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Abstract: Eicheon properties are discussed. It is shown that the eicheon surface allows setting a
boundary condition for the vacuum polarization and obtaining a solution describing the dark matter
tail in the Milky Way Galaxy. That is, the dark matter in the Milky Way Galaxy is explained as the
F-type of vacuum polarization, which could be treated as dark radiation. The model presented is
spherically symmetric, but a surface density of a baryonic galaxy disk is taken into account approxi-
mately by smearing the disk over a sphere. This allows the reproduction of the large distance shape
of the Milky Way Galaxy rotational curve. Andromeda Galaxy’s rotational curve is also discussed.

Keywords: eicheon; dark matter; vacuum polarization; rotational curve; galaxy nuclei

1. Introduction

Observation of the stellar orbits around the center of the Milky Way Galaxy [1,2],
detecting the gravitational waves from the black hole/black hole and black hole/neutron
star coalescence (e.g., see the catalog [3] for an overview), radio-astronomy observation
of the “black hole shadows” in the centers of galaxies [4,5] are widely considered as the
direct evidence of an extremely compact astrophysical object (ECO) existence with a radius
of an order of the Schwarzschild one. The observable properties of such an object are
well-described by an exact Schwarzschild (or, more precisely, Kerr) solution of the general
relativity (GR) equations [6,7]. A principal question is whether the Schwarzschild solution
interprets reality quite adequately. Indeed, there are a lot of theoretical attempts to describe
ECO whose properties approach those of an ordinary GR black hole sufficiently far from
the event horizon (so-called horizonless “exotic compact objects” [8]). Some of them
are based on the modified theories of gravity1. Recently, ECOs without a horizon have
been discussed intensively (e.g., [12–15]). A zoo of exotic ECO, such as bosonic stars [16],
gravastars [17], and other exotic stars [18,19], was proposed and theoretically explored.
Also, the approaches based on constructing the nonsingular black-hole metrics in the
spacetimes of different dimensions were proposed (e.g., see [20,21]).

The question about the nature of ECO is also related to the need for dark matter
(DM) to explain the galactic rotational curves [22–24]. In particular, the first observation
of the DM density around the stellar-mass ECO appears [25]. It was conjectured that the
primordial black holes could be considered the candidates to DM [26]. Besides, there is
a plethora of DM candidates [27]. However, could we advance without extraordinary
physics but only by taking a vacuum polarization into account correctly [28]? Conventional
answer is “No” in the frame of the renormalization technique of quantum field theory
on a curved background [29,30]. Still, this approach demands covariance of the mean
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value of the energy-momentum tensor over the vacuum state [29]. This demand has no
solid foundation because it is known that there is no vacuum state invariant relative to the
general transformation of coordinates. On the contrary, an argument was put forward that
the preferred conformally-unimodular metric (CUM) could describe a vacuum polarization
and resolve the DM problem [28,31]. In this metric, a black hole as an object having a
horizon is absent [32]. Its disappearance results from the coordinate transformation relating
the Schwarzschild-type metric to CUM, which selects some shell over the horizon and
draws it into a node. As a result, a point mass without a horizon arises in a CUM. It is an
idealized picture. In reality, one must know the equation of the state of a substance forming
such ECO (named “eicheon” [32]).

Here, aiming at understanding the eicheon nature, we will use an approximation of
the constant energy density and a trial “equation of state” relating the maximal pressure
and the energy density. In our approach, we construct eicheon, and, after determining its
properties, describe an eicheon surrounded by “dark radiation” to explain the rotational
curves of the Milky Way and Andromeda (M31) Galaxies. “Dark radiation” is one of two
kinds of vacuum polarization considered in [28], namely the polarization of F-type. Finally,
to be closer to observations, we introduce a baryonic matter into the model by smearing
the galactic disks of the Milky Way Galaxy and M31.

2. What Is “Eicheon”?

Eicheon is a horizon-free object which appears instead of a black hole in CUM. As an
idealized structure, eicheon represents a solution of a gravitational field of a point mass in
CUM. In the metric of a Schwarzschild type, it looks like a massive shell situated over the
Schwarzschild radius. In the real world, where there is no infinite density and pressure,
the eicheon could be modeled in the Schwarzschild-type metric by a layer of finite width
over the horizon, as it is shown in Figure 1. In CUM, it looks like a solid ball [32,33].
A constant density model is convenient for understanding the main features of the eicheon.

Figure 1. (a) Nonsingular eicheon surrounded by dark radiation in CUM (3) has a nonsingular core.
(b) In the Schwarzschild type metric (4), this core looks like a hollow sphere. Vacuum polarization
around an eicheon is shown as the gradient of a density.

CUM for a spherically symmetric space-time is written as

ds2 = a2(dη2 − γ̃ijdxidxj) = e2α
(

dη2 − e−2λ(dx)2 − (e4λ − e−2λ)(xdx)2/r2
)

, (1)

where r = |x|, a = exp α, and λ are the functions of η, r. The matrix γ̃ij with the unit
determinant is expressed through λ(η, r). The interval (1) could be also rewritten in the
spherical coordinates:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (2)
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resulting in
ds2 = e2α

(
dη2 − dr2e4λ − e−2λr2

(
dθ2 + sin2 θdφ2

))
. (3)

However, let us discuss eicheon properties in the Schwarzschild-type metric, which is
more convenient for a reader

ds2 = B(R)dt2 − A(R)dR2 − R2dΩ. (4)

In this metric, the Volkov-Tolman-Oppenheimer (TOV) equation for a layer R ∈
{Ri, R f } reads as:

p′(R) = − 3
4πM2

pR2M(R)ρ(R)
(

1 +
4πR3 p(R)
M(R)

)(
1 +

p(R)
ρ(R)

)(
1− 3M(R)

2πM2
pR

)−1

, (5)

where the function

M(R) = 4π
∫ R

Ri

ρ(R′)R′2dR′ (6)

and the reduced Planck mass Mp =
√

3
4πG = 1.065× 10−8 kg. We will model a layer of

constant density ρ so thatM(R) is expressed as

M(R) =
4π

3
ρ
(

R3 − R3
i

)
. (7)

It is convenient to measure distances in units of the Schwarzschild radius rg = 3M
2πM2

p
,

while energy density and pressure in the units of M2
pr−2

g . In these units, it follows from (7)
and the definition of the eicheon mass M =M(R f ) that

ρ =
1

2(R3
f − R3

i )
. (8)

The TOV Equation (5) is reduced to

p′ =
(p + ρ)

(
3pR3 + ρ

(
R3 − R3

i
))

R
(
2ρ
(

R3 − R3
i
)
− R

) (9)

and has to be solved with the boundary condition p(R f ) = p
(

3
√

R3
i +

1
2ρ

)
= 0, where the

second equality follows from (8). Let us simplify the problem further and assume that
Ri = 1 in the Schwarzschild radius units. Even in this case, there is no analytical solution
of the Equation (9), but the most interesting quantity is a maximal pressure pmax = p(1),
which turns out to be approximated by the expression

pmax ≈
√

ρ
√

6
− 1

3
+

11
36
√

6
√

ρ
− 35

864
√

6ρ3/2
(10)

as is shown in Figure 2.
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Figure 2. Pressure pmax in the center of eicheon (see Figure 1a) in CUM, coinciding with the pressure
p(Ri) in the metric (4) (see Figure 1b). Blue and brown curves correspond to the numerical integration
of the Equation (9) and approximation (10), respectively.

If one supplements Equation (10) by the “equation of state”, which connects the
maximal pressure with the density, then it is possible to determine the pressure and density.
For instance, the “equation of state” corresponding to a degenerate relativistic fermion gas

pmax = ρ/3 (11)

gives no solution because of Equations (10) and (11) are incompatible.
The equation of state of the nonrelativistic degenerate Fermi gas is written in physical

units as [34]

p̃max =
1
5

(
3π2

m4
N

)2/3

ρ̃5/3, (12)

where mN is a particle mass, and the tilde denotes that the quantity is expressed in the
physical units. When ρ is large, one could use only the first term in Equation (10), and its
equating to the pressure from (12) gives the following expression

Mpr−1
g
√

ρ̃
√

6
=

32/3π4/3

5

(
1

m4
N

)2/3

ρ̃5/3, (13)

allowing us to find the physical density

ρ̃ =

( 5
3
)6/7

23/7mN
16/7Mp

18/7

3π2/7M6/7 , (14)

which decreases with an increase of mass M of the eicheon. Dimensionless density is found
by dividing (14) by M2

pr−2
g and reads

ρ =
7
√

3 56/7M8/7m16/7
N

211/7π16/7M24/7
p

. (15)

It grows with the increase of M, so that approximation pmax ≈
√

ρ/6 becomes justified
at some mass according to (10). Respectively, the width of the eicheon shell decreases:

∆R = 3
√

1 + 1
2ρ − 1 ≈ 1

6ρ and becomes very thin at large M. Certainly, we imply the relative
width in units of rg. For instance, if one takes the eicheon mass equal to the Sun mass
M = M� = 1.989× 1030 kg and mN equals the neutron mass, then the dimensional density
ρ̃ = 2.4× 1019 kg/m3, while the dimensionless ρ equals 0.66. This eicheon has a rather thick
skin ∆R ≈ 0.33 and, in the principle can be distinguished from a conventional black hole.
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One more example is the eicheon of a large mass 40× 109M�. In this case, the physical
density is much lower and we could consider the “equation of state” for a cold hydrogen
plasma, where the pressure is created by a degenerate electron gas, and the dimensional
density satisfies

Mpr−1
g
√

ρ̃
√

6
=

32/3π4/3

5

(
1

m4
e

)2/3( ρ̃ me

mN

)5/3
, (16)

where me is electron mass and ρ̃ me/mN is electron density in a fully ionized hydrogen
plasma. Thus

ρ̃ =

( 5
3
)6/7

23/7me
6/7mN

10/7Mp
18/7

3π2/7M6/7 . (17)

The dimensionless density is given by

ρ =
7
√

3 56/7M8/7me
6/7mN

10/7

211/7π16/7Mp
24/7 . (18)

Numerically, these values are ρ̃ = 3.1× 107 kg/m3, ρ = 1.4× 109. The eicheon skin is
very thin ∆R ∼ 1

6ρ ∼ 10−10. Such eicheon is indistinguishable from a conventional black
hole. At the same time, it is rather “mellow” by virtue of (17). Certainly, there is no paradox
here because ∆R is measured in the units of rg, which is large in the case considered. Finally,
we can estimate eicheon in the center of the Milky Way Galaxy using the Formulas (16)–(18).
For M = 4.154× 106M�, they give ρ ≈ 3.8× 104, ∆R ∼ 10−6 and ρ̃ ≈ 8.2× 1010 kg/m3 that
is greater than the white dwarf mean density ρ̃ ≈ 4× 108 kg/m3 [35]. The eicheons of any
mass exist because the inner Ri and outer R f radii (see Figure 1b) exceed the Schwarzschild
radius, and Buchdahl’s bound [36] M < 4R/9G is not eligible.

To consider eicheon in CUM (3), one could set t = η, R = R(r) and compare the
metrics (3) and (4) to obtain:

B(R) = e2α, (19)

R2 = r2e−2λ+2α, (20)

A(R)
(

dR
dr

)2
= e4λ+2α. (21)

Using (19) and (20) in (21) to exclude λ and α yields

dr
dR

=
R2

r2
A1/2

B3/2 . (22)

In the region filled by matter, A(R) and B(R) obey [37]

d
dR

(
R
A

)
= 1− 6ρR2,

1
B

dB
dR

= − 2
p + ρ

dp
dR

. (23)

For the model of a constant density ρ(R) = const, the Equation (23) can be integrated
explicitly

A =
R

R− 1− 2ρ
(

R3 − R3
f

) . (24)

B =

(
1− 1

R f

)
ρ2

(p(R) + ρ)2 ≈ 1− 1
R f

, (25)
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where the pressure is neglected compared to the energy density in the last equality of (25).
According to (22), the eicheon radius is

r f =
3

√
3
∫ R f

1

A1/2

B3/2 R2dR ≈
√

3 3
√

11 ρ1/6

25/6 +
43

25/6 35/2 112/3ρ5/6 , (26)

where a small “thickness” of the eicheon surface R f − 1 is assumed, and R f is expressed as

R f = 3
√

1 + 1
2ρ . For a supermassive eicheon, using (18) and first term of (26) results

r f ≈
311/21 7

√
5 3
√

11
223/21π8/21

42

√
M8m6

e m10
N

M24
p

, (27)

i.e., in CUM, the eicheon radius in the units of rg increases when the eicheon mass M rises.

3. Vacuum Polarization around of Eicheon

Considering the vacuum polarization for an arbitrary curved space-time background
is a highly complex problem. Instead, one could consider the scalar perturbations of CUM:

ds2 = (1 + Φ(η, x))2

(
dη2 −

((
1 +

1
3

3

∑
m=1

∂2
mF(η, x)

)
δij − ∂i∂jF(η, x)

)
dxidxj

)
(28)

and calculate a spatially nonuniform energy density and pressure arising due to vacuum
polarization in the eikonal approximation [28].

As was shown [28], the energy density and pressure of vacuum polarization corre-
sponding to the F-type of metric perturbations (28) have the radiation equation of state
δpF = 1

3 δρF. “Dark radiation” does not consist of real particles2, nor interacts with some
substance, but could be a source in the equations for gravity. That gives a possibility to
use a hypothetical “dark radiation” in some heuristic nonlinear models, such as the TOV
equation. For a radiation substance alone, a singular solution of the TOV equation exists
that is devoid of physical meaning [37]. However, the situation changes cardinally in
CUM in the presence of the nonsingular eicheon. This gives a possibility to set a boundary
condition for a radiation fluid at r = 0 and obtain a nonsingular solution, including the
dark radiation. In the Schwarzschild type metric (4), the boundary condition is set at the
radial coordinate of an inner shell R = Ri, which corresponds to the point r = 0 in CUM
(see Figure 1).

The system of equations (see Appendix A) in the metric (4), implies three substances:
the eicheon of the constant density ρ1, the dark radiation density ρ2, and the density ρ3 of
baryonic matter of the galactic disk and bulge:

 p′1 = − 3(p1+ρ1)(M+4πR3(p1+
ρ2
3 ))

2R(2πR−3M)
, M′ = 4πR2(ρ1 + ρ2),

ρ′2 = − 6ρ2(M+4πR3(p1+
ρ2
3 ))

R(2πR−3M)
,

Ri < R < R f ,

ρ′2 = − 6ρ2(M+4πR3 ρ2
3 )

R(2πR−3M)
, M′ = 4πR2(ρ2 + ρ3), R > R f .

(29)

where the baryonic matter ρ3 is considered as some external matter density. According
to (29), there are two equations for the pressure and “dark radiation” density inside the
eicheon and a single equation for “dark radiation” density outside the eicheon.

As is shown in the upper panel of Figure 3, the eicheon without galactic disk and
bulge contributes at a small distance, and the dark radiation contributes at large distances.
The density of dark radiation depends on the eicheon structure, which was considered in
the previous section. It is convenient to introduce a universal quantity of a dark radiation
density for the Milky Way Galaxy at the radius of a photon sphere R = 3/2, which
almost does not depend on eicheon structure, namely ρ∗2 ≡ ρ2(3/2) = 9.3 × 10−32 =
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2.1× 10−25 kg/m3. Moreover, it remains a single parameter because the eicheon mass in
the dimensionless units equals M = 2π/3. Thus, a DM tail is reproduced by virtue of the
universal equations

ρ′2 = −
3ρ2
(
M+ 4πR3 ρ2

3
)

πR
(

R− 3M
2π

) , M′(R) = 4πR2ρ2, M(3/2) = 2π/3, ρ2(3/2) = ρ∗2 , R > 3/2. (30)

0.001 0.100 10 1000
R, kpc0

50

100
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200

250

300

350

vrot, km/s

0.001 0.100 10 1000
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350
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Figure 3. (Upper panel) The calculated rotational curve of the Milky Way Galaxy from Ref. [28],
which includes contributions of the eicheon and dark radiation. (Lower panel) Rotational curve
taking into account the baryonic matter by (33)–(35). Dashed line represents DM modelling by NFW
profile, and baryonic matter by (33)–(35), but using another parameters. The result of observations
with the error bars are taken from Ref. [22].

That is a spherically symmetric model where the amount of dark radiation is adjusted
to fit the observations. The rotation velocity is calculated according to [28]

vrot =

√
R

2B
dB
dR

=

√
− R

p2 + ρ2

dp2

dR
=

1
2

√
− R

ρ2

dρ2

dR
, (31)

where the last equality of (31) says that the dark radiation ρ2 serves a “reference fluid”
because satisfies continuity Equation (23) rewritten in the form of

dρ2

dR
+

2
B

dB
dR

ρ2 = 0. (32)

To consider the baryonic matter, one could smear a baryonic galactic disk on a sphere
and view the resulting mass density as some external non-dynamical density in the TOV
equations for the eicheon and dark radiation. This external density creates an additional
gravitational potential.
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Let us consider the surface density of matter in a galactic disk:

℘ =
MD

2πR2
D

e−R/RD , (33)

and write the mass dM corresponding to the radial distance dR

dM =
MD

R2
D

e−R/RD RdR =
MD

R2
DR

e−R/RD R2dR. (34)

According to (34), the smeared 3-dimensional density has the form:

ρ3 =
MD

4πR2
DR

e−R/RD . (35)

The result of the calculations for the Milky Way Galaxy rotational curve is shown in the
lower panel of Figure 3. As one can see, the simple model with smeared disk describes the
baryonic matter roughly, but the observed rotational curve has a more complicated structure.

4. Andromeda Galaxy

Andromeda Galaxy (M31) is nearest to the Milky Way Galaxy and is situated at a
distance ∼800 kpc. For M31, there are no small distances data ∼0.01 kpc, allowing us to
identify a compact object in the center explicitly. Indeed, the situation is more complicated
because cluster B023–G078 of M31 hosts one more black hole ∼105 M� [38,39]. For the
correct description, we need to apply a solution with two eicheons. This problem seems
complicated, and we leave it for the future, considering only one central eicheon with the
mass 108 M� [38,39]. Calculations are analogous to that of the previous section.

The results of modeling are shown in Figure 4. The dimensionless parameter equaled
the dark radiation density in the units of M2

p r−2
g at a photon sphere radius is ρ2(3/2) =

6.2× 10−28 = 2.3× 10−24 kg/m3. This value is greater than that for the Milky Way Galaxy,
i.e., these suggest the greater mass of central eicheon and the greater dark radiation density
at a radius of the eicheon photon sphere. After introducing the baryonic matter by smearing
galactic disk (33) over a sphere we have the curve shown in a lower panel of Figure 4.

0.1 1 10 100 1000
R, kpc0

50

100

150

200

250

300

350

vrot, km/s

Figure 4. Cont.
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Figure 4. (Upper panel) Andromeda Galaxy rotational curve, which includes contributions of the
eicheon and dark radiation only. (Lower panel) Rotational curve taking into account the baryonic
matter by (33)–(35). The result of observations with the deviations bars are taken from Ref. [40].

5. Discussion and Conclusions

We have shown that the F-type vacuum polarization could explain DM, which mimics
a sort of “dark radiation”. Namely the presence of ECO, or eicheon, in the center of the
galaxy provides a nonsingular solution for dark radiation. The eicheon resembles a black
hole for an external observer but has no horizon. Our model is spherically symmetric.
However, the appropriate approximation of the distribution of baryonic matter in a galaxy
by the disk smearing over a sphere allows for obtaining the qualitative agreement of the
rotational curves with the observed ones.

Still, in the spreading of a galactic disk, we overestimated a baryonic matter. Usually,
it is supposed that DM begins to play a role from a few kpc, but according to the above
consideration, the contribution of dark radiation becomes considerable only at tens kpc.
For example, in Figure 3 (red dashed curve) we represent DM modelling by Navarro Frenk
White (NFW) profile [41], where left and right edges of the central fold of the plot are
approached by baryonic matter and NFW profile respectively.

For M31, we are not able to obtain an amount of DM needed in the region of 10–100 kpc.
We conjecture that, if there is not only a central eicheon in the galaxy but a number of
eicheons, one could glue dark radiation tails to every eicheons and create a needed amount.

Let us remind the principles of calculation. We have considered the vacuum polar-
ization of F-type in CUM (28) and find that it has a radiation-like equation of state. Then,
we solve the TOV equation for incompressible fluid and dark radiation and obtain a non-
singular solution. To consider the baryonic matter, we smear a galactic disk and use the
resulting density as some external density. Interestingly, each galaxy’s dark radiation tail
can be described by a single parameter: density of dark radiation at the radius of a photon
sphere of the eicheon. The numerical value of this density for the Milky Way Galaxy is
2.1× 10−25 kg/m3, and for Andromeda Galaxy it is 2.3× 10−24 kg/m3.

These values could be compared with the spatially uniform residual energy density of
vacuum fluctuations, which remain after compensation of its main part by the constant in
the Friedman equation [42]. It is of the order of critical density ∼×10−26 kg/m3. Certainly,
we use the amount of the dark radiation at a photon radius of the eicheon R = 3/2rg. Still,
this amount rapidly decreases at R > 3/2rg and increases at R < 3/2rg. In this light, it is
interesting to obtain a general picture of matter structure formation in the universe by the
solution of the system of the equations for the perturbations of the metric and the matter,
including vacuum polarisation of both types [28].
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S.L.C.; validation, writing and editing, S.L.C. and V.L.K. All authors have read and agreed to the
published version of the manuscript.
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Appendix A. TOV Equation for a Mixture of Ordinary and Dark Fluids

Each of the fluids obeys the equation of the hydro-static equilibrium [37]:

B′

B
= −

2p′1
ρ1 + p1

, (A1)

whereas the equations for gravitational field give [37](
R
A

)′
= 1− 8πGρR2, (A2)

−1 +
R

2A

(
−A′

A
+

B′

B

)
+

1
A

= −4πG(ρ− p)R2, (A3)

where p = p1 + p2, and ρ = ρ1 + ρ2. Solution of the Equation (A2) is written formally as

A =
1

1− 2GM/R
, (A4)

whereM(R) is given by (6) Expressing B′/B from (A1), A, A′ from (A4), (A3) and substi-
tuting them into (A2) gives

p′1 = −(p1 + ρ1)
G
(
M+ 4πR3 p

)
R(R− 2GM)

. (A5)

The analogous equation holds for the second fluid.

Notes
1 For the comprehensive reviews, see [9,10], and one may add an additional alternative approach based on the relativistic theory of

gravity with a massive graviton [11].
2 One could imagine, that “dark radiation” consists of virtual particles of some kind. We have considered [28] only scalar field,

minimally coupled with gravity.
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