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Abstract: In this paper, we improve upon a method for optimal control of quadrupedal robots
which utilizes a full-order model of the system. The original method utilizes offline nonlinear
optimal control to synthesize a control scheme which exponentially orbitally stabilizes the closed-
loop system. However, it is not able to handle the overactuated phases which frequently occur
during quadrupedal locomotion as a result of the multi-contact nature of the system. We propose
a modified method, which handles overactuated gait phases in a way that utilizes the full range
of available actuators to minimize torque expenditure without requiring output trajectories to be
modified. It is shown that the system under the proposed controller exhibits the same properties,
i.e. exponential orbital stability, with the same or lower point-wise torque magnitude. A
simulation study demonstrates that the reduction in torque may in certain cases be substantial.
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1. INTRODUCTION

Quadrupedal robots have features that are beneficial for
achieving dynamically stable and robust walking: Legged
robots in general are able to adapt well to rough terrain
while keeping the main base levelled, and the multi-contact
nature of quadrupeds lend then some inherent robustness
not shared by bipedal robots. However, the multi-contact
interaction with its environment, combined with the high
dimensionality of such systems, makes the modeling and
control of such robots challenging. This has led to a
greater reliance on clever heuristics and lower-order models
when developing methods for control. As a result, progress
has been made predominantly in simulations and in real-
world experiments without a corresponding mathematical
analysis or proof of theoretical stability. However, in recent
years we have seen both increases in computational power
and a greater understanding of and ability to exploit
the structure of the control problem. As a result, it is
increasingly feasible to utilize the full kinematic, and
in some cases dynamical, models of the robot in offline
and online methods for control. However, the constrained
nature of these systems often leads to phases of the gait
in which the ground contacts render the system dynamics
overactuated. This complicates the control problem by
making the series of inputs that correspond to a desired
system behavior non-unique.
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Fig. 1. Photo of the sprawling quadrupedal robot ASTRo

Several approaches have been taken in recent years to in-
corporate more detailed knowledge of the system dynam-
ics into the control of quadrupedal robots. One popular
avenue through which this has been explored is the control
paradigm of model predictive control (MPC). While cer-
tain methods such as Di Carlo et al. (2018) have opted for
fairly reduced-order models in order to yield linear MPC
control schemes, others have attempted to more fully cap-
ture the complexities of the system dynamics. Neunert
et al. (2018) utilize a full-order nonlinear model of the
robotic system to produce a nonlinear model predictive
control (NMPC) scheme. One of the advantages of this
method is that the choice of gait pattern is also subject
to online optimization, which is achieved through using
a smooth approximation of the ground contact forces. In
Minniti et al. (2022), a system model using the full kine-
matics and the dynamics of the base is utilized in an adap-



tive NMPC scheme. The scheme produces a state-feedback
controller that asymptotically stabilizes the system to a
desired trajectory in the presence of modeling errors. A
quadratic programming (QP)-based whole body controller
(WBC) is used to calculate the joint torques to track the
desired accelerations and contact forces.

Another approach is to incorporate a high-fidelity robot
model into an offline optimization problem. An example
of this approach is presented in Ma et al. (2019). Here,
the optimization problem describes a closed-loop system
subject to a parametrized controller. The result of the
optimization is a set of parameters define a closed-loop
controller. Thus, no auxiliary control frameworks such as a
WBC are needed to track the returned optimal trajectory.
One benefit is that in contrast to e.g. a WBC-scheme,
which may often require solving an optimization problem,
the resulting controller here often has a much simpler
structure. Specifically, the controller incorporated in Ma
et al. (2019) is an input-output linearization controller,
which exhibits properties such as Lipschitz continuity
and continuous differentiability that may be important
for stability analysis. The closed-loop system behavior is
shown to be exponentially orbitally stable (EOS).

Finally, there have been some efforts in the later years to
capture complex dynamics and scenarios without resorting
to high-fidelity explicit modeling. Notably, in Miki et al.
(2022), a method is presented utilizing deep reinforcement
learning to produce an end-to-end model-free locomotion
controller. The controller learns the most efficient trade-
off between exteroception and proprioception for a wide
range of scenarios. The empirical results of the paper show
the robot traversing a mountain hiking route to the top
faster than the nominal tourist traversal time.

While several of the above-mentioned methods yield good
empirical results, most of them do not have theoretical
guarantees for performance in the form of stability proofs.
Even in Minniti et al. (2022), where a proof of convergence
to a nominal trajectory is shown, this holds only for the
simplified model. Also, stable trajectories for the span
of the MPC horizon do not guarantee the generation of
feasible, stable trajectories in the long run. In this respect,
the controller presented in Ma et al. (2019) seems to have
a clear advantage: The synthesized controller stabilizes the
full dynamics exponentially to a submanifold of the state
space, which again contains an EOS orbit.

However, the method as described does not cope satisfac-
torily with the following challenge: During some phases of
a gait cycle, the robot has two legs in contact with the
ground. During these phases the robot is over-actuated,
and there is an infinite set of inputs that will result in ex-
actly the same acceleration. Ma et al. (2019) handles this
problem by disabling one actuator in such cases, returning
the system to a state of non-overactuation. This is not nec-
essarily a satisfying solution. Firstly, the choice of which
actuator to disable is not explicitly justified, and it is not
clear what method one would use to make this decision.
Secondly, the analogy would be for a human standing on
two legs to disable its thigh muscles to avoid overactua-
tion, which is not obviously the most robust nor energy-
efficient answer to the question of torque-allocation. One
way to handle this issue could be to simply opt for e.g.

a QP-based WBC, which is capable of choosing from this
set of possible inputs subject to some objective, e.g. min-
imization of contact forces or torques. However, the sim-
ple, transparent structure of a closed-form controller would
then be lost. Moreover, properties such as Lipschitz con-
tinuity are not immediately present in such kinds of con-
trollers, which may interfere with the stability analysis.

In this paper, we modify the method presented in Ma et al.
(2019) to achieve point-wise optimal (in a least-squares
sense) control allocation for a given desired output trajec-
tory. Specifically, we alter the control structure to allow
for a greater number of actuators than actuated degrees of
freedom (DOFs). Thus, instead of removing the resulting
ambiguity in the choice of inputs by disabling the super-
fluous actuators, our controller utilizes this ambiguity to
choose the smallest of the inputs which realize the output
trajectory. As in Ma et al. (2019), the resulting closed-loop
system behavior exhibits exponential stability of the out-
puts, and exponential orbital stability of the full system
state modulo horizontal position. Furthermore, the resul-
tant torque expenditure is point-wise less than or equal to
the torque expenditure of the previous method, without
requiring any modification of the system trajectories. A
simulation study is presented, and this demonstrates that
the torque reduction is fairly substantial in certain cases,
as is the reduction in energy expenditure that follows.

The paper is organized as follows. In Section 2 we briefly
describe the dynamic system formulation. In Section 3
we first describe the optimal control formulation and the
time-varying input-output linearization scheme as is used
in Ma et al. (2019), as well as the method for exponential
stabilization, which we build upon. Then, we present the
modified controller which readily handles overactuated
phases of the gait. We then present simulation results
illustrating the proposed method and showing the stability
and energy-expenditure in Section 4. Finally, in Section 5
we present the conclusions and discuss future work.

2. SYSTEM MODELING

In this section, we briefly describe the model of the system.
The robotic system to be modeled is the quadrupedal
robot ASTRo, short for Articulated Sprawling Tetrapod
Robot, see Fig. 1. The robot has a floating base which is
not directly actuated, as well as four legs, each with three
actuated joints. Each leg first has a hip link connected
to the base by a joint whose rotational axis is normal to
the dorsal plane. Then, the upper and lower leg links are
connected in series with joints whose rotational axes lie in
the dorsal plane of the robot. The base has 3 positional and
3 orientational DOFs, with the orientation parametrized
by Tait-Bryan angles, while each leg has 3 joints. In total,
this results in 18 DOFs for the system. The generalized

coordinates become q =
(
p⊤
b ,ϕ

⊤
b ,θ

⊤
legs

)⊤
, where pb and

ϕb represent the position and orientation of the base, while
θlegs represents the joint angles of the legs. The following
transcription of the ASTRo robot into a hybrid dynamical
system (HDS) is based on work found in Hereid et al.
(2018); Ma et al. (2019), but there performed respectively
for a bipedal and mammalian quadrupedal robot.

2.1 Hybrid Dynamical System Formulation

A walking robot can be described as a HDS. Adhering to
the formulation in Hamed et al. (2019), the HDS can be



described by a set of continuous system dynamics FG =
{(fv, gv)} on a set of continuous domains D = {Dv} so
that ẋv = fv(xv) + gv(xv)uv where xv is the state and uv

is the input, and (xv,uv) ∈ Dv. Each domain and system
of equations correspond to a vertex v ∈ V of a graph
Λ = (V, E), with E being the set of edges. In our case we

denote the state xv = (q⊤
v , q̇

⊤
v )

⊤. We define the successor
function µ : V → V so that v2 = µ(v1) if there is an edge
(v1 → v2) ∈ E . Transitions between domains are governed
by a set of guards S =

{
S(v→µ(v))

}
(v→µ(v))∈E and discrete

dynamics ∆ =
{
∆(v→µ(v))

}
(v→µ(v))∈E . Each guard is a

surface in Dv so that a transition occurs from v to µ(v)
when xv ∈ S(v→µ(v)). The transition occurs according to
xµ(v) = ∆(v→µ(v))(xv).

2.2 Continuous dynamics and constraints

We introduce the index set Ilegs = {fl, rl, fr, rr} and refer
to the vector of joint angles for leg i as θi, e.g. θfl for the
front left leg. Furthermore, the robot has some of its legs
in contact with the ground at any given time, encoded by
the index set Ic ⊆ Ilegs. We here model the feet as point
feet, and assume a positional no-slip condition and zero
rotational friction. The first is a standard assumption in
the literature, the second is a modeling choice. In Hereid
et al. (2018) a rotational no-slip condition on the surface
normal axis is enforced as well. However, the frequent
multi-contact phases and the sprawling configuration is
likely to make such a condition too restrictive for our
robot due to the alignment between the hip joint rotational
axis and the surface normal, which is not present in
the mammalian configuration. The no-slip conditions are
described by a vector of kinematic constraints

gc(q) = vec
(
{pi(q)− pi(q(0)) = 0}i∈Ic

)
(1)

with pi(q) denoting the position of the point-foot i in the
world frame. From the Euler-Lagrange equation we get our
equations for the constrained nonlinear dynamical system:

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+ J⊤
c (q)λ (2a)

Jc(q)q̈+
∂

∂q
(Jc(q)q̇) = 0 (2b)

where B =
[
0⊤
6×12, I12

]⊤
is the actuation matrix, D(q) is

the mass matrix, C(q, q̇) is the Coriolis matrix, and G(q)
represents the potential terms. The Lagrange multipliers
of the constraint forces are denoted by λ, while Jc(q) =
∂
∂qgc(q). We may re-arrange these equations to the ex-

plicit, control-affine form assumed in the HDS formulation:
ẋv = fv(xv) + gv(xv)uv (3)

2.3 Discrete dynamics and transitions

Each discrete transition between subsystems represents
either the landing or lift-off of a foot. For transitions
that correspond to lift-offs, the discrete dynamics are
simply the identity. For transitions corresponding to feet
hitting the ground, however, we assume a perfectly plastic
impact; this is a typical choice in the literature to avoid
the identification of parameters related to elastic impact
(Grizzle et al., 2014, p. 12). This implies that there is no
abrupt change in q, but the velocity of the impact foot
immediately becomes 0. From this and the conservation of
momentum, we get the discrete dynamics

∆(v→µ(v))(xv) =

(
qv

q̇v +D−1(qv)Jµ(v)(qv)λimpulse

)
(4)

for impact, where λimpulse is the intensity of the contact
impulse required to set all foot velocities to 0. For lift-off,
the dynamics simply become ∆(v→µ(v))(xv) = xv.

2.4 Guards and admissible domain

For each vertex, the admissible domain D is described
as the states satisfying a set of constraints. Firstly, there
are constraints relating to the contact forces, denoted
vv(qv, q̇v)λv(qv) ≥ 0. Specifically, the contact force must
not exit the linearized friction cone so as to not slip.
Secondly, there are constraints independent of the contact
forces. We denote these as hv(qv, q̇v) ≥ 0. Here, we require
the position of all swing feet to be greater than 0, i.e.,
above the ground. These constraints are summarized as

Av =

[
vv(qv, q̇v)λv(qv)

hv(qv, q̇v)

]
≥ 0 (5)

Each guard is the subset of the boundary of the domain,
and a transition occurs when the state is about to exit the
domain through it. Thus, for a select element H(v→µ(v))

from (5), we may define a corresponding guard as

S(v→µ(v)) =

{
(qv, q̇v,uv)

∣∣∣∣ H(v→µ(v))(qv, q̇v) = 0

Ḣ(v→µ(v))(q
−
v , q̇

−
v ) < 0

}
(6)

with Ḣ(v→µ(v))(q
−
v , q̇

−
v ) denoting the left hand derivative

with respect to time. For transitions corresponding to a
foot lift-off, H(v→µ(v)) is the normal component of the con-
tact force of the lift-off foot. For transitions corresponding
to an impact, H(v→µ(v)) is the impact foot height.

3. METHODS

In this section we briefly describe the methods we build on
from Ma et al. (2019), before we introduce our suggested
modification to handle overactuated phases.

3.1 Offline optimal control

As in Ma et al. (2019) we use the Fast Robotics Optimiza-
tion and Simulation Toolkit (FROST), first presented in
Hereid and Ames (2017), to perform offline optimal control
of the HDS described in Section 2. For the sake of the op-
timization problem each domain has only one possible suc-
cessor, and the domains in this cycle determines the gait
pattern. The duration of each phase is subject to optimiza-
tion. Periodicity is enforced by the boundary condition

x(t0) + (tf − t0)vdes,xy −∆vf→µ(vf )(x(tf )) = 0 (7)
where vf is the final vertex of Λ, and vdes,xy is nonzero in
the first two elements and describe the desired horizontal
velocity. t0 and tf denote the initial and final times.

FROST utilizes a direct collocation transcription scheme
and pre-compiled symbolic representations of constraints
to make optimization over high-dimensional and highly
complex systems computationally feasible. The framework
is designed to incorporate control laws into the opti-
mization problem itself, so that solution contains a set
of controller parameters α∗ which define a control law
u(t,x,α∗). Please see Hereid et al. (2018) for a detailed de-
scription of FROST. The objective function is in this case
chosen as the sum of the squared 2-norm of torque expen-
diture, divided by the period of the resulting gait. The divi-
sion is done so as to avoid the solver favoring shorter gaits.



The discretized optimization problem then becomes

min
{xk},{uk},{αk},{tk}

1

tf − t0

∑
k

u⊤
k uk

s.t.

System dynamics as per (2) and (4)(transcribed)

Chosen control law u(t,x,α)

State constraints including (5)

Boundary conditions (7)

(8)

where k ∈ 0 . . . N − 1 is the discretization node index, N
being the number of discretization nodes.

3.2 IO-linearization and zero-dynamics

As in the case of Ma et al. (2019), the controller we
incorporate is an input-output linearization controller.
Consider the system (3) with n states and m inputs. We
now add an output ya(x) = h(x) of dimension ny, which
we denote the actual output. We then define yd(t,α),
a time-varying vector of desired outputs. Following Ma
et al. (2019), these are described as 4th-order Bézier
curves, parametrized by α. Lastly, we define y(t,x,α) =
ya(x)− yd(t,α) so that y(t,x,α) = 0 whenever ya(x) =
yd(t,α). The behavior of y(t,x,α) is referred to as the
output-dynamics, while the behavior of the system when
y(t,x,α) ≡ 0 is denoted the zero-dynamics.

As described in Henson and Seborg (1997), if the system
has a well-defined vector relative degree {ri}i∈1...ny

, it

may be transformed into an equivalent system where a
subset of the states are the outputs of the original system
along with their derivatives up to ri. We may now define

yr ≜
(
y
(r1−1)
1 , . . . , y

(rny−1)
ny

)
. In order to achieve the linear

output-dynamics ẏr = v, given the assumption of well-
defined relative degree, we choose the input u to be
u(t,x,α) = A−1(x)

(
−b(x) + yd,r(t,α) + v

)
(9a)

where

b(x) =
(
Lr1
f h1(x), . . . , L

rny

f hny
(x)

)⊤
(9b)

yd,r(t,α)=
(
y
(r1)
d,1 (t,α), . . . , y

(ri)
d,i (t,α)

)⊤
(9c)

A(x) =

 Lg1
Lr1−1
f h1(x) . . . Lgm

Lr1−1
f h1(x)

...
. . .

...

Lg1
L
rny−1

f hny
(x) . . . Lgm

L
rny−1

f hny
(x)

 (9d)

We refer to A(x) as the decoupling matrix. The full sets
of equations can be found in e.g. Henson and Seborg
(1997, pp. 160-164), although we here express the output-
dynamics in original coordinates in the interest of brevity.

We opt for an ambling gait where two legs are in contact
with the ground at any point, and as such the system
has 11 actuated DOFs (all leg joints with the constraint
of constant distance between stance legs). The method
requires an equal number of outputs and actuated DOFs
(Hereid et al. (2018)). In the interest of a most direct
comparison with the method of Ma et al. (2019), we choose
the leg joints except the rear stance hip pitch as outputs.

3.3 Exponential Orbital Stabilization of full state

Although the IO-linearization controller stabilizes the
output-dynamics exponentially, the system as a whole may
still be unstable. It is desirable that the closed-loop sys-
tem has an exponentially stable orbit in the state modulo

the horizontal position, as the robot should move forward.
The stability analysis of an orbit can be performed by con-
sidering the state trajectory at intersections with a trans-
verse surface as a discrete dynamical system, described by
a Poincaré map. The orbit will be EOS when the spectral
radius of the linearization of the map around the point of
intersection is less than 1 (Hamed et al., 2015).

As in Ma et al. (2019), we now consider the outputs
y in the optimized controller as linear combinations
of system states and corresponding optimal trajectories,
parametrized by weights θ, i.e. y(t,x,α∗,θ). The outputs
chosen during gait generation gives our initial guess θ0.
We then formulate the problem of exponential orbital sta-
bilization as a bilinear matrix inequality-constrained op-
timization problem in θ. Solving this optimization prob-
lem leaves us with a set of weights θ∗ determining
y(t,x,α∗,θ∗) which makes the resulting gait EOS (mod-
ulo horizontal position). See Hamed et al. (2019, 2015) for
further details and proof of the resulting stability.

3.4 Over-actuated input-output linearization

In order forA(x) in (9a) to be invertible we must havem =
ny. Now, consider the case where m > ny, i.e. the robot
is overactuated. ASTRo, which is a quadrupedal robot,
will typically have two stance feet during some phases of
a gait. During these phases the number of outputs, which
must equal the number of actuated DOFs, is 11, while
m = 12. As a result, the output-dynamics of the IO-
linearized system are over-actuated. In Ma et al. (2019)
this discrepancy is resolved by disabling one of the inputs,
so that m = 11. We here suggest a different approach.

We will assume that the now non-square A(x) ∈ Rny×m

has constant rank ny, which is just to say that at any point
in time there is a subset of inputs which can be removed
to recoup the system properties assumed in the case where
ny = m. We can choose the feedback-law as

u(t,x) = A+(x)
(
−b(x) + yd,r(t) + v

)
(10)

where (·)+ denotes the Moore-Penrose pseudoinverse
(MPP), to again achieve ẏr = v as desired.

Most importantly, (10) yields exactly the linear, decou-
pled output-dynamics in the overactuated case, as (9a)
does in the non-overactuated case. This is due to the sys-
tem of linear equations which A+ solves being underdeter-
mined rather than overdetermined, and thus admitting of
infinitely many exact solutions.

Secondly, recall that the matrix A(x) is assumed to have
the constant rank ny. As a result, the MPP is a continu-
ous and continuously differentiable function of the original
matrix (Golub and Pereyra, 1973). Thus, assuming conti-
nuity and continuous differentiability of A(x) with respect
to x, these properties also hold for A+(x). As a result, the
control law u(t,x) is continuously differentiable in x for
an appropriate choice of v, a typical choice being a linear
combination of elements from y and their derivatives up
to respective relative degree.

Finally, as the MPP characterizes the least-squares solu-
tion to an under-determined linear system, the modified
controller gives the point-wise smallest control signal that
results in the desired output-dynamics in the least-squares
sense. In the case where the input signal is a torque, this



0.3 0.302 0.304

m

-0.1

0

0.1

m
/s

Base Z-position

-0.05 0 0.05

rad

-0.5

0

0.5

ra
d

/s

Base Roll

Simulated

Optimized

-10 -5 0 5

rad 10
-3

-0.2

-0.1

0

ra
d

/s

Base Pitch

-0.1 -0.05 0 0.05

rad

-2

0

2

ra
d

/s

Base Yaw

Fig. 2. Phase portraits for base of optimized and simulated
ambling gait. Red dots signify initial values.

results in a controller which utilizes all available actuators
to minimize torque expenditure along the trajectory.

The minimization in the least-squares sense is also particu-
larly desirable for the following reason. The energy expen-
diture of electric actuators can be divided into mechanical
energy and Joule heating. The Joule heating, which was
in the case of Seok et al. (2015) found to account for 75%
of expended energy, is well approximated as proportional
to the square of applied torque. Thus, it is expected that
minimizing the applied torque in a least-squares sense will
reduce the expended energy as a result.

It should be noted here that the identical closed-loop sys-
tem behavior in general holds only with respect to the
output-dynamics; the effects on the unobservable states
are not discussed. However, the design of the controller
in the conventional case is performed only so as to expo-
nentially stabilize the output-dynamics, and the stability
of the zero-dynamics is subject to further analysis in any
case. Just as in the case of Ma et al. (2019), the post-
processing described in Section 3.3 ensures that the dy-
namics are EOS along the zero-dynamics manifold.

4. RESULTS

We now present the results with regards to energy
and torque expenditure, where we compare between the
method as described in Ma et al. (2019) and the method
with our modified controller as described in Section 3.4.

We solve the optimization problem posed in (8), using
0.2m s−1 as the forward velocity in the boundary condi-
tion, and choosing the HDS graph to produce an ambling
gait seen in the diagram in Fig. 4. The controller in (10) is
used during optimization. A post-processing of the outputs
is performed as described in Section 3.3. During this pro-
cedure the spectral radius of the linearized Poincare map
of the orbit goes from 1.2024 to 0.6267, rendering the or-
bit EOS. The resulting set of parameters α∗ and θ∗ define
our outputs y for the controller. The gait is then simulated
for 500 gait cycles using FROST. The phase portraits for
the optimized and simulated state trajectories are shown
in Figs. 2 and 3. Trajectories for the x- and y-positions do
(by design) not constitute orbits and are omitted.

The system is simulated using both the method proposed
by Ma et al. (2019), where 11 actuators are utilized, and
with the controller (10) proposed in Section 3.4, allowing
12 actuators to be utilized. In Table 1 the peak and
root mean square (RMS) torques, as well as the cost
of transport (CoT) are reported. The CoT is defined as
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Fig. 4. Diagram for one cycle of an ambling gait.
E

mgd where E is the expended energy, m and g are the

mass of the robot and the gravitational constant and
d is the total distance traveled. The following choices
for modeling energy expenditure are made: As in Seok
et al. (2015), we calculate the power expenditure of each
actuator as the sum of expended mechanical power and
power lost to heating effects. For the mechanical energy, we
choose a simple model with no recuperation of absorbed
mechanical energy through e.g. regenerative braking. We
thus calculate expended mechanical power as Pmec =
max (τω, 0) for each motor, where τ is the joint torque and
ω is the angular velocity. The power lost to heating effects
as a function of the joint torque is written as Pheat =

R
(

τmotor

Kt

)2

, where Kt is the motor torque constant, R is

the resistance of the motor and τmotor is the motor torque.
The motor torque is defined as τmotor =

τ
N where N is the

gear ratio between the motor and the joint. For calculating
heating effects as a function of joint torques, we require
properties of a specific actuator which is not a part of the
model used in simulation. In the interest of performing
these calculations with realistic parameter values, we base
ourselves on the RMD-X8-Pro-H from MyActuator, with
an additional gear ratio of 6:1, i.e.N = 6. The actuator has
a Kt = 0.29NmA−1 and an R = 0.55Ω. The gear ratio is
chosen to bring the torque trajectories within the nominal
torque operating range of the actuator while retaining
the resulting angular velocities within the geared angular
velocity operating range. The CoT can then be written

CoT =
1

mgd

∫ tf

t0

∑
actuators

(Pmec(t) + Pheat(t)) dt (11)



# Method CoT Peak torque Torque RMS
Ma et al. (2019) 6.389 83.97Nm 9.659Nm
Proposed 4.532 66.55Nm 7.932Nm

Table 1. Performance metrics for previous and
proposed method

0 0.2 0.4 0.6

t [s]

0

5

10

15

T
o

rq
u

e
 [

N
m

]

Front Left Hip Yaw

Previous method

Proposed method

0 0.2 0.4 0.6

t [s]

0

20

40

60

T
o

rq
u

e
 [

N
m

]

Front Left Hip Pitch

0 0.2 0.4 0.6

t [s]

0

20

40

60

T
o

rq
u

e
 [

N
m

]

Front Left Knee Pitch

0 0.2 0.4 0.6

t [s]

0

5

10

T
o

rq
u

e
 [

N
m

]

Rear Left Hip Yaw

0 0.2 0.4 0.6

t [s]

0

10

20

30

T
o

rq
u

e
 [

N
m

]

Rear Left Hip Pitch

0 0.2 0.4 0.6

t [s]

0

20

40

60
T

o
rq

u
e

 [
N

m
]

Rear Left Knee Pitch

Fig. 5. Plots of absolute value of torques for left leg
actuators for two consecutive gait cycles.

As we can see in Table 1, our proposed method yields a
fairly substantial reduction in both the CoT, peak torque
and RMS torque. The CoT is reduced by ≈ 29.1%. The
RMS torque is reduced by ≈ 17.9%, and the peak torque is
reduced by ≈ 20.7%. This indicates that the modification,
in addition to avoiding arbitrary choices of which inputs
to disable, may actually lead to fairly large energy savings
in practice, without at all having to modify the output
trajectories of the system.

In Fig. 5, in order to investigate the differences in the
torque profiles more closely, we have plotted the absolute
value of the torques of the left leg actuators for both meth-
ods. Due to the symmetry of the ambling gait, the right
leg actuator torques will be identical but phase-shifted by
half a gait cycle. As can be seen, the rear hip pitch torque
is much greater for our method compared to the method
proposed in Ma et al. (2019). This is to be expected: In
the original method the rear hip pitch actuators are dis-
abled during stance phases to avoid overactuation. Thus,
the rear hip pitch actuators are only active during swing
leg phases, in which the actuator only lifts the leg off the
ground. The front hip pitch actuator is also seen to be
more active for the proposed method, although the pic-
ture is not as clear since the method from Ma et al. (2019)
exhibits significantly higher peak torques. The increased
torque use in hip pitch actuators in our method, however,
is seen to lead to substantially lower torque expenditure in
all knee actuators compared to the method from Ma et al.
(2019). This even distribution of load-bearing between ac-
tuators, along with heat-related power losses depending on
the square of torque expenditure, explains the significant
reduction in CoT.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a modification to an ex-
isting method for controller synthesis through offline non-
linear optimal control. The modification allows the con-
troller to better utilize all available inputs in overactuated
scenarios. Simulations indicate that the savings in torque
expenditure and CoT may be quite significant in certain
cases when compared to the original method, without re-
quiring any modification of the system trajectories.

Future work includes experimental validation of the torque
reduction which we have here observed in simulations, as
well as exploring further modifications to the controller
with the aim of increasing the robustness.
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