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Abstract

We propose a methodology for estimating energy expenditure (EE) during wheelchair propul-
sion. The method is based on measured physiological and kinematic signals from wearable
sensor devices in an experimental setup design. More specifically, we have developed regression
models based on features extracted from heart rate, acceleration and gyroscope data collected
during nine experiment stages with twenty participants. Support Vector regression and Gaussian
process regression methods were implemented to provide an estimate of EE for each participant
during the experiment. Extensive cross validation techniques were applied to evaluate the
performance of the proposed models and investigate the necessity of personalizing the algorithms

based on personal characteristics.
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1. INTRODUCTION

Compared to the general population, wheelchair users
(WCU) have a more inactive lifestyle, which is related
to an increased risk of lifestyle-related diseases such as
obesity (Weil et al., 2002). Obesity is caused by an energy
intake that consistently exceeds Energy Expenditure (EE).
Total daily EE is made up of three components: 65-70
percent attributed to resting EE (REE), 10 percent to diet-
induced dissipation of heat, and 15-30 percent to Physical
Activity EE (PAEE) (Nightingale et al., 2017b). While
both REE and PAEE are dependent on factors such as sex,
body-mass and on the daily activity levels (da Rocha et al.,
2005; Klausen et al., 1997), PAEE is the most malleable
of the three components, and therefore particularly useful
for obtaining a balance between EE and energy intake.

WCUs may use objective feedback on daily EE to achieve
this balance, and also during lifestyle counselling with
their healthcare professionals. However, gold standard
methods for measuring EE (including PAEE) - such as
doubly labelled water, direct or indirect calorimetry -
are expensive and impractical to use over time during
daily life situations (Nightingale et al., 2017a). Therefore,
promising alternatives are commercial, wearable multi-
sensor devices such as Apple watch, Garmin and Fitbit,
which estimate EE through data-driven techniques. These
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wearable devices are now able to estimate EE in the
general population during exercise in the most common
modalities (ie. running and cycling) with moderate to high
accuracy (Dannecker et al., 2013; O’Driscoll et al., 2020).
While the Apple watch is one of few wearables specifically
tailored to WCU (employing wheelchair propulsion as
exercise modality), it was found to underestimate EE in
this population with large variations in the error (Moreno
et al., 2020).

These variations in the error may be related to the fact
that the EE estimation algorithms do not successfully
adjust for differences in WCUs’ personal characteristics
and the ones related to the disability, e.g., in wheelchair
propulsion movement patterns and the amount of active
muscle mass they are able to recruit (Glasheen et al., 2021;
Nightingale et al., 2017a). There is thus the need to better
individualize the algorithms for these factors, as a first
step in the standardized laboratory setting, where one has
good control over the experimental setup. Specific system
excitation patterns may then be taken into consideration
when developing the EE estimation algorithms. In other
words, for training the specific algorithms data need to be
collected in a way that allows ad-hoc considerations on how
many different aerobic / anaerobic tests the WCUs need
to perform, how much recovery is needed between tests
within a single session but also between repeated sessions.

The current study aims at providing an estimate of EE
based on multi-sensor data and personal characteristics.
We address this by tailored regression analyses which
estimate EE on the specific case of a group of able-
bodied control group participants performing wheelchair
propulsion on a treadmill in the standardized laboratory
setting. The proposed analyses employ three main sub-
models - a feature extraction from inertial measurment
unit (IMU) and heart rate (HR) data based on temporal
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and spectral analysis, a dimensionality reduction model
and a regression model to provide EE estimations. We
evaluate generalizability of the proposed models, and as-
sess how specific the algorithms must be tailored to per-
sonal characteristics of the participants. To this end, we
investigate the dependency of the models performances on
selected factors like sex, body-mass, age and self-reported
fitness index (IPAQ).

Given the inherent limitations concerning time constraints
and the practicalities involving data collection with WCU,
the present study addresses the data collected from a
control group (able-bodied participants). The contribu-
tions of the paper may thus be summarized in a set of
data-driven considerations about: a) how many and which
levels of individualization are needed when designing EE
estimation algorithms for wheelchair propulsion sessions,
and b) how to design experiments for training such EE
estimation algorithms.

To convey such messages the paper is structured as fol-
lows: Section 2 describing the designed experiment setup
and measured data, Section 3 presenting data treatment,
feature engineering and regression models, Section 4 de-
tailing some numerical results for the EE estimations, and
Section 5 concluding the paper with some closing remarks
and future research questions.

2. THE EXPERIMENTAL SETUP

The data used in this paper is based on 20 healthy,
able-bodied participants performing three 4-minute stages
on three separate inclines of wheelchair propulsion on
a motorized treadmill (Forcelink Technology, Culemborg,
the Netherlands).

More precisely, each participant performed three stages
at each incline on a separate of in total three testing
days (in total nine recordings per participant). Each day
consisted of treadmill wheelchair propulsion at a fixed
treadmill incline (0.5, 2.5 or 5 percent), and the order
of the inclines for each participant was counterbalanced.
Within each session three stages were performed at in-
creasing speed, which were selected to cover a range of sub-
maximal intensities and separated by 2 — 3 minutes of rest
in between, described in Table 1. Per participant, all three
testing days occurred within an 14-day period; the time of
testing remained consistent to minimize the effect diurnal
rhythm variability. Prior to arriving at the laboratory, all
participants were instructed to refrain from performing
high-intensity exercise or heavy strength training 24 hours
prior to testing. Additional restrictions included consump-
tion of alcohol 24 hours prior, caffeine on the day of, or
food 2 hours before testing. On the first test day and

Table 1. Experimental setup for three testing
days, different incline and speed of the tread-
mill (km/h).

Day 1 Day 2 Day 3
Incline (0.5) (2.5) (5.0)
Men Women Men Women Men Women
Stage 1 4 3 3 2 2 1
Stage 2 6 5 4 3 3 2
Stage 3 8 7 5 4 4 3
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before the testing, participants provided information on
their sex and age, had their body height and body mass
measured, and completed the self-reported International
Physical Activity Questionnaire (IPAQ) (Bauman et al.,
2009). The TPAQ was used to assess habitual physical
activity among participants. The IPAQ score indicated
that our participants either had moderate or high physical
activity levels, while no participants were included with
low physical activity levels.

Five IMU (Gait Up Physilog®)5 inertial sensor, Gait
Up; Lausanne, Switzerland) were attached to the partici-
pants and the wheelchair (chest, back, forearm, seat and
wheel) capturing movement data during the wheelchair
propulsion stages. In addition, the participants’ HR was
measured by a Polar chest strap connected to a Polar
M400 HR monitor watch (Polar Electro Oy, Finland). The
participants were also fitted with a face-mask attached to
a Vyntus ergospirometer (Vyntus CPX, Vyaire, Medical
GmbH, Germany), which was calibrated for volume and
against a gas mixture of 80% N, 15% Os and 5% COq
prior to testing each participant. Oxygen uptake and car-
bon dioxide production were measured continuously. EE
(kcal /min) was calculated from oxygen uptake VO, (mea-
sured in L/min) and carbon dioxide production VCOy
(L/min) based on Weir’s formula as in (Weir, 1949).

EE = 3.94 VO, + 1.106 VCO, (1)

Information on the personal characteristics and fitness
level of the twenty included participants is summarized
in Table 2 and schematized in Figure 1.

Table 2. Summary of the characteristics of the

participants
Gender  Number Age Body Mass Height Body mass index (BMI)
(kg) (cm) (kg/m?)
Male 11 33411 81.9+11.2 183.5+8.2 243423
Female 9 34+11 670479 167.3+5.3 24.0+2.6
Total 20 33+£11 7524114 1762499 242424
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Figure 1. Distribution of personal characteristics of the
participants including age, body mass, height, sex and
IPAQ score (Sex: Female = red , Male = blue | IPAQ:
High = diamond, Moderate = circle).

3. METHODOLOGY

We seek to find a set of data-driven considerations about:
a) how many and which levels of individualization are
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needed when designing EE estimation algorithms for
wheelchair propulsion sessions, and b) how to design ex-
periments for training such EE tracking algorithms. To do
this, we ladder on a series of regression models of EE as a
function of signals such as HR, acceleration and gyroscope.
The discussion below focuses on how these models were
produced.

8.1 Preprocessing of Data

We consider synchronized and filtered data collected from
five different IMU sensors placed on locations that from
intuitive perspectives capture the motion of the torso,
the arms and the wheelchair. The current study focused
on datastreams from the wrist IMU sensor which were
synchronized and filtered to compensate for scaling and
offset errors.

We note that acceleration signals (X, Y and Z directions),
sampled at a 256 Hz rate, included fast- and slow-varying
components. The slow component is due to gravitational
forces acting on the body, while the fast components are
the result of body movement. This calls for an opportune
data processing pipeline automatically separating such
components. Geographically speaking, the start and stop
location of the participant on the treadmill is in the same.
Therefore, the average value of norm of the acceleration
\/ Acc2 + Acc? + Acc? during the en-
tire session, is assumed to be due to the gravity component
and is subtracted from the norm of the acceleration signal
(]J[Accl]). Furthermore, we consider measured EE values
as our target to be estimated. Measured EE values for
each record (note: with a sampling rate of 0.1 Hz) were
trimmed to only include steady state EE values. More
specifically, the first 70 and last 10 seconds of each EE
time series were removed to exclude the non-steady state
parts in the beginning and the end of each exercise stage.
The mean value of the remaining samples was then used as
the measured steady state EE of that specific participant
performing that specific exercise stage.

signals, i.e., ||Acc| =

3.2 Feature extraction

Existing literature on EE tracking studies have employed
various classification /regression techniques based on po-
tential time and frequency domain features extracted from
measurement devices. Analyzing the power spectral den-
sity of the acceleration signals processed in the current
study shows the potential of using frequency domain fea-
tures in capturing the intensity of the movement trends.
Thus, we consider HR, norm of the accelerometer signal,
and gyroscope measurements to extract physiological and
movement features. We moreover applied the so-called
Welch method (Barbé et al., 2009) to analyze the spectral
power of the IMU signals, as suggested in the literature for
the inspection of such type of information. The list of the
64 features that we extracted from the measurements and
used in our consequent analyses is summarized in Table 3.

Median absolute deviation.

Interquartile range of the signal.

Highest recorded HR value throughout all the experiments.

The percentage of the highest HR recorded per session divided by
HR peak.

1
2
3
4
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Table 3. Features extracted from the signals

Domain Sources Features
Time HR, ||Accl| Mean, Max, Min, SD, MAD ! | Energy
GyroX,GyroY,GyroZ Entropy, IQR 2, Kurtosis, Skewness
F [[Accl| Max PSD, Min PSD, Mean PSD
redquency GyroX,GyroY,GyroZ Freq of Max PSD
Personal Self Reported: Sex, IPAQ, Age, Height

Body Mass, HR peak

Measured: HR peak percentage 4

Characteristics

3.8 Dimensionality Reduction

In our specific domain the results shall be interpretable
by medical personnel, and by the participants themselves.
Given that a high number of features may limit the in-
terpretability and ease of visualization of the data. Thus,
after scaling the feature vectors we employ a Principle
Component Analysis (PCA) dimensionality reduction ap-
proach (Daffertshofer et al., 2004; Van Der Maaten et al.,
2009). To minimize the risk of under-fitting phenomena, we
consider a relatively high number of principal components,
i.e., enough to explain 95% of the variance of the whole
dataset ® .

3.4 Model structure selection

We here report the results obtained through Support
Vector Regression (SVR, more specifically with a standard
Radial Basis Function kernel), and Gaussian Processes
Regression (GPR) defined by the kernel

Kapr =kn + ke kuma, (2)

with ko a constant kernel, ky a white noise kernel pa-
rameterized by the noise level o, and the Matern kernel
knra (2 general form of RBF kernel parameterized with a
length-scale parameter [ > 0 as defined in (3)).

\/57" 5r2 \/57“
kM“_<1+z+312 e e )

r=|z—2.

The choice in (2) is inspired by the ones made by Ab-
dessalem et al. (2017); Awad and Khanna (2015); Schulz
et al. (2018); Smola and Schélkopf (2004); Williams and
Rasmussen (2006). Note that the various coefficients defin-
ing our choice (i.e., the constant associated to the constant
kernel, o, and [) were considered hyperparameters that
were also estimated through an opportune training pro-
cess.

The results obtained with these kernels / radial basis func-
tions, and the ones we obtained using less sophisticated
choices (e.g., linear kernels) were not dramatically differ-
ent. Therefore, the final results were only mildly depending
on the selected model structure (starting obviously from
rather standard choices). For the sake of brevity we only
report the results obtained based on the choices described
in the above in the remainder of the paper.

5 Doing a PCA on the whole dataset is typically a statistically sub-
optimal choice. In our application we noted that the loadings and
scores plots associated to different CV folds tend to be quite stable
though — we don’t report the more detailed results here due to the
lack of space. Given the stability of the PCA results, we decided to
opt for a whole-dataset decomposition.
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3.5 Cross validation

To estimate the performance of the regression models
on unseen data, to investigate different generalization
properties of the found models, and to avoid selection
bias and over-fitting, we employ shuffle split, k-fold, and
repeated k-fold cross validation (CV) strategies. To do
so we follow four specific approaches partitioning data
into approximately 70-30% train and test (holdout). More
specifically, we consider:

¢ Record-wise splitting of the dataset into training and
test sets by applying repeated k-fold (RKF) on the
total number of records (180 collected datasets). This
means creating both training and test sets that each
blend in statistical information from every partici-
pant and every exercise stage. This dataset creation
strategy is expected to provide optimistic results of
the performance of the trained models on unseen
data - the more optimistic the smaller the original
dataset. This strategy helps to understand the general
performance of the trained models.

o Participant-wise splitting of the dataset into training
and test sets by applying shuffle split on the IDs
of the participants. In this case the entire data of
each participant is included either in the test set or
the training set. This strategy is useful to assess the
generalization capabilities for unseen persons.

o Stage-wise splitting of the dataset by applying a
shuffle split on the IDs of the recorded exercise stages
per participant (i.e., 1 : 9). This strategy is useful
to check the generalization capabilities on unseen
exercises.

o Intensity-wise splitting of the dataset by first cate-
gorizing the various EE signals into three "exercise
intensity zones" (low, moderate, and high) containing
equal proportions of the data, then creating three
separate datasets with the so-created data, and finally
performing a 3-fold CV on the new datasets. This
strategy is used to check the generalization capabili-
ties of the models in different exercise intensity zones.

Note that RKF and shuffle split CV are performed with
ten repeats. We present the corresponding results and
conclusions in the sections below.

4. RESULTS

This section summarizes the capabilities of the proposed
regression models in generalizing trained models on unseen
data, and in doing so we investigate to which extent it is
necessary to employ individualized experiment designs and
personalized models for the specific case of WCU. To do so
we analyse how the model prediction accuracy is affected
by sex and the IPAQ factor. More specifically, we consider
the following three categories of performance indexes:

o performance of the overall prediction capabilities of
models built on all the participants data,

o performance of sex-based models, i.e., prediction re-
sults for the case where the data is split not only as
described in Section 3.5, but also based sex,

o performance of IPAQ-based models, i.e., prediction
results for the case where the data is split based on
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reported self reported fitness index (IPAQ) factors (in
our case, either moderate or high).

The quality of each model prediction is assessed by the
coefficient of determination (R? score) and root mean
squared error (RMSE). The summary of the results in
terms of generalizability and personalized factors are re-
ported in Table 4 and discussed in the following subsec-
tions.

0.5

Explained variance

T T
1 5 10 15 20 25
Number of PC’s

Figure 2. Explained variance versus number of principal
components for the dataset. In this case the threshold
of 95% of explained variance leads to a number of PCs
equal to 20.

4.1 General prediction capabilities of the regression models

The reported performance indexes (high fit values and
small residuals) in the overall category (record-/participant-
wise CV scenarios) in Table 4 prove the validity of the pro-
posed approaches. Comparing R? and RMSE (kcal/min)
values shows that GPR outperforms SVR in estimating
EE values and succeeds in capturing the trend of the data.
More precisely, the trained model in record-/participant-
wise CV analysis may predict EE values on unseen records
and unseen participant data with an acceptable level of
precision. In contrast, the high prediction error and neg-
ative R? values in session- and intensity-wise CV indicate
the need for including a wide range of EE values or in other
words different exercise intensity zones in the training
datasets.

Table 5 and Figure 3 present then more details on the pre-
diction capabilities of SVR and GPR for the intensity-wise
CV based on splitting the dataset into low, moderate and
high exercise intensities. The accuracy of the predictions
are insufficient for the test data in all intensity zones. It is
worth mentioning that high intensity zone predictions for
test data show lower fit values and more biased estima-
tions (higher residuals). This could be explained by higher
measurement error of the Vyntus ergospirometer and an
increasing anaerobic component, which is not captured
in the way that we currently measure and calculate EE
values.

4.2 On the importance of considering personalized factors

To evaluate the impact of the personal characteristics on
the capabilities of predicting EE we assessed the models
quality separately for sex and IPAQ scores (see Table 4).
In addition, Figure 4 compares RMSE values in overall and
personalized scenarios employing participants-wise CV for
both regression models.



5. CONCLUSION AND FUTURE WORK

This study analysed the prediction capabilities of Support
vector and Gaussian process regression (SVR and GPR)
approaches for estimating energy expenditure (EE) levels
during wheelchair propulsion. More precisely, we consid-
ered estimators based on features extracted from Heart
rate and Inertial measurement unit time series from four-
minutes long experiments. Overall, the proposed regression
approaches were precise in predicting EE values in various
cross validation scenarios, proving that the proposed mod-
els are able to generalize on unseen data. The purpose of
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Table 4. Regression models and cross validation results
Model CcvV Overall Sex/Male Sex/Female IPAQ/MOD IPAQ/HIGH
R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE
Record-wise 0.86  0.72 0.76  0.91 0.80  0.58 082  0.77 0.83  0.86
SVR Participant-wise  0.86 0.70 0.78 0.87 0.80 0.57 0.81 0.79 0.82 0.90
Stage-wise 027 111 0.08  1.23 0.15  0.75 0.10  1.16 0.04  1.38
Intensity-wise -1.66 1.31 -2.24 1.44 -6.35 1.11 -2.16 1.35 -3.67 1.66
Record-wise 0.87 0.68 0.80 0.81 0.83 0.53 0.82 0.74 0.91 0.61
CGPR Participant-wise ~ 0.87 0.66 0.83 0.77 0.85 0.49 0.80 0.80 0.88 0.72
Stage-wise 0.52 0.86 0.32 0.95 0.50 0.59 0.32 0.95 0.73 0.76
Intensity-wise -0.42 0.96 -0.86 1.06 -1.06 0.62 -1.10 1.04 -0.12 0.91
As can be seen from Figure 1, the distribution of personal Low Intensity Fold
characteristics for female participants is slightly more ho-
mogeneous than in male participants. This can explain an . Measured 4
apparent difference in RMSE values in terms of mean and 10 | o Train predicted SVR ¢
standard deviation and better fit in predicting unseen data 5 o Train predicted GPR o
for females (compared to male) in sex divided datasets. E o Test predicted SVR
N . ~ Test predicted GPR
We note that in the current experimental setup, to com- 5 .
pensate for biological differences between male and female E Do o 00 2%%
.. . . Poo, o q,%ooq%b%%oow% #
participants (in regards to body mass, height, and muscle &) %0 0, >0 M
distribution), a lower treadmill speed has been chosen for B s
female participants (as detailed in Table 1). This, however,
leads to different excitation levels of the systems. While
this needs to be further investigated, the speeds chosen Moderate Intensity Fold
for female group were likely more achievable in comparison
with those for the male group. o Measured i
. Lo . . 10 | o Train predicted SVR
Figure 4 highlights also the existence of considerable — o Train predicted GPR 9&{
differences in prediction error when diving data into high é o Test predicted SVR
and moderate IPAQ factors. However, in this study, only = Test predicted GPR
6 out of 20 participants scored within high IPAQ factor g 5
range, thus the dataset for this group is relatively small @
compared to the group of moderate ones. This small i
dataset size can be a cause of high standard deviations
in RMSE values. Moreover, a considerable part of the
general population have a low IPAQ factor, a factor that
is not included in this study. Therefore, the simulation High Intensity Fold
results highlight the necessity of including a wider range
of participants with a inactive to highly active life style in 10 . Me:d“cz o j
the training dataset. - et beeitod G o~
Table 5. Comparison between test and train E o Test predicted SVR ‘
model predictions in intensity-wise CV. % Testpredicted GER 3 goy%%oo(
& FE 3
Model Low Intensity =~ Moderate Intensity ~ High Intensity Eﬂ/ g oo
R? RMSE R? RMSE R?  RMSE M
gyg Train 096 033 098 0.36 096  0.22
Test -2.89 120  -0.3 0.58 L7924
gpg  Train 099 020 098 0.37 089  0.35 50 100 150
Test 011 057  -0.76 0.68 2061 1.62

Number of samples

Figure 3. Regression results of intensity-wise 3-fold cross
validation applied to estimate EE values sorted based
on movement intensity.

these analyses was also to explore future considerations for
designing the experiments with wheelchair users (WCU),
i.e., collecting the most informative data that includes
both quantitative and qualitative indicators. This study
shows that data collected in moderate intensity activities
tends to be more informative. However, in order to increase
the accuracy of EE predictions also for low and high



Roya Doshmanziari et al. / [FAC PapersOnLine 56-2 (2023) 6504—6509

SVR
1.2 T o
=
'E 1
I
=5 TE
£a)
@ 0.6
= 1
04 ==
Overall Male Female MOD HIGH
GPR
) 1 B
: T
=08
s 0s| CJ o
2 0.6
= - —
~
0.4
Overall Male Female MOD HIGH

Figure 4. Comparison between SVR and GP results re-
porting participant-wise CV RMSE and standard de-
viations considering personalized models based on sex
and IPAQ factor

intensity, the experiments need to be designed to cover
as wide range of exercise intensities as possible.

Moreover, for personalizing the EE estimators, the de-
pendency of the model performance on sex and IPAQ
factors and likely other disability-related factors need to
be considered when investigating WCU in the next ex-
perimental phase. More specifically, the type and level of
the injury in manual wheelchair users, body mass and age
are likely important factors to be considered in this strive
for personalization. Thus, although the data collected for
the current study is informative enough for developing
algorithms for able-bodied participants, further experi-
ment design modifications are necessary for developing EE
prediction algorithms for WCU.
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