
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g

Ba
ch

el
or

’s
th

es
is

Staverløkk, Trine Merete

Web-based prototype for simplified
bank reconciliation in accounting
software

Bachelor’s thesis in Computer Science
Supervisor: Anniken Karlsen
January 2024

Staverløkk, Trine Merete

Web-based prototype for simplified
bank reconciliation in accounting
software

Bachelor’s thesis in Computer Science
Supervisor: Anniken Karlsen
January 2024

Norwegian University of Science and Technology
Faculty of Engineering

Staverløkk, Trine Merete

Web-based prototype for simplified bank

reconciliation in accounting software

NTNU Ålesund Bachelor thesis, Computer Science 2023

 2

NTNU Ålesund Bachelor thesis, Computer Science 2023

 3

Preface

This thesis stands as a testament to my hard work to achieve knowledge within the field of

Computer Science at NTNU, of which I am very proud, and the generosity of those who invested

time and knowledge in my academic pursuits, of which I am very grateful.

Thank you to NTNU for providing me with the knowledge and opportunity to take on this

bachelor thesis, the most significant milestone in my academic journey.

I wish to thank my dedicated supervisor, Anniken Karlsen. Her support and constructive

feedback greatly contributed to the development and completion of this work. I also wish to

thank Girts Strazdins for his help and guidance.

My sincere appreciation to the client, Tritt and Conta, whose collaboration made this project

possible. Their real-world challenges enriched my learning experience and added practical

relevance to the theoretical concepts explored throughout this project.

I also wish to thank the team, Sølve Monterio, Regine Giskegjerde Urtegård, Simen Stokkeland

Fuglseth and Nina Vinding Blindheim for their help and support. Special thanks to Sølve

Monteiro for his cooperation and mentorship.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 4

Sammendrag

I regnskapsbransjen er manuell avstemming av transaksjoner mellom regnskapsprogrammer og

bankaktiviteter en tidkrevende prosess som kan inneholde feil. Kunden har identifisert en

mulighet til å effektivisere denne bankavstemmingsprosessen. Oppgaven tar sikte på å

undersøke og utvikle en prototypefunksjonalitet som sammenligner regnskapstransaksjoner

med faktiske banktransaksjoner. Problemstillingen som skal besvares i oppgaven er derfor:

"Hvordan kan man demonstrere forenkling av bankavstemmingsprosessen i et regnskapssystem

gjennom utvikling av en prototype?" Prosjektet er strukturert i tre hoveddeler: en

mulighetsstudie, utvikling av en nettbasert prototype og sluttarbeid med testing med ekte

regnskapsførere.

Prosjektet bruker agile metoder med en solo-utviklertilnærming, støttet av et team fra kunden.

Teknologier som er brukt i utviklingen av prototypen er Docker, Gradle, Micronaut, Vue3, Java,

TypeScript, HTML, Groovy, Cypress, Postgres, IntelliJ and Git/GitHub for versjonskontroll.

Prosjektet leverer en web-basert proof-of-concept av en sammenlignings-motor som tar for seg

et sett av bank- og regnskapstransaksjoner. Prototypen inkluderer funksjoner som en

periodevelger, selve sammenligningen med fire ulike scenarioer, lagring av sammenlignede

perioder i en database og enkel navigering mellom sidene via en sidemeny.

Det konkluderes med at vitenskapelige funn indikerer en vilje til å ta i bruk strømlinjeformede

prosesser innen regnskap, og det finnes I dag løsninger hos konkurrenter som har automatisk

bankavstemming. Prototypen som er utviklet I dette prosjektet støtter opp om funnene i den

vitenskapelige delen av oppgaven, og den oppfyller også kundens krav til prosjektet. Prosjektets

suksess tilskrives samarbeid med et støttende team, overholdelse av smidige metoder og bruk

av relevante teknologier. Ytterligere arbeid innebærer å forbedre prototypen for økt pålitelighet

og hastighet, test-dekning og tilgjengelighet til alle brukere.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 5

Abstract

In the accounting industry, manual reconciliation of transactions between accounting programs

and banking activities is a time-consuming prosess that can contain errors. The customer

identified an opportunity to streamline this bank reconciliation prosess. The project aims to

investigate and develop a prototype functionality that compares accounting transactions with

actual banking transactions. The problem formulation which this project aims to answer is

therefore: " How can one demonstrate simplification of the bank reconciliation prosess in an

accounting system through the development of a prototype?” To solve this problem, the project

has been structured in three main parts: a scientific study, development of a web-based

prototype and final work with testing with real accountants and concluding in a report.

The project uses agile methods with a solo-development approach, supported by a team from

the customer. Technologies used in the development of the prototype are docker, Gradle,

Micronaut, Vue3 (compositions API), Java, TypeScript, HTML, Groovy, Cypress, Postgres, IntelliJ

and Git/GitHub for version control.

The project delivers a web-based proof-of-concept of a comparison engine that deals with a set

of banking and accounting transactions. The prototype includes functions such as a period

selector, the actual comparison with four different scenarios, storage of compared periods in a

database and simple navigation between the pages via a page menu.

Findings in literature show a willingness to adopt streamlined prosesses in accounting, access to

technology and there are existing solutions used in other accounting solutions that have

implemented streamlined or even automatic bank reconciliation. The prototype developed in

this project supports the findings in the scientific part of the thesis, and the prototype meets

the customer's requirements for the project. The project's success is attributed to collaboration

with a supportive team, adherence to agile methods and the use of relevant technologies.

Future work beyond the scope of this thesis involves improving the prototype for increased

NTNU Ålesund Bachelor thesis, Computer Science 2023

 6

reliability and speed, greater test-coverage, accessibility to all users and then implementation

into the clients accounting program.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 7

Background

This chapter will introduce the client and the requirement the client have set for this project.

The client

Tritt AS is a software development company, which was founded in 2016. Tritt specializes in

different software solutions in accounting, and is particularly focused on developing software

within the realms of salary management, accounting, invoicing, and annual financial

statements. Tritt AS merged with Conta in 2023, which delivers high quality accounting-software

solutions.

Requirement specification

The client has requested me as a part of a feasibility study, to design and develop a prototype of

a bank reconcilliation system for their accounting program. The prototype is required to be a

differensial engine (diff-engine) with basic functionality, including comparing two sets of

transactions (bank transactions and accounting transactions).

The displayed results generated by the diff-engine should include various possible outcomes,

including:

- Match: Identifying instances where bank-transactions matches with accounting-

transactions.

- Partial Match: This happens if there is a partial correspondence between bank-

transactions and accounting-transactions.

- Missing Bank-Transactions: Happens if transactions are present in the accounting

records but are absent from the bank records.

- Missing Accounting Transactions: If transactions are recorded by the bank but are not

reflected in the accounting records.

Other wanted functionality is a possibility to store the compared periods in a different view, and

intuitive navigation between the pages.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 8

This diff-engine-prototype will function as a first iteration of a bank-reconciliation prosess

feature in the client accounting system.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 9

Thesis structure

Chapter 1: Introduction – Includes glossary, acronyms, background/motivation, problem

formulation, objective, requirements, limitations/boundaries and a list of relevant subject

areas.

Chapter 2: Theory - Presents the theory this thesis is based on. Design, technology, product

development, documentation and testing.

Chapter 3: Materials and methods – Presents the materials and methods used to gather

information, develop the product, testing and writing the report.

Chapter 4: Results – Presents the results of the project. Includes scientific results, engineering

and administrative results.

Chapter 5: Discussion – Discusses and reflects upon the results of the project.

Chapter 6: Conclusion and further work – Conclude the results and discussion of the project,

societal impact and describes further work.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 10

Table of contents

Preface .. 3

Sammendrag ... 4

Abstract .. 5

Background ... 7

The client ...7

Requirement specification ..7

Thesis structure ...9

Table of contents ... 10

1 Introduction .. 17

1.1. Glossary .. 17

1.2. Acronyms .. 18

1.3. Background/motivation ... 19

1.4. Problem formulation ... 19

1.5. Objectives ... 20

1.6. Requirements .. 20

1.7. Limitations .. 22

1.8. Subject areas .. 23

2 Theory .. 24

2.1. Theory spesific to domain .. 24

2.2. System Development ... 24

2.2.1. Agile development .. 25

2.2.2. Prototyping ... 25

2.2.3. Model based systems engineering ... 26

2.2.4. Domain driven design (DDD) .. 27

NTNU Ålesund Bachelor thesis, Computer Science 2023

 11

2.3. Design ... 27

2.3.1. User interface (UI) .. 27

2.3.2. Model-View-Controller pattern (MVC) ... 28

2.3.3. Availability and accessibility ... 29

2.4. Software developing tools and technologies ... 30

2.4.1. Micronaut ... 30

2.4.1.1. Bean-classes .. 30

2.4.2. Gradle ... 31

2.4.3. PostgreSQL .. 31

2.4.4. Groovy .. 31

2.4.5. Cypress .. 31

2.4.6. VUE.js .. 32

2.4.7. Version-control ... 32

2.4.8. Containerization in Docker ... 32

2.5. Quality assurance .. 33

2.5.1. Testing in computer science ... 33

2.5.1.1. Agile testing .. 33

2.5.1.2. Unit testing ... 34

2.5.2. Usability testing .. 34

2.5.3. Code quality .. 34

2.5.3.1. Cohesion and coupling.. 34

2.5.3.2. SOLID ... 35

2.5.3.3. Code-quality plugins for IntelliJ .. 35

3 Materials and methods ... 36

3.1. Methodology... 36

3.2. Project management ... 36

3.2.1. The team ... 36

3.2.2. Meetings ... 36

3.2.3. Communication .. 37

3.3. Scientific approach .. 37

3.4. Technologies used ... 38

3.4.1. Modelling .. 38

NTNU Ålesund Bachelor thesis, Computer Science 2023

 12

3.4.2. Prototyping ... 38

3.4.3. Code quality .. 38

3.5. Testing .. 39

3.5.1. Acquiring test data.. 39

3.5.2. Software testing .. 40

3.5.3. Usability testing .. 40

4 Results .. 41

4.1. Features .. 41

4.2. Theoretical contributions ... 45

4.2.1. Theoretical findings .. 45

4.2.2. Exisiting solutions ... 47

4.3. Engineering results .. 47

4.3.1. Architecture .. 47

4.3.2. Domain model .. 50

4.3.3. Modelled prototypes .. 51

4.3.3.1. Low-fidelity prototype .. 51

4.3.3.2. High fidelity prototype .. 52

4.3.4. Project hierarchy ... 53

4.3.4.1. Frontend project hierarchy ... 53

4.3.5. Backend project hierarchy .. 54

4.3.6. Persistence .. 55

4.3.7. Business logic .. 56

4.3.7.1. Backlog .. 56

4.3.8. Vue-components .. 57

4.3.9. Frontend services ... 59

4.3.10. Views... 59

4.4. Quality assurance results ... 60

4.4.1. Unit testing ... 60

4.4.2. E2E-testing .. 62

4.4.3. Usability testing .. 71

4.4.4. Documentation ... 73

4.4.4.1. README .. 74

NTNU Ålesund Bachelor thesis, Computer Science 2023

 13

4.5. Administrative results and development prosess .. 74

4.5.1. Time-management ... 74

4.5.2. Meetings ... 74

4.5.3. Project management .. 75

5 Discussion ... 77

5.1. Theoretical discussion.. 77

5.1.1. Methods for data collection ... 77

5.1.2. Result reflection .. 78

5.2. Engineering discussion ... 78

5.2.1. Design ... 78

5.2.1.1. Prototyping ... 78

5.2.1.2. Design material and methodology ... 79

5.2.2. Development .. 79

5.2.2.1. Project structure ... 79

5.2.2.2. Comparison results explained .. 80

5.2.2.3. Entities .. 81

5.2.2.4. Controllers .. 81

5.2.2.5. Views and components in frontend.. 83

5.2.3. Code quality .. 84

5.2.3.1. Checkstyle ... 85

5.2.3.2. SonarLint ... 85

5.2.3.3. Robustness .. 85

5.2.3.4. Transaction Service-class .. 87

5.2.3.5. Bugsolving ... 90

5.2.4. Usability .. 90

5.2.5. Accessibility .. 91

5.2.6. Software testing .. 92

5.2.6.1. Component testing in backend ... 92

5.2.6.2. E2E-testing in frontend ... 93

5.3. Administrative discussion .. 94

5.3.1. The team ... 94

5.3.2. Project management .. 94

5.3.2.1. Issue-tracking .. 94

NTNU Ålesund Bachelor thesis, Computer Science 2023

 14

5.3.3. Methodology/structuring development prosess ... 95

6 Conclusion .. 96

6.1. General conclusion .. 96

6.1.1. Scientific conclusion ... 96

6.1.2. Engineering conclusion ... 96

6.1.3. Administrative conclusion .. 96

6.2. Community impact .. 97

6.3. Further work ... 97

Works Cited ... 98

Appendix 1 – AI declaration .. 105

Appendix 2 - Usability test report first iteration .. 106

Appendix 3 - Usability test report second iteration ... 110

NTNU Ålesund Bachelor thesis, Computer Science 2023

 15

Figure 1 - Prosess diagram of bank reconciliation prosess in Conta before implementing project

feature ... 21

Figure 2 - Prosess diagram of bank reconciliation after implementing of project-features 22

Figure 3 - MVC ... 29

Figure 4 - Home view .. 42

Figure 5 - diff-engine view ... 42

Figure 6 - Period picker ... 43

Figure 7 - modal overview... 43

Figure 8 - diff-engine result when not accepting reconciliation ... 44

Figure 9 - Results with icons.. 44

Figure 10 - Compared periods view .. 45

Figure 11 – Architecture .. 47

Figure 12 - Use case diagram .. 48

Figure 13 - Sequens diagram ... 49

Figure 14 - domain model planned ... 50

Figure 15 - Domain model rendered from IntelliJ ... 50

Figure 16 - Low fidelity prototype ... 51

Figure 17 - High fidelity prototype .. 52

Figure 18 - Frontend project hierarchy ... 53

Figure 19 - Backend project hierarchy .. 54

Figure 20 - Persistence hieracrhy .. 55

Figure 21 – TransactionService ... 56

Figure 22 - Backlog .. 57

Figure 23 - Alert box .. 57

Figure 24 - Card from Period Comparison .. 58

Figure 25 - Comparison Results .. 58

Figure 26 - PeriodPicker .. 59

Figure 27 - Project hierarchy in unit testing .. 60

Figure 28 - mock setup .. 61

NTNU Ålesund Bachelor thesis, Computer Science 2023

 16

Figure 29 - Overview tests .. 61

Figure 30 - Unit test example TransactionService-class .. 62

Figure 31 - Overview of E2E-tests ... 63

Figure 32 - Testing sidebar-navigation .. 64

Figure 33 - Displaying diff-engine in Cypress .. 65

Figure 34 - Opening period-picker in Cypress ... 66

Figure 35 - Choosing period in Cypress ... 67

Figure 36 - Verifying chosen period contains expected value .. 68

Figure 37 - Displaying alert box in Cypress ... 69

Figure 38 - Cypress tests ... 70

Figure 39 - first version of high-fidelity prototype ´ .. 71

Figure 40 - Second iteration of high-fidelity prototype .. 72

Figure 41 - Example on code documentation Java ... 73

Figure 42 - Example on code documentation TypeScript ... 73

Figure 43 - README .. 74

Figure 44 - issues ... 75

Figure 45 - Example of commit-indexing in GitHub .. 76

Figure 46 - Example of commits in Git .. 76

Figure 47 - Several partial matches ... 81

Figure 48 - Initial controller structure ... 82

Figure 49 - Latest controller .. 82

Figure 50 - Checkstyle example ... 85

Figure 51 - null-check example ... 86

Figure 52 - compareTransactions-method .. 87

Figure 53 - one of the extracted methods from compareTransaction-method............................ 89

Figure 54 - Omitted methods from tests .. 93

Figure 55 - Example of commit-indexing in GitHub .. 95

NTNU Ålesund Bachelor thesis, Computer Science 2023

 17

1 Introduction

The main objective of the bachelor thesis has been to look into the possibilities of developing a

more efficient accounting prosess. This includes developing a prototype that will demonstrate a

possibility for a more efficient bank reconciliation prosess, by comparing transactions from the

bank with transactions from the client accounting system. A crucial component of financial

management is bank reconciliation, enabling businesses to ensure that their financial records

align with their bank statements. This prototype is designed to compare transactions from the

bank and transactions from an accounting program, thereby finding errors before the

reconciliation. The development of a web-based prototype of such a system is a significant task,

given the complexity and critical role of bank reconciliation in financial operations.

The prototype developed during this bachelor matches transactions from bank statements and

internal accounting systems. It aims to ensure data accuracy and completeness, thereby

minimizing the risk of errors in the finished reconciliation. The system also includes displaying

discrepancies periodically, minimizing the need for manual intervention. Also, the prototype

provides a Proof of Concept (POC), showing one way of standardizing the bank reconciliation

prosess, contributing to time savings, error reductions and a higher level of regulatory

compliance. The system is designed to be user-friendly and serve as a building block for a

desired feature in the existing accounting program.

This thesis report presents the work done as a bachelor thesis in the autumn of 2023. The

1.1. Glossary

Agile development - methodology

Backend – The server-side of the project. Persists data and includes business-logic.

Bug – An error, flaw, or fault in the system. Non-expected behavior.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 18

Diff-engine – The engine that will show the differences found when matching

transactions.

Docker Compose – A tool for running multi-container Docker applications.

Frontend – The visual side of the product, includes what the user sees.

GitHub – A platform for version-control and collaboration (in this project used mainly for

version-control).

RecSys – The name of the project. Abbreviation for Reconciliation System.

1.2. Acronyms

API - Application Programming Interface

DDD – Domain-Driven Design

DB – Database

HTML - Hyper Text Markup Language

IDE - Integrated Development Environment

JVM - Java Virtual Machine

MBSE - Model-Based Systems Engineering

NTNU - Norwegian University of Science and Technology

OOP – Object-Oriented Programming

POC – Proof of Concept

RPA - Robotic Prosess Automation

SDLC - System Development Life Cycle

TDD – Test-Driven Development

UI – User Interface

UX – User Experience

NTNU Ålesund Bachelor thesis, Computer Science 2023

 19

1.3. Background/motivation

As an accountant a substantial part of daily tasks is to manually keep an overview of

transactions using an accounting program. These transactions must then be matched with the

actual activity on a company's bank account. This is called bank reconciliation, and is an

important control mechanism for detecting errors, deficiencies, or fraud (Conta, 2023). This can

be a long prosess, with room for improvements in efficiency.

The client has identified an opportunity in streamlining the bank reconciliation prosess which is

desirable to investigate further. As the first step in this prosess, it is desirable to create a

functionality that compares the accounting transactions with actual transactions in the bank.

After discussions with the client, we therefore concluded that developing a prototype with this

functionality is both exciting and highly relevant for future development. It is particularly

motivating that the client wants to implement and continue this functionality in their

accounting program in the future. In addition to the above, I believe that it is a realistic task for

me to carry out, while it also poses a significant technical challenge, giving ample learning

opportunities.

1.4. Problem formulation

The overall question, initially asked and guiding this thesis, was formulated as: How can one

demonstrate simplification of the bank reconciliation prosess in an accounting system through

the development of a prototype?

To answer this question, the project was divided into three main parts:

1. Investigate how bank reconciliation in an accounting system can be simplified (a

feasibility study).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 20

a. Carry out a literature review to identify existing solutions for bank reconciliation

in accounting systems.

b. Explore any existing solutions and your functions.

c. Identify the most important functions that the prototype should contain and plan

the technologies to be used. This comes from the client.

2. Develop a web-based prototype that demonstrates differences and shows discrepancies.

3. Final work, including testing of the solution with real accountants and completion of the

report with results from parts 1 and 2.

1.5. Objectives

The client needed a solution for simplifying and streamlining the bank reconciliation prosess in

an accounting program. The purpose of this project was to develop a web-based prototype, that

completes this task with basic functionality that is expandable in the future.

The prototype will function as a diff engine, a display that compares differences between actual

bank transactions and the manually conducted transactions and will be based on research that

will be carried out in the first part of the project. It is desirable from the client to have a display

that gives a clear overview of differences/deviations, which clearly highlights these on the

manually entered transactions.

1.6. Requirements

Create a web-based POC of a diff-engine that compares transactions that is made by an

accountant in the program, and actual bank-transactions.

Features:

- Prototype of a diff-engine – will complete matches and display results

- Period picker – possibility for the user to compare transactions within a period.

- Store compared periods in DB

NTNU Ålesund Bachelor thesis, Computer Science 2023

 21

Figure 1 - Prosess diagram of bank reconciliation prosess in Conta before implementing project feature

Figure 1 shows a prosess diagram of the bank reconciliation prosess as it is today. The client

wanted to streamline this project, shown in figure 2.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 22

Figure 2 - Prosess diagram of bank reconciliation after implementing of project-features

1.7. Limitations

In a project that is a feature for an exisiting client system, there are some limitations when it

comes to technology to use and the visual. If the client is going to benefit from this feature, the

technology needs to fit with exisiting technology, so it easyely can be implemented into their

exisiting solution. The client also expected the project to follow some visual guiedelines for a

more esaily implementation into their exisiting solution.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 23

There was also some limitations in the data:

- Data is real, from a real customer, but has been anonymized. These were picked because

they represent real life and is close to real data.

There has been some omitted work, because of the scope of the project. This includes:

o Possibility to make changes to accounting-transactions if result is not match

o Sorting-options

o Security, authentication, authorization

These are omitted on the grounds that the finished product will serve as a prototype, and these

features are already a part of the clients program where this prototype will be implemented.

1.8. Subject areas

- DB - Database

- Frontend development (Vue 3 compositions API, tailwind, CSS, HTML, typescript)

- Backend development (Micronaut, Java)

- Agile development methodology

- DDD – domain driven design

- Testing – unit-testing, E2E-testing and usability test

- Documentation – source code comments and writing reports

- UX-design

NTNU Ålesund Bachelor thesis, Computer Science 2023

 24

2 Theory

This chapter will present some relevant theory to the project.

2.1. Theory spesific to domain

Bank reconciliation is a prosess in accounting that involves comparing the carried-out

transactions in the accounting program with the corresponding transaction on its bank statement

(CFI Team, 2023). Regular bank reconciliations are essential for detecting fraud and any cash

manipulations, and they also help keep track of accounts payable and receivables of the

business (Freshbooks, 2023) (QuickBooks, 2023).

2.2. System Development

System development is the prosess of designing, implementing, testing and maintaining a new

product in computer science (Computer Hope, 2023).

System Development Life Cycle (SDLC) is a well-defined prosess in which one gives structure

to the prosess where an application is planned, developed, implemented and maintained. The

phases of the system development life cycle provide a basis for management and control

because they define segments of the workflow that can be identified for management purposes

and specify the documents or other deliverables to be produced in each phase (FCA, 2007).

The first phase in SDLC is the initiation phase, in which conceptualization and planning is carried

out, which involves identifying a problem/possibility. This phase is about understanding the

requirements from the client and setting the goals for the system. It includes defining the scope

of the project, opportunities and setting a timeline for the project. Second phase is the feasibility

phase, where the initial investigation is carried out to determine whether the product could be

made or should be pursued. If the feasability phase proves the products possibility, the next

phase is the requirements analysis phase, where developers and other team members analyse

and determine the needs of end users based on research conducted. Based on this the team

develop the requirement specifications. Designing the product is then the next phase of SDLC.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 25

This phase involves creating a more logical structure from the requirements specification which

can later be implemented in a programming language and designing the product. Plans are

drawn up so developers know what they need to do through iteration of the project. After this

the actual development of the product is started in the development phase. Thi sis where the

programming, testing and necessary adjustemnts are made. After the product developed,

tested and accepted by the client, the product it installed to support the intended business

functions in the implement phase. Even after implementation the system developing is ongoing

in the operations and maintenance phase. This is where the product is monitored for continued

performance in accordance with user requirements and needs (Michigan Tech, 2023).

As we can see, the system development prosess is not only about writing code, but also about

understanding user needs, translating the needs into detailed specifications, implementing the

product and finally maintaining it (FCA, 2007).

2.2.1. Agile development

Agile development is an umbrella term for a particular methodical and iterative approach that is

often used in software development projects. The fundamental idea of an agile development

prosess is to work on delivering work in small, incremental units (Agile Alliance, 2023). One

therefore often talk about prosess tools such as Scrums, pair programming, standups, sprints

and sprint planning. Engaging in agile development promotes an increased flexibility and

adaptability in the work, allowing the team to face changes in product requirements and deal

with unforeseen issues that may arise during the project. Working a solo-project this has still

been a big focus-area in my product development, as I will further discuss in chapter 5.3.

2.2.2. Prototyping

Creating a prototype means to create a preliminary model or design of a software to test its

functionality and/or viability (Wikipedia, the free encyclopedia, 2023). It functions as a

NTNU Ålesund Bachelor thesis, Computer Science 2023

 26

simulation of the final product, allowing developers and users to interact with the system and

provide feedback before actually developing the product.

A prototype in computer science is the prosess of creating an initial design or model of a

software to test its functionality. It acts as a simulation of the final product, allowing developers

and users to interact with the system early in the system development prosess, usually in the

design phase. This allows for providing feedback before spending resources on developing the

product (Wikipedia, the free encyclopedia, 2023).

There are two common ways to prototype a model/design, which is low- and high fidelity

prototyping. Low fidelity prototyping often consist of a basic drawing or first concept of the

product or feature. Can be hand drawn on paper or basic wireframes without colour or content

(UXPin, 2023).

The high fidelity prototype is more advanced than the low-fidelity prototype using mock-ups with

colour and content to achieve a more accurate representation of the final product (UXPin,

2023).

2.2.3. Model based systems engineering

Model-Based Systems Engineering (MBSE) is a methodology used to develop products in, where

models are at the center of system design (McGrath & Jonker, 2023).

MBSE is the use of modeling systems to explore and document system properties. Models

provide an efficient and clear way to communicate system aspects to customers. MBSE uses a

modeling language, in this project UML is used, to describe the problem that the designed

system solves and the design itself (the solution) (McGrath & Jonker, 2023). The model

describes both the problem side (meaning the operational point of view, which represents

business prosesses, goals, organizational structure, use cases and information flow), and the pay

side, (meaning the system point of view, which describes the system's behavior, structure, data

NTNU Ålesund Bachelor thesis, Computer Science 2023

 27

flow between components and allocation of functionality) (Wikipedia, the free encyclopedia,

2023).

2.2.4. Domain driven design (DDD)

Domain-Driven Design (DDD) is a software development approach that focuses on the

importance of understanding the business domain, and from that understanding models the

software. DDD advocates for the use of a rich, expressive language that is used by all team

members to connect the software with the business domain (Penchikala, 2008). MSBE can be

regarded as a framework that provides the techniques to put DDD in to practice (Cabot, 2023).

2.3. Design

Considering design is a big part of developing my product development. Pertaining to this

central the product needs to be well thought-out and well tested. Designing software involves

creating a plan for a system that defines the responsibilities of its components and how they

interact (Alam, 2023). This prosess is crucial in making future changes easier to implement. It

has been important to look into UX design when developing this product.

2.3.1. User interface (UI)

The interface that enables a user to communicate with machines (Geeks for Geeks, 2023). The

program becomes more popular if its UI is simple to use, easy to understand, attractive and

responsive and consistent on all screens (Geeks for Geeks, 2023).

User experience (UX) design is the prosess of creating products that provide meaningful

experiences for users. How the user perceives using the product, often with a special emphasis

on the emotions the system envokes in the user (Stevens, 2022).

Nielsen (Rahdan, 2020) has identified 10 heuristics for user interface design:

- Visibility of system status

NTNU Ålesund Bachelor thesis, Computer Science 2023

 28

- Match between system and the real world

- User control and freedom

- Consistensy and standards

- Error prevention

- Recognition rather than recall

- Flexibility and efficiency of use

- Aesthetics and minimalistisc design

- Help users recognise, diagnose and recover from errors

- Help and documentation

These heuristics area set of good rules of thumb, not specific usability guidelines (Rahdan,

2020).

2.3.2. Model-View-Controller pattern (MVC)

The Model-View-Controller (MVC) pattern is a design pattern commonly used to develop web

applications (Wikipedia, the free encyclopedia, 2023). MVC divides the software into three main

parts: the model, the view, and the controller. Each component has a particular function, which

simplifies the overall design and improves the readability and scalability of the application.

The model is responsible for handling the data and dynamic data structure. This means the

model interacts with the DB and handles all logic and manipulation of the data. The controller

should never directly interact with the data logic (this should go through the model). This means

the controller never has to worry about the data it sends and receive, instead only need to tell

the model what to do in respond based on on what the model returns. This also means the

model never needs to worry about handling user request or what to do upon failure or success.

That is handled by the controller. After the model sends its response back to the controller, the

controller then needs to interact with the view to render the data to the user. The view is only

concerned about how to present the information the controller sends. The view will then send

final presentation back to the controller, and the controller sends it back to the user. The model

NTNU Ålesund Bachelor thesis, Computer Science 2023

 29

and view never interact with each other, this always happens through the controller (Wikipedia,

the free encyclopedia, 2023).

Figure 3 - MVC

The MVC pattern allows a clear separation of responsibilities, making the application easier to

develop (Wikipedia, the free encyclopedia, 2023).

2.3.3. Availability and accessibility

Universal design is about creating buildings, products or environments that are accessible to

people of all ages and abilities. The purpose of implementing universal design for websites is to

offer inclusive, simple and accessible solutions for users with disabilities, thereby promoting

equal democratic rights, facilitating access to information and promoting opportunities for all

(Wikipedia, the free encyclopedia, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 30

Availability, in the context of software design, refers to the degree to which a system is

accessible to users. It's an important aspect of user experience (UX) design and is often

evaluated through the lens of accessibility. Accessibility is about making a product usable by as

many people as possible, taking those with disabilities into consideration (Wikipedia, the free

encyclopedia, 2023).

There are many aspects to consider, colour-contrast, keyboard navigation, including text size,

timing, and more. By incorporating these principles into the design, the system is accessible to a

wider range of users.

2.4. Software developing tools and technologies

Technologies in software developing aften refers to programming languages, frameworks,

databases, and other tools, methods and practices to develop a software (Bhatt, 2023). This

chapter will provide som theoretical knowlegde on some relevant technologies for this project.

2.4.1. Micronaut

Micronaut is a JVM-based, full-stack framework designed for building JVM applications that are

modular and serverless and easily testable. Micronaut is designed to make it seamless to create

microservices, which this bachelor project could be characterized as. Micronaut is designed to

avoid reflection, thereby reducing memory consumption and improving startup times. Functions

that would typically be implemented at runtime are instead precomputed at compile time

(Micronaut, 2023).

2.4.1.1. Bean-classes

A bean is a Java class that follows a certain convention regarding property (all properties must

be private, but with a public no-argument constructor) and implement serializable (can

therefore be written to streams, object databases, etc). They follow this convention so a lot of

libraries and framework can depend on them, including Micronaut (Chandan, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 31

2.4.2. Gradle

Gradle is a tool used in software development for automation build. It automates the prosess of

compiling source code to runnable files by controlling the development prosess, handling tasks

from compilation and packaging to testing, distribution and publishing (Wikipedia, the free

encyclopedia, 2023).

2.4.3. PostgreSQL

PostgreSQL, or Postgres, is an open-source object-oriented database system. It uses and extends

the SQL language, and runs on all major OSes making it very widespread. PostgreSQL is highly

extensible, so you can define your own data types, build custom functions and write code from

different programming languages without compiling the database (PostgreSQL, 2023).

2.4.4. Groovy

Groovy is a dynamic, OOP language that runs on the JVM. In the context of software testing,

Groovy can be used to create readable test scripts and test cases, execute powerful assertions,

and generate orderly test reports (Bhutada, 2023). Groovy is known for its simplicity and

readability, which makes it particularly useful for writing concise and readable tests. The syntax

integrates well with testing frameworks such as Spock, which makes Groovy a tool for both unit

testing and integration testing in software development projects (Apache Groovy, 2023).

2.4.5. Cypress

Cypress is a frontend testing tool designed for web applications. It was initially designed for end-

to-end (E2E) testing, which is how it is also used in this project. A typical E2E-test visits the page

NTNU Ålesund Bachelor thesis, Computer Science 2023

 32

in a browser, and performs action in the UI just like a real user. Cypress also provides steps with

snippets of the completed tests. This makes the test easy to debug (Cypress, 2023).

2.4.6. VUE.js

Vue.js is a framework used to build user interfaces, built on standard HTML, CSS and JavaScript

(or typescript). Vue provides a component-based programming model that helps you develop

simple or complex user interfaces (Monocubed, 2023).

2.4.7. Version-control

Version control is a system that save and manage changes to software code. It is an important

tool, as it helps in maintaining a detailed overview of every modification made to the code,

ensuring that these changes are both trackable and reversible. It also makes it possible to

collaborate effectively. The most widely used version control system in the world is Git, which is

an open source and actively maintained project, developed by Linus Torvalds in 2005

(Atlassian, 2023).

GitHub is a widely used platform that provides hosting for software development and version

control using Git. It offers functionality like access control and project management tools, such

as collaboration features, issue-tracking, UI of branches and commits and issueboards (Rao,

2023).

2.4.8. Containerization in Docker

To enable packaging applications into containers I used Docker, which is excellent for this

purpose. In Docker, containers are isolated environments that contain everything needed to run

an application, ensuring it works consistently across different systems (Baeldung, 2023). Docker

images are the basis for these containers. An image is a standalone and executable software

package that includes all needed to run a software, including the code, a runtime, libraries,

NTNU Ålesund Bachelor thesis, Computer Science 2023

 33

environment variables, and config files (Simic, 2022). When a container is run from an image, it

includes the application and its dependencies. This allows for efficient, portable, and scalable

deployments of applications. Docker's use of containers and images simplifies the software

development and deployment prosess, making it easier to manage and scale applications

(Docker, 2023).

2.5. Quality assurance

Software testing involves inspecting the elements and actions of software through validation

and verification. Additionally, it offers an impartial and objective perspective on the software,

enabling developers to comprehend and assess the risks associated with software

implementation (Wikipedia, the free encyclopedia, 2023).

Software testing involves three stages. First setting up application state. Then you take som

action to change the application state, followed by a check to see the resulting application state.

This is called state transition testing (Geeks for Geeks, 2023)

2.5.1. Testing in computer science

Tests in software engineering is used to validate that the system respond as expected on all

kinds of input, don’t have bugs, performs well enough (or as expected), is user friendly, meets

clients expectations, can be installed in correct environment and that it doesn’t break when

changing something (Yasar, 2023).

2.5.1.1. Agile testing

Is the opposite of traditional tesing, when a team of testers tests the whole product or feature

before major release. Agile testing focus on testing after each implementation is completed.

Makes testing the whole teams responsibility, instead of one team for development, and one for

testing (GeeksforGeeks, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 34

2.5.1.2. Unit testing

A unit test is a software test, that test that each units of a code works as expected. A unit can be

a function, method, module, object, or other entity in an application's source code (Moradov,

2023).

Mocking data in software testing is a technique to test in a controlled environment by using fake

objects known as mock objects (CodiumAI Team, 2023).

2.5.2. Usability testing

A usability test simulates a real situation, includes concrete tasks, is a test where you observe

the user and is used to evaluate the usability of the system (Maze, 2023).

2.5.3. Code quality

Code of high quality refers to a systems robustness (system’s ability to cope with errors

(Wikipedia, the free encyclopedia, 2023)), reusability (the capability to re-use pre-exisiting

code), reliability (the probability of the systm performing its intended functions without failure),

and understandability (when a system allows an engineer to easily comprehend it, readability)

(Indeed Editorial Team, 2023).

2.5.3.1. Cohesion and coupling

Coupling and Cohesion are two important aspects in all object-oriented programming

languages, as high cohesion and loose coupling will lead to a system that is easier to

understand, maintain and modify, and generally higher quality code (Wikipedia, the free

encyclopedia, 2023).

Coupling is defined by the degree of which different components are dependent on one

another. It describes relationships between components. Loose coupling means that each

component is not dependant on each other. Integrated products such as most phones are

NTNU Ålesund Bachelor thesis, Computer Science 2023

 35

examples of tight coupling. If the battery dies, one might as well buy a whole new phone, as the

battery is very expensive to replace. Loose coupled code works the same way, it facilitates

extension, replacement and it more readable (Wikipedia, the free encyclopedia, 2023).

Cohesion is defined by the degree of which elements of a component are functionally related. It

describes relationships within components. High cohesion is associated with attributes such as

robustness, reusability, reliability, and readability (Wikipedia, the free encyclopedia, 2023).

2.5.3.2. SOLID

Solid is an acronym in computer science that includes five design principles for enhanced code

quality:

- Single responsible principle: Every class should have one responsibility.

- Open-closed principle: Software entities needs to be open for expansion, but closed for

alteration.

- Liskov substitution principle (design by contract): Functions that work with base classes

using pointers or references should be able to handle objects from derived classes

without needing to know the specific derived class.

- Interface principle: If a software-entity does not use an interface, it shouldn’t be forced

to be dependent on it.

- Dependency principle: Software-entities should depend upon abstracts and not

concretes.

(Wikipedia, the free encyclopedia, 2023)

2.5.3.3. Code-quality plugins for IntelliJ

CheckStyle is a tool for developers to help write Java code that adheres to a specific code

standard (checkstyle, 2023).

SonarLint is a tool that identifies code smells, and catches issues immidiatly right in the IDE

 (SonarSource, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 36

3 Materials and methods

This chapter will present working prosesses and tools used during project development.

3.1. Methodology

The project uses agile methods with a solo-development approach, supported by a team from

the client. This chapter will present the methodology in which this project has been conducted.

3.2. Project management

3.2.1. The team

This project was done as a bachelor thesis by Trine Staverløkk, a third year Computer Science

student at NTNU. The work was done at the client facilities, in Fremmerholen, Ålesund. This

gave raise to the project being done in a real life professional work setting, wherein scrums,

standups, mob-sessions and generally contribution with knowlegde and support. The team was

a composite of colleagues having backgrounds as both junior and senior developers. Because of

this team, it was possible to follow an agile methodology in my project. This is discussed further

in chapter 5.3.1.

3.2.2. Meetings

The project was divided into sprints, lasting about two weeks each time. After each sprint there

was a retrospective with the client and supervisor, discussing progress, results from the sprint

and planning of next sprint. This made progress more feasible, helped maintaining structure and

made the whole project less overwhelming for a solo-developer.

In the mornings we also did stand-ups, where I collected feedbacks and agreement on what I

would be working on in that day.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 37

3.2.3. Communication

Communication between developer, supervisor and client have mainly been through channels

like email. Document-sharing have been enabled through Teams, where supervisor and client

both had the opportunity to view and leave comments on the document.

Meeting coordination and communication between developer, supervisor and client involved a

combination of oral communication during regular sprint retrospects and the use of email and

outlook for written invitation afterwards, ensuring clarity and formality in scheduling.

3.3. Scientific approach

Scientific research to gain theoretical knowledge has been explored through various platforms

Google scholar have been mostly used, and additionally NTNU open together with the school

library. Example of search words for digital science include “computer science”, “accounting”,”

reconciliation”, “bank integration”, “bank account reconciliation”, “RPA” and every search on

google scholar has been filtered to after 2019. See appendix (…) for full overview of search and

search results. In addition to this, I have also investigated citations from the articles found, and

through these found more relevant science.

To search for existing solutions, I went to their respective websites and looked for functionalities

they provided their clients.

In addition to google scholar I used AI-tools as a search engine. Leveraging AI as a search engine

enhanced information retrieval. Phind.com provides the sources, which made it easy to navigate

and obtain knowledge from the original source where Phind.com found its information. This

approach of utilizing AI as search engine expedited research but also broadened the scope.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 38

3.4. Technologies used

The developing technologies were chosen based on existing solutions in Tritt. This includes Java,

Typescript as programming languages, Docker desktop for containerizing, gradle as build-

system, groovy and cypress for testing, postgres as DB and IntelliJ as IDE. For backend

framework I used micronaut, and for frontend framework I used Vue3. The only different

technology is the remote version control platform, which I chose based on what we mostly have

used at NTNU. GitHub was used for project management, including version control. One

repository was created for the whole project.

3.4.1. Modelling

For modelling I used the web-based modelling program diagrams.com and Figma. Both are

open-source web-based programs suitable for modeling and prototyping. Figma has been

utilized for planning, prototyping and modelling the entities and DB. Since this is open source

and web-based it was easy to share and use everywhere if needed. I also used diagrams.net for

the modelling.

3.4.2. Prototyping

In the start of the project, I worked together with to employees to create a low-fidelity

prototype describing the basic workflow. Based on this, I developed a high-fidelity prototype in

Figma.

3.4.3. Code quality

Quality code is code that is efficient, readable and usable (Codegrip, 2023). I have utilized

various ways to ensure and enhance code quality. Most important have been to leverage

theoretical knowledge foundation for high code quality aquired during my education at NTNU.

This together with theoretical knowledge aquired while working on this project have been

useful to write quality code. Additionally, I have maintained open communication with the client

NTNU Ålesund Bachelor thesis, Computer Science 2023

 39

and the team, where I have asked for peer review, to ensure that my coding practices aligns

with their expectations for quality.

Lastly I used the plugins SonarLint and Checkstyle to enforce and enhance code quality and

identify code smells.

3.5. Testing

3.5.1. Acquiring test data

I was provided with a XML-file with 53705 lines, from an actual, real company. After removing

unwanted data (other datas than amout, date and description), we ended up having around

5000 lines of data for testing (552 objects of type transactions). This XML file where converted

into a JSON-file, using the IDEs “replace all”-functionality, and flattened it. After this we

anonymized the data by creating a naming generator for names of customers (Keith Armstrong,

2023). Used axios.get(URL (randomUser)) for this. We also tweaked the amounts, so its not

possible to trace to a real customer. To change the amounts, we used (Math.random()* 200-

100) so the amount to add is centered around 0, and range from –100 to 100, evening it out.

After this we removed some transactions to 100 transactions.

This file was duplicated, one to represent the transactions from the bank-statement, and one to

represent the accounting transactions, namely BankTransactions.json and

AccountingTransactions.json. We then changed the AccountingTransactions-file to have these

scenarios:

- Some missing transactions

- Some extra transactions

- Some transactions with wrong amount

- Some transaction with changed descriptions

- Some transactions with wrong date

NTNU Ålesund Bachelor thesis, Computer Science 2023

 40

3.5.2. Software testing

This project has conducted unit-testing in Groovy, and e2e-tests in Cypress. The methodology

for Groovy-testing has consisted of a combination of strategies, some tests are written before

the code, some during and some after. It has depended on the functionality and the complexity

of the code. Cypress-tests are written after coding.

To mock data in the Groovy tests, the mocking framework Spock was used.

3.5.3. Usability testing

I conducted usability testing by developing a questionnaire to be used by accountants working

in Conta. The tests were initially conducted after making a prototype of the basic functionality,

and then after most of the development was done. Both the tests were the same, but with

some adjusted questions and tasks after some of the functionality were changed. The questions

for both tests were both specific questions to the design and UX, and some more general and

open questions.

Materials for the first test was the test-subjects work-computers, where they were provided

with a link to the Figma-project. They were handed out a questionnaire, with first a set of tasks

to complete, and then a set of questions to answer. The second test was almost identical, except

some of the questions which were altered to fit the design, and the the PC, which was the

developers’.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 41

4 Results

This chapter will provide the results from the feasibility-, design- and development stage in the

SDLC. The feasibility phase includes the theoretical methods and findings, the design phase is

the prototyping, modelling and planning part of the project, and the development phase is the

engineering results. These will all be discussed in this chapter. This chapter will also show

results from the administrative part of the project. All these will be discussed further in chapter

5.0, Discussions.

4.1. Features

These are the finished features of the prototype.

- Prototype of a diff-engine – completes comparisons of sets of bank- and accounting

transactions and display results

- Period picker that provides two calendars for the user

- Store compared periods in DB

- Navigation between the sites

The features provided in the finished product aligns with the requirement from the client.

The home page is the first view of the product. This view is used for listing the transactions that

are in the system. In the sidebar the user can navigate to either “Diff-engine” or “Compared

periods”. The “Diff engine” (figure 5) is where the comparison-prosess happens and “Compared

periods” (figure 10) is where the accepted comparisons are saved.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 42

Figure 4 - Home view

Figure 5 - diff-engine view

NTNU Ålesund Bachelor thesis, Computer Science 2023

 43

Figure 6 - Period picker

Figure 7 - modal overview

NTNU Ålesund Bachelor thesis, Computer Science 2023

 44

Figure 8 - diff-engine result when not accepting reconciliation

Matches/non-matches as presented to the user as shown in in figure 9.

Figure 9 - Results with icons

NTNU Ålesund Bachelor thesis, Computer Science 2023

 45

Figure 10 - Compared periods view

4.2. Theoretical contributions

This chapter will present the findings from the feasability stage in the SDLC, which is to

determine whether the product could be made or should be pursued. In the theoretical part of

the project I collected data regarding bank-reconcilliation, looked into

4.2.1. Theoretical findings

Knudsen-Braas concludes that through technology and integration throughout systems

streamlining the accounting business is a possibility. The technology is under constant

development, and there is a willingness to change. Opportunities associated with digitization

include efficiency, quality, faster access to information, the ability to report in new ways, and

knowledge sharing (Knudsen-Baas, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 46

Prosess automation leverages robotic and cognitive technologies to streamline and mechanize manually

executed and standardized tasks in the accounting business. The robotic software plays a pivotal role in

reducing human involvement, liberating employees from repetitive tasks and enabling them to

concentrate on more important business goals and operations that computers cannot handle as well.

Automation offers a number of benefits to the workplace, including cost reduction, higher

efficiency, advanced analytics, performance and quality improvement (Can Tansel Kaya, 2020).

Advantages of Robotic Prosess Automation (RPA) according to Convedo:

- Cost Reduction

- Enhanced Speed

- Enhanced scalability

- Enhanced precision and Accuracy

Compliance Improvement: In sectors like financial services, where adherence to regulations such as the

Sarbanes-Oxley Act is crucial, RPA facilitates easier documentation and logging of prosesses, ensuring

compliance is demonstrable (Convedo, 2019).

Ramona Lacurezeanu says Information Technology (IT) has become an integral component of nearly

every business. Given the distinctive nature of their operations and their wide-reaching impact,

professional accounting and auditing services stand to enhance their efficiency through the

implementation of RPA. Additionally, RPA holds the potential to bolster the credibility of the accounting

profession while optimizing operations to align with professional standards, all at significantly reduced

costs. This research, grounded in a comprehensive literature review and adopting an exploratory

approach, initiates a discourse on the concept of RPA. It delves into customizing RPA in the realm of

professional accounting services, scrutinizing robotics models tailored specifically for accounting and

audit functions (Ramona Lacurezeanu, 2020).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 47

4.2.2. Exisiting solutions

Tripletex offers their customers automatic bank-reconciliation. Fiken and Sticos offers bank integration

and a streamlined reconciliation prosess, but they do not have an automatic bank reconciliation-prosess

(Fiken, 2023) (STICOS, 2023). EAccoounting have a diff-engine, with a comparison-model (eAccounting,

2023). Centiga matches transactions from the bank automatic (Centiga, 2023).

4.3. Engineering results

This chapter will present the results from the development phase of the project.

4.3.1. Architecture

Figure 11 shows the system architecture, where it follows a MVC-architecture.

Figure 11 – Architecture

The user sends a request to the controller, which sends requests to the model. The model then

manipulates data, and send it to the controller. The controller sends this to the view, which

displays it to the user.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 48

As is shown in figure 12 the accounting system collects transactions from users. Recsys then

compares the sets of transactions, by retrieving transactions, viewing matching details and

completes match.

Figure 12 - Use case diagram

This figure is a use-case diagram showing what the finished product includes, which aligns with

the clients requirements.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 49

Figure 13 - Sequens diagram

Figure 13 shows the system sequens diagram. A user record transaction, add bankstatements

and press compare-button. The accounting receives these, and RecSys (feature in the

accounting system) compares the transactions, and sends results back to the accounting-

program. Depending on the results, the user accepts or rejects the reconciliation.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 50

4.3.2. Domain model

Figure 14 - domain model planned

Figure 15 - Domain model rendered from IntelliJ

AccountingTransactionEntity: represents the transactions from the accounbting software, that

the accountains have posted for a company.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 51

BankTransactionEntity: Represents the transactions that have actually happened, collected from

the bank.

ComparisonEntity: A run-time entity that stores the informatino about the comparison, to be

presented for the user.

PeriodEntity: Saves information about the comparison, within the timeframe desired from the

user.

4.3.3. Modelled prototypes

4.3.3.1. Low-fidelity prototype

Figure 16 - Low fidelity prototype

The low fidelity prototype shows basic design, as shown in figure 16.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 52

4.3.3.2. High fidelity prototype

Figure 17 - High fidelity prototype

The high fidelity prototype includes links and pointers, so when the test-subject pressed the

correct button they would be sent to the next page. The arrows in figure 17 shows the routing

of the prototype.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 53

4.3.4. Project hierarchy

4.3.4.1. Frontend project hierarchy

Figure 18 - Frontend project hierarchy

The frontend is divided into these packages: components, services and views, where

components are the components that makes the web-site, the services are the TypeScript-logic

and the views are the pages that contains all the components (As seen in figure 18).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 54

4.3.5. Backend project hierarchy

Figure 19 - Backend project hierarchy

As seen in figure 19, the backend hierarchy is divided into controllers, exceptions, models,

repositories and service-packages, where controllers handle the communication with frontend,

the model consists of the entities, repositories handle the method and info connected to

entities, the service have the business-logic.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 55

4.3.6. Persistence

Figure 20 - Persistence hieracrhy

There are three tables saved in the DB; accounting_transactions, bank_transactions and

period_comparison.

Accounting transaction-table consists of data representing bookkeeped transactions in an

accounting program.

Bank transaction-table consists of data representing actual transaction a customer have made.

These two different sets of transactions are the transactions that needs to be compared to

reconcile the period.

In addition there is a period_comparison-table, consisting of the results from the comparison

and the time-period.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 56

4.3.7. Business logic

Logic for comparing transactions exists in the class TransactionService.java. Figure 21 shows the

fields and methods for the transactionService.class.

Figure 21 – TransactionService

4.3.7.1. Backlog

There are still some bugs in the system not fixed, these are:

- Cards not updated until page is refreshed

- Compared results in diff-engine is not cleared after comparing a new period

And issues not closed, these are presented in figure 22.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 57

Figure 22 - Backlog

4.3.8. Vue-components

- AlertBox – When a comparison is made for the period, this is the dialogue that pops up,

displaying the overall results from the comparison. The user can choose to accept or

decline, and upon accepting the user is navigated to “See compared periods” and the

comparison is saved.

o

Figure 23 - Alert box

- Card – the card is the one the user sees after accepting the comparison and the

comparison is saved.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 58

o

Figure 24 - Card from Period Comparison

- ComparingResults – Will be shown in if there is discrepancy and the user does not

accept the comparison. Lists transactions with the results displayed.

o

Figure 25 - Comparison Results

- DiffEngine – this component shows the periodPicker, button and comparingResults after

user selects a period and presses button to compare them.

- ListOfTransactions – this component displays a list of transactions. Is used in diffEngine

and HomeView.

- PrimaryButton – this component is a styled button.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 59

- PeriodPicker – this component is made of two calendars, where the user can pick a

period.

o

Figure 26 - PeriodPicker

- Sidebar – the navigation, set at a fixed width of 400 px. Styled a ready-tailwind/vue-

sidebar

4.3.9. Frontend services

- AccountTransaction.ts – an AccountingTransactionType (id, date, amount and

description). This class describes the shape of an object that represents an accounting

transaction.

- api.service.ts – a plugin that uses the axios library to provide HTTP GET and POST

methods to the project.

- BankTransation.ts – it’s the same as AccoutTransaction

- FrontendService.ts – Contains methods to use in the components. Business logic.

- PeriodComparison.ts - This class describes the shape of an object that represents a

period comparison.

4.3.10. Views

HomeView.vue– the startpage, it displays the transactions that is in the system. Has mainly been

used to verify data and debugging purposes.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 60

ComparedPeriods.vue – stores the periods that has been compared, with data about the

comparison.

TransactionMatcherView.vue – the diff-engine that contains components that does the

comparison for a desired timeframe.

4.4. Quality assurance results

I have conducted unit testing, e2e-tests and usability testing in this bachelor, and this chapter

will provide the results of the testing with examples. They will further be discussed in chapter

5.2.13.

4.4.1. Unit testing

Done in groovy using Spock as mocking framework.

Figure 27 - Project hierarchy in unit testing

Figure 27 shows the test-classes shown in the hierarchy in the project. The

TransactionServiceTest class provide tests for the business-logic in the project, and the

controller-tests provides tests of the controllers.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 61

Figure 28 - mock setup

Figure 28 shows how the test-environment with spock was set up to properly mock two

transactions of type AccountingTransactionsEntitiy and two transactions of type

BankTransactionEntity. I gave them some amount and a date.

Figure 29 - Overview tests

Figure 29 shows an overview if the test results.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 62

Figure 30 - Unit test example TransactionService-class

Figure 30 shows an example of how a Groovy test is carried out in this project.

4.4.2. E2E-testing

E2E-tests have been carried out in Cypress. Following components have been tested:

- Sidebar → navigating to diff-engine

- Period-picker

- Pressing «reconcile period»-button

- Displaying alert-box

- Pressing «decline»-icon in alert box

- Displaing requested and expected results

NTNU Ålesund Bachelor thesis, Computer Science 2023

 63

Figure 31 - Overview of E2E-tests

NTNU Ålesund Bachelor thesis, Computer Science 2023

 64

Figure 32 - Testing sidebar-navigation

Figure 32 shows the steps the developer can click, and the display showing the website on the

right.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 65

Figure 33 - Displaying diff-engine in Cypress

NTNU Ålesund Bachelor thesis, Computer Science 2023

 66

Figure 34 - Opening period-picker in Cypress

NTNU Ålesund Bachelor thesis, Computer Science 2023

 67

Figure 35 - Choosing period in Cypress

NTNU Ålesund Bachelor thesis, Computer Science 2023

 68

Figure 36 - Verifying chosen period contains expected value

NTNU Ålesund Bachelor thesis, Computer Science 2023

 69

Figure 37 - Displaying alert box in Cypress

NTNU Ålesund Bachelor thesis, Computer Science 2023

 70

Figure 38 - Cypress tests

Figure 38 shows the test-code in Cypress.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 71

4.4.3. Usability testing

As mentioned in chapter 3.5.3 the questions for both tests were both specific questions to the

design and UX, and some more general and open questions.

This is the first version of the prototype:

Figure 39 - first version of high-fidelity prototype ´

Results from first test-iteration:

- Changed colour and name to match-button, to make it more visible for the user. And

the system is not matching accounts, its matching transactions, changed the name to

match transactions/compare transactions.

- Removed functionality with accounts, only have transactions listed from accounting and

bank.

- Added a homepage, page for compared periods and a page that does the comparing.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 72

- Added a functionable sidebar.

This is how the prototype was modified based on the first user test:

Figure 40 - Second iteration of high-fidelity prototype

Second iteration

- Included dialog that pops up when compared transactions is done if there is

discrepancy, where you can accept or decline comparison.

- Navigate to saved when accepting.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 73

4.4.4. Documentation

Figure 41 - Example on code documentation Java

In this project methods in backend are documented with source code comments that follows

the Java standard. See figure 41 for example.

Figure 42 - Example on code documentation TypeScript

In frontend Typescript-methods are commented similar, using the JSDoc-standard, which is

similar to Java (see figure 42).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 74

4.4.4.1. README

The README-file provides information about running the application, using markup language. It

is a guide for users or developers who interacts with the project.

Figure 43 - README

4.5. Administrative results and development prosess

4.5.1. Time-management

The project has been completed within the allocated time.

4.5.2. Meetings

Meetings have been consequent and frequent, and followed an agile standard. In the team we

had Scrums, standups and retrospects, and together with client and supervisor I had sprint-

retrospect every other week.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 75

4.5.3. Project management

GitHub has been used as a tool in project management, specifically for sprint-tracking.

Figure 44 - issues

As seen in figure 44, each issue is linked to project, has a label and a sprint. This makes it easy to

keep track of progress and keep a good overview over the project in general.

Upon committing, the commits have been linked to issues, by writing #<issuenumber> in the

commit-messages. This has been done for a number of commits after implementing this

method halfway through the project.

Started doing this throughout the project and found it to be very helpful. As shown in the figure

45 the issue has an issuenumber 23, and for each commit with the shown commit-message I

could see in Github what had been done in that specific commit. This resulted in better

overview and system of issues and commits that links to them.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 76

Figure 45 - Example of commit-indexing in GitHub

Figure 46 - Example of commits in Git

NTNU Ålesund Bachelor thesis, Computer Science 2023

 77

5 Discussion

The objective of this project was to develop a web-based prototype, as a POC of a streamlined

bank reconciliation system, with basic functionality that is expandable in the future. As it is

shown in chapter 4.0, Results, this has been achieved. This chapter will reflect upon and discuss

the these results.

5.1. Theoretical discussion

This chapter will provide some discussion regarding the result of the feasability stage. In the

theoretical part of the project I collected data regarding bank-reconcilliation and looked into

exisiting solutions.

5.1.1. Methods for data collection

During the feasibility phase of the project, I used a combined practical- and theoretical

approach to find results that would identify solutions for the problem defined.

Research was carried out through platforms such as Google Scholar, NTNU Open and the school

library. The search terms and limitation set to 2019 yielded several relevant results. One can

argue that there is relevant and still up-to-date research from before 2019, but since I got so

many results, I consider more recent research to be preferable, especially the ones where

technology was in focus.

In the search for existing solutions, websites with relevant features were examined for

functionality. This gave me insight into the possibilities of bank reconciliation. Looking into

existing solutions made me conclude that the feature the client has asked for was possible.

In addition to the theoretical approaches mentioned above, AI powered search engines were

used for information retrieval. The use of AI as a search engine enabled fast navigation to

relevant sources and therefore expanded the scope for this feasibility part of my project.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 78

5.1.2. Result reflection

Research shows that there is a willingness to adapt to a more streamlined and possible

automated way of doing accounting. Access to technology proves that streamlining accounting-

prosesses are in prosess with multiple accounting businesses already.

With this I can conclude that there exists a promising opportunity to enhance efficiency and

accuracy in bank reconciliations, meeting the evolving preferences of stakeholders for a more

seamless and adaptive accounting framework.

5.2. Engineering discussion

This chapter will present the reflection and discussion around the finished product. This

includes discussion regarding the design- and developing phases in SDLC.

5.2.1. Design

The design phase of this project has been invaluable for me as a student, where I learned a lot

about communication with the client, understanding needs, using tools to show what I had i

mind

5.2.1.1. Prototyping

The protyping has been extremely valuable for the prosess of developing the final product in

terms of early user-testing and communication with the client. The high-fidelity prototype

provided the client a sense of how the product would look and function, and it enabled good

communication about their expectiation. The use of prototyping in the planning-phase proved

highly beneficial, after user-study-testing (see appendix 2 and 3 for test results) where I was

able to make asjustments to the product very early in the prosess.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 79

5.2.1.2. Design material and methodology

The prosess of conceptualizing and planning the prototype for streamlining the bank

reconciliation prosess was significantly enhanced using Figma for modelling and designing.

Figma proved to be a a useful tool during the planning stage, offering an intuitive and

collaborative environment that facilitated the visualization of elements for the finished product.

This made it possible to share designs with the client regularly to get feedback consistently

during the planning of the project. The platform's multifunctionality allowed for the creation of

detailed prototypes, which was beneficial for planning the architecture and usability testing.

Figma was overall a helpful tool in creating a system, following the MBSE-methodology.

To work based on a MBSE methodology provided a systematic approach to modelling the

finished product. This helped ensure a comprehencive representation of the prototype

structure and functionality early in the project and opened up for unambiguous communication

between developer and client. The incorporation of Domain-Driven Design principles further

refined the development prosess, aligning the prototype with the specific needs and intricacies

of the bank reconciliation domain. By emphasizing a collaborative and iterative approach, DDD

ensured that the final solution addressed not only the technical aspects but also the real-world

challenges encountered in the bank reconciliation prosess.

5.2.2. Development

After the development phase the product is a working POC, with a robust, documented and

tested code. This chapter will present the implementation of the diff-engine. This includes

project structure, entities, example of classes and methods, discuss code quality, usability and

testing.

5.2.2.1. Project structure

As seen in figure 11 (MVC Architecture in chapter 4.3.1) the hierarchy is divided into controllers,

models, and views. This aligns with the vision to create a product following the MVC

architecture to ensure a good architecture in the finished product. The use of MVC-pattern

NTNU Ålesund Bachelor thesis, Computer Science 2023

 80

made it possible to create a product that is scalable and easy to debug, as the project structure

was quite easy to navigate. MVC-architecture separates concerns, which allows for greater

modularity and easier maintenance of the finished product, which the client appreciated. This

architecture also made it easier to modify the product along the way, as a change in one section

of the system did not affect the entire architecture. MVC also simplifies test-driven-

development, which in retrospect would be a much better approach for testing (see chapter

5.2.6.1 for a reflection around TDD) (Interserver, 2023).

5.2.2.2. Comparison results explained

In “Diff-engine” the user can compare transaction within a desired time period.

The results are either match, partial match, missing bank transaction or missing accounting

transaction.

- Match: when date and amount it the same.

- Partial-match: when date is the same, but amount is different.

- Missing bank transaction: when an accounting transaction cannot find a bank

transaction with corresponding date or amount.

- Missing accounting transaction: when a bank transaction cannot find an accounting

transaction with corresponding date or amount.

If there are several partial-matches, they are all listed (See figure 43), so the user can identify

the most accurate match, and in the future edit transactions before accepting the reconciliation

(This is not a part of this project scope, but this is part of the future features).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 81

Figure 47 - Several partial matches

Description is a string, that describes the transaction. Should be fuzzy when comparing. When

comparing two transactions the description uses a fuzzy-search library to search. That means

that if there are some discrepancies it is not going to be a mismatch on the description alone.

As the solution is today, the description is not considered.

5.2.2.3. Entities

Had two different entities for bank-transactions and accounting-transactions, even though they

have almost identical fields. The reasoning for this is because this system represents a simplified

version of a potential bigger system, which would have different fields, that would differentiate

the entities in a more intuitive way. In addition, in accounting there exist strict rules when

talking about modifying any persisted transaction. This means any accounting system needs to

build strict protection regimes around protecting transactions from modification. This

encourages a separate model for bank-entries that does not require the same restrictions.

5.2.2.4. Controllers

I chose initially to separate bank and accounting transactions into their own respective

controller, even though they are reasonably alike. The reason for this was because it was

thought to be easier to expand in the future if more complex transactions are added in the

NTNU Ålesund Bachelor thesis, Computer Science 2023

 82

future. After a conversation with the client I learned that even though they could be more

complex, the controllers would still be similar. This means that even though they are combined

into one controller, the controller have a single purpose, and is therefore still a component of

high cohesion when combined, and based on this it was worth considering merging them

together. Figure 48 shows how the controllers initially was looking hierarchically.

Figure 48 - Initial controller structure

Figure 49 shows the code of the controller, showing separating them in the beginning was

unnecessary.

Figure 49 - Latest controller

The controller had initially the endpoints /accounting_transaction and /bank_transaction, so it

is even more expandable with the endpoints /transaction/accounting and /transaction/bank.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 83

This refactoring reduces the number of controllers from two to one, which can make the

codebase easier to manage. However, it also means that the TransactionController class is now

responsible for handling both types of transactions, which could make it more complex if more

complex transactions are added in the future.

5.2.2.5. Views and components in frontend

In the frontend, there has been a real attempt at keeping components stupid, and having one

responsibility each.

- AccountTransaction.ts – an AccountingTransactionType (id, date, amount and

description). This class describes the shape of an object that represents an accounting

transaction.

- api.service.ts – uses the axios library to provide HTTP GET and POST methods to the

project.

- BankTransation.ts – a BankTransactionType (id, date, amount and description). This class

describes the shape of an object that represents an accounting transaction.

- FrontendService.ts – contains methods to use in the components. Business logic.

- PeriodComparison.ts - This class describes the shape of an object that represents a

period comparison.

Components serves a singular purpose, which is according to SOLID the first principle to make

OOP designs more understandable, flexible, and maintainable. To partain to this principle,

views’ purpose is to display the components that the site is consisting of, and the components

have one purpose each. Having views and components like this makes the site easier to expand

in the future. One could argue that the diff-engine component has slightly too much

responsibility, and could be divided into smaller components.

Initially, the majority of the frontend-logic was kept within the frontendService class, promoting

a cleaner and more organized codebase. This proved to be challenging as the code grew more

complex, and in the end much of the logic still resides inside its component.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 84

To make the code in frontend better, I would add some checks. Checks that probably should be

added to period-cards: If the same period is already compared, should be a dialogue with the

user that it is already saved. Ask to replace or abort. The date: should not exceeds todays date,

and there should be some messages to the client if date is not set or is after today’s date.

Checks and comprehensive error-messages makes the whole site more robust, og easier to use

for a user.

5.2.3. Code quality

Code of high quality refers to a systems robustness (system’s ability to cope with errors

(Wikipedia, 2024), reusability (the capability to re-use pre-exisiting code), reliability (the

probability of the systm performing its intended functions without failure), and

understandability (when a system allows an engineer to easily comprehend it, readability)

(Wikipedia, 2024).

“Software code review, i.e., the practice of having other team members critique changes to a

software system, is a well-established best practice in both open source and proprietary

software domains.” (McIntosh, Kamei, Adams, & Hassan, 2015)

Having the team around to do pair-coding and code review enhanced the code quality

significant.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 85

5.2.3.1. Checkstyle

Figure 50 - Checkstyle example

I did not consider all in sun checks or Google checks, but used the plugin to check that I

documented all of the code and didn’t have any big quality-issues. As seen in figure 50, it is easy

to read the issues, and make a decision to either ignore it or go directly to the code and fix it.

5.2.3.2. SonarLint

Open-source IDE-extension that identifies and assists in fixing code quality issues as they are

written. SonarLint focuses more on “code smells” and will underline problems in the IDE. In the

project there is no SonarLint errors (SonarLint, u.d.).

5.2.3.3. Robustness

Exceptions and exception handling will handle errors at runtime (GeeksForGeeks, 2023). Having

a good way of handling errors makes a code more robust.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 86

Figure 51 - null-check example

In my project I have attempted to write robust code. A part of this is to focus on handling

unexpected termination and unexpected actions. I have explored and attempted to adhere to

the “Paranoia”-principle for writing robust code, which mean I assume the code may fail or

work incorrectly, either because of my programming or because of the user will break the code

(Wikipedia, 2024). To handle these possible fails, I have written code that throws exceptions and

implemented try/catch-block with non-ambiguous error-messages. An example of this is from

figure 51, where the code runs a try/catch sequence to check the parameters are not null,

which would break the code.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 87

5.2.3.4. Transaction Service-class

Figure 52 - compareTransactions-method

The compareTransaction method (As seen in figure 49) is the most important method in the

whole system. This is where the comparison happens. The method takes in a startDate and an

endDate as parameters and compares all transactions from their respective repositories in that

given time-frame. The focus in this method have been to provide a robust, easy to understand

and error-handling code.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 88

This method was initially much bigger. When first written, it included the logic to give the results

for all outcomes and remove duplicates that are not matches. This means a number if if-blocks

for each result, which can be very hard to read. These if-statement blocks where extracted into

smaller methods (see example in figure 53), which made this comparing-method much easier to

read, understand and maintain. One could argue it could still be divided into smaller

components, for example with smaller methods to find and compare matching

transactions/partial matching transactions and missing transactions. These could then be used

in the comparing matches method. This would make the method more readable, and even

easier to expand in the future.

When it comes to error-handling, the try/catch block that will find an exception regarding the

repositories of transactions at runtime if there are any and display an error-message. There will

also be thrown an exception if accTransList or bankTransList is null.

To theoretically calculate performance, we need to look into several operations, including

fetching transactions from the repositories, comparing transactions, and storing results. The

time and space complexity of this method can be analysed based on these operations. The time

complexity of fetching transactions from the repositories is likely to be O(N), where N is the

number of transactions. This is because the findByDateBetween method iterates over all

transactions to filter those within the specified date range. Next step is comparing the

transactions. The nested loop structure used to do this has a time complexity of O(N^2), where

N is the maximum number of transactions in either the accounting or bank transaction lists. For

each accounting transaction, it checks against every bank transaction. After iterating over the

transaction and comparing them, the method also stores the transactions into a list. Adding

items to the comparedEntities list has a time complexity of O(1) per item.

So, considering these three operations, the overall time complexity of the compareTransactions

method is O(N + N^2). However, in Big O notation, its normal to keep highest order term, so the

time complexity would be O(N^2).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 89

When calculating space complexity, we evaluate the same steps regarding storage. The space

required to store the transactions fetched from the repositories is O(N), where N is the number

of transactions. Storage of comparison results: The space required to store the comparison

results is also O(N), where N is the number of compared transactions. So, the overall space

complexity of the compareTransactions method is O(N + N) = O(2N). Again, in Big O notation,

we keep the highest order term, so the space complexity would be O(N). Which means the

space required grows linearly with the number of transactions.

Based on the analysis and calculations above of the performance, it is evident that the method

could be improved when speaking of time-complexity (even though the complexity could vary,

depending on different factors I did not consider). A time complexity of O(N^2) is not ideal

when having higher number of transactions, which would be the case if the client wanted to

implement this product into their existing software, where performance is critical, and the

number of transactions can be quite large (Geeks for Geeks, 2024).

Figure 53 - one of the extracted methods from compareTransaction-method

NTNU Ålesund Bachelor thesis, Computer Science 2023

 90

5.2.3.5. Bugsolving

There is one identified remaining bug, which is issue #29. When comparing transactions, a

second time (same or different period), the previous comparison is not removed in the view. In

this case, the total discrepancy and overview-amounts are not incorrect, and can be successfully

saved, even though the view shows transactions from previous comparison. This is why this

particular bug was handled using the Ostrich algorithm, which means to strategically ignore a

problem based on the assumption that they may be exceedingly rare, or not worth the effort to

fix (Baeldung, 2023). The assumption here is that when the prototype would be worked on

further and implemented as a feature in the accounting software, this bug would be solved.

Having this bug in the prototype will not corrupt the POC, and since it was discovered when it

was, it will be left as it is.

5.2.4. Usability

Jacob Nielsen’s usability heuristics for usability design are good rules of thumb when creating

software and have been a receiving some emphasis during development of the finished product

(Nielsen & Jacob, 2020).

The design consists of words, phrases, and concepts familiar to the user, ensuring similarity

between the system and the real world. It has a logical order and follows real-world

conventions. The system is also consistent, meaning same design throughout the whole

product. I would also argue that the user has control and freedom when navigating the various

views and components. It is easy for the user to backtrack and find whatever they are searching

for. This is easy since the prototype is quite small still, but it is an important note still. The

system also minimizes the user’s memory load by making options and actions visible, and the

aesthetics follows a minimalistic design.

Despite these considerations there are still some of the heretics that have not been receiving

the same emphasis as the ones mentioned. To increase usability even more, there are several

NTNU Ålesund Bachelor thesis, Computer Science 2023

 91

adjustments I would make. Firstly, I would make the system give more feedback to the user

about what is happening. This would include a loading-icon for example. I would have included

error-messages (as I previously mentioned), so the user always knows what went wrong if it did.

Help and documentation could be improved by having hovering-effects with information and

other helping on the site. There are, however, several of Nielsen’s heuristics that have been

achieved in the finished product.

Since this is a prototype, some of the heuristics are not as relevant. These includes the use of

accelerators to speed up the interaction for the expert user. The product is too small for this to

be a consideration in this version.

5.2.5. Accessibility

The finished product provides some support for users with dyslexia or poor vision. This involves

the use of sufficient colour contrast throughout the product, a chosen font that is easy to see

and read and the use of icons that is easily distinguishable and have a clear meaning.

This prototype will be used by professionals, so I have not considered the use of plain language

to enhance understanding.

Plans for improvement includes implementing hovering and Helpers. I would also like to include

tooltips or helper text to guide users through the interface as the prototype will expand in

features. Another thing that would increase accessibility is key-Binding. Key binding can be

useful for users who may have difficulty with traditional mouse-based navigation. Might also be

a good idea to also have adjustable font sizes for future versions.

The finished product complies with recognized accessibility standards (WCAG) (Henry, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 92

5.2.6. Software testing

This chapter will discuss the testing concluded in the project. Both E2E, unit-testing and user-

testing.

5.2.6.1. Component testing in backend

This project have tested backend-code in Groovy, and frontend-code in Cypress. The

methodology for Groovy-testing has consisted of a combination of strategies, some tests are

written before the code, some during and some after. It has depended on the functionality and

the complexity of the code. In retrospect I argue it would have been better to have one strategy

during developing. And according to the science a test-first-approach increases productivity and

minimizing error. Test-driven-development (TDD) have been well documented with a variety of

positive outcomes. In retrospect I would argument that this approach would have suited my

project well. Instead I went with a more flexible approach, where some tests were written

before code, some during and some after. This also suited my project well, but having a more

consistent flow.

The Testing-First approach, often associated with Test-Driven Development (TDD), is a

methodology in software development where tests are written before the actual code. This

approach is characterized by a cycle of writing a test that fails, making the test pass by writing

the code, and then refactoring the code (Packt, 2023), (ISTQB Glossary, 2023).

NTNU Ålesund Bachelor thesis, Computer Science 2023

 93

Figure 54 - Omitted methods from tests

Omitted methods are shown in figure 54. Some of these were omitted on the basis that they are

“helper-methods”, which means they are made to be used by another method for various

reasons. If the parent-method is tested, the helper methods are also tested through that. In

retrospect I see that this project would benefit from a bigger test-coverage, as the

compareMethod-test fails, these are not tested at all.

5.2.6.2. E2E-testing in frontend

To setup test environment, Cypress templates and configurations from the client were used.

Cypress-tests have been written after coding, as it proved to be the most straightforward

prosess. The resulted in minimal time to finish it, and it is still not done.

The developer is pleased with the choice of E2E-testing framework and tool, as it proved to be

simple to set up, straightforward to use with an intuitive UI, uncomplicated to debug, provided

good feedbacks and easy navigation on failed tests. (Zanini, 2023), (TypeScript, 2023).

Looking back, I would start with E2E-testing sooner in the product development, rather than

postponing it until the end of the project. I aim to achieve a more broader test coverage, and

although I am generally satisfied with the E2E testing, I recognize the value of having a more

extensive scope. Overall, testing in Cypress has been a good learning opportunity.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 94

5.3. Administrative discussion

5.3.1. The team

It has been a pleasure to be working with a competent team of junior and senior developers

when doing my bachelor thesis. Due to this I got hands-on, real-world experiences in a software

company delivering services to the accounting industry. While I previously have been part of

doing scrums in a classroom setting, it has been especially interesting to see it used in real world

environment with stand-up meetings, mob-coding sessions and other agile developing

methods.

I experienced it was a good fit in what I have learned in school, and what is done in practice.

They have consistently provided me with a great learning environment, offering guidance and

support to help with anything. Whether it was to uphold an agile and professional workflow by

participating in scrums, stand-ups, or engaging in mob-coding sessions to solve some of the

challenges I faced, their involvement has contributed not only to the tangible results I've

achieved but also to an enriching learning journey within the field of system development.

5.3.2. Project management

5.3.2.1. Issue-tracking

As mentioned in chapter 4.5.3, the commits have been linked to issues. After I started doing this

throughout the project I found it to be highly beneficial. As shown in the example below, the

issue has an issuenumber 23, and for each commit with the shown commit-message I could see

in Github what had been done in that specific commit. This resulted in better overview and

system of issues and commits that links to them for easier navigation between commits and

issues.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 95

Figure 55 - Example of commit-indexing in GitHub

5.3.3. Methodology/structuring development prosess

I have been privileged to have my team of engineers at work to help me follow a theoretical

methodology for best result, which have been helpful. Being a solo-project did however

introduce some challenges, despite the groups efforts to make at as professional and

collaborative as possible. Following a certain methodology did prove to be difficult. There were

days when the workload extended beyond working hours, resulting in varying levels of

productivity over different periods.

Reflecting on the experience, had this project consisted of multiple members, the workflow

could be more consequent. In addition, meetings, standups, scrums and other collaborative

prosesses could have held more significant value than makeshift alternatives that we resorted

to.

NTNU Ålesund Bachelor thesis, Computer Science 2023

 96

6 Conclusion

The client requirements were to develop a prototype as a POC for streamlining of the bank

reconciliation prosess, using technology that makes merging with existing solutions easy. This

chapter will conclude if this have been accomplished during developing the system. This chapter

also addresses further work and community impact.

6.1. General conclusion

The developer is satisfied with having followed an agile methodology. This contributed with

reaching the results that this project did. Both the theoretical- and engineering results were

rewarding in terms of learning experience.

6.1.1. Scientific conclusion

The scientific results show that their technology available and a willingness to adapt to a more

streamlined prosess of reconciliation. Results also show that some accounting programs already

provides this functionality, proving it is a possibility for Tritt as well.

6.1.2. Engineering conclusion

This web based POC of a diff-engine for streamlined bank reconciliation meets requirements set

by both the client and developer. The system is robust, well documented, accessible, and highly

expendable, which have been a big fucus. However, it still has bugs, and there is room for

improvement in terms of making the system more reliable, fast and fault tolerant. The

realization that aiming for a higher test coverage could elevate the project results.

6.1.3. Administrative conclusion

The project was successfully finished within the allocated time. Using GitHub for tracking issues

have been beneficial. Meetings have been productive and pleasant, and working solo have been

NTNU Ålesund Bachelor thesis, Computer Science 2023

 97

a great learning experience. Especially lucky have I been to be able to follow an agile workflow

thanks to the collaborative efforts of the team.

6.2. Community impact

I envision that this finished system can be leveraged further to integrate with features and

functionalities in Tritt as a functionality Tritt can offer its clients.

The essence of project relates to streamlining and optimize manual work-prosesses. This means

that upon successfully integrated with the accounting system that Tritt offers clients, workload

will be lessened for accountants. In addition, errors will decrease, which is beneficial for both

accountant that bookkeep transaction and their customers.

6.3. Further work

In order to enhance the system further, and making it ready to integrate with the exisiting

Accounting software at tritt I aim to

- Fix failing tests, and add a more comprehensive test coverage

- As the system increases in complexity, user base and size, the need to expand on

accessibility-features will be greater. This includes for example Documentation for

Accessibility Features: Consider providing documentation or tooltips within the system

that explain the accessibility features available. This helps users, including those with

disabilities, to understand and utilize the functionalities. ADD Key-Binding: key-bindings

will probably be essential functions, as this is already a big part of the solution that Tritt

offers its future clients. This could be useful for users who may have difficulty with

traditional mouse-based navigation.

- Enhancing speed, robustness and general code quality

NTNU Ålesund Bachelor thesis, Computer Science 2023

 98

Works Cited

CFI Team. (2015). Bank Reconciliation. Retrieved 04.09.23 from corporatefinanceinstitute:

https://corporatefinanceinstitute.com/resources/accounting/bank-reconciliation/

Freshbooks. (2023). How to Do Bank Reconciliation. Retrieved 04.09.23 from freshbooks:

https://www.freshbooks.com/hub/accounting/do-bank-reconciliation

QuickBooks. (2022). Bank Reconciliation: Purpose, Example, and Prosess. Retrieved 04.09.23

from QuickBooks: https://quickbooks.intuit.com/global/resources/financial-

reports/bank-reconciliation-prosess/

TypeScript. (2020). Cypress. Retrieved 10.11.23 from TypeScript Deep Dive:

https://basarat.gitbook.io/typescript/intro-1/cypress

FCA. (2007). FCA Essential Practices for Information Technology Examinaton Manual IT Section.

Retrieved 10.11.23 from FCA: https://www.fca.gov/template-

fca/download/ITManual/itsystemsdevelopment.pdf

Wikipedia, the free encyclopedia. (2023). Software testing. Retrieved 07.09.23 from Wikipedia:

https://en.wikipedia.org/wiki/Software_testing

Computer Hope. (2022). System development. Retrieved 07.09.23 from Computer Hope:

https://www.computerhope.com/jargon/s/systdeve.htm

Michigan Tech. (2016). System Development Lifecycle (SDLC). Retrieved 07.09.23 from mtu:

https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-

program/system-development-lifecycle/

Wikipedia, the free encyclopedia. (2023). Web Content Accessibility Guidelines. Retrieved

10.11.23 from Wikipedia:

https://en.wikipedia.org/wiki/Web_Content_Accessibility_Guidelines

Agile Alliance. (2022). What is Agile Software Development? Retrieved 07.09.23 from Agile

Alliance: https://www.agilealliance.org/agile101/

Wikipedia, the free encyclopedia. (2023). Software prototyping. Retrieved 07.09.23 from

Wikipedia: https://en.wikipedia.org/wiki/Software_prototyping

ISTQB Glossary. (2018). Test-First Approach. Retrieved 10.11.23 from ISTQB Glossary page:

https://istqb-glossary.page/test-first-approach/

https://corporatefinanceinstitute.com/resources/accounting/bank-reconciliation/
https://www.freshbooks.com/hub/accounting/do-bank-reconciliation
https://quickbooks.intuit.com/global/resources/financial-reports/bank-reconciliation-process/
https://quickbooks.intuit.com/global/resources/financial-reports/bank-reconciliation-process/
https://basarat.gitbook.io/typescript/intro-1/cypress
https://www.fca.gov/template-fca/download/ITManual/itsystemsdevelopment.pdf
https://www.fca.gov/template-fca/download/ITManual/itsystemsdevelopment.pdf
https://en.wikipedia.org/wiki/Software_testing
https://www.computerhope.com/jargon/s/systdeve.htm
https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-program/system-development-lifecycle/
https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-program/system-development-lifecycle/
https://en.wikipedia.org/wiki/Web_Content_Accessibility_Guidelines
https://www.agilealliance.org/agile101/
https://en.wikipedia.org/wiki/Software_prototyping
https://istqb-glossary.page/test-first-approach/

NTNU Ålesund Bachelor thesis, Computer Science 2023

 99

UXPin. (2020). High-Fidelity Prototyping vs Low-Fidelity Prototypes: Which to Choose When?

Retrieved 07.09.23 from uxpin: https://www.uxpin.com/studio/blog/high-fidelity-

prototyping-low-fidelity-difference/

Wikipedia, the free encyclopedia. (2023). Model-based systems engineering. Retrieved 07.09.23

from Wikipedia: https://en.wikipedia.org/wiki/Model-based_systems_engineering

Interserver. (2022). What is MVC? Advantages and Disadvantages of MVC. Retrieved 07.09.23

from InterServer: https://www.interserver.net/tips/kb/mvc-advantages-disadvantages-

mvc/

Geeks for Geeks. (n.d.). User Interface Design – Software Engineering. Retrieved 10.12.23 from

Geeks for Geeks: https://www.geeksforgeeks.org/software-engineering-user-interface-

design/

Centiga. (n.d.). Automatisk bankavstemming. Retrieved 04.09.23 from Centiga:

https://centiga.no/bankavstemming/

eAccounting. (n.d.). Noen av funksjonene som gjør regnskapet enkelt. Retrieved 04.09.23 from

eAccounting: https://www.eaccounting.no/funksjoner/

Wikipedia, the free encyclopedia. (2021). Universal design. Retrieved 02.10.23 from Wikipedia:

https://en.wikipedia.org/w/index.php?title=Universal_design&oldid=1017733026

STICOS. (n.d.). Det eneste regnskapsfører trenger for effektiv oppdragsstyring og kvalitetssikring.

Retrieved from Retrieved 04.09.23: https://www.sticos.no/produkter/sticos-

oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&u

tm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083

&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-

16499479796

Wikipedia, the free encyclopedia. (2022). Model–view–controller. Retrieved 07.09.23 from

Wikipedia: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Fiken. (n.d.). Bankavstemming. Retrieved 04.09.23 from Fiken:

https://hjelp.fiken.no/bankavstemming?gclid=CjwKCAjwjaWoBhAmEiwAXz8DBYHF3_ngb

CyHq9fjJ93VYg9EQzEGg1acmfhyHSWOmA5h9oOj8o3P3BoCXy4QAvD_BwE

https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://en.wikipedia.org/wiki/Model-based_systems_engineering
https://www.interserver.net/tips/kb/mvc-advantages-disadvantages-mvc/
https://www.interserver.net/tips/kb/mvc-advantages-disadvantages-mvc/
https://www.geeksforgeeks.org/software-engineering-user-interface-design/
https://www.geeksforgeeks.org/software-engineering-user-interface-design/
https://centiga.no/bankavstemming/
https://www.eaccounting.no/funksjoner/
https://en.wikipedia.org/w/index.php?title=Universal_design&oldid=1017733026
https://www.sticos.no/produkter/sticos-oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&utm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-16499479796
https://www.sticos.no/produkter/sticos-oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&utm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-16499479796
https://www.sticos.no/produkter/sticos-oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&utm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-16499479796
https://www.sticos.no/produkter/sticos-oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&utm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-16499479796
https://www.sticos.no/produkter/sticos-oversikt?utm_term=automatisk%20avstemming&utm_campaign=05+%C3%98konomi&utm_source=adwords&utm_medium=ppc&hsa_acc=4724287588&hsa_cam=6468739083&hsa_grp=92509880810&hsa_ad=421855298318&hsa_src=g&hsa_tgt=kwd-16499479796
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://hjelp.fiken.no/bankavstemming?gclid=CjwKCAjwjaWoBhAmEiwAXz8DBYHF3_ngbCyHq9fjJ93VYg9EQzEGg1acmfhyHSWOmA5h9oOj8o3P3BoCXy4QAvD_BwE
https://hjelp.fiken.no/bankavstemming?gclid=CjwKCAjwjaWoBhAmEiwAXz8DBYHF3_ngbCyHq9fjJ93VYg9EQzEGg1acmfhyHSWOmA5h9oOj8o3P3BoCXy4QAvD_BwE

NTNU Ålesund Bachelor thesis, Computer Science 2023

 100

Tripletex. (n.d.). Hvordan fungerer automatisk bankavstemming med bankintegrasjon?

Retrieved 04.09.23 from Tripletex:

https://hjelp.tripletex.no/hc/no/articles/4416268743185-Hvordan-fungerer-automatisk-

bankavstemming-med-bankintegrasjon-

Codegrip. (n.d.). What is Code Quality & why is it Important? Retrieved 10.11.23 from Codegrip:

https://www.codegrip.tech/productivity/what-is-code-quality-why-is-it-important/

SonarSource. (n.d.). Catching Issues in the IDE with SonarLint. Retrieved 10.11.23 from

SonarCloud: https://docs.sonarsource.com/sonarcloud/

checkstyle. (2023). checkstyle. Retrieved 10.11.23 from checkstyle: https://checkstyle.org

Wikipedia, the free encyclopedia. (2023). SOLID. Retrieved 07.09.23 from Wikipedia:

https://en.wikipedia.org/wiki/SOLID

Wikipedia, the free encyclopedia. (2023). Cohesion (computer science). Retrieved 15.10.23 from

Wikipedia: https://en.wikipedia.org/wiki/Cohesion_(computer_science)

Indeed Editorial Team. (2023). Code Quality: What It Is and How To Measure It (With Tips).

Retrieved 15.10.23 from Indeed: https://www.indeed.com/career-advice/career-

development/what-is-code-quality

Wikipedia, the free encyclopedia. (2023). Robustness (computer science). Retrieved 15.10.23

from Wikipedia: https://en.wikipedia.org/wiki/Robustness_(computer_science)

CodiumAI Team. (2023). Mock Testing: Understanding the Benefits and Best Practices. Retrieved

10.11.23 from Codium: https://www.codium.ai/blog/mock-testing/

GeeksforGeeks. (n.d.). Agile Software Testing. Retrieved 10.11.23 from GeeksforGeeks:

https://www.geeksforgeeks.org/agile-software-testing/

Micronaut. (2023). A MODERN, JVM-BASED, FULL-STACK FRAMEWORK FOR BUILDING

MODULAR, EASILY TESTABLE MICROSERVICE AND SERVERLESS APPLICATIONS. Retrieved

from Micronaut: https://micronaut.io

GeeksforGeeks. (n.d.). Usability Testing. Retrieved 10.11.23 from GeeksforGeeks:

https://www.geeksforgeeks.org/usability-testing/

Chandan. (2023). Micronaut Beans. Retrieved 15.11.23 from Medium:

https://medium.com/@chandanjena706/beans-dbe536910685

https://hjelp.tripletex.no/hc/no/articles/4416268743185-Hvordan-fungerer-automatisk-bankavstemming-med-bankintegrasjon-
https://hjelp.tripletex.no/hc/no/articles/4416268743185-Hvordan-fungerer-automatisk-bankavstemming-med-bankintegrasjon-
https://www.codegrip.tech/productivity/what-is-code-quality-why-is-it-important/
https://docs.sonarsource.com/sonarcloud/
https://checkstyle.org/
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://www.codium.ai/blog/mock-testing/
https://www.geeksforgeeks.org/agile-software-testing/
https://micronaut.io/
https://www.geeksforgeeks.org/usability-testing/
https://medium.com/@chandanjena706/beans-dbe536910685

NTNU Ålesund Bachelor thesis, Computer Science 2023

 101

Wikipedia, the free encyclopedia. (2023). Gradle. Retrieved 10.12.23 from Wikipedia:

https://en.wikipedia.org/wiki/Gradle

PostgreSQL. (n.d.). PostgreSQL: The World's Most Advanced Open Source Relational Database.

Retrieved 07.09.23 from PostgreSQL: https://www.postgresql.org

Apache Groovy. (n.d.). Apache Groovy. Retrieved 10.11.23 from Apache Groovy: https://groovy-

lang.org/testing.html

Cypress. (2023). Introduction to Cypress. Retrieved 10.11.23 from Cypress:

https://docs.cypress.io/guides/core-concepts/introduction-to-cypress

Baeldung. (2023). Difference Between Docker Images and Containers. Retrieved 07.09.23 from

Baeldung: https://www.baeldung.com/ops/docker-images-vs-containers

Docker. (2023). What is a container? Retrieved 07.09.23 from Docker:

https://docs.docker.com/guides/walkthroughs/what-is-a-container/

Wikipedia (2023). Version control. Retrieved 15.11.23 from Wikipedia:

https://en.wikipedia.org/wiki/Version_control

Atlassian. (n.d.). What is version control? Retrieved 15.11.23 from Atlassian:

https://www.atlassian.com/git/tutorials/what-is-version-control

Cabot, J. (2017). Comparing Domain-Driven Design with Model-Driven Engineering. Retrieved

15.09.23 from modeling-languages: https://modeling-languages.com/comparing-

domain-driven-design-model-driven-engineering/

Zanini, A. (2023). How to Set Up a Cypress TypeScript Project. Retrieved 10.11.23 from

codemotion: https://www.codemotion.com/magazine/frontend/web-developer/how-

to-set-up-a-cypress-typescript-project/

Alam, A. (2019). Importance of Software Design. Retrieved 07.09.23 from Medium:

https://medium.com/swlh/importance-of-software-design-7ffea48ede17

Bhatt, T. (2023). Software Development Technologies: A Brief Explanation With Examples.

Retrieved 07.09.23 from Intelivita: https://www.intelivita.com/blog/software-

development-technologies/

Keith Armstrong, A. H. (2023). Random user generator. Retrieved from Randomuser.me:

https://randomuser.me

https://en.wikipedia.org/wiki/Gradle
https://www.postgresql.org/
https://groovy-lang.org/testing.html
https://groovy-lang.org/testing.html
https://docs.cypress.io/guides/core-concepts/introduction-to-cypress
https://www.baeldung.com/ops/docker-images-vs-containers
https://docs.docker.com/guides/walkthroughs/what-is-a-container/
https://en.wikipedia.org/wiki/Version_control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://modeling-languages.com/comparing-domain-driven-design-model-driven-engineering/
https://modeling-languages.com/comparing-domain-driven-design-model-driven-engineering/
https://www.codemotion.com/magazine/frontend/web-developer/how-to-set-up-a-cypress-typescript-project/
https://www.codemotion.com/magazine/frontend/web-developer/how-to-set-up-a-cypress-typescript-project/
https://medium.com/swlh/importance-of-software-design-7ffea48ede17
https://www.intelivita.com/blog/software-development-technologies/
https://www.intelivita.com/blog/software-development-technologies/

NTNU Ålesund Bachelor thesis, Computer Science 2023

 102

Yasar, K. (2022). software testing. Retrieved 10.11.23 from TechTarget:

https://www.techtarget.com/whatis/definition/software-testing

Moradov, O. (2023). Unit Testing: Definition, Examples, and Critical Best Practices. Retrieved

10.11.23 from Brightsec: https://brightsec.com/blog/unit-testing/

Monocubed. (2021). Advantages of Vue js. Retrieved from What are the Advantages of Vue js

Framework in Web Development?: https://www.monocubed.com/blog/advantages-of-

vue-js/

Geeks for Geeks. (n.d.). State Transition Testing. Retrieved 10.11.23 from State Transition

Testing: https://www.geeksforgeeks.org/state-transition-testing/

Maze. (n.d.). Maze. Retrieved 15.10.23 from 5 Real-life usability testing examples & approaches

to apply: https://maze.co/guides/usability-testing/examples/

Wikipedia. (2023). Robustness (computer science). Retrieved 15.10.23 from Robustness

(computer science): https://en.wikipedia.org/wiki/Robustness_(computer_science)

McIntosh, S., Kamei, Y., Adams, B., & Hassan, E. A. (2015, April 25). An empirical study of the

impact of modern code review practices on software quality. Springer Link, 21, 2146-

2189. Retrieved from https://link.springer.com/article/10.1007/s10664-015-9381-9

SonarLint. (n.d.). our IDE and programming language. covered. Retrieved October 2023, from

https://www.sonarsource.com/products/sonarlint/

GeeksForGeeks. (n.d.). Exceptions in Java. Retrieved 22.12.23 from

https://www.geeksforgeeks.org/exceptions-in-java/

Wikipedia. (2023). Robustness (computer science). Retrieved 15.10.23 from

https://en.wikipedia.org/wiki/Robustness_(computer_science)

Geeks for Geeks. (n.d.). Time Complexity and Space Complexity. Retrieved 02.01.24 from

https://www.geeksforgeeks.org/time-complexity-and-space-complexity/

Baeldung. (2023). Retrieved 26.12.23 from https://www.baeldung.com/cs/ostrich-algorithm

Penchikala, S. (2008). Domain Driven Design and Development In Practice. Retrieved October

2023, from InfoQ: https://www.infoq.com/articles/ddd-in-practice/

https://www.techtarget.com/whatis/definition/software-testing
https://brightsec.com/blog/unit-testing/
https://www.geeksforgeeks.org/state-transition-testing/
https://maze.co/guides/usability-testing/examples/
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://www.sonarsource.com/products/sonarlint/
https://www.geeksforgeeks.org/exceptions-in-java/
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://www.baeldung.com/cs/ostrich-algorithm
https://www.infoq.com/articles/ddd-in-practice/

NTNU Ålesund Bachelor thesis, Computer Science 2023

 103

Stevens, E. (2022). 7 fundamental UX design principles all designers should know. Retrieved

07.09.23, from UX Design Institute: https://www.uxdesigninstitute.com/blog/ux-design-

principles/

Henry, S. L. (2023). WCAG 2 Overview. Retrieved October 2023, from w3c:

https://www.w3.org/WAI/standards-guidelines/wcag/

Ramona Lacurezeanu, A. T.-T. (2020). Automatizarea proceselor prin robotizare in audit si

contabilitate. Retrieved october 2023, from CEEOL:

https://www.ceeol.com/search/article-detail?id=906637

McGrath, A., & Jonker, A. (2023). IBM. Retrieved December 2023, from What is model-based

systems engineering (MBSE)?: https://www.ibm.com/topics/model-based-systems-

engineering

Nielsen, & Jacob. (2020). 10 Usability Heuristics for User Interface Design. Retrieved September

2023, from Nielsen Norman Group: https://www.nngroup.com/articles/ten-usability-

heuristics/

Convedo. (2019). The Benefits of Robotics in Financial Services. Retrieved September 2023, from

Convedo: https://info.convedo.com/the-benefits-of-robotics-in-financial-services

Wikipedia. (2023). SOLID. Retrieved October 2023, from Wikipedia:

https://en.wikipedia.org/wiki/SOLID

Rahdan, A. (2020). Jakob Nielsen’s 10 heuristics for user interface design with practical

examples. Retrieved September 2023, from UX Design: https://uxdesign.cc/jakob-

nielsens-10-heuristics-for-user-interface-design-3fe09af5fd99

Can Tansel Kaya, M. T. (2020). RPA Teknolojilerinin Muhasebe Sistemleri Üzerindeki Etkisi.

Retrieved August 2023, from Researchgate:

https://www.researchgate.net/publication/340367501_The_Future_of_Robotic_Prosess

_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience

Knudsen-Baas, A. C. (2023). Digitalisering i regnskapsavdelingen. En kvalitativ studie av et

børstnotert selskap. Retrieved August 2023, from UIA: https://uia.brage.unit.no/uia-

xmlui/handle/11250/3083646

https://www.uxdesigninstitute.com/blog/ux-design-principles/
https://www.uxdesigninstitute.com/blog/ux-design-principles/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.ceeol.com/search/article-detail?id=906637
https://www.ibm.com/topics/model-based-systems-engineering
https://www.ibm.com/topics/model-based-systems-engineering
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://info.convedo.com/the-benefits-of-robotics-in-financial-services
https://en.wikipedia.org/wiki/SOLID
https://uxdesign.cc/jakob-nielsens-10-heuristics-for-user-interface-design-3fe09af5fd99
https://uxdesign.cc/jakob-nielsens-10-heuristics-for-user-interface-design-3fe09af5fd99
https://www.researchgate.net/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience
https://www.researchgate.net/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience
https://uia.brage.unit.no/uia-xmlui/handle/11250/3083646
https://uia.brage.unit.no/uia-xmlui/handle/11250/3083646

NTNU Ålesund Bachelor thesis, Computer Science 2023

 104

Simic, S. (2022). Docker Image vs Container: The Major Differences. Retrieved October 2023,

from PhoenixNap: https://phoenixnap.com/kb/docker-image-vs-container

C. Vijai, S. S. (2020). The Future of Robotic Prosess Automation (RPA) in the Banking Sector for

Better Customer Experience. Retrieved 04.09.23, from Researchgate:

https://www.researchgate.net/profile/C-Vijai-

2/publication/340367501_The_Future_of_Robotic_Prosess_Automation_RPA_in_the_B

anking_Sector_for_Better_Customer_Experience/links/5ea93eba299bf18b9584643c/Th

e-Future-of-Robotic-Prosess-Automation-RPA-in-the-Banki

Bhutada, T. (2023). 7 Real-time Use Cases of Groovy Scripting. Retrieved November 2023, from

Stackify: https://stackify.com/7-real-time-use-cases-of-groovy-scripting/

https://phoenixnap.com/kb/docker-image-vs-container
https://www.researchgate.net/profile/C-Vijai-2/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience/links/5ea93eba299bf18b9584643c/The-Future-of-Robotic-Process-Automation-RPA-in-the-Banki
https://www.researchgate.net/profile/C-Vijai-2/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience/links/5ea93eba299bf18b9584643c/The-Future-of-Robotic-Process-Automation-RPA-in-the-Banki
https://www.researchgate.net/profile/C-Vijai-2/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience/links/5ea93eba299bf18b9584643c/The-Future-of-Robotic-Process-Automation-RPA-in-the-Banki
https://www.researchgate.net/profile/C-Vijai-2/publication/340367501_The_Future_of_Robotic_Process_Automation_RPA_in_the_Banking_Sector_for_Better_Customer_Experience/links/5ea93eba299bf18b9584643c/The-Future-of-Robotic-Process-Automation-RPA-in-the-Banki
https://stackify.com/7-real-time-use-cases-of-groovy-scripting/

NTNU Ålesund Bachelor thesis, Computer Science 2023

 105

Appendix 1 – AI declaration

NTNU Ålesund Bachelor thesis, Computer Science 2023

 106

Appendix 2 - Usability test report first iteration
First test, 27.09.23

NTNU Ålesund Bachelor thesis, Computer Science 2023

 107

NTNU Ålesund Bachelor thesis, Computer Science 2023

 108

NTNU Ålesund Bachelor thesis, Computer Science 2023

 109

NTNU Ålesund Bachelor thesis, Computer Science 2023

 110

Appendix 3 - Usability test report second iteration

NTNU Ålesund Bachelor thesis, Computer Science 2023

 111

NTNU Ålesund Bachelor thesis, Computer Science 2023

 112

	The client
	Requirement specification
	Thesis structure
	1 Introduction
	1.1. Glossary
	1.2. Acronyms
	1.3. Background/motivation
	1.4. Problem formulation
	1.5. Objectives
	1.6. Requirements
	1.7. Limitations
	1.8. Subject areas

	2 Theory
	2.1. Theory spesific to domain
	2.2. System Development
	2.2.1. Agile development
	2.2.2. Prototyping
	2.2.3. Model based systems engineering
	2.2.4. Domain driven design (DDD)

	2.3. Design
	2.3.1. User interface (UI)
	2.3.2. Model-View-Controller pattern (MVC)
	2.3.3. Availability and accessibility

	2.4. Software developing tools and technologies
	2.4.1. Micronaut
	2.4.1.1. Bean-classes
	2.4.2. Gradle
	2.4.3. PostgreSQL
	2.4.4. Groovy
	2.4.5. Cypress
	2.4.6. VUE.js
	2.4.7. Version-control
	2.4.8. Containerization in Docker

	2.5. Quality assurance
	2.5.1. Testing in computer science
	2.5.1.1. Agile testing
	2.5.1.2. Unit testing
	2.5.2. Usability testing
	2.5.3. Code quality
	2.5.3.1. Cohesion and coupling
	2.5.3.2. SOLID
	2.5.3.3. Code-quality plugins for IntelliJ

	3 Materials and methods
	3.1. Methodology
	3.2. Project management
	3.2.1. The team
	3.2.2. Meetings
	3.2.3. Communication

	3.3. Scientific approach
	3.4. Technologies used
	3.4.1. Modelling
	3.4.2. Prototyping
	3.4.3. Code quality

	3.5. Testing
	3.5.1. Acquiring test data
	3.5.2. Software testing
	3.5.3. Usability testing

	4 Results
	4.1. Features
	4.2. Theoretical contributions
	4.2.1. Theoretical findings
	4.2.2. Exisiting solutions

	4.3. Engineering results
	4.3.1. Architecture
	4.3.2. Domain model
	4.3.3. Modelled prototypes
	4.3.3.1. Low-fidelity prototype
	4.3.3.2. High fidelity prototype
	4.3.4. Project hierarchy
	4.3.4.1. Frontend project hierarchy
	4.3.5. Backend project hierarchy
	4.3.6. Persistence
	4.3.7. Business logic
	4.3.7.1. Backlog
	4.3.8. Vue-components
	4.3.9. Frontend services
	4.3.10. Views

	4.4. Quality assurance results
	4.4.1. Unit testing
	4.4.2. E2E-testing
	4.4.3. Usability testing
	4.4.4. Documentation
	4.4.4.1. README

	4.5. Administrative results and development prosess
	4.5.1. Time-management
	4.5.2. Meetings
	4.5.3. Project management

	5 Discussion
	5.1. Theoretical discussion
	5.1.1. Methods for data collection
	5.1.2. Result reflection

	5.2. Engineering discussion
	5.2.1. Design
	5.2.1.1. Prototyping
	5.2.1.2. Design material and methodology
	5.2.2. Development
	5.2.2.1. Project structure
	5.2.2.2. Comparison results explained
	5.2.2.3. Entities
	5.2.2.4. Controllers
	5.2.2.5. Views and components in frontend
	5.2.3. Code quality
	5.2.3.1. Checkstyle
	5.2.3.2. SonarLint
	5.2.3.3. Robustness
	5.2.3.4. Transaction Service-class
	5.2.3.5. Bugsolving
	5.2.4. Usability
	5.2.5. Accessibility
	5.2.6. Software testing
	5.2.6.1. Component testing in backend
	5.2.6.2. E2E-testing in frontend

	5.3. Administrative discussion
	5.3.1. The team
	5.3.2. Project management
	5.3.2.1. Issue-tracking
	5.3.3. Methodology/structuring development prosess

	6 Conclusion
	6.1. General conclusion
	6.1.1. Scientific conclusion
	6.1.2. Engineering conclusion
	6.1.3. Administrative conclusion

	6.2. Community impact
	6.3. Further work

	Works Cited
	Appendix 1 – AI declaration
	Appendix 2 - Usability test report first iteration
	Appendix 3 - Usability test report second iteration

