳ Compute the Kalman gain
𝐱̂𝑘 ← 𝐱̂−𝑘 +𝐊𝑘(𝐳𝑘 − 𝐳̂−𝑘 ) ⊳ Compute posterior state estimate
𝐏̂𝑘 ← 𝐏̂−

𝑘 −𝐊𝑘𝐒̂𝑘𝐊⊤
𝑘 ⊳ Compute posterior error covariancereturn 𝐱̂𝑘, 𝐏̂𝑘end procedure

have used the same variance 𝜎2𝑤 to describe the variability of the wavedirection and wave number. From basic control theory, it can be shownthat the exact discretization of Eq. (29) is given by
𝐱𝑘 = 𝐅𝐱𝑘−1 + 𝐰𝑘,where 𝐅 = 𝑒𝑇𝑠𝐀 = 𝐼2 and
𝐰𝑘 = ∫

𝑡𝑘

𝑡𝑘−1
𝑒(𝑡𝑘−𝜏)𝐀𝐆𝐰(𝜏)𝑑𝜏 = ∫

𝑡𝑘

𝑡𝑘−1
𝐰(𝜏)𝑑𝜏,

where we have simplified the latter expression by inserting the valuesfor 𝐀 and 𝐆 into it. The process noise covariance 𝐐 is given by
𝐐 = E[𝐰𝑘𝐰⊤𝑘 ] = 𝑇𝑠𝐃 = 𝑇𝑠𝜎

2
𝑤𝐼2, (30)

where 𝑇𝑠 = 𝑡𝑘 − 𝑡𝑘−1 denotes the sampling period.
3.4.3. Measurement noise covarianceBoth the phase difference measurements 𝐳𝑘 and measurement model
𝐡(𝐱𝑘) are subject to uncertainties that will cause discrepancies betweenthem. The discrepancies are modeled by white Gaussian noise 𝐯𝑘,which—if adequately designed (i.e., choosing the noise covariance 𝐑appropriately)—can account for prevalent errors. In this work, wedeem errors caused by (i) submodeling and (ii) the FFT to be mostfundamental to any deviations observed. It is important to addressthese errors to get an estimate of the uncertainties in the desired wavequantities, which, in turn, indicate whether they can be relied on ornot.The errors caused by (i) can be divided into two distinct groups:(a) errors due to the model simplification performed on Eq. (11)(i.e., averaging the instantaneous phase differences), and (b) errorsresulting from the fact that we are applying a PTPD model to the phasedifferences on a rigid body. The phase difference error caused by (a)can be quantitatively assessed by evaluating the absolute differencebetween Eqs. (11) and (12), which, for an arbitrary pair of sensors,yields
|𝛩𝑖𝑗 − 𝛩̄𝑖𝑗 | = |||𝑘𝑅𝑖𝑗

(
𝑐𝛽𝑐𝛼𝑖𝑗 (𝑐𝜃 − 1) + 𝑐𝛽𝑠𝜃𝑠𝜙𝑠𝛼𝑖𝑗

+ 𝑠𝛽𝑠𝛼𝑖𝑗 (𝑐𝜙 − 1)
)
+ 𝑘𝑧𝑖𝑗

(
𝑐𝛽𝑠𝜃𝑐𝜙 − 𝑠𝛽𝑠𝜙

)|||. (31)

In all the wave tank experiments, the model error (31) was less than 1◦for all experimental wave parameters and sensor pairs (see Appendix).We deem errors of this magnitude minor and, as we shall see, are alsodominated by the error incurred from (ii). For these reasons, we neglecterrors due to (a) in the measurement covariance.In contrast to (a), model deviations caused by (b) are considerablymore challenging to quantify. The challenge arises because we lack amodel quantifying directly how the phase changes when a measure-ment is transformed using Eq. (19) (if we had such an explicit modelthis would render the PTPD approach redundant). In order to assess theimpact of (b), we rely on experimental data to quantify the deviationbetween the true phase differences and those predicted by our PTPDmodel. The experimental results from the wave tank show that themodel error caused by (b) depends on the separation distance betweenthe sensors. Hence, if the sensors are sufficiently close, (b) can safelybe neglected from the measurement noise covariance without incurringsignificant errors. A discussion of the sensor separation is given inSection 4.2.1.The phase difference error associated with (ii) can be attributedto spectral leakage, which occurs whenever the considered waveformis not periodic within the given sample interval. In other words, ifthe actual waveform frequency is not an integer multiple of the fre-quency resolution, the former will not be in the exact center of an FFTfrequency bin, causing a spread of power into neighboring bins. Forwaveforms of finite duration comprising multiple frequencies, spectralleakage will generally persist as all the frequency components willgenerally not be integer multiples of the frequency resolution. Ananalysis of the FFT phase error resulting from spectral leakage is givenby Dishan (1995), who shows that the error can be quantified as
𝛩̃ = 𝜋𝑇𝑓, (32)
where 𝛩̃ ∶= 𝛩̂ − 𝛩 is the phase error between the true and estimatedphase (represented by a hat), 𝑇 is the duration of the consideredwaveform, and 𝑓 ∶= 𝑓𝑛 − 𝑓 is the frequency error between the truefrequency and estimated frequency bin 𝑓𝑛 = 𝑛∕𝑇 for 𝑛 = 0, 1,… , 𝐿∕2−1,where 𝐿 denotes the transform length. The maximum frequency erroroccurs whenever the true frequency resides in the exact middle of twofrequency bins, i.e.,
𝑓max = 𝛥

2
,

where 𝛥 = 1∕𝑇 is the frequency resolution. Inserting the latter intoEq. (32), yields the maximum phase error, i.e.,
𝛩̃max = 𝜋

2
. (33)

Based on Eq. (33), the upper error bound of the computed phasedifference 𝛩𝑖𝑗 = 𝛩𝑖 − 𝛩𝑗 becomes
|𝛩̃𝑖𝑗 | = |𝛩̂𝑖𝑗 − 𝛩𝑖𝑗 | = |(𝛩̂𝑖 − 𝛩𝑖) − (𝛩̂𝑗 − 𝛩𝑗 )| = |𝛩̃𝑖 − 𝛩̃𝑗 | ≤ |𝛩̃𝑖|+|𝛩̃𝑗 | ≤ 𝜋.

(34)
Although the theoretical error bound (34) is significant and may dis-suade the FFT for phase estimation, in practice, we see that employinga Hanning window with the FFT leads to very accurate phase differenceestimates by reducing spectral leakage.3 Moreover, the main focus ofthis study is not optimality but rather a proof of concept of the PTPDapproach to rigid bodies. As we shall see, the FFT algorithm is sufficientto achieve the latter goal.The error bound (34) indicates that the true phase difference canbe located anywhere within ±𝜋 of the estimated phase difference. This

3 Multiple regular wave experiments were considered, and the phase differ-ence estimates produced by the FFT with a Hanning window and curve fitting(considered ground truth) agreed very well.
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Table 1A summary of the initial state estimates, covariances, and internal parameters used inthe UKF.UKF initialization 𝐱̂0 = [0, 0.05]⊤

𝐏̂0 = diag([ 1
3
𝜋2 , 2])

Process and measurement covariance Wave tank experiments
𝐐 = 𝑇𝑠𝜎2𝑤𝐼2, 𝜎𝑤 = 1 × 10−3

𝐑 = 1
3
𝜋2𝐼𝑃𝑁Full-scale experiments

𝐐 = 𝑇𝑠𝜎2𝑤𝐼2, 𝜎𝑤 = 1 × 10−1

𝐑 = 1
72
𝜋2𝐼𝑃𝑁UKF parameters 𝑀 = 2, 𝛼 = 0.01, 𝛾 = 2, 𝜅 = 0

type of uncertainty is characteristic of a uniform distribution with zeromean and variance
𝜎2𝛩fft = 1

3
𝜋2. (35)

However, the UKF algorithm requires the measurement noise 𝐯𝑘 to bezero mean Gaussian distributed. To accommodate this requirement,we approximate the uniform distribution above by a Gaussian withvariance (35).It is worth highlighting that there are no uncertainties in the virtualsensor locations when using the measurement transformation (19) togenerate the virtual measurements. Hence, by employing Eq. (19) weeliminate uncertainties in the sensor locations as an error source, whichwere considered prominent in our previous work (Dirdal et al., 2022).
3.4.4. Initial parameter settingsA summary of the initialization parameters, process and measure-ment covariances, and internal parameters used in Algorithm 2 arelisted in Table 1. It is worth stressing that faster convergence maybe achieved by initializing the wave number to the value given bythe dispersion relation (21) using the frequency obtained from theFFT. In this paper, however, we chose the initial values in Table 1 todemonstrate the validity of Theorem 1.The initially estimated error covariance 𝐏̂0 was selected by modelingthe initial wave direction error as a uniform distribution over theinterval (−𝜋, 𝜋] and approximating it by a Gaussian distribution withthe same variance. The wave number variance was chosen heuristicallybut relatively large, reflecting our uncertainty in the actual value. Theprocess and measurement covariance, 𝐐 and 𝐑, were selected based onour analysis in Sections 3.4.2 and 3.4.3. Note that the sets of valuesfor 𝐐 and 𝐑 were chosen slightly differently in the wave tank and full-scale experiments to represent the conditions of the wave environmentconsidered. For instance, in the wave tank, the wave conditions werecompletely stationary (represented by a low 𝜎𝑤), whereas, in the ocean,the wave conditions were considerably more variable (represented by alarger 𝜎𝑤). In the full scale experiments, the measurement covariancewas reduced as this yielded better estimation results. As discussed inSection 3.4.3, we deem this reduction acceptable as the FFT phaseestimates were generally very close to the ground truths in the wavetank experiments.
3.5. Summary of methodology

Our complete wave direction and wave number estimation method-ology is given in Algorithm 3, merging all the procedures discussed inthis section into one algorithm that is recursively applied for each newdata segment. The input to Algorithm 3 comprises a data segment of theraw specific force and angular velocity measurements expressed in thevessel body frame {𝑏} from a single IMU, the desired (virtual) locationsof the other IMU measurements (i.e., sensor separation distances), anda maximum frequency threshold 𝑓max denoting the bandwidth of the

Algorithm 3 Wave direction and wave number estimation algorithm
procedure WDN(𝐟𝑏imu, 𝝎𝑏imu, 𝐫𝑏, 𝑓max)

𝑓e,max ← Doppler(𝑓max) ⊳ Compute the Doppler frequency
threshold using (23) with vessel speed 𝑈

𝐚̂𝑏𝑛𝑠𝑖 , 𝝎̂𝑏𝑛𝑏 ← DP(𝐟𝑏imu, 𝝎𝑏imu, 𝑓e,max) ⊳ Data processing using (18)
with 𝑓e,max as cut-off frequency

𝐲𝑧 ← MT(𝐚̂𝑏𝑛𝑠𝑖 , 𝝎̂𝑏𝑛𝑏, 𝐫𝑏) ⊳ Measurement transformation using (19)
with virtual sensor locations 𝐫𝑏

𝜣̂ ← PD(𝐲𝑧, 𝑓e,max) ⊳ Phase difference estimation given by
Algorithm 1

for 𝑖 = 1 ∶ length(𝜣̂) do
𝐱̂, 𝐏̂ ← 𝐱̂0, 𝐏̂0 ⊳ Initial state and covariance estimates given

in Table 1
for 𝑗 = 1 ∶ length(𝐲𝑧) do

𝐳 ← 𝜣̂(𝑖) ⊳ Extract phase differences corresponding to
each peak frequency

𝐱̂, 𝐏̂ ← UKF(𝐱̂, 𝐏̂, 𝐳) ⊳ Wave direction and number
estimation given by Algorithm 2

end for
𝐗̂(𝑖) ← 𝐱̂ ⊳ Store final wave estimate from UKF

end for
̂̄𝛽, ̂̄𝑘 ← mean (𝐗̂) ⊳ Extract average wave direction and wave

number estimates
return ̂̄𝛽, ̂̄𝑘

end procedure

considered waves. The frequency threshold should not exceed the upperthreshold given by Eq. (20) and, if the vessel is moving with speed
𝑈 , should be adjusted to 𝑓e,max by considering Eq. (23) (when 𝑈 = 0,
𝑓e,max reduces to 𝑓max). The length of the considered data segment andpercentage overlap with consecutive segments are generally tunableparameters. As we shall see, these parameters regulate the trade-offbetween accuracy and online estimation performance and should becarefully selected.The estimated phase differences matrix 𝜣̂ from Algorithm 1 hasdimension 𝑃𝑁 ×𝑁 , which means there are 𝑁 sets of phase differencespertaining to each peak frequency. For this reason, the UKF algorithmmust be applied 𝑁 times to account for each, potentially different, setof phase differences, which, in turn, yields 𝑁 separate wave estimates.We take the average of all these estimates and report this as the finalestimated wave direction and wave number.
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Fig. 5. The position and orientation of the model ship C/S Arctic Drillship (CSAD) were held fixed by a rope-pulley system.
4. Experimental validation of theory
4.1. Experimental design

The wave tank experiments were conducted in the NTNU marinecybernetics laboratory, which is a small wave basin with dimensions of
40 m × 6.45 m × 1.5 m. The laboratory is equipped with a wave maker,towing carriage, and real-time positioning system, making it an excel-lent playground for model-ship testing in regular and irregular waves.4We used the same model ship as in Dirdal et al. (2022), i.e., a 1:90scaled model C/S Arctic Drillship (CSAD) equipped with several IMUs.In the following subsections, we explain the design measures takento ensure that the assumptions of Section 2.5 were not significantlyviolated during data collection.
4.1.1. Constant heading and forward speedThe model ship heading and position were confined by a rope-pulleysystem connecting the ship to a towing carriage (Fig. 5). Each rope wasattached to a spring, allowing almost free motions in heave, roll, andpitch while limiting the surge, sway, and yaw motions. The ropes wereinterchanged and adjusted to produce the desired boat headings.Constant forward speed was achieved by using the towing carriageto pull the ship through the water. We considered three differentcarriage speeds, 0.5 m/s, 0.6 m/s, and 0.7 m/s, which, in full-scale,correspond to 9.1 knots, 11.1 knots, and 12.8 knots (using Froudescaling with 1:90 model scale), and are within the range of averagetransit speeds typical for drillships. Due to the limited length of thewave basin, these speeds could not be sustained by the towing carriagefor more than 40 s in the slowest speed trial and less than 30 s in thehighest speed trial. Consequently, the duration of all the recorded IMUdata with forward speed is less than 40 s.Due to the narrowness of the wave basin, only head sea (𝛽 =
180◦) and following sea (𝛽 = 0◦) conditions could be tested in theforward speed trials. Some oscillations in the heading angle of the shipwere observed during experiments due to the towing carriage, impactof waves, and rope-pulley system. In order to assess the deviationcaused by these oscillations, the real-time heading angle was measuredusing a separate camera-based positioning system called Qualisys. Themeasurements reported by Qualisys showed that the maximum error

4 For details on the equipment, the reader is referred to the laboratorywebsite: https://www.ntnu.edu/imt/lab/cybernetics.

between the initial heading and heading during experiments was lessthan 5◦. To ensure that the results were minimally affected by suchdeviations, the true wave encounter angle was based on the averageheading angle computed from the Qualisys heading measurements.
4.1.2. Wave period and wave heightThe experimental wave periods were generally selected above theCSAD lower wave period threshold 𝑇min = 1∕𝑓max ≈ 1.3 s (computedby inserting the CSAD length and breadth dimensions, 𝐿 = 2.58 mand 𝐵 = 0.44 m, with a water pool depth of 1.45 m into Eq. (20)) toreduce the effect of vessel filtering on the IMU data. However, regularwave experiments were conducted with a wave period of 𝑇𝑝 = 1.0 s todemonstrate the issues related to high-frequency waves.In general, as long as the vessel can ‘‘feel’’ the waves passingthrough it, Theorem 1 is valid irrespective of how small or tall thewaves are. In practice, however, higher waves imply a higher signal-to-noise ratio (SNR) in the IMU measurements, which can improveestimation results. Despite the advantage of a high SNR, considerablewave heights posed challenges to our rope-pulley system causing largeoscillations in the heading angle of the CSAD. Moreover, significantwaves caused more water exposure on deck, increasing the risk of waterleaking into the vessel and damaging electronics. For these reasons,only slight, moderate, and (to some extent) rough sea states wereconsidered in the experiments (Table 2).
4.1.3. Sensor configurationWe equipped the CSAD with four Bosch BMI160 IMUs to recordthe vessel motions caused by waves. The IMUs were fastened to thevessel using Velcro tape and the array configuration is illustrated inFig. 6(a): The sensor array is noncollinear, with {𝑠1}, {𝑠2}, and {𝑠3}being almost coplanar and {𝑠4} significantly elevated compared tothe rest. The IMUs are all connected to a Raspberry Pi 3 Model B+through a common serial bus using the I2C communication protocol.The individual IMU measurements were time-synchronized based onthe internal clock of the Raspberry Pi. The IMU sampling rate was setto 50 Hz for all experiments as the serial bus could not handle theincreased information load associated with higher sampling rates.Unfortunately, Bosch does not provide any information about the in-run bias stability of the accelerometers and gyroscopes in the BMI160IMU, meaning it is difficult for us to assess whether the biases remainconstant or not within the time frame of the recorded data segments.However, it is plausible that the IMU data collected during forwardspeed were not significantly affected by the bias due to the short time
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Table 2The peak wave periods (𝑇𝑝) considered in the experiments, along with the corresponding wave height 𝐻 (regular waves) and significant wave height 𝐻𝑠 (irregular waves). Numbersoutside parentheses represent the actual model-scale experimental parameters, whereas numbers inside parentheses represent the equivalent full-scale parameters (obtained usingFroude scaling with scale factor 90). All scaled wave heights can be characterized as either a slight, moderate, or rough sea state (Price and Bishop, 1974) with wave periodswithin the frequency range of wind-generated waves. Wave periods and wave heights are given in seconds and meters, respectively.
𝑇𝑝 1.0 (9.5) 1.4 (13.3) 1.5 (14.2) 1.6 (15.2) 1.8 (17.1) 2.0 (19.0) 2.5 (23.7)
𝐻 0.040 (3.56) – 0.027 (2.43) – – 0.017 (1.53) 0.011 (1.03)
𝐻𝑠 – 0.027 (2.43) – 0.018 (1.63) 0.017 (1.53) 0.014 (1.29) –

Table 3Absolute phase difference errors 𝛩̃𝑖𝑗 between our phase difference model (12) and the FFT estimated phase difference between the processed 𝑧-accelerations of IMUs {𝑠𝑖} and {𝑠𝑗}configured according to Fig. 6(a). The errors were evaluated for various sensor pairs exposed to regular waves with wave periods 𝑇𝑝 = 1.0 s, 1.5 s, 2.0 s, and 2.5 s and vesselspeeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s. The top and bottom tables show results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All values are given in degrees.
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34 𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34 𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34

1.0 s 147.75 150.61 283.82 286.68 119.76 118.77 235.21 234.23 151.67 153.07 298.31 299.71
1.5 s 5.72 6.78 36.70 35.64 4.61 5.36 37.76 37.01 4.29 2.95 39.32 40.65
2.0 s 0.55 0.10 13.58 12.94 1.77 2.69 11.97 11.05 0.22 0.65 14.75 13.88
2.5 s 0.66 1.22 4.87 4.31 0.47 0.41 6.06 5.17 0.72 0.16 4.50 5.06
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34 𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34 𝛩̃12 𝛩̃13 𝛩̃24 𝛩̃34

1.0 s 103.35 108.24 230.45 235.33 106.01 108.75 230.45 233.19 108.01 106.72 234.41 233.12
1.5 s 0.33 0.22 37.77 37.22 2.49 2.43 34.34 34.40 4.35 4.29 30.53 30.60
2.0 s 1.95 1.55 15.23 14.83 3.13 2.59 16.78 16.23 5.27 4.48 21.21 20.43
2.5 s 2.21 2.20 9.91 9.90 1.38 0.93 9.10 8.65 2.19 2.57 9.29 9.68

Fig. 6. The IMU array configurations considered in the wave tank experiments. IMUs 1, 2, 3, and 4 are denoted {𝑠1}, {𝑠2}, {𝑠3}, and {𝑠4}, respectively. The location of eachsensor is given in millimeters with respect to the vessel body frame {𝑏}. The origin of {𝑏} is indicated by a cross and defined midships with the 𝑧-axis pointing down (into thepage). The sensor configuration in (a) shows the original configuration of physically interconnected IMUs (filled circles), whereas (b) shows the virtual sensor configuration whereonly IMU 1 is physical and the locations of the other IMUs are virtual (hollow circles).
duration of all experiments (less than 40 s). On the other hand, theduration of the IMU data collected at zero speed was around 120 s,which may have been affected to a greater extent by the bias instability.
4.2. Results and discussion

In this section, we assess the validity of the theory developedin Section 2.5 by considering IMU data collected from experimentsconducted in the wave basin where the model ship was stationary andunderway in both regular and irregular waves. Since the time durationsof the collected IMU data were short, we consider each complete timeseries as a single input data segment to our wave estimation algorithm(Algorithm 3). In the following results, the reference wave number wascomputed using the dispersion relation (21) along with the pool depth
𝑑 = 1.45 m and the true peak wave period (i.e., the wave period usedas input to the wavemaker machine). The peak wave period value wasconfirmed by examining the frequency content of the wave elevationdata obtained from several wave probes placed around the tank. Thereference wave propagation angle was obtained by fixing the ropes

of the model ship to produce the desired boat headings (Fig. 5) andconfirming this value with the Qualisys camera system. In the followingresults, we refer to the wave propagation angle relative to the boatheading as the wave encounter angle when the vessel moves and thewave direction when the vessel is stationary.
4.2.1. Experimental validation of Assumption 1We can assess the validity of Assumption 1 by comparing the phasedifferences predicted by Eq. (12) with the actual phase differencesmeasured between the sensors on the vessel for a range of vesselspeeds, wave periods, and wave directions. The error between the phasedifferences (Table 3) reveal three interesting observations: (i) the phaseerrors associated with wave period 𝑇𝑝 = 1.0 s are disproportionatelylarge compared to the other wave periods, (ii) the sets of phase errors
{𝛩̃12, 𝛩̃13} are smaller than {𝛩̃24, 𝛩̃34} for all experiments, and (iii) theerrors generally decrease with increasing wave period.The extreme deviations in observation (i) are caused by vessel fil-tering, which (in this case) occurs whenever the wave period is roughly
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Fig. 7. The phase differences predicted by our model (12) (solid blue line) vs. the ‘‘true’’ phase differences (blue crosses) between respective sensor pairs as a function of waveperiod for vessel speed 𝑈 = 0.5 m∕s. The ‘‘true’’ phase differences were obtained by applying an FFT to the processed 𝑧-accelerations of each IMU to get the correspondingphase values. The results in red (dashed-dotted curves and squares) show the corresponding phase differences after virtually moving IMU 4 closer to the other IMUs. This virtualplacement was achieved by employing the measurement transformation (19) and the modified sensor configuration in Fig. 6(b), together with the processed linear accelerations,angular rates, and angular accelerations of IMU 1. The dashed-dotted line shows the predicted phase differences (12) based on the new sensor location, whereas the squaresshow the corresponding ‘‘true’’ phase differences obtained using an FFT as before. Left and right-handed plots show results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦),respectively. The phase difference results for 𝑈 = 0.6 m∕s and 0.7 m∕s have been omitted as they were almost identical to the results displayed.
less than 1.3 s.5 When the waves are sufficiently short, the vessel acts asa lowpass filter and attenuates the waves passing through it, resultingin a reduction in the angular rates of the body. A reduction in the an-gular rates causes the rigid-body accelerations to become increasinglysimilar (see Eq. (6)), which, in turn, implies that the phase differencesapproach zero. However, the phase differences predicted by Eq. (12)generally increase with decreasing wave period as it does not considera rigid body. These opposite behaviors result in a growing deviationbetween the true phase difference dynamics and our proposed model(Fig. 7). As the wave period decreases, the true phase differences willapproach zero due to vessel lowpass filtering becoming increasinglydominant, whereas the predicted phase differences continue to infinity.The noticeable difference between the sets of phase errors in obser-vation (ii) is mainly caused by a difference in the separation distancebetween sensors {𝑠1, 𝑠2, 𝑠3} and {𝑠2, 𝑠3, 𝑠4} (Fig. 6(a)). Specifically, the
𝑥-coordinate of {𝑠4} is significantly larger than {𝑠2} and {𝑠3}, whichinduces a larger deviation between the estimated and actual phasedifferences associated with {𝑠4}. However, if we bring {𝑠4} closer tothe other sensors, the deviation decreases to zero (Fig. 7). As explainedin Section 2.1, we expect Eqs. (6) and (12) to yield roughly the samephase difference when the separation is sufficiently small since bothmodels are proportional to the sensor separation. It is worth stressing,however, that there is generally a lower limit on how close the sensorsmay be separated before the state-space model loses observability. Asthe sensor separations decrease, there is an increasing risk that themeasured phase differences all become zero, meaning there is no longerany guarantee that the UKF algorithm will find the correct solution.However, it is difficult to quantify the minimum sensor separation as itdepends on the sensor sampling rate and speed/frequency of the wavespassing through the sensors. Since the sampling rate is consideredfixed for the system, a speed/frequency will always exist where thewaves will appear without delay in all sensors, irrespective of thegiven sensor separation. Hence, the sensor separations should not beconsidered a fixed universal quantity but rather tunable parametersthat can be adapted to different wave conditions. For instance, onepossible strategy is to consider different sets of sensor separations, eachof which should be applied depending on the measured wave frequency

5 This value was obtained by evaluating Eq. (15) with 𝛽 = 0◦∕180◦ and
𝐿 = 2.58 m, equating it with 𝜆 = 2𝜋∕𝑘, and finding corresponding the waveperiod.

given by the FFT. However, a methodology based on such a strategy isoutside the scope of the present study and left as a potential applicationfor future work.Observation (iii) can be understood by studying the effect of increas-ing the wave period on the models (6) and (12). The phase difference inEq. (12) is proportional to the wave number, which, in turn, is inverselyproportional to the wave period. Thus, as the wave period increases, thepredicted phase difference generally decreases towards zero (Fig. 7).The effect of increasing the wave period on the angular rates andaccelerations in Eq. (6) can be understood by considering the vessel rolland pitch responses in regular waves, which, for an underway vessel,can generally be expressed as
𝜙(𝑡) = 𝐴𝜙 sin(𝜔𝑒𝑡 + 𝜖𝜙),
𝜃(𝑡) = 𝐴𝜃 cos(𝜔𝑒𝑡 + 𝜖𝜃),

(36)
where 𝐴𝜙 and 𝐴𝜃 denote the roll and pitch amplitudes, 𝜔𝑒 is thewave encounter frequency, and 𝜖𝜙 and 𝜖𝜃 represent the phase shifts.Assuming that the boat heading is fixed (i.e., 𝜓̇ = 0), the angular rates
𝑝 and 𝑞 can be written mathematically as 𝑝 = 𝜙̇ and 𝑞 = 𝜃̇ cos(𝜙) (Fossen,2021). Computing the time derivatives of Eq. (36) we see that theamplitudes of 𝑝 and 𝑞 depend directly on 𝜔𝑒. Hence, as the waveperiod increases, the angular frequencies 𝜔 and 𝜔𝑒 will be driven tozero, further implying that 𝑝, 𝑞, 𝑝̇, and 𝑞̇ will also converge to zero.The latter result makes intuitive sense as, for very long waves, thevessel will appear to oscillate up and down vertically, with little rolland pitch motion, causing the measurements in each sensors to bealmost identical (i.e., zero phase difference). Therefore, it is clear thatincreasing the wave period will cause both models (6) and (12) toconverge to zero, which, in turn, implies that the corresponding errorbetween them will behave in a similar fashion.Unfortunately, due to the size of the wave tank, it was not possibleto assess the validity of Assumption 1 for other boat headings inforward speed. Nevertheless, we carried out similar experiments inregular waves for the stationary case (i.e., 𝑈 = 0 m∕s) with boatheadings {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦} and obtained similar results.Hence, based on these experimental results, it is reasonable to concludethat Assumption 1 is valid.
4.2.2. Experimental validation of Theorem 1The experimental results associated with the set of phase differences
{𝛩12, 𝛩13} (Tables 4 and 5) show that in 89% and 83% of experi-ments considered with the original IMU setup, the wave encounter
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Table 4Wave encounter angle results associated with the pairs of phase differences {𝛩12 , 𝛩13} and {𝛩24 , 𝛩34}, respectively, for wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and2.5 s and vessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s in regular waves. The numbers represent the absolute error between the wave angle estimates (afterconvergence) from our wave algorithm (Algorithm 3) and the true values. Numbers outside parentheses represent errors associated with the original sensorconfiguration (Fig. 6(a)), where all results are based on physical IMU data. Numbers inside parentheses represent errors associated with a single physicalIMU. The latter errors were obtained by using the processed linear acceleration, angular rates, and angular acceleration of IMU 1 with the measurementtransformation (19) and the virtual sensor configuration in Fig. 6(b) to generate the other IMU measurements. The top and bottom tables show the resultsfor following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All wave angle errors are given in degrees.
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 4.92 (2.47) 7.26 (2.43) 1.34 (0.58) 1.15 (0.53) 3.94 (2.32) 3.29 (2.40)
2.0 s 2.06 (1.77) 2.70 (1.77) 4.37 (2.35) 5.91 (2.31) 6.43 (2.35) 7.14 (2.27)
2.5 s 0.14 (2.06) 0.41 (2.05) 4.36 (3.36) 6.26 (3.35) 2.63 (3.75) 3.86 (3.75)
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 1.74 (0.91) 3.02 (1.03) 0.17 (0.16) 1.10 (0.03) 4.14 (0.09) 4.58 (0.14)
2.0 s 0.49 (1.23) 0.63 (1.27) 3.60 (1.76) 4.38 (1.80) 2.60 (2.72) 2.28 (2.71)
2.5 s 1.91 (0.22) 1.97 (0.21) 6.70 (1.86) 6.87 (1.83) 2.24 (1.30) 2.06 (1.29)
Table 5Wave number results associated with the pairs of phase differences {𝛩12 , 𝛩13} and {𝛩24 , 𝛩34}, respectively, for wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and 2.5 s andvessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s in regular waves. The numbers represent the absolute error between the wave number estimates (afterconvergence) from our wave algorithm (Algorithm 3) and the true values. Numbers outside parentheses represent the wave number errors associated withthe original sensor configuration (Fig. 6(a)), where all results are based on physical IMU data. Numbers inside parentheses represent the wave number errorsassociated with a single physical IMU. The latter errors were obtained by using the processed linear acceleration, angular rates, and angular acceleration ofIMU 1 with the measurement transformation (19) and the virtual sensor configuration in Fig. 6(b) to generate the other IMU measurements. The top andbottom tables show the results for following sea (𝛽 = 0◦) and head sea (𝛽 = 180◦), respectively. All wave number errors are given in m−1.
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 0.17 (0.06) 0.40 (0.08) 0.09 (0.06) 0.46 (0.10) 0.10 (0.09) 0.48 (0.17)
2.0 s 0.02 (0.01) 0.14 (0.01) 0.10 (0.05) 0.13 (0.07) 0.07 (0.01) 0.14 (0.02)
2.5 s 0.02 (0.02) 0.03 (0.03) 0.05 (0.00) 0.07 (0.00) 0.04 (0.02) 0.08 (0.02)
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

{𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34} {𝛩12, 𝛩13} {𝛩24, 𝛩34}

1.5 s 0.09 (0.00) 0.39 (0.08) 0.15 (0.06) 0.36 (0.04) 0.05 (0.07) 0.36 (0.08)
2.0 s 0.07 (0.04) 0.18 (0.05) 0.08 (0.07) 0.19 (0.08) 0.11 (0.11) 0.24 (0.11)
2.5 s 0.08 (0.05) 0.13 (0.05) 0.02 (0.03) 0.10 (0.02) 0.03 (0.06) 0.14 (0.06)

angle and wave number errors are less than 5◦ and 0.1 m−1, respec-tively.6 These numbers provide strong evidence in favor of Theorem 1and extend previous findings by showing that the PTPD approachis valid for underway vessels and not only stationary ones (Udjus,2017; Heyn et al., 2017; Dirdal et al., 2022). Unfortunately, due tothe narrowness of the wave tank, it was not possible to assess The-orem 1 for other boat headings in forward speed. We refer to ourprevious work (Dirdal et al., 2022) for an assessment of Theorem 1 forboat headings {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦} in the stationary case(i.e., 𝑈 = 0 m∕s). It is worth mentioning that we have omitted theresults for wave period 𝑇𝑝 = 1.0 s since Assumption 1 is violated forthat period, as discussed in Section 4.2.1.In contrast, the experimental results (Tables 4 and 5) also show thatfor the set of phase differences {𝛩24, 𝛩34}, merely 83% and 22% of thetotal wave encounter angle and wave number errors are within 5◦ and0.1 m−1, respectively. The significant difference in quality (especiallyin the wave number) compared to the errors achieved using the set
{𝛩12, 𝛩13} can be explained by a difference in the sensor positioningof {𝑠1, 𝑠2, 𝑠3} and {𝑠2, 𝑠3, 𝑠4}. As discussed in Section 4.2.1, {𝑠4} isdisplaced further from {𝑠2, 𝑠3} along the 𝑥𝑏 axis than {𝑠1}, resulting

6 For comparison, standard commercial radars such as Miros SM-050 andMiros Wavex report wave direction accuracies of 7◦ and 20◦ and wave periodaccuracies of 5% and 10%—see Table 6 for how these values affect theaccuracy of the wave number and why 0.1 m−1 was selected as the acceptederror threshold.

in a greater deviation between our phase difference model and theactual phase difference dynamics. Bringing {𝑠4} closer to the othersensors reduces the deviation between the models, resulting in 100%and 94% of the wave encounter angle and wave number errors for
{𝛩24, 𝛩34} being within 5◦ and 0.1 m−1 (Tables 4 and 5), respectively. Itis worth stressing that although the deviation can in theory be reducedto zero by bringing the sensors very close, doing so in practice maycompromise the observability of Eq. (13), as discussed in Section 4.2.1.The wave number estimation results (Table 5) also demonstrateanother interesting and beneficial fact: We can retain the absolutefrequency (through the dispersion relation (21)) from shipboard IMUmeasurements taken in the encounter frequency domain. This propertyis particularly useful for beam to following sea conditions (i.e., 𝛽 ∈
(−90◦, 90◦)) in which the wave encounter frequency generally does notpossess a unique solution (Fig. 8). Due to the observability of ourstate-space model, our approach directly maps the phase differences(which are based on the encounter frequency) to the absolute frequencydomain, thereby circumventing the 1-to-3 mapping problem associatedwith underway vessels in following seas (Nielsen, 2017b, 2018).
4.2.3. Experimental validation of Corollary 1.1The experimental results (Tables 4 and 5) show that for a singleIMU in 100% and 94% of experiments considered, the wave encounterangle and wave number errors are within 5◦ and 0.1 m−1, respectively.These numbers extend previous findings by showing that a single IMUis sufficient, as opposed to three, as initially proposed in Dirdal et al.(2022). This result increases the practical utility of the PTPD approach
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Table 6Theoretical wave number errors 𝑘̃ (unit m−1) resulting from a 5% and 10% error in the experimental wave periods 𝑇𝑝 (unit seconds). The wave numbererrors were computed from Eq. (21) by adding and subtracting the percentage error to each respective wave period. In each calculation, the water pooldepth of the wave basin (𝑑 = 1.45 m) was considered. Based on these numbers, we consider 0.1 m−1 a reasonable error threshold to assess the qualityof the wave number estimation results.
𝑇𝑝 1.0 1.4 1.5 1.6 1.8 2.0 2.5
𝑘̃5% 0.40 0.20 0.17 0.15 0.11 0.09 0.05
𝑘̃10% 0.82 0.41 0.35 0.30 0.23 0.18 0.11

significantly as many vessels already employ IMUs as part of theirsensor suite, thus allowing the approach to be applied directly withoutthe need for installing additional units and time synchronizing themeasurements between them. It is worth emphasizing that the resultspresented here are only valid for IMUs, which can measure angularrates and specific force simultaneously—both of which Eq. (19) relieson.However, an important drawback of Eq. (19) is that it dependson the angular acceleration 𝝎̇𝑏𝑛𝑏, which is not usually measured. Inthis work, we have obtained estimates of the latter through numericaldifferentiation of 𝝎𝑏𝑛𝑏, which we argue is valid since each measurementdata segment has been lowpass filtered (see Section 3.1.2). The validityof using numerical differentiation is further substantiated by our re-sults, which are either similar in magnitude or outperform the resultsbased on multiple physical IMUs. It is worth mentioning that thereexist other methods for estimating 𝝎̇𝑏𝑛𝑏 (Zappa et al., 2001; Kjerstadand Skjetne, 2016); however, these rely on an array of (minimum) fournoncoplanar tri-axial accelerometers.It is interesting to see that the wave estimates for {𝛩12, 𝛩13} froma single IMU, in many cases, produce lower errors than for threephysical IMUs (Tables 4 and 5), despite the sensor coordinates being(in theory) the same. We speculate that one of the reasons for thisbehavior is that the application of Eq. (19) effectively eliminates anybias resulting from uncertainties in the sensor positioning. As discussedin Dirdal et al. (2022), uncertainties in the sensor positions can resultin significant errors in the phase differences, especially for higherfrequency waves. By employing Eq. (19) instead, the issues regardingsensor positioning are conveniently circumvented, as any virtual sensorcoordinates specified as input to Eq. (19) represents the true location.Up to now, we have used Eq. (19) to generate the minimum numberof measurements needed to determine the wave encounter angle andwave number uniquely. However, it is worth pointing out that wecould use Eq. (19) to spawn any arbitrary number of measurements.As discussed in Dirdal et al. (2022), increasing the number of phasedifferences will reduce the error variance of the estimates, but only upto a specific limit. Note that this will only work if the virtual sensorlocations are noncollinear (Theorem 1) and sufficiently close to eachother (Assumption 1).
4.2.4. Long-crested irregular wavesSo far, we have established the theoretical foundation for determin-ing the wave encounter angle and wave number from a train of regularharmonic waves. However, in reality, ocean waves are irregular, typi-cally characterized by many wave components differing in amplitude,frequency, and wave direction. For long-crested irregular waves, eachconstituent wave component has the same propagation direction, mean-ing that it is, in theory, sufficient only to consider one such wavecomponent to infer the general propagation direction. Hence, if wecan extract only one wave component/frequency (e.g., using an FFT),we can apply Theorem 1 and Corollary 1.1 to determine the wavepropagation direction of long-crested irregular waves from a singleIMU.In order to assess the validity of the approach mentioned above,two sets of experiments were conducted in the wave basin involvinga stationary and underway vessel, respectively, subjected to long-crested irregular waves. In the stationary and forward speed trials, weconsidered the set of boat headings {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦}

Fig. 8. Encounter wave frequency (𝜔𝑒) vs. absolute wave frequency (𝜔) in followingwaves (𝛽 = 0◦) computed by Eq. (22) with water depth 𝑑 = 1.45 m (results arealmost identical for increasing 𝑑) and forward vessel speeds 𝑈 = 0.5 m∕s, 0.6 m∕s, and
0.7 m∕s to represent the test conditions of the wave basin. When 𝜔𝑒 < 1∕4𝜓 , where
𝜓 = 𝑈 cos 𝛽∕𝑔, the wave encounter frequency maps to three different (absolute) wavefrequencies. The latter situation applies for all our experiments conducted in followingwaves with (absolute) wave periods 𝑇𝑝 = 1.5 s, 2.0 s, and 2.5 s.

and {0◦, 180◦}, respectively, with significant wave heights and peakwave periods given in Table 2. The experimental results (Tables 7and 8) show that in 92% of the forward speed trials and 79% of thestationary trials, the wave encounter angle error is less than 5◦. If weextend the error threshold to 10◦, all wave direction estimates exceptone are within the latter. These results demonstrate that our phasedifference model can also be applied to long-crested irregular waves touniquely resolve the relative wave propagation direction from a singleIMU. The application of our approach to long-crested irregular wavesfor stationary and underway vessels extends previous works (Udjus,2017; Heyn et al., 2017; Dirdal et al., 2022), which are limited to astationkeeping vessel and regular waves, and whose results are basedon multiple physical IMUs.Despite the good agreement between the wave direction results, thesame level of agreement is not seen for the wave number, which, forunderway and stationkeeping trials, yields 71% and 57% of errors lessthan 0.1 m−1 (Tables 7 and 8), respectively. It is difficult to state withcertainty the exact reasons for the observed discrepancies; however, wespeculate that they are caused by a combination of (i) poor frequencyresolution in the FFT spectra, (ii) a growing mismatch between ourphase prediction model and the true vessel dynamics due to increasedangular vessel rates, and (iii) the UKF algorithm sometimes favoring alow wave direction error at the expense of a high wave number error.Each of these issues are addressed in the following paragraphs.As mentioned in Section 4.1, the time duration of the recorded IMUdata was less than 40 s for the forward speed trials and less than120 s for the zero speed trials. Time durations of such magnitudeswill invariably impact the attainable frequency resolution of the FFTspectra. As discussed in Section 3.4.3, a poor frequency resolution willmake it more challenging to pinpoint the true frequency, causing it
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Table 7Wave encounter angle and wave number results, 𝛽 and 𝑘̃, respectively, from forward speed trials in following and head waves (i.e., 𝛽 = 0◦ and 𝛽 = 180◦) with vessel speeds
𝑈 = 0.5 m∕s, 0.6 m∕s, and 0.7 m∕s exposed to long-crested irregular waves with peak wave periods 𝑇𝑝 = 1.4 s, 1.6 s, 1.8 s, and 2.0 s. The numbers show the absolute error betweenthe wave estimates (after convergence) from our wave algorithm (Algorithm 3) and the true values by considering the set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} andthe virtual sensor configuration in Fig. 6(b). Note that in the results presented we have reduced the maximum frequency threshold in Algorithm 3 to 𝑓max = 0.6 Hz. The waveencounter and wave number errors are given in degrees and m−1, respectively.
𝑇𝑝 𝑈 = 0.5 m/s 𝑈 = 0.6 m/s 𝑈 = 0.7 m/s

𝛽 = 0◦ 𝛽 = 180◦ 𝛽 = 0◦ 𝛽 = 180◦ 𝛽 = 0◦ 𝛽 = 180◦

𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃

1.4 s 0.19 0.47 1.95 0.03 0.37 0.49 7.44 0.05 2.28 0.08 6.35 0.06
1.6 s 0.39 0.15 0.14 0.06 0.40 0.24 0.47 0.15 4.18 0.71 2.30 0.01
1.8 s 1.88 0.06 0.05 0.06 1.68 0.12 1.86 0.05 2.93 0.00 0.19 0.09
2.0 s 0.11 0.06 0.11 0.02 0.91 0.02 4.61 0.02 3.13 0.07 2.40 0.06

Table 8Wave direction and wave number results, 𝛽 and 𝑘̃, respectively, from a stationary vessel exposed to long-crested irregular waves with peak wave period 𝑇𝑝 = 1.4 s, 1.6 s, 1.8 s,and 2.0 s and wave directions 𝛽 = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦. The numbers show the absolute error between the wave estimates (after convergence) from our wavealgorithm (Algorithm 3) and the true values by considering the set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} and the virtual sensor configuration in Fig. 6(b). Note that inthe results presented we have reduced the maximum frequency threshold in Algorithm 3 to 𝑓max = 0.6 Hz. The wave direction and wave number errors are given in degrees andm−1, respectively.
𝑇𝑝 𝛽 = 0◦ 𝛽 = 30◦ 𝛽 = 60◦ 𝛽 = 90◦ 𝛽 = 120◦ 𝛽 = 150◦ 𝛽 = 180◦

𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃ 𝛽 𝑘̃

1.4 s 1.89 0.20 3.45 0.03 2.06 0.26 2.46 0.01 3.85 0.05 6.51 0.08 0.87 0.17
1.6 s 0.92 0.24 7.56 0.01 1.72 0.42 3.83 0.08 3.14 0.19 10.47 0.06 0.18 0.10
1.8 s 1.57 0.11 6.91 0.28 4.00 0.11 2.90 0.13 3.55 0.22 5.56 0.06 0.90 0.07
2.0 s 0.41 0.10 3.10 0.04 3.13 0.09 2.92 0.06 2.80 0.01 9.58 0.14 0.92 0.02

to fall between two frequency bins and ultimately affecting the phaseresponse. In order to improve FFT resolution, a longer FFT lengthmust be considered, which may be fulfilled by increasing the durationof the measured data or by various interpolation techniques such aszero-padding.Inspecting the wave estimation errors in Table 8 closely, it is clearthat the most significant wave direction and wave number errors areassociated with the experiments in which 𝛽 = 30◦, 60◦, 120◦ and 150◦.In those experiments, we expect the angular rates of the body to bequite high due to the vessel roll and pitch responses being active andlarge simultaneously (the waves are approaching the vessel diagonallyas opposed to straight on or from the side). An increase in the angularrates will cause a growing mismatch between our phase predictionmodel and the actual phase difference dynamics. As discussed in Sec-tion 4.2.1, this mismatch can generally be reduced by tuning the sensorseparations such that the virtual sensor positions become sufficientlyclose.The issues raised above will manifest themselves as errors in theestimated phase differences. These errors tend to be reflected morein one of the wave quantities than the other and less often in bothsimultaneously. In other words, when significant errors are present,the UKF algorithm seems to favor a lower estimation error in one ofthe wave quantities at the expense of a higher error in the other. Inorder to assess this speculation, we have conducted a small simulationstudy investigating how individual estimation errors are affected by theUKF for a range of wave directions and frequencies when significanterrors in the phase differences are present. In addition to confirmingthe speculation above, the results (Fig. 9) also show that the wavenumber error is generally more sensitive to changes in the wave period(compare the magnitudes of the wave direction and wave numbererrors in the plots in Fig. 9). This behavior can explain some of theopposing wave estimation results in Tables 7 and 8 and, in particular,why the wave number error in some cases appears to be affected morethan the corresponding wave direction error.It is worth mentioning that in the results presented (Tables 7 and 8),we have reduced the maximum frequency threshold 𝑓max in Algorithm3, which produced better results. As we have seen, lower frequencies(longer wave periods) tend to produce more accurate wave estimatesdue to a reduction in the angular rates of the body, thus yielding less

mismatch between our model and the actual vessel dynamics. However,by reducing the frequency threshold, our algorithm may effectivelyselect a frequency different from the spectrum’s peak frequency. Thisoperation poses no issue for long-crested seas as each wave componentpropagates in the same direction. However, for more short-crestedseas where multiple propagation directions may exist, care must beexercised to maintain the frequency threshold so that the desired peakwave frequency and direction are addressed.
5. Full scale experiments
5.1. Experimental design

During spring 2022, an experimental campaign was carried out withthe NTNU-owned research vessel Gunnerus (Fig. 10) in the vicinity ofÅlesund, a small coastal city on the west coast of Norway, to collectfull-scale IMU data in various sea states and to assess the practicality ofour proposed PTPD method. The research vessel Gunnerus is equippedwith an advanced dynamical positioning system and many other instru-ments, making it an excellent platform for measuring waves at zero andforward speed.7
5.1.1. Campaign descriptionThe field experiments were conducted over the course of two days.On each of these days, experiments involving zero and forward speedwere, respectively, considered. The zero-speed trials were carried outin two distinct locations (Fig. 11(a)) in which the vessel was exposed toopen and sheltered waters, respectively. At each location, four headingangles were considered by orienting the vessel into the waves (headsea) and subsequently adjusting the heading angle by 30◦. Each headingangle and vessel position was maintained for approximately 40 min bythe dynamical positioning system onboard. However, the duration ofsome experiments is shorter since the data logging system had to berestarted for some experiments, resulting in a loss of data. The forward

7 For more information and details about the vessel and the equipmentonboard, the reader is referred to the official Gunnerus website: https://www.ntnu.edu/oceans/gunnerus.
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Fig. 9. Wave direction and wave number estimation results from our UKF algorithm (Algorithm 2) based on simulated phase differences with added random Gaussian noise. Thephase differences were simulated using Eq. (12) with the sensor configuration in Fig. 6(b) and adding random Gaussian noise with mean 10◦ and standard deviation 5◦ to thecomputed values. The set of phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34} were considered in the simulation together with wave periods 𝑇𝑝 = 1.4 s (left) and 𝑇𝑝 = 2.0 s (right). Theplots show the absolute error between the wave estimates (after convergence) and the true values. The wave direction error is given in degrees, whereas the wave number erroris given in m−1 but multiplied by a factor of 100 to better highlight the overall trend.

Fig. 10. The research vessel Gunnerus considered in the full-scale experiments.

speed trials consist of a single experiment in head sea (Fig. 11(b))lasting approximately 6 min. The short time duration and the limitednumber of trials for forward speed were due to ship operational issues.
5.1.2. IMU system and sensor configurationOur data logging system comprises five ADIS16465 high-precisionmicroelectric mechanical system (MEMS) IMUs (each of which includesa tri-axial accelerometer and gyroscope), a GPS receiver, a solid statedrive, and a synchronization unit (Fig. 12). The IMUs and GPS receiverare all connected to the synchronization unit, which performs thesynchronization of measurements using PPS time synchronization. Allcommunication between the IMU nodes is done serially through theSPI protocol via cables of length 20 m. For all experiments, the IMUsampling rate was set to 100 Hz. We consider this sampling ratesufficient, as it is twice the rate used for the wave tank experimentsas well as much higher than the bandwidth of wind-generated oceanwaves.The IMUs were rigidly attached to the vessel by clamping them ontothe metal bars running across the roof of Gunnerus using screw clamps(Fig. 13). The metal bars run laterally across the vessel, making them anexcellent reference to ensure that the gyroscope/accelerometer 𝑥-axis ofeach IMU is aligned with the vessel’s longitudinal axis (thus minimizing

potential misalignment errors). The distances between the IMUs weremeasured using a laser distance measure tool relative to a common andknown reference point on the vessel.The IMU configuration considered in experiments is illustrated inFig. 14. The IMU array is noncollinear and coplanar. The former isnecessary to ensure that the state-space model (13) is observable,whereas the latter reduces the deviation between Eqs. (11) and (12)when 𝑧𝑖𝑗 = 0 (see Appendix). The sensor positions were deliberatelychosen to be near each other for three reasons. First, as established inSection 4.2.1, Assumption 1 is valid when the sensors are sufficientlyclose to each other. Second, the rigid-body assumption is preservedmore for smaller regions on the vessel than positions on opposite ends(e.g., bow and stern), which are more susceptible to bending and otherforms of deformation. Third, no other locations were as suitable as theroof for measuring distances and fastening the sensors to the vessel(drilling into the vessel to attach the sensors was not permitted).The gyroscope and accelerometer sensor biases were assumed con-stant for the duration of each processed data segment. This assumptionis substantiated by the gyroscope and accelerometer Allan variancecurves found in the ADIS16465 datasheet, which states that for a 6 minintegration period (the considered window length of each data segment;see Section 5.2.1 for discussion), the gyroscope and accelerometerin-run bias stability are less than 2◦∕hr and 4.5 μg, respectively.
5.1.3. Wave direction reference systemsGunnerus possesses a commercial wave radar system comprisinga Furuno X-band marine radar and a Miros Wavex computer. TheMiros computer processes the raw Furuno radar images of backscat-tered light reflected off the sea surface to produce estimates of thedirectional wave spectrum. In the following results, we consider themain/dominant wave direction estimated by the wave radar system asthe ground truth reference value. Moreover, we consider the acceptedwave direction error threshold to be 20◦ when evaluating the perfor-mance of our wave estimation algorithm, as this number is the wavedirection accuracy reported by the Miros Wavex system.Some of the zero-speed experiments were performed near a FugroSeawatch Wavescan buoy (Fig. 11(a)) owned and administered by theNorwegian Public Roads Administration, who has made the buoy dataavailable to the public (Furevik et al., 2016). The buoy measures almosteverything related to the sea surface, including directional information,rendering it an additional useful reference for wave assessment. Com-pared to the wave radar system, however, the update rate of the buoyis significantly lower, with updates given every 10 min as opposed to1 min for the wave radar.
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Fig. 11. The zero-speed trials were conducted in two distinct locations: Breidsundet (Location 1) and Sulafjorden (Location 2). The forward speed trials comprise only oneexperiment because of ship operational issues, bringing the campaign to an abrupt end. Several directional wave rider buoys are stationed in the region, which the NorwegianPublic Roads Administration operates. The wave conditions during experiments were relatively moderate, with significant wave heights generally less than 1.5 m.

Fig. 12. Our data logging system comprises five IMUs, a GPS receiver, a solid statedrive, and a synchronization unit.

5.2. Results and discussion
In this section, we present and discuss the results from our PTPDapproach when applied to full-scale experimental IMU data. All thewave radar and wave buoy values of the wave direction have beentransformed to the wave tangent frame (Fig. 3) to be commensuratewith the wave direction estimates given by our algorithm. The wavedirection results are shown between 0◦ and 360◦ to avoid rapid jumpsfor values in proximity to 180◦. For stationkeeping vessels, the wavenumber estimate is not particularly interesting as it is implicitly es-timated by Algorithm 1 through the peak wave frequency used togenerate the desired phase differences (we can use this frequency tocalculate the wave number directly based on the dispersion relation fordeep waters). For this reason, we consider the wave number redundantand have consequently omitted it from the zero-speed results.The length and breadth dimensions of Gunnerus are 36.25 m and9.90 m, respectively. Substituting these values into Eq. (20) with 𝑑arbitrarily large (deep waters) yields the maximum frequency threshold

𝑓max = 0.2 Hz. The latter value is substituted into Eq. (23) for theforward speed trials to get the adjusted frequency threshold 𝑓e,maxwhen the vessel moves with speed 𝑈 .

5.2.1. Zero speedThe zero-speed experiments were conducted in two distinct loca-tions (Fig. 11(a)) to assess the performance of our proposed methodin two different sea states. Following the sea state code definitionsby Price and Bishop (1974), the observed sea states in Location 1 and2 were moderate and slight, with significant wave heights generallybetween 1.2−1.4 m and 0.7−0.8 m, respectively. The incident waves inLocation 1 are generally larger than Location 2 as they come directlyfrom the open sea, unobstructed by any landmass. In both locations,the swell was heavily dominant compared to the local wind.Our experimental results (Figs. 15 and 16) show that in both loca-tions, the estimates of the relative wave direction from our proposedmethod are generally very close to the corresponding values reportedby the wave radar and wave buoy systems. Quantitatively, 91% and71% of the total estimation errors are less than 20◦ and 10◦, respec-tively, for the physical sensor configuration and, correspondingly, 92%and 70% for the virtual sensor configuration based on a single IMU.In addition to the high accuracy, the similarity of results betweenthe physical and virtual sensor configurations further demonstratesthat only a single IMU is indeed sufficient, thus rendering multiplephysical IMUs redundant. This important result significantly increasesthe practical usefulness of our proposed method in addition to beingaccurate, cheap, portable, flexible, easy to install, and robust againstvarious environmental conditions. In contrast, de facto standard wavebuoy and wave radar systems are expensive and suffer from either beinggeographically confined, less flexible to changes, difficult to install(without expert help), and in some cases, sensitive to the externalenvironment. For instance, during data collection, there were severallosses from the wave radar due to precipitation and interference withthe surrounding landmass (Fig. 16).We suspect that uncertainties in the phase differences resulting fromthe FFT are likely one of the main culprits behind some of the observeddeviations between the estimation results and the ground truths. Byrelying on the FFT, a compromise must be made between time and fre-quency resolution, which, in turn, translates to a compromise betweenreal-time performance and accuracy—both of which must be present forpractical feasibility. The compromise is reflected quantitively throughthe window length and percentage overlap between consecutive datasegments, which for the presented results, were chosen after trialand error as 6 min and 50%, respectively. Collectively, these valuesproduce estimate updates every third minute after initialization, whichwe consider a reasonable compromise between real-time performanceand accuracy.In the results presented, we reduced the frequency threshold to0.13 Hz, which produced better results (recall that longer wave periods
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Fig. 13. The IMUs and GPS receiver were clamped to the roof of Gunnerus using screw clamps and connected to the synchronization unit, which was placed downstairs insidethe bridge.

Fig. 14. IMU array considered in the full-scale experiments. IMUs 1, 2, 3, 4, and 5 are denoted 𝑠1, 𝑠2, 𝑠3, 𝑠4, and 𝑠5, respectively. The location of each sensor is given in meterswith respect to the vessel body frame {𝑏}. The origin of {𝑏} is indicated by a cross, where the 𝑧𝑏-axis (not shown) points down into the page. We have used the same configurationfor the virtual sensor locations with IMU 1 considered as the only physical sensor. The virtual measurements from the other ‘‘sensors’’ were obtained by employing the measurementtransformation (19) together with the processed linear accelerations, angular rates, and angular accelerations of IMU 1.
generally reduce model mismatch). As discussed in Section 4.2.4, suchan adjustment is generally acceptable for unimodal seas where allwave components have the same propagation direction. Indeed, thiswas the case for both locations, which were largely swell-dominant.However, for a bimodal sea state consisting of swell and local wind-generated waves, our method (if left unmodified) will return the mainwave direction and wave number corresponding to the most prominentwave system, assuming the wave systems are clearly distinguishable.This result follows from the current implementation of the method (seeAlgorithm 3), which assumes a single mode and concludes after findingthe frequency associated with the largest peak. It is worth noting thatif all the modal frequencies are known, the PTPD approach can beextended to work in multimodal environments by applying the methodrecursively for each modal frequency. The main challenge, however, isto identify the frequency of each unique mode in the heave accelerationspectrum. The latter can be achieved through various peak detectionalgorithms such as findpeaks() in MATLAB or more advancedtechniques based on wavelet analysis (Du et al., 2006).
5.2.2. Forward speedAs mentioned earlier, the forward speed trials were abruptly endeddue to ship operational issues shortly after commencing the first

trial. For this reason, we consider the only forward speed experimentrecorded that day, which lasted approximately 6 min. Despite theshort duration, the results (Fig. 17) show great promise—91% of waveencounter angle errors and wave number errors are less than 20◦and 0.01 m−1, respectively, for the physical sensor configuration and,correspondingly, 82% and 73% for a single IMU. The wave numbererrors are particularly interesting as they suggest that it is indeedpossible to retain the absolute wave frequency directly while movingwith constant forward speed. Unfortunately, we were not able to testthe latter in following sea conditions, thereby potentially circumventingthe 1-to-3 mapping problem existing between encounter frequency andabsolute frequency domains (Nielsen, 2017b, 2018).
6. Conclusions and further recommendations

A relatively new and exciting signal-based approach using thephase-time-path-differences (PTPDs) between a shipboard array of sen-sors to retrieve directional wave information has been explored in thisstudy. We derived a new kinematic PTPD model accounting for forwardvessel speed, thus generalizing the PTPD concept further to movingvessels. The theoretical foundation of this model in terms of modelingsensor delays on a rigid body was carefully assessed, and it was shown
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Fig. 15. Relative wave direction estimation results from our wave algorithm (Algorithm 3) from Location 1 (moderate sea with significant wave heights 1.2 − 1.4 m and waterdepth 339 m) for four different boat headings corresponding to head, bow, and beam seas. The estimates from the physical sensor configuration are indicated by crosses (blue),whereas the estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by thewave radar and wave buoy D are represented by dots (pink) and squares (green), respectively. The histograms next to each plot show the corresponding absolute error count fordifferent error intervals for both sensor configurations (real and virtual). The wave radar values are considered as ground truth except for the bottom plot where it was mistakenlyoff and turned on again after 39 min. Hence, until 36 min, the wave buoy values were considered as reference. For each wave direction estimate (cross or plus sign), comparisonwas made with the ground truth by considering the value closest in time. All wave directions are given between [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axisof the wave tangent frame to the vessel body 𝑥𝑏 axis (Fig. 3). The window size, segment overlap, and frequency threshold 𝑓max were set to 6 min, 50%, and 0.13 Hz, respectively.
that the model’s accuracy relies on sufficiently short sensor separationsand sufficiently long waves. Based on this theory and PTPD model,we proposed a methodology to resolve the wave propagation directionand wave number online from an array of IMUs and a single IMU byemploying a rigid body measurement transform, an FFT, and a UKF.Our methodology incorporates a novel frequency threshold based onthe main ship dimensions to avoid distorted wave components causedby vessel lowpass filtering. The wave estimation capabilities of our

proposed method were tested on IMU data collected from a wave tankand full-scale experiments involving a research vessel equipped witha commercial wave radar operating in the proximity of several wavebuoys outside the coast of Norway. The estimation results generallyagreed very well with the reference wave values reported from bothwave measurement systems, demonstrating that a single physical IMUis sufficient. Together, these results significantly increase the practicalutility of the PTPD approach, rendering it a serious contender to other
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Fig. 16. Relative wave direction estimation results from our wave algorithm (Algorithm 3) from Location 2 (slight sea with significant wave heights 0.7 − 0.8 m and water depth442 m) for four different boat headings corresponding to head, bow, and beam seas. The estimates from the physical sensor configuration are indicated by crosses (blue), whereasthe estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by the waveradar are represented by dots (pink). The histograms next to each plot show the corresponding absolute error count for different error intervals for both sensor configurations (realand virtual). For each wave direction estimate (cross or plus sign), comparison was made with the wave radar by considering the value closest in time. In the bottom plot, thewave radar dropped out due to significant interference with the surrounding landmass. For this reason, the remaining comparison with the other wave estimates was made basedon the last recorded wave radar value. All wave directions are given between [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axis of the wave tangent frame to thevessel body 𝑥𝑏 axis (Fig. 3). The window size, segment overlap, and frequency threshold 𝑓max were set to 6 min, 50%, and 0.13 Hz, respectively.
shipboard signal-based approaches in terms of accuracy and onlineperformance while being cheap, flexible, easy to install, and robustagainst environmental influences.As hinted in Section 5.2.1, our wave estimation procedure is cur-rently limited by the FFT, which forces a trade-off between real-timeperformance and accuracy. In order to increase practical utility further,future studies should seek to optimize the estimation procedure byconsidering alternative methods to the FFT that are less stringent on

the trade-off above. In this regard, there are, in particular, two ap-proaches worth examining in greater detail, namely, the Hilbert-Huangtransform (HHT) and a real-time phase difference tracking filter (Chenet al., 2019). The former approach can yield instantaneous frequencyand phase information for non-stationary data, whereas the latter yieldsthe same information in real time but is based on a single sinusoid. Acomparison between these approaches (and potential others) and theFFT is left as an application for further studies.



Ocean Engineering 288 (2023) 116131

22

J.A. Dirdal et al.

Fig. 17. Relative wave encounter angle and wave number estimation results from our wave algorithm (Algorithm 3) in head sea (moderate sea with significant wave height ∼ 1.3m and water depth 439 m) with forward vessel speed 𝑈 = 10.8 knots (Fig. 11(b)). The estimates from the physical sensor configuration are indicated by crosses (blue), whereasthe estimates from the virtual sensor configuration based on IMU 1 (Fig. 14) are indicated by plus signs (red). The corresponding wave direction values reported by the waveradar and wave buoy (A and D) are represented by dots (pink) and squares (green), respectively. The buoys A and D report the same wave direction and low frequency meanwave period, which has been converted to wave numbers using the dispersion relation (21) for deep waters, and are shown as squares (green) in the wave number plot. Thehistograms next to each plot show the corresponding absolute error count for different error intervals for both sensor configurations (real and virtual). The wave radar and wavebuoy values are considered reference for the wave encounter angle and wave number, respectively. For each wave estimate (cross or plus sign), comparison was made with theground truth by considering the value closest in time. A dashed line has been extended between the wave buoy values to make comparison easier. All wave directions are givenbetween [0◦ , 360◦) as the positive counterclockwise angle from the 𝑥-axis of the wave tangent frame to the vessel body 𝑥𝑏 axis (Fig. 3). The window size and segment overlapwere set to 1 min and 50%, respectively. The frequency threshold was selected as the maximum default value based on the vessel length and beam dimensions.
The results from the forward speed trials presented in this workare promising but limited from further generalization due to the sizeof the wave basin (inhibiting other heading angles from being tested)and operational issues onboard RV Gunnerus. For this reason, futureinvestigations should aim for additional forward speed testing in head,bow, beam, quartering, and following sea conditions to further validateour theory and proposed methodology. In particular, additional exper-imentation in beam to following seas is of interest to show that ourapproach can directly obtain the absolute true wave frequency, therebycircumventing the 1-to-3 mapping problem generally existing betweenthe encounter and absolute frequency domains.One of the conditions for the PTPD approach to model sensor delayson a rigid body is that the sensor separations be sufficiently close.However, a too-small sensor separation combined with the (fixed andfinite) sensor sampling rate increases the risk of all measured phasedifferences becoming zero, resulting in a loss of observability of ourstate-space model. This phenomenon can happen for any given sensorconfiguration, provided that the propagation speed of the consideredwaves is sufficiently high. Hence, what constitutes a minimal sensorseparation depends on the wave conditions, and finding a lower boundon the separation distance for all situations is difficult. We leave thisas a potential topic for future inquiry.In this study, the primary wave environment considered for prac-tical assessment of the PTPD approach has been long-crested irregularwaves. It is important to note that the PTPD method can be extendedto work in more short-crested wave environments featuring multiplemodes by recursively applying the method to each modal frequency.Identifying these modal frequencies, for instance through various peakdetection algorithms based on wavelet analysis, is beyond the scope ofthe present study.
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Appendix. Model error analysis
In this section, the model deviations between the time-varyingand average phase difference models, (11) and (12), respectively, arequantitatively assessed for different wave parameters and roll-pitch
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Fig. A.18. For each experimental wave period 𝑇𝑝 and wave direction 𝛽, the absolute value of the mean error (top) and corresponding standard deviation (bottom) for all phasedifferences are shown in different colors. The mean error is computed by 1∕𝑁
∑((11)–((12))) for a total of 𝑁 roll and pitch samples based on the sensor configuration in Fig. 6(a),which for four sensors yields a total of six independent phase differences {𝛩12 , 𝛩13 , 𝛩14 , 𝛩23 , 𝛩24 , 𝛩34}. In all experiments, the roll and pitch response amplitudes were scaled tosimulate the worst-case conditions of the pool experiments in Section 4. For 𝛽 = 0◦, the pitch response amplitude was scaled to 5◦ and, for 𝛽 = 90◦, the roll response amplitudewas scaled to 10◦. For 𝛽 = 30◦ and 60◦, both the roll and pitch responses were scaled to 10◦ and 5◦, respectively.

responses. To carry out such an assessment, we consider roll and pitchdata from a model ship in regular waves with periods {1.0 s, 2.0 s} andrelative wave directions {0◦, 30◦, 60◦, 90◦}. The roll and pitch responseshave been scaled to even larger amplitudes to see how increasinglyrougher seas may impact the model differences. As we shall see, themodel deviations are directly affected by the vessel roll and pitch offset,the height separation between the sensors onboard, and the period ofthe waves passing through the vessel. The experimental data consideredin this analysis were collected as part of the Master’s thesis of Udjus(2017).
A.1. Simulation results

The simulation results (Fig. A.18) show the total mean error be-tween Eqs. (11) and (12) and the corresponding standard deviationcomputed from each roll-pitch sample for the duration of the consid-ered responses. In the computation of these errors, the sensor configu-ration in Fig. 6(a) was considered, which consists of four sensors andgives access to a total of six independent phase differences in eachexperiment. The wave number was computed through the dispersionrelation in (21), assuming a water depth of 1.5 m.The following observations are made from the mean model errorsand standard deviations in Fig. A.18:
(i) The mean model error for each phase difference is less than 1◦for all experiments.

(ii) The standard deviation of each phase difference associated withsensor 4 is significantly larger than the rest.(iii) The mean model error and standard deviation decrease for in-creasing wave periods.
Observations (i) and (ii) are discussed in the subsequent subsections,respectively. The downscaling effect (iii) is caused by the wave number
𝑘, which is inversely proportional to the wave period. Hence, longerwaves imply smaller errors than shorter waves and vice versa.
A.2. Roll and pitch asymmetry

Regarding (i), we repeated the same simulations with roll and pitchresponses scaled to 30◦ and 10◦, respectively, and observed similarresults (i.e., all errors were less than 1◦). These results show that theaverage phase difference model is more or less independent of roll-pitchamplitude, thus eliminating the need for the small-angle assumptionconsidered in our previous work (Dirdal et al., 2022).However, if the roll and pitch responses can be asymmetric (e.g., dueto uneven loading conditions and/or manufacturing errors), the av-erage roll and pitch angles may no longer be centered close to zero(i.e., 𝜙̄(𝑡) = 𝜙0 ≠ 0 and 𝜃̄(𝑡) = 𝜃0 ≠ 0). If these offsets are leftunaccounted for, they may cause a bias between the considered phasedifference models (Fig. A.19). However, if the roll and pitch offsets areknown, the deviation can be alleviated by inserting these values intoEq. (11) and applying this average model instead.
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Fig. A.19. Repeated mean model error simulation for wave period 𝑇𝑝 = 1.0 s (Fig. A.18)but with an offset value of 2◦ added to all roll and pitch responses.

A.3. Sensor height separation
A significant sensor height separation will amplify any differencesbetween the considered phase difference models due to the latterterm in the RHS of Eq. (11). When the roll and pitch responses aresymmetric about zero, this amplification effect is manifested mainly inthe standard deviations of mean model errors (Fig. A.18). However,if the roll and pitch responses are asymmetric about zero, the sensorheight separation may also influence the mean model error (Fig. A.19).This amplification effect can be mitigated by only considering coplanarsensor measurements (i.e., all sensors on the same plane).
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