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ABSTRACT Taking advantage of the complimentary properties of sonars and cameras can improve
underwater visual odometry and point cloud generation. However, this task remains difficult as the image
generation concepts are different, giving challenges to direct acoustic and optic featurematching. Solving this
problem can improve applications such as underwater navigation and mapping. A camera-sonar combination
is proposed for real time scale estimation using underwater monocular image features combined with a
multibeam forward looking sonar. The detected features from a monocular SLAM framework are matched
with the acoustic features based on the relative distances in instrument reference frame calculated using the
two data streams, and used to estimate a depth ratio. The ratio is optimised over a large sample set to ensure
scale stability. The sensor combination enables real time scale estimation of the trajectory and the mapped
environment, which is a requirement for autonomous systems. The proposed approach is experimentally
demonstrated for two underwater environments and scenarios, a subsea module mapping and a ship hull
inspection. The results demonstrate the efficiency and applicability of the proposed solution. In addition
to correctly restoring the scale, it significantly improves the localization and outperforms the tested dead
reckoning and visual inertial SLAM methods.

INDEX TERMS Imaging sonar, visual SLAM, underwater perception, 3D reconstruction.

I. INTRODUCTION
Situational awareness of robots is fundamental to enable their
autonomy. Simultaneous LocalisationAndMapping (SLAM)
[1] methods can significantly contribute to the autonomy
as they improve the knowledge and understanding of the
environment where the robots are operating in real time.
However, when the method depends on a monocular camera
only, the scale information of the resultingmap and calculated
vehicle path is lost or ambiguous. The scale information is
important for both localization and mapping to enable the
autonomy of the robotic platforms.

Underwater scenes can be difficult to observe and under-
stand with an optical camera because of the light conditions
in underwater environments. The light refraction makes the
object appear blurry or distorted and the produced image
becomes dimmer as the depth increases, resulting in loss
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of color and contrast perception. The turbidity of the water
and the floating particles have an negative impact on the
visual range by scattering and absorbing light. Using artificial
light, movements of the light source and receiver may cause
challenging light and shadow patterns. The advantage of
optical imaging is the high resolution and rich information
content in the data. Acoustic signals do not depend on
seawater turbidity and allow larger observation ranges for
underwater structures and objects. Compared to optical
data, the resolution of acoustical data is considerably lower.
For underwater vehicles, multibeam forward-looking sonars
(MB-FLS) is often used to provide accurate observations
of the surroundings to enable collision avoidance and
safe paths.

In spite of the challenges to optical underwater imaging,
features can be detected using computer vision and learning
methods through processing to adjust and compensate for
the effects present underwater. For MB-FLS imagery, the 3D
information of the features is not available, only the relative
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FIGURE 1. Overview of the proposed approach to perform camera-sonar
combination by matching the sensors respective features.

azimuths and distances are computed, leaving the elevation
of the data points ambiguous.

Visual SLAM (VSLAM) is a an active research field where
the algorithms and methods are set up to match the available
sensors and their configuration to detect and identify features
in the environment. Both single and multiple camera systems
are used, but the former is most common [2], [3], [4]. The
sensors are easy to use and deploy, but for single camera
systems in particular, the navigation solution experiences
drift. The resulting scale ambiguity represents a particular
challenge for SLAM based methods. To improve the results a
second camera, a depth camera or an IMU can be added [5],
[6], [7].Monocular SLAMmethods have also been developed
or augmented specifically for the underwater environment
[8], [9]. Sonars can be used for range detection by time
of flight measurements. In [10], a FLS is employed with a
feature based approach using detection of well-constrained
landmarks to accurately estimate 3D points for mapping
purposes. A filter-based approach is adopted in [11], the
registered scans are processed together with an IMU and a
DVL to create online a 2D grid map of the environment.
In [12], a method to combine an IMU, a stereo camera
and a mechanical scanning profiling sonar is proposed.
The camera and sonar are combined over multiple samples.
Patches based on the visual features are created and used
to determine if they correspond to the features previously
observed by the sonar. The complementary properties of
optic and acoustic sensors represents a promising solution
[13], [14], [15]. In [16], particle filter is used as the data
association technique to calibrate the camera and sonar to
obtain an accurate transformation matrix. The 3D camera
features are then projected onto the sonar scan using the
sonar coordinate system.AVSLAM framework is augmented
in [17] where the camera is combined with a single beam

echosounder to dynamically restore the scale of the SLAM
estimate. To this end, the acoustic cone is modelled and
matched to the best corresponding visual feature. The depth
ratio is then calculated and applied to all the 3D points and
the estimated trajectory.

The efforts made to enable optical and acoustic data
combination depend strongly on the setup and application,
and very often with low level feature matching mechanisms,
i.e., using the main image characteristics such as shape and
texture. Direct combination at the feature level for improved
navigation and mapping requires more advanced inter-sensor
calibration and methods, and is not well studied, and requires
specific sensors and calibration routines. Using a sonar
in addition to a camera provides a robust, drift free, and
consistent solution, together with a basic sensor suite with
implementation that are convenient to operate.

This paper aims at combining a monocular camera and a
MB-FLS for improved underwater localisation and mapping
independent of inertial or gyro data, making it suitable
also in areas where inexpensive magnetometer based gyros
are not feasible. The optical images are processed in a
VSLAM framework to obtain a trajectory and point cloud
over time. The sonar measurements are first used to rescale
the SLAM estimates by finding correspondences between
the sonar features and camera features. A depth ratio is
estimated during the initialisation and updated online using
the Maximum Likelihood Estimation (MLE). The depth ratio
is a single value describing the factor to correct the depth scale
of the VSLAM framework. It allows to convert the SLAM’s
distance unit to meters. The correspondences between the
two sensors can be done thanks to the prior knowledge of
intrinsic and extrinsic calibration details for the camera. The
overlapping acoustic and visual areas can then be estimated,
and a sonar feature can be represented as a segment in the
camera image. Feature matching is performed based on the
relative distances, which also helps removing outliers from
the set of visual features such as particles. Thematched points
enable estimation of the depth ratio used later for the entire
set of poses and visual points from the VSLAM framework.
The optical-acoustic data combination is performed within
the SLAM framework itself, which enables a verification step
for the visual features. This provides improved localisation
and mapping accuracy together with scale correction. Finally,
3D surface estimation based on the generated re-scaled
point cloud is performed, using an adapted Poisson surface
reconstruction approach.

To achieve real time underwater SLAM for low cost ROVs
used for ship hull inspection is the main objective of this
work, and the solutions are applicable to any underwater
vehicle equipped with camera and MB-FLS. The camera
and sonar sensor models are first presented in Section II
including explanations of the inter-sensor correspondence
mechanisms. Section III describes the depth ration estimation
obtained using the inter-sensor feature matching method. The
experiments and results are then presented and discussed
in Sections IV and V. Finally, conclusive remarks are
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FIGURE 2. The footprints of the perception sensors are represented while
the ROV is facing a wall. The camera field of view is in red, and the field
of view for the forward looking sonar is shown in blue.

formulated in Section VI. An overview of the components
and their interactions in the proposed approach is presented
in Figure 1.

II. SENSOR MODELS
To understand how correspondences between the features
in the sonar data and the optical camera imagery can be
created, both sensor models are described. The field of view
for the sensors have a large overlap and are horizontally
aligned. However, there is a vertical offset because the sonar
is mechanically mounted above the camera. The footprints
of both sensors are represented in Figure 2. In this paper,
we refer to the camera measurements as images, and to sonar
measurements as scans, where a scan is defined as the data
from all acoustic beams for a single acoustic ping.

A. SONAR MODEL
The sonar emits sound pulses referred to as pings and
using the wave properties of acoustics, the multi-element
transmitter and receiver array enables directionality for both
signal transmission and reception providing acoustic beams.
These beams have a vertical and horizontal opening and
direction defined by the transducer element array and the
signal transceiver. The pings propagate to a target before they
are reflected back to the sonar receiver. The target range is
estimated based on the signal travel time and the bearing
is calculated using the phase difference measured using the
transducer array. Most MB-FLS have a one dimensional
transducer element array resulting in undefined depression
angles for the echos and the sonar can therefore not derive
the vertical position of the targets. This means that each point
on the sonar imagery is a point on a 3D arc going from the
minimum elevation to the maximum allowed by the sensor.

The sonar employed in the experiments was a Blueprint
Oculus 750/1200 kHz with horizontal aperture of 130◦ and
20◦ vertically. It has 512 beams uniformly distributed and
with angular width σh = 0.25◦. The ping rate is controlled

FIGURE 3. The footprint of the forward looking sonar is represented with
the corresponding geometry. The minimum and maximum elevation
planes are represented, as well as the zero-elevation plane, in which all
the planes are merged to after the processing of the measurements.
A beam i is also represented, going through all the elevation planes.

and configured to 10Hz. For the experiment used in this
work, the sonar was configured in high frequency mode,
corresponding to 1200 kHz, with low gain. A fixed maximum
range of 4 meters was set to correlate to the visible range of
the camera.

A sonar scan represents a 2D acoustic intensity array
representing the features in polar coordinates [θ, r]⊤, where θ

is the azimuth angle and r is the range. The scan is formed as
a polar image. The 3D geometry of the beams are represented
in Figure 3 where the 3D acoustic features are expressed
in spherical coordinates [θ, φ, r]⊤ with the elevation angle
φ. When the acoustic ping reflections have returned to the
sonar, the measurements are merged into a polar grid without
elevation information. This grid can be projected onto the
zero-elevation plane and placed in the relevant 3D reference
frame. To represent the acoustic points in a 3D Cartesian
world, given that the elevation angle is known or estimated,
the coordinates need to be converted. The spherical-Cartesian
coordinates conversion is formulated as

P =

PxPy
Pz

 = r

cosφ cos θ

cosφ sin θ

sinφ

 , (1)

where P is the 3D point in Cartesian coordinates. The inverse
conversion is also possible, and given by

r =

√
P2x + P2y + P2z , (2)

θ = tan−1
(
Py
Px

)
, (3)

φ = tan−1

 Pz√
P2x + P2y

 . (4)

B. CAMERA MODEL
The camera used in the presented experiments has an imaging
frequency of 25Hz and a resolution of 1280 × 720px. It has
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a vertical and horizontal Field Of Views (FOV) underwater
of ∼48◦ and ∼77◦ respectively. The image was calibrated
underwater using a checkerboard and follows the pinhole
model which formulates the 2D-3D correspondence as

p =
P
Pz
K , (5)

converting the 3D point P in the world to the 2D point p in
pixels in the image, using the intrinsic matrix of the camera
K defined as

K =

fx 0 cu
0 fy cv
0 0 1

 . (6)

The focal length is described by (fx , fy), and (cu, cv) are the
pixel coordinates of the optical centre of the camera.

C. CAMERA-SONAR CORRESPONDENCE
To combine both sensors, correspondences and mapping
functions must be setup. They are defined based on both
models to formulate the features of the first sensor in the
second’s sensor frame. For the correspondences, we consider
the camera to be the origin of the local reference frame and
use the features detected by the SLAM framework. Since the
sonar is aligned with the camera with offset only vertically,
the transformation matrix is simplified and constitutes an
identity matrix for the rotation and a translation vector
[0, 0, tz]⊤ describing the vertical offset tz. This removes the
need of computing 6-DoFs sensor transformations. However,
this comes with the risk of calibration imprecision which
can significantly impact the results. Given that the main
objective of this work is to inspect underwater structures,
the imprecision is negligible since the operation will be
performed with a close range to the objects.

Because the elevation of the sonar features, φ, is ambigu-
ous, the exact corresponding points on the camera image
cannot be known from the sonar data directly. Instead, the
potential locations of an interest point can be represented
by a moving vertical segment for each beam, where the
beam and the image plane coincide. For an ideal setup where
the camera is perfectly calibrated and the mounting offset
between the camera and sonar is exactly compensated, each
beam corresponds to a segment of the pixel column in the
optical image. Because both sensors have different vertical
field of views and have a vertical offset, the intersecting beam
segment does not include the entire pixel column, and its
length varies with the distance to the target. ui represents the
corresponding pixel column for a sonar beam of azimuth θi,

ui = fx tan(θi) + cx . (7)

However, since a beam has an angular width σh wider
than the pixel width, there are multiple corresponding pixel
columns for each beam in the optical image. The first and last
columns must be calculated with θi ± σh where σh represents
the angle between the beam’s central axis and its boundary.
To obtain the list of possible vertical pixels for a given beam,

FIGURE 4. The geometry involved to obtain the pixel position on the
optical image of a sonar feature T is represented. (a) is a top-down view,
in the Oxy reference plane, and shows the parameters used to obtain the
horizontal position ui of the pixel with the azimuth θi and range ri of the
sonar beam i . (b) presents a side view, in the Oxz plane, with a possible
sonar beam elevation φ. C and S respectively correspond to the camera
and sonar positions.

the pinhole formula is not sufficient, the sonar range ri and
the vertical offset tz must be included in the estimation of the
vertical pixel locations vi,

vi = fytan(θy) + cy. (8)

The elevation angle for the light ray from the target to the
camera is represented by θy, and is obtained given a target
with location T seen by the sonar at a distance ri. Its estimated
position T̂ is initially placed on the sonar’s zero-elevation
plane and moved along the elevation circle arc constrained
by the acoustic beam vertical width, for all φ ∈ [φmin, φmax].
Given that the camera is at the origin of the reference frame,
the coordinates of T are enough to obtain the angle θy, such
that

θy = atan2(Tz,Tx). (9)

Equation (8) can be simplified to avoid multiple operations
with tangents,

vi =

 fy
Tz
Tx

+ cy, if Tx ̸= 0

cy, otherwise.
(10)

This problem can be solved in a 2D environment, in the
Oxz plane, since the camera and the sonar are horizontally
aligned. Therefore, the possible positions of T are computed
as follows:

T =

[
tx
tz

]
+ ri

[
cos φ

sin φ

]
. (11)

A visual representation of the parameters is displayed in
Figure 4 with a top-down and side views. The angles are
defined relative to a target T and then used together with the
Pinhole definitions to obtain a list of pixel candidates on the
optical image. The top-down views shows the alignment of
the sensors and the horizontal angles from both sensor are
the same and remain constant regardless of the vertical angle.
The side view shows how are the vertical angles related, given
the vertical offset of the sonar.
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The mapping from the sonar scan to the camera image
is now established with (7) and (10), considering only the
overlapping areas. However, a sufficient number of points,
which are distributed in the image, are matched to ensure that
robust results are obtained in the following sections and can
be applied to the not-overlapping areas.

Each visual feature on a sonar line should correspond
to a sonar feature. Matching the two features enables the
estimation of a depth ratio.

III. DEPTH RATIO ESTIMATION
The feature matching mechanism was developed and exe-
cuted in three steps followed by the estimation of the ratio.

1) All features are detected in the corresponding image
and scan. In the case of the optical camera, 2D features
are required as well as triangulated 3D points. To this
end, a monocular V-SLAM framework is utilized,
ORB-SLAM [18]. For the sonar scans, only 2D features
are sampled.

2) All the features are filtered, and only the closest visual
and acoustic points are kept.

3) The features are matched based on their respective
relative distances and constrained by the possible
locations on the image plane.

4) Each detected correspondence is processed to obtain a
depth ratio and the MLE is applied over all matches to
obtain a unique and consistent depth ratio.

In the following section III-A, the first two steps are
covered, the selection and filtering of the good features to
match. The last two steps are presented in section III-B, the
actual matching of visual and acoustic features and how they
are used to obtain scale information.

A. CAMERA-SONAR FEATURE MATCHING
The ORB-SLAM framework for monocular image data
provides a trajectory and 3D point cloud over time. It has
real-time performance and can work in large environments.
It performs feature detection and matching for each image
and builds a pose graph over time which enables loop
closure and camera relocalisation capabilities. It is a popular
lightweight framework that has proven to be very efficient
in many applications [19], [20], including in underwater
environments [21], [22] in spite of the challenges related
to the ORB descriptor applied to image features and
characteristics common underwater. Scenarios close to the
water surface will often suffer from non-uniform ambient
lightning conditions, and in deeper water the motion of
the camera and light carrying robot may cause dynamic
light and shadow patterns. The Contrast Limited Adaptive
Histogram Equalisation (CLAHE) has proven to be an
efficient method to compensate for non-uniform lighting
environment to highlight the present features before the
images are passed through a marine snow filter [23]. The
ORB-SLAM’s embedded parallax mechanism is made more
flexible to enable continuous triangulation of points with

FIGURE 5. A 3D scene is represented with the camera-sonar
correspondence and matching mechanisms. The green rays come from
the camera, and the purple beams from the sonar.

a slow speed manoeuvring ROV and high camera frame
rate. This mechanism also accounts for unwanted features
coming from dynamic objects by computing the local median
disparity of the tracked features and keeping only those below
a threshold. This also results in a fast initialisation process.

Only the polar features of the sonar scans are required for
the matching mechanism as they already hold positioning
information related to the vehicle’s reference frame, i.e., the
distance to the object and its horizontal angle relative to
the ROV. However, depending on the surrounding structures,
the scans might include a significant amount of noise.
They are therefore preprocessed to remove the noise and to
highlight areas with structural information. A combination
of a Gaussian filter and CLAHE is used for that purpose,
significantly diminishing the noise while at the same time
increasing the intensity values of the structures in sight.
Furthermore, this approach allows uniform intensity over the
scan sequence.

One feature per beam is selected, the closest with
a reflectance above a high reflectance threshold. They
correspond to the features with the highest chances of being
visually detected as they should also be the closest to the
camera.

Three sets of data are now available: the closest sonar
points, the 3D point cloud, and the corresponding 2D features
on the current image. For each sonar line on the image, based
on the sonar feature information and (7) and (8), the closest
3D point that has its 2D correspondence lying on the line is
matched. The 3D representation of the data types is displayed
in Figure 5 with the sonar beams and camera reprojections.

B. MLE OF THE DEPTH RATIO
Because the ROV is continuously moving, timing is essential.
The sonar processing is tightly integrated in the SLAM
framework and the time difference between the sonar scans
and optical images is monitored to make sure they are
synchronised. If the latency is below a threshold, defined as a
percentage of the rate difference, the depth ratio is computed
for this sonar measurement. This latency check is applied to
ensure both sensors are observing the same scene.With a high
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FIGURE 6. The visual table of the camera-sonar correspondences is
computed with acoustic distances ranging from 0.25m to 3.0m. Each red
line corresponds to a possible projected sonar beam on an image, i.e., its
vertical pixel coverage.

latency, it is very likely that the sensors captured the scene
from different locations.

Each sonar point, corresponding to a vertical line in the
image, is now matched to a visual feature if such exists. For
each match, a distance ratio is computed using the visual
distance and acoustic distance, such that

dci = ||η − Pi||, (12)

cd si =
ri
dci

. (13)

where η is the ROV position, Pi the 3D visual point used to
obtain the visual distance dci to the camera, ri the sonar range,
and cd si , the distance ratio for the match i. Once performed
on each match, a new set of values is obtained. The MLE is
employed to extract the final depth ratio, as it robustly find
a consistent estimate. More data is accumulated over time,
which makes the MLE adapt and estimate a value closer to
the optimal one. The set of distance ratios is assumed to be
following a Normal distribution N (µ, σ 2) with mean µ and
standard deviation σ . Its probability density function (pdf) is
defined as follows,

P(x; µ, σ ) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (14)

for the observation x. For simplification, the log likelihood is
applied by taking the natural logarithm of the expression. This
is possible because the natural logarithm is a monotonically
increasing function. The equation (14) becomes

ln (P(x; µ, σ )) = ln
(

1

σ
√
2π

)
−

(x − µ)2

2σ 2 . (15)

Iteratively maximising the above equation, or minimising
its negative equivalent, results in optimised estimated values
µ̂ and σ̂ for the current data collected. The depth ratio λ is
then assigned to themean of the estimated normal distribution
such that

λ = µ̂. (16)

The continuous scale correction using the MLE enables
a stable correction of the trajectory and point cloud over
time, which results in improved localisation performance.
Additionally, the normal distribution is used for outlier
rejection and correction of the visual 3D points. The
points that are more that 2σ̂ away from µ̂, corresponding
approximately to the 95% confidence interval, are considered
as outliers. The points inside this interval are updated, i.e.
displaced further away or closer to match the predicted depth
ratio. The elevation and azimuth angles of the updated points
remain the same. This verification step is possible because
the sonar is accurate and reliable, and has no error growth
over time. Therefore, a 3D point with an irregular individual
depth ratio can be detected and rejected to prevent the SLAM
system from using it for future estimates.

IV. EVALUATION
In this section, the proposed approach is tested and quanti-
tatively compared with three alternative SLAM navigation
approaches and the ground truth. The camera-sonar corre-
spondence model is first validated. The list of camera-sonar
correspondence possibilities was computed geometrically
and plotted in Figure 6. The red bars represent the possible
intersections of the sonar beams with the image plane. Given
the geometrical configuration, the beams with lower acoustic
ranges intersect the higher parts of the image plane because
the sonar is placed above the camera. Beams with larger
acoustic ranges converge towards the center of the image.

To experimentally validate the setup, objects with known
positions were placed in a pool and the ROV, equipped with
the camera and sonar, positioned in front of them. The ROV
was equipped with a GNSS receiver mounted on a pole,
enabling the computation of its position and the distance
between the ROV and the objects. The visual results of the
first test scene are displayed in Figure 7. The main objects
of the scene were detected by the sonar and were easily
recognisable because they included high acoustic intensity
values. Figure 7d is visually correct since the projected beams
on the close objects in the camera image are higher than
the rest, because the detected acoustic features corresponding
to the objects reported close distances. When observing the
stone pillar in both the sonar scan (Figure 7b) and camera
image (Figure 7d), it is possible to understand how the sonar
beams intersect the image plane at different sections. The
edge of the pillar being the closest part of the pillar to
the camera and sonar, the intersection segment is naturally
higher, closer to the sonar’s depth. And the further away the
points are from the edge, the further away they are from the
camera and sonar, gradually moving the intersection segment
towards the center of the image, close to the camera’s depth.

The numerical errors were estimated using GNSS as
ground truth and are reported in Table 1. Here, the setup was
tested in an additional scene, where the vehicle was facing the
corner of the pool.While the second column shows a measure
of the sonar accuracy, the third reports how well the sonar
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FIGURE 7. (a) is the original sonar scan as a polar image with rows as ranges and columns as bearings. It is converted to
cartesian corrdinates in (b). The contours of the objects in the scene are recognisable as they present high intensity values.
(c) is the original camera image. After applying the sonar features on the image, (d) is obtained. Each green line corresponds to
an intersection of a sonar beam with the camera image plane. They highlight the possible locations of the acoustic features on
the image plane.

TABLE 1. Camera-sonar correspondence results.

FIGURE 8. Distance ratios were collected and accumulated over a
sequence in two different scenes. Histograms (a) and (b) corresponds to
the two scenes and Normal probability distributions were fitted and their
density functions displayed on top of the histograms.

beams are corresponding to the image features, i.e., the angle
difference.

Experimentally, the distance ratios acquired during field
trials were found to fit a Normal distribution. The previous
two scenes were expanded to include a few minutes of image
and scan sequence of the surroundings to compute and create

a set of ratios over time and with a changing scene. The
corresponding histograms are displayed in Figure 8 with
the density function on top. This validated the choice of
the Normal distribution for the MLE. In both scenes, the
distance and angle errors are very low, with centimeter level
accuracy for the distances, 0.04m and 0.02m, and decimal
level accuracy for the angles, 0.22° and 0.15°. For the ship
hull mapping and inspection application considered in this
work, theses errors are acceptable since the operations are
performed close to the structures. For example, given the
results from Table 1, at three meters distance, the maximum
expected total error of the point correspondence is ∼ 0.15m,
and ∼ 0.05m on average.

Ideally, the estimated depth ratio should converge towards
1, meaning the scale does not need to be re-updated. Our
approach using the MLE is compared to three alternative
approaches, including using simply the median or the mean,
and using a single central beam. In this scenario, for each
method, the depth ratio is estimated and applied every time
there is a new keyframe created in the SLAM framework. The
convergence rate of each method can be observed in Figure 9.
While all methods converge rapidly, only the proposed one is
continuously stable once it has converged. This is especially
important for real-time operations as scale errors can quickly
propagate to the depending systems. Peaks can appear when
there is a sudden change of geometry in the scene, or when
the ROV is turning, but they are immediately corrected. The
method using the median showed high variations because it
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FIGURE 9. The depth ratio evolution over time is displayed. The proposed
method using the MLE is compared to the mean and median in (a) and to
a single central beam estimation in (b).

was heavily influenced by the new values added to the set
and therefore by the shifts in sonar range. In comparison,
using themeanwasmore stable, but still contained oscillatory
results. When a single beam was used, the results improved.
However, this method was more prone to noise, which
can then destabilize the future SLAM estimates. Using the
proposed method based on the MLE brings scale stability
and consistency over longer periods of time, and once it has
converged, it remains stable with low variance around the
convergence point.

To show how the proposed method performs and improves
the VSLAM framework, the trajectory estimate was com-
pared to the default monocular SLAM from ORB-SLAM,
visual-inertial SLAM, and dead reckoning using an IMU and
a DVL. Additionally, a trajectory interpolating GNSS fixes
and visual markers was computed and used as the ground
truth.

The estimated trajectory of each method is displayed in
Figure 10. They were all manually aligned. This visual
comparison enables a first assessment of the method’s
performance and of the rescaled trajectory from the proposed
method. The trajectory of the monocular SLAM (Mono
SLAM), although correct, is off scale and can not be used
for robotic applications. However, it was manually rescaled
for the purpose of comparison. The rescaled version of
the trajectory using the sonar (VS SLAM) appears close
to the ground-truth compared to the other solutions. The
visual-inertial SLAM (VI SLAM) was also able correctly

FIGURE 10. The 2D trajectories of all the methods used for comparisons
are plotted in (a) and only the scaled ones in (b). (c) displays the position
error over time of all the trajectories including the manually rescaled
monocular SLAM trajectory.

TABLE 2. Performance metrics for trajectory evaluation.

rescale the trajectory, however, as the scale factor is estimated
during the initialisation, if it is incorrectly estimated, it will
lead to acceleration bias errors which can quickly propagate
to the position estimates. Also, the noise of the low cost
IMU influenced the plotted trajectory negatively. The dead
reckoning solution performed well but showed apparent
drift over time that made the trajectory end at a different
location. The numerical results are highlighted in Table 2,
with for each method, the Absolute Trajectory Error (ATE)
computed with the Root Mean Square Error (RMSE), and
the Relative Position Error (RPE). They were calculated
over the whole trajectory. The initialisation time is also
included, corresponding to how much time the framework
needed to converge to an initial position estimate. Finally,
the completeness represents how much of the dataset is
successfully covered by the method, i.e., howmany estimates
were provided over time compared to the data available.
Typically, long initialisation processes and visual tracking
losses will result in significant loss of coverage.

The dead reckoning method was quickly initialising and
always provided an estimate. However, it drifted quickly. The
VI-SLAM showed the largest drift and lowest accuracy of the
candidates, but thanks to the ORB-SLAM capabilities, the
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FIGURE 11. (a) and (c) are the rescaled point clouds and trajectories from
the proposed pipeline, and (b) and (c), their corresponding 3D models
from the online Poisson surface estimation.

trajectory still ended close to the ground-truth. In comparison,
the proposed method had very low ATE and RPE, and also
ended close to the ground-truth. However, this method lost
accuracy during turns.

V. APPLICATIONS
The proposed method can be used for image enhancement
using depth prior, robotic navigation, or 3D reconstruction.
The latter will be explored in this section in two independent
inspection scenarios. The first one consists of an inspection
of a subsea module, and the second, of an inspection of a
ship propeller. Underwater inspections are important to assess
the structure integrity. In the case of remote inspections, the
operation is typically overviewed by an inspector monitoring
the inspection through a transmitted visual stream. Establish-
ing scale to the scene allows additional and automatically
processed data enabling better inspection condition and
assessment of the structure.

The 3D reconstruction is based on the online generated
point cloud from the proposed approach, combining the
camera and the sonar within the ORB-SLAM framework,
ensuring the estimation of a correctly scaled model. It is
performed in real-time using the inactive rescaled visual
point from the modified SLAM framework. The inactive
points represent the SLAM 3D points not being tracked
or modified. The Poisson surface estimation was applied
to obtain a set of 3D faces displayed to the operator for
monitoring purposes. This method is particularly efficient for
the mapping application since it can work with noisy data and
misregistered points while estimating the surface fast. The
3D surface was estimated in real time to facilitate object and
place recognition for the inspector enabling real time updates

of the mission plan based on the findings. The results for the
two scenarios are displayed in Figure 11, with both the prior
point cloud and the resulting estimated surface. The geometry
of the 3D objects is not exact, but provides a representative
presentation with the correct scale. In the case of inspection
missions, the generated model can be exported along with
annotations from the inspector, making the inspection process
more efficient, repeatable and accurate.

VI. CONCLUSION
A new approach to monocular SLAM estimates rescaling
is presented, using a MB-FLS for scale estimation. The
proposed camera-sonar combination includes estimation of
individual sonar beam coverage in the optical image, enabling
visual-acoustic feature matching. This allows depth ratio
estimation after the application of the maximum likelihood
estimation, providing continuous rescaling, and stability. The
proposed pipeline was experimentally tested and the results
show improvements in stability and robustness compared to
known methods.

However, it was observed during the experiments that the
position error tends to increase when the vehicle turns. This
is likely due to the camera-sonar calibration imprecision.
A calibration step in the processing pipeline would improve
these errors and will be studied in the future. Also, the
method would benefit from a tighter integration of the sonar
in the SLAM framework, including the addition of parameters
such as the speed of sound and the reprojection errors of
the acoustic features. This would also enable the sonar
to keep estimating the pose of the vehicle during periods
of camera outages, for example when images become too
blurry to keep tracking the visual features. For monitoring
applications, especially for inspection missions, semantic
SLAM can significantly improve scene understanding and
therefore, inspection results. This will be studied in the case
of ship hull inspection, using the previously developed LIACi
dataset [24].
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