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Abstract. Length Rate Quotient (LRQ) is the first algorithm of inter-
leaved shaping – a novel concept proposed to provide per-flow shaping
for a flow aggregate without per-flow queuing. This concept has been
adopted by Time-Sensitive Networking (TSN) and Deterministic Net-
working (DetNet). In this paper, we investigate basic properties of LRQ
interleaved shapers. One is the so-called “shaping-for-free” property,
which is, when an LRQ interleaved shaper is appended to a FIFO system,
it does not increase the worst-case delay of the system. The other ba-
sic properties include conformance, output characterization, a sufficient
and necessary condition for bounded delay, Guaranteed Rate character-
ization, and delay and backlog bounds for LRQ interleaved shapers as
stand-alone elements. The derived properties of LRQ shed new insights
on understanding interleaved shaping, which may be further exploited
to achieve bounded delay in TSN / DetNet networks.
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1 Introduction

Interleaved shaping is a novel concept for traffic shaping, originally proposed in
[1]. Conceptually, its idea is to perform per-flow traffic shaping within a flow
aggregate using only one FIFO queue. An appealing property of interleaved
shaping is the so-called “shaping-for-free” property: When an interleaved shaper
is appended to a FIFO system and shapes flows to their initial traffic constraints,
it does not increase the worst-case delay of the system. Based on this property, an
approach to achieve bounded worst-case end-to-end (e2e) delay in the network
is investigated in [1]. The approach includes a specific way to allocate shaping
and scheduling queues in switches and re-shaping flows to their initial traffic
constraints using the corresponding interleaved shaping algorithms.

The concept of interleaved shaping, together with the approach of allocating
queues and reshaping traffic [1], has been adopted and extended by IEEE Time-
Sensitive Networking (TSN) [2] and IETF Deterministic Networking (DetNet)
[3] to deliver bounded e2e latency. The concept is called Asynchronous Traffic
Shaping (ATS) in the former [4] while Interleaved Regulation in the latter [5].



In [1], two algorithms for interleaved shaping are introduced, which are
Length Rate Quotient (LRQ) and Token Bucket Emulation (TBE). While LRQ
is for traffic constraints where the gap between consecutive packets satisfies a
length rate quotient condition, TBE is for the well-known token bucket (TB) or
leaky bucket (TB) traffic constraints. In [6], more types of traffic constraints are
investigated under a unified traffic constraint concept called “Pi-regularity” and
the resultant interleaved shapers are called Interleaved Regulators (IRs). The
“shaping-for-free” property is also proved for IRs in [6].

Surprisingly, other than the “shaping-for-free” property, few other proper-
ties of interleaved shapers have been reported. To bridge the gap, this paper is
intended. Specifically, we focus on LRQ, the first interleaved shaping algorithm.
In addition to “shaping-for-free”, a set of basic properties, not previously inves-
tigated, are proved in this paper, which include conformance, output character-
ization, a sufficient and necessary condition to ensure the existence of bounded
delay, Guaranteed Rate [7][8] service characterization, and delay and backlog
bounds for LRQ interleaved shapers as standalone elements.

The rest is organized as follows. In the next section, the LRQ interleaved
shaping algorithm and its modeling are first introduced, followed by some other
preliminaries. They include traffic and server models used in the investigation.
In Section 3, various basic properties of LRQ are proved. Concluding remarks
are given in Sec. 4

2 The LRQ Algorithm and Preliminaries

2.1 The LRQ Interleaved Shaping Algorithm

The LRQ algorithm Length Rate Quotient (LRQ) is the first algorithm of
interleaved shaping [1]. Consider an LRQ shaper, whose FIFO queue is shared
by an aggregate of flows. The LRQ shaper performs per-flow interleaved shaping
on the aggregate, according to the algorithm shown in Algorithm 1 [1].

Algorithm 1 Pseudo code of the LRQ algorithm

Initialization: ∀f : [f ].eligibility time = 0
Shaping:

1: while (true) {
2: wait until q.size > 0;
3: p := q.head(); l := p.length; f := p.flow index;
4: Ef := [f ].eligibility time;
5:
6: wait until tnow ≥ Ef ; output p;
7:
8: Ef := tnow + l

rf
;

9: [f ].eligibility time := Ef ;
10: }



The LRQ algorithm shown in Algorithm 1 takes the original form in [1]. As
is clear from Algorithm 1, there is only one FIFO queue q where per-flow shaping
is conducted. In Algorithm 1, q denotes the queue of the shaper, where packets
join in the order of their arrival times. After reaching the head of the queue,
the head packet p is checked for its eligibility of output from the queue, which
depends on the flow f that it belongs to. Time stamp Ef stores the eligible time
of flow f for its next packet. At the output time d of packet p, the time stamp
Ef is updated to equal the present / output time d(= tnow) plus the quotient
(l/rf ), where l is the length of p. In this way, the next packet of flow f after this
packet p is at least delayed until the time tnow reaches Ef .

A model for LRQ To model the LRQ algorithm, let j denote the packet
number of p in Algorithm 1, i.e., p is the j-th packet of the aggregate flow g
coming out of the queue q in Line 3. In addition, let aj and dj denote the arrival
time and output / departure time of the packet. Furthermore, let f(j) denote
the flow where the packet is from, i(j) its packet number in this flow f(j), and

Ef,i the eligibility time of packet pf,i, i.e., the i-th packet of flow f .
Line 6 tells that under the condition implied by Line 2, LRQ outputs the

packet immediately when the present time tnow reaches the eligibility time of
the packet Ef(j),i(j) . In other words, the output time equals the eligibility time,
i.e., dj = Ef(j),i(j) . The condition of Line 2 is that the packet must have already
arrived, i.e. dj ≥ aj . In addition, the loop, particularly the two highlighted lines,
Lines 2 and 6 imply the FIFO order is preserved when outputting packets, or in
other words, dj ≥ dj−1. Combining these, we have

dj = max{aj , dj−1, Ef(j),i(j)} (1)

with the initialization condition Ef,1 = 0 for ∀f , and d0 = 0 since the queue is
initially empty, where the eligibility time function Ef is updated according to
Lines 8 and 9 as:

Ef(j),i(j)+1 = dj + lj/rf(j) . (2)

Remark on model difference The concept of interleaved shaping has been
extended to consider other shaping constraints, such as token-bucket constraint
[1] [4] and “Pi-regularity” constraint [6], and has been adopted by IEEE TSN
[4] and IETF DetNet [3]. In these standards as well as in the modeling work
[6], the interleaved shaping algorithms directly take (1) as the form, where the
eligibility time function (2) is adapted according to the targeted shaping con-
straint. Specifically, the corresponding time functions of d and E are respectively
called GroupEligibilityT ime and individual flow’ schedulerEligibilityT ime in
the IEEE Standard 802.1Qcr [4].

In the modeling work [6], the introduced Πf function is indeed the function
Ef (2) here. For interleaved LRQ, the Pi-function has the following expression:

Πf,i
LRQ(rf ) = df,i−1 + lf,i−1/rf for i ≥ 2

Πf,1
LRQ(rf ) = −∞ for i = 1 (3)



As a highlight, the initial condition for the Πf function is different from that
for Ef . While it is Ef,1 = 0 in the initial LRQ algorithm [1] and the model (1)

above, it is Πf,1
LRQ = −∞ in [6]. Also in [6], this initial condition is discussed to

be necessary for its proposed “Pi-regularity” traffic constraint model.

2.2 Flow and Server Models

Notation Consider a FIFO system. Let F denote the set of flows. For each flow
f , let pf,i denote the i-th packet in the sequence, where i ∈ N+ ≡ {1, 2, . . . },
and lf,max its maximum packet length. For every packet pf,i, we denote by af,i

its arrival time to the system, df,i its departure time from the system, and
lf,i its length. The maximum packet length of the system is denoted by lmax.
In addition, define Af (t) ≡

∑
i{lf,i|af,i < t}, i.e., the cumulative amount of

traffic from flow f which has arrived up to time t, Af (s, t) ≡ Af (t) − Af (s),
and Af (0) = 0. For the departure process of the flow from the system, Df (t) is
similarly defined. Sometimes, reference time functions are used to characterize
how the flow f is treated by the system. Specifically, we use Ef and F f to
respectively refer to the times when the packets have reached the head of the
queue and become eligible for receiving service, and the times when packets are
expected to depart. They define reference eligible time Ef,i and expected finish
time F f,i for each packet pf,i of the flow f . When the concern is on a single flow,
the upper script f may be removed for representation simplicity.

Flow models For flows, two specific traffic models are considered. One is the
g-regularity model [9], also known as the max-plus arrival curve model [10][11]:

Definition 1. A flow is said to be g-regular for some non-negative non-decreasing
function g(·) iff for all i ≥ j ≥ 0, there holds ai ≥ aj + g(L(i)− L(j)) or equiv-
alently, ∀i ≥ 0,

ai ≥ sup
0≤k≤i

{ak + g(L(i)− L(k))} ≡ a⊗g(i) (4)

where L(i) ≡
∑i−1
k=0 l

k with g(0) = 0 and L(0) = 0, and ⊗ is called the max-plus
convolution operator.

In the case g(x) = x
r with a constant rate r, which is equivalent to ai+1 ≥ ai+ li

r ,
∀i ≥ 1, we also say the flow is LRQ(r)-constrained.

Another traffic model that will be used is the (min-plus) arrival curve model.

Definition 2. A flow is said to have a (min-plus) arrival curve α, which is a
non-negative non-decreasing function, iff the traffic of the flow is constrained by
[12], ∀s, t ≥ 0, A(s, s+ t) ≤ α(t) or equivalently, ∀t ≥ 0,

A(t) ≤ inf
0≤s≤t

{A(s) + α(t− s)} ≡ A⊗ α(t) (5)

where define α(0) = 0 and ⊗ is the min-plus convolution operator.



A special type of arrival curve has the form: α(t) = ρ · t+ σ. In this case, we
will also say that the flow is leaky-bucket or token-bucket (σ, ρ)-constrained.
The (σ, ρ) model was first introduced by Cruz in his seminal work [13]. It can
be verified that if a flow is LRQ(r)-constrained, it is also (σ, ρ)-constrained with
σ = lmax and ρ = r, i.e., having a (min-plus) arrival curve α(t) = rt+ lmax.

As shown by the two definitions, while the g-regularity or max-plus arrival
curve model characterizes a flow based on the arrival time ai, the (min-plus)
arrival curve model does so based on the cumulative traffic amount function
A(t). In the literature, e.g., [9][11], the relationship between the min-plus and
max-plus arrival curves has been investigated. Particularly, it has been shown
[11] that they can be converted to and are dual of each other.

Server models For server modeling, define two reference time functions E(·)
and F (·) iteratively as: ∀i ≥ 1

Ei(r) = max{ai, Ei−1 +
li−1

r
} (6)

F i(r) = max{ai, F i−1}+
li

r
(7)

with E0 = 0, F 0 = 0, and l0 = 0 where r denotes the reference service rate. Later
E will also be referred to as the eligibility time or virtual start time (VST) func-
tion, and F the virtual finish time (VFT) function. The following relationship
between functions E and F can be easily verified, e.g., see [14]: ∀i ≥ 1,

F i = Ei +
li

rf
(8)

Definition 3. A system is said to be a Guaranteed Rate (GR) server with guar-
anteed rate r and error term e to a flow, written as GR(r, e), iff it guarantees
that for any packet pi of the flow, its departure time satisfies [7][8]:

di ≤ F i(r) + e (9)

or equivalently

di ≤ a⊗g(i) +
li

r
(10)

with g(x) = x
r + e, where ⊗ is the max-plus convolution operator.

It has been shown that a wide range of scheduling algorithms, including pri-
ority, weighted fair queueing and its various variations, round robin and its vari-
ations, hierarchical fair queueing, Earliest Due Date (EDD) and rate-controlled
scheduling disciplines (RCSDs), can be modeled using GR [7][8]. For this reason
and to simplify the representation, instead of presenting results for schedulers
implementing specific scheduling algorithms, we use the GR model to represent
them. A summary of the corresponding GR parameters of various scheduling
algorithms can be found, e.g., in [14].



Considering the relationship (8), a server model may similarly be defined
based on E, which is called the Start-Time (ST) server model, written as ST (r, τ),
iff for any packet pi of the flow, the system guarantees its departure time [14]:

di ≤ Ei(r) + τ (11)

or equivalently
di ≤ a⊗g(i) (12)

with g(x) = x
r + τ and τ = e+ lmax/r.

As indicated by the max-plus convolution operator used in (10) and (12),
these models are server models for the max-plus branch of network calculus [9].
In the min-plus branch of network calculus, the (min-plus) service curve model is
well-known. The latency-rate type (min-plus) service curve is defined as follows.

Definition 4. A system is said to offer to a flow a latency-rate service curve
β(t) = r(t− τ)+ iff for all t ≥ 0 [12],

D(t) ≥ A⊗ β(t) (13)

where (x)+ ≡ max{x, 0}.

In [12][14], the relationship between the GR model, the ST model, the latency-
rate server model and the (min-plus) latency-rate service curve has been investi-
gated. Particularly, it is shown [14] that the latency-rate server model is equiva-
lent to the start-time (ST) server model. With the relation (8), it can be verified
that if a system is a GR(r, e) server to a flow, it is also a ST (r, e+ lmax

r ) server
and provides a latency-rate service curve β to the flow [14][12]:

β(t) = r[t− (e+
lmax

r
)]+ (14)

Conversely, if the system is an ST (r, τ) or latency-rate server with the same

parameters to the flow, it is also a GR(r, τ − lmin

r ) to the flow [14].

Delay and backlog bounds With the flow and server models introduced
above, the following delay and backlog bounds can be found or proved from
literature results, e.g.,[8][12].

Proposition 1. Consider a flow served by a system. The flow has an arrival

curve α, and the system is a GR(r, e) server to the flow. If limt→∞
α(t)
t ≤ r, the

delay of any packet i, i.e., di − ai, is upper-bounded by, ∀i ≥ 1,

di − ai ≤
supt≥0[α(t)− rt]

r
+ e

and the backlog of the system at any time, i.e., D(t) − A(t), is upper-bounded
by, ∀t ≥ 0,

D(t)−A(t) ≤ sup
t≥0

[α(t)− r(t− e− lmax

r
)+]



As a special case, the flow is (σ, ρ)-constrained, i.e. α(t) = ρt + σ. If ρ ≤ r,
the bounds in Proposition 1 can be written more explicitly as, ∀i ≥ 1,

di − ai ≤ σ

r
+ e (15)

for delay and ∀t ≥ 0,

D(t)−A(t) ≤ σ + ρ · (e+
lmax

r
) (16)

for backlog.
In the TSN / DetNet literature, the delay and backlog bounds are derived

commonly based on the assumption that the flow has a (min-plus) arrival curve
and the server has a latency-rate (min-plus) service curve [15], except in the
initial interleaved shaping paper [1] that adopts a timing analysis technique
directly on the reference time functions similar to our analysis in this paper. It
has also been noticed that the delay bounds from the service curve analysis are
more pessimistic than from the timing based analysis [15]. This difference is also
seen here as discussed in the following.

Specifically, service curve-based analysis can result in a delay bound that is
lmax

r larger than the bound from GR-based analysis shown in Proposition 1. The

difference is due to the extra term lmax

r in the service curve characterization as
shown in (14). By exploiting an advanced property of network calculus (NC),
which is “the last packetizer can be ignored for delay computation” (see e.g.
[12]), the packetizer delay can be deducted from the service curve based delay
bound. However, considering that the delay bound must hold for all packets,

only lmin

r may thus be extracted. Consequently, the “improved” service curve
based delay bound becomes:

σ

r
+ e+

lmax

r
− lmin

r
.

Then its difference from GR-based analysis can be reduced to

lmax

r
− lmin

r
.

As a remark, the discussion on the delay bound difference is only based on
the server models themselves. When delay bound analysis is conducted on a
specific scheduling discipline, the GR-based analysis may benefit additionally,
e.g., an example of this can be found in [16].

3 Basic Properties of Interleaved LRQ Shapers

3.1 The “Shaping-for-Free” Property

As introduced in Section 2, functions (1) and (2) capture the essence of the LRQ
algorithm. In addition, by adapting (2), interleaved shaping of flows with other



ShapingFIFO Server

Queue Interleaved 
LRQ

Fig. 1. The shaping-for-free property setup

traffic constraints can be implemented, for which, a systematic investigation
has been conducted in [6]. Applying (2) to (1), we can rewrite and obtain the
following model for LRQ: ∀j ≥ 1,

dj = max{aj , dj−1, df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
} (17)

with the initial condition: df,0 = 0 and lf,0 = 0 for ∀f , which is equivalent
to the initial condition Ef,0 = 0 for (1), since the three involved parameters
d, l and r in (2) are non-negative in nature and r is non-zero.

In the literature, “shaping-for-free” is a well known property of per-flow
shapers. Specifically, if a shaper is greedy and the initial traffic constraint of
the flow is used as the shaping curve, the worst-case delay of the flow in a sys-
tem composed of the shaper and a server is not increased in comparison with a
system of the server only, in spite of the order of the shaper and the server in
the combined system [9] [12].

Figure 1 illustrates a typical setup when studying the shaping-for-free prop-
erty, where interleaved shaping is performed after the FIFO system. In Theorem
1, we extend the study and prove that interleaved shaping does not affect the
worst-case delay no matter if interleaved shaping is introduced before or after
the FIFO system.

Theorem 1. Consider a set of flows F , where every flow f(∈ F) is LRQ(rf )-

regulated, i.e., af,i ≥ af,i−1+ lf,i−1

rf
. These flows pass through a system composed

of a FIFO server and an interleaved LRQ shaper with rate rf for f , ∀f ∈ F .
No matter about the order of the server and the shaper, a delay upper bound for
the FIFO server is also a delay upper bound for the composite system.

Proof. The property has two parts: (I) the LRQ shaper is before the FIFO server;
(II) the FIFO server is followed by the LRQ shaper as illustrated in Figure 1.

For part (I), the proof needs Lemma 1 and Lemma 2, which are introduced
in Section 3.2. Specifically, with the former, the regulator introduces no delay.
With the latter, the output from the regulator, i.e., the input to the server,
is regulated with the same traffic constraint and hence the same delay bound
remains.

For part (II), the proof is as follows. Let â denote the departure from the
server and hence the arrival to the regulator. Suppose ∆ is a delay bound for
all packets through the FIFO server, i.e., âj ≤ aj + ∆ for ∀j ≥ 1. We prove by
strong induction that for the composite system shown in Figure 1, ∆ is also a



delay bound, i.e. dj−aj ≤ ∆ for ∀j ≥ 1, where aj and dj respectively denote the
arrival and departure times of the j-th packet through the composite system.

For the base step, consider both the 1st and the 2nd packets. By definition
and the initial condition df,0 = 0 and lf,0 = 0 for ∀f as discussed above, for the
1st packet, it is obtained immediately d1 = â1 ≤ a1 + ∆. For the 2nd packet,

by the LRQ model (17), d2 = max{â2, d1, df(2),i(2)−1 + l
f(2),i(2)−1

r
f(2)

} ≤ max{a2 +

∆, a1+∆, df(2),i(2)−1+ l
f(2),i(2)−1

r
f(2)

}. There are two cases. (i) The 2nd packet is from

a different flow, which is the first packet of that flow. In this case, df(2),i(2)−1 +
l
f(2),i(2)−1

r
f(2)

= 0 by definition, and hence d2 ≤ a2 +∆ since a2 ≥ a1. (ii) The 2nd

packet is from the same flow. Then, d2 ≤ max{a2 +∆, a1 +∆, d1 + l
f(2),i(2)−1

r
f(2)

} ≤

max{a2+∆, a1+∆, a1+∆+ l
f(2),i(2)−1

r
f(2)

} = max{a2, a1+ l
f(2),i(2)−1

r
f(2)

}+∆ ≤ a2+∆.

This completes the base step.
For the induction, assume the theorem holds for all packets till j−1 with j >

2, which implies (i) dj−1 ≤ aj−1 +∆. The induction assumption also implies (ii)
df(j),i(j)−1 ≤ af(j),i(j)−1 +∆. Applying these to (17), together with âj ≤ aj +∆,
gives:

dj = max{âj , dj−1, df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}

≤ max{aj +∆, aj−1 +∆, af(j),i(j)−1 +∆+
lf(j),i(j)−1

rf(j)
}

= max{aj , af(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}+∆

= aj +∆

where the last step is due to the LRQ traffic constraint. Note that in the induc-
tion step, we have implicitly assumed that packet j is not the first packet of flow
f(j) to apply (ii). In the case that j is the first packet, by definition and the initial
condition, we also have dj = max{âj , dj−1, 0} ≤ max{aj+∆, aj−1+∆} ≤ aj+∆,
where we have applied the induction assumption (i). This completes the proof.

ut

Remark 1. Under interleaved shaping, the shaping-for-free property, correspond-
ing to Part II of Theorem 1, is first investigated in [1], but only implicitly. In
[6], a generalized treatment is provided, where the property is proved for a wide
range of traffic constraints, including both Chang’s g-regularity and (min-plus)
arrival curve constraints. However, it is worth highlighting that the investi-
gation in [6] requires a necessary initialization condition (3), which is
different from that used by LRQ, Algorithm 1. Theorem 1 has bridged the gap.

Remark 2. The shaping-for-free property investigated in [1] and [6] assumes that
the interleaved shaper is immediately placed after the FIFO server as illustrated
by Figure 1, Theorem 1 extends this and additionally proves that placing the
shaper before the FIFO server does not increase worst-case delay either.



3.2 Basic Properties of a Standalone LRQ Interleaved Shaper

In this subsection, a number of basic properties of a standalone LRQ interleaved
shaper, which have not been previously reported, are proved.

Lemma 1. (Conformance) Consider an interleaved LRQ shaper with a set of
input flows F , where for every flow f ∈ F , rate rf is applied. If at the input,
every flow f ∈ F is LRQ(rf )-regulated, then the shaper introduces no delay, i.e.,
for every packet pj, there holds dj = aj.

Proof. The proof is similar to that for the second part of Theorem 1. We
prove by (strong) induction. For the base case, consider the 1st packet and
the 2nd packet. By definition and the initial condition, it is obtained immedi-

ately d1 = a1. For the 2nd packet, d2 = max{a2, d1, df(2),i(2)−1 + l
f(2),i(2)−1

r
f(2)

} =

max{a2, a1, df(2),i(2)−1+ l
f(2),i(2)−1

r
f(2)

} = max{a2, df(2),i(2)−1+ l
f(2),i(2)−1

r
f(2)

}. There are

two cases. (i) The 2nd packet is from a different flow. In this case, df(2),i(2)−1 +
l
f(2),i(2)−1

r
f(2)

= 0 by definition, and hence d2 = a2. (ii) The 2nd packet is from the

same flow. Then, d2 = max{a2, d1 + l
f(2),i(2)−1

r
f(2)

} = max{a2, a1 + l
f(2),i(2)−1

r
f(2)

} = a2.

This proves the base case.
For the induction, assume the theorem holds for all packets till j − 1, which

implies dj−1 = aj−1 and df(j),i(j)−1 = af(j),i(j)−1. Applying these to (17) gives:

dj = max{aj , dj−1, df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}

= max{aj , aj−1, af(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}

= max{aj , af(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}

= aj

which completes the proof. ut

An implication of Lemma 1 is that at any time, there is at most one packet in
the LRQ system from each flow. This information may be used for conformance
check. For instance, from each flow, at most one packet is allowed and additional
non-conformant packets are dropped. This way can prevent delaying other flows’
packets if one flow is non-conformant to its LRQ(rf )-constraint.

Lemma 2. (Output Characterization) Consider an interleaved LRQ shaper with
a set of flows F , where for every flow f ∈ F , rate rf is applied. Regardless of the
traffic constraint for each flow at the input, the output of the flow f is constrained
by LRQ(rf ), i.e., ∀i ≥ 1,

df,i ≥ df,i−1 +
lf,i−1

rf
.



Proof. The output characterization result follows from (17), since the right hand

side of (17) is not smaller than df,i−1+ lf,i−1

rf
for any packet pf,i of the flow f . ut

Having proved Lemma 1 and Lemma 2, we now focus on the worst-case delay.
Unfortunately, its analysis is notoriously challenging. In the rest of this section,
we approach it step by step. First, the following result provides a sufficient and
necessary condition for an LRQ interleaved shaper to have bounded delay.

Lemma 3. (Sufficient and Necessary Condition) For an LRQ interleaved shaper
with rates {rf} for its flow set F , the delay for any packet is upper-bounded, if
and only if there exists a non-negative constant ∆(<∞) such that, ∀j ≥ 1,

df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
− aj ≤ ∆ (18)

and if the condition is satisfied, ∆ is also an upper-bound on the delay.

Proof. For proving (18) is a necessary condition, let’s first assume the condi-
tion does not hold and then prove the conclusion does not hold consequently.

Specifically, the assumption is that for some j, df(j),i(j)−1 + l
f(j),i(j)−1

r
f(j)

− aj

is not bounded. Since by definition dj ≥ df(j),i(j)−1 + l
f(j),i(j)−1

r
f(j)

and hence

dj − aj ≥ df(j),i(j)−1 + l
f(j),i(j)−1

r
f(j)

− aj , so for this j, dj − aj is not bounded.

This completes the necessary condition part.
For the sufficient condition part, we prove by induction that if (18) holds for

∀j ≥ 1, we also have dj − aj ≤ ∆ for ∀i ≥ 1, and hence it is a delay upper-
bound. For the base case, j = 1. By definition, we have d1 = a1, and hence
d1 − a1 = 0 ≤ ∆. For the induction case, let’s assume ∆ is an upper bound for
j−1, (∀j > 1) and then prove it is also an upper bound for j. With the definition
of dj , we have for its delay:

dj − aj = max{aj , dj−1, df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
} − aj

= max{0, dj−1 − aj , df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
− aj}

≤ max{0, dj−1 − aj−1, ∆} ≤ max{0, ∆,∆} = ∆

which completes the proof. ut

Note that, in Lemma 3, the condition does not assume how each flow is
regulated at the input. If the flow is LRQ(rf )-regulated at the input, applying
this traffic condition together with df(j),i(j)−1 = af(j),i(j)−1 from Lemma 1 gives

df(j),i(j)−1 + l
f(j),i(j)−1

r
f(j)

− aj ≤ 0. In other words, the sufficient and necessary

condition is satisfied with ∆ = 0. This also confirms Lemma 1 .
When the flow is not LRQ(rf )-regulated, the condition constant ∆ is not as

easily found. Additional approaches are needed to help find delay bounds. For
this, in Lemma 4, we relate the departure time with a generalized version of



the virtual start time and virtual finish time functions defined in (6) and (7).
Specifically, their generalized counterparts are: ∀j ≥ 1,

Ẽj = max{aj , Ẽj−1 +
lj−1

r(j−1)
} (19)

F̃ j = max{aj , F̃ j−1}+
lj

r(j)
(20)

with Ẽ0 = Ẽ0 = l0 = 0 and r0 = ∞, where, for ease of expression, we use r(j)

to denote the rate of the flow that packet j belongs to, i.e., r(j) ≡ rf(j) .
The difference between (19) and (6), and the difference between (20) and (7),

are that while the rate in the function for each packet is the same in the latter,
it may differ from packet to packet in the former. These generalized virtual start
time and virtual finish time functions (19) and (20) are similarly defined in the
generalized Guaranteed Rate server model [8].

Lemma 4. (GR Characterization) Consider an interleaved LRQ shaper with a
set of input flows F , where for every flow f ∈ F , rate rf is applied. The departure
time of any packet pj is bounded by: for ∀j ≥ 1

dj ≤ Ẽj = F̃ j − lj

r(j)
(21)

where Ẽj and F̃ j are defined in (19) and (20) respectively.

Proof. The definitions of Ẽj and Ẽj imply the following relationship between
them: ∀j ≥ 1,

F̃ j = Ẽj +
lj

r(j)
(22)

which can be verified with induction. For the base step, it holds because F̃ 1 =

a1 + l1

r(1)
and Ẽ1 = a1. For the induction step, under the induction assumption

F̃ j−1 = Ẽj−1 + lj−1

r(j−1) , it also holds.

With the fact Ẽj−1 ≤ Ẽj−1 + lj−1

r(j−1) , Ẽj can also be written as:

Ẽj = max{aj , Ẽj−1, Ẽj−1 +
lj−1

r(j−1)
}

Compare Ẽj and dj that is copied below

dj = max{aj , dj−1, df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
}

We prove (21) by induction. For the base case j = 1, since d1 = a1, Ẽj = a1

and the initial condition, (21) holds, i.e., d1 ≤ Ẽ1. For the induction step, we
suppose (21) holds for all packets 1, . . . , j − 1, and consider packet j. There
are two cases. (i) Packet pj−1 and packet pj belong to the same flow. In this

case, lj−1

r(j−1) = l
f(j),i(j)−1

r
f(j)

and hence dj ≤ Ẽj under the induction assumption.



(ii) Packet pj−1 belongs to a different flow. In this case, since packet pj−1 is
the immediate previous packet of pj , due to FIFO, packet pf(j),i(j)−1 must be
an earlier packet than pj−1, implying df(j),i(j)−1 ≤ dj−1. Let j∗(< j − 1) denote
the packet number of pf(j),i(j)−1 in the aggregate. For Ẽj−1, by applying the
definition of Ẽ iteratively, we have

Ẽj−1 = max{aj−1, aj−2 +
lj−2

r(j−2)
, . . . ,

Ẽf(j),i(j)−1 +
lf(j),i(j)−1

rf(j)
+

j−2∑
k=j∗+1

lk

r(k)
}

≥ df(j),i(j)−1 +
lf(j),i(j)−1

rf(j)

where for the last step, the induction assumption df(j),i(j)−1 ≤ Ẽf(j),i(j)−1 has
also been applied. With the above and the induction assumption dj−1 ≤ Ẽj−1,
the three terms in Ẽj are all not smaller than the corresponding ones in dj . Hence
dj ≤ Ẽj also holds for the second case. Combining both cases, the induction step
is proved, i.e. (21) holds for j. ut

With Lemma 4, the following corollary is immediately from the definition
of the generalized GR server model, the corresponding delay bound analysis [8]
and Proposition 1.

Corollary 1. The LRG regulator is (i) a generalized GR server with guaranteed

rate r = min rf and error term e = −min lf,min

rf
and (ii) provides a service curve

α(t) = minf r
f t. (iii) If every flow is (σf , ρf )-constrained and

∑
f ρ

f ≤ r, then

the delay of any packet pj is bounded by, ∀j ≥ 1,

dj − aj ≤
∑
f σ

f

minf rf
−min

f

lf,min

rf
(23)

and (iv) the backlog of the system at any time t is bounded by: ∀t ≥ 0,

D(t)−A(t) ≤
∑
f

σf + lmax (24)

While it is encouraging to have the delay bound (23) for LRQ interleaved
shapers as the first step, the condition

∑
f ρ

f ≤ minf r
f and the term minf r

f

in (23) make the bound conservative. We improve in the follow result.

Theorem 2. Consider an interleaved LRQ shaper with rates {rf} for its flow

set F . If every flow f(∈ F) is (σf , ρf )-constrained, and
∑
f
ρf

rf
≤ 1, the delay of

any packet pj is bounded by, ∀j ≥ 1,

dj − aj ≤
∑
f

σf

rf
− lf,j

rf
(25)



which implies the following delay bound for all packets:

sup
j≥1

[dj − aj ] ≤
∑
f

σf

rf
−min

f

lf,min

rf

Proof. For any packet pj , there exists a packet pj0 whose arrival starts the “vir-
tual busy” period that packet pj is in, where for all packets that arrive in [aj0 , F̃ j ]
there holds ak ≤ F̃ k−1, ∀k = j0 + 1, . . . , j. Alternatively, the start of the period
is by the latest packet with aj0 > F̃ j0−1.

Consider a virtual reference FIFO system which has the same input sequence
aj and its output is F̃ j . Then this period is a busy period in the virtual refer-
ence system. Note that such a “virtual busy” period always exists, since in one
extreme case, pj0 is the first packet for which a1 > F̃ 0 = 0 always holds, and
in another extreme case, the period is started by the packet pj itself and in this
case, j0 = j.

Applying ak ≤ F̃ k−1 to the definition of F̃ j gives:

F̃ j = t0 +

j∑
k=j0

lk

r(k)
= t0 +

N∑
m=1

Wm(t0, F̃ j)

rm
(26)

where Wm(t0, dj) =
∑j
k=j0

lkIpk∈f denotes the total amount of service (in ac-

cumulated packet lengths) from flow f , served in [t0, F̃ j ], where the indicator
function Ipk∈f has the value 1 when the condition {pk ∈ f}, i.e. packet pk is
from flow f , is true.

Because of FIFO and that the virtual system is empty at t0−, Wm(t0, dg,j) is

hence limited by the amount of traffic that arrives in [t0, afn,i]: Wm(t0, F̃ j) ≤
Am(t0, ag,j).

We then have,

F̃ j ≤ t0 +
∑
f

Af (t0, aj)

rm
(27)

Under the condition that
∑
f
ρf

rf
≤ 1, we obtain:

F̃ j − aj ≤
∑
f

Af (t0, aj)

rf
+ t0 − aj ≤

∑
f

ρf (aj − t0) + σf

rf
− (aj − t0) ≤

∑
f

σf

rf

with which, the delay bound is obtained together with Lemma 4, specifically
(21). ut

4 Conclusion

Though being the first algorithm of interleaved shaping, the properties of LRQ
were previously little studied. As a step towards filling the gap, a set of prop-
erties for LRQ have been derived in this paper. These properties include the



shaping-for-free property that has been proved without altering the initializa-
tion condition introduced in the original LRQ algorithm. In addition, a set of
basic properties of a standalone LRQ interleaved shaper, which were not previ-
ously investigated, have also been derived, which include conformance, output
characterization, a sufficient and necessary condition for bounded delay, GR
characterization, and delay and backlog bounds. These results provide new in-
sights on understanding interleaved shaping, which may be further exploited to
deliver bounded delays in TSN / DetNet networks [16].
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