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Abstract 

Background:  Use of alternative non-Saccharomyces yeasts in wine and beer brewing 
has gained more attention the recent years. This is both due to the desire to obtain 
a wider variety of flavours in the product and to reduce the final alcohol content. Given 
the metabolic differences between the yeast species, we wanted to account for some 
of the differences by using in silico models. 

Results:   We created and studied genome-scale metabolic models of five different 
non-Saccharomyces species using an automated processes. These were: Metschnikowia 
pulcherrima, Lachancea thermotolerans, Hanseniaspora osmophila, Torulaspora del-
brueckii and Kluyveromyces lactis. Using the models, we predicted that M. pulcherrima, 
when compared to the other species, conducts more respiration and thus produces 
less fermentation products, a finding which agrees with experimental data. Complex 
I of the electron transport chain was to be present in M. pulcherrima, but absent in 
the others. The predicted importance of Complex I was diminished when we incorpo-
rated constraints on the amount of enzymatic protein, as this shifts the metabolism 
towards fermentation.

Conclusions:   Our results suggest that Complex I in the electron transport chain 
is a key differentiator between Metschnikowia pulcherrima and the other yeasts con-
sidered. Yet, more annotations and experimental data have the potential to improve 
model quality in order to increase fidelity and confidence in these results. Further 
experiments should be conducted to confirm the in vivo effect of Complex I in M. pul-
cherrima and its respiratory metabolism.

Keywords:  Metschnikowia pulcherrima, sMOMENT, Genome-scale models, Electron 
transport chain, Complex I, Yeast, Metabolic modelling, Automated reconstructions, 
Enzymatic constraints, Alternative pathways, decFBA

Background
In recent years, there has been increased interest in using alternative non-Saccharomy-
ces yeasts for beer and wine brewing [1–7]. In general, there are two primary drivers for 
the adoption of non-Saccharomyces fermentation strains: First, wine producers aim to 
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decrease the resultant alcohol content in their products. Second, some brewers seek to 
enhance the complexity of aroma compounds, thereby emulating the rich flavor profile 
of spontaneously fermented beverages. In this study, our primary focus will be on the 
pursuit of reduced alcohol content.

Climate change has resulted in warmer and sunnier summers in wine producing 
regions, leading to higher sugar content in ripe grapes. When the must of high sugar 
grapes are fermented, this leads to higher alcohol content in the product. As a conse-
quence, the alcohol content of wine has risen by approximately 1% alcohol by volume 
each decade since the 1980s in some wine producing regions [8, 9]. Whereas approaches 
such as dilution of the must, earlier harvesting of the grapes, and post-fermentation 
removal of alcohol can bring down the resulting alcohol content, such approaches come 
at the expense of diminished oenological qualities as well as breaking with established 
standards for wine brewing [10]. Additionally, these practices may violate local, national, 
and international regulations, such as the OIV Codex [11, 12]

In order to create wines with reduced alcohol content without losing the rich flavours, 
aeration during the fermentation process has been proposed as a solution [6]. Unfortu-
nately, using this approach with the canonical wine yeast Saccharomyces cerevisiae has 
proven to be challenging. First of all, the most common strains of S. cerevisiae are Crab-
tree positive, meaning that glucose predominantly gets fermented to ethanol even when 
oxygen is available [13–15]. Furthermore, aeration often leads to the production of ace-
tic acid, which is considered an undesired by-product [15, 16]. On the other hand, many 
non-Saccharomyces yeasts produce less acetate and are Crabtree negative [2, 17, 18].

Using non-Saccharomyces yeasts alone is usually not a good option due to produc-
tion of bad-tasting compounds and their low tolerance to ethanol. The latter short-com-
ing leads to stuck fermentations and poor wine quality [6, 16]. Experiments attempting 
simultaneous inoculations of S. cerevisiae and non-Saccharomyces strains have revealed 
that exposure of S. cerevisiae to oxygen causes unacceptable amounts of acetate produc-
tion, even after aeration is turned off [16]. In order to mitigate this problem, a technique 
with sequential inoculation has been developed. In this method, the must is inoculated 
with the non-Saccharomyces yeast with air sparging for two to three days before S. cer-
evisiae is added in order to complete the fermentation. This has proven to be a more 
viable approach for production of wine with reduced alcohol content, as the production 
of acetic acid remains low [19–22].

In order to explain and predict such metabolic properties of yeast, genome-scale met-
abolic models (GEMs) have become a widely used tool [23–29]. For the model organism 
S. cerevisiae, well curated models exist [30, 31] which have been used for a variety of pur-
poses. One application is for the explanation of the Crabtree effect using enzyme con-
strained genome scale models (ecGEMs) [25, 26, 32]. The ecGEMs incorporate enzymes’ 
turnover numbers and masses for constraining the internal metabolic fluxes, as the total 
mass which can be allocated for enzymatic proteins is limited.

In contrast to S. cerevisiae, GEMs are not readily available for most non-Saccharomy-
ces yeasts. Nevertheless, the development of tools that enable automatic generation of 
these models from genomic data presents a possible solution to address this limitation. 
A promising approach, known as ”carving” as described by Machado and coworkers [33], 
involves generating models from a meticulously curated universal model that serves as 
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a comprehensive database of interconnected biochemical reactions. Furthermore, tools 
exist also for the incorporation of enzymatic constraints [34, 35] by automatically query-
ing databases for protein masses and turnover numbers in order to integrate these data 
into an ecGEM.

In this article, we constructed GEMs for five of the most commonly applied non-Sac-
charomyces yeast strains attempted in wine brewing [4, 7, 36]. These are: Hanseniaspora 
osmophila, Kluveromyces lactis, Metschnikowia pulcherrima, Torulaspora delbrueckii, 
and Lachancea thermotolerans. The models were automatically constructed from 
genome data and carved form a curated universal yeast model [37, 38]. Using the recon-
structed GEMs, we predict physiological properties of the yeasts in silico.

Results
Characteristics and properties of automatically reconstructed genome‑scale metabolic 

models

GEMs of the five non-Saccharomyces yeast strains were created by using CarveFungi 
[37, 38]. From these models, protein constraints were incorporated, and ecGEMs (sMO-
MENT) were made with AutoPACMEN [34] (see Methods for details). Key properties 
of the models are summarized in Table 1. In addition, we conducted automated qual-
ity checks of the models using MEMOTE [39], and we provide summarized findings in 
Table 2. From this summary, we observed that the results are similar for all the Carve-
Fungi models. The major shortcomings discovered by MEMOTE was that genes, reac-
tions, and metabolites had few database annotations and identifiers. Also, the MEMOTE 
check declared the models were stoichometrically inconsistent.

We begin our investigation of the models’ phenotypic properties by predicting batch 
culture growth using dynamic FBA (dFBA) [40] simulations for 12 h. We first use models 
without enzymatic constraints (Fig. 1). As a reference, we include the S. cerevisiae model 
iND750 [41]. Even though more modern and extensive models of S. cerevisiae exist [30], 
we chose iND750 as it has a comparable size and complexity to the models generated 
by CarveFungi. However, in the development of the CarveFungi pipeline, the recon-
structed yeast was compared with the latest consensus yeast model [37, 38]. We choose 
glucose as the sole carbon source, with the initial concentration set to 10 mmol L−1 
(1.8 g L−1) . The supply of oxygen was restricted to 10  mmol/g DW Biomass/h (corre-
sponds to 180 mg/g WD / h). See Methods for uptake kinetics and additional details on 
the simulations.

We observed that simulation results for M. pulcherrima are quite different from the other 
yeasts, since less fermentation (production of ethanol and acetate) was undertaken com-
pared to the other yeasts, and the growth dynamics resulted in higher biomass yield. We 
also initiated the simulations with 1000 mmol L−1 ( 180 g L−1 ) glucose, which is a more 
realistic sugar concentration in grape must used in wine fermentation (Additional file  1: 
Fig. S1). This resulted in a higher degree of fermentation due to the fact that the balance 
between glucose and oxygen availability was shifted. Still, the same tendencies of M. pul-
cherrima to produce less fermentation products and attain higher biomass, were evident.

In addition to the glucose concentration, we simulated the effect of the sugar composi-
tion of the must. This was conducted by replacing the 10 mmol L−1 with the equivalent 
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Fig. 1  dFBA simulations of the models without enzymatic constraints for the six yeast models, starting with 

10mmol L−1 glucose. gDW
L

 : Grams of dry weight per liter

Table 1  Properties of the GEMs studied in this paper

sMOMENT versions of the models have more reactions than the listed numbers, as autoPACMEN adds auxiliary reactions 
and splits reactions drawing from the protein pool into separate forward and backward reactions. The models iND750, 
iOD907 and iBM3063 were taken from external sources [41–43] and did not have any corresponding enzyme constrained 
model

Organism Origin Reactions Reversible 
reactions

Metabolites Reactions drawing 
from protein pool

Metschnikowia pulcherrima CarveFungi 2049 610 1633 1310

Lachancea thermotolerans CarveFungi 2049 618 1647 1319

Torulaspora delbrueckii CarveFungi 1876 559 1510 1163

Kluyveromyces lactis CarveFungi 2131 621 1774 1401

Hanseniaspora osmophila CarveFungi 1556 520 1218 902

Saccharomyces cerevisiae iND750 1266 436 1059 0

Kluyveromyces lactis iOD907 2180 894 2338 0

Lachancea thermotolerans iBM3063 3063 1200 2741 0
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amount of fructose (see Additional file 1: Fig. S4). The same trends which we observed 
for glucose hold true also when fructose is the carbon source.

For K. lactis and L. thermotolerans there already existed published GEMS; the mod-
els iOD907 [42] and iBM3063 [43]. These two models were assessed individually with 
their corresponding CarveFungi [37, 38] model in order to compare them. MEMOTE 
reported a lower quality of iOD907 than for the corresponding CarveFungi model for K. 
lactis (Table 2). In part, the low MEMOTE score for iOD907 was due the fact that the 
molecular formulas of the metabolites were not written in a standard-compliant manner. 
K. lactis is know for its ability to utilise lactose as a substrate [44], for which reactions 
were present in both models. Comparing batch growth on glucose for iOD907 and the 
CarveFungi model of K. lactis (Additional file 1: Fig. S2), we find some slight differences. 
iOD907 preferred to produce ethanol instead of acetate and had a somewhat lower bio-
mass yield. For iBM3063, the model had a similar MEMOTE score to the CarveFungi 
model of L. thermotolerans, but we were unable to obtain physiologically plausible 
results when running dFBA on the model.

Further, we compared the CarveFungi model of K. lactis with published experimental 
data by Dias et al. [45]. In this experiment, K. lactis was kept in a chemostat under dif-
ferent dilution rates with glucose as the carbon source. Uptake and secretion rates of 
glucose, oxygen, carbon dioxide, and glycerol were measured. We locked the uptake and 
secretion rates of the K. lactis GEM to the measured values and optimized for maximal 
growth. In order to account for protein constraints, we used the sMOMENT model of 
K. lactis under varying levels of the protein pool. Comparing the results with the experi-
mentally determined dilution rates (which is equal to the rate the organism must grow 
in a chemostat), we found that the modelled growth rates at infinite protein pool were 
generally somewhat lower than the experimentally determined ones, but still within the 
experimental variability (Additional file 1: Fig. S3). From these observations, we made 
two conclusions: First, we think that internal enzyme constraints were not limiting the 
growth in the experiments considered. Second, we found the K. lactis GEM to accurately 
predict the growth rate given the observed uptake and secretion rates.

Table 2  MEMOTE quality summaries for various sections

The numbers are given in terms of the percentage of the total achievable score (higher is better and maximum is 100). Con. 
Consistency, an annotation

Organism Origin Con. Metabolite 
an.

Reaction an. Gene an. SBO term con. Overall

Metschnikowia pulcher-
rima

CarveFungi 51 60 57 40 89 67

Lachancea thermotol-
erans

CarveFungi 52 60 56 40 88 67

Torulaspora delbrueckii CarveFungi 52 60 56 40 88 67

Kluyveromyces lactis CarveFungi 52 60 55 40 88 67

Hanseniaspora 
osmophila

CarveFungi 52 61 56 40 88 67

Saccharomyces cerevisiae iND750 97 80 83 43 82 86

Kluyveromyces lactis iOD907 22 25 25 0 0 12

Lachancea thermotol-
erans

iBM3063 50 74 66 33 88 67
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Complex I differentiates Metschnikowia pulcherrima from the other yeast species

Having discovered that the GEMs predicted distinct metabolic phenotypes for M. pul-
cherrima compared to the other yeast strains, we were interested in elucidating the 
underlying reasons for this difference. While the yeast strains (aside from M. pulcher-
rima) performed similarly, we chose to pick K. lactis as a representative for these four 
strains. This is because, to our knowledge, K. lactis is the one strain for which the most 
research has been conducted. To address the metabolic phenotypes, we conducted a 
comparative analysis between the metabolic models of M. pulcherrima and K. lactis, 
excluding enzymatic constraints from consideration. This approach aimed to identify 
possible causal factors stemming from variations in metabolic network connectivity.

Directly comparing their reaction content, we found that 191 of the reactions in the M. 
pulcherrima model were not present in the K. lactis model. To probe the functional con-
sequence of these reactions, we sequentially (and cumulatively) removed each of these 
M. pulcherrima reactions and optimized for biomass production. The nutrient environ-
ment used for this assessment was identical to the one used for initiating the dFBA sim-
ulations. Some of the reactions were essential and therefore reinserted into the model 
before continuing. Of the considered reactions which were not essential, we observed 
two reactions which altered the growth rate: Complex I in the respiratory electron trans-
port chain (NADH dehydrogenase), and mitochondrial Methylenetetrahydrofolate dehy-
drogenase (NAD+). Note that, removal of Complex I alone was sufficient to produce the 
same growth as in K. lactis. Conversely, adding the Complex I reaction to the K. lactis 
model yielded the same growth rate as of M. pulcherrima. Not surprisingly, removal of 
mitochondrial Methylenetetrahydrofolate dehydrogenase (NAD+) from M. pulcherrima 
did not have any effect on its own, nor did addition of the same reaction into the model 
of K. lactis: Since Complex I pumps protons and the mitochondrial Methylenetetrahy-
drofolate dehydrogenase does not, Complex I is beneficial when growth is APT depend-
ent. Therefore, we chose to focus on Complex I when further comparing the models.

According to the reconstructions, M. pulcherrima was annotated with Complex I, 
whereas none of the other yeast strains contain this reaction. Saccharomyces, Kluvero-
myces, Torulaspora, Lachancea, and many other yeasts do not have the canonical Com-
plex I of the electron transport chain, but instead feature an alternative Type II NADH 
dehydrogenases which does not pump protons across the mitochondrial membrane 
[46–48]. According to the GEM, Complex I pumps 4 protons across the mitochondrial 
membrane for each molecule of NADH being reduced, whereas the alternative Type II 
NADH dehydrogenases do not possess this ability. Hence, M. pulcherrima is able to cre-
ate a larger proton-motive force (PMF) per mole of NADH being oxidized, which in turn 
increases the efficiency in generation of ATP per mole of glucose.

In order to obtain further evidence that Complex I was indeed present in M. pulcher-
rima, we conducted a BLAST [49] search with the protein sequences of M. pulcherrima 
against proteins annotated with Complex I functionality (EC number 7.1.1.2). This search 
was conducted as a blastp search through UniProt’s web portal [50] using standard 
settings. Our query returned matches to three manually curated Complex I subunits 
in Swiss-Prot [50], all for Neurospora crassa with evidence on transcript level: NADH-
ubiquinone oxidoreductase 19.3 kDa subunit, mitochondrial; NADH-ubiquinone oxi-
doreductase 23 kDa subunit, mitochondrial; and NADH-ubiquinone oxidoreductase 24 
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kDa subunit, mitochondrial. The similarity to these sequences were (with corresponding 
E-value): 82% ( 2.8× 10−106 ), 73.4% ( 1.6× 10−109 ), and 53.9% ( 1.5× 10−84 ), respectively.

In light of these discoveries, we suspected that by removing the advantage of proton 
pumping in Complex I, the metabolism of M. pulcherrima would become more similar 
to that of the other yeast strains. We therefore artificially changed the stoichiometry of 
the reaction to two or zero protons being pumped for each molecule of NADH con-
sumed. We conducted a new set of dFBA simulations without enzyme constraints and 
with the same starting conditions as earlier, using K. lactis (lacking Complex I) as a base-
line (Fig. 2). From these results, we observe that the glucose consumption and biomass 
production are more or less identical for M. pulcherrima and K. lactis when the proton 
pumping is turned off. These results were identical to that of knocking out Complex I 
completely. Additionally, in the case of the partially inhibited state where two protons 
are pumped, the biomass yield and glucose consumption exhibit intermediary values, 
positioned between those observed in the wild-type and fully inhibited states. For the 
production of ethanol and acetate, it was observed that the production of ethanol and 

Organism
Metschnikowia pulcherrima Kluyveromyces lactis

Organism
Metschnikowia pulcherrima Kluyveromyces lactis

Protons pumped
0 2 4

Fig. 2  dFBA simulations of the models without enzymatic constraints for Metschnikowia pulcherrima and 
Kluyveromyces lactis when artificially changing the stoichiometry of the number of protons pumped by 
Complex I
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acetate decreased with the number of protons pumped by Complex I, yet K. lactis still 
displayed a higher production of ethanol and acetate when no protons were pumped.

Two reactions explain reduced production of fermentation products from M. pulcherrima 

in absence of Complex I activity

K. lactis exhibited a greater production of fermentation byproducts (acetate and ethanol) 
compared to M. pulcherrima even in the presence of inactive Complex I. This observa-
tion suggested the involvement of supplementary reactions. To explore this hypothesis, 
we deactivated Complex I in M. pulcherrima and performed cumulative knockouts of 
the reactions exclusive to this organism. We then assessed the combined production of 
acetate and ethanol following each knockout event to elucidate the potential role of these 
unique reactions in the observed differences. By this strategy, we found two reactions 
accounting for the difference in fermentation products. These two reactions were mito-
chondrial L-glutamate:NADP+ oxidoreductase (Eq. 1) and cytosolic Isocitrate:NADP+ 
oxidoreductase (Eq. 2), running in the directions illustrated by the equations:

where AKG is α-ketoglutarate, GLU is L-glutamate, and ICIT is Isocitrate. The reactions 
are complementary, meaning that both reactions had to be removed in order to observe 
an increase in fermentation products (sum of ethanol and acetate). Conversely, adding 
either of these two reactions to the model of K. lactis resulted in a decrease in fermenta-
tion products.

None of the models have any reaction transporting α-ketoglutarate from the mito-
chondrion to cytosol directly. For K. lactis, reaction (2) occurs in the mitochondrion 
only, and reaction (1) occurs in only in the cytosol. On the other hand, both of reactions 
(2) and 1) can occur in either of the two compartments in M. pulcherrima. Hence, M. 
pulcherrima obtains a metabolic advantage by being able to carry out both reactions in 
the same compartment.

We also conducted dFBA simulations where these two reactions in M. pulcherrima 
were knocked out (Additional file 1: Fig. S5). We found growth, glucose consumption, 
and total fermentation to be almost identical in the two models when Complex I was left 
inoperative. Likewise, there were no major difference between the models when Com-
plex I was active. Subsequently, the net effect of being able to carry out both reactions in 
the same compartment is most likely negligible.

Protein constraints result in changes in use of metabolic pathways

Considering that Complex I is a key differentiator for M. pulcherrima with infinite 
amounts of enzymatic protein available, we next studied how the activity of Complex I 
affected metabolism when the available enzyme pool was constrained.

When simulating the effect of Complex I stoichiometry of M. pulcherrima with 
dynamic enzyme constrained FBA (decFBA) [26, 51] (Fig. 3), we could not observe any 
major effect of the stoichiometry of Complex I for low availability of enzymatic protein. 

(1)AKG+H+
+NADPH+NH3 −→ GLU+H2O+NADP+,

(2)ICIT+NADP+ −→ AKG+ CO2 +NADPH,
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However, at the highest chosen protein pool level, the biomass yield was higher the 
more protons were pumped by Complex I. This is as expected, since decFBA becomes 
equivalent to dFBA when the available enzyme pool approaches infinity. For intermedi-
ate levels of the protein pool, the effects of stoichiometry were marginal. Most likely, this 
means that other metabolic pathways are chosen when availability of enzymatic protein 
is scarce, and hence, is not reliant on Complex I to the same degree. Moreover, the pro-
duction of acetate and ethanol was affected by the number of protons pumped at the 
highest level of the enzyme pool only.

Finally, we compared the sMOMENT models of M. pulcherrima and K. lactis as to 
get an overview of how the species compare when the access to enzymatic protein was 
restricted (Fig. 4). As expected, the growth rate increased with the protein availability, 
but only up to a certain point where the substrate uptake rates became limiting. Also, 
the results show that the growth rate and biomass yield for M. pulcherrima was higher 
than for K. lactis at high availability of enzymatic protein. For lower levels of the enzyme 
pool, the two strains grew almost equally fast until glucose was exhausted. However, 

Protein pool g
gDW

0.1 0.25 1.0

Protein pool g
gDW

0.1 0.25 1.0

Protein pool g
gDW

0.1 0.25 1.0
Protons pumped

0 2 4

Fig. 3  decFBA simulations of the sMOMENT model of Metschnikowia pulcherrima when artificially changing 
the stoichiometry of the number of protons pumped by Complex I under different levels of the protein pool. 
gDW
L

 : Grams of dry weight per liter
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the biomass yield was marginally higher for M. pulcherrima than for K. lactis, even at 
the low level of protein, an observation which is due to differences in kcat values in the 
two models. In addition, M. pulcherrima produced less acetate than K. lactis for all lev-
els of the enzyme pool. Respiration is energetically more efficient than fermentation in 
utilization of the carbon source, but comes with a higher protein cost per unit of ATP 
produced [25, 32]. For this reason, we would expect to observe fermentation at high 
levels of enzymatic protein, in agreement with our observations. For the lowest level of 
enzymatic protein, Complex I is less relevant, but the difference in fermentation prod-
ucts can still be explained by the presence of L-glutamate:NADP+ oxidoreductase and 
Isocitrate:NADP+ oxidoreductase as we discussed earlier.

Discussion
In our metabolic model reconstructions, we found the GEM of M. pulcherrima to pro-
vide quantitatively different phenotypes compared to the other models, as it utilized 
glucose more efficiently, had a higher biomass yield, and conducted less fermentation. 

Organism
Metschnikowia pulcherrima Kluyveromyces lactis

Organism
Metschnikowia pulcherrima Kluyveromyrr ces lactis

Organism
Metschnikowia pulcherrima Kluyveromyces lactis

Protein pool g
gDW

0.1 0.25 1.0

Fig. 4  decFBA simulations of the sMOMENT models for Metschnikowia pulcherrima and Kluyveromyces lactis 
under different levels of the protein pool. gDW

L
 : Grams of dry weight per liter
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To a great extent, this echoes recent research which suggest M. pulcherrima as a good 
candidate for reducing alcohol content in wine [16, 19, 21, 22, 36, 52]. The connection 
between the three observed effects are quite straight forward. Respiration, instead of fer-
mentation, gives better energy utilization of the substrate, less fermentation products 
and better growth for the same amount of substrate consumed.

Nonetheless, for certain yeast species, possessing an extensive respiratory metabolism 
may not confer an evolutionary advantage for two primary reasons. Firstly, the capac-
ity to respire may not be advantageous in environments where oxygen supply is insuf-
ficient to sustain full respiration, and the production of ethanol inhibits competitors, as 
observed in commercial wine fermentation tanks [47, 53]. Secondly, in conditions char-
acterized by high glucose concentrations, yeast may achieve elevated ATP production 
flux through ethanol fermentation as opposed to respiration, given that the latter neces-
sitates greater protein utilization than the former [25, 26, 32, 54].

Our results suggest that the presumed presence of Complex I in M. pulcherrima allows 
the organism to respire glucose more efficiently than the other yeast strains. Thus, M. 
pulcherrima may be better adopted for respiration and will, therefore, prefer this mode 
of metabolism. Likewise, Malina et  al. [25] attributed the high biomass yield and low 
production of ethanol and acetate of Kluyveromyces marxianus compared to other yeast 
strains, to be due to its presence of Complex I. At least for some obligate aerobic yeasts, 
such as Yarrowia lipolytica, Rhodotorula muciluginosa, and Candida silvae, Complex I is 
present, and inhibiting its activity [48, 55] leads to a reduction in respiration. According 
to Büschges et al., the yeasts with Complex I were suspected to use alternative NADH 
dehydrogenases when Complex I was inhibited, albeit with a penalty in growth, just as 
we observed with M. pulcherrima.

The sMOMENT models had shortcomings related to the enzyme constraints. First, 
CarveFungi included reactions which were not annotated with a specific gene, mean-
ing that these reactions in the downstream sMOMENT models, did not draw from the 
protein pool but were available without a protein cost. In particular, the mitochondrial 
genome was not sequenced for the non-Saccharomyces strains, meaning that the pro-
tein cost of some electron transport chain reactions were far from realistic values. Sec-
ond, several metabolic enzymes exist as multimers, yet we did not have any information 
on the subunit stoichiometry. As a result, AutoPACMEN considered that exactly one 
of each distinct subunit was present in each complex. Furthermore, database kcat val-
ues have been shown to be variable and often far from realistic in vivo values [56–58]. 
Finally, the kcat coverage for non-model organisms is low. In our case, the databases 
contained only kcat entries at the same genus level for L. lactis, there were 11 reactions 
for K. lactis ifself, and 5 reactions for Kluyveromyces marxianus. For the other non-Sac-
charomyces strains, no kcat data was available within the same genus. This meant that S. 
cerevisiae was the closest available candidate for picking kcat values in many cases. We 
consider novel approaches for inferring in vivo kcat from large-scale experimental data to 
be the best option for parameterizing high-quality models, although producing the data 
will be expensive an labour-intensive [56, 57, 59].

Our choice of parameters for dFBA simulations were based on educated guesses 
in lack of good data for calibration. Sànchez et al. used a enzymatic protein pool of 
Ptot = 0.448g/gDW and saturation factor of σ = 0.5 for their ecYeast7 model of S. 
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cerevisiae. In our case, this would correspond to a simulated protein pool of approxi-
mately 0.22 g/gDW since we assumed full saturation. Still, the protein cost of some 
enzymatic reactions were not accounted for in the sMOMENT models, so we think 
a somewhat lower enzyme pool would make a fairer comparison. Glucose uptake 
rates have been shown to vary considerably between different species of yeast and 
even between different strains of S. cerevisiae [60, 61]. From the available data and 
literature [62], we consider our chosen parameters to be within a realistic range. We 
believe that applying these values for all organisms would make the most unbiased 
comparisons given our lack of data even it is possible that the major in-vivo differ-
ences between the species are caused by variations in their carbon uptake rates.

Nevertheless, we acknowledge that glucose uptake and its balance to oxygen 
uptake is crucial to the nature of the fermentation. Less oxygen available compared 
to the consumption of glucose will favour fermentation at the expense of respiration. 
Additionally, regulatory mechanisms not accounted for by our models most likely 
also regulate the switching between fermentation and respiration [63]. Comparing 
Fig. 1 and Additional file 1: Fig. S1, we observed that the glucose concentration has 
a large effect on the production of fermented compounds, yet M. pulcherrima still 
has a stronger respiratory metabolism than the other yeasts for high glucose con-
centrations. We did not account for the fact that supplying oxygen is harder when 
the biomass concentration is high, making a fixed oxygen uptake of 10   mmol/gDW 
realistic in Fig. 1, but unrealistic in Additional file 1: Fig. S1.

With respect to the sugar composition, we predicted similar growth on fructose 
as on glucose, assuming that the uptakes rates were equal to that for glucose. Yeast 
is known to show diauxic growth, meaning that the easiest substrate to degrade is 
consumed before less favorable substrates are used [64, 65]. Realistic wine must 
contains both glucose and fructose. Research has suggested that S. cerevisiae has 
a stronger tendency to utilize glucose as compared to fructose, leading to a higher 
residual concentration of fructose [66]. Such preferences cannot be modelled with 
baseline FBA, but we assume that a properly parameterized enzyme constrained 
model would account for this effect.

Besides uptake parameters and kcat values, reseach has also shown that the formu-
lation of biomass in GEMs can have a large effect on the predictions of the models 
[67–69]. There is research into systematically determining biomass composition for 
the purpose of GEMs, but these protocols are still on the experimental stage [70]. 
We assume that customizing the biomass composition of each of the yeast models to 
experimental measurement have the potential to improve model fiedelity as soon as 
these data become available..

The model predictions for M. pulcherrima should inspire to further research and 
investigations into the industrial applications of respiratory yeasts. One of the cen-
tral questions is whether our claim that M. pulcherrima has Complex I is correct, 
and if so, which phenotypic effects this enzyme has. Rotenone is known to be an 
inhibitor of Complex I and would therefore be a useful tool to study the activity of 
Complex I [48, 71, 72]. Systematic studies must be conducted in order to assess how 
M. pulcherrima behaves under varying availability of glucose and oxygen.
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Methods
Creation of the yeast models

The protein sequences of the five species was obtained from the NCBI database [73–
78]. We annotated the function of the proteins with EggNog mapper V2 [79] using 
Diamond [80] for the search of homologs in the EggNOG ortholog database version 5.

For the automatic model reconstruction, we used the software package CarveFungi 
[37, 38]. CarveFungi is based on the CarveMe algorithm [33]. CarveFungi creates a 
score for each reaction in a universal metabolic model by linking their EC numbers 
to the annotation of the proteins obtained by EggNOG. The software contains a deep 
learning model to predict the subcellular localization of fungal proteins. This pre-
diction contributes to the reaction score, assigning the reactions to a specific com-
partment in the model. The reaction scores are then used by a Mixed-Integer Linear 
Programming problem (MILP) to maximize the reactions present in the universal 
model with a high score and to minimize the reactions with a low score while main-
taining the network connectivity and the model functionality.

The universal metabolic model employed for the reconstruction process was devel-
oped by integrating fungal reactions obtained from public databases such as AYb-
RAH [81], KEGG [82], and MetaCyc [83]. This model was subsequently subjected to 
manual curation using relevant literature to ensure atom balance and simulatability, 
accomplished by incorporating exchange reactions and extending the biomass reac-
tion based on the yeast consensus model [30]. A comprehensive description and 
explanation of the model construction process is available in Refs. [37].

The automated metabolic model reconstruction generated ensembles comprising 
up to 25 alternative models, each derived from the same genome. For the purpose of 
our analysis, we consolidated each ensemble into a single consensus model by includ-
ing a reaction if it appeared in at least half of the models within the ensemble.

Incorporation of enzymatic constraints

sMOMENT models with enzyme constraints were generated by feeding the GEMs 
into AutoPACMEN [34] version 0.6.2, applying default parameters. The BiGG metab-
olite file used by AutoPACMEN was retrieved from the BiGG [84] website (http://​
bigg.​ucsd.​edu/​data_​access, July 2023), while the BRENDA data was downloaded 
from the BRENDA [85] website (https://​www.​brenda-​enzym​es.​org/​downl​oad.​php, 
July 2023). Before providing the models to AutoPACMEN, the models are augmented 
by Uniprot identifiers using Uniprot’s API. AutoPACMEN retrieved kcat values from 
SABIO-RK [86, 87] and protein masses from Uniprot [50] using its built-in API inter-
face (July 2023). AutoPACMEN’s model calibrator was not used.

dFBA and decFBA simulations

The models of the five non-Saccharomyces strains and the iND750 S. cerevisiae model 
[41] were simulated in silico with dynamic FBA (dFBA) [26, 40]. The COBRApy pack-
age (version 0.26.3) [88] was used to handle the models, MEMOTE version 0.13.0 was 

http://bigg.ucsd.edu/data_access
http://bigg.ucsd.edu/data_access
https://www.brenda-enzymes.org/download.php
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applied for quality checking the models, and the resulting LP problems were solved by 
the Gurobi optimizer (version 10.0.2).

Glucose was the sole carbon source available with a maximum uptake flux determined 
by Michaelis-Menten kinetics: vglc ≤

Vmax,glc[glc]

KM,glc+[glc]
 , where the maximal uptake rate 

Vmax,glc = 10 mmol/gDW , the half-saturation constant KM,glc = 5 mmol , and [glc] was 

the glucose concentration in the medium which was initiated to [glc]0 = 10 mmol L−1 
for all simulations expect for Additional file 1: Fig. S1 where [glc]0 = 1000 mmol L−1 . 
When simulation were run with fructose instead of glucose as the carbon source, the 
intial fructose concentration was initiated to [fru]0 = 10 mmol L−1 and the same uptake 
parameters as for glucose were applied.

The biomass concentration was as initiated to [X]0 = 0.1gDW/L . Oxygen was avail-
able at a fixed rate of voxygen ≤ 10 mmol/gDW.

We monitored several entities, including biomass, glucose, acetate, ethanol, and glyc-
erol. The latter three components were incorporated to track the accumulation of fer-
mentation products generated by the yeast. However, under the tested conditions, none 
of the models produced glycerol; hence, we omitted its depiction for clarity. Further-
more, we sought to highlight the combined production of ethanol and acetate. Conse-
quently, the graphical representations included a panel displaying the sum of ethanol 
and acetate concentrations in the medium, and another panel illustrating the acetate 
concentration separately. To preclude physiologically implausible metabolic exports, we 
blocked the export reactions for lactate (both stereoisomers), dihydroxyacetone, D-rib-
ulose, arabinitol, and ribose. Additionally, we inhibited a wasteful mitochondrial mem-
brane proton leakage reaction, which would have led to physiologically unreasonable 
outcomes if not removed from the model.

To obtain consistent and physiologically plausible results, we applied lexicographic 
objectives when performing FBA on the models prioritized in the following order: 

1	 Maximize production of biomass
2	 Minimize consumption of glucose
3	 Maximize excretion of ethanol
4	 Maximize excretion of acetate
5	 Maximize excretion of glycerol

The models were simulated using the static optimization approach and SciPy’s solve_
ivp function [89]. For the ODE solver, the BDF algorithm [90] was used with an abso-
lute and relative tolerance of 10−2 . In cases where the optimization problem became 
infeasible, the simulation was terminated, but results were padded such that the final 
state of the system was imputed to all time-points beyond the termination. This hap-
pened only if the model was unable to grow because the carbon source (glucose) in the 
medium was depleted.

dFBA was performed both for the original models generated with CarveFungi and the 
sMOMENT models processed through AutoPACMEN. Upon running decFBA with the 
sMOMENT models, the level of the enzyme pool was adjusted. Three different levels of 
the enzymatic protein pool (0.1, 0.25, and 1.0 grams of protein per gram dry weight(g/
gWD)) were chosen.
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