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Abstract This study addresses the challenge of reverse engineering binaries from
unknown instruction set architectures, a complex task with potential implications for
software maintenance and cyber-security. We focus on the tasks of detecting candidate
call and return opcodes for automatic extraction of call graphs in order to simplify
the reverse engineering process. Empirical testing on a small dataset of binary files
from different architectures demonstrates that the approach can accurately detect
specific opcodes under conditions of noisy data. The method lays the groundwork for
a valuable tool for reverse engineering where the reverse engineer has minimal a priori
knowledge of the underlying instruction set architecture.
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1 Introduction

In an era defined by rapid technological advancements and a vast amount of different systems,
further amplified by the rise of the Internet of Things, the importance of understanding and
decoding the inner workings of software cannot be understated. At the heart of this is the
process of reverse engineering. Reverse engineering in the context of software, is the practice
of inspecting, deconstructing, and analysing the structure and operation of a binary file in
order to understand its architecture, design, and functionality. This is often done without
access to source code or design documentation, making it a painstaking, yet critical, part of
software analysis and security.

The reverse engineering process is notably important in areas such as cyber-security, where
detecting and understanding malware is key to developing and maintaining robust security.
It also plays a vital role in maintaining and debugging legacy software and firmware, where
the original documentation or developers may not be available. For these reasons, reverse
engineering is a critical skill in the digital age and an important area in need of further
research and development efforts.

In the broader context, several tools and methods have been developed over time to aid the
reverse engineering process. Most of these tools require a priori knowledge about the instruc-
tion set architectures of the binary being analysed, which poses limitations and challenges
when dealing with unknown or undocumented instruction set architectures.

The current methods for reverse engineering binaries from unknown instruction set archi-
tectures are limited and often involve invasive procedures such as hardware decapsulation,
which can be costly, slow, and potentially damaging to the hardware [7]. Additionally, obfus-
cation measures are often used to deliberately make the process even more challenging and



time-consuming. Examples of such techniques are custom virtual machines used to execute
the binary file [14,9].

When looking at the process of reverse engineering from a methodological perspective, a
common practice is detecting important functions and focusing the reverse engineering efforts
on them, so-called sub-routine scanning [13]. Hence, a tool capable of generating call graphs
for binaries would alleviate much of the needed efforts in the current reverse engineering
process.

There is a clear need for heuristic tools that can assist reverse engineers in extracting mean-
ingful information from such binaries without prior knowledge of the instruction set archi-
tectures. With this in mind, the following research questions are formulated:

RQ1 Can a call graph be heuristically deduced from binary programs of an unknown instruc-
tion set architecture?

RQ2 How effective is the heuristic approach and what are its limitations?

The central contribution of this study is the development and validation of a method to
detect opcodes and generate call graphs from binaries with unknown instruction set ar-
chitectures. Our method is evaluated in detail, revealing its capabilities and limitations. A
secondary contribution is a metric called the Opcode Candidacy Probability Score (OCP-
Score). This metric enables the ranking of opcodes based on likelihood, showing the reverse
engineer the most probable call-return pairs.

The structure of the rest of the paper is as follows: Section 2 describes the background and
related work. Section 3 describes the methodology and proposed algorithm. Section 4 evalu-
ates the proposed approach on a small dataset of binary programs from different instruction
set architectures. Section 5 offers a discussion of the results and Section 6 concludes and
proposes potential avenues for further research.

2 Background and related work

In this section we briefly introduce the background and most relevant related work.

2.1 Background

An instruction set architecture serves as an abstract model of the computer on which software
runs, and when compiling a program, one must target a specific instruction set architecture.
This instruction set architecture defines the supported instructions, data types, addressing
modes, and other relevant aspects of the architecture. Consequently, a program compiled for
eg. the x86_64 architecture will not execute on a computer with ARM architecture without
the use of emulators.

Assembly code is a mnemonic of machine code, meaning there is a one-to-one mapping
between them. For instance, an instruction mov r1 #2 could be assembled into the following
bytes: 0x5e83a2. In much the same way, disassembly would mean translating the bytes back
to the original assembly instructions. Typically, an instruction consists of an opcode, which
specifies the operation, and operands, which determine the values to operate on. These
operand values can include memory addresses, immediate values, or registers.

The instruction format demarcates the bits of an instruction representing the opcode, and
the bits representing the operands. An instruction format can either be fixed length, where
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all instructions are the same length, or variable length (e.g., x86_64 architecture). Table 1
illustrates the fixed-width instruction format for the MIPS architecture. Additionally, the
endianness of the instruction set architecture is an important consideration, indicating the
order in which bytes are stored. An instruction stored as 0x1234 would be represented as
0x1234 for big-endian, and 0x3412 for little-endian.

Table 1: Instruction format of the MIPS architecture, illustrating the arithmetic (R-type),
immediate (I-type), and jump (J-type) instruction formats [12].

R-type op rs rt rd shamt funct
I-type op rs rt address/immediate
J-type op target address

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Compiled programs and firmware are typically stored in a binary file format, for example
the Executable and Linkable Format (ELF). This is of interest in our study because a binary
file often contains more than just instructions; it also contains data and metadata. In the
case of ELF, there are sections and segments of different types of data. In Figure 1, which
shows the contents of an ELF file, we are specifically interested in the .text segment, as
that is where the instructions are stored. When dealing with an unfamiliar file format, it is
of interest to identify the start and end of the corresponding .text segment, to accurately
isolate and extract the instructions.

Figure 1: ELF file structure [6].

To detect call graphs in a binary with an unknown instruction set architecture, the most
important task is detecting the function boundaries, namely the byte position at which
a function starts and ends. It is typical that compiled programs from known architectures
exhibit distinct function epilogues and prologues, in the form of return instructions and stack
operations, respectively. An example of a call graph for a simple program, consisting of a
main function that calls two other functions, can be seen in Figure 2. A more complex call
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graph may have characteristics such as cycles, which can be the result of compiled recursion
and loops.

int main()
{

Function1();
...
Function2();

}
void Function1() { ... }
void Function2() { ... }

Figure 2: Call graph constructed from a program containing a main function which calls
Function 1 and Function 2.

Call instructions generally reference other functions in one of three ways: absolute addressing,
where the operand of the instruction is the address we want to access; relative addressing,
where the operand of the instruction contains the offset from the current address; and
register addressing, where the address of the callee is stored and accessed through a register.
In general, it is simpler to detect where a function points when it uses absolute and relative
addressing, with register addressing being difficult without runtime knowledge.

2.2 Related work

Reverse engineering is an active research field where applications range from malware de-
tection [3] to vulnerability detection [11] to architecture classification [5]. However, nearly
all software reverse engineering research assumes a priori knowledge of the instruction set
architecture upon which it is executed. Software reverse engineering without knowledge of
the instruction set architecture depends first on reverse engineering the hardware, and such
research is scarce.

Clemens [5] uses a dataset of 16,000 binaries from 20 different architectures to detect en-
dianness and instruction set architecture. The approach relied heavily on byte frequency
distributions as features, suggesting that they retained sufficient opcode information for ac-
curate instruction set architecture classification. The approach is similar to the approach of
Kairajarvi et al. [8], and relies on the instruction set architecture being part of the training
data.

Qiu et al. [10] introduce a function representation called the reverse extended control flow
graph (RECFG) for function identification that doesn’t rely on function prologues and epi-
logues. They address four key challenges in this approach: 1) difficulty in differentiating data
from code when file formats are unknown; 2) sensitivity to disassembly starting points for
variable-length instructions; 3) the risk of inaccurate disassembly due to candidate return
instructions being part of another instruction; and 4) issues with relying on compiler-specific
prologues and epilogues. Their method uses a multilayer perceptron trained with features
based on the 32 bytes around a candidate opcode and debug symbols as groundtruth. How-
ever, the method requires detailed knowledge of the ISA (the candidate opcodes must be
decoded from their instructions).

Sharif et al. [11] developed a system called Rotalume to reverse engineer binaries that have
been obfuscated using programs such as VMprotect 3. This approach was however dependent

3 https://vmpsoft.com/
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on executing the binary in a protected environment, in order to extract runtime information,
which makes the approach unfeasible for binaries with an unknown architecture.

In an unpublished work by Chernov et al. [4], a heuristic approach is presented, where they
detect instruction set architectural features in binaries with unknown instruction set archi-
tecture. They present multiple assumptions of the binary file of an unknown architecture:
Call opcodes usually have the absolute address of a function as an operand, a function
prologue is closely spatially located to the previous functions epilogue, and call and return
opcodes are amongst the most commonly used opcodes. Through the use of frequency dis-
tributions and address matching, they were able to detect subroutines and control flow in
binaries, through only static analysis of the binary file. The work done in this report is based
on the same assumptions made by Chernov et al. but differs in its implementation. It will
also be the first published research on this specific topic.

Most studies discussed have necessitated prior knowledge of the instruction set architecture,
with only the last paper presented by Chernov et al. focusing on unknown architectures. As
such there is a clear research gap identified in this area, which this paper aims to contribute
towards.

3 Methodology

This section introduces our heuristic approach, as well as dataset acquisition and analysis
strategy.

3.1 Call graph extraction

At a high-level, our approach4 takes a binary file and a set of parameters as input, and
returns a list of potential call graphs along ranked by probability. Figure 3 depicts a context
where a reverse engineer would use the method as part of the process of reverse engineering
a binary towards a high-level representation.

Figure 3: Context of the use of the proposed solution, occurring between architectural feature
extraction and sub-component scanning.

A small binary from the Chip8 architecture was used for verification during development of
the method due to its instruction format being well-suited for static analysis. This enabled
testing under the assumption that properties of the Chip8 ISA were not known, and then
checking results against the ISA as a groundtruth. In Sections 4 and 5 we will further analyse
and discuss the method against a more common and comprehensive set of architectures.

4 https://github.com/haavapet/binary-analysis
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A high-level pseudo-code of the main algorithm can be seen in Algorithm 1. The ex-
tract_instruction function separates the bytes of the binary into a list of instructions, based
on the provided instruction length, and file offsets. The get_potential_edges function finds
all instructions with the given call opcode where its operand points to a valid instruction,
with either relative or absolute addressing. The filter_valid_edges function validates edges
by confirming that the given return opcode is one of the few instructions above the called
instruction, to ensure there is a distinct function epilogue followed by a function prologue.

Algorithm 1 Detect call graph from binary
instructions = extract_instructions(...) ▷ bytes → List[Instructions]
top_candidates = Heap(...)
for call candidates do

potential_edges = get_potential_edges(...)
for return candidates do

valid_edges = filter_valid_edges(...)
probability = get_probability(...)
store_candidate_in_heap(...)

end for
end for
for candidate in top_candidates do

create_graph_for_candidate(...)
end for
return candidates_with_graph

Support for relative addressing was implemented as additional functionality and can be seen
in Algorithm 2.

Algorithm 2 Get potential edges - relative adressing
potential_call_instructions = get_instructions_with_opcode(...)
for potential_call_instructions do

signed_operand = int_to_signed_int(instruction.operand)
if signed_operand hits relative instruction address then

add_edge(...)
end if

end for
return edges

We introduce a metric for computing a probability for a given call opcode and return opcode
pair to rank candidates for visual inspection by a reverse engineer. The metric is listed as
Equation 1, and is referred to as Opcode Candidacy Probability Score (OCP-Score).

OCP-Scoreop =
a · (valid edgesop) + (potential call edgesop)

b · (call countop)
, (1)

where a = 2, b = 3, and call countop refers to the number of instructions with the given call
opcode op. potential edges refers to the number of edges associated with the candidate
call opcode op, in particular, those instances where the operand points to a valid address.
valid edges refers to the number of edges where there is a function epilogue, specifically
a candidate return instruction, located within a specified range before the address of the
candidate call instruction containing the opcode op.
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The OCP-Score is normalised within the range [0, 1], explained by the constraint that length
valid edges and potential call edges are always less than or equal to call count (numer-
ator and denominator constants a and b). It is worth noting that valid edges is weighted
more heavily than potential call edges, due to being more strongly correlated with only
call instructions as opposed to call and branch instructions. The OCP-Score will be evaluated
and discussed further in Sections 4 and 5.

To reduce the large opcode search space, the analysis of the binary file requires a set of initial
parameters provided alongside the file itself. The parameters, their type, and a description
can be seen in Table 2. All parameters are currently required by the API, however, a potential
modification with reasonable defaults and increased search space, could require only the
first three parameters (instructionLength, retOpcodeLength, and callOpcodeLength) while
keeping the rest optional, which would greatly increase usability. The reverse engineer would
normally play a role in determining initial values for parameters.

Table 2: Explanation of the API parameters.
Parameter Type Description

instructionLength int Length of an instruction in bits

retOpcodeLength int Length of instruction return opcode in bits

callOpcodeLength int Length of instruction call opcode in bits

fileOffset int Byte position of code section start in bin-
ary

fileOffsetEnd int Byte position of code section end in binary

pcOffset int Address of first instruction

pcIncPerInstr int Distance between the address of each in-
struction

endiannes string "big" or "little"

nrCandidates int How many graph candidates to return

callCandidateRange int, int Only search the [x:y] most popular instruc-
tion with a bitmask of callOpcodeLength
as a potential call candidate

retCandidateRange int, int Only search the [x:y] most popular instruc-
tion with a bitmask of retOpcodeLength as
a potential return candidate

returnToFunction-
PrologueDistance

int Distance from function epilogue (return in-
struction) to function prologue (call oper-
and address)

unknownCodeEntry bool Search the binary for the most optimal
fileOffset and fileOffsetEnd, drastically in-
creases runtime

includeInstructions bool Include instructions in the result object.
Recommended False for big binaries if ren-
dering graph

isRelativeAddressing bool Relative or absolute addressing for call op-
erands

Alongside the backend implementation in Python, a frontend written in React was also
developed for ease of use. The frontend provides a simple graphical interface where the
reverse engineer can upload the binary file, input the required parameters, and then display
the created call graphs. Figure 4 shows the interface of the frontend.
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(a) Upload file page (b) Form page

(c) Display graph page (d) Modal after clicking function 0

Figure 4: User interface of the frontend solution, showing the different pages for uploading
a binary file, entering parameters, and displaying the generated call graph.

3.2 Analysis strategy and data generation

The results and analysis focus on three integral parts of the presented heuristic method. The
first part is to input the binary program with the correct parameters and ensure that the
returned call opcode and return opcode are correct. The second part evaluates the assigned
OCP-Score under different inputs, to detect how noisy and potentially faulty data affects
the output. The third part will be looking at the created call graph of a small binary file,
and comparing it to a call graph created by inspecting the source code.

There were multiple considerations taken into account when choosing programs and architec-
tures for the opcode detection and OCP-Score evaluation analysis. Firstly, the architecture
should conform to a fixed-length instruction format, as that is what our method expects
and should be evaluated against. However, a reference binary with a variable-length instruc-
tion format has been included to provide insights into the behavior of the method under
such conditions. Secondly, the binary should contain sufficient immediate or relative call
and return instructions. Lastly, the programs used should be commonly used, complex, and
written in a low-level language like C.

The most important characteristic of the binary used for the call graph creation was that
the program is sufficiently small, this is to ensure the creation of a human-readable call
graph, as well as reducing the manual labor required to create a call graph from inspecting
the source code. In addition to this, it is important that the binary conforms to the same
properties as mentioned in the previous paragraph.

4 Results

This section will analyse three important parts of the proposed solution: opcode detection,
call graph creation, and the OCP-Score. In addition to this, the experimental setup will be
described such that the results can be reproduced.
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4.1 Experimental setup

In order to reproduce the results in the following analysis, one can use the binaries in Table
3, with the corresponding list of parameters found in Table 4.

There are seven binaries in total, and they are all included in the accompanying GitHub
repository. The binaries span three different programs: cURL, OpenVPN, and Chipquarium.

Four architectures are used in the analysis. The MIPS and Aarch64 architectures conform
to a fixed-length instruction format, while the x86_64 architecture uses a variable-length
instruction format. The Chipquarium binary, used in the call graph analysis, is compiled for
the Chip8 architecture and is also the binary used during the development and testing of
the method.

During the analysis it was found that the cURL MIPS binary had almost no occurrence
of immediate call instructions, hence a new version of cURL MIPS was cross-compiled and
included for reference. The binary was compiled with the -no-pie , -fno-pie , and -mplt
compiler flags, causing more frequent use of immediate call instructions.

Table 3: Binaries used in the analysis.
Program Architecture Source Version Used for

cURL MIPS GitHub Undisclosed Opcode detection & OCP-
Score evaluation

cURL Aarch64 cURL website 8.0.1 Opcode detection & OCP-
Score evaluation

cURL MIPS Cross-compiled
from source

8.0.1 Opcode detection

cURL x86_64 Compiled from
source

8.0.1 Opcode detection

OpenVPN MIPS GitHub Undisclosed Opcode detection & OCP-
Score evaluation

OpenVPN Aarch64 Arch repository 2.6.4-1 Opcode detection & OCP-
Score evaluation

Chipquarium Chip8 GitHub 1.0 Call graph

The parameters found in Table 4 were obtained by analysing the binaries with command-
line tools such as readelf, size, and objdump, and by reading the documentation of the
architectures.

A specific modification was implemented for the MIPS and Aarch64 parameters in this
process: the pcOffset and pcIncPerInstr parameters were divided by a value of 4 compared
to what their architecture specified for them. This adjustment serves to emulate a left
shift operation on the operand of the call instruction by a value of 2, as suggested by the
architectural references [1][2].

As mentioned earlier, there is also a cross-compiled binary of cURL for the MIPS architec-
ture, this binary has the same parameters as the cURL MIPS binary, with the exception of
fileOffsetEnd which has a value of 567492 instead.
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Table 4: API parameters used in the analysis.

Parameters

Binaries
cURL
MIPS

cURL
Aarch64

cURL
x86_64

OpenVPN
MIPS

OpenVPN
Aarch64

Chipquarium
Chip8

instructionLength 32 32 32 32 32 16

retOpcodeLength 32 32 8 32 32 16

callOpcodeLength 6 6 8 6 6 4

fileOffset 0 4096 0 0 68416 0

fileOffsetEnd 94560 2163136 501176 1782196 753456 1072

pcOffset 0x100000 ANY 0x100000 0x100000 ANY 0x200

pcIncPerInstr 1 1 1 1 1 2

endiannes "big" "little" "little "big" "little" "big"

nrCandidates 5 5 5 5 5 5

callCandidateRange 0, 20 0, 20 0, 20 0, 20 0, 20 0, 20

retCandidateRange 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10

returnToFunction-
PrologueDistance

3 3 3 3 3 3

unknownCodeEntry False False False False False False

includeInstructions False False False False False False

isRelativeAddressing False True False False True False

4.2 Return and call opcode detection

Tables 5, 6, 7, and 8 present the top five probable candidates for call and return opcodes
for the OpenVPN MIPS, OpenVPN Aarch64, cURL MIPS, and cURL Aarch64 binaries,
respectively. The correctly identified opcodes emerge as most probable with a substantial
margin in Tables 5 and 8, whereas the remaining two tables reveal contrasting outcomes.

Upon examining the binary in Table 6, it is observed that the call instruction appears
approximately 1600 times. However, roughly 1200 of these instances are deemed invalid as
they lack a preceding return instruction above the called function. The NOP instruction
(0xD503201F) frequently precedes function prologues in this binary, which accounts for its
higher OCP-Score as a potential return opcode.

The results also differ for the binary featured in Table 7. In this case, the call instruction
and return instruction are encountered about 40 and 200 times, respectively. The return
instruction does not rank within the top 20 instructions, and as a result, it falls outside the
predefined search range defined by the retCandidateRange parameter. Despite this, the
opcode associated with the branch instruction, 0x08, is assigned a OCP-Score of roughly
0.4.
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Table 5: Top 5 most probable return and
call opcodes from the OpenVPN binary
with MIPS architecture.
OCP-Score Call opcode Return opcode Correct

0.866 0x0C000000 0x03E00008

0.449 0x08000000 0x0320F809

0.412 0x08000000 0x8FBC0018

0.388 0x08000000 0xAFA20010

0.373 0x08000000 0x00001021

Table 6: Top 5 most probable return and
call opcodes from the OpenVPN binary
with Aarch64 architecture.
OCP-Score Call opcode Return opcode Correct

0.612 0x94000000 0xD503201F

0.478 0x94000000 0xD65F03C0

0.426 0x94000000 0xD63F0060

0.398 0x14000000 0xD63F0060

0.396 0x14000000 0x72001C1F

Table 7: Top 5 most probable return and
call opcodes from the cURL binary with
MIPS architecture.
OCP-Score Call opcode Return opcode Correct

0.389 0x08000000 0x8FBC0010

0.376 0x08000000 0x8FBC0020

0.368 0x0C000000 0x8FBC0010

0.365 0x08000000 0x8FBC0018

0.357 0x08000000 0x0320F809

Table 8: Top 5 most probable return and
call opcodes from the cURL binary with
Aarch64 architecture.
OCP-Score Call opcode Return opcode Correct

0.698 0x94000000 0xD65F03C0

0.367 0x94000000 0xA94153F3

0.353 0x14000000 0xD65F03C0

0.346 0x94000000 0x52800020

0.334 0x94000000 0xAA1303E0

As mentioned earlier, an additional binary for cURL MIPS was cross-compiled with addi-
tional compiler flags enabled, to ensure an appropriate frequency of immediate call instruc-
tions. The results for this binary, along with the x86_64 binary, which uses a variable-length
instruction format, can be seen in Tables 9 and 10, respectively.

Table 9: Top 5 most probable return
and call opcodes from the cross-compiled
cURL binary with MIPS architecture.
OCP-Score Call opcode Return opcode Correct

0.598 0x0C000000 0x03E00008

0.378 0x0C000000 0x00001025

0.345 0x0C000000 0x00002825

0.342 0x0C000000 0x24020001

0.340 0x0C000000 0x02002025

Table 10: Top 5 most probable return and
call opcodes from the cURL binary with
x86_64 architecture.
OCP-Score Call opcode Return opcode Correct

0.001 0xF00000000 0x4800000000

0.001 0xF00000000 0x8B00000000

0.001 0xF00000000 0xFF00000000

0.001 0xF00000000 0x2400000000

0.001 0xF00000000 0x8900000000

4.3 OCP-Score as a metric

Figure 5 depicts the maximum OCP-Score corresponding to various values of the instruction
length variable. The MIPS binaries exhibit a low OCP-Score for all values except the correct
one. In contrast, the Aarch64 architecture binaries display greater variability, with higher
OCP-Score for incorrect values.

This discrepancy may arise due to the differing addressing modes employed in the call
instructions. In the MIPS architecture with absolute addressing, a valid call operand must
be an address in the range between the first and last instruction, for instance, within the
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range of 0x400160 and 0x5B3290 in the case of the OpenVPN MIPS binary. Conversely, a
relative call instruction may involve lower values, which are arguably more common in noisy
data. For example, an operand value of 4 would point toward the instruction preceding the
call instruction itself.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 5: OCP-Score for different inputs of the instructionLength parameter, shown for the
cURL and OpenVPN binaries in the MIPS and Aarch64 architectures.

Figure 6 depicts the maximum OCP-Score corresponding to various values of call opcode
length. The data suggests that multiple values close to the correct value give a high OCP-
Score. The explanation for this is presented in Section 5.

Figure 7 depicts the maximum OCP-Score corresponding to various values of return opcode
length. Looking at the data it seems that the change in value is not notably significant
between different values. In general, when decreasing the return opcode length, we either see
an increase in OCP-Score due to the set of instructions considered to be a return instruction
increasing, or a decrease due to another incorrect but more frequent set pushing it out of
the return search range.

Figure 8 depicts the maximum OCP-Score corresponding to various values of PC offset. It
is important to clarify that these values do not affect the particular instructions read from
the binary file, but rather assign a specific address to each instruction. For example, with
a PC offset value of 0x1000, the first instruction would be given an address of 0x1000.
From the results, it is evident that the PC offset value has no impact on relative addressing,
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(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 6: OCP-Score for different inputs of the callOpcodeLength parameter, shown for the
cURL and OpenVPN binaries in the MIPS and Aarch64 architectures.
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(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 7: OCP-Score for different inputs of the retOpcodeLength parameter, shown for the
cURL and OpenVPN binaries in the MIPS and Aarch64 architectures.
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which aligns with expectations. However, in the context of absolute addressing in MIPS, the
correct value gives a significantly higher OCP-Score (subfigures (a) and (c)).

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 8: OCP-Score for different inputs of the pcOffset parameter, shown for the cURL and
OpenVPN binaries in the MIPS and Aarch64 architectures.

Figure 9 depicts the five highest OCP-Scores corresponding to various values of return to
function prologue distance. This value determines how far above a function prologue one
can search for a potential return instruction. From the data, we can see that a value of 2 is
necessary to correctly detect functions in MIPS, and a value of 1 is sufficient in Aarch64.
Values higher than this introduce additional noise in the data, by amplifying the OCP-Score
of incorrect opcodes.

4.4 Call graph creation

To illustrate the call graph functionality effectively, a small program is optimal as it allows
clear visualization of the distinct function nodes and edges. In the ensuing figures, different
versions of a call graph from the Chipquarium program are presented. Figure 10 depicts
the call graph derived from inspecting the functions and function calls in the source code.
Figure 11 represents the same graph, with the first five functions merged into one, and Figure
12 presents the call graph as generated by the developed program. Both Figure 11 and 12
showcase identical call graphs, albeit rendered via different graph engines. The rationale
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(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 9: OCP-Score for different inputs of the returnToFunctionPrologueDistance para-
meter, shown for the cURL and OpenVPN binaries in the MIPS and Aarch64 architectures.
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behind the merging is due to undetected functions, and will be discussed further in Section
5.

Figure 10: Call graph of the Chipquarium binary hand-crafted from the source code.

Figure 11: Call graph of the Chipquarium binary hand-crafted from the source code with
the first five functions merged into one.

Figure 12: Call graph of the Chipquarium binary as generated by our approach.

5 Discussion

The results presented in the previous section illustrate the application of the OCP-Score,
the accuracy of the opcode detection, and the correctness of the created call graph. In this
section, we will discuss these results and how they address the research questions.

Starting with the analysis of opcode detection, we can observe that given the binary file
has certain properties, such as fixed length instruction format and a significant quantity of
return and absolute or relative call instructions, one can effectively distinguish the return and
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call opcodes from the rest of the instructions. Conversely, a lack of absolute or relative call
instructions or a non-fixed length instruction format causes the result to be inconclusive.
Therefore, in response to RQ1: it is feasible – given certain properties and parameters –
to identify the correct call and return instruction. If the results from the analysed binary
are inconclusive, this may also provide valuable insight to the reverse engineer: either the
provided parameters are incorrect, or the properties of the binary are not what is expected,
which can guide subsequent analysis.

An interesting observation from the Aarch64 OpenVPN binary in Table 6, was the low
frequency of return instruction. However, the program contained a disproportionately high
amount of NOP instructions, often found in function epilogues. These instructions have the
unique property that they often occur successively, usually more than 3 times. This pattern
should make them detectable, and a further improvement to the heuristic approach described
in this paper could be to discard them as candidates for call and return instructions, reducing
noise in the resulting ranking.

In order to address RQ2, an analysis of the OCP-Score was conducted to determine the
effectiveness and limitations of the approach. This analysis iterated over a selection of para-
meters examining its sensitivity to noise and its impact on the output. Figure 5 presented
how the highest OCP-Score differed with different values for the instruction length para-
meter. This parameter is unique in that changing its values changes how instructions are
extracted, and each value gives a unique output. All values but the correct one generates
a list of instructions that is essentially a pseudo-random combination of bits. Out of the
68 total iterations, the OCP-Score was dominant in the four cases where the correct value
was chosen for the parameter. This result strengthens the viability and usability of the
OCP-Score, indicating that it remains robust against random data.

When iterating over different call opcode lengths, we observe that multiple values resulted
in a high OCP-Score. This can be attributed to the fact that the most significant bits of
the operand rarely hold information. For instance, for absolute calls and positive relative
calls, the most significant bits are usually 0, while for negative relative calls, the value is
1, due to it being a signed integer. An interesting consequence of this is that increasing
the call opcode length to a value such as 8 would split the positive and negative relative
call instructions into two distinct opcodes, where one of them could have a higher OCP-
Score than the correct call opcode with a length of 6. This is where the use of the approach
combined with manual inspection would prove useful. An experienced reverse engineer could
inspect the instructions and deduce that the value of the operand is a signed integer, and
identify the correct call opcode length.

Other parameters such as returnToFunctionPrologueDistance seen in Figure 9, callCan-
didateRange and retCandidateRange require a minimal value to correctly identify the
call and return opcodes, but increasing it further would only increase the noise in the res-
ulting output. As an example of this, setting the returnToFunctionPrologueDistance
parameter to a high value would give the branch instruction an OCP-Score similar to the
call instruction, since the likelihood of there being a return instruction in any of the in-scope
instructions preceding the branch target is very high. Increasing the range of the other two
parameters also increases the likelihood of noise in the data, due to increased search space.

The rationale for developing the OCP-Score was twofold: 1) to present an intuitive ranking
of the most probable candidates, and 2) to have a simple scalar value that can be quickly
referenced by the reverse engineer. Nonetheless, it is important to be aware of the limit-
ations of the value, and use it in conjunction with a manual inspection of the binary, the
outputted call graph, and other analyses, for a better and more complete understanding. For
instance, an arbitrary instruction that only occurs a few times, where the presumed operand
would target an instruction with a return statement preceding it, would output a very high
OCP-Score. However, an experienced user would notice that due to the infrequency of the

18



instruction, it is either not likely to be a call instruction, or at the very least the lack of data
points renders it inconclusive.

The final analysis examined the call graphs generated from the Chipquarium binary. The
analysis revealed that the generated call graph was identical to the hand-crafted call graph,
provided that the first 5 functions were merged into a single function. This illustrates the
main limitation our approach has with generating call graphs: if a function never gets called,
the heuristic apparoch will not identify it as a function. There are potential ways to remedy
this, as most architectures have a distinct function prologue, often involving stack opera-
tions. Assuming the approach has accurately identified most of the function prologues, the
remaining functions could potentially be identified using techniques such as machine learning
or pattern matching.

The results and analysis over multiple architectures and binaries demonstrates the effect-
iveness of the presented heuristic approach. We are confident that it can serve as a useful
tool to help reverse engineers in the process of analysing binary programs from unknown
instruction set architectures, and fills a much-needed gap in the current research. Despite
the effectiveness of the heuristic approach, it is important to be aware of its limitations and
to use it in combination with manual inspection and other techniques, for the best overall
results.

6 Conclusion

The primary objective of this research was aimed at reducing the effort of reverse engineering
binaries from unknown instruction set architectures. The results and discussion focused on
evaluating key properties of the heuristic approach including opcode detection and the OCP-
Score.

The approach is effective when the binary files align with particular properties such as
a fixed-length instruction format and the presence of return and absolute or relative call
instructions. The accuracy of opcode detection and the robustness of the OCP-Score in
dealing with noisy data were notable outcomes of this study.z

However, several limitations were also found and discussed, most notably that variable-
length instructions are not supported as seen with the x86_64 architecture. Furthermore,
it was discussed that an integrated approach, incorporating both automatic processing and
manual inspection, is both beneficial and necessary for an optimal result.

Regarding future work, several areas have been identified. First, support for variable-length
instructions would enable the method to support a wider variety of unknown ISAs. Next,
functionality to detect specific instructions such as NOPs could further reduce noise. Ad-
ditionally, it was found that branch instructions were often detected as the second most
probable call opcode, and a potential improvement would be to detect and include informa-
tion on such branch instructions. Identification of uncalled functions via prologues/epilogues
matching would improve binary code coverage. Lastly, evaluation on a larger dataset of bin-
ary programs would help generate a clearer picture of performance over a wider variety of
ISAs.
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