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Abstract: Shipowners need to prepare for low-emission fuel alternatives to meet the IMO 2050 goals.
This is a complex problem due to conflicting objectives and a high degree of uncertainty. To help
navigate this problem, this paper investigates how methods that take uncertainty into account, like
robust optimization and stochastic optimization, could be used to address uncertainty while taking
into account multiple objectives. Robust optimization incorporates uncertainty using a scalable
measure of conservativeness, while stochastic programming adds an expected value to the objective
function that represents uncertain scenarios. The methods are compared by applying them to the
same dataset for a Supramax bulk carrier and taking fuel prices and market-based measures as
uncertain factors. It is found that both offer important insights into the impact of uncertainty, which
is an improvement when compared to deterministic optimization, that does not take uncertainty
into account. From a practical standpoint, both methods show that methanol and LNG ships allow a
cheap but large reduction in emissions through the use of biofuels. More importantly, even though
there are limitations due to the parameter range assumptions, ignoring uncertainty with respect to
future fuels is worse as a starting point for discussions.

Keywords: ship design; alternative fuel; energy system selection; uncertainty; optimization; robust;
stochastic

1. Introduction

Maritime emissions accounted for roughly 3% of global anthropogenic GHG emissions
in 2018 [1]. However, given global GHG neutrality ambitions [2], this share may increase
substantially in the coming years if no action is taken. Nevertheless, the pressure to
decarbonize is increasing with the International Maritime Organization recently aiming to
reduce total maritime GHG emissions by 30% in 2030 and 80% in 2040 [3].

According to many studies [1,4,5], alternative fuels are the only technical option to
drastically reduce emissions from shipping. Depending on the fuel and feedstock, reduc-
tions are deemed to be substantial and reach close to zero emissions on a well-to-wake
basis [6]. Nevertheless, each alternative fuel has distinct advantages and disadvantages
in aspects such as safety, combustibility, availability, storage density, etc. [7]. Depend-
ing on the preference for these aspects, the choice of the ‘best’ fuel may hence differ
between stakeholders.

Even when reducing the range of aspects to be considered down to techno-economic
criteria, the choice of fuel may not be obvious. Multiple studies [5,8,9] show that the choice
is strongly dependent on cost assumptions, in particular on relative differences between the
different feedstocks. These feedstocks can be fossil, bio or renewable energy sources and
open up a large range of conceivable price trajectories which can be viewed as scenarios.
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Most studies [5,9] evaluate alternative fuels within multiple scenarios. Less frequently,
the fuels are evaluated across all possible scenarios, i.e., taking the large range of uncertainty
with respect to fuel and carbon prices into account explicitly. Examples that evaluate fuels
across scenarios are [10,11], but these do not consider fuels with (close to) net zero GHG
effect. Fuel prices are impacted by many external factors, like logistics, regulation, supply
and demand, and are therefore subject to change and difficult to forecast. For example,
the heavy fuel oil (HFO) price has varied between 145 and 1126 USD/tonne in the last
decade alone [12]. Excluding this in energy system selection could result in future economic
infeasibility. Substantially different fuel prices are even plausible when considering the
impact of long-term political development and thereby emission reduction requirements
or incentives. Last but not least, flexibility is seldom valued within fixed scenarios, as it
is difficult to do so. In the presence of uncertainty, however, flexibility can be a suitable
design strategy [13].

In this paper, we aim to research how including uncertainty may provide important
insights into the potential of a fuel. To achieve this, we will explore the application of
two different methods, namely robust and stochastic optimization [14,15], on a relatively
simple case study. This will allow for a clearer comparison of the methods and allow
the reader to pick the best option for their application. Robust optimization includes
uncertainty by adding it as a constraint and having the decision-maker select an un-
certainty level to be robust against. Stochastic optimization approaches uncertainty in
a probabilistic manner in the objective function by assigning probabilities to possible
scenarios. The methods are tested on their ability to investigate a techno-economic
selection of alternative fuels under fuel price and carbon price uncertainty. As these
methods are relatively new in this field, the paper addresses multiple questions. First, it
aims to investigate how solutions that include uncertainty differ from a deterministic
solution. Second, the methods are compared to understand if the difference in their
approach also results in a difference in recommendations. Third, further insights from
each method for ship designers are examined. Lastly, it is investigated if the methods
are sensitive to assumptions and if the amount of work to implement these methods is
compensated by the insights they provide.

The paper is structured as follows: Section 2 describes the methodology and mathe-
matical models that are compared in this paper. Section 3 describes our case study-specific
inputs for the comparison. Section 4 displays and discusses the results. It does so by first
discussing the results for the deterministic benchmark model (Section 4.1) and then for
the two models accounting for uncertainty (Sections 4.2 and 4.3). Section 4.4 discusses
the results across all models. Lastly, Section 5 summarizes our findings and concludes
this paper.

2. Methodology

As a basis, this paper uses the mixed integer linear program (MILP) setup from [16].
Below, the setup of the deterministic model is reiterated, and the extensions toward the
robust and stochastic optimizations are further explained.

2.1. Deterministic Model Setup

The variables and parameters used for the deterministic problem setup are shown in
Table 1:

Table 1. Variables and parameters for the linear programming setup.

Set Description Modeling Comment

T set of discrete time periods,
indexed by t

F set of fuel options, indexed by f
S set of system options, indexed by s
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Table 1. Cont.

Set Description Modeling Comment

Parameter Description Modeling Comment

CN
s f

new build cost of ship with system
option s and fuel option f

CR
s f ′s f t

retrofit cost from system and fuel
options sf′ to options sf for period t

CCF
s f t

fuel and carbon cost of system and
fuel combination sf at time period t in

CLO
s f t

lost opportunity cost of system and
fuel option sf per time period t

penalty for lower fuel density
compared to VLSFO as described

by [17]

B energy consumption per time period
assumed fuel conversion

efficiencies do not change over
time, equidistant time periods

Es f
emissions of system and fuel sf per

time period

Decision variable Description

Xs f t
1 if system and fuel sf is chosen at
time t in scenario ω, 0 otherwise

Xs f 0
1 if system and fuel sf is chosen in

period 1, 0 otherwise

rs f ′s f t
retrofit from system and fuel sf’ to

system and fuel sf after period t

The problem consists of two objective functions: cost of ownership

min∑
s f

(
CN

s f Xs f 0 + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+
(

CLO
s f t + B

(
CF

s f t + CC
s f t

))
Xs f t

))
, (1)

and global warming potential (GWP) in tonne CO2 equivalent

min∑
s f

∑
t

BXs f tEs f , (2)

where the cost consists of a new build, lost opportunity and operational element. While the
GWP objective consists of an emission factor Es f which is calculated with emission data
estimates for each fuel. The following constraints are added:

subject to ∑
s f

Xs f t = 1, ∀t ∈ T,

Xs f ′(t−1) + Xs f t − 1 ≤ rs f ′s f t ∀s f ′, s f ∈ F∩ S, ∀t ∈ T\{0},
Xs f ′(t−1) + Xs f t ≥ 2rs f ′s f t ∀s f ′, s f ∈ F∩ S, ∀t ∈ T\{0},

and rs f ′s f t = 0 ∀s f ′, s f ∈ F∩ S, ∀t = 0.

(3)

To be able to solve the multi-objective problem and create a proper front, the GWP
objective is rewritten to a constraint that is stepwise (n) relaxed.

minGWPsubject to ∑
s f

∑
t

BXs f tE f ≤ GWPn (4)

2.2. Robust Optimization

Robust optimization focuses on finding solutions that are insensitive to changes in
parameter values due to uncertainty. It does so by including the bounds of a parameter
as a constraint in the optimization problem. However, as the uncertain variables fuel and
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carbon price CCF
s f t are located in the objective function, it is rewritten as a constraint which

has to satisfy an artificial objective θ.

minθ

subject to ∑
s f

(
CN

s f Xs f 0 + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+
(

CLO
s f t + B

(
CCF

s f t

))
Xs f t

))
≥ θ, ∀ CCF

s f t ∈ U

(5)

The uncertainty is a combination of carbon and fuel cost, which can be represented
using a mean and deviation Cs f t = Cs f t + Ĉs f tz. Here, the deviation is scaled with uncertain
variable z, which is used to guide the solution toward the proper robustness level against
the cost deviation. The cost constraint becomes

subject to∑
s f

(
CN

s f Xs f 0 + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+
(

Cs f t + B
(

Ĉs f tz
))

Xs f t

) )
≥ θ, ∀Cs f t ∈ U.

(6)

The decision to switch between options can be made at each time step t. The next step
is to rewrite Equation (6) such that the uncertain variable z is constrained by its uncertainty
set. To be able to use several general uncertainty sets, a general expression is created by
separating the variable and using a support function δ∗ [18],

subject to ∑
s f

(
CN

s f Xs f 0 + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+ Cs f tXs f t + δ∗(BĈs f tXs f t|Z)

) )
≤ θ, ∀Cs f t ∈ U.

(7)

2.2.1. Uncertainty Set Selection

The next step is to select the uncertainty set that the constraint should satisfy for which
the support function is rewritten accordingly. Multiple sets have been proposed in the
literature that aim to guide the selection toward a proper level of conservativeness and
correlation [19]. These include research into flexible sets by [20], the connection to risk
measures from risk theory [21], the addition of stochastics in the form of distributional
robust optimization [22] and robust constraints based on probability [23]. Such directions
show the potential for further developments of robust optimization for ship energy system
selection. However, to show the principle and benefits of using robust optimization, this
comparison uses less complex uncertainty sets.

Figure 1 shows the uncertainty sets that are used in this paper; their value is given by
the upper or lower bound for each variable multiplied by a conservativeness level factor.
We use two different uncertainty sets to account for two different types of correlations,
namely within a feedstock/fuel group and across feedstock/fuel groups. Within a fuel
group, we use a box uncertainty set with fuel prices bounded by ρF, which are shown in
red. This reflects the direct correlation within bio, fossil and electro-fuel groups, where each
fuel would reach its worst case at the same time. In between feedstock groups, indirect
correlation is reproduced by using an ellipsoidal uncertainty set bounded by ρFG, which is
shown in green. In this way, either feedstock can be worst case, but not both at the same
time. On top of these correlations, carbon prices are added with a box uncertainty set
bounded by ρC.

Each scaling factor can be selected separately to also research relative deviations. The
size of the set is typically defined using the central limit theorem (CLT). In effect, the
uncertainty set represents all possible combinations of samples of each uncertain variable,
but it constrains the extremes. The deviation from the mean can be scaled with ρ to cover a
larger space. Therefore, by increasing ρ, the selection can be forced to be more conservative.
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Figure 1. Uncertainty set visualization.

2.2.2. Adaptive Robust Optimization

The most important decision is the selection of a start design while taking future price
fluctuations into account. Adaptive robust optimization (ARO) splits the problem into a
“here-and-now” decision Y and a “wait-and-see” decision X in the future. By accounting
for uncertainty in the future, the initial decision can be made more robustly.

Subject to ∑
s f

(
CN

s f Ys f + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+ Cs f tXs f t + δ∗(BĈs f tXs f t|Z)

) )
≤ θ, ∀Cs f t ∈ U.

(8)

which results in the following equation when the ellipsoidal uncertainty set is substituted
for the support function:

subject to ρ
∥∥∥BĈs f tXs f t

∥∥∥
2
+ ∑

s f

(
CN

s f Ys f + ∑
t

(
∑
s f

(
CR

s f ′s f t rs f ′s f t

)
+ Cs f tXs f t

) )
≤ θ, ∀Cs f t ∈ U.

(9)

2.3. Stochastic Optimization

The stochastic programming model is a bi-objective two-stage optimization model. The
full model including all constraints is described in detail by [17]. From the deterministic
model presented above, two additional steps are required to derive the mathematical
formulation for the stochastic programming model. In short, these steps are a split of
decision variables into fuel x and system y, plus the introduction of probabilities utilizing
sampled scenarios and respective weighting in the objective function. The split of the
decision variable Xs f t into x f t and yst, i.e., into the fuel and systems for each time period,
is made to better distinguish the most urgent decision of the choice of a system from the
slightly less pressing decision of the fuel, which in practice can be substituted by any fuel
compatible with the selected system. With this step, the objective function reads as

min ∑
s∈S

 CN
s ·yst0︸ ︷︷ ︸

building cost

+ ∑
t∈T

 CLO
st ·yst︸ ︷︷ ︸

lost opportunity costs

+ ∑
s′∈S

CR
s′st·rs′st︸ ︷︷ ︸

retro f it cost




+ ∑
t∈T

∑
f∈F

B·x f t·
(

CF
f t + CC

f t

)
︸ ︷︷ ︸

f uel cost

.
(10)

As the second step, the uncertainty is accounted for by means of a set of scenarios
the model optimizes across. That is, the model applies a risk-neutral expected value
formulation. The scenarios are sampled based on the probability distributions discussed
in [17]. The sampling of scenarios from probability distributions implies that probabilities
are implicit in the scenario set. Each sampled scenario ω, therefore, obtains the probability
Pω = 1

|Ω| . The resulting formulation of the objective function thus becomes
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min ∑s∈S

 CN
s ·ys0︸ ︷︷ ︸

building cost

+ ∑ω∈Ω Pω

∑t∈T

 CLO
st ·ystω︸ ︷︷ ︸

lost opportunity costs

+ ∑s′∈S CR
s′st·rs′stω︸ ︷︷ ︸

retro f it cost





+∑ω∈Ω ∑t∈T ∑ f∈F Pω ·B·x f tω ·CF
f tω︸ ︷︷ ︸

f uel cost

.
(11)

Scenario sampling applies probability distributions for both fuel and carbon prices.
The sampled prices are then stored for each fuel as CF

f tω. Hence, there is no explicit
distinction between fuel and carbon price contributions in the mathematical formulation.
As for the second objective, the global warming potential, the formulation becomes

min ∑
ω∈Ω

Pω ·∑
t∈T

∑
f∈F

B·EWTW
f ·x

f tω
. (12)

by changing the decision variables and introducing the scenario sampling concept. For the
implementation in the commercial solver, this objective is rewritten as a constraint with
the right-hand side subsequently lowered in order to identify solutions on the front, i.e.,
solutions with a lower expected GWP but higher expected TCO.

3. Case Study

For the setup of the comparison, the considerations with regard to the uncertain
parameter selection are discussed first. Second, the input data, which is kept equal for both
methods, is discussed. Lastly, the aspects that are compared are specified.

3.1. Uncertain Parameter Selection

The comparison of methods has been limited to two parameters that, when changing,
could highly impact the optimal selection. This provides a good basis to test the ability
of robust and stochastic optimization. However, besides carbon pricing and fuel price,
multiple other parameters are uncertain for alternative fuels. We would like to stress that
uncertainties outside of the scope of this research can still impact and skew the results in
various ways. To highlight important uncertainties, several categorized parameters are
included in Table 2 below.

Table 2. Uncertain parameter categorization and impact factor overview.

Category Parameter Impacted by Perceived Impact References

Market Lost opportunity Market, capability reduction, safety measures Medium [24]
Mission requirements Endurance, speed, cargo requirements Medium [25]

Input Retrofit cost Timeframe, lost revenue, component costs Medium [26]
Fuel price Logistics, market supply and demand, availability High [27]

Newbuild cost Timeframe, man hour and material cost, inflation Low [28]

Technology Energy converter Novel system development, public perception High [29]
Maintenance Crew ability, degradation, system complexity Medium [30]

Energy carrier New storage mediums and feedstock High [31]
Exhaust treatment Development, costs High [32]

Availability Location, production upsizing, infrastructure,
development, TRL High [33]

Process Production (WTT) Supply chain emission accounting, feedstock
availability, supplier High [34]

Conversion (TTW) Energy system losses, treatment Medium [35]

Regulations Scope WTT/TTW, CO2(eq), SOX & NOX High [36]
Magnitude Penalty cost, enforcement Medium [37]

Lost opportunity Market, capability reduction, safety measures Medium [38]
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Table 2 identifies possible reasons that parameters could shift and what their perceived
impact would be on the final selection. References that discuss the impacts that are
mentioned for each parameter are also included. Nevertheless, not all of the factors
mentioned are covered by the references. From the perspective of the model, input factors,
like costs, will directly influence the results. On the other side, market factors reflect the
ability to generate revenue, which could be impacted in different ways by alternative fuels,
e.g., generally higher freight rates or different speeds. Furthermore, the development and
availability of technology, like energy conversion, carrier and exhaust treatment systems
will only become clear over time and could therefore highly impact the fuel selection
and ability to reach emission targets. More importantly, other fuels and systems could
develop besides the current options that are included in the comparison. The potential
emission reduction in fuels also greatly depends on the process and ability to decrease the
environmental impact in the production and transport (WTT) and conversion (TTW) stages.
Finally, the focus and magnitude of regulatory measures can stimulate or deter the use of
a fuel type. These uncertainties should be addressed when applying any of the methods
in practice.

3.2. Input Data

The case study is based on a Supramax bulk carrier as an example vessel. Any value
given here should be reconsidered for another vessel type. Table 3 shows the different
fuels that were considered and their respective feedstock groups (fossil, bio or electro). The
environmental impact expressed in GWP100 has been split into a production and conversion
equivalent. The economic impact has an operational part which includes an uncertain
range that has been based on estimates from [8,27] and a fixed capital cost part. The retrofit
cost has been elaborated in [17]. The new build, lost opportunity, fuel consumption and
retrofit costs should be recalculated for vessels of different size and function.

Table 3. Model inputs, also showing bounds for uncertain fuel costs.

Environmental Impact Economic Impact

Feedstock Fuel Label

GWP WTT
per Fuel

Energy Unit
(gCO2eq/kWh)

GWP TTW
per Fuel

Energy Unit
(gCO2eq/kWh)

Upper Bound
Fuel Cost

(USD/MWh)

Mean Fuel
Cost

(USD/MWh)

Lower
Bound Fuel

Cost
(USD/MWh)

Newbuilding
Price

(mUSD)

Lost
Opportunity

Costs per
5 Years

(mUSD)

Fossil VLSFO 47.5 1 284.1 1 95 2 66.5 38 2 30 2 0 5

Bio bio-Diesel 70.0 4 150.0 4 128 3 110.4 93 3 30 2 0 5

electro e-Diesel 0.0 1 4.5 1 423 2 277 131 2 30 2 0 5

Fossil LNG 66.6 1 238.8 1 81 2 56.5 32 2 37.5 2 0.5 5

Bio bio-LNG 49.7 1 6.0 1 119 3 103.7 89 3 37.5 2 0.5 5

electro e-LNG 0.0 1 6.0 1 358 2 236.5 115 2 37.5 2 0.5 5

Fossil LPG 30.0 1 237.5 1 98.3 2 68.8 39 2 33 2 0.1 5

Fossil Methanol 112.7 1 253.4 1 210 2 150 90 2 33 2 0.3 5

Bio bio-
Methanol 112.68 1 3.24 1 97 3 81.5 66 3 33 2 0.3 5

electro e-Methanol 0.0 1 3.5 1 385 2 250.5 116 2 33 2 0.3 5

Fossil Ammonia 87.1 1,6 19.0 1 220 2,7 138 56 2,7 37.5 2 0.5 5

electro e-Ammonia 0.0 1 19.0 1 220 2 150 80 2 37.5 2 0.5 5

Fossil LH2 108.7 1,6 0.0 1 245 2,7 150 55 2,7 47.5 2 3 5

electro e-LH2 0.0 1 0.0 1 245 2,7 162 79 2 47.5 2 3 5

1 [6], 2 [27], 3 [8], 4 [39], 5 [17]. 6 assuming 80% CCS efficiency. 7 Upper bound 100% of electricity-based pendant,
lower bound 70% of electricity-based pendant.

Further inputs required for the stochastic model are the probability density functions
for both fuel costs and carbon prices. As described in [17], a triangular function is as-
sumed for the fuel costs, and a beta-variate distribution (alpha 1.5, beta 5) is selected for
the carbon prices up to 1000 USD/tCO2eq. The beta-variate distribution peaks at about
100 USD/tCO2eq. In addition, the carbon price is set to develop such that it may not fall



Sustainability 2024, 16, 1947 8 of 18

below 80% of its value at the preceding time-step. Thus, as a general trend, carbon prices
are assumed to increase with a certain stochasticity.

3.3. Comparison Setup

To properly compare both methods, the different manner in which each handles
important aspects like time dependency and correlation between fuel costs are examined
below in Table 4.

Table 4. Important aspects to compare between robust and stochastic optimization.

Aspect Robust Stochastic

Within-group fuel
price correlation

Independent, box uncertainty set Fully correlated

Out-of-group fuel
price correlation

Correlated using an ellipsoidal set. Other
correlation using other uncertainty sets

Independent

Carbon pricing Conservativeness value could be shifted
to examine the impact

Beta variate probability
distribution developing
over time

Time-dependency Discounting, shifting conservativeness
value for different time steps, adaptive
robust optimization

Discounting,
history-independent fuel
prices, history-dependent
carbon prices, recourse

Objective function Edge case performance Expected performance
Extra criteria Minimum regret, result deviation Value of Stochastic

Solution (VSS)

The value of the comparison can be guaranteed only by being aware of the differences
between each approach. Table 5 shows the tests that are designed to highlight the ability of
the methods while remaining able to compare both.

Table 5. Comparison tests.

Robust Stochastic

Test Purpose Fuel Carbon Fuel Carbon

Deterministic
case Verify code Mean fuel price 0 carbon price Mean fuel price 0 carbon price

Uncertain
scenarios

Compare direct
output of
methods

Conservativeness
scenarios, grouped

Conservativeness
scenarios, shifted

over time

Triangular fuel
price distribution

Beta-variate probability
distribution developing

over time
Measurement

criteria
Test evaluation

options
Impact of different conservativeness

values (min regret) Value of Stochastic Solution (VSS)

Impact of mean
change

Sensitivity to
assumptions 1/3 of mean Conservativeness

scenarios 1/3 of mean
Beta-variate probability
distribution developing

over time

The first test serves as validation and is used for later comparisons. Next, the methods
are compared to understand if the difference in their approach also results in different
solutions. The third test uses the output and additional measurement criteria to examine
what insights could be provided to ship designers. Lastly, the sensitivity of the methods
to assumptions is identified. By completing all tests and implementing the methods, the
difficulty of implementation versus insights can also be addressed.

4. Results
4.1. Deterministic Case

The front for different start ships and pathways is visualized in Figure 2. It shows the
total cost of ownership versus the total GWP100 over the lifetime.
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Figure 2. Multi-objective plot for the deterministic case with mean fuel prices and 0 carbon price.
The colored crosses are non-flexible solutions that stick to a single fuel, and colored lines identify
the start system and lowest GWP pathway of a flexible ship. The same result was found for both the
robust and stochastic optimization codes. By using deterministic optimization, a decision-maker can
already gain an understanding of the potential price to reduce emissions including the starting ship
and pathway that could be followed to meet these targets. However, as values might change, do
these results hold under uncertain conditions?

4.2. Robust Optimization

Figure 3 shows the multi-objective Pareto fronts for static (crosses) and flexible solu-
tions when the conservativeness level is as large as the identified uncertainty ranges. The
deterministic Pareto fronts are visualized as well.

Figure 3. Multi-objective plot for the robust optimization case with high conservativeness level
against the deterministic case in the background.

The large conservativeness against carbon pricing shifts fossil and biofuel options with
higher emissions beyond the Pareto front. At lower cost, robust optimization advocates
switching focus toward methanol and LNG ships instead, as other vessels are costly and
cannot meet reduction targets or need to switch fuels regardless. In addition, ammonia
ships still offer a significant GWP reduction at a higher cost. To further visualize the impact
of fuel price uncertainty, Figure 4 shows results when negating carbon pricing.
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Figure 4. Multi-objective plot for the robust optimization case with zero carbon price and high fuel
price conservativeness.

When considering only fuel price uncertainty, all options shift to the right. More
importantly, the emission reduction slope steepens (reduction becomes cheaper) and the
Pareto fronts become more smooth. Furthermore, because there is much uncertainty in
the price of ammonia, its TCO shifts to the right, while biofuels like bio-LNG and bio-
methanol become more attractive transition options. At medium GWP targets, preference
also seems to shift from ammonia toward hydrogen as a final pathway option. This could
be explained by the options coming closer together due to high uncertainty, while hydrogen
allows initial lenience as it has a higher potential emission reduction. In general, the static
options offer cheaper solutions but are not able to adapt toward lower GWP toward the
end of the life cycle. When looking at the least cost pathway toward low or zero emissions,
primarily ammonia and hydrogen ships are preferred, as other start options imply more
expensive retrofits.

4.2.1. Conservativeness Level Selection

One of the valuable properties of robust optimization is the addition of the conserva-
tiveness factor. It allows the decision-maker to select a preferred robustness level. To better
understand the impact of conservativeness selection, different values and combinations of
ρF and ρC are explored. However, as the additional dimension makes the multi-objective
results more difficult to interpret, the GWP objective is rewritten toward two linearized
constraints to represent the following reduction targets: 2018 IMO (2050: 50%) and 2020 EU
(2030: 40%, 2050: 100%).

First, for the EU target, increasing carbon pricing conservativeness forces owners to
switch toward biofuels, while the impact of fuel price uncertainty on the selected start ship
and fuel pathway decreases. At low carbon prices, increased conservativeness against fuel
prices shows a preference for flexibility to switch between fossil, bio and e-fuels.

Second, for the IMO target, which represents less strict reduction targets, bio-methanol
is selected independently of the conservativeness level. Only when being less conservative
for carbon and fuel price, the optimization selects cheaper fossil fuels as a start, which have
a higher carbon content but a lower price range. More importantly, only for very high
carbon price conservativeness (ρC = 1.5), the selection is similar to the EU GWP target.

Consequently, carbon pricing primarily affects early pathway decisions, while the
GWP target is more impactful regardless of carbon pricing. Table 6 shows the robust
selections against the deterministic solutions.
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Table 6. Single-objective robust optimization solutions for different levels of conservativeness for
IMO and EU GWP targets.

Pathway

Design Target Start 2025 2030 2035 2040 2045

0 EU-deterministic VLSFO ship VLSFO Bio-methanol Bio-methanol Bio-methanol E-Ammonia
1 IMO-deterministic VLSFO ship VLSFO Bio-methanol Bio-methanol Bio-methanol Bio-methanol
2 EU-robust LNG ship Bio-LNG Bio-LNG Bio-LNG Bio-LNG Bio-LNG
3 IMO-robust Methanol ship Bio-methanol Bio-methanol Bio-methanol Bio-methanol Bio-methanol

4.2.2. Measurement Criteria: Impact of Conservativeness Selection

Selecting a higher robustness level will result in different starting points. Effectively,
the optimization results in three different ships and four different pathways, which are
selected dependent on GWP targets and conservatism levels.

We use the principle of uncertainty quantification [40] to examine the impact of
uncertain inputs on the result to see if adaptive robust optimization actually selects robust
options. This can be tested by generating a dataset of future scenarios to evaluate the
performance of the selections. The sampling is comparable to stochastic optimization,
where future prices are sampled from a normal distribution, while carbon price scenarios
use a beta-variate distribution. The results of the selected options for 10,000 different
sampled futures are shown in Figure 5.

Figure 5. Single-objective robust optimization solutions for different levels of conservativeness for
IMO and EU GWP targets.

In both cases (designs 2 and 3), the method selects options which have low variance,
while the deterministic selection has much larger perturbations. Surprisingly, the robust
options seem to prefer a static pathway for each GWP strategy. This can be explained by
the variance being so low that retrofit cost becomes a significant investment. Therefore,
adaptability seems to be neglected, but its benefit is apparent when looking at the multi-
objective figures.

4.2.3. Impact of Changing Variability

Biofuels are found in many pathways on the Pareto fronts. This could be explained
by its low variability (15–18%) versus e-fuels (~50%) and fossil fuels (40–60%). However,
there are multiple barriers like availability, manufacturing cost and government actions
that could increase this variability [41]. Therefore, the variability for biofuels is increased to
50% to examine if the robust optimization selection is impacted. The results for both ranges
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are presented in Figure 6 for medium carbon price conservativeness (ρC = 0.5) and high
fuel price conservativeness (ρF = 1).

Figure 6. Results for original (above) and increased biofuel prices (below).

There are a few interesting changes due to increased biofuel variability. First, the fronts
shift to the right, such that fossil options are in the range of the Pareto fronts, while e-fuel
options at lower GWP do not change. More notably, the biofuel shift primarily impacts the
mid-range or transition options, where, despite cost increases, biofuels still offer a large
reduction potential against a low-cost increase versus fossil fuels. Second, the methanol and
LNG ship Pareto shift slightly closer, because the LNG front is found to be more dependent
on biofuels. This is also apparent from the heavier focus on ammonia, which is switched to
earlier instead of balancing out the GWP from cheaper bio-LNG by switching to hydrogen
later on. Nevertheless, even though pathways are impacted, start ship decisions (Pareto
fronts) seem to be unaffected by variability changes. More importantly, this shows that
there is significant value in being able to retrofit to deal with uncertainty after having
selected a starting point.

4.2.4. Discussion

Robust optimization was shown to be able to select a set of robust solutions from a
large number of options. Furthermore, in the case of alternative fuel selection, switching
fuels during the lifetime can be included by using adaptive robust optimization. It can
be used to understand the adaptability gap, which is the difference between the static
(fixed case) and adaptive robust solution (flexible case). Robust optimization methods
shift the focus of a decision-maker from one assumed value toward properly establishing
an uncertainty range by adding conservativeness. However, although this allows the
decision-maker to immunize against the selected uncertainty, the solution can become
too conservative. This can be dealt with in two ways: the correlation can be changed
using a different uncertainty set, or the conservative factor itself can be reduced. The
impact of uncertainty sets has been discussed extensively in the literature [19], while this
paper primarily discussed the conservativeness factor selection. The impact of these is
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preferably explored, but this is found to be difficult due to the increased dimensionality.
However, a big advantage of robust optimization against other methods is its tractability.
This allows the number of uncertain parameters to be increased against low computational
cost. Overall, the addition of uncertain parameters for ship design works well with single
and multi-objective optimization, but sensitivity exploration is more complex.

4.3. Stochastic Optimization

This subsection will briefly present the results obtained from the stochastic model.
Section 4.3.1 presents the results from the base case as described in Section 3. Section 4.3.2
describes the value of a stochastic solution, and Section 4.3.3 discusses the results when
adjusting the bounds for biofuels.

4.3.1. Stochastic Optimization Base Case

The Pareto front of solutions from the stochastic optimization is shown in Figure 7.
The plot shows that the expected emissions can be lowered by roughly 50% for a marginal
increase in expected costs. Reducing emissions all the way down to zero would result in an
approximately 60% increase in the expected costs.

Figure 7. Pareto front for initial power system configurations, 100 scenarios with a stochastic
carbon price.

In terms of optimal power system choice for the new build, methanol is suggested as a
favorable abatement option for up to 60% emission reduction, while an LNG power system
would optimal between 60% and 90% reduction. Abating the last 10% of emissions would
require ammonia or hydrogen configurations from the beginning.

4.3.2. Value of Stochastic Solution

The Value of the Stochastic Solution (VSS) characterizes the cost delta between im-
plementing the first-stage decisions of a deterministic program based on expected values
vs. implementing the first-stage decisions of the stochastic program. That is, the optimal
first-stage decisions of the deterministic expected value formulation are simulated under
the stochastic setting.

As for this case study, Lagemann et al. [17] have found that the VSS expressed in
monetary terms is generally low. That means that the first-stage decisions suggested by
the deterministic expected value problem do not perform much worse than the first-stage
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decisions suggested by the stochastic model. However, the suggested first-stage decisions
in the deterministic problem alternate frequently with the decreasing target GWP. This
feature is not present in the stochastic solution. Thus, the deterministic solution suggests
artificial chaos, which is not present in the data but rather stems from the discreteness
of the problem. More precisely, it is the limited number of possible combinations that
generate this alternation of optimal first-stage decisions. The VSS in this case could be
better measured as “insight produced”.

4.3.3. Stochastic Model with Adjusted Bounds for Biofuels

In Section 4.2, we have shown that the results of the base case might be biased due to
the low variability in biofuel prices. In order to investigate a change in bounds, we keep the
lower bound as is and adjust the upper bound such that the difference between the original
mean/mode is now 50%, as for most other fuels. As a result, the triangular distribution
becomes asymmetric, with the mode assumed as the original mean, and the new mean is
higher due to the adjusted upper bound. Pantuso et al. [42] have shown that stochastic
programs are often relatively insensitive to the actual probability distributions while being
sensitive to the mean. We will discuss this hypothesis in the light of this case study.

When plotting the suggested first-stage decisions, i.e., what initial system to invest in,
there is little difference to observe in the Pareto front. The effect of adjusted upper bounds
for biofuels differs, however, when it comes to retrofits. This can be seen in Figure 8, which
uses a brute force technique. That is, it traces fixed combinations of fuels and systems over
time across the same scenario set as the optimization model. The line’s color indicates the
first-stage decision (the initial system), while the dot’s color indicates the final system in
the last period. This technique has shown to yield relevant insight [17].

Figure 8. Adjusted upper bound for biofuels, brute force results. The color of the lines denotes the
initial system that is selected in the first time period. The color of the dots denotes the system that is
selected in the last time period.

Applying the brute force technique to the adjusted biofuels brings to the surface
some secondary effects, namely potential retrofits: retrofits toward ammonia become more
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frequent along the Pareto front for adjusted biofuel bounds, while retrofits toward hydrogen
are less frequent. Our hypothesis for this is that adjusting the upper bound for biofuels
naturally renders them more expensive. The model thus is inclined to switch earlier to
e-fuels, for which the retrofit to ammonia is cheaper.

4.3.4. Stochastic Optimization Discussion

Stochastic optimization offers the ability to balance optimization by weighting uncer-
tain outliers stochastically. In this way, the method allows selecting from many options
while taking uncertainty into account explicitly. Furthermore, by using two-stage stochastic
optimization, the method is able to separate the problem into initial (here-and-now) and
future (wait-and-see) decisions. This shall reflect the position of a shipowner today because
it models the future to be unfolding only after the initial selection. The use of probability
shifts the focus of decision-makers toward identifying distributions instead of single values
and allows for specifying a nuanced belief in the likelihood of scenarios. Nevertheless,
one still needs to specify these probability distributions explicitly, which is challenging
especially for high uncertainty levels. In the case of additional uncertainties, the probability
distributions can possibly lead to a non-convexity of the problem. Even though several
approaches exist to deal with non-convex stochastic optimization problems [43,44], such
mathematical limitations must be kept in mind for future extensions and adaptions. Robust
optimization was shown to be able to select a set of robust solutions from a large number
of options.

4.4. Discussion across Methods

By applying both methods to the same problem, the output, methodological assump-
tions and impact for this specific use case can be compared. When comparing the methods
to the deterministic solution, it is apparent that taking uncertainty into account results in
different selections, which focus on improving robustness while also incorporating the
value of flexibility. The following paragraphs each comment on one of our initially stated
aspects for comparison.

Looking at the representation of uncertainty, either conservativeness factors or stochas-
tic distributions are used. However, despite a different approach, the fronts offer very
similar insights. On the one hand, for robust optimization, the impact of robustness is clari-
fied when it is compared to the deterministic solution. While on the other hand, stochastic
optimization offers smoother Pareto fronts and is less dependent on the initial solution.

Regarding insight for ship designers, it is shown that the conservativeness values in
robust optimization offer much freedom to research different scenarios, even though it
increases the dimensionality of the problem. Otherwise, stochastic optimization is more
static, but it has several criteria that offer detailed insights on the difference against the
deterministic solution.

To research the sensitivity of assumptions, the variability and probability distribution
were changed for biofuel. Robust optimization was found to be sensitive to increasing
variability, while the selection of the mean is more impactful when using stochastic opti-
mization. Overall, in this case study, these impacts are primarily found at the pathway
levels and ending option, respectively, while the start selections remain similar. When
comparing recommendations from each method, outcomes are very similar, especially
regarding the optimal start ship. Table 7 further summarizes the pros and cons of each
method while showing the aspects that are deemed to be of specific importance for this
case study in bold.

The setup of the MILP and collecting reliable input was found to be more demanding
than subsequently constructing either method. Therefore, in our opinion, the difficulty
of implementation primarily depends on the choice to use optimization rather than the
choice between robust and stochastic methods. Nonetheless, for robust optimization,
the uncertainty set and conservativeness level selection effort proved significant, while
for stochastic optimization, the computational effort, due to the use of probability and



Sustainability 2024, 16, 1947 16 of 18

sampling, is more pressing. Above all, besides the insights from the method output, the
knowledge gained through structuring such a problem is deemed to be especially valuable
in the face of uncertainty.

Table 7. Advantages and disadvantages of the two optimization methods.

Method Pros Cons

Robust
optimization

Takes uncertainty into account in
modelling stage Can become too conservative

Immunizes against uncertainty Uncertainty set and
conservativeness selection

Adaptive robust decision making Dimensionality due to added factors
Very tractable: low cost extension to

multiple uncertainties
Stochastic

optimization Risk is taken care of explicitly Probability distribution difficult to
specify reliably

Wait-and-see and here-and-now
decisions

Probability can make the problem
nonconvex and difficult to solve

Can treat extreme scenarios as
unlikely using low probability

Too large to solve with
multiple uncertainties

5. Conclusions

Robust and stochastic optimization methods are found to present similar solutions for
the selected uncertainties under the same assumed input conditions. Robust optimization
offers more extensive scenario research capabilities by using different conservativeness
levels and uncertainty sets. However, its results are more readable compared to a determin-
istic solution, while they were found to be primarily sensitive to variability changes in the
uncertainty set. Stochastic optimization provides smoother fronts with fewer alternations,
while it offers several criteria to gain more detailed insights into the difference against a
deterministic solution. Its results are primarily impacted by the selection of the mean of the
probability distribution. The required computational effort is more significant in particular
for larger scenario sets. By using both methods, it is found that confidence in final solutions
can be improved and additional insights can be gained.

For the selection of alternative fuel and power systems, the success of these methods
primarily depends on the level of uncertainty and ability to set up the input for each
method. Nevertheless, both methods shift attention toward defining either probabilistic
or conservativeness factors and encourage the decision-maker to consider uncertainty
in the problem explicitly. As demonstrated, many different uncertainties can impact the
results in a decision problem such as maritime energy carrier selection. While this paper
only looked into two uncertainties, much more are preferably included in the decision
problem. An extension of uncertain factors should be covered in further research. For this
purpose, robust optimization seems to be promising due to its tractability, but this remains
to be proven.

From a more practical standpoint, the methods show that methanol and LNG ships
allow a cheap but large reduction in emissions through the use of biofuels. However,
flexibility is key for these options to be able to follow possible shifts in fuel or carbon prices
as modeled in this paper. The ability to switch toward other fuels during the lifetime was
found to become even more important for values that occur outside of the assumed ranges.
This was shown for a potential variability change for biofuels, which was still selected as
an important intermediate solution for emission reduction despite the shift of the mean
and the increase in the price range.

Consequently, under the conditions of the case study, including uncertainty in such
a selection problem is more important than the choice of a specific method. Furthermore,
applying both methods to the same dataset can increase confidence in the practical results.
We have shown that the suggested decisions of both methods are very similar. Thus,
the choice of method, in our case, affects the decisions to a much lesser extent than the
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assumptions made for the input parameters. Further research should be conducted on
different case studies to corroborate or refute the benefit of flexibility and opportunities of
biofuels. This paper indicates that the application of fuel selection methods for any ship to
meet the IMO emission goals can benefit from including life cycle uncertainty.
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