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Abstract
Purpose Since the introduction of the molecular definition of oligodendrogliomas based on isocitrate dehydrogenase (IDH)-
status and the 1p19q-codeletion, it has become increasingly evident how this glioma entity differs much from other diffuse 
lower grade gliomas and stands out with longer survival and often better responsiveness to adjuvant therapy. Therefore, apart 
from using a molecular oligodendroglioma definition, an extended follow-up time is necessary to understand the nature of this 
slow growing, yet malignant condition. The aim of this study was to describe the long-term course of the oligodendroglioma 
disease in a population-based setting and to determine which factors affect outcome in terms of survival.
Methods All adults with WHO-grade 2 oligodendrogliomas with known 1p19q-codeletion from five Scandinavian neu-
rosurgical centers and with a follow-up time exceeding 5 years, were analyzed regarding survival and factors potentially 
affecting survival.
Results 126 patients diagnosed between 1998 and 2016 were identified. The median follow-up was 12.0 years, and the 
median survival was 17.8 years (95% CI 16.0–19.6).
Factors associated with shorter survival in multivariable analysis were age (HR 1.05 per year; CI 1.02–1.08, p < 0.001), 
tumor diameter (HR 1.05 per millimeter; CI 1.02–1.08, p < 0.001) and poor preoperative functional status (KPS < 80) (HR 
4.47; CI 1.70–11.78, p = 0.002). In our material, surgical strategy was not associated with survival.
Conclusion Individuals with molecularly defined oligodendrogliomas demonstrate long survival, also in a population-based 
setting. This is important to consider for optimal timing of therapies that may cause long-term side effects. Advanced age, 
large tumors and poor function before surgery are predictors of shorter survival.
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survival such as "progression free survival" (PFS) have 
been used to circumvent this problem, but the correlation 
between PFS and actual survival may be very weak [4–8]. 
Since oligodendrogliomas are rare tumors, large cohorts 
with detailed individual level data are needed but still few 
[9]. Other studies with relative long follow-up may reflect 
the clinical course for patients selected for surgery in spe-
cialized centers [7, 10].

To address these difficulties, we performed a long-term 
multicenter study including only patients with molecu-
larly defined grade 2 oligodendrogliomas, with the aim to 
describe the course of the disease and to determine prognos-
tics in a population-based context.

Materials and methods

Study population

All adults (aged 18 or above) with a known 1p19q-codeleted 
oligodendroglioma WHO grade 2 diagnosis and with a mini-
mum follow-up time of 5 years (for non-deceased patients), 
were included from five Scandinavian neurosurgical centers 
with inclusion periods between 1998 and 2016 (N = 126). 

Introduction

Oligodendrogliomas are usually slow-growing primary 
CNS tumors that often give rise to first-time seizures in 
young to middle-aged adults. The tumors are classified as 
diffuse lower grade gliomas (LGG) together with isocitrate 
dehydrogenase (IDH)-mutated astrocytomas [1]. The tra-
dition for treating oligodendrogliomas and astrocytomas 
together in the scientific literature is, however, likely to 
have blurred important differences between the respective 
subgroups.

The advent of molecular definitions in tumor classifica-
tion has allowed clear demarcations between subtypes and 
elucidated important differences in anatomical preferential 
locations, clinical course, treatment responses and progno-
sis. For oligodendrogliomas, predictors for an unfavorable 
clinical course are particularly at risk for being concealed 
in merged analyses due to dominant effects from tumor 
subtypes with shorter time to event, such as astrocytomas 
and IDH-wildtype (IDH-wt) LGG, all being part of older 
LGG cohorts [2]. Another shortcoming, common to most 
publications with molecular data, is that the follow-up 
time of patients with oligodendrogliomas is too short to 
adequately assess survival [2, 3]. Surrogate markers for 
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Cases were retrieved from histopathological records of 
WHO grade 2 tumors with inclusion periods differing for the 
different centers but in all cases with a minimal follow-up 
period of 5 years and with a common end of studydate, Janu-
ary 1:st 2021. For details see Fig. 1. All centers serve defined 
geographical areas, which is why the material reflects an 
unselected oligodendroglioma patient population.

Data collection

Medical records and radiological images were used to 
identify patient-, tumor-, and treatment characteristics. 
Tumor localization was defined as the cerebral lobe mainly 
affected. Cases with more than one lobe clearly affected 
were classified as multi-lobar. Eloquent tumor location 
was described according to Sawaya [11]. Largest diameter 
referred to the largest diameter in MRI measured either 
in the axial, coronal or sagittal plane. Regarding initial 
surgical strategy, patients that were initially biopsied 
but resected within the first 3 months after biopsy, were 
defined as resected. Patients never resected or resected 
after more than 3 months after biopsy were classified as 
biopsied regarding initial surgical strategy. All tumors 
were histopathologically identified as low grade glio-
mas and molecularly defined through low-grade glioma 
related research, or in more recent years, IDH and 1p19q 
status were detected according to clinical practice in the 
respective institutions. IDH-mutation status was evaluated 
with immunohistochemistry for R132H, and sequencing 
was used in selected cases [12]. For 1p19q detection we 
accepted fluorescence in situ hybridization (FISH), mul-
tiplex ligation-dependent probe amplification (MLPA) 

and methylation analysis as described earlier [12, 13]. All 
cases were 1p19q-codeleted, but 20 tumors were lacking 
data on IDH mutational status, whereas two cases were 
assigned to the oligodendroglioma group based upon 
detection of 1p19q-codeletion in the absence of detected 
IDH-mutations.

Statistical analyses

Analyses were done with SPSS, version 28 or newer (Chi-
cago, IL, USA) or R [version 4.2.2 GUI 1.79 High Sierra 
build (8160)] and R studio (version 2022.12.0 + 353). 
Statistical significance level was set to p < 0.05. All 
tests were two-sided. Central tendencies are presented 
as means ± SD, or median with first and third quartile 
if skewed. Overall survival and median follow-up time 
were estimated by the Kaplan–Meier method. Uni- and 
multivariable Cox regression analyses were performed 
for survival. Assumptions for proportional hazards were 
verified. For the multivariable analysis, variables were 
chosen by perceived clinical relevance and statistical sig-
nificance in the unadjusted analysis. To avoid overloading 
the model, only variables associated at the p < 0.05 level 
in the unadjusted analyses were entered into the multivari-
able regression model. However, in a sensitivity analysis, 
also variables associated at the p < 0.1 were used for a 
separate multivariable model.

Kaplan–Meier curves with log rank tests were used for 
visualization of findings in survival analyses. Spearman´s 
rank correlation was used to check correlations between con-
tinuous covariates, independent t-test and Mann–Whitney 

Fig. 1  Flow chart depicting 
inclusion of 126 patients with 
1p19q-codeleted oligodendro-
glioma
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U-test were used to check correlations between categorical 
variables and covariates when normally distributed and non-
parametrically distributed respectively.

Results

In total 126 patients were included with a median follow-
up of 12.0 (CI 11.1–12.8) years (reversed Kaplan–Meier 
method). The median age at inclusion was 42.5 years, 
ranging from 20 to 78. The preoperative patient charac-
teristics, tumor data and treatment variables are presented 
in Table 1.

As shown in Table 1, the cohort was heterogeneously 
treated; 24 patients (19.0%) had early chemotherapy, 
45 patients (35.7%) had early radiotherapy, whereas 10 

Table 1  Basic clinical data in 1p19q-codeleted WHO grade 2 oligo-
dendroglioma patients, N = 126

Preoperative basic variables
Age, median (Q1:Q3) 42.5 (34.8:53.0)
Female, n (%) 52 (41.3)
KPS preoperatively, n (%)
 100 38 (30.6)
 90 54 (43.5)
 80 21 (16.9)
 70 11 (8.9)
 Missing 2

Focal deficit preoperatively, n (%) 24 (19.0)
Seizures preoperatively, n (%) 91 (73.4)
 Missing 2
Preoperative tumor variables
Max tumor diameter in mm, mean (SD) 56.3 (19.2)
 Missing 5
Main lobe affected n (%)
 Frontal 79 (62.7)
 Temporal 11 (8.7)
 Parietal 6 (4.8)
 Occipital 3 (2.4)
 Insular/BG 3 (2.4)
 Multilobar 24 (19)

Eloquence, n (%)
 Sawaya I 50 (40.3)
 Sawaya II 30 (24.2)
 Sawaya III 44 (35.5)
 Missing 2

Any CE, n (%) 31 (24.6)
 Tumor crossing midline, n (%) 27 (21.4)

Treatment variables
Initial surgical strategy, n (%)
 Biopsy 29 (23.0)
 Resection 97 (77.0)

Any resection during follow-up 111 (88.1)
Time to second procedure (months) median 

(Q1:Q3)
51.0 (24.3:85.7)

Re-operations
 0 70 (55.6)
 1 37 (29.4)
 2 12 (9.5)
 3 or more 7 (5.6)

Chemotherapy within 6 months n (%) 24 (19.0)
Type of chemotherapy within 6 months
 Temozolomide 10 (41.7)
 PCV 4 (16.7)
 CCNU 10 (41.7)

Ever chemotherapy, n (%) 80 (63.5)
Type of chemotherapy first line, n (%)
 Temozolomide 37 (29.4)
 PCV 24 (19.0)

Table 1  (continued)

 CCNU 18 (14.3)
 Type of chemo missing 1 (0.8)
 No chemo during follow-up 46 (36.5)

Radiotherapy within 6 months 45 (35.7)
Ever radiotherapy 90 (71.4)
Survival
 Deceased, n (%) 37 (29.4)
 Survival years, median (95%CI) 17.8 (16.0–19.6)

KPS denotes Karnofsky Performance Status; PCV, procarbazine 
hydrochloride, CCNU (lomustine), and vincristine sulfate

Fig. 2  The median overall survival for all 1p19q-codeleted WHO 
grade 2 oligodendroglioma patients was estimated to 17.8 years (95% 
CI 16.0–19.6)
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patients (7.9%) had both radio-and chemotherapy within 
6 months. All patients but 15 (11.9%) underwent resective 
surgery at some point during the follow-up-period.

Survival

The median survival time was 17.8 years (Fig. 2).

Predictors for survival

In Cox regression analysis, factors affecting survival were 
examined (Table 2).

In univariable analyses, the parameters increased age, 
impaired functional status (KPS < 80), preoperative neu-
rological deficit, tumor crossing the midline of the brain 
and larger tumor diameter, were correlated with reduced 
survival. In adjusted analysis, only increased age (HR 
1.05; CI 1.02–1.08, p < 0.001), larger tumor diameter (HR 
1.05; CI 1.02–1.08, p < 0.001) and KPS < 80 (HR 4.47; CI 
1.70–11.78, p = 0.002) remained associated with shorter 
survival. A sensitivity analysis including all variables 
associated with survival at a p < 0.1 level did not change 
the results (Supplementary Table S1), nor did a corre-
sponding multivariable model that also included "initial 
surgical strategy" (data not shown).

Kaplan–Meier curves are presented for age and tumor 
size strata to illustrate findings visually (Fig. 3).

There was no statistically significant correlation 
between age and tumor size (Spearman’s rho = 0.13, 
p = 0.16). Nor was the difference in median age and mean 
tumor size significant for patients with KPS < 80 compared 
to those with KPS ≥ 80 (age 51.0 vs. 42.0 years, p = 0.50, 
tumor diameter 63.6 vs. 55.8 mm, p = 0.20).

Sub-analyses were made assessing early chemo- and 
radiotherapy in groups stratified by risk (Supplementary 
Fig. S1). In the low-risk stratum (age < 45 and tumor 
size < 50 mm) there were only three events (n = 28). In 
the high-risk group (age ≥ 45 and tumor size ≥ 50 mm) 
(n = 97), there was no statistically significant difference 
in survival comparing early chemo- or radiotherapy with 
delayed or absent such therapy (Supplementary Fig. S1).

Discussion

In this population based multi-center observational study 
with long-term data of WHO grade 2 oligodendrogliomas, 
the median survival was almost 18 years. During this long 
follow-up, patients were heterogeneously treated, and most 
patients underwent multiple treatment interventions. Only 
increased age, larger tumor diameter and KPS < 80 cor-
related with impaired survival in multivariable analyses.

ba

Fig. 3  Kaplan–Meier curves illustrating impaired survival in a older patients (p = 0.0001) and b patients with larger maximal tumor diameter 
(p = 0.00011)
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Baseline characteristics

In line with previous studies of oligodendrogliomas, the 
patients in the present cohort were somewhat older at 
diagnosis than what is typically reported for LGG cohorts 
that include a mixture of IDH-mutated astrocytomas and 
oligodendrogliomas. Also, more males than females were 
affected, the vast majority had seizures preoperatively, and 
the tumors had a predilection for frontal lobe engagement 
[10, 14–20]. We believe that this congruence with earlier 
observations supports the external validity of the present 
study.

Prognostic factors

As seen in our results, and as previously known from earlier 
studies with molecularly defined oligodendrogliomas, the 
survival times clearly exceed those of other diffuse gliomas 
[10, 17, 21, 22]. Publications on oligodendrogliomas lacking 
molecular data have probably been subjected to considerable 
misclassification and therefore also to confounding effects 
from IDH-wt tumors and IDH-mut astrocytomas [23–25]. 
More recent publications with separate analyses for the dif-
ferent molecular tumor subtypes, on the other hand, are often 
disadvantaged by short follow-up times in relation to the 
expected survival time [10, 14, 16–18, 23, 26–35].

Bearing these limitations in mind, the present study 
together with several earlier studies identify older age as 
a predictor for poor survival also in molecularly defined 
cohorts [23, 28, 33, 35–37]. The correlation was however 
not reported in another recent large cohort study [10]. Since 
higher age is associated with shorter survival also among 
healthy individuals and the median survival in our cohort is 
nearly 18 years, some patients may of course have died from 
unrelated causes.

Studies on 1p19q-codeleted tumors presenting data on 
pre-operative tumor size have almost consequently shown a 
correlation between larger tumor size and worse prognosis 
[10, 14, 17, 19, 34, 36, 38]. Nevertheless, in a large registry 
based study by Garton et al. no significant correlation was 
seen between tumor size and survival [23]. This conflicting 
result might derive from the potentially less reliable size data 
in the registry of the mentioned study.

The shorter survival associated with impaired perfor-
mance status (KPS < 80) seen in the current work is unsur-
prising and confirms earlier studies, even if it is not entirely 
clear whether it stands for advanced disease or serious co-
morbidities that were not adjusted for [7, 28].

Initial surgical strategy (biopsy vs. resection) did not sig-
nificantly affect survival in the present study. The strong 
correlation between Extent of resection (EOR)/Gross 
total resection (GTR) and survival often found in studies 
involving astrocytomas, seems to be less apparent (even 

if sometimes present) for patients with 1p19q-codeleted 
oligodendrogliomas [7, 10, 14, 17, 19, 26, 28, 29, 32, 39], 
although contrary results do exist [16].

There are also several oligodendroglioma studies with 
data from large American cancer registries (National Cancer 
Database/NCBD and SEER/Surveillance, Epidemiology and 
End Results) that have shown correlations between GTR 
and prolonged survival when compared to biopsy/no surgery 
[34, 35], especially in anaplastic oligodendrogliomas [23]. 
Conflicting results particularly for the role of subtotal resec-
tions (STR) among these studies, and in relation to other 
studies based on the same registries, have been reported, 
possibly due partly to different interpretations of the codes 
used for extent of resection [23, 29, 34, 35, 40, 41]. The less 
prominent effect of surgical resection in oligodendrogliomas 
may be due to data immaturity, since, in many studies, the 
number of events may come in single digits for the oligo-
dendroglioma subgroup [17, 18, 27, 31] or reflect only the 
first few years in a disease course expected to last for almost 
two decades [14, 29, 33]. It could also be that these tumors 
are more responsive to other treatment, affecting the overall 
surgical impact [21]. Also, in observational data with long 
follow-ups, patients may undergo multiple interventions at 
various time points, making it difficult to isolate effects of 
single treatment elements. Further, in studies like ours, that 
lack volumetric data, a therapeutic effect of surgery may 
not emerge as clearly as in those with quantified residual 
tumor volumes, where an assumed dose response relation-
ship would be possible to detect. In the present study, the 
category "resection" includes surgeries with any attempt of 
debulking surgery as well as complete resections due to lack 
of postoperative imaging in the earlier time-periods. Nev-
ertheless, in a recent study by Hervey-Jumper et al. [10] the 
association between residual tumor volume and survival was 
clear but not independent from preoperative tumor volume in 
molecularly defined oligodendrogliomas (unlike the case for 
astrocytomas). Despite long follow-up, data immaturity was 
a concern also in this publication [10], making conclusions 
difficult to draw when only 16.3% (31/190) of the patients 
with oligodendrogliomas were deceased in the largest cohort 
with the longest follow-up.

For WHO grade 3, 1p19q-oligodendrogliomas, an inter-
esting publication by Garnier et al. specifically addressed 
short-time survivors (cancer specific survival less than 
5 years) [36]. These patients differed in several ways from 
the classical survivors and were for example older (median 
age 57.4), more often presented with symptoms other than 
only seizures, were more often biopsied, and had a larger 
preoperative tumor volume (mean 186 cm3). Almost all the 
clinical factors characterizing the short-time-survivors of 
this study, were also found as predictors for impaired sur-
vival in the present study, at least in univariable analysis 
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(age, large tumor size, impaired cognition/neurological defi-
cit, engagement of midline structures).

We believe that the long survival times demonstrated in 
this publication are important to consider when deciding 
on the best timing of treatment in relation to the risk profile 
[42–45].

For example, high risk resections or early radiotherapy 
should be weighed up against the relatively long survival 
on group level, thus allowing for multiple reinterventions if 
needed later, postponing the risk for sequelae. However, the 
identified risk factors for shorter survival may be useful in 
decision making when considering pros and cons of different 
treatment options.

Limitations

The study is subject to all limitations inherent to a retro-
spective observational study including the inability to con-
clude causality from detected associations. As most patients 
underwent multiple interventions, the results should not 
be confused with the natural course of the disease. Also, 
the sample size of 126 patients, although one of the larger 
cohorts in the context of molecularly defined cases with indi-
vidual level data, is limited. Similarly, and as mentioned 
before, the median follow-up of 12 years may, even though 
probably longer than in any other molecular study, still be 
regarded as too short, considering the expected longevity 
of the analyzed cohort. Finally, volumetric data on tumor 
residuals would have increased the resolution with which 
the effect of surgery could be evaluated.

Conclusion

This long-term study of patient with heterogeneously treated 
1p19q-codeleted oligodendroglioma WHO grade 2 demon-
strates that the median survival approaches 20 years in a 
population-based setting. Further, increased patient age, 
lower functional status and larger preoperative tumor size 
were independently associated with impaired survival. Alto-
gether, these findings may be used to weigh risks and ben-
efits of treatment, especially considering potential long-term 
risks of early treatment.
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