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ABSTRACT

We investigate the behavior of drainage displacements in heterogeneous porous media finding a transition from viscous fingering to foam-
like region. A pore network model incorporating the formation of blobs is adopted to study this phenomenon. By imposing a pressure differ-
ence between the inlet and outlet, we observe that the displacement pattern undergoes a significant transition from a continuous front of
growing viscous fingers to the emergence of foam, which develops and propagates until breakthrough. This transition occurs at a specific dis-
tance from the inlet, which we measure and analyze as a function of the viscosity ratio and the capillary number, demonstrating that it follows
a non-trivial power-law decay with both the parameters. Moreover, we discuss the relationship between the evolution of the total flow rate
and the local pressure drop, showing that the foam developed reduces global mobility. We observe that foam is formed from the fragmenta-
tion of viscous fingers beneath the front, and this instability mechanism is connected with fluctuations of the local flow rate, which we analyze
both in the viscous fingering region and in the foam region.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169419

I. INTRODUCTION

Simultaneous flow of multiple immiscible fluids in porous media,
named multi-phase flow,1–3 is involved in a wide range of industrial
and geophysical applications. A few important examples, for instance,
are the understanding of the water cycle, the transport of pollutants in
soils, oil recovery, geothermal energy extraction, and carbon dioxide
sequestration. In a two-phase flow, when a more wetting fluid displaces
a less wetting fluid inside a porous medium, the flow is referred to as
imbibition, whereas the opposite case, when a less wetting fluid displa-
ces a more wetting fluid, it is called drainage.4 The study we present
here deals with drainage, and we will refer the more- and less-wetting
fluids as wetting and non-wetting fluids, respectively. Depending on
flow parameters and system properties, the displacement process pro-
duces fronts with distinct shapes, which characterize the underlying
flow mechanism.5 There can be stable displacement with flat front6

when a fluid of high viscosity invades a fluid with much lower viscosity
under a viscous pressure drop, or, there can be more complex fingering
patterns displaying fractal structures.3,7 Two essential mechanisms
control the shape of the fingers. First, there is viscous fingering,8–10

which is an instability that occurs during the fast displacement of a
low-viscosity fluid injected into a more viscous fluid.11 The structure

of such fingers is strongly analogous to diffusion limited aggregation
(DLA),12 both of which obey Laplacian growth. The second is the
capillary fingering,13,14 which appears during slow displacement when
the dynamics is controlled by the disorder in the capillary forces
related to the pore size distribution. The structure of capillary fingers is
different than that of the viscous fingers and can be modeled by the
invasion percolation theory.15,16 An early but detailed study on the
crossover between different regimes due to the competition of the vis-
cous and capillary effects can be found in Lenormand et al.17,18

If both the immiscible fluids are injected simultaneously, and the
flow is allowed to settle into a steady state, meaning that the macro-
scopic flow variables fluctuate around well-defined and constant aver-
ages, we have yet another type of flow that differs from the unstable
patterns described above.19,20 Albeit less studied than the non-steady
flows, it is a key ingredient in upscaling, see, e.g., Ref. 3.

Both viscous fingering and capillary fingering share the common
feature that the invading fluid remains connected. However, in many
two-phase flow scenarios, it is not uncommon that the invading fluid
breaks and becomes disconnected. The breakage of the phase in
porous media has also been widely investigated.21 To summarize, three
mechanisms are usually invoked. First, there is the Roof snap-off.22,23
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When the tip of the invading fluid exits a constriction, the curvature at
the tip decreases, while the curvature inside the constriction remains
high. This induces a pressure difference that might create a back-flow
of the defending fluid, which breaks the invading one. Another impor-
tant mechanism is the pinch-off, where a continuous fluid filament
breaks up into smaller parts due to the Rayleigh–Plateau instability.24

The last mechanism, the so-called dynamic breakup,25 occurs when
the tip of a phase encounters a junction of two pores, where it might
split to invade both and disconnect then the other phase. Despite the
abundant literature on the subject, it remains difficult to establish the
effective role and relevance of these mechanisms in both generating
and propagating foams in porous media. For example, in the last years,
pore network simulations have shown26 that strong foam generation
can occur without the necessity of Roof snap-off mechanism.

Phase breakup is of particular interest to generate foam inside the
porous structures.27 A particular application of foam flow is, for
instance, the enhanced oil recovery. As discussed above, displacing a
more viscous fluid (e.g., oil) by a less viscous one (e.g., water) creates
unstable fingerlike preferential paths. In this way, a certain amount of
fluid is left in place, altering significantly the recovery. One method to
circumvent this problem is to inject foam, which increases significantly
the viscosity of the displacing fluid.28 A consolidated technique con-
sists in injecting gas and water with surfactant, to create the foam in
situ.29 The main objective here is to generate strong foam with a low
mobility (foam with smaller blob sizes with a large number of lamel-
lae), in opposition to the weak one with a high mobility (large blobs
with fewer lamellae).30–32

It can be thus noted that the two types of displacement men-
tioned, continuous front and foam flow, have been widely studied sep-
arately in the literature. One would expect, however, that there might
be a transition between these two regimes. Notably, it was early
reported experimentally and numerically that a condition for generat-
ing foam in situ is to apply a minimum flow or pressure gradi-
ent.29,31,33 On the other hand, it may be argued that, if the flow is
subjected to an imposed pressure, the development of capillary or vis-
cous fingering leads to an evolution of the flow rate, and of the homo-
geneity of the pressure gradient as well. It is not unlikely that a
fingering regime evolves toward a foam displacement. In a recent
paper, Eriksen et al.34 observed experimentally a transition from com-
pact displacement to viscous fingering. They find that, in a radial
geometry with imposed pressure drop, the invasion front is initially
stable and the invading pattern presents an intense blob dynamic typi-
cal of foam, but, after a certain radius, the front adopts a viscous-fin-
gering-like shape. It is perhaps useful to point out that, when injecting
the fluid at a constant flow rate in the radial geometry, the velocity of
the front tends to decrease naturally due to the conservation of mass. If
a critical velocity is necessary for the generation of foam, it is not
excluded that the latter stops after a certain distance.

It is essential to note that the distinction between foam and vis-
cous fingering is crucial in the context of upscaling to the Darcy scale.
Indeed, because viscous fingering has a fractal geometry, it is impossi-
ble to determine a representative elementary volume to describe the
porous media as a continuum.

The objective of this work is to better understand the transition
between the two types of displacements, continuous flow and foam
flow. We show that, when injecting a low-viscous fluid into a porous
medium filled with a high viscous fluid at a constant global pressure

drop in a rectangular system, under certain conditions, the system
shows a transition from the viscous fingering regime to a compact
foam flow. In this regime, the invasion starts with viscous fingers.
However, as the front advances toward the outlet, the fingers tend to
break into small droplets, developing foam after a certain distance
from the inlet. We implement a dynamical pore-network model that is
capable of modeling both the classical displacement fronts and blob
generations. To characterize this transition, we implemented a method
for distinguishing the region of viscous fingering from the region of
foam development and propagation, measuring the distance of the
crossover line from the inlet. Moreover, we showed the effect of the
foam formation on both global quantities, namely, the total flow rate
and local quantities, like the pressure gradient and the local flow rate.
Finally, the origin of this transition is discussed.

II. PORE NETWORK MODEL

Simulations were carried out in the framework of dynamic pore
network modeling.35,36 The pore network we consider here has an
underlying geometry of a regular square lattice of Nx � Ny links as
shown in Fig. 1(a), which is tilted by an angle of 45� with the direction
of the global pressure drop. The network consists of composite links,
which means that each link contains a narrow pore throat in between
two wider pore bodies. This is modeled by having links with varying
radius along its length, similar to an hourglass shape, like the one
drawn in Fig. 1(b). The total porous space of the network is, therefore,
contained by all the links, and the nodes represent only the positions
of the intersections of the links. We consider all links with identical
length l, presenting axial symmetry. The disorder is then introduced
into the characteristic radius, r, of the links. Two different distributions
for r> 0 are considered as follows:

• Uniform distribution is given as follows:

PðrÞ ¼ 1=a if r 2 �r � a=2�r þ a=2½ � :
0 otherwise

�
(1)

• Rayleigh distribution is expressed as follows:

PðrÞ ¼ p
2
r
�r2

exp � pr2

4�r2

� �
; (2)

where PðrÞ is the corresponding probability density function, �r
is the average radius, and a is the interval width for the uniform
distribution.

We restrict to the creeping laminar-flow regime where the
Poiseuille law is valid. In that case, if the link is filled with one
Newtonian fluid of viscosity l, the flow rate qij inside a link in between
two nodes i and j depends on the pressure drop, pi � pj, between the
two nodes,

qij ¼
pr4ij
8ll

pi � pjð Þ; (3)

where we assumed that the radius does not deviate too much from its
characteristic value rij of the link. In the case of two immiscible fluids
present in the same link, Eq. (3) needs to be modified.37 First, the vis-
cosity l will be the effective viscosity lij ¼ lnSij þ lwð1� SijÞ. Here,
Sij is the local non-wetting saturation, namely, the fraction of the link
length occupied by the non-wetting fluid, while ln and lw are,
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respectively, the non-wetting and wetting viscosities. Second, there is a
capillary pressure drop pc across the meniscus separating the two fluids
that must be taken into account. As the links of the network have a
varying radius along their length, pc will depend on the position of a
meniscus. For the converging–diverging type of an hourglass-shaped
link, we model the variation of the capillary pressure with the position
0 < z < l of a meniscus by a modified Young–Laplace law,38,39

jpcðzÞj ¼ 2c
rij

1� cos
2pz
l

� �� �
; (4)

where c ¼ ĉ cos h; ĉ being the surface tension between the two fluids
and h the contact angle between the meniscus and the link wall, which
is assumed not to vary during the motion. With these two modifica-
tions, Eq. (3) for a number of m menisci inside a link can be general-
ized as

qij ¼
pr4ij
8lijl

pi � pj �
Xm
k¼1

pc zkð Þ
" #

; (5)

where the summation is over all the interfaces k ¼ 1;…;m, inside the
link, taking into account the direction of the capillary forces.

We simulate the drainage displacement where a less-viscous,
non-wetting fluid invades a network filled with a more-viscous, wet-
ting fluid. This is done by filling the network completely with the
wetting fluid initially and then injecting the non-wetting fluid at one
edge of the system, marked as inlet (y¼ 0). The opposite edge of the
system is marked as outlet (y¼Ny), through which fluids leave the
network. As we perform the simulations at a constant pressure drop
DP, we impose a fixed pressure value Pin ¼ DP at all of the inlet
nodes and Pout¼ 0 at all of the outlet nodes. This creates an overall
global pressure drop DP in the direction of the inlet edge to the out-
let edge of the network. The two lateral edges of the network parallel
to the direction of pressure drop are connected using the periodic
boundary condition.

As both the fluids are incompressible, the net volumetric flux of
the fluids at any given node will be zero for every time t during the
invasion process. This is analogous to the first Kirchhoff law for the
electrical current and can be expressed for every node i asX

j2ngbðiÞ
qijðtÞ ¼ 0; (6)

where j 2 ngbðiÞ are the neighboring nodes connected to the node i by
links. This provides a closed set of linear equations, which, once solved,
allows to compute both the local node pressures fpiðtÞg and the flow
rates fqijðtÞg for the whole network. From the local flow rates, we
update the positions of each menisci in the system, displacing it by a
distance,

Dzij ¼
Dt qij
pr2ij

; (7)

in the direction of the local flow. Here, the time step Dt is chosen in
such a way that the largest displacement of any meniscus in any link
does not exceed 0:1 l in one time step.

To distribute fluids from links to their neighboring links at the
links intersections or nodes, we consider an algorithm that does not
impose any restriction on the blob sizes inside any link, and for which
the blob sizes are determined by the dynamics of the flow.40 This
makes it possible for the model to generate not only the continuous
capillary or viscous fingers but also foams with smaller blobs. The
model can, therefore, capture the transition from fingering to foam
formations while changing external flow parameters, and no alteration
in the fluid distribution algorithms is necessary. We define foam in the
context of this model with the presence of the two discontinuous
phases in a single link. The algorithm first calculates the total volume
of fluids Vi ¼ �P

j qijDt that each node i receives from the incoming
neighboring links, namely, the links for which qij < 0 for a node i
according to Eq. (5). The individual values of the wetting and non-

FIG. 1. (a) Illustration of a pore network made by Nx � Ny ¼ 4� 4 links. The hour-glass shaped links are connected to each other at nodes denoted by circular dots.
Because of the periodicity, green dots at the same height represent the same node. One of the links is colored gray. (b) Illustration of a single composite link filled with two flu-
ids, separated by different interfaces (menisci). The blue color and red color represent the wetting and non-wetting fluid, respectively. The capillary pressure drop for an inter-
face, expressed by Eq. (4), is shown above the link, where pcðzÞ is plotted as a function of the interface position 0 < z < l.
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wetting volumes Vw
i and Vn

i that the node receives from the incoming
links are calculated from the displacements of the menisci following
Eq. (7). The two fluid volumes are then redistributed to the outgoing
neighboring links, the links for which qij > 0 for any node i. The redis-
tribution follows an impartial rule where the ratio between the total
injected volumes of fluids Vij in different outgoing links is equal to the
ratio between the flow-rates qij in those links, and the ratio between
the volumes of wetting (Vw

ij ) and non-wetting (Vn
ij ) fluids in each indi-

vidual outgoing link is proportional to the incoming wetting and non-
wetting volumes Vw

i and Vn
i in the distributing node. This is done

by creating new wetting and non-wetting blobs of volume Vw
ij

¼ qijDtVw
i =Vi and Vn

ij ¼ qijDtVn
i =Vi, respectively, in every outgoing

link of node i. The order of the new wetting and non-wetting droplets
is chosen arbitrary. Furthermore, when the number of the blobs
exceeds a maximum limit in a link, we merge two nearest blobs keep-
ing the volume conserved, but without detaching any blob attached to
a node, which may be a part of a cluster spanned over several links.

In summary, at every time step Dt, we calculate the local pres-
sures pi for each node and flow rates qij in each link by solving Eqs. (5)
and (6) and then update the positions of the menisci using Eq. (7). The
fluids are then exchanged between different links, which in general
alters the local saturation Sij in the links, as well as the number and
positions of the menisci. This necessitates the linear system of Eqs. (5)
and (6) to be solved again in the next time step.

As discussed in the introduction, the main competing mecha-
nisms that control the flow characteristics in two-phase flow are the
ratio between the viscosities of the two fluids, called the viscosity ratio,
and the ratio between the viscous and the capillary forces at the pore
level, known as the capillary number. The viscosity ratio is defined as
M ¼ ln=lw, whereas the capillary number is generally defined for the
flow driven under the constant flow rate Q as17,38,41

CaQ ¼ lwQ
cA

; (8)

where A ¼ Nxp�r2 is the average cross-sectional area of the pore net-
work. However, when the system is driven under a constant pressure
drop DP as we are studying here, the total flow rate Q varies with time.
The capillary number is, therefore, defined as a function of the pres-
sure drop,42

CaP ¼ DP=Ny

2c=�r
; (9)

where DP=Ny is the average pressure drop across one link, and 2c=�r is
the typical capillary pressure drop for a meniscus in a link. These two
dimensionless numbers fully characterize the invasion displacement.
This means in particular that different simulations with the same val-
ues ofM and CaP will produce invasion patterns, which are statistically
equivalent. In the supplementary material, we show the validity of this
statement.

III. TRANSITION FROM VISCOUS FINGERING TO FOAM

Figure 2 displays the evolution in time of a typical invasion front
withM ¼ 10�2; CaP ¼ 0:25, and r uniformly distributed. Unless indi-
cated otherwise, the results presented will correspond to a lattice of
size Nx � Ny ¼ 200� 200. Here, we describe the evolution of our sys-
tem using the normalized injected pore volume IPV ¼ Vinj=Vtot,
where Vinj is the volume of the injected fluid, and Vtot is the volume of
the total pore space of the network. Initially, the non-wetting phase
enters in the porous medium and exhibits the common viscous finger-
ing occurring at a high flow rate.17 At this early stage, the non-wetting
fluid remains continuous in the absence of any breakage. Also, we note
that the invaded pores are never occupied again by the wetting phase.
However, as the fingers advance through the network, we observe that
the continuous non-wetting fingers eventually break up and the invad-
ing pattern exhibits a very different foam-like structure composed of
many small droplets. The transition happens as a result of the dynam-
ics of the pore network model. There is no separate algorithm for foam
formation, and the exact same algorithm that produces fingers also
produces foam. Notably, this transition between the continuous vis-
cous fingers to the foam regime appears at a certain distance K from
the inlet that depends on both the capillary number CaP and viscosity
ratioM. We will analyze this in detail in Sec. III A.

Figure 3 represents a diagram of the invasion pictures at break-
through, namely, when the invading fluid reaches the outlet, for differ-
ent viscosity ratios and capillary numbers for which the foam
formation is observed. While for the images at M< 1, we observe a
proper transition from viscous fingers to foam, in the snapshots
obtained setting M¼ 1, the generation of foam occurs immediately
after the injection edge, so without passing from the viscous fingering
regime. The case of equal viscosities represents then a limiting case.

Restricting to the images at M< 1, it can be noted that the dis-
tance of occurrence of the transition decreases with both increasing
capillary number and increasing viscosity ratio. Both trends can be
qualitatively understood. As discussed above, it has been

FIG. 2. Snapshots at different growing values of the injected pore volume (IPV). The blue color and red color represent the wetting and non-wetting fluid, respectively. We
observe a transition from viscous fingering to foam at a certain distance from the inlet. For this simulation, we set CaP ¼ 0:25; M ¼ 10�2, and r generated according to the
uniform distribution (1) with �r ¼ 0:25 l and a ¼ 0:15 l.
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observed29,31,33,34 that a certain critical pressure drop is required to
generate foam. During an invasion process, we can conjecture that the
foam is generated in the vicinity of the invasion front, so we should
consider the pressure drops across the links close to the front and con-
sider their evolution during the invasion. We remind the reader that
we keep the pressure drop between the inlet and the outlet fixed, and
since we are injecting a fluid that has much lower viscosity than the
defending fluid, the pressure gradient across the non-invaded part of
the system increases as the front advances. The local pressure drops
across the throats located just after the front will, therefore, increase as
well, explaining why foam is triggered only after the front reaches a
certain distance from the inlet. Moreover, the pressure gradient rises
with both the parameters CaP and M. Increasing either the capillary
number or the viscosity ratio should then trigger the foam at a shorter
distance from the inlet. One might guess that the height of the location
of foam generation decreases with the inverse of both the capillary
number and the viscosity ratio, namely, K / Ca�1

P and K / M�1.
However, as we will see in Subsection IIIA, where we present a
method to characterize and analyze the transition distance K, this is
not the case.

A. Characterization of the fingering-to-foam transition
distance K

To analyze the transition from viscous fingering to foam, we first
need to define a method that differentiates the two regions. For this,
we define a quantity tij ¼ jSij � 1=2j for every link. This is because, for
a continuous displacement pattern, this quantity should be equal to 1/
2, as every link will be fully saturated by either of the two fluids and Sij
will be either 0 or 1. Then, tij will differ from 1/2 for a link when it is
occupied by both the fluids. To define K, we then average this quantity
in the direction transverse to the overall flow for a certain normalized
distance from the inlet y/l and find a quantity Tðy=lÞ given by

Tðy=lÞ ¼ 1
Nx

XNx

x¼1

����Sij � 1
2

����: (10)

In order to decrease the noise, we average Tðy=lÞ for a given IPV over
different realizations of the disorder given by different radii configura-
tions, and we refer to this average as hTðy=lÞir . For all the simulations
studied, unless specified otherwise, the average is done over 100 real-
izations of the radii disorder.

FIG. 3. Diagram of the invasion patterns at breakthrough for different viscosity ratio and capillary number. The blue color and red color represent the wetting and non-wetting
fluid, respectively. For these simulations, r is generated according to the uniform distribution (1) with �r ¼ 0:25 l and a ¼ 0:15 l.
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The typical trend of hTðy=lÞir for different IPV is shown in
Fig. 4. For all IPV, and after a short distance from the inlet (y=l� 10
in the figure), hTðy=lÞir reaches a high value plateau (hTðy=lÞir
’ 0:42 in the figure). This corresponds to the viscous fingering region,
where most of the links are saturated by either one of the two fluids.
Beyond this plateau, two trends are observed depending on IPV. At
lower IPV, before the start of foam formation, there is no decrease in
the value of hTðy=lÞir , since it increases directly to a higher plateau
value of 0.5. This value represents the regions fully saturated by the
wetting fluid. At higher IPV, hTðy=lÞir undergoes a significant
decrease that characterizes the onset of foam, before reaching again the
plateau at 0.5. From this curve, we define the value K as the position of
the minimum of the curve’s derivative, as illustrated in Fig. 4.

In Fig. 5(a), K vs IPV is plotted for different combinations of the
capillary number CaP . After an initial transient interval, K reaches a
plateau, where it maintains a constant average value until break-
through. This value at the plateau depends on CaP , and in particular,
for higher CaP , theK plateau is lower and attained sooner. This reflects
that the onset of foam formation happens at the earlier stage of inva-
sion with increasing values of CaP , as observed in Fig. 3. The plateau
value,Ksat, is then calculated averagingK from the end of the transient
interval until the breakthrough. In Fig. 5(b), we plot the plateau value
Ksat as a function of CaP for the two types of radii distribution, uni-
form and Rayleigh. We observe a non-trivial power law decay of
Ksat / Ca�a

P . A weighted fit of the data obtained from the uniform
radii distribution gives a ’ 0:756 0:03, while from the data from the
Rayleigh radii distribution, we have a ’ 0:606 0:05. The two trends
are represented in Fig. 5(b) with dashed lines. It is worth noting that
the simple prediction a¼ 1 discussed in Sec. III is invalidated.

The time evolution of K as a function of the viscosity ratio M is
shown in Fig. 6(a). Here also, K reaches a plateau, where the value at
the plateau Ksat decreases with the increase in M as seen in Fig. 3. We
find that Ksat follows a power-law, Ksat / M�b. For the Rayleigh dis-
tribution, a weighted fit for all the data collected returns a power-law
b ’ 0:316 0:03. For the uniform distribution, a crossover between
two different trends was observed at M ’ 10�2. For the data in the
interval ½2:5� 10�3; 10�2�, the fit gives b ’ 0:256 0:04, while in the
interval ½ ffiffiffi

2
p � 10�2; 8� 10�2�, we measured b ’ 0:456 0:02. In

Fig. 6(b), these trends are highlighted with dashed lines.
The independence of the power law exponents, found for both

CaP and M, on the radii distribution remains an open question.
Recently, it was reported in the literature that steady state rheology of
two-phase flow depends in general on the pore size distribution. In
particular, some physical quantities can vary when changing the shape
of the distribution, but remaining constant if we change only the distri-
bution width while keeping the same shape, and vice versa.43 Here, it
seems that the power law is not independent from the type (so, the
shape) of the radii distribution chosen, since the values of the

FIG. 4. Plot of hTðy=lÞir , defined in Eq. (10), for different growing IPV. For these
simulations, we set CaP ¼ 0:25; M ¼ 10�2, and r uniformly distributed according
to Eq. (1) with �r ¼ 0:25 l and a ¼ 0:15 l. Each vertical dashed line indicates the
position of the minimum of the derivative of the curve of the corresponding color,
which defines K for that IPV.

FIG. 5. (a) Plot of K=l as a function of IPV for different CaP , setting M ¼ 10�2 and uniformly distributed according to Eq. (1) with �r ¼ 0:25 l and a ¼ 0:15 l. K reaches a pla-
teau value Ksat=l, indicated by a horizontal dotted line, which is determined by averaging the values after reaching the plateau. (b) Ksat=l for different values of CaP . Blue dots
correspond to simulations with M ¼ 10�2 and r generated according to the uniform distribution (1) with �r ¼ 0:25 l and a ¼ 0:15 l. Red dots correspond to simulations with
M ¼ 10�2 and r generated according to the Rayleigh distribution (2) with �r ¼ 0:1 l; their trend / Ca�0:75

P is represented by a dashed-dotted line. The error bars represent the
standard deviation related to the values of K=l averaged to obtain Ksat=l. The dashed lines show the trends found with a weighted fit of the data.
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exponents measured for the two distributions do not present a good
reciprocal compatibility within the error. On the other hand, we have
observed that K remains constant when keeping the same type of dis-
tribution and changing only its width (see the supplementary
material).

Now that we have quantified the location of the foam generation,
in the following we investigate its influence on the total flow rate.

B. Total flow rate

Figure 7 shows the temporal evolution of the Q-based capillary
number CaQ, defined in Eq. (8), for different values of CaP . Since it is
directly proportional to Q, CaQ can be thought as a dimensionless total
flow rate. Moreover, being the global pressure drop fixed throughout
the evolution of the system, the total flow rate for a given IPV can be

interpreted as the global permeability of the system. For all CaP , ini-
tially the flow rate increases due to the viscous fingering instability, as
we replace a more viscous fluid with a less viscous one. For later values
of IPV, however, we observe an inflection point, which corresponds to
the emergence of foam.

We define the inflection point by the change of sign of the second
derivative, i.e., a transition between a decreasing slope and an increas-
ing slope (or the opposite). This inflection is more pronounced with
lower values of CaP . For the lowest capillary numbers studied, the flow
rate even seems to be non-monotonic. This is an indication that the
generated foam has a very low mobility, which is a typical characteris-
tic of strong foam.29 Interestingly, we note that, at very low capillary
number, the dispersion of the data, represented in Fig. 7 by their stan-
dard deviation, becomes very high when the front is close to the outlet.

To better investigate this decrease in mobility, we looked at the
evolution of the gradient of pressure along the flow direction. To do
this, we average the absolute values of the local pressure drop dPij
¼ pi � pj along the x-direction,

jdPxjðy=lÞ ¼ 1
Nx

XNx

x¼1

jdPijj: (11)

Figure 8(a) shows the time evolution of the normalized quantity
hjdPxjir=ð2c=�rÞ averaged over different realizations of the radii disor-
der. Close to the inlet (for y=l� 20), the value is quite high because of
our injection condition, where many links contain a meniscus. Further,
the gradient of pressure first decreases reaching a minimum and then
increases again to reach a plateau value. The lower value region corre-
sponds to the viscous fingering region, where the pressure drop is local-
ized in few channels of low viscosity. The higher plateau closer to the
outlet corresponds instead to the region saturated with the defending
viscous fluid, hence the higher value. Moreover, as discussed previously,
the plateau value increases as the invasion front advances.

Nevertheless, the most important feature is the appearance of a
bump after a certain IPV, between the minimum and the plateau,

FIG. 6. (a) Plot of K=l as a function of IPV for different M, with CaP ¼ 0:25 and r uniformly distributed according to Eq. (1) with �r ¼ 0:25 l and a ¼ 0:15 l. K reaches a plateau
value Ksat=l, indicated by a horizontal dotted line, which is determined by averaging the values after reaching the plateau. (b) Ksat=l for different values of M. Blue dots corre-
spond to simulations with CaP ¼ 0:25 and r generated according to the uniform distribution (1) with �r ¼ 0:25 l and a ¼ 0:15 l. Red dots correspond to simulations with
CaP ¼ 0:8 and r generated according to the Rayleigh distribution (2) with �r ¼ 0:1 l. The error bars represent the standard deviation related to the values of K=l averaged to
obtain Ksat=l. The dashed lines show the trends found with a weighted fit of the data.

FIG. 7. Plot of the dimensionless total flow rate CaQ, defined in Eq. (8), as a func-
tion of IPV, averaged over 1000 realizations of the radii disorder, and for different
values of CaP . The error bars represent the standard deviations of the values col-
lected from the different realizations of the disorder given by the radii configurations.
For these simulations, we set M ¼ 10�2 and r uniformly distributed according to
Eq. (1) with �r ¼ 0:25 l and a ¼ 0:15 l.
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whose height and width increase as time goes by. This bump corre-
sponds to the foam region, which decreases significantly the mobility
of this region. A few observations can be made in this regard. First, the
bump starts growing at approximately the same position for different
IPV. The location of foam onset is, thus, approximately independent
of time, which confirms the stability of the foam generation location.
This pressure gradient measurement could thus have been used as an
alternative method to quantify K. Second, the fact that the bump is
higher than the plateau indicates that the mobility of the foam is less
than that of the more viscous fluid, despite the foam being highly satu-
rated with less viscous one. This effect is then linked to the presence
of menisci in the foam. To quantify the impact of capillarity, we
calculate the average of the capillary pressure drops, namely, dPc;ij
¼ dPij � 8lijqij=ðpr4ijÞ from Eq. (5), along the x-direction,

jdPc;xjðy=lÞ ¼ 1
Nx

XNx

x¼1

jdPc;ijj: (12)

In Fig. 8(b), the time evolution of the normalized quantity
hjdPc;xjir=ð2c=�rÞ is shown. Initially, we observe a monotonic decrease
between the inlet and outlet, with a sharp drop outlining the displace-
ment front. At a certain time, a capillary pressure bump appears, which
is due to foam generation and the occurrence of several menisci. We
note that this bump has approximately the same magnitude and evolu-
tion as in the previous one, which confirms that mobility loss is mainly
due to the presence of many menisci in this region. Another interesting
feature is that the curves at different IPV seem to collapse behind the
front, just before the onset of the foam, around a local minimum.

C. Foam generation in the pore network

In Subsection III B, we have quantified the occurrence of strong
foam and its consequence on the total flow rate. In the introduction,
we discussed a crude argument for foam generation, which would
occur because the gradient of pressure increases at the tip. However,
from this argument, one would expect that the location of K decreases
like Ca�1

P orM�1, which is not the case. Moreover, by considering the

pressure gradient for different combinations of the parameters, we
were not able to identify a clear threshold value of the local pressure
drop for the onset of foam. To further analyze the mechanism of foam
generation, we show details of few snapshots of very early foam gener-
ation in Fig. 9 (upper row). We observe that foam is not necessarily
generated at the tip of the front. Instead, blobs are produced by the
fragmentation of already developed fingers located also behind the
front (like for the one highlighted by the black circle in the last snap-
shot). In other words, branches created by the viscous fingering might
be unstable and fragment at a certain location.

Together with this process of fragmentation, we note that there
seems to be an interaction between different growing fingers. As
depicted in Fig. 9 (upper row), the fragmentation of a branch is
related to the approach of another (the one below on the right side).
In Fig. 9 (bottom row), we present the local flow rate field corre-
sponding to the snapshots above by plotting a dimensionless local
flow rate defined as

q̂ ¼ qlw
p�r2c

; (13)

where q is the local flow rate in a link. The figures show that the frag-
mentation of the branch occurs together with a decrease in the flow
rate in the corresponding links. The flow rate in the approaching finger
on the right remains instead approximately constant, so its value
becomes higher than that of the breaking finger.

There is, therefore, a competition between the different branches
of the invading pattern related to the emergence of foam, meaning that
the fragmentation of a branch will stop its expansion, and thus favor
the growth of the others. Competition between growing channel in
porous media was already observed and studied, also in the context of
dissolution in fractured or porous rocks.44 Furthermore, since the
breakage of fingers causes its growth rate to drop significantly, there is
a relationship between the creation and propagation of foam and the
fluctuations observed in the local flow rate field. In Subsection IIID,
we measure and characterize the time evolution of the local flow rate
both in the finger region and in the foam region.

FIG. 8. (a) Plot of hjdPx jir=ð2c=�r Þ, as a function of y-position, for different values of IPV. Different color shades represent increasing values of IPV, equally spaced from 0 (light
green) to 0.4 (dark blue). The average is done over 100 different realization of the radii disorder. (b) Plot of the capillary contribution hjdPc;x jir=ð2c=�r Þ of the pressure drop
profile pictured on the right at the same IPV. For the simulations for both (a) and (b), we set CaP ¼ 0:25; M ¼ 10�2, and r uniformly distributed according to Eq. (1) with �r
¼ 0:25 l and a ¼ 0:15 l.
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D. Fluctuations of local flow rate

Figure 10(a) illustrates the map of the dimensionless local flow
rate q̂ defined in Eq. (13) for few snapshots close to breakthrough, in a
simulation setting M ¼ 10�2; CaP ¼ 0:25, and r uniformly distrib-
uted according to Eq. (1) with �r ¼ 0:25 l and a ¼ 0:15 l. As expected,
in the viscous fingering region, below K, the flow is localized in a few,
almost parallel channels, corresponding to the branches of the fingers,
which were not interrupted during the competition process, men-
tioned in Sec. IIIC. The flow rate intensity of a single channel exhibits
fluctuation in time, although the average value remains approximately
stable and does not drop to zero. On the other hand, above K, in the
foam region, the main flowing channels fragment into several smaller
ones, thus distributing the flow throughout the surrounding links. In
this region, new channels are continuously formed and destroyed due
to the continuous foam generation led by fragmentation. It results in
fluctuations of the local flow rate, which are qualitatively different
from the ones in the viscous fingering region. To better investigate
these fluctuations in time, we select a single link located in a flowing
channel, both in the fingering region and in the foam region. We plot
q̂ as a function of the normalized time t/T, where T is the total invasion
time, for a time interval for which foam is already formed and has
reached both links [like in the maps of Fig. 10(a)]. The results are
shown in Fig. 10(b) for a link in the viscous finger region, located at
y ¼ y1 < Ksat, and in Fig. 10(c) for a link in the foam region, at
y ¼ y2 > Ksat. We can see that in both cases q̂ðt=TÞ resembles a sto-
chastic process.

To characterize this stochastic process, Figs. 10(d) and 10(e)
show the absolute value of the temporal Fourier transform of the local
flow rate, jF ½q̂�ðf Þj, for a selected link in the viscous fingering and in
the foam region, respectively. We can see that, for the link in the

viscous fingering region, the Fourier spectrum decays approximately
as the inverse of the frequency, namely, jF ½q̂�ðf Þj / f �1, for
f � 10�1. This indicates that q̂ behaves like a random walk
(Brownian) noise, at least for the lower frequencies. On the other
hand, for the link in the foam region, the power-law decay occurs
approximately as jF ½q̂�ðf Þj / f �1=2 for f � 10�1:5. An exponent
smaller (in modulus) than –1 is typical of anti-correlated signals, and
in particular, the exponent �1=2 is an indicator of pink noise. As a
remark, we report that we performed an analysis, not shown here, of
both the local flow rate signals using wavelets and observed results
consistent with these obtained by Fourier analysis.

IV. CONCLUSION

In this work, we have investigated the drainage displacement in a
heterogeneous porous media. To do this, we used a dynamic pore net-
work model, which takes into account the formation of blobs. We
observe that, when the flow is driven by a constant pressure difference
between the inlet and the outlet, the displacement front exhibits a tran-
sition from a viscous fingering regime to a foam-like region. This tran-
sition occurs at a certain distance from the inlet, K, which was
measured and characterized as a function of the viscosity ratio M and
capillary number CaP . It has been shown that, after foam is generated,
K stabilizes to a value, Ksat, which decreases as a power-law for both
parameters. Qualitatively, the occurrence of foam can be explained
from the fact that the pressure gradient is not homogeneous through
the medium, but is stronger in the defending fluid and is increasing as
the front advances. This pressure gradient, in competition with capil-
lary forces, triggers fragmentation and thus foam formation. The onset
of foam generation in turn reinforces the pressure gradient increase,
leading to the instability manifesting itself as the onset of foam

FIG. 9. Foam creation in the pore network. (a) Detail of different snapshots, at consecutive times from left to right, showing an event of foam formation. The right finger of the
bigger branch fragment to create foam, highlighted with a black circle in the rightmost image. (b) Color map of the dimensionless local flow rate q̂ defined in Eq. (13) for the
respective snapshots above.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 103119 (2023); doi: 10.1063/5.0169419 35, 103119-9

Published under an exclusive license by AIP Publishing

 19 February 2024 09:11:08

pubs.aip.org/aip/phf


generation. From this qualitative argument, we cannot, however, pre-
dict the observed exponents for the power-law decay. Further analysis
would be, thus, necessary to understand this transition.

Moreover, we have shown that foam formation could be related
to an instability mechanism, with fragmentation of the viscous fingers
occurring below the front. We might remark that foam is also respon-
sible for an increase in the local pressure gradient, which in turn
should further promote creation of more foam. Furthermore, we

observe that the flow velocity is not homogeneous but localized in few
channels, both in the viscous fingers and in the foam region, although
in the latter, the channels tend to divide into several smaller ones. This
leads to very different behavior of the local flow rate in the fingers
region, where the fluctuations are mostly stable in time, from the foam
region, where the value drops intermittently to zero. The Fourier anal-
ysis suggests that the first resemble a Brownian motion, while the sec-
ond an anti-correlated (pink) signal. It is clear that the two behaviors

FIG. 10. (a) Color map of the dimensionless local flow rate q̂ defined in Eq. (13), at consecutive times t0 < t00 < t000. We remind that the main flow occurs in the y-direction.
Plot of q̂ for a link located at y1 ¼ 40 l [ (b)] and at y2 ¼ 120 l [ (c)], as a function of the normalized time t/T in the interval of 0:6 � t=T � 1 corresponding to when foam is
already present. The positions y1 and y2 are highlighted in the first map of (a) by a circle. (d) and (e) Plots of the absolute value of Fourier spectrum jF ½q̂�ðf Þj of the corre-
sponding q̂ðt=TÞ shown above; blue dots represent the values obtained from FFT, while red dots are obtained averaging these values in 20 equally logarithmic-spaced bins in
the interval ½10�3; 1�. All these plots are based on a simulation setting CaP ¼ 0:125; M ¼ 10�2, and r uniformly distributed according to Eq. (1) with �r ¼ 0:25 l and
a ¼ 0:15 l; the resulting transition distance from the inlet is Ksat=l ’ 79.
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are causally connected, although we still do not understand how the
fluctuations in the foam, driven by the fragmentation process, influ-
ence the evolution observed in the fingering region, and, eventually,
vice versa. However, we can add that the strong fluctuations observed
in the foam region can be responsible of the irregular movement of the
front observed when foam is formed and is propagating.

We have performed simulations using a constant flow rate Q
rather than a constant pressure drop DP across the system. In this
case, we find no transition zone at any particular location between fin-
gers and foam. Rather, we find that either there are fingers developing
all the way through until breakthrough or there is foam generated
from the beginning. When imposing constant pressure drop DP, the
local pressure drop along the system changes as just described. If we
define a local capillary number based on this local viscous pressure
drop in the constant-DP simulations, then we observed that the con-
stant-Q simulations produce only fingers when run with capillary
numbers similar to the local capillary numbers in the fingering regimes
of constant-DP simulations, and they produce only foam when run
with capillary numbers similar to the local capillary numbers in the
foam regimes of constant-DP simulations. The transition from finger-
ing to foam seems, therefore, to be a characteristic of driving the sys-
tem with constant global pressure drop.

Future research efforts can be dedicated to the experimental
observation of the transition and the validation of the predictions elab-
orated in this work, conceivably building a setup analogous to the one
adopted in Ref. 34, in a rectangular geometry. Furthermore, the pore
network model presented here can be extended to a three-dimensional
domain for comparison with the two-dimensional analysis reported in
this study. It is also worth considering the study of two-phase flows
where one of the two fluids is non-Newtonian and evaluating the
impact of the non-linear rheology, like the presence of yield stress, in
foam formation and propagation.

SUPPLEMENTARY MATERIAL

See the supplementary material section, we discuss the indepen-
dence of the transition height with respect to certain system parame-
ters, showing some snapshots at breakthrough obtained varying these
parameters.
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