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ABSTRACT 
       Accurate estimation of the wave field and subsequent 

vessel response prediction are vital for making crucial 

judgments on the safe and timely execution of marine 

operations. Decision support systems based on the Response-

Based Decision-Making (RBDM) methodology are still in the 

early stages due to the challenges in addressing the 

uncertainties in the environmental conditions and vessel 

computational models.  Therefore, this study offers a model 

tuning technique that utilizes the waves measured from an 

onboard X-band wave radar, wave buoy, and simultaneously 

measured vessel motions using an Inertial Measurement Unit 

(IMU), for applications in RBDM. For this purpose, full-scale 

wave and vessel response measurements were conducted using 

the NTNU research vessel Gunnerus on the west coast of 

Norway. The on-site directional wave spectra are obtained by 

processing the backscattered radar images using existing 

inversion schemes. Furthermore, the directional wave spectra 

are also derived from the nearby wave buoy measurements 

using the Maximum Entropy Method (MEM). The influential 

system variables in the vessel model that induce maximum 

variation to the response Quantities of Interest (QoIs) are 

quantitatively identified using probabilistic sensitivity indices. 

Out of the 31 system variables, only 14 were considered 

influential and subsequently tuned by minimizing the error 

between the measured and simulated response spectra. Heave, 

roll, and pitch modes were tuned and results exhibit superior 

agreement with the measured response spectra.  

 

      Keywords: Model tuning, X-band wave radar, Wave Buoy, 

Maximum Entropy Method, Sensitivity Study 

NOMENCLATURE 
      RBDM  Response-Based Decision Making 

      FFT       Fast Fourier Transform 

      MEM     Maximum Entropy Method 

      CoG       Center of Gravity 

      CO         Center of Waterplane area 

      CM        Center of Measurement axis 

       Xcg       Longitudinal coordinate of CoG 

       Ycg       Transverse coordinate of CoG 

       Zcg       Vertical coordinate of CoG 

       M       Vessel Mass at CO 

      𝐼44       Roll moment of Inertia at CO 

      𝐼55       Pitch moment of Inertia at CO 

      𝐼66       Yaw moment of Inertia at CO 
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      𝐵33
𝑣        Additional heave damping coefficient at CO 

      𝐵44
𝑣   Additional roll damping coefficient at CO 

      𝐵55
𝑣   Additional pitch damping coefficient at CO 

      𝐵33,𝑐𝑟
𝑣 Critical heave damping at CO 

      𝐵44,𝑐𝑟
𝑣 Critical roll damping at CO 

      𝐵55,𝑐𝑟
𝑣 Critical pitch damping at CO 

      𝑆𝑡33
𝑒   External heave stiffness at CO  

      𝑆𝑡44
𝑒   External roll stiffness at CO 

      𝑆𝑡55
𝑒   External pitch stiffness at CO 

      𝐴𝑚11
𝑒     External surge added mass coefficient at CO 

      𝐴𝑚22
𝑒     External sway added mass coefficient at CO 

      𝐴𝑚33
𝑒     External heave added mass coefficient at CO 

      𝐴𝑚44
𝑒     External roll added mass coefficient at CO 

      𝐴𝑚55
𝑒     External pitch added mass coefficient at CO 

      𝐴𝑚66
𝑒     External yaw added mass coefficient at CO 

      𝐹𝑟1
𝑒    External real surge excitation coefficient at CO 

      𝐹𝑖1
𝑒     External imaginary surge excitation coefficient at CO 

      𝐹𝑟2
𝑒    External real sway excitation coefficient at CO 

      𝐹𝑖2
𝑒     External imaginary surge excitation coefficient at CO 

      𝐹𝑟3
𝑒    External real heave excitation coefficient at CO 

      𝐹𝑖3
𝑒     External imaginary heave excitation coefficient at CO 

      𝐹𝑟4
𝑒    External real roll excitation coefficient at CO 

      𝐹𝑖4
𝑒     External imaginary roll excitation coefficient at CO 

      𝐹𝑟5
𝑒    External real pitch excitation coefficient at CO 

      𝐹𝑖5
𝑒     External imaginary pitch excitation coefficient at CO  

      𝐹𝑟6
𝑒    External real yaw excitation coefficient at CO 

      𝐹𝑖6
𝑒     External imaginary yaw excitation coefficient at CO  

 

1. INTRODUCTION 
 The presence of harsh environmental conditions poses a 

major challenge to the safe execution of marine operations. The 

traditional practice to estimate the weather window and limiting 

criteria for marine operations is through characteristic 

parameters of the environmental conditions. Contrastingly, 

setting limiting criteria based on the responses, also known as 

Response-Based Decision Making (RBDM), can facilitate 

superior decision-making for different kinds of marine 

operations. However, the realization of RBDM in a vessel’s 

onboard system is still at its early stage due to the challenges in 

addressing the uncertainties in the vessel computational model 

and the estimation of incoming wave conditions. Therefore, the 

proposed study aims to minimize the system uncertainties by 

tuning the computational vessel models in presence of 

measured waves and vessel responses. The tuned models can, 

then, be applied to the RBDM process. The technique is 

illustrated using the full-scale measurement campaign 

conducted using the Research Vessel (R/V) Gunnerus along the 

west coast of Norway. 

The tuning of vessel system parameters requires precise    

wave conditions at the site as input. Usually, the weather 

service providers issue forecasted wave spectra from phase-

averaged models on a Global grid. However, such wave 

modeling is usually associated with uncertainties. Therefore, a 

wave measurement technique must be employed for a precise 

determination of waves at the site. Waves can be measured on-

site by directly employing in-situ devices or measured remotely 

using remote-sensing techniques. The in-situ devices include 

wave-rider buoys – heave-roll-pitch, pressure sensors, etc. 

These devices measure the wave elevation, wave slopes, 

horizontal displacements, etc., from which a 1-Dimensional (1-

D) spectrum can be obtained [1]. Additionally, directional wave 

spectra can also be estimated using Maximum Likelihood 

Estimation (MLM), or by means of the Maximum Entropy 

Method (MEM) [2]. Waves can be measured along the satellite 

footprint using Synthetic Aperture Radars (SAR). SAR images 

can then be processed to retrieve the directional spectra [3]. 

Coherent or Non-coherent wave radars, positioned on top of a 

vessel or platform, can measure incoming waves [4]. 

Furthermore, the High-Frequency (HF) radars positioned along 

the coasts can be employed for the estimation of wave and 

current conditions [5]. The operational site, ease of deployment, 

and the available budget greatly determine the choice of a 

particular measurement technique. 

Once the true wave conditions at the site are measured, the 

computational system parameters are tuned using the measured 

vessel responses. Of the considered 31 system parameters, only 

some of them influence the responses to a great extent. Such 

influential parameters are identified through a probabilistic 

sensitivity study. Radhakrishnan et al. [6] investigated the 

sensitivity of the response RMS to parametric variations. 

Further, Radhakrishnan et al. [7] identified that the CoG and 

viscous Roll damping coefficient are influencing the Roll 

response considerably, and subsequently tuned those 

parameters using measurements from an operational offshore 

vessel. The sensitivity study was conducted with only 10 

system variables in those studies. However, in the present 

study, the sensitivity of the objective function is analyzed 

considering 31 system variables, and the influential variables 

are calibrated using simultaneous wave and response 

measurements.  

The paper is organized as follows: Sec. 2 describes the full-

scale experiments conducted in the vicinity of Ålesund, and 

procedures for deriving the directional spectra from in-situ 

measurement devices. Further, the theoretical background on 

vessel hydrodynamic analysis and computational model tuning 

is presented.  Sec. 3 introduces the practical implementation 

procedures in model tuning. The results of the probabilistic 

sensitivity study and the tuning results are presented and 

discussed in Sec. 4. Brief conclusive statements are given in the 

final section. 

 
2. THEORY AND METHODOLOGY 

 
2.1  Full-Scale Experiments 

 In the Breisundet strait, located on the west coast of 

Norway, full-scale measurements were carried out to measure 

the waves and ship motions simultaneously. The tests were 

conducted close to a SEAWATCH Wavescan (heave-roll-pitch) 

buoy. The heave, compass, pitch, and roll buoy data is publicly 

available via the Thredds Service at the Norwegian 

Meteorological Institute [8]. The test and the buoy locations are 
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shown in Fig. 1. The vessel is located at a distance of around 

~545 m from the buoy. 

  

 
FIGURE 1: LOCATION OF THE VESSEL (YELLOW MARKER) 

AND BUOY D (GREEN MARKER) AT BREISUNDET SHOWN 

USING GOOGLE EARTH.  

An X-band wave radar provided by Miros was installed on 

the R/V Gunnerus in order to measure the waves. The rotating 

wave radar produces a sequence of backscattered image discs 

every ~2.45 seconds. The vessel motions were measured using 

a SeaPath 200 Inertial Measurement Unit (IMU) with a 

sampling frequency of 10 Hz. At Breisundet, the vessel was 

kept at 4 different headings relative to the incoming dominant 

wave direction. The vessel was positioned for about 40 minutes 

at each heading angle using thrusters, and the waves and ship 

motions were measured simultaneously. Table 1 list the 

experimental details. Since the Captain positioned the vessel 

based on visual judgment, there could be ± 5-10 deg errors 

associated with the relative wave heading. Only a part of the 

experimental data collected at Breisundet was utilized in this 

study while other test data collected in Sulafjorden and at Frøya 

were not utilized. The test data collected at Breisundet was 

considered highly important since both local wind seas and 

swell coming from the open ocean were present.  

 
TABLE 1: FULL-SCALE EXPERIMENTS CONDUCTED ON 03-

04-2022 FOR 4 DIFFERENT HEADINGS 

 Start Time 

(UTC) 

End Time 

(UTC) 

 Relative 

Heading 

Case 1 07:12:00 07:55:00  ~0 deg 

Case 2 08:00:00 08:38:00 ~30 deg 

Case 3 08:39:00 09:19:00 ~60 deg 

Case 4 10:00:00 10:20:00 ~90 deg 

 
2.2  Measurement techniques for Directional  
       Spectra 
        The wave measurements using X-band radar follow the 

electromagnetic theory. Based on the principles of the Bragg 

scattering mechanism, the electromagnetic waves sent from the 

radar are backscattered after interaction with the sea surface 

[4]. Then, the received signals are digitized to form a temporal 

sequence of backscattered/sea surface roughness images. Using 

3-D Fast Fourier Transform (FFT), the time series of radar 

images were converted to an intensity spectrum. The low-

frequency components were removed using a high-pass filter 

with a cut-off frequency of 0.03 Hz. Using the least-squares 

method, the depth-averaged currents were estimated, and 

subsequently, the wave-related components were extracted with 

a band-pass filter designed using linear-dispersion relation. The 

modulation effects in the filtered intensity spectrum were 

corrected using a Modulation Transfer Function (MTF). The 

processed wave spectra provided by Miros were utilized for the 

calculations. 

       The directional spectra were also computed from the wave 

elevation and wave slopes measured using buoys [2, 9]. The 

auto- and cross-spectra were estimated from the time series of 

wave elevation, East-West and North-South wave slopes 

through Fourier transformation. Welch FFT with a Hanning 

window was applied to avoid spectral leakage [1]. 

Subsequently, the directional Fourier coefficients were 

computed from the auto- and cross-spectra, followed by the 

estimation of the directional spectrum using MEM. The 

functions provided by IFREMER (Institut Français de 

Recherche pour l'Exploitation de la Mer) France were used for 

calculating the MEM estimate of wave spectra. Let the 

directional wave spectra obtained using wave radars and buoys 

be denoted by 𝑆𝜁,𝑊𝑅  and 𝑆𝜁,𝑀𝐸𝑀, respectively.  

 

2.3  Vessel hydrodynamic analysis 

        The actual vessel dimensions are: Overall length, 𝐿𝑂𝐴 = 

36.25 m, length between the perpendiculars, 𝐿𝑃𝑃  = 33.90 m, 

Breadth, b = 9.6 m, Draft, 𝑇𝑑= 2.7 m.  

        The computational analysis was performed using Wamit 

hydrodynamic code [10] which uses a panel model of the 

Gunnerus vessel. The hydrostatic and hydrodynamic forces 

were evaluated with respect to the Body-fixed coordinate 

system whose origin is at the center of the water plane area CO. 

However, the IMU was located at a different vessel position, 

denoted by CM – the center of the measurement axis system, 

where the measured responses are produced. Using the 

transformation matrix 𝑯 , the forces and moments at CO were 

transferred to CM based on the Eqns. (1)−(5). The hydrostatic, 

hydrodynamic, and transfer function data with a matrix 

representation are denoted by double overbars ′ = ′ and the 

corresponding data with a  vector representation are given by 

single overbar ′ − ′. 
 

 𝑴(𝒙)̿̿ ̿̿ ̿̿ ̿𝐶𝑀 = 𝑯−𝑇�̿�(𝒙)𝑯−1                                (1) 

    𝑨𝒎(𝜔; 𝒙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿𝐶𝑀 = 𝑯−𝑇(𝑨𝒎(𝜔)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ + 𝑨𝒎̿̿ ̿̿ ̿𝑒(𝒙))𝑯−1                       (2) 

𝑩(𝜔; 𝒙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝐶𝑀 = 𝑯−𝑇(𝑩(𝜔)̿̿ ̿̿ ̿̿ ̿ + 𝑩𝑣(𝒙)̿̿ ̿̿ ̿̿ ̿̿ )𝑯−1               (3) 

                �̿�𝑡(𝒙)𝐶𝑀 = 𝑯−𝑇(𝑺𝒕(𝒙)̿̿ ̿̿ ̿̿ ̿ + 𝑺𝒕̿̿ ̿𝑒(𝒙))𝑯−1                         (4)  

𝑭(𝜔, 𝜃; 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝑀
= 𝑯−𝑇

(𝑭(𝜔, 𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�𝑒(𝒙))                           (5) 

where  �̿�𝐶𝑀, 𝑨𝒎(𝜔)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝐶𝑀, 𝑩(𝜔)̿̿ ̿̿ ̿̿ ̿𝐶𝑀, 𝑺𝒕̿̿ ̿𝐶𝑀  are the respective 

mass, added mass, damping, and stiffness matrices at CM. 
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𝑭(𝜔, 𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝑀 is a complex excitation force vector at CM. �̿�, 

𝑨𝒎(𝜔)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ , 𝑩(𝜔)̿̿ ̿̿ ̿̿ ̿, 𝑺𝒕̿̿ ̿ are the mass, added mass, potential damping 

and stiffness matrices, respectively computed at CO. 𝑭(𝜔, 𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

the complex excitation force vector computed at CO.  𝑨𝒎̿̿ ̿̿ ̿𝑒, 𝑩𝑣̿̿ ̿̿ , 

𝑺𝒕̿̿ ̿𝑒  are the respective external added mass, viscous damping, 

and additional stiffness matrices defined at CO. �̅�𝑒 is the 

external complex excitation coefficient vector at CO.  Using the 

hydrostatic and hydrodynamic data at CM, the wave-to-force 

transfer function (𝑻𝜁𝑭
̅̅ ̅̅ ̅ ∈ ℂ𝑞×1) and force-to-motion transfer 

function (𝑻𝑭𝒁
̿̿ ̿̿ ̿ ∈ ℂ𝑞×𝑞) are computed considering the 

measurement axis system as an inertial frame of reference, 

given in Eqns. (6) − (7). The index q=1,2,…,6  denotes the six 

DoF components of vessel motions (Surge, Sway, Heave, Roll, 

Pitch, Yaw). 𝜁𝑎 is the wave amplitude. ℂ is used for representing 

complex numbers. 

 

𝑻𝑭𝒁
̿̿ ̿̿ ̿(𝜔; 𝒙) =  ((−𝜔2(�̿�(𝒙)𝐶𝑀 + 𝑨𝒎(𝜔; 𝒙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿𝐶𝑀) +

𝑖𝜔(𝑩(𝜔; 𝒙)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝐶𝑀) + 𝑺𝒕̿̿ ̿(𝒙)𝐶𝑀))   )
−1

               

                    (6) 

 𝑻𝜁𝑭
̅̅ ̅̅ ̅(𝜔, 𝜃; 𝒙) =  

𝑭(𝜔,𝜃;𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝑀 

𝜁𝑎
                 (7) 

where 𝜔 is the wave frequency, 𝜃 denotes the relative 

directions, and system variables are given by 𝒙 = {(𝑥𝛼), 𝛼 =
1,2, … , ℳ}. ℳ is the number of input variables. The complex 

motion transfer function, 𝑻𝜁𝒁
̅̅ ̅̅̅ ∈ ℂ𝑞×1, is defined as the product 

of 𝑻𝑭𝒁
̿̿ ̿̿ ̿ and 𝑻𝜁𝑭

̅̅ ̅̅ ̅.   𝑻𝜁𝒁
̅̅ ̅̅̅ relates the wave elevation 𝜁 at a reference 

point to the motion response �̅� = {(𝑍𝑞)}.  

 

 𝑻𝜁𝒁
̅̅ ̅̅̅(𝜔, 𝜃; 𝒙) =   𝑻𝑭𝒁

̿̿ ̿̿ ̿(𝜔; 𝒙) 𝑻𝜁𝑭
̅̅ ̅̅ ̅(𝜔, 𝜃; 𝒙)                (8) 

The squared amplitude values of the motion transfer function, 

{𝑇𝜁𝑍𝑞
𝑇𝜁𝑍

∗

𝑟
= |𝑇𝜁𝑍𝑞,𝑟

|
2

, ∀𝑞 = 𝑟, 𝑟 = 1,2, … ,6}, are then applied 

to compute the auto-response spectrum (𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙) ∈

ℝ+𝜔×𝜃
), which is expressed as 

 

 𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙) =  𝑆𝜁(𝜔, 𝜃) |𝑇𝜁𝑍𝑞,𝑟

(𝜔, 𝜃; 𝒙)|
2

, r=q             (9) 

Integration across the directional axis of  𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙) gives 

the response spectrum as a function of frequency alone 

 𝑆𝑍𝑞𝑞
(𝜔; 𝒙), which is the simulated Quantity of Interest (QoI). 

Similarly, the measured response QoI  𝑆𝑍𝑞𝑞,𝑀𝑇, were obtained 

by performing 1-D Welch FFT [11] on the measured response 

time series. The time series was segregated into segments and 

the Parzen window was applied for the smoothing.  

 

2.4  Model Tuning 

 The computational model was tuned by minimizing the 

error between the measured and simulated spectra in an 

optimization framework.  

 

                        𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙),   ∀ 𝒙 ∈ ℝℳ  

 

𝒙 is a vector denoting the variables from ℳ dimensional space 

and 𝑓(𝒙) represents the objective function. Bounded constraints 

were adopted for each variable 𝑥𝛼 , with 𝑙𝑜𝛼  and 𝑢𝑝𝛼 denoting 

the variable’s lower and upper limits. Consequently, the 

restricted search space Ω becomes 
 

                    𝛀 =  {𝒙|𝑙𝑜𝛼 ≤ 𝑥𝛼 ≤ 𝑢𝑝𝛼} ⊂ ℝℳ  

 

The objective function to minimize the error between the 

measured and simulated spectral density is formulated as 

 

𝑓𝜴,𝑆𝑃𝐸𝐶(𝒙) =  ∑ (∑ |(𝑤𝑞(𝑆𝑍𝑞𝑞,𝑀𝑇(𝜔ℎ; 𝒙)∆𝜔) −
𝑁𝜔
ℎ=1𝑞

                                               𝑤𝑞(𝑆𝑍𝑞𝑞
(𝜔ℎ; 𝒙)∆𝜔))|)                (10) 

The weight term 𝑤𝑞 can be set to zero for modes not included 

in the tuning. The objective function shown in Eq. (10) was 

minimized using a derivative-free optimization called Mesh 

Adaptive Direct Search (MADS) [12].  

 

2.5  Sensitivity of the Objective function  
        The sensitivity of the objective function 𝑓𝜴,𝑆𝑃𝐸𝐶  to 

parametric variation was studied using the Variance-based 

indices called Sobol’ indices [13] to identify the influential 

variables. It is presumed that on satisfying certain conditions 

proposed by Sobol’ [13], the variance of 𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿) can be 

decomposed in the form given in Eq.  (11). Letter ‘𝑿’  is used to 

denote the system variables in this section, as they are 

considered as random variables associated with a probability 

measure. 

𝑉 = 𝑉[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)] =  ∑ 𝑉𝛼

𝑀

𝛼=1

+ ∑ 𝑉𝛼𝛽 

1≤𝛼<𝛽≤ℳ

+ ⋯ + 𝑉1…ℳ 

                                            (11)   

Here,𝑉𝛼= 𝑉 [𝔼[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)|𝑋𝛼]] , 𝑉𝛼𝛽 =

 𝑉 [𝔼[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)|𝑋𝛼 , 𝑋𝛽]] − 𝑉𝛼 −  𝑉𝛽. 𝔼[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)|𝑋𝛼] and 

𝔼[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)|𝑋𝛼 , 𝑋𝛽] are the conditional expectations of 

𝑓𝜴,𝑆𝑃𝐸𝐶  with respect to each input variable 𝑋𝛼 and any two 

combinations of input variables 𝑋𝛼 𝑋β, respectively. The 

sensitivity is derived by dividing individual variance terms in 

Eq. (11) by the total variance 𝑉 

 

∑ 𝑆𝐼𝛼 + ∑ 𝑆𝐼𝛼𝛽 + ⋯ + 𝑆𝐼1…ℳ1≤𝛼<𝛽≤ℳ = 1ℳ
𝛼=1            (12)   

𝑆𝐼𝛼  denotes the first-order indices that analyze the effect of 

each uncertain parameter on the response. The second-order 

indices, 𝑆𝐼𝛼𝛽 , reports the effects on the responses because of 

interaction between two variables.  There are also higher-order 

Sobol’ indices like 3rd order, 4th order, and so on in relation to 

the number of input variables. The total sensitivity indices are 
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the composition of the first-order indices and all other 

interaction terms in Eq. (12). Instead of computing all the 

higher-order Sobol’ indices, which is extremely challenging, 

and then calculating the total sensitivity indices;  a simple 

relation in Eq. (13) can be employed to estimate the total 

sensitivity indices efficiently. 𝑿~𝛼 represents all input variables 

other than 𝑋𝛼.   

      

  𝑆𝐼𝛼
𝑇 = 1 − 

𝑉[𝔼[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)|𝑿~𝛼]]

𝑉[𝑓𝜴,𝑆𝑃𝐸𝐶(𝑿)]
               (13) 

A method called Polynomial Chaos Expansion (PCE) was 

used to construct a response surrogate for the objective 

function. Subsequently, the Sobol’ indices were estimated from 

the polynomial coefficients of the surrogate [14]. The detailed 

estimation procedures are given in [6, 15]. The influential 

variables identified using the sensitivity study are applied for 

model tuning.  

 

3. METHODOLOGY 
Almost 31 vessel system parameters, representing the 

vessel loading conditions and unmodelled physics, were 

considered for the uncertainty analysis. For instance, the CoG, 

inertia, and additional stiffness terms account for the changes in 

the vessel's operational conditions. On the other hand, the 

viscous damping coefficients, non-linear added mass, and 

excitation variables were included to represent the unmodelled 

physics in the potential flow theory. The real and imaginary 

components are considered separately as random variables to 

solve the complex external excitation forces and moments. The 

parameters for capturing the unmodelled physics could be sea 

state-dependent. Further, both the operational and  unmodelled 

physical parameters might vary with respect to the changes in 

vessel draft conditions.  The variables were supplied to the 

optimization routine in a bounded format, therefore, Uniform 

distributions with statistical independence were assumed for the 

system variables in the sensitivity study. 

The flowchart shown in Fig. 2 illustrates the model tuning 

methodology. 

a) The measured directional spectra, 𝑆𝜁  were obtained 

from the wave radars and buoys as per the techniques 

in Sec. 2.2. The spectra represent the true 

environmental conditions at the site.  

b) The response time series 𝒵𝑞(𝑡) was deducted with its 

mean (𝔼[𝒵𝑞]) to remove any static patterns, and high-

pass filtered with a cut-off frequency of 0.035 Hz to 

neglect any low-frequency responses. Only the 

measured responses corresponding to wave 

frequencies were considered for tuning. 

c) Eq. (10) was evaluated keeping the 𝑆𝜁 ,vessel heading 

(𝑉𝜃), mean wave direction (𝜃𝑚) fixed and varying the 

system parameters probabilistically as per the 

distributions listed in Table 2. 

d) Then, a response surrogate 𝑓𝛀,𝑆𝑃𝐸𝐶
𝑃𝐶  was constructed 

and PCE-Sobol’ indices were estimated to analyze the 

sensitivity of the objective function to parametric 

variation. 

e) Influential parameters (𝒙𝑖𝑛 ⊂ 𝒙) were classified 

whose Sobol’ index value is ≥ 4%.  Parameters with 

index values below this threshold limit were 

considered non-influential (𝒙𝑛𝑖𝑛 ⊂ 𝒙).  

 

 
FIGURE 2: FLOW OF WORK FOR THE MODEL TUNING 

PROCEDURE. 

f) Only 𝒙𝑖𝑛 were applied in the optimization routine 

(within the given bounds), and the mean values (𝒙𝑖𝑛
𝜇

) 

were specified as the initial start points to initiate the 

optimization. Non-influential parameters were kept 

fixed during the optimization. A deterministic value, 

i.e., mean value  (𝒙𝑛𝑖𝑛
𝜇

), was applied. 

g) The minimization of the error between the 

measurements and simulations provides optimum 

values of the influential parameters denoted by 𝒙𝑖𝑛
∗ . 

h) Minimization of 𝑓𝜴,𝑆𝑃𝐸𝐶  was performed with a 

derivative-free optimization called Mesh Adaptive 

Direct Search (MADS) [12]. A Python interface to the 

Nonlinear Mesh Adaptive Direct Search (NOMAD) 
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c++ library was used [16]. 𝒙𝑖𝑛
∗  can be applied for 

computing the improved simulations 𝑆𝑍𝑞𝑞
+ . 

TABLE 2: LIST OF SYSTEM PARAMETERS WITH THEIR 

UNCERTAINTY RANGES. THEIR ACRONYM IS GIVEN IN THE 

NOMENCLATURE SECTION. 

 

4. RESULTS AND DISCUSSION 
 

4.1 Directional Spectra from Buoy and Wave  
Radar 
Fig. 3 shows the directional spectra 𝑆𝜁,𝑊𝑅  and 𝑆𝜁,𝑀𝐸𝑀 in the 

meteorological axis system for the time period between 08:00 - 

08:38 UTC on 03/04/2022. The swell was arriving from the 

open ocean to Breisundet and the wind waves were generated 

by winds blowing from Sulafjorden. Therefore, the wave 

spectrum was bi-modal in nature. From the buoy-based 

directional spectra, it appears that the directions of wind sea 

and swell are not considerably different. This is because 

Breisundet is a narrow strait whose geometry influences the 

directions of the different sea systems to be aligned along the 

strait’s axis. Between, 0.5-0.8 rad/s, the peak due to swell could 

be seen in both radar-based (𝑆𝜁,𝑊𝑅) and buoy-based (𝑆𝜁,𝑀𝐸𝑀) 

spectra. Then, the 𝑆𝜁,𝑊𝑅 shows a wind peak at frequencies 

between 0.8-1.25 rad/s. However, 𝑆𝜁,𝑀𝐸𝑀, displays two more 

peaks in between the frequency range 0.8-1.25 rad/s in addition 

to the swell peak. In order to classify the peaks, the phase 

velocity (𝐶𝑝=
𝑔

𝜔𝑝
, 𝜔𝑝- peak frequency) of the peaks are 

compared with the locally buoy-measured wind speed. The 

phase velocities of three peaks are 13.246 
𝑚

𝑠
, 9.117 

𝑚

𝑠
, and 

7.948 
𝑚

𝑠
 corresponding to the frequencies 0.74, 1.076, 1.234 

𝑟𝑎𝑑

𝑠
, respectively. The measured wind velocity is 10.02 

𝑚

𝑠
. The 

peak phase velocity greater than the wind speed corresponds to 

the swell peak, while the phase velocities lesser than the wind 

speed correspond to wind sea induced peaks. It is possible to 

have multiple wind sea peaks, i.e., one/two old  and young 

wind seas due to different fetches,  which is a characteristic of 

Breisundet. The magnitude of 𝑆𝜁,𝑊𝑅 is slightly lesser than 

𝑆𝜁,𝑀𝐸𝑀, however, there are considerable differences in the 

directional spread. The spectral energy of 𝑆𝜁,𝑊𝑅 extends into 

more directional bins, while the energy of 𝑆𝜁,𝑀𝐸𝑀 extends into 

the high-frequency regions. 𝑆𝜁,𝑊𝑅 has uncertainties related to 

correcting different modulation mechanisms and scaling effects.   

    
           (a)                                                  (b) 

                                     

                        
                                         (c) 

FIGURE 3: COMPARISON BETWEEN THE DIRECTIONAL 

SPECTRA OBTAINED FROM A) WAVE RADAR IMAGES B) 

APPLICATION OF MEM ON WAVE BUOY DATA WITH A 

SEGMENT LENGTH OF 128 ADOPTED IN FFT  C) MEM ON 

WAVE BUOY DATA WITH A SEGMENT LENGTH OF 256 

ADOPTED IN FFT. THE DATA ON 03/04/22, 08:00-08:38 UTC 

WAS USED FOR PLOTTING. 

       The directional spread in 𝑆𝜁,𝑀𝐸𝑀 must not be interpreted as 

true spread due to the uncertainties in the application of 

smoothing window while estimating 1-D auto- and cross-

spectra from the time series. Subsequently, these uncertainties 

are reflected in the directional Fourier coefficients as well. The 

System 

Parameters 
Uncertainty Range 

𝑋𝑐𝑔(𝑚) Uniform(𝑙𝑜1 =  −3.78,                𝑢𝑝1 = 0.22 ) 

𝑌𝑐𝑔(𝑚) Uniform(𝑙𝑜2 = −1.0,                    𝑢𝑝2 = 1.0 ) 

𝑍𝑐𝑔(𝑚) Uniform(𝑙𝑜3 = 0.4,                        𝑢𝑝3 = 1.0 ) 

𝑀(𝑘𝑔) Uniform(𝑙𝑜4 = 𝑀 − 5% 𝑀 ,       𝑢𝑝4 = 𝑀 + 5% 𝑀 ) 

𝐼44(𝑘𝑔𝑚2) Uniform(𝑙𝑜5 = 𝐼44 − 5% 𝐼44,    𝑢𝑝5 = 𝐼44 + 5% 𝐼44) 

𝐼55(𝑘𝑔𝑚2) Uniform(𝑙𝑜6 = 𝐼55 − 5% 𝐼55,      𝑢𝑝6 = 𝐼55 + 5% 𝐼55 ) 

𝐼66(𝑘𝑔𝑚2) Uniform(𝑙𝑜7 = 𝐼66 − 5% 𝐼66,    𝑢𝑝7 = 𝐼66 + 5% 𝐼66 ) 

𝐵33
𝑣 (

𝑘𝑔

𝑠
) 

Uniform(𝑙𝑜8 = 0% 𝐵33,𝑐𝑟
𝑣 ,           𝑢𝑝8 = 15% 𝐵33,𝑐𝑟

𝑣 ) 

𝐵44
𝑣 (𝑘𝑔

𝑚2

𝑠
) 

 Uniform(𝑙𝑜9 = 2% 𝐵44,𝑐𝑟
𝑣 ,           𝑢𝑝9 = 25% 𝐵44,𝑐𝑟

𝑣 ) 

𝐵55
𝑣 (𝑘𝑔

𝑚2

𝑠
) 

 Uniform(𝑙𝑜10 = 0% 𝐵55,𝑐𝑟
𝑣 ,         𝑢𝑝10 = 15%𝐵55,𝑐𝑟

𝑣 )    

𝑆𝑡33
𝑒 (KN/m) Uniform(𝑙𝑜11 = −5441.951       𝑢𝑝11 = 5441.951) 

𝑆𝑡44
𝑒 (KNm/rad) Uniform(𝑙𝑜12 = −5440.96,        𝑢𝑝12 = 5440.96) 

𝑆𝑡55
𝑒 (KNm/rad) Uniform(𝑙𝑜13 = −10881.63,     𝑢𝑝13 = 10881.63) 

𝐴𝑚11
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠) Uniform(𝑙𝑜14 =  −500 ,              𝑢𝑝14 = 500) 

𝐴𝑚22
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠) Uniform(𝑙𝑜15 = −5000 ,             𝑢𝑝15 = 5000) 

𝐴𝑚33
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠) Uniform(𝑙𝑜16 = −20000,           𝑢𝑝16 = 20000) 

𝐴𝑚44
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠 𝑚2) Uniform(𝑙𝑜17 = −25000,           𝑢𝑝17 = 25000) 

𝐴𝑚55
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠 𝑚2) Uniform(𝑙𝑜18 = −10 × 105,       𝑢𝑝18 = 10 × 105) 

𝐴𝑚66
𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠 𝑚2) Uniform(𝑙𝑜19 = −3 × 105 ,        𝑢𝑝19 = 10 × 105) 

       𝐹𝑟1
𝑒(MN) Uniform(𝑙𝑜20 = −2.0,                  𝑢𝑝20 = 2.0) 

       𝐹𝑖1
𝑒(MN) Uniform(𝑙𝑜21 = −3.0,                  𝑢𝑝21 = 3.0) 

       𝐹𝑟2
𝑒(MN) Uniform(𝑙𝑜22 = −2.5,                  𝑢𝑝22 = 2.5) 

       𝐹𝑖2
𝑒(MN) Uniform(𝑙𝑜23 = −10,                   𝑢𝑝23 = 10) 

       𝐹𝑟3
𝑒(MN) Uniform(𝑙𝑜24 = −30,                   𝑢𝑝24 = 30) 

       𝐹𝑖3
𝑒(MN) Uniform(𝑙𝑜25 = −15,                   𝑢𝑝25 = 15) 

     𝐹𝑟4
𝑒(MNm) Uniform(𝑙𝑜26 = −8.5,                  𝑢𝑝26 = 8.5) 

    𝐹𝑖4
𝑒(MNm) Uniform(𝑙𝑜27 = −2.5,                  𝑢𝑝27 = 2.5) 

    𝐹𝑟5
𝑒 (MNm) Uniform(𝑙𝑜28 = −90,                   𝑢𝑝28 = 90) 

    𝐹𝑖5
𝑒 (MNm) Uniform(𝑙𝑜29 = −200,                𝑢𝑝29 = 200) 

   𝐹𝑟6
𝑒 (MNm) Uniform(𝑙𝑜30 = −60,                   𝑢𝑝30 = 60) 

   𝐹𝑖6
𝑒 (MNm) Uniform(𝑙𝑜31 = −10,                   𝑢𝑝31 = 10) 
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choice of window length considerably affects the spectral 

magnitude and spread. Fig. 3 b) and c) show that the magnitude 

increases, while the directional spread looks coarse and shrinks 

with increasing segment length. Since it is not known 

beforehand which measurement technique is closest to the 

truth, the model tuning was performed using both wave spectra 

and the results are presented in Sec. 4.3. 

 

4.2 Sensitivity Results  
                      

 
     (a) 

 

 
     (b) 

 

 
      (c) 

FIGURE 4: TOTAL SENSITIVITY OF A) HEAVE, B) ROLL AND 

C) PITCH OBJECTIVE FUNCTION TO PARAMETRIC 

VARIATION CONSIDERING 31 RANDOM SYSTEM 

PARAMETERS 

Using PCE-Sobol’ indices, the sensitivity of the a) Heave, 

b) Roll, and Pitch objective functions due to system 

uncertainties were analyzed for the 4 relative headings 

considered. Their total sensitivity indices are reported in Fig. 4 

a), b), and c). The sensitivity of each mode in 𝑓𝜴,𝑆𝑃𝐸𝐶(𝒙) in Eq.            

(10), was analysed separately by setting the weights of other 

modes to zero. 𝐵33
𝑣 , 𝑆𝑡33

𝑒 , and  the real part of the external heave 

excitation force (𝐹𝑟33
𝑒 )  are contributing almost 7%, 48%, and 

43%, respectively to the total variability of the heave objective 

function. Similarly, changes in the viscous pitch damping 

contribute to around 70% of the variations in the pitch error 

function. The pitch added mass, 𝐹𝑟44
𝑒 , 𝐹𝑖33

𝑒 , 𝐹𝑖55
𝑒  are exceeding 

the set threshold limit and therefore considered influential, 

whereas many other non-influential variables were disregarded. 

The effects due to the external pitch stiffness term seem 

negligible, as the considered parameter variation range is small. 

However, the results might differ when having a larger 

uncertainty range. Almost 7 parameters 

{Xcg,Zcg,𝐵44
𝑣 , 𝑆𝑡44

𝑒 ,𝐹𝑟44
𝑒 , 𝐹𝑟66

𝑒 , 𝐹𝑖22
𝑒 } seem to influence the roll 

function. The Zcg, 𝐵44
𝑣 , and 𝑆𝑡44

𝑒 , respectively are responsible 

for around 15%, 35%, and 25% variation in the roll error 

function. The external imaginary and real excitation 

components of sway and roll, respectively are triggering 14% 

and 12% of the roll error variation.  

       Overall, when considering the three modes together, the 

following variables were regarded as influential 

𝒙𝑖𝑛={Xcg,Zcg,𝐵33
𝑣 , 𝐵44

𝑣 , 𝐵55
𝑣 , 𝑆𝑡33

𝑒 , 𝑆𝑡44
𝑒 ,𝐹𝑟33

𝑒 , 𝐹𝑟44
𝑒 , 𝐹𝑟66

𝑒 , 𝐹𝑖22
𝑒 ,

𝐹𝑖33
𝑒 , 𝐹𝑖55

𝑒 , 𝐴𝑚55
𝑒 }, and tuned together by minimizing the 

objective function 𝑓𝛺,𝑆𝑃𝐸𝐶 (𝒙). The values of sensitivity indices 

do not vary much with respect to changes in relative headings. 

Only for the beam sea, a few parameters (Xcg, 𝐵44
𝑣 , 𝑆𝑡44

𝑒 ) 

slightly exhibit some variations. 

 

4.3 Computational model tuning results  
       At each relative heading, heave, roll, and pitch motions 

were measured using an IMU, and simultaneous wave 

measurements from wave radar and buoy were also available. 

The wave spectra derived from both in-situ techniques were 

applied in model tuning and the corresponding response results 

are compared with the measurements in Figs. 5,6,7 for heave, 

roll and pitch modes, respectively. The segment length adopted 

for the FFT computations in MEM is 256. In Fig. 5, the first 

peak corresponds to the heave resonance while the second peak 

is due to the excitation forces. The swell induces the resonance 

peak, and the wind waves cause the excitation peak. The tuned 

heave results using both wave spectra agree well with the 

measurements. Still, there are some discrepancies at the second 

peak. The results based on the buoy directional spectrum can 

better quantify the oscillations in the second peak compared to 

the results from the wave radar spectrum, especially in Fig. 5 

b). The contribution from the excitation forces is larger in 

heave, which was also reflected in the sensitivity indices of the 

heave error function. The roll results in Fig. 6 indicate that 
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there is only a single peak in the response spectrum governed 

by the roll resonance behavior. The roll natural period (~5.4 s) 

is closer to the wind wave period. The tuned roll simulations 

exhibit superior agreement with the measurements. For roll, the 

responses when the relative heading is 0 deg are small, while 

the responses are ten-fold higher in the 90 deg case. The 𝐻𝑠 

also increased from 1.1 m at 07:00 AM to 1.4 m at 10:00 AM, 

which is quite higher for a 30 m vessel. Based on visual 

inspection, for roll and pitch, the tuned simulations 

corresponding to the wave spectrum estimated from the buoy 

measurements produce slightly better response results than the 

tuning with radar-based wave spectrum. Since the mean wave 

directions of wind seas and swell are not completely different, 

the directional spectra estimated using MEM can better reflect 

the wave conditions at the site for the considered cases. 

However, in Fig. 7 d), the discrepancy in the high-frequency 

tail could be observed for the pitch response simulated using 

the buoy spectrum. This deviation is due to the presence of 

wave energy in the high-frequency region in the buoy spectrum.   

       Only the influential variables identified in Sec. 4.2 were 

tuned. Low sensitivity indices for variables indicate that they 

possess low eigenvalues. Consequently, such variables tend to 

make the objective function space non-unique when all of them 

are included for tuning. Due to the existence of non-unique 

solutions, the low-sensitive variables are allowed to take any 

values within their uncertainty range during the optimization, 

while at the same time, the results are not modified drastically. 

It follows that even if the resulting responses are accurate, the 

optimized parameter estimates may be biased. Therefore, it is 

important to neglect such variables in the optimization.  

       From the viewpoint of an offshore vessel performing an 

offshore operation, the vessel model could be calibrated before 

the initiation of the operations. Further, when there are 

significant changes in the operational conditions, for instance, a 

heavy mass shift during the crane movement, variations in 

ballast, fuel tank conditions, and moon pool operations 

influences the CoG and stiffness parameters. Then those 

operational parameters must be tuned to account for the 

changes. While, the sea state-dependent parameters might vary 

considerably during harsh sea states, and need tuning in such 

cases.  Further, the change of draft might also cause variation to 

both operational and sea state-dependent parameters. 
 

 

 

 
 

 

 
FIGURE 5: A),B),C),D) SIMULATED HEAVE SPECTRA TUNED 

USING THE WAVE SPECTRA FROM WAVE RADARS AND 

WAVE BUOYS ARE COMPARED WITH THE MEASURED 

HEAVE SPECTRUM FOR 4 DIFFERENT HEADINGS   
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FIGURE 6: A),B),C),D) SIMULATED ROLL SPECTRA TUNED 

USING THE WAVE SPECTRA FROM WAVE RADARS AND 

WAVE BUOYS ARE COMPARED WITH THE MEASURED ROLL 

SPECTRUM FOR 4 DIFFERENT HEADINGS. 

 

 

 
 

 

 
FIGURE 7: A),B),C),D) SIMULATED PITCH SPECTRA TUNED 

USING THE WAVE SPECTRA FROM WAVE RADARS AND 

WAVE BUOYS ARE COMPARED AGAINST THE MEASURED 

PITCH SPECTRUM FOR 4 DIFFERENT HEADINGS 

5. CONCLUSION AND FUTURE WORK 
For usage in onboard decision support systems of offshore 

vessels, a real-time computational model tuning procedure was 

presented and validated in this study. The method utilizes wave 

conditions measured using in-situ techniques like wave buoys 

and X-band wave radars, and the vessel’s own IMU 

measurements to tune the vessel system parameters.  

The sensitivity of the objective function to parametric 

variation involving 31 parameters indicated that only 14 of 

them were influential. From the operational dependent 

parameter category, the CoG and external stiffness variables 

appear to be crucial for vessel rolling. The respective additional 

viscous damping coefficients impart considerable variation to 

the roll and pitch modes. The real and imaginary components of 

external excitation forces have uneven influences, mostly, the 
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real components are inducing more variations to the error 

function than the imaginary components. The optimized 

estimates of the influential parameters were obtained using 

MADS optimization. Tuning only the influential parameters 

can greatly save computational time with negligible loss of 

accuracy. 

The model tuning using the directional spectra from Buoys 

resolved some sharp peaks in the response spectra, which could 

not be achieved when tuning with spectra from wave radars, as  
𝑆𝜁,𝑊𝑅 could not capture the different partitions of the wind sea. 

The presence of energy in the high-frequency regions of the 

buoy spectrum caused slight errors.  In general, the tuning 

results can further be improved with a properly chosen segment 

length while applying the FFT to the wave elevation and slope 

time series of buoy measurements.  The wave buoy data may 

not be available in real-time due to the time required for 

processing the data and they are available only at sparse spatial 

locations. On the other hand, wave radar data are easily 

available in real-time and can be installed in the vessels. 

Therefore, more research should focus on retrieving accurate 

wave conditions from radar images.  

The model is tuned by minimizing the difference between 

the measured and the simulated response spectra. The measured 

spectra possess some random errors when applying FFT. The 

spectrum at each frequency is a Chi-square distributed variable 

with 2-(Degrees of Freedom)DOF(𝜒2
2). The sampling 

distribution of the complete spectrum is 𝜒2𝐿
2 , L is the number of 

segments applied in FFT. Due to this spectral variance/random 

errors, the optimized parameter estimates might not be the true 

estimates, so a confidence interval must be derived for the 

parameters which is the subject of further study. 
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