
Citation: Mohamed, M.J.; Oleiwi,

B.K.; Abood, L.H.; Azar, A.T.;

Hameed, I.A. Neural Fractional

Order PID Controllers Design for

2-Link Rigid Robot Manipulator.

Fractal Fract. 2023, 7, 693. https://

doi.org/10.3390/fractalfract7090693

Academic Editor: Yongguang Yu

Received: 17 July 2023

Revised: 7 August 2023

Accepted: 21 August 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Neural Fractional Order PID Controllers Design for 2-Link
Rigid Robot Manipulator
Mohamed Jasim Mohamed 1, Bashra Kadhim Oleiwi 1, Layla H. Abood 1, Ahmad Taher Azar 2,3,4,*
and Ibrahim A. Hameed 5,*

1 Department of Control and Systems Engineering, University of Technology, Baghdad 19006, Iraq;
60098@uotechnology.edu.iq (M.J.M.); bushra.k.oleiwi@uotechnology.edu.iq (B.K.O.);
60066@uotechnology.edu.iq (L.H.A.)

2 College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3 Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh 11586, Saudi Arabia
4 Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
5 Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2,

6009 Alesund, Norway
* Correspondence: aazar@psu.edu.sa or ahmad.azar@fci.bu.edu.eg or ahmad_t_azar@ieee.org (A.T.A.);

ibib@ntnu.no (I.A.H.)

Abstract: The robotic manipulator is considered one of the complex systems that include multi-
input, multi-output, non-linearity, and highly coupled. The uncertainty in the parameters and
external disturbances have a negative influence on the performance of the system. Therefore, the
controllers that will be designed for these systems must be able to deal with these complexities and
difficulties. The Proportional, Integral, and Derivative (PID) controller is known to be simple and
well robust, while the neural network has a solid ability to map complex functions. In this paper, we
propose six control structures by combining the benefits of PID controller with integer and fractional
order and the benefits of neural networks to produce hybrid controllers for a 2-Link Rigid Robot
Manipulator (2-LRRM) handling with the problem of trajectory tracking. The Gorilla Forces Troops
Optimization algorithm (GTO) was used to tune the parameters of the proposed controller schemes
to minimize the Integral of Time Square Error (ITSE). In addition, the robustness of the performance
of the suggested control systems is tested by altering the initial position, external disturbances and
parameters and carried out using MATLAB. The best performance of the proposed controllers was
the Neural Network Fractional Order Proportional Integral Derivative Controller (NNFOPID).

Keywords: neural fractional order PID controllers; self-tuning PID controller; neural network; PID
and FOPID controllers; gorilla troops optimizer (GTO); robotic manipulator; 2-link rigid robot
manipulator

1. Introduction

The reduction of human efforts became the matter behind all inventions in technology.
The computer invention led to various boundaries of thought, giving various choices that
gave optimistic solutions in different fields. One such important solution in getting rid
of the intervention done by humans in different activities was the robot invention [1].
Robotics is the science responsible for its simulation, design, and control. Today robots
are available for different uses in life. It has become an important tool to people in many
industrial and daily life missions. Different applications appeared, which include medical,
industrial, educational, and military use [2]. Any system during its work may face too many
disturbances, even robots, various uncertainties, changes in its parameters, and nonlinearity
problems. Due to all these reasons, classical controller like proportional-integral-derivative
(PID) is not a good choice for achieving simultaneous effective response for tracking
and monitoring the desired command. To fix all these drawbacks of classical control
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techniques, nonlinear control systems have been adopted [3]. Different researchers have
proposed different controllers for a 2-LRRM. In [4], a simple design of RBFNN is adopted
to estimate the lumped uncertainties. It is unlike others designed based on the existing
barrier Lyapunov function. The control scheme is proposed based on the assumption of
using the case when the violation of constraint is happened and is taken into consideration.
A controller design for the robot manipulator is utilized to solve the constraints of output
error and control input saturation by removing the feasibility condition that appeared in
most other controllers. The control scheme must consider the assumption that due to the
saturation of control input, the violation constraint may happen. In [5], a neural network
was adopted as a neuro controller used for enhancing the performance of tracking for the
robot manipulator combined with a sliding mode controller design. Depending on the non-
model-based configuration, the selection of the nonlinear gain value must be large enough
to save system stability. In [6], a modification in neural network structure is suggested
as a novel tuning method used to calculate the gains of the used controller. Also, a new
modulation method is presented to enhance the exploration step of the NNA without using
initial values. The proposed algorithm is used to select the proportional integral derivative
(PID) controller gain values. Also, an important contribution is achieved by adopting a
new fitness function to ensure the improvement in the settling time and the overshoot of
all arms output at the same time. In [7], a combination of some controllers used with a
fuzzy logic technique such as PD, PID, and calculated torque control was suggested. A
comparison with classical controllers is done. The fuzzy controller reflects good results
in performance and accuracy in enhancing system tracking ability. The main points of
this study were the system robustness and stability. Also, the values of the gain used are
calculated without using any tuning method, but if we see in [8], a fuzzy-neural-network
PID (FNN-PID) structure is proposed to tune the PID controller gains efficiently. In [9],
an efficient type-2 adaptive method has been presented to ensure the best tracking ability
of a 3-DOF manipulator robot as an industrial robot in a situation with faults. For fuzzy
type-2 values online updating, a Lyapunov stability concept is used. In [10], a Fractional
adaptive PID (FPID) controller was presented. The stability of a closed-loop FPID control
system can be guaranteed under external disturbance by using the Lyapunov approach
with a supervisory controller. It is found that when error signals in the learning stage
area are bounded, the trajectory of the robot converges to the desired one asymptotically.
In [11], a conventional PID controller and a robust nonlinear sliding mode control are
introduced to control the motion of the end effector at specific positions for pick and
place tasks. A comparative study is done, and the results show that Sliding mode control
surpasses PID control with minimum tracking error. In [12], an optimal PID control law
is obtained from the proposed (ABC) algorithm and applied to the robotic system. The
designed controller optimizes the trajectory of the robot’s end effector for a time-variant
input and makes the robot robust in the presence of external disturbance. The results of the
suggested control method reflect the ability to deliver an error with a small value even if
there are payload changes or actuator defects. In [13], a fractional-order fuzzy-based PID
controller was presented with the Ant lion optimization algorithm for controlling buck
converter. Using fractional calculus with fuzzy logic improves the system response stability
and robustness. Then a comparison with two controllers (PID-FOPID) tuned with the
PSO algorithm emphasizes the best-proposed controller efficiency than other controllers,
while in [14], A sigmoid PID (SPID) controller with a nonlinear sine cosine optimization
method is suggested for controlling the terminal voltage in the automatic voltage regulator,
this type of controller offer best and stable behavior even when a robustness analysis is
done. In [15], an adaptive PID was adopted to control a MAV quadrotor model based on
a second-order sliding mode for tuning variables. Then, to reduce the chattering issue in
SMC, a fuzzy compensator is suggested, and its stability is tested based on the Lyapunov
theorem. In [16], the author presents a PID and fuzzy logic controller for improving the
trajectory tracking of Mecanum-wheeled mobile robots. The geometric modeling method
is used to infer the kinematic error variables. In [17], a data-driven neuroendocrine-PID is
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adopted with the benefits of using an adaptive safe experimentation dynamics algorithm to
enhance a MIMO system’s behavior by minimizing the error value and the fitness function
used, which reflects its accuracy and stability. Previous studies showed that all or most
of the studies did not solve the signal chattering in the control signal and dealt with the
proposed controllers individually. In this paper, six controller structures are designed
to successfully solve the signal chattering in the control signal and control a nonlinear,
coupled, multi-input, multi-output 2-LRRM system. Moreover, a hybrid controller was
proposed between the PID and neural network to achieve the requirements, and it was
shown that it is the best among the proposed controllers. Different control schemes are
proposed to solve the 2-link rigid robot manipulator control, and the GTO algorithm is
used to calculate the best values of the controller’s gains. The obtained results have been
presented, and a comparison between all suggested controllers has been done.

The paper contributions are explained in points below:

1. Six controller structures are suggested by combining the proportional, integral, and
derivate operations and neural networks.

2. Suggest a new objective function to make the tuning process produces a controller
that has a minimum chattering in the control signal.

3. Applying a strong competition between the proposed controllers, especially for ro-
bustness, among the proposed controllers that integrate the specifications of the PID
controller and neural networks.

The rest study sections are listed here. In Section 2, the system modeling is presented. In
Section 3, the proposed controller structures are explained. In Section 4, the GTO algorithm
is explained. The results and conclusion sections are presented in Sections 5 and 6.

2. Dynamic Model of 2-LRRM

As shown in Figure 1, the 2-LRRM comprises two links with lengths l1 and l2 , and
their centre of masses is m1 and m2 respectively, which are determined at the distal ends
of the links, to produce the control torque at joints A and B, DC motors will be utilized
to predict the links angular positions θ1 and θ2 and velocities

.
θ1 and

.
θ2, the encoders

will be applied [18]. The dynamic equation of motion in robotics is utilized for setting up
the equations of the controller. Actuators are used for the generation of the torque values
that are necessary for the dynamic motion of the manipulator. The correlation between
input torques and components configurations’ time change rates of the manipulator is
concerned with deriving calculations of the manipulator motion due to the moments, and
forces applied to it. As a consequence, the manipulator robot dynamic modelling contains
the determination of functions that determine forces applying on structures, locations of
the joint, velocities, and accelerations [19].
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The x-position and y-position equations for m1 are expressed by:

x1 = l1 cos (θ1) (1)

y1 = l1 sin (θ1) (2)

Likewise, the x position and y position equations of m2 are defined by

x2 = l1 cos (θ1) + l2 cos (θ1 + θ2) (3)

y2 = l1 sin (θ1) + l2 sin (θ1 + θ2) (4)

The kinetic energy is written as:

KE =
1
2

m1

( .
x2

1 +
.
y2

1

)
+

1
2

m2

( .
x2

2 +
.
y2

2

)
(5)

And the potential energy can be given as:

PE = m1 g l1 sin(θ1) + m2 g(l1 sin(θ1) + l2 sin(θ1 + θ2)) (6)

Next, by Lagrange Dynamic, the Lagrangian form can be expressed as:

L = KE − PE (7)

The Euler-Lagrange Equation can be defined by:

d
dt

[
∂L

∂
.
θi

]
− ∂L

∂θi
= Fθi (8)

where, Fθi represents the torque on i’th link. Finally, according to the Lagrangian equation,
the dynamics of the manipulator can be written as the two coupled nonlinear differential
equations [20]:

τ1 =
[
(m1 + m2)l21 + m2l22 + 2m2l1l2 cos(θ2)]

..
θ1 + [m2l22 + m2l1l2 cos(θ2)

] ..
θ2

−m2l1l2

(
2

.
θ1

.
θ2 +

.
θ

2
2

)
sin(θ2) + (m1 + m2)gl1 cos(θ1) + m2gl2 cos(θ1 + θ2)

(9)

τ2 =
[
m2l22 + m2l1l2 cos(θ2

)
]

..
θ1 + m2l22

..
θ2 + m2l1l2

.
θ

2
1 sin(θ2) + m2gl2 cos(θ1 + θ2) (10)

The dynamics of this manipulator are represented in standard form

M(θ)
..
θ+ V

(
θ,

.
θ
)
+ g(θ) = τ (11)

With V
(
θ,

.
θ
)

represents the Coriolis/centripetal vector, M(θ) represents the inertia
matrix, and g(θ) equals the gravity vector. As can be noted that M(θ) is symmetric.

M =

[
M11 M12
M21 M22

]
(12)

M11 = (m1 + m2)l21 + m2l22 + 2m2l1l2 cos(θ2) (13)

M12 = m2l22 + m2l1l2 cos(θ2) (14)
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M12M21& M22 m2l22 (15)

V represents the Coriolis and centrifugal matrix, which can be expressed by

V =

[
V1
V2

]
(16)

V1 = −m2l1l2

(
2

.
θ1

.
θ2 +

.
θ

2
2

)
sin(θ2) (17)

V2 = m2l1l2
.
θ

2
1 sin(θ2) (18)

The gravity vector g = [ g12 g21 ]
T is given by:

g12 = (m1 + m2)gl1 cos(θ1) + m2gl2 cos(θ1 + θ2) (19)

g21 = m2gl2 cos(θ1 + θ2) (20)

The nominal values of the parameters for the model are shown in Table 1 [19].

Table 1. The nominal parameters of 2-LRRM.

Parameters Nominal Value

m1 0.1 kg

m2 0.1 kg

l1 0.8 m

l2 0.4 m

g 9.81 m/s2

3. Artificial Gorilla Troops Optimizer (GTO)

An optimization algorithm provides a smart solution to fix different problems because,
in real life, the intelligence in the collective behavior of natural organisms has been studied
and converted into simple and smart equations [21–23]. In this study, an artificial GTO
is suggested for tuning the controller’s parameters. Gorilla animals arrange their lives as
troops, and many adult females with their children with adult males with silver-coloured
hair. They call him silverback gorilla. Each male and female try to go away from their place
for another place. Males want to leave their places and be within another group by drawing
females’ attention to a new troop, while others are still not leaving the same place from
their birth and being in the same troop. When the leader dies, the populations available
try to control others or handle the silverback to lead them. At this point, the chosen leader
is considered the suitable choice, and all other males obey him and leave away from the
worst choice. Two phases will describe this algorithm as indicated below [24,25].

3.1. Exploration Phase

In this phase, each one will be considered a competitor to the best decision from the
silverback gorilla. Three decisions can be taken in this phase and are appeared in Equation
(21), the first decision will increase the algorithm exploration by leaving to an undefined
or unknown position, and the other one will make balance behaviour by leaving to a new



Fractal Fract. 2023, 7, 693 6 of 24

group while the final choice will raise GTO capability for finding many positions regarded
as a known ones.

GX(t + 1) =


(UL − LL)r1 + LL, if rand < P

(r2 − a)Xr(t) + L × H, if rand ≥ 0.5
X(i)− L(L(X(t)− GXr(t)) + r3(X(t)− GXr(t))), if rand < 0.5

(21)

GX(t + 1) is a nominee in the next iteration. Xr (t) parameter is used for anyone in the
troop nominees taken randomly from them and GXr (t) will be the position of that random
one. UL and LL are the upper and lower variables levels, r1, r2 and r3 are assumed to be
random items [0] to [1]. The variables a, L and H is calculated below:

a = C × (1 − It/MaxIt) (22)

C = cos(2 × r4) + 1 (23)

L = c × l (24)

H = Z × X(t) (25)

Z = [−a ,a], (26)

3.2. Exploitation Phase

Two decisions will be taken in this phase. One decision is to obey the silverback
gorilla, the leader, while the other is to be a competitor with the adult ones. Each decision is
selected by comparing with the value calculated in Equation (26), if a ≥ W, the first decision
is taken, while if a < W second decision will be taken. W is a predetermined parameter
given before starting.

3.2.1. Following the Adult Silverback Leader

Gorilla: At this point, the silverback will be the leader, and others will follow his
decisions to search their food places. It is taken if a ≥ w and shown clearly in the equation
below:

GX(t + 1) = L × M × ( X(t)− Xsilverback ) + X(t) (27)

Xsilverback is the leader’s place, and X(t) is the gorilla location; the variables L and M
are chosen.

3.2.2. Competition for Adult Females

In this case, the decision will take as young males have adulthood age; the struggle is
severe when they attack each other to initiate new families with adult females. Decision
now is taken when a < w as can be described clearly in the equation below:

GX(i) = Xsilverback − (Xsilverback × R − X(t)× R)× A, (28)

R = 2 × r5 − 1, (29)

A = β× E, (30)

E =

{
N1 = rand ≥ 0.5
N2 = rand < 0.5

(31)
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where “R” explain the impact force, which is found by solving Equation (23), r5 is a value
taken randomly between [0, 1] as struggle happens, Equation (26) was adopted to find the
violence value during struggles, and A is the vector used for utilizing to solve the violence
level by using Equation (24). Several parameters will be preset previously, like a, β, and
E, which are regarded as an effect of violence on choice levels. The fitness function of all
GX (t) is found, as the fitness function of GX (t) < X (t), the GX (t) will use the X (t) as an
optimal solution, the best decision taken from the troop is taken as a new silverback leader.
Figure 2 below explains all algorithm steps.
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4. The Structures of the Proposed Controllers

In this section, we introduce details information about the structures of the proposed
hybrid neural controllers. Here we consider the problem of controlling one variable or the
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system is of type a Single Input a Single Output (SISO) system. Therefore, the following
control structures represent part of the controller unit in a Multi-Input Multi-Output
(MIMO) system.

4.1. Conventional PID Controller (Con-PID)

PID controller is the major widely proposed prevalent controller. It consists of three
actions: proportional action, integral action, and derivative action. The proportional action
reduces the rise time of the response, while the Integral action improves steady-state error,
and the derivative action reduces the overshoot and improves the stability margin [26,27].
Since the derivative term is sensitive to measurement noise, a filter is added to reduce the
effect of measurement noise. The derivative term without a filter may amplify the noise
signal in the controller output and causes loss of control. A typical PID controller transfer
function with the filter is indicated in Equation (32).

G(s)PID = Kp + Ki
1
s
+ Kds

N
s + N

(32)

The three gains Kp , Ki and Kd determine the effect of these proportional, integral,
and derivative actions, respectively, and N is the filter’s corner frequency. Therefore, the
gains Kp , Ki, Kd, and N parameters are needed to be tuned to realize a certain objective.
The conventional PID controller structure with filter is shown in Figure 3, and the block
diagram of the feedback control system with PID or FOPID controller is shown in Figure 4.
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4.2. Conventional Fractional Order PID Controller (Con-FOPID)

This controller type is regarded as an enhanced scheme of a conventional PID controller
because the values of order in the derivative and integral parts are fractional numbers
instead of integer numbers [28,29]. These two fractional parameters are µ and λ; accordingly,
due to these parameters and the N parameter of the filter, the controller needs to tune six
parameters instead of four in case of using the filter. The additional tuned parameters
will save robustness in the system’s behavior and improve the performance. The FOPID
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controller structure is shown in Figure 5, and the transfer function of the FOPID controller
is shown in Equation (33).

G(s)FOPID = Kp + Ki
1

S λ
+ Kdsµ N

s + N
(33)Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 24 
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The tuned parameters of the FOPID controller will be
(
Kp, Ki, Kd, λ, µ, N

)
[30]. If

λ = µ = 1, a conventional PID is obtained, while if one is 1 and the other is 0, it will be a
conventional PI controller (if λ = 1, µ = 0) or conventional PD controller (if λ = 0, µ = 1).
There are numerous methods to implement fractional differentiation and integration [31–33].
Oustaloup’s recursive approximation filter is widely used to approximate the fractional
order transfer function, which is used in this work [34]. The feedback control system with
the FOPID controller is shown in Figure 5 [35].

4.3. Self-Tuning Neural Network PID Controller (STNN-PID)

The self-tuning neural network PID controller consists of two main parts: the first
part is a feed-forward NN unit used for auto-tuning the parameters (Kp, Ki , Kd) of the
PID controller, and the second part is the three operations (proportional, integral, and
derivative) of the conventional PID controller applied to the error between the desired and
the actual control variable to produce the control signal. The conventional PID controller
receives the values of its three parameters from the neural network at each sampling time.
Neural network training is occurred once at the design step according to a performance
index then the neural network model still the same during the operation. The neural
network model architecture will be fixed before training [36,37].

The structure of the neural network part of the controller is illustrated in Figure 6. The
input layer consists of three input neurons as follows; θri is the required angular position
of ith link, θai is the actual angular position of the ith link, and ei is the error between
the required and actual angular position of the ith link. The hidden layer consists of ten
neurons, each hidden neuron connected with all input neurons via a weight value for
each connection [38]. The activation function H(Σ) is applied to the sum of these three
connections for each hidden neuron. The activation function is depicted in Equation (34).

H(Σ) =
(

2 − Σ2
)
·e−Σ2

(34)

The output layer consists of three neurons connected to all ten hidden neurons via
a weight value for each connection. The output of each output neuron is the sum of all
its connections with hidden neurons. The output of each output neuron represents one
parameter value of the PID controller and is fed to the conventional PID controller. It is
necessary to mention here that the corner frequency parameter N of the filter is tuned
offline like the neural network parameters and is not auto-tuning parameter. The equation
of the conventional PID controller is shown in Equations (32) and (35)–(38). The feedback
control system with a self-tuning PID controller is shown in Figure 7.
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4.4. Self-Tuning Neural Network FOPID Controller (STNN-FOPID)

The self-tuning neural network FOPID controller also consists of two main parts. The
first part is a feed-forward neural network with the following features; the input layer,
the hidden layer, the connections between neurons, and the type of activation function
are the same as those used in the STNN-PID controller. The only difference from the
neural network used in STNN-PID is the output layer. This layer consists of five neurons
instead of three because of the need for five parameters (Kp, Ki, Kd, λ, µ) to tune the FOPID
controller. In other words, the additional neurons in the output layer or additional auto-
tuning parameters are needed to tune the fractional order parameters λ and µ of integration
and differentiation, respectively while the parameter N of the filter is tuned offline with
NN parameters. The structure of the STNN-FOPID controller is shown in Figure 8.

The second part is the three operations (proportional, fractional integral, and fractional
derivative) of the FOPID controller applied to the error between the desired and the
actual control variable to produce the control signal. The FOPID controller receives five
parameters from the neural network at each sampling time. The equation of the FOPID
controller is illustrated in Equations (33) and (35)–(39). The block diagram of the feedback
control system with a self-tuning neural network STNN-FOPID controller is shown in
Figure 9.
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4.5. Neural Network PID Controller (NN-PID)

The structure of this proposed hybrid controller NN-PID is shown in Figure 10. where
in conventional PID controller λ = 1 and µ = 1. The structure depicts that the input layer
consists of one neuron. This neuron represents the error e(k) between the desired and actual
output of the controlled variable. The first hidden layer consists of three neurons. The
input-output functions of these neurons are chosen according to the PID control law, while
the input to these nodes is the error e(k) multiplied by the weight of connection for each
neuron. This selection makes those neurons represent the role of proportional, integral, and
derivative (PID) operations on its input and the weights of connections represent the gains
(Kp, Ki , Kd) as shown in Equations (35)–(39).

P(k) = Kp × e(k) (35)

sum(k) = sum(k − 1) + h × e(k) (36)

where, sum(k) = 0.
I(k) = Ki × sum(k) (37)

f (s) =
N

s + N
e(s) the filter of derivative (38)
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D(t) = Kd ×
d
dt

f (t) or D(k) = Kd × ( f (k)− f (k − 1) )/h (39)

where, Sum is the accumulator of integral operation. P(k), I(k), and D(k) are the outputs of
the first hidden layer neurons, which are proportional, integral, and derivative operations
of the error, h is the step size of the simulation.
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The second hidden layer of the hybrid neural network controller consists of three
neurons. Each neuron receives all outputs of the first hidden layer via different connection
weights. The sum of all inputs for each neuron is submitted to the activation function H(Σ).
The output of each neuron represents the result of its activation function, plus its previous
output as illustrated in Equations (40)–(41). The applied activation function is shown in
Equation (42). ∑(k)11

∑(k)12

∑(k)13

 =

 v11 v12 v13
v21 v22 v23
v31 v32 v33

P(k)
I(k)
D(k)

 (40)

O1(k)
O2(k)
O3(k)

 =


H
(

∑(k)11
)

H
(

∑(k)12
)

H
(

∑(k)13
)
+

α1·O1(k − 1)
α2·O2(k − 1)
α3·O3(k − 1)

 (41)

H(Σ) =
4

(1 + e−Σ)
− 2 (42)

where, ∑(k)1i is the sum of input connections to the ith neuron of the second layer and
Oi(k), the output of the ith neuron of the second layer. vij and αi are the weight parameters.

The third hidden layer consists of three neurons. Each one receives all neuron’s outputs
of the second hidden layer via weight for each connection plus its previous output via
connection weight plus the previous output of the output layer neuron via the connection
weight. Equations (43) and (44) depict the output of the third hidden layer.∑(k)21

∑(k)22

∑(k)23

 =

 w11 w12 w13
w21 w22 w23
w31 w32 w33

O1(k)
O2(k)
O3(k)

 (43)

 S1(k)
S2(k)
S3(k)

 =

∑(k)21

∑(k)22

∑(k)23

+

 β1·S1(k − 1)
β2·S2(k − 1)
β3·S3(k − 1)

+

 σ1·T(k − 1)
σ2·T(k − 1)
σ3·T(k − 1)

 (44)
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where, ∑(k)2i is the sum of input connections to the ith third hidden layer neuron Si(k) is
the output of this neuron, wij, βi , σi and are weight parameters. Finally, the output layer
consists of one neuron, the inputs to this neuron are all outputs of the third hidden layer
via weight values and its previous output, as shown in Equation (45).

T(k) = T(k − 1) + r1· S1(k) + r2·S2(k) + r3·S3(k) (45)

The result of the output layer neuron represents the control signal applied to the
system. The structure of the feedback control system with a neural network PID controller
is shown in Figure 11.
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4.6. Neural Network FOPID controller (NN-FOPID)

This hybrid neural network controller has the same number of inputs, hidden, and
output layers and the same number of neurons in each layer as the structure of the NN-PID
controller. Moreover, the same activation function H(Σ) is also used. The only differences
between NN-PID and NN-FOPID structures are the implementation of integration and
differentiation operations. The NN-FOPID structure enables the integration and differ-
entiation actions to be performed in fractional order, while the NN-PID performs these
operations in integer order only. The three actions of the FOPID controller are shown in
Equations (46)–(49). The feedback control system with the FOPID controller is shown in
Figure 11.

P(t) = Kp × e(t) (46)

I(t) = Ki × D−λ eθi(t) (47)

f (s) =
N

s + N
e(s) the filter of derivative (48)

D(t) = Kd × Dµ f (t) (49)

5. Simulation Results

The 2-LRRM model with the proposed controllers and test tracks was performed using
MATLAB programming. The performance and robustness of all proposed controllers in
trajectory tracking are presented in this section. For each link, the trajectory to be tracked is
computed so that the manipulator will be forced to follow it. The results are then used to
evaluate the proposed controller based on the performance index value of each controller.
In this work, the assessment of all proposed controllers’ performance is based on the sum
of the ITSE for both link trajectories [36]. The optimal controller is based on the lowest
value of ITSE, written by Equation (50).

ITSE =
∫ (

t × e2
1(t) + t × e2

2(t)
)

dt (50)
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where e1(t) and e2(t) are the difference between the desired trajectory and the actual
trajectory of the link1 and link2. The desired trajectories θr1 and θr2 of the link1 and link2
can be expressed by Equations (51) and (52), respectively, as follows:

θr1 =

{
0.75 t2 − 0.25 t3 (0 < t < 2)
−1.53 t − 1.125t2 + 0.125t3 (2 < t < 4)

}
(51)

θr2 =

{
1.5 t2 − 0.5 t3 (0 < t < 2)
12 − 12 t + 4.5 t2 − 0.5 t3 (2 < t < 4)

}
(52)

Before showing the results of all proposed controllers, we noted from many experi-
ments that tuning the proposed controllers according to minimize the ITSE in Equation (50)
led, in most cases, chattering in control signals. To make the optimization algorithm ex-
clude the solution with the high chattering in the control signal, we propose a new fitness
function for the optimization algorithm to make the chattering under our control.

The classical objective function was presented in Equation (53);

(min) J = ITSE (53)

where (min) means minimizing the integral time square error.
The new proposed objective is presented in Equation (54)

(min) J = ITSE + Uc × ρ (54)

where, Uc is the number of times that the slope of the control signal changes its sign. If the
system has more than one control signal, the number of slop sign changes for all control
signals are collected. ρ is a small positive number chosen as 10−8 or 10−7.

The execution time in the simulation part took 4 sec., and the step size of the simulation
took 1 ms. The tuning experiment used two initial positions (0.1745, 0.1745) and (−0.1745,
−0.1745) for θ1 and θ2 respectively at the same time to assess the solution to increase the
amount of learning. The nominal parameters of the 2-LRRM model are considered in the
design stage of all proposed controllers.

The GTO is used for tuning the parameters of all proposed controllers regarding the
tracking error between the 2-LRRM actual and desired trajectories. The proposed GTO
setting is the following; the size of the population = 80, team size = 10, and iterations = 1000.
In the last iteration, the optimal solution took as the result of GTO. The number of tuning
parameters and their range in the search space used by the GTO algorithm to find the
optimal set of parameters is shown in Table 2.

The performance index (ITSE) value and the number of sign changes in all control
signals when using the two initial positions above for all suggested controllers are shown
in Table 3. The result generally indicates that the ITSE values for the proposed controllers
with fractional order integral and fractional order derivative actions are better than con-
trollers with integer order integral and integer order derivative actions. This is because the
fractional order of these operations increases the flexibility of the controller by increasing
its tuning parameters. The result shows that the proposed hybrid neural network controller
NN-FOPID structure has the best value of the ITSE = 0.748071 × 10−4 compared with
other proposed controllers.

Now, to illustrate more details about the behavior of the proposed controllers, the
initial position (0.1745, 0.1745) is used to execute all proposed, designed controllers on the
nominal system. The obtained results are shown in Table 4.
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Table 2. The number of design parameters and their search range for all proposed controllers.

Controller

Total
Number of
Controller
Parameters

Range of
PID Gains
Kp, Ki, Kd

Corner
Frequency of

Derivative
Filter

N

Range of
Fractional

Parameters

All Other
Parameters

Range

Con-PID 8 −150 to 150 10 to 100 µ ≡ 1
λ ≡ 1 --------

Con-FOPID 12 −150 to 150 10 to 100 µ ≡ 0 to 2
λ ≡ 0 to 2 --------

STNN-PID 122 −150 to 150 10 to 100 µ ≡ 1
λ ≡ 1

V ≡ −5 to 5
W≡ −1 to 1

STNN-FOPID 162 −150 to 150 10 to 100 µ ≡ 0 to 2
λ ≡ 0 to 2

V ≡ −5 to 5
W≡ −1 to 1

NNPID 66 −150 to 150 ------ µ ≡ 1
λ ≡ 1 −1 to 1

NNFOPID 70 −150 to 150 ------ µ ≡ 0 to 2
λ ≡ 0 to 2 −1 to 1

Table 3. The ITSE of the Proposed Controllers for Nominal Plant.

Controller ITSE
No. of Slop

Sign Change
in All Control Signals

Con-PID 3.729543 × 10−4 93

Con-FOPID 2.227023 × 10−4 47

STNN-PID 3.075515 × 10−4 91

STNN-FOPID 3.883774 × 10−4 45

NNPID 0.954084 × 10−4 85

NNFOPID 0.748071 × 10−4 94

Table 4. The performance of the proposed controllers when the initial position (0.1745, 0.1745) is used.

Controller
Type

Link
No. Rise Time Over Shoot

%
Settling

Time
ITSE
×10−4

Con-PID
L1 0.070 6.6 0.684 1.47752

L2 0.012 5.95 0.188 0.64646

Con-FOPID
L1 0.074 3.27 0.584 1.30261

L2 0.054 1.40 0.131 0.10037

STNN-PID
L1 0.069 6.14 0.594 1.12337

L2 0.012 7.41 0.394 0.83790

STNN-FOPID
L1 0.081 4.40 6.430 1.25247

L2 0.026 1.05 0.166 1.00217

NN-PID
L1 0.081 1.60 0.134 0.34509

L2 0.042 2.84 0.103 0.07345

NN-FOPID
L1 0.076 1.80 0.123 0.31060

L2 0.043 0.47 0.043 0.03249
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Table 4 shows that the NN-FOPID controller has a good rise time, minimum overshoot,
and minimum settling time, as well as minimum ITSE for link1 and link2. Conversely, the
Con-PID controller has the maximum settling time and maximum overshoot and worse rise
time and ITSE. In addition, the control actions T1 and T2 for the NN-FOPID controller has
the least control efforts as well as the trajectory followed by the 2-LRRM end effector for
the NN-FOPID controller is the closest to the required path. The tracking of the trajectories
of θ1 and θ2 , the T1 and T2 as well as the trajectory tracked by the 2-LRRM end-effector
are demonstrated in Figure 12.
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5.1. Robustness Tests

Now, in the following tests, we will check the robustness of all proposed controllers
without retuning the gains of controllers to prove the capability and robustness of each
controller.

5.1.1. Change Initial Position

To check the robustness of all proposed controllers, another primary position [0.15,
0.15] for [θ1, θ2] took for testing the capability of all the proposed controllers to follow the
2-LRRM on the required trajectory.

The obtained results of the performance index values for all suggested controllers
are shown in Table 5. The tracking of the trajectories of θ1 and θ2, by the end-effector of
the 2-LRRM by altering the initial position for all suggested controllers are presented in
Figure 13.

Despite changing the initial positions, the NN-FOPID controller still performs better
than the rest, because there is an almost smaller overshoot in the trajectory response for
θ1 and θ2 and the settling time is almost small. While the STNN-FOPID has the worst
response because of the θ1 and θ2 responses have large overshoots and long settling times.
Moreover, the trajectory followed by the 2-LRRM end effector for the NN-FOPID controller
remains the closest to the required trajectory.
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Table 5. The ITSE of the proposed controllers based on initial position (0.15, 0.15).

Controller ITSE

Con-PID 1.82669 × 10−4

Con-FOPID 1.17614 × 10−4

STNN-PID 1.61995 × 10−4

STNN-FOPID 27.3328 × 10−4

NN-PID 1.05251 × 10−4

NN-FOPID 0.24644 × 10−4

5.1.2. Disturbance Addition

The robustness test of the suggested controllers was performed by using the distur-
bance term [sin (50t), sin (50t)] to the control signal [ T1 , T2] and selecting the initial
position as [0, 0] to [ θ1, θ2]. The obtained results of ITSE values for all suggested con-
trollers are demonstrated in Table 6. The tracking of the trajectories of θ1 and θ2 and the
trajectory followed by the 2-LRRM end-effector based on adding disturbance of sin50t
N-m in both links are illustrated in Figure 14. As observed, the NN-FOPID hybrid neural
controller gives the smallest ITSE, and smallest overshoot. All trajectories are closest to the
desired trajectories and are free of oscillations compared with other control structures. The
STNN-FOPID loses control and stability, while STNN-PID gives the worst performance
compared with other controllers. Therefore, we conclude that the NN-FOPID is better than
others for disturbance rejection.

Table 6. The ITSE of the proposed controllers based on disturbances sin (50t) for each link and initial
position (0.0, 0.0).

Controller ITSE

Con-PID 5.54533 × 10−4

Con-FOPID 1.43023 × 10−4

STNN-PID 191.4245 × 10−4

STNN-FOPID Unstable

NN-PID 2.1375 × 10−4

NN-FOPID 0.092827 × 10−4

5.1.3. Parameters Variations

The parameter variations also examined the performance of all proposed controllers
by increasing the masses of both links by 5% and selecting the initial position as [0, 0] to [ θ1,
θ2]. The values of ITSE for all proposed controllers are presented in Table 7. The tracking
trajectories of θ1 and θ2 by the 2-LRRM end-effector for all controllers is displayed in
Figure 15.

From the figures below in Figure 15, it is clear that the trajectory tracking for θ1 and
θ2 of the NN-FOPID controller are closest to the required θr1 and θr2 compared with other

controller structures. As a result, the trajectory followed by the 2-LRRM end-effector with
parameter variations for the NN-FOPID controller is very close to the desired trajectory.
Therefore, the NN-FOPID controller outperforms all other proposed controllers when the
values of system parameters vary. The STNN-FOPID controller also fails in this test and
loses control and stability.
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Table 7. The ITSE of the proposed controllers when increasing both masses of two links by 5% &
Initial position (0.0, 0.0).

Controller ITSE

Con-PID 1.183509 × 10−4

Con-FOPID 0.691371 × 10−4

STNN-PID 0.743505 × 10−4

STNN-FOPID Unstable

NN-PID 0.196180 × 10−4

NN-FOPID 0.005068 × 10−4

5.1.4. All Previous Tests Together

The effect of adding disturbance and parameter variation and changing the initial
positions together on the proposed controllers is illustrated by the results in Table 8.
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Table 8. The ITSE of the proposed controllers based on initial position (0.15, 0.15), adding disturbances
sin (50t) for both links torques and increasing 5% in masses of both links.

Controller ITSE
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Con-FOPID 2.09812 × 10−4

STNN-PID Unstable
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Figure 16 shows the trajectory tracking of theta1 and theta2 and the path tracked by
the end-effector of the 2-LRRM and the T1 and T2 for disturbance, parameter variation as
well as changing the initial positions for all controllers.
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increasing 5% in masses of both links.

From the results presented, it can be deduced that the fractional order PID controllers
generally outperform the integer order PID controllers for parameter variation, disturbance
addition, and initial position change and, therefore, more robust. The best controller among
all proposed controllers is NN-FOPID because it passed all tests successfully and gives
minimum ITSE in all tests and the best performance.
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6. Conclusions

In this paper, six controllers are suggested for a 2-LRRM for trajectory tracking prob-
lems. These controllers combine the advantages of the PID controller and the neural
network. Different control strategies of these combinations and other structures were
proposed to strengthen the control capability. The fractional order of integration and differ-
entiation used in the FOPID controller gives another dimension toward strengthening the
capability of the hybrid controller. In addition, using a smart metaheuristic GTO algorithm
for tuning controllers’ parameters integrates the design components of the controller. Two
controllers, NN-PID and NN-FOPID, are superior to others in their responses for the nomi-
nal system model because they reflect their stability and fast-tracking facility to the desired
response path. Then different tests were done to check system capability and robustness in
facing the following effects. The first test suggested a change in the initial position of the
two links, the second test was an addition of disturbance to the torque of each link, and the
third test changed in values of the system parameters where the masses of the two links are
changed. The fourth test is taken the previous changes together synchronic. The results
show that the performance index ITSE of the NN-FOPID controller for all tests from first to
fourth are 0.24644 × 10−4, 0.092827 × 10−4, 0.005068 × 10−4, 0.447529 × 10−4, respectively.
These values are the smallest values of ITSE obtained from testing all proposed controllers
and indicate at the same time the smallest overshoot and settling time in system response.
The NN-FOPID controller is more robust and capable than other controller structures. The
future work will suggest using other optimization techniques instead of using the GTO
algorithm, such as the Snake Optimization Algorithm (SOA), Squarril Search Algorithm
(SSA), and Differential Search Algorithm (DSA) for tuning the gains of the proposed con-
trollers. The best-proposed controller can be implemented practically using all necessary
hardware components, such as a real robot manipulator and sensors, such as a camera.
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