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Pelvic PET/MR attenuation
correction in the image space
using deep learning
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Live Eikenes1, Tone Frost Bathen1,2 and Mattijs Elschot1,2

1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology,
Trondheim, Norway, 2Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim
University Hospital, Trondheim, Norway
Introduction: The five-class Dixon-based PET/MR attenuation correction (AC)

model, which adds bone information to the four-class model by registering

major bones from a bone atlas, has been shown to be error-prone. In this study,

we introduce a novel method of accounting for bone in pelvic PET/MR AC by

directly predicting the errors in the PET image space caused by the lack of bone

in four-class Dixon-based attenuation correction.

Methods: A convolutional neural network was trained to predict the four-class

AC error map relative to CT-based attenuation correction. Dixon MR images and

the four-class attenuation correction µ-map were used as input to the models.

CT and PET/MR examinations for 22 patients ([18F]FDG) were used for training

and validation, and 17 patients were used for testing (6 [18F]PSMA-1007 and 11

[68Ga]Ga-PSMA-11). A quantitative analysis of PSMA uptake using voxel- and

lesion-based error metrics was used to assess performance.

Results: In the voxel-based analysis, the proposed model reduced the median

root mean squared percentage error from 12.1% and 8.6% for the four- and five-

class Dixon-based AC methods, respectively, to 6.2%. The median absolute

percentage error in the maximum standardized uptake value (SUVmax) in bone

lesions improved from 20.0% and 7.0% for four- and five-class Dixon-based AC

methods to 3.8%.

Conclusion: The proposed method reduces the voxel-based error and SUVmax

errors in bone lesions when compared to the four- and five-class Dixon-based

AC models.
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Abbreviations: AC, attenuation correction; LAC, linear attenuation coefficient; MAE, mean absolute error;

MAPE, mean absolute percentage error; PET4C, PET images reconstructed using four-class Dixon-based µ-

map; PET5C, PET images reconstructed using five-class Dixon-based µ-map with bone registered from bone

atlas; PETMR+CT, PET images reconstructed using four-class Dixon-based µ-map with bone information from

CT; PETcor, reconstructed PET4C corrected using the proposed method; PI, postinjection time; RMSPE, root-

mean-squared percentage error
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1 Introduction

The advent of prostate-specific membrane antigen (PSMA)

tracers has led to the increasing adoption of PET as the modality

of choice in diagnosing recurrent prostate cancer (1). For this

patient group, [68Ga]GaPSMA-11 PET/MR has been shown to

have similar diagnostic performance to [68Ga]Ga-PSMA-11 PET/

CT in nodal and osseous metastasis (2–4) and superior performance

in the detection of local recurrences due to the higher soft-tissue

contrast provided by MR (2, 5). However, attenuation correction

(AC), which is the most important correction required for

quantitatively accurate PET imaging, remains a challenge in PET/

MR imaging (6–8).

For PET/CT, the contrast of the CT images is dependent on the

electron density of the imaged tissue, which in turn is related to the

linear attenuation coefficient (LAC) of the PET photons (6, 9). A

piecewise linear transformation of the CT Hounsfield units can be

used to estimate the LAC at the PET photon energy of 511 keV (10).

This approach is widely accepted as AC for PET/CT in clinical

practice (6, 11). Since the signal in MR comes from proton densities

and tissue relaxation times, no such straightforward relationship

between the MR intensity values and LAC at the PET photon energy

exists (6, 9, 11).

In current clinical practice, whole-body PET/MR AC is typically

derived from Dixon MR sequences. These sequences are time-

efficient to acquire and are available in all commercially available

clinical PET/MR scanners (12). In four-class Dixon-based AC,

Dixon MR images are segmented into four components: fat, lung,

soft tissue, and background air, and each component is

subsequently assigned a respective predefined LAC (13). Bone,

although highly attenuating, is not accounted for in this four-class

attenuation correction model. Disregarding the bone can lead to an

underestimation of the standardized uptake values in and near the

bone. For the pelvic region in particular, errors as large as 30% have

been found in the most impacted bone lesions (14). In the staging of

prostate cancer recurrence after definitive therapy, bone lesions are

also fairly common and can be expected in more than 20% of the

cases (15). In restaging after salvage radiotherapy, bone lesions are

even more common and are observed in as many as 45% of

cases (16).

The short T2* relaxation times and low proton density of

cortical bone cause the MR signal to decay quickly in bone tissue

(17) and make bone hard to distinguish from air in conventional

MR images. Thus, in the four-class Dixon-based AC model, bone is

classified as soft tissue. To tackle this issue, Paulus et al. (18)

proposed the five-class Dixon-based AC model. This model is an

atlas-based approach for whole-body PET AC based on individual

registration of the major bones (skull, femur, hips, and spine,

including sacrum) from a bone atlas consisting of paired Dixon

MR images and bone masks. However, this method is prone to

registration errors and misses bones entirely in some cases (19, 20).

In a recent retrospective study of 200 patients, it was advised not to

use this form of AC for PSMA PET/MR without great caution and

thorough inspection of the resulting µ-maps (20).
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Several deep learning-based approaches have also been

suggested to improve AC in PET/MR. These approaches can

broadly be categorized into those that only use the Dixon images

(7, 21), those that require other MR sequences than the standard

Dixon images (22–25), and approaches that only use the PET data

(26). A different way to categorize these approaches is by whether

their goal is to create a pseudo-CT image or a µ-map (21–23, 25, 27)

or to directly correct or predict the corrected PET image itself (26).

An obvious limitation of the acquisition of additional MR

sequences for AC purposes is that it requires additional scan

time. Approaches that rely on the PET data itself as input data,

either for µ-map prediction or for direct prediction of the corrected

PET image itself, are dependent on the tracer for which the model is

trained. These models are thus not directly applicable to multiple

tracers without retraining the model.

We introduce a novel, deep learning-based approach to

improving AC in pelvic PET/MR acquisitions. The proposed

method aims to directly correct the errors in the PET images

caused by bones not being included in the four-class AC model

rather than predicting new µ-maps. For this purpose, a voxel-wise

correction map is predicted by a convolutional neural network

using Dixon MR and the four-class µ-map as input. The predicted

correction map can subsequently be applied as a postprocessing

step directly in the PET image space to correct PET images

reconstructed with the four-class µ-map without re-

reconstruction of the images. Additionally, the proposed model

requires no additional sequences beyond the standard Dixon MR

images and does not require retraining to be used with multiple

tracers. In this work, we evaluated the quantitative impact of the

proposed method on PSMA uptake in the pelvic region of patients

suspected of recurrence of prostate cancer.
2 Materials and methods

2.1 Patient selection and data acquisition

This study included 49 patients who underwent same-day PET/

CT and PET/MR procedures following a single tracer injection. The

included cohort consisted of male patients with suspicion of

lymphoma and lung cancer scanned with [18F]FDG (FDG), which

was used for training and validation of the proposedmodel. A separate

cohort with patients suspected of recurrence of prostate cancer after

radical treatment scanned with [68Ga]Ga-PSMA-11 or [18F]PSMA-

1007 was used as the test set. The PET acquisitions included one to five

bed positions, where data were acquired for 5–10 min per bed.

Patients with sphincter pumps and metal implants were excluded,

as were those with imperfect coregistration between MR and CT.

PET and MR images were acquired on a 3T Biograph mMR

PET/MR scanner (Siemens Healthineers, Erlangen, Germany,

updates MR B20P and MR E11). A standard Dixon sequence was

acquired for attenuation correction purposes. The scan parameters

and resolution of the Dixon series varied within the dataset. The

parameters of the Dixon series are summarized in Table 1.
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Low-dose CT images were acquired at a Biograph64 PET/CT

scanner (Siemens Healthineers, Erlangen, Germany) using adaptive

exposure control (tube voltage: 120 kV, peak and tube current

median: 34.8, range: 17–52, slice thickness: 3 mm, matrix: 512 ×

512, and pixel spacing: 1.5 mm × 1.5 mm). The CT images were

acquired arms-up as opposed to the MR images. The PET images

from the PET/CT examination were not used in this study.
2.2 µ-Map generation

To generate the reference standard µ-map, the CT images were

first registered to the Dixon MR images with the Elastix registration

toolbox (28, 29) using a composite registration scheme consisting of

a rigid and a deformable stage (Supplementary Section 1). To obtain

an accurate registration between CT and MR, arms were masked

out from the MR images and corresponding four-class µ-maps.

After the registration, the CT Hounsfield unit values were scaled to

their corresponding LAC at 511 keV according to parameters by

Burger et al. (10).

Due to the difficulty of attaining perfect coregistration in soft

tissue and bone simultaneously, only the bone information was

transferred into the Dixon four-class µ-map from the scanner

console to generate the reference standard µ-map image as

opposed to using a scaled registered CT directly. Bone

information was defined as all voxels within the CT image with a

LAC of >0.1 cm−1. This approach is similar to Bradshaw et al. (25),

who also used MR-based AC for the soft tissue classes and

coregistered bone information from CT images to form the

reference standard µ-map. The CT-to-MR coregistration of each

case was closely examined, and only images found to perform well

upon visual inspection were kept in the dataset. The bone

information was only inserted in a mask covering the pelvic

region, which was defined as all slices from approximately the

upper thighs to approximately vertebrae L2 of the lumbar spine.
2.3 PET reconstruction

PET reconstructions were performed using the Siemens

proprietary offline PET reconstruction tools (E7tools, Siemens

Healthineers, Erlangen, Germany) or at the scanner console with

the following reconstruction settings: ordinary Poisson ordered-

subset expectation-maximization algorithm with three iterations, 21

subsets, and a 4-mm Gaussian postreconstruction filter with

resolution modeling included in the reconstruction (PSF). The
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PET volumes were reconstructed with a 344 × 344 matrix with an

in-plane resolution of 2.1 mm × 2.1 mm and a slice thickness of 2.0

mm. Absolute scaling (30) was used for scatter correction in

patients imaged with [68Ga]Ga-PSMA-11, and relative scaling was

used for [18F]PSMA-1007 images and FDG images (31).
2.4 Correction method

A deep convolutional neural network was trained to predict the

correction map between the PET images reconstructed using the

reference standard µ-map, referred to as PETCT+MR, and the PET

images reconstructed using the Dixon-based four-class µ-map,

PET4C. The correction map was calculated as shown in Eq (1)

For more details, see Supplementary Section 2.

Correction map  =
PET4C−PETCT+MR

PET4C
(1)

The correction map was only estimated within the mask

covering the pelvic region. Dixon in-phase, Dixon out-of-phase,

and the four-class Dixon-based µ-map were used as inputs to the

network. The images were resampled to the PET image space and

min–max scaled to intensities in the range [0,1]. A threshold

intensity mask was used to set intensity values outside the body

contour to zero.

An overview of the network architecture is given in Figure 1.

The network consisted of a nine-block ResNet (33) architecture

inspired by Johnson et al. (32) and Wang et al. (35). The network

was trained using L2 loss and an Adam optimizer (36) for 100

epochs with a linearly decaying learning rate starting from epoch

50. The code for training the network and the hyperparameters used

in the final model is available on github (https://github.com/ntnu-

mr-cancer/PETMR-4CMRAC-Correction-maps).

Results for additional tested network architectures can be found

in Supplementary Section 3. The output of the network is a

predicted correction map, which is used to correct the PET4C

images by solving Eq (1). for PETCT+MR. The resulting corrected

PET image will be referred to as PETcor. An overview of the

methods from image acquisition to corrected PET images is given

in Figure 2.
2.5 Analysis and statistics

Voxel- and lesion-based analysis was performed to assess the

performance of the method. For the voxel-based analysis, only
TABLE 1 Scan parameters for the different Dixon series contained in the dataset.

Dixon series Spacing (mm) TR (ms) TE1 (ms) TE2 (ms)

1 2.1 × 2.1 × 3.0 3.8 1.2 1.2

2 1.3 × 1.3 × 3.0 3.8 1.2 2.5

3 2.1 × 2.1 × 2.6 3.8 1.2 2.5

4 2.6 × 2.6 × 3.1 3.6 1.2 2.5
fro
The enumeration of the series is arbitrary. The flip angle was 10° for all variations.
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voxels within the pelvic mask that had an activity concentration of >

300 Bq ml−1 were used in the calculation. The relative error image

(REx), defined as shown in Eq. (2),ResNet generator architecture

REx   =
Ix − IGS
IGS

(2)

Where I is the image intensity, GS represents the reference

standard PET image PETCT+MR, and x is either PET image that is

compared to the PETCT+MR (i.e., PETcor or PET4C). REx was used as

a basis to calculate the mean absolute percentage error (MAPE) and

root-mean-squared percentage error (RMSPE) that were used as

quantitative metrics in the voxel-based analysis. MAPE and RMSPE

were defined as shown in Eq. (3)

MAPE  = 1
nmask o

i∈mask

RExk k

RMSPE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
REx

+ s 2
REx

q
,

(3)

Where µREx and sREx are the mean and standard deviation, REx
and nmask are the number of voxels within the mask that satisfy the

activity concentration threshold. It is understood that the

summation in the definition of MAPE and the summations

performed in calculating µREx and sREx in RMSPE are performed

only over nmask.

To assess lesion performance, lesions were extracted from

radiology reports. The lesion performance was measured as the

relative error and MAPE of the maximum standardized uptake

values (SUVmax) of the corresponding lesions between the

PET images.

All presented values are given as medians with ranges in

brackets unless otherwise mentioned. A two-sided Wilcoxon

signed-rank test was performed to assess whether there were any

differences between RMSPE values of the PETcor image and PET

images reconstructed using four- and five-class Dixon-based AC

(PET4C and PET5C) in the test set. A test of difference was also made

for each of the tracers in the test set separately. Benjamini–
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Hochberg correction was used to correct the p-value for multiple

comparisons where applicable (37). A Mann–Whitney U test was

used to compare differences between the RMSPE of [68Ga]Ga-

PSMA-11 and [18F]PSMA-1007 images. No statistical tests were

performed for the lesion-based analysis due to the limited number

of samples. A difference was considered significant if p < 0.05

was achieved.
3 Results

From the 49 included patients, two patients were removed from

the dataset due to severe artifacts in the PET images and eight were

removed due to suboptimal coregistration between CT and MR. This

resulted in a training set consisting of 18 patients scanned with FDG,

a validation set of four patients scanned with FDG, and a test set

consisting of 17 patients scanned with [68Ga]Ga-PSMA-11 or [18F]

PSMA-1007. An overview of the dataset is presented in Table 2, and a

flow diagram of patient inclusion can be found in the Supplementary

Material (S1). From radiology reports of patients in the test set, 16

soft tissue lesions and four bone lesions were extracted.

Training the convolutional neural network took approximately

4 h on a single NVIDIA GeForce GTX 1080 Ti. An example of a

corrected PET image can be seen in Figure 3. The corrected PET

images were found to closely resemble the reference standard

PETCT+MR images.

The voxel-based RMSPE and MAPE were 12.1% [8.6%, 15.4%]

and 6.2% [4.0%, 10.3%], respectively, for the PET4C images and 8.6%

[5.3%, 11.5%] and 3.5% [2.3%, 5.1%], respectively, for the PET5C

images. In the PETcor images, the RMSPE was 6.2% [4.1%, 8.6%] and

the MAPE was 3.3% [2.3%, 4.6%]. The error in PETcor is thus

approximately reduced by half compared to the PET4C images. A

significant difference was found between the RMSPE of the PETcor

images and the PET4C images (p < 0.0001) and between PETcor

images and the PET5C images (p < 0.0001). A significant difference
FIGURE 1

The network architecture is based on ideas proposed by Johnson et al. (32). It consists of nine residual blocks (33) (ResBlocks) between a
convolutional front-end and a transposed convolutional back-end. The convolutional front-end downsamples the images to one-fourth of their
original resolution, and the transpose convolutional back-end upsamples the images to their original resolution. The figure was made using
PlotNeuralNet (34).
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TABLE 2 Summary statistics for included patients.

Fold Train Val Test Test

Tracer FDG (n = 18) FDG (n = 4) 18F-PSMA (n = 6) 68Ga-PSMA (n = 11)

PI (min) 98 [88–157] 116 [90–168] 136 [116–165] 58 [48–105]

Weight (kg) 88 [71–120] 82 [73–92] 78 [62–86] 85 [74–103]

Dose (MBq) 352 [280–478] 328 [290–368] 200 [153–218] 149 [133–157]
F
rontiers in Oncology
 05
Data is given as median values with ranges in brackets. Fold specifies which part of the data was used for training (Train), validation (Val) and testing (Test) of the model. PI = time between tracer
injection and image acquisition.
FIGURE 2

Graphical overview of the methodology from acquisition to generation of the corrected PET image (PETcor). The node labeled + refers to overwriting
linear attenuation coefficients (LAC) in the four-class Dixon-based µ-map with CT bone information scaled to LAC at 511 keV. The nodes labeled
+/-represent the creation of the correction map as specified in Eq (1), and the application of the correction map to PET reconstructed with the four-
class Dixon-based µ-map (PET4C). PETMR+CT is PET reconstructed using reference standard µ-map, which is obtained by using a four-class Dixon-
based µ-map for soft tissue and bone information from a co-registered CT image.
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was also found between the RMSPE values for [68Ga]Ga-PSMA-11

and [18F]PSMA-1007 patients individually between PETcor and both

PET4C and PET5C, as shown in Figure 4. No significant difference was

found when comparing the RMSPE of PETcor between patients

acquired with [68Ga]Ga-PSMA-11 and [18F]PSMA-1007.

The lesion performance is summarized in Table 3 and Figure 5.

Performance in soft tissue lesions improved marginally from a

MAPE of 2.9% [0.8%, 6.5%] in PET4C to 2.2% [0.1%, 8.1%] for

PETcor. For bone lesions, we observed more than a fivefold decrease

in MAPE from 20.0% [12.0%, 30.4%] in PET4C to 3.8% [1.0%, 9.2%]

in PETcor. PET5C, in comparison to the proposed model, had lower

MAPE in soft tissue lesions and higher MAPE in bone lesions.
Frontiers in Oncology 06
We observed a decrease in performance with increasing

postinjection time (PI) in the test set. In a simple linear

regression model, a significant linear trend (p < 0.05, r2 = 0.30)

was found between the voxel-based RMSPE measurements and the

PI time (see Supplementary Section 5 for further details).
4 Discussion

In this study, we propose a novel attenuation correction method

that seeks to directly correct for the errors obtained by not including

bone when using the conventional four-class Dixon-based AC. We
B C

D E F

A

FIGURE 3

The figure shows axial and coronal images of PET4C (A), PETcor (B), and PETCT (C). The PET4C error (D) is the relative error image between the PET4C
image and PETMR+CT, and the PETcor error (E) is the relative error image between PETcor and PETMR+CT. Values outside the body contour in the
relative error images are set to zero. The Dixon out-of-phase image is given as an anatomical correlate (F). A lesion located in the os pubis is
highlighted in all images.
FIGURE 4

Box-and-whisker plot of the root mean squared percentage error performance stratified by radionuclide for PET reconstructed using four- and five-
class Dixon-based attenuation correction (PET4C and PET5C) and the proposed model (PETcor). The central line within each box is the median. The
box edges extend from the 25th to the 75th percentile. Values were considered outliers if they were more than 1.5 times the interquartile ranges of
the box edges. The whiskers extend to the most extreme nonoutlier value in the data. *p < 0.05; **p < 0.01.
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show that the model reduces quantification errors in a voxel-based

analysis and in bone lesions compared to four- and five-class

Dixon-based methods. For soft tissue lesions, the performance

remains similar to that of the four-class Dixon-based AC model.

Our method can be directly applied as a correction filter in the

image space to PET4C images without the need for additional

reconstruction or the acquisition of additional MR sequences. It

can thus also be used to correct PET4C images retrospectively, as

long as Dixon MR images are available. This distinguishes it from

other models that seek to improve pseudo-CT generation. The

model also only relies on Dixon MR images, which are fast to

acquire. Furthermore, like the models that predict pseudo-CT

images from MR series (21–23, 25, 27), but unlike the models

that predict the pseudo-CT images or AC and scatter-corrected PET

directly from non-attenuation corrected PET (26, 38, 39), the

predicted correction maps are not tracer-dependent.

We observed that the proposed method is robust to variations

in tracer type and scatter correction method. The training and

validation sets consisted of FDG images, whereas the test set

consisted of [68Ga]Ga-PSMA11 and [18F]PSMA-1007 images.

Since there were no [68Ga]Ga-PSMA-11 images in the training
Frontiers in Oncology 07
data, the model had only seen images reconstructed using relative

scaling during scatter correction in training. Nevertheless, no

differences in performance were seen between [68Ga]Ga-PSMA-11

and [18F]PSMA-1007 patients in the test set.

A decrease in performance was seen with increasing PI. This

trend can be explained by the higher number of counts acquired at

lower PI, making the correction map that the model tries to predict

less noisy. All patients had PET/MR and PET/CT acquisition

performed on the same day. For around half of the patients in

the test set, the PET/CT images were acquired at what was

considered the optimal PI for the given tracer, and the PET/MR

images were acquired once the PET/CT examination was finished.

If all PET/MR had been acquired closer to the recommended PI, we

would expect to see a slight increase in performance.

Multiple other methods have been suggested for improving

PET/MR attenuation correction in the pelvic region (7, 22, 23, 25,

27). Bradshaw et al. (25) proposed a model based on the Deep

Medic CNN architecture (40). In this model, T2 and T1 Lava Flex

images were used for the prediction of pseudo-CT images, resulting

in an RMSPE of 4.9% in the reconstructed PET image. Leynes et al.

(23) used Dixon-based images and zero-echo-time images as input
TABLE 3 Lesion performance of PET images reconstructed using four- and five-class Dixon-based µ-maps (PET4C and PET5C) and PET corrected using
the proposed model (PETcor) relative to the reference standard.

Type Bone (n = 4) Soft tissue (n = 16)

Model Error

4-class Absolute percentage error 20.0% [12.0%, 30.4%] 2.9% [0.8%, 6.5%]

Relative error −20.0% [−30.4%, − 12.0%] −2.7% [−6.5%, 6.4%]

5-class Absolute percentage error 7.0% [2.1%, 23.7%] 0.9% [0.0%, 2.6%]

Relative error −7.0% [−23.7%, −2.1%] −0.5% [−2.6%, 2.5%]

Corrected Absolute percentage error 3.8% [1.0%, 9.2%] 2.2% [0.1%, 8.1%]

Relative error 1.3% [−6.0%, 9.2%] −1.9% [−8.1%, 4.4%]
Statistics are given as medians, with ranges in brackets.
FIGURE 5

Box-and-whisker plot of the mean absolute error of soft-tissue and bone lesions for PET reconstructed using four- and five-class Dixon-based
attenuation correction (PET4C and PET5C) and the proposed model (PETcor). The central line within each box is the median. The box edges extend
from the 25th to the 75th percentile. Values were considered outliers if they were more than 1.5 times the interquartile ranges of the box edges.
The whiskers extend to the most extreme nonoutlier value in the data.
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to a deep learning model based on the UNET architecture to

generate µ-maps. The resulting PET reconstruction had an

RMSPE of 2.85%. Similar to Bradshaw et al. (25), Torrado-

Carvajal et al. (7) used a UNET-like architecture to create a

pseudo-CT image using solely Dixon MR images as input. Their

approach resulted in an absolute mean relative change of 1.83%.

A different family of models is composed of models that use non-

attenuation corrected PET images as input and either the pseudo-CT

(41) or the attenuation and scatter-corrected PET as output (26, 38).

Though good performance can be obtained with these models, they

are tracer-dependent and would likely need to be retrained for

optimal performance with each new tracer. In addition, the models

proposed in the literature (26, 38, 41) have only been trained and

validated on PET/CT data so far, and their performance is yet to be

assessed using data acquired on the PET/MR system.

Though many methods have been proposed, it is difficult to

directly compare their performance. As pointed out by Lee (42),

there is substantial heterogeneity in the choice of PET

reconstruction parameters and performance metrics. There is

also no reference dataset that can be used to benchmark the

performance of different models. What is considered gold

standard AC also varies between studies. In this study, we

directly estimate the error of not including bones in the four-

class Dixon-based µ-maps. The most common is to use registered

CT images translated to LAC at 511 keV as the gold standard µ-

map. This does, however, rely on a close-to-perfect coregistration

between CT and MR images, which can be difficult to obtain in

practice (25, 43, 44). We adopted a method similar to Bradshaw

et al. (25) in which soft-tissue classes and air in the µ-map are

derived from the MR images, and bone and osseous tissues are

derived from the CT images.

A primary limitation of this study is the limited number of

patients. The training set consisted of only 18 patients, and the test

set consisted of 17 patients. Since the model was trained using a 2D

network, this still constituted a considerable number of images, but

we do not expect that the limited training set was able to capture all

the expected interpatient variability. The number of lesions was also

limited. In bone, where the model had the largest impact in our

testing, only four lesions were found.

The current method is also limited to pelvic imaging only.

Adapting to a different clinical application would require retraining

of the model. Additionally, in the current work, only a limited

subset of reconstruction parameters was used, and we did not

evaluate the robustness of the method toward changes in

reconstruction parameters. However, since the method is trained

to predict correction maps for the PET images directly, we suspect

the model to be subject to similar variability between reconstruction

parameters as SUVmax measurements themselves (45, 46). Lastly,

the model is only tested on a specific patient cohort consisting of

elderly male patients. Consequently, the model must be evaluated

on a larger and more diverse patient cohort before implementation

in clinical practice is justified.
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5 Conclusion

Direct correction of four-class Dixon-based AC PET in the

image space is a viable method for improving AC of pelvic PSMA

PET/MR imaging. The method is tracer-independent, requires only

the Dixon MR series and the four-class Dixon-based µ-map, and

can be retrospectively applied to PET data without the need for re-

reconstruction. It gives superior performance to the four- and five-

class Dixon-based AC in a voxel-based RMSPE analysis and for

quantification of bone lesion uptake.
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