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Abstract
1. The longitudinal study of populations is a core tool for understanding ecological 

and evolutionary processes. Long-term studies typically collect samples repeat-
edly over individual lifetimes and across generations. These samples are then ana-
lysed in batches (e.g. qPCR plates) and clusters (i.e. group of batches) over time in 
the laboratory. However, these analyses are constrained by cross-classified data 
structures introduced biologically or through experimental design. The separa-
tion of biological variation from the confounding among-batch and among-cluster 
variation is crucial, yet often ignored.

2. The commonly used approaches to structuring samples for analysis, sequential 
and randomization, generate bias due to the non-independence between time of 
collection and the batch and cluster they are analysed in. We propose a new sam-
ple structuring strategy, called slicing, designed to separate confounding among-
batch and among-cluster variation from biological variation. Through simulations, 
we tested the statistical power and precision to detect within-individual, between-
individual, year and cohort effects of this novel approach.

3. Our slicing approach, whereby recently and previously collected samples are 
sequentially analysed in clusters together, enables the statistical separation of 
collection time and cluster effects by bridging clusters together, for which we pro-
vide a case study. Our simulations show, with reasonable slicing width and angle, 
similar precision and similar or greater statistical power to detect year, cohort, 
within- and between-individual effects when samples are sliced across batches, 
compared with strategies that aggregate longitudinal samples or use randomized 
allocation.
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1  | INTRODUC TION

Individuals and populations are shaped by ecological and evolution-
ary processes which generally occur over many years or decades 
(Clutton-Brock & Sheldon, 2010). Consequently, long-term studies 
are key in determining the proximate and ultimate causes of bio-
logical processes. Sampling a population repeatedly over individual 
lifetimes and across multiple generations allows quantification and 
separation of genetic variation from environmental variation and es-
timation of such effects with appropriate precision and statistical 
power (Martin, Nussey, Wilson, & Reale, 2011; van de Pol, 2012). 
However, statistical analyses of such comprehensive biological data-
sets are often complex due to hierarchically structured data and 
difficulties in separating variation from sources of interest and con-
founding variables.

Due to the hierarchical nature of biology, for example, pheno-
typic traits nested within individuals, individuals nested within social 
groups and social groups nested within populations (Figure 1a), ap-
propriate statistical methods are required that model the hierarchical 
structure of biological datasets. While nested designs, either natural 
or through experimental design (Figure 1a), can be analysed in linear 
models, this inflates the degrees of freedom and thus reduces sta-
tistical power (Gelman, 2005; Quinn & Keough, 2002; Underwood, 
1997). A better approach is the mixed model framework, which es-
timates fixed effects while flexibly accounting for the variance ex-
plained by random effects, incorporating multilevel hierarchies in 
data (Bolker et al., 2009; Gelman & Hill, 2006; Snijders & Bosker, 
2011; Zuur, Ieno, & Elphick, 2010). However, in cross-classified 
designs (Table 1), where one individual is associated with more than 
one batch (Figure 1b) or even more than one cluster (Figure 1c), ad-
vanced statistical methods to estimate fixed effects and variance 
components are required compared to nested designs (Schielzeth 
& Nakagawa, 2013). While cross-classified data structures in short-
term studies are often the result of the experimental design (e.g. 
cross-fostering), in long-term studies the timing of the analyses of 
data often naturally leads to cross-classification of data (Figure 1b,c).

In long-term studies, the individual-based collection of longitu-
dinal data and biological samples from natural or laboratory popula-
tions produces large, continuously growing biobanks (Clutton-Brock 
& Sheldon, 2010). Through laboratory analyses, these biobanks 
provide information on, for example, individual telomere length 
(Boonekamp, Mulder, Salomons, Dijkstra, & Verhulst, 2014; Fairlie 
et al., 2016), serological values (Andraud, Casas, Pavio, & Rose, 2014; 
Telfer et al., 2008) and genetic variation (Berry, England, Marriott, 
Burridge, & Newman, 2012; Tollenaere et al., 2012). However, the 
laboratory analysis of samples from growing biobanks is often con-
ducted on separate groups of samples over time (e.g. after each 
fieldwork season, each year or coinciding with grant cycles). Such a 
group of samples—a cluster—will be collectively analysed under sim-
ilar conditions, but these conditions might differ between clusters 
(e.g. different analyst, machine or month). Samples within a cluster 
are often further subdivided into batches (e.g. qPCR-plates) where, 
again, samples are analysed under similar conditions, but conditions 
may vary between batches (e.g. different reagents or day). While 
batches are nested within clusters, the continuous collection of sam-
ples in the field and intervals between laboratory analyses result in 
longitudinal samples from a single individual that may not be nested 
within batches or even clusters, causing cross-classified data struc-
tures in long-term studies (Gelman & Hill, 2006; Figure 1b,c).

Cross-classification of data induces variation that can be con-
founded with the independent variables of interest, which can 
reduce the ability to compare results across samples and draw re-
liable conclusions (Greenland, Robins, & Pearl, 1999; Schielzeth & 
Nakagawa, 2013). This is problematic if cross-classification is not 
explicitly accounted for, or there is not sufficient cross-classification 
to disentangle these sources of variation with high statistical power. 
For example, temporal variation or, where multiple populations 
are studied, spatial differences in resource availability can be con-
founded with laboratory analysis when samples are analysed after 
each period of collection, resulting in a failure to separate the ef-
fects of resource availability and laboratory analysis on a response 
variable. The experimental design and therefore the method in 

4. While the best approach to analysing long-term datasets depends on the struc-
ture of the data and questions of interest, it is vital to account for confounding 
among-cluster and batch variation. Our slicing approach is simple to apply and 
creates the necessary statistical independence of batch and cluster from environ-
mental or biological variables of interest. Crucially, it allows sequential analysis of 
samples and flexible inclusion of current data in later analyses without completely 
confounding the analysis. Our approach maximizes the scientific value of every 
sample, as each will optimally contribute to unbiased statistical inference from the 
data. Slicing thereby maximizes the power of growing biobanks to address impor-
tant ecological, epidemiological and evolutionary questions.

K E Y W O R D S
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F I G U R E  1   Schematic of nested and cross-classified data structures: (a) with a nested design applied to laboratory analyses (left) and 
populations (right); (b) cross-classification of data among batches that is confounded by time of analysis; and (c) cross-classification common 
in longitudinal data in laboratory analyses across clusters. Black dashed delineation indicates nested, whereas red dashed delineation 
indicates cross-classified structures

TA B L E  1   Definitions of key terms

Term Explanation

Batch A set of analysed samples that are inherently dependent on one another, e.g. all using the same standard curve, 
machine, time of day, technician or that are equally affected by any other source of variation

Cluster A set of samples that are distinct in the timing of their analysis; this typically includes multiple batches nested 
within clusters

Nested All units at a lower hierarchical level are within one unit at a higher hierarchical level

Cross-classified Units at a lower hierarchical are associated with more than one unit at a higher hierarchical level

Within-individual effects Longitudinal changes within individuals in a repeatedly measured trait

Between-individual effects Comparison of differences in mean traits among individuals

Statistical power The ability to reject the null hypothesis when false, quantified by the proportion of significant values (p < .05) 
out of the total

Precision The degree to which simulations provide similar results, quantified by the absolute difference between the  
75% and 25% percentile divided by the median

Slicing Recently added samples analysed in clusters together with previously obtained samples, ensuring statistical 
independence of collection time and cluster
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structuring samples for clusters and allocating samples to batches 
requires consideration to cope with cross-classified data structures 
and confounding variables.

While relatively few studies report the approach used to struc-
ture samples into clusters, currently two main approaches are used, 
and both are prone to confounding effects and cross-classified data 
structures. First, sequential structuring of samples to clusters: an-
alysing samples in clusters, in the same order in which they were 
collected (e.g. by year). This approach may be used, for example, in 
physiological studies (e.g. Takizawa et al., 2004) and has the advan-
tage that samples can be analysed immediately without any issues 
in placing or labelling of samples. However, sequential structuring 
of samples confounds cluster with organizing variable (e.g. year) 
effects (Figure 2a). The second approach, randomization of sam-
ples from multiple years within a cluster, ensures that samples are 
sufficiently mixed to avoid confounds, and should already be stan-
dard practice (Figure 2b). The use of randomization is widespread 
in, for example, telomere length (e.g. Spurgin et al., 2017), disease 
(e.g. Swanson et al., 2015) and hormone analyses (e.g. Dantzer 
et al., 2013). However, this randomization approach requires a 
delay before analyses can be completed so that samples collected 

at different time points can be analysed together, and organizing 
variable and cluster effects can be separated. Furthermore, the 
randomization of large numbers of samples is time-consuming and 
detailed reordering of samples from the biobank is prone to error 
due to sample labelling and placing. Most importantly, however, 
is that after applying this randomization approach once in a long-
term study, any subsequently collected samples cannot be directly 
compared to the previously randomized samples as they will be 
subject to statistically inseparable variation due to clustering of 
the samples already analysed. For example, randomizing two time 
periods of 4 years of sampling separately into two clusters results 
in uncontrollable variation between these two clusters and con-
founds the first 4 years in cluster one with the subsequent years in 
cluster two (Figure 2b), leading to cross-classified data structures 
(Figure 1c). Analysing the same samples multiple times in subse-
quent clusters can avoid this issue, often referred to as ‘golden’ 
or ‘reference’ samples. However, the additional costs or potential 
depletion of the ‘golden’ sample can make this approach difficult. 
More importantly, it is unclear how effectively one golden sam-
ple can control for among-batch and among-cluster variation. For 
example, the ‘golden’ sample might not be representative of all 

F I G U R E  2   Schematic of three 
strategies to structure samples from 
the biobank. The sequential analysis 
strategy (a) can confound cluster and 
year, while randomization of multiple 
years within a cluster (b) prevents this 
confound but generates uncontrollable 
variation between clusters. The slicing 
approach (c) combines the advantages 
of these approaches and can be used to 
sequentially analyse growing biobanks 
while maintaining independence between 
cluster and associated variables. The 
biobank is sliced (e.g. by year), thereby 
analysing a set of continuously collected 
samples sequentially in each subsequent 
cluster. Each sample only needs to be 
analysed once, where different samples 
from the same slice are analysed across 
batches and clusters (e.g. years 4 and 5), 
which enables controlling for batch and 
cluster effects. Slicing width (frequency 
of new samples collected) and angle 
(degree of independence between 
slices) determine the level of statistical 
independence between clusters
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samples, and the sample can degrade over time thus not returning 
the same value in different analyses. In short, these two popular 
approaches to structuring cross-classified samples do not fully 
account for among-cluster and among-batch variation, leaving an 
unknown amount of variance unquantified and thus compromising 
conclusions drawn from such studies.

The analyses of longitudinal data can be turned into a nested 
design when samples from a single individual are aggregated 
within a batch and cluster (Figure 1a). This is thought to increase 
the statistical power to detect within-individual effects. The rea-
soning is that longitudinal samples are then exposed to the same 
technical noise, which allows greater statistical power to dissect 
out the biology from batch effects (Beirne, Delahay, Hares, & 
Young, 2014; Herborn et al., 2014; Nettle et al., 2015; Pauliny, 
Devlin, Johnsson, & Blomqvist, 2015; Rius-Ottenheim et al., 2012; 
Sudyka et al., 2014). Although the aggregation approach may be 
optimal for certain questions and data structures (e.g. experi-
mental studies where the focus is on within-individual changes, 
while having controlled for many other sources of variation), the 
increasing application of physiological assays in long-term studies 
requires a different approach because the aggregation of longi-
tudinal samples in a single batch has four disadvantages. First, 
analyses need to be postponed until all samples from a single indi-
vidual have been collected. Second, aggregation requires detailed 
picking and reordering of samples, which increases the likelihood 
of human error, sample mix-ups and therefore false conclusions. 
Third, confounding variables that covary with the individual 
samples taken from one individual are not effectively separated 
from batch or cluster (e.g. seasonal effects). Fourth, it is rare for 
within-individual variation in a trait to be the sole interest, often 
between-individual variation is of interest too, and aggregating 
individuals within a batch could reduce the ability to estimate 
between-individual variation when individuals are aggregated in 
and thus confounded with batch effects. Thus although assumed, 
it remains to be determined whether aggregation increases sta-
tistical power to detect within-individual effects so substantially 
that it would outweigh these four disadvantages. Hence, the ap-
proaches to structure samples for analyses in long-term studies 
suffer from confounding effects, cross-classified data structures 
and increased likelihood for human error, and cannot provide the 
comparable analyses of samples over time required in long-term 
studies.

Here, we present an approach to the analysis of samples from 
growing biobanks that, while maintaining statistical independence, 
accounts for among-cluster variation and controls for other poten-
tially confounding effects (Figure 2c). Additionally, we provide a case 
study of this novel approach and subsequently test the assump-
tion that aggregating longitudinal samples within batches results 
in greater statistical power to detect within-individual effects. We 
then discuss the analysis of long-term data and highlight the impor-
tance of statistical mixed models. While we will mainly consider the 
field of evolutionary biology, using telomere dynamics as an illustra-
tive example, these considerations and techniques can be applied to 

a range of fields, including epidemiology, ecology and laboratory- 
based science.

2  | MATERIAL S AND METHODS

2.1 | Slicing approach

We have developed a slicing approach to structure samples from 
growing biobanks, such that recently collected samples are analysed 
in clusters together with previously obtained samples, ensuring sta-
tistical independence of collection time and cluster. This approach 
can overcome the experimental design and statistical issues with 
cross-classification and confounding variables in long-term studies 
(Gelman & Hill, 2006; Greenland et al., 1999; Schielzeth & Nakagawa, 
2013), by bridging batches and clusters together. This allows for a 
structured and a priori separation of the variation of interest from 
confounding variables and when combined with mixed models copes 
well with cross-classified data structures. The biobank is divided into 
slices (Figure 2c), where a slice reflects a group of collectively gath-
ered samples (e.g. in the same year) analysed together. Samples from 
a slice can be sequentially allocated to batches and only need to be 
analysed once, with the benefit of needing less sample volume and 
less degradation of samples. Separate samples from the same slice 
can be analysed in different batches or clusters (Figure 2c), bridg-
ing batches and clusters together. Slicing uses a varying proportion 
of samples from each given sampling period (i.e. slices), sequentially 
analysed in a single cluster, to statistically account for temporal and 
cluster variation. Slicing therefore allows convenient sequential 
analysis while maintaining statistical independence.

Depending on the frequency at which new samples are ob-
tained, the ‘width’ of the slices can be changed (Figure 2c). For 
example, low analysis frequency requires wider slices to account 
for among-cluster variation. This decision is directly related to 
the slicing ‘angle’ (Figure 2c), which determines the degree of 
independence of sampling year from cluster. For example, if 
there are environmental effects related to the collection time of 
samples, slicing samples by collection time (i.e. lower angle) re-
moves possible confounds with cluster effects. For slicing to be 
effective across clusters, it requires multiple years/cohorts to 
be present within a single cluster and at least one of those years/
cohorts to be present in a different cluster, allowing statistical 
separation of among-cluster variation and confounding effects. 
Depending on slicing width and angle, a slice should cover ap-
proximately one-third of each batch, when slicing across three 
batches, with three separate slices covering the same batch 
(Figure 2c and see Section 2.3). Such a strategy also naturally 
allocates samples of certain slices to batches in subsequent clus-
ters, bridging clusters together (Figure 2c) and allowing control 
of among-cluster variation. As a general rule, when you have 
more confounding effects smaller slices (i.e. lower angle and 
smaller width) are required to be able to partition these con-
founding effects. Smaller slices lead to a greater statistical power 
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to separate potentially confounding effects within and between 
batches (as there are more slices within a batch and each slice 
occurs in more batches). Setting the slicing angle and width is a 
trade-off between statistical independence (assessing statistical 
power in the case of confounding effects) and the number of 
samples that remain unanalysed until the addition of newly col-
lected samples. This latter point is a constraint, as the number 
of samples that can be analysed simultaneously will be reduced, 
if only slightly, by this approach. We argue that the creation of 
statistical independence and accounting for among-cluster vari-
ation are merits that outweigh this limitation.

2.2 | A case study: structuring samples for telomere 
length analysis in wild house sparrows

We provide a case study of how slicing can be applied to structure 
samples for analysis in a long-term (>20 years) study on a natural 
population of house sparrows (Passer domesticus) on Lundy Island, 
UK (Schroeder, Nakagawa, Rees, Mannarelli, & Burke, 2015). House 
sparrows are a relatively long-lived species (on Lundy: mean lifes-
pan is 3.5 ± 1.4 SE, maximum lifespan is 9 years; Schroeder, Burke, 
Mannarelli, Dawson, & Nakagawa, 2012). The Lundy population 
has been systematically studied since 2000 and the adult popula-
tion size varies between years (Simons, Winney, Nakagawa, Burke, 
& Schroeder, 2015). Immigration to and emigration from the island is 
low (0.5% of recruits; Schroeder et al., 2015), with an annual resight-
ing probability of 0.91–0.96 (Simons et al., 2015). This closed island 
population on Lundy thus provides precise ages and life-history data 
for all individuals.

We use a subset of the Lundy dataset containing 12 years of data 
(2000–2011; Table S1), where the population consisted on average 
of 130 individuals that were blood sampled on average twice a year. 
The total biobank we selected for in this case study contains 2,733 
samples from 515 individuals. The hypothesis to be tested is that 
telomere length and age are negatively associated within individu-
als, and therefore we will analyse all samples collected every 6 years 
(i.e. 12/6 = 2 clusters) with 12 qPCR plates (i.e. batches) in each 
cluster (Figure S1). Samples are analysed sequentially, where each 
sample is analysed once. A key consideration is to separate varia-
tion in sources of interest from confounding variables by analysing 
samples with different confounding effects in the same batch. This 
ensures that confounding effects (e.g. sampling year) are not fully 
confounded with attributes of batch. Slicing, where samples are 
sliced across batches within a cluster, can achieve such separation 
in combination with mixed models to statistically correct for known 
confounding effects (e.g. qPCR-plate).

In the Lundy sparrow example, we first determine the slicing 
width, which depends on the analysis frequency and number of 
samples collected in each year. The analysis frequency (i.e. 2 clus-
ters) is relatively low which results in many sampling years within 
a cluster. The contribution of a confounding sampling year effect 
can be determined by comparison of within-year to between-year 

effects, which requires sufficient samples from a single year ana-
lysed in the same batch and therefore wider slices. However, the 
number of samples collected in each year varies markedly, result-
ing in a variable slicing width per year depending on the number of 
samples in each year (Figure S1). Second, we determine the slicing 
angle. Since the population density varied strongly between years, 
the slicing angle should be low (Figure S1). This way a single year 
crosses more batches which allows confounding effects (i.e. pop-
ulation density and year) to be separated from variation in sources 
of interest. Third, since the number of samples exceeds the pre-
ferred slicing width and angle, multiple batches with the same 
lay-out will be used (Figure S1). These slicing parameters result 
in at least three slices within a batch to enable the separation of 
confounding environmental effects (e.g. population density, sam-
pling year) from laboratory effects (e.g. batch), when using mixed 
models (Gelman & Hill, 2006).

The slicing approach allows an accurate estimation of the rela-
tionship between telomere length and age. Since the Lundy sparrow 
study is ongoing, the slicing approach can be continued into new 
clusters without inducing new confounding effects. For comparison, 
the sequential approach would confound sampling year with batch 
effects while randomization of samples could result in human and 
technical errors. Additionally, randomization would not allow com-
parable analyses among clusters or flexible inclusion of current data 
in future analyses.

Effectively applying the slicing approach to one's own dataset 
thus minimally requires multiple slices within a batch and cluster, 
and at least part of one of these slices in another batch or cluster 
(Figure 2c; Figure S1). The slicing width can vary, for example, de-
pending on the number of samples collected each year. Additionally, 
a low slicing angle is preferred since often there is a substantial num-
ber of confounding effects, and a lower slicing angle leads to slices 
crossing more batches and separation of confounding effects from 
variables of interest.

The benefit of the slicing approach over other strategies is that it 
allows convenient sequential analysis of the biobank and enables sep-
aration of variables of interest from confounding variables. However, 
the benefit of sequential analysis within the slicing approach disap-
pears when samples from a single individual need to be aggregated 
within the same batch (e.g. Beirne et al., 2014; Nettle et al., 2015). We 
therefore determine whether aggregation of longitudinal samples from 
a single individual provides greater statistical power and precision in 
long-term studies to detect any within-individual, between-individual, 
year or cohort effects through simulations.

2.3 | Simulations

We used simulations run in r 3.3.1 (R Development Core Team, 2019) 
to determine the statistical power (i.e. ability to reject the null hy-
pothesis when false) and precision (i.e. width of the distribution) to 
detect individual, year and cohort effects, using different sample al-
location strategies (i.e. longitudinal samples aggregated in a single 
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batch, randomly allocated to batches, or ‘sliced’ across batches; see 
Data S1).

We simulated a population of 200 individuals in 10 cohorts that 
were sampled once a year for a maximum of 5 years, providing an 
equal sample size in all simulations. ‘Telomere length’ was used as 
an example response variable; however, this is applicable to any lon-
gitudinally measured continuous variable. Starting telomere length 
was drawn from a Gaussian distribution to fix between-individual 
standard deviation (SD = 1.00) and all individuals shared the same 
within-individual shortening rate of telomeres (0.06*1, scaled to 
SD = 1 parameter, =0.06 per year).

Year effects were simulated by taking 0.7 multiplied by a gen-
erated value drawn from a uniform distribution (between 0 and 1) 
for each year and added these to the response variable. In separate 
simulations, we replaced year with cohort effects (20 individuals per 
cohort) by taking 0.9 multiplied by a generated value from a uniform 
distribution (between 0 and 1) for each cohort. We chose to model 
‘year’ and ‘cohort’ as possible biological confounds with experimen-
tally induced variation. The choice to model such specific biology 
is rather arbitrary as we are simulating the confounding effect of 
‘batch of analysis’ and biology. We also conduct additional simula-
tions with varying strengths for year and cohort effects to deter-
mine the robustness of the results.

Individual probability of death was then modelled via telomere 
length associated with mortality (Equation 1) as:

where x is the initial telomere length for ith individual, with a baseline 
probability of death (β) of 0.25 and a slope (α) of −0.23, providing mor-
tality risk (yi) per year. This resulted in the probability of death varying 
with ±2 SD telomere length from 0.14 to 0.36 per year. Death for each 
simulated individual was determined by drawing from a uniform distri-
bution (ranging 0 to 1) to determine a simulated death. Mortality was 
partly determined by the response variable (to simulate selective disap-
pearance from the population, determined by the between-individual 
age component, see next paragraph), with variable telomere lengths 
to start with (between-individual variation) and a set within-individual 
shortening (within-individual age component, see next paragraph).

We simulated the relationship between telomere length and 
age (in years) both within and between individuals. Between-
individual effects were modelled using the mean age at which the 
individual's trait was measured, and within-individual effects as the 
age at which an individual's trait was measured minus the mean 
measurement age for that individual (van de Pol & Wright, 2009).

Simulations were run 5,000 times, for a varying number of sam-
ples (12, 24, 36, 48) per batch and simulated differences between 
batch means (batch attributable error, SD: 1, 2.5, 5, 10, 20, 40). This 
error is relatively high to ensure that we control for potential effects 
of batch attributable error when determining the variation in sta-
tistical power among sample allocation strategies. Simulations were 
repeated three times to obtain three separate results per sample al-
location strategy.

The slicing strategy was simulated at an angle that resulted in at 
least three slices per batch. Note, to start the sample allocation, the 
first batch was filled by 3/4 with the first slice and by 1/4 with the 
second slice, where subsequent batches were filled by 1/4, 1/2 and 
1/4 with subsequent slices (Figure 2c). Additional simulations were 
run with the slicing angle halved, slicing width halved, and a doubled 
sample size (n = 400).

The simulated data were analysed using linear mixed models 
in lme4 1.1–14 (Bates, Machler, Bolker, & Walker, 2015), where the 
model included random effects (at the intercept level) for individ-
ual (to control for repeated measurements on the same individual) 
and batch, and year or cohort was fitted as a fixed factor. Statistical 
power was determined by the number of significant values (p < .05) 
for each variable out of the total number of simulations (n = 5,000). 
It is important to understand the effect of sample allocation strat-
egy on precision estimates, as well as statistical power. We therefore 
quantified precision as the width of the distribution of parameter 
estimates from the models run on the repeated simulated datasets, 
as the absolute difference between the 75% and 25% percentile di-
vided by the median (note, a precision value closer to zero means 
higher precision).

Parameters of the simulations were manually optimized so that 
a statistical power of approximately 0.5 was achieved to detect 
between-individual effects for the random allocation strategy, de-
termined by a t-value of less than −2 (α ≈ 0.05). This intermediate 
level of statistical power avoids thresholding effects at either end of 
the power spectrum (0 or 1). Such a simulation strategy maximizes 
the sensitivity in detecting any modulation in relative statistical 
power among sample allocation strategies, which is our focus rather 
than achieving a certain absolute statistical power.

3  | RESULTS

Our simulations tested the widely held assumption that aggregat-
ing longitudinal samples of the same individual in a single batch 
increases statistical power to detect within-individual effects (e.g. 
Herborn et al., 2014; Nettle et al., 2015). In simulations with year 
effects, the statistical power to detect within-individual effects was 
much lower when longitudinal samples were aggregated (mean sta-
tistical power ± SD across sample sizes and three runs per simula-
tion = 0.059 ± 0.030) than when samples were sliced across batches 
(0.269 ± 0.008) or randomly allocated to batches (0.267 ± 0.007; 
Figure 3). For between-individual effects, again, the statistical 
power was much lower when longitudinal samples were aggre-
gated in a single batch (0.138 ± 0.077) compared to when samples 
were sliced across batches (0.443 ± 0.007) or randomly allocated 
to batches (0.441 ± 0.007; Figure 3). The statistical power to detect 
year effects was higher when longitudinal samples were aggregated 
in a single batch (0.776 ± 0.008) or randomly allocated to batches 
(0.782 ± 0.014) than when sliced across batches (0.622 ± 0.012; 
Figure 3). However, a lower slicing angle (crossing four batches; 
0.741 ± 0.009) and smaller slicing width (half a batch; 0.751 ± 0.007) 

(1)yi=� (�
∗xi),
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resulted in a similar statistical power to detect year effects to ag-
gregation of longitudinal samples and random allocation while main-
taining statistical power to detect within- and between-individual 
effects (Figure 4).

In simulations with cohort effects, the statistical power to detect 
within- and between-individual effects was lower when slicing across 
batches (0.159 ± 0.032; 0.324 ± 0.020) compared to aggregation 
(0.557 ± 0.009; 0.390 ± 0.020) and randomization (0.542 ± 0.014; 

F I G U R E  3   Statistical power analyses of simulated data for individual and year effects among four batch sizes (n = 12–48) using three 
sample allocation strategies: (1) aggregating samples per individual in the same batch (solid, red), (2) assigning samples randomly to batches 
(dashed, blue) or (3) slicing samples across batches with an angle that crosses two batches and a slicing width of a single batch (dotted, 
yellow). Raw data points from three separate simulations with mean statistical power per sample size are shown against among-batch 
variation, with 95% confidence intervals as shaded areas. Scales differ between year, within- and between-individual effects
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0.423 ± 0.008) approaches (Figure S2). However, statistical power 
to detect cohort effects was greater for slicing (0.413 ± 0.009) and 
randomization (0.462 ± 0.008) compared to aggregation of longitu-
dinal samples in a single batch (0.142 ± 0.044; Figure S2). A doubled 
sample size (n = 400), either for simulations with year or cohorts 
effects, increased statistical power but did not alter variation in 

statistical power among sample allocation strategies (Figures S3  
and S4). Additionally, varying the strengths of year and cohort ef-
fects changed the statistical power, but not the variation among 
sample allocation strategies (Figures S5–S8).

In simulations with either year or cohort effects, the preci-
sion to estimate within- and between-individual effects followed 

F I G U R E  4   Statistical power analyses of simulated data for individual and year effects among four batch sizes (n = 12–48) using three 
different slicing parameters: (1) slicing angle that crosses two batches with a slicing width of a single batch (solid, red), (2) halved slicing angle 
which crosses four batches (dashed, blue) or (3) halved slicing width of half a batch (dotted, yellow). Raw data points from three separate 
simulations with mean statistical power per sample size are shown against among-batch variation, with 95% confidence intervals as shaded 
areas. Scales differ between year, within- and between-individual effects
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similar patterns to statistical power in the respective simulations, 
with greater precision for the approaches that showed greater 
statistical power (Figures S9 and S10). However, precision to esti-
mate cohort and year effects was the opposite of statistical power, 
where approaches with lower statistical power showed greater 
precision to detect such effects (Figures S9 and S10). A doubled 
sample size (n = 400) increased precision but did not alter varia-
tion in precision among sample allocation strategies (Figures S11 
and S12). Additionally, varying the strengths of year and cohort 
effects changed the precision, but not the variation among sample 
allocation strategies (Figures S13–S16).

Our slicing method performs similar to randomization of sam-
ples and outperforms aggregation of longitudinal samples to dis-
entangle within- and between-individual effects when year effects 
apply, an objective shared by many longitudinal studies (Nussey, 
Froy, Lemaitre, Gaillard, & Austad, 2013; van de Pol & Wright, 2009). 
Simulations were run for a wide range of parameters and sample 
sizes (Figures 3 and 4; Figures S2–S16). When desirable, different 
parameter sets specific to current or future datasets can be included 
in the script provided (Data S1).

4  | DISCUSSION

The analysis of comprehensive long-term datasets is often com-
plex due to cross-classified data structures and difficulties in 
separating variation in sources of interest from confounding vari-
ables, such as separating year from batch effects. Our simulations 
clearly demonstrate that statistical power was greater for within- 
and between-individual effects when samples were randomized 
or sliced across batches when year effects apply. The reduction in 
statistical power for aggregation of longitudinal samples in a single 
batch to detect such effects can be explained by the confound-
ing of the year and batch effect. Conversely, in simulations with 
cohort effects, there was greater statistical power for within- and 
between-individual effects when samples were aggregated within 
a single batch or randomized, compared to slicing across batches. 
The lower statistical power for slicing to detect such effects is 
the consequence of a low number of cohorts in our simulations, 
where cohorts are sequentially ordered instead of mixed among 
slices, which results in confounding effects between cohort and 
batch within the slicing approach. A higher number of cohorts in 
the simulations will lead to a mixture of cohorts among slices and 
result in similar statistical power to detect within- and between-
individual effects for all three sample structuring strategies. This 
highlights the importance choosing appropriate slicing angles and 
widths, ensuring adequate variation of potential confounds (e.g. 
cohort/year) in a single batch.

The greater statistical power to detect within-individual ef-
fects for slicing and randomization when year effects apply was 
the consequence of appropriate statistical methodology, account-
ing for batch, individual and year through fixed and random ef-
fects. These results disprove the assumption that samples from a 

single individual need to be analysed in the same batch for greater 
statistical power to detect within-individual effects (e.g. Beirne 
et al., 2014; Nettle et al., 2015). Such efforts will reduce the statis-
tical power of the study and generate unnecessary effort in pick-
ing specific samples, which increases the likelihood of technical 
errors (e.g. sample mix-ups, freeze/thawing effects, transcription 
or pipetting errors).

The statistical power to detect year effects was greater when sam-
ples were aggregated in a single batch or randomized across batches 
compared to slicing. However, when the slicing angle and width de-
creased, there was no difference in statistical power to detect year 
effects compared with aggregation and randomization approaches. 
This is because a lower slicing angle and smaller width reduces the 
confound between batch and year, as a slice crosses more batches or 
there are more slices per batch. In contrast, the notion that longitudinal 
samples should not be aggregated in the same batch becomes partic-
ularly pronounced when cohort effects occur. The effort of grouping 
samples from a single individual together collects cohorts together 
(an individual's cohort is fixed) in a batch thus reducing the statisti-
cal power to distinguish between different cohorts, even though this 
increases precision. Random allocation of samples and slicing have a 
substantially greater statistical power to detect cohort effects due to a 
higher mixture of cohorts within the same batch. For telomere biology 
especially, estimating cohort effects reliably is important as it can af-
fect telomere length strongly (Spurgin et al., 2017), but cohort effects 
are not always estimated. All these results are robust against a variety 
of batch errors, sample sizes and strengths of year and cohort effects.

4.1 | Integral approach to growing biobank analysis

The optimal sample structuring strategy for analysing long-term 
datasets depends on the structure of the data and questions of in-
terest. However, in the majority of long-term datasets, slicing has 
benefits over other structuring strategies by overcoming problems 
with confounding variables and cross-classified data structures 
which commonly occur in the analysis of long-term studies.

The assumption that longitudinal samples should be aggregated 
in a single batch could hinder the slicing approach, but our simula-
tions have disproven this assumption. Slicing performs, in terms of 
statistical power and precision, equally well to randomization when 
applying correct slicing parameters (i.e. low width and angle). Slicing 
across batches and clusters and bridging them together provides the 
slicing approach with statistical power to disentangle confounding 
effects.

The key benefit of slicing over randomization is that slicing allows 
separate analysis of current data and flexible inclusion of these data 
into future analyses without completely confounding the analysis. 
Furthermore, slicing allows sequential analysis of samples, which only 
need to be analysed once, preventing complicated sample labelling 
and placing among clusters, reducing sample volume required and 
avoiding any defrosting issues and therefore reducing the potential for 
human error.
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Slicing has some potential limitations. For example, substantial 
differences among years in the number of samples collected could 
limit the ease with which the slicing approach is applied. Additionally, 
a failed analysis of samples (e.g. plate failure leading to sample loss 
during analysis) using slicing results in missing data within a certain 
time window, whereas with randomization this is scattered across 
the dataset. While slicing performs similarly to randomization in 
terms of statistical power and precision, we think that slicing is more 
practical with merits (i.e. sequential analysis, statistical indepen-
dence) that outweigh the limitations. We stipulate that, because of 
sequential analysis in our slicing approach, hypotheses need to be 
pre-defined and power analyses conducted before experimental and 
statistical analysis (Fraser, Parker, Nakagawa, Barnett, & Fidler, 2018 
and references therein).

The use of mixed models is common in the analysis of longitu-
dinal datasets, especially in ecology (Bolker et al., 2009; Gelman & 
Hill, 2006). We highlight the use of mixed models because they are 
necessary when using the slicing approach to account adequately 
for experimental and environmental variation. The combination 
of slicing and mixed models in long-term studies allows analysis 
of commonly occurring cross-classified data structures that arise 
due to hierarchical biology mixed with cross-classified data col-
lection and analysis. Interpretation of the variance components in 
these models depends on a crossed or nested design (Schielzeth & 
Nakagawa, 2013), where the random effect structure can be used 
to account for potentially confounding experimental and environ-
mental variables with cluster effects (e.g. storage duration, batch). 
The failure to include these effects can inflate type I and type II 
errors when there is a temporal, spatial or other spurious correla-
tion with any independent variable.

5  | CONCLUSIONS

A major current challenge in long-term studies is analysing data as it 
is collected while also including it in future analyses without creating 
uncontrollable variation, allowing comparison of results over multi-
ple years or even decades. This requires the ability to compare dif-
ferentially timed analyses that are potentially biased by confounding 
cluster effects. Our study shows the importance of considering 
the structure of samples among clusters and batches in long-term 
studies. Our slicing approach retains statistical independence and 
accounts for among-cluster variation in the sequential analysis of 
growing biobanks. Slicing also provides similar statistical power and 
precision to detect cohort, year, within- and between-individual 
effects to randomization, if analysed using appropriate statistical 
mixed models and consistent methodology to control for confound-
ing effects. A single sample's scientific value increases through this 
approach, as it can be used separately in current studies, but can 
also be included in subsequent studies, providing sustainable (re-)
use of collected data. The approach we propose here (slicing and 
mixed models) is easy to apply and improves the potential for these 

growing biobanks to address important ecological and evolutionary 
questions.
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