
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
an

d
N

or
w

eg
ia

n
U

ni
ve

rs
it

y
of

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy

A Hybrid Reinforcement
Learning and Tree Search
Approach for Network
Topology Control
Geert Jan Meppelink

A Hybrid
Reinforcement

Learning and Tree
Search Approach for

Network Topology
Control

by

Geert Jan Meppelink

TU Delft 4692810

NTNU 582216

to obtain the degree of MSc. Electrical Engineering
at the Delft University of Technology,

and the degree of MSc. Wind Engineer,
at the Norwegian University of Science and Technology,

to be defended publicly on 22 December, 2023 at 10:30 AM.

Project duration: January 2023 - December 2023
Thesis committee: Prof. Dr. Ir. Han La Poutré, TU Delft, Chair

Dr. Ir. Jochen L. Cremer, TU Delft, Supervisor
Ir. Ali Rajaei, TU Delft, Daily Supervisor
Prof. Dr. Ir. Olav B. Fosso, NTNU, Supervisor

Cover: Shutterstock

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Acknowledgements

With great pride and joy I can look back on my student life over the past years, this thesis marking the
end of it. Following my studies throughout Delft, Budapest, Copenhagen and Trondheim has allowed
me to follow interesting courses and explore great cities, enriching my academic and personal life. I
would like to start with a word of thanks towards the people helping me along the way.

First of all, I would like to give great thanks to Jochen Cremer, Ali Rajaei and Olav Bjarte Fosso for
their help and supervision during my thesis, aiding me in exploring the subject and an approach for a
solution. I want to thank you for your professionalism and optimism during the project, guiding me in
the right direction while giving me the needed confidence to finish this thesis. Furthermore I would like
to thank Han la Poutré for taking the time to chair my thesis committee and providing me with valuable
feedback during the final part of my thesis.

I am thankful for the people that enabled me to participate in the EWEM studyline, and I am most of all
thankful for all the friends I have met along the way, making the past few years so memorable. Finally,
I am very thankful for my parents and family, whose unwavering support and confidence helped me
throughout my thesis and my student life.

Geert Jan Meppelink
Delft, December 2023

i

Abstract

The escalating demand for electricity, fuelled by the widespread adoption of heat pumps, electric vehi-
cles, and industrial electrification, is placing immense pressure on power grids, pushing them to their
limits. This surge in demand, coupled with the integration of intermittent renewable energy sources, in-
troduces challenges for ensuring a consistent, reliable, and secure electricity supply. Previous research
has highlighted an underutilised flexibility in power grids through network topology control, altering con-
nections to redirect power flows and mitigate transmission line overloads. However, conventional com-
putational methods struggle to overcome the complexity arising due to the countless configurations.
To tackle this issue, the French system operator, RTÉ, has initiated the ’Learning to Run a Power Net-
work’ competitions, urging participants to explore AI-driven solutions to allow future network operators
to make informed decisions, ensuring economic, safe and sustainable power grid operations.

The proposed approach merges a curriculum-trained machine learning agent with a Monte Carlo Tree
Search (MCTS) to enhance power network action security. The MCTS guides the simulation of po-
tential actions, considering future outcomes for improved long-term performance identification. The
methodology employs curriculum learning to generate labelled training data, with supervised imitation
learning training a neural network to replicate optimal actions experimentally validated. MCTS is then
used to secure these actions, leveraging outcomes in the training algorithm for enhanced sample ef-
ficiency and reduced training times. The approach uses MCTS-verified, simulation-tested actions for
immediate training feedback, eliminating the need to wait for scenario completion, enhancing sample
efficiency. An electrically distance-guided search in the MCTS improves convergence by prioritising
actions closer to overflows, often found to be most influential in reducing violations.

The proposed approach shows the effect of the MCTS in promoting beneficial action trajectories, sur-
passing the brute-force baseline. Utilising the robust MCTS-based actions, a sample-efficient and
stable training regime is created, utilising direct training, while the usage of the proximity factor shows
potential in increasing convergence during simulation and training. However, increased research into
optimising and setting training and testing parameter is needed to better the performance of the ma-
chine learning (ML) methods, especially before application within real-sized grids. While improved
performance was shown through the usage of the applied method, optimal performance is hindered by
the usage of solely topological reconfigurations. Further research is needed to combine the approach
with methods for determining redispatch actions to reduce operational costs while keeping the system
optimally safe and secure.

ii

Contents

Acknowlegdements i

Abstract ii

Nomenclature v

List of Figures vi

List of Table viii

1 Introduction 1
1.1 Conventional Approaches & Motivation . 1
1.2 Proposed Contributions . 2
1.3 Research Questions . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Network operation . 5

2.1.1 Network Security . 6
2.1.2 Transmission switching . 7

2.2 Machine Learning . 8
2.2.1 Neural Networks . 8
2.2.2 Training Neural Networks . 9
2.2.3 Reinforcement Learning . 10
2.2.4 AlphaGo/Zero Algorithms . 11

2.3 Learning To Run A Power Network (L2RPN) Competition 13
2.3.1 Earlier competitions . 14
2.3.2 2022 L2RPN competition . 14

3 Literature review 17
3.1 Conventional Methods for Topology Control . 17

3.1.1 Network Topology Control . 17
3.1.2 Current usage and research barriers . 18

3.2 Earlier competitors of the L2RPN competition . 19
3.2.1 CurriculumAgent . 20
3.2.2 enliteAI Agent . 22

3.3 Impact of Electrical Distance . 24
3.3.1 Definitions of Electrical Distance . 24
3.3.2 Application of Electrical Distance . 24

4 Methodology 26
4.1 Expert rules . 28

4.1.1 Re-establishing line connections . 28
4.1.2 Automatic Grid Recovery . 29
4.1.3 Agent action threshold . 30

4.2 Curriculum learning regime . 30
4.2.1 Reduced Action Space Generation (’Teacher ’) 30
4.2.2 Preparation of Training Data (’Tutor ’) . 32
4.2.3 Neural Network Configuration via Imitation Learning (’Junior ’) 32
4.2.4 Exploration through Reinforcement Learning (’Senior ’) 33
4.2.5 Final Agent . 34

4.3 Monte Carlo Tree Search . 34

iii

Contents iv

4.3.1 MCTS Elements . 35
4.3.2 Simulation Tree Algorithm . 36
4.3.3 Action Selection Algorithm . 37
4.3.4 Training Regime . 40
4.3.5 Testing Regime . 40

4.4 Electrical Distance Guided Search . 40
4.4.1 Motivation for the Usage of an Electrical Distance Factor 41
4.4.2 Determining Electrical Distance . 42
4.4.3 Adding an Electrical Distance Term to the Tree Algorithm 42
4.4.4 Training Using the Distance Factor . 44

5 Case Studies 45
5.1 Test Settings and Network . 45
5.2 Hyperparameter Analyses . 46

5.2.1 RAS Analysis . 46
5.2.2 AAT Analysis . 46
5.2.3 MCTS-SG Analysis . 48

5.3 Case Study 1: MCTS Security and Sample Efficiency 48
5.3.1 MCTS Security Analysis . 49
5.3.2 MCTS Training Regime Analysis . 51

5.4 Case Study 2: Distance Factor . 53
5.4.1 Distance Bonus Analyses . 53

6 Conclusion and Discussion 56
6.1 Proposed Approach . 56
6.2 Research Questions and Answers . 56

6.2.1 Hybrid Curriculum Learning and Monte-Carlo Tree Search Approach 56
6.2.2 Monte-Carlo Tree Search based Training Regime 58
6.2.3 Incorporating Proximity through an Electrical Distance Factor 59

6.3 Future Work . 60

References 62

A Figures 65

B Tables 68

Nomenclature

Abbreviations
Abbreviation Definition

AC Alternating Current
AAT Agent Action Threshold
AI Artificial Intelligence
BFS Breadth-first search
BSDF Bus Split Distribution Factor
CSR Compressed Sparse Row
DC Direct Current
DDQN Deep Duelling Q-Network
DER Distributed Energy Resources
DCPF Direct Current Power Flow
DQN Deep Q-Network
DRL Deep Reinforcement Learning
ESS Energy Storage Systems
FACTS Flexible Alternating Current Transmission Systems
L2RPN Learning To Run a Power Network
LODF Line Outage Distribution Factor
ML Machine Learning
MCTS Monte-Carlo Tree Search
MCTS-SG Monte-Carlo Tree Search Safeguard
MDP Markov Decision Process
OTS Optimal Transmission Switching
PBT Population Based Training
PPO Proximal Policy Optimisation
PTDF Power Transfer Distribution Factor
ReLU Rectified Linear Unit
RL Reinforcement Learning
RTÉ Réseau de Transport d’Électricité
TPU Tensor Processing Unit
UCB Upper Confidence Bound

Symbols
Symbol Definition Unit

P Power [MW]
vπ(s) State-value function [-]
qπ(s, a) Action-value function [-]
P (s, a) Prior probability [-]
N(s, a) Visit count [-]

ρ Line loading [%]
γ Discount factor [-]
π∗ Optimal policy [-]

v

List of Figures

1.1 Flowchart illustrating the thesis outline . 4

2.1 Example of node splitting to manage an overflow (Figure taken from Dorfer et al. [11]) . 7
2.2 Future view of topology control integratedwith system operator decisionmaking (Adapted

from Ruiz & Caspary [20]) . 8
2.3 Schematic representation of a fully connected linear neural network, with one input layer,

two hidden layers and one output layer . 9
2.4 The agent-environment interaction in an MDP, showcasing states, actions and rewards

(Adapted from Sutton & Barto [29]) . 10
2.5 Monte Carlo Tree Search in AlphaGo Zero. a) Select: each action is taken based on

the maximum upper confidence bound. b) Expand and evaluate: the neural network
initialises the action probabilities and value for a leaf state. c) Backup: the visit count
and average action value are updated throughout the subtree. (Taken from Silver et al.
[32].) . 12

2.6 L2RPN overview example: An agent observes the power network at timestep t, and
sees that an overflow y4 is present, and receives a negative reward. The agent takes
the action to split a substation (node). The resulting topology does not experience any
overflows and the reward increases. (Taken from Marot et al. [36].) 13

2.7 Example of synthetic time series for varying energy sources (Taken from Serré et al. [8].) 15
2.8 Schematic layout of the 2022 grid . 16

3.1 Schematic overview of the Teacher module (Taken from AsprinChina [57]) 21
3.2 Schematic overview of the Tutor module (Taken from AsprinChina [57]) 21
3.3 Schematic overview of the Junior module (Taken from AsprinChina [57]) 22
3.4 Schematic overview of the Senior module (Taken from AsprinChina [57]) 22
3.5 Example of a grid topology MCTS tree. Nodes represent states (root is the current state);

edges are simulated actions. Yellow nodes are critical states, red nodes are black-out
states and blue nodes are critical states that internally skipped steps because they were
deemed safe by the Grid State Observer. Edges correspond to topology actions with
the action ID (in brackets) and the corresponding upper confidence bound. (Taken from
Dorfer et al. [11]) . 23

4.1 Full schematic overview of the workflow of the methodology. 27
4.2 Modules of the methodology including the expert rules 28
4.3 Modules of the methodology including the curriculum learning regime 31
4.4 Modules of the methodology including the Monte-Carlo Tree Search 35
4.5 Action selection example if safe states have been found. Nodes represent grid

states, root is the current state. Grey nodes are violating states (maximum line load
> 98%), red nodes are black-out states and blue nodes are states deemed safe by the
Safety Checker (able to skip ’t_skipped’ timesteps without agent intervention needed.
Safe grid state able to reach the maximum number of steps is chosen, and the action
leading there is chosen at the root (action 24). 38

4.6 Action selection example if no safe states have been found. Nodes represent grid
states, root is the current state. Grey nodes are violating states (maximum line load >
98%) and red nodes are black-out states. The grid state able to reach the maximum num-
ber of steps is chosen. If multiple states have the same value for reachable timesteps,
the grid state with the lowest maximum loading is chosen, and the action leading there
is chosen at the root (action 50). 38

vi

List of Figures vii

4.7 Action re-selection example using the safeguard, if no safe states have been found.
Nodes represent grid states, root is the current state. Grey nodes are violating states
(maximum line load > 98%) and red nodes are black-out states. The grid state able to
reach the maximum number of steps is chosen. The safeguard compares the maximum
loading of the nodes on the same timestep as the parent node of the action chosen, and
re-selects the best node if a reduction in loading > ’safeguard_threshold’ is found. The
action leading to the chosen node is selected at the root (action 24). 39

4.8 Modules of the methodology including the electrical distance factor 41
4.9 Percentage of actions found that most optimally reduce loading, per electrical distance

as measured in ’hops’. 42
4.10 Graph of the Distance Factor Formula . 43

5.1 Schematic overview of the ’WCCI_L2RPN_2022’ grid from Grid2Op, used for all testing
cases. 45

5.2 Effect of the action space size, used by the brute-force algorithm, on the performance and
computational time per scenario. Average values and standard deviations are indicated
using markers and error bars, respectively. 47

5.3 Effect of the Agent Action Threshold (AAT) , used by the brute-force algorithm, on the per-
formance and computational time per scenario. Average values and standard deviations
are indicated using markers and error bars, respectively. 47

5.4 Effect of the safeguard value, as employed by the Junior-MCTS algorithm, on the av-
erage agent performance, including a baseline (BL) algorithm that never re-thinks its
course of action. 48

5.5 Timestep survival performance (left) and computational time per step (right) of the NN-
agents, using their top prediction, or simulating the top-5/25 predicted actions, compared
to the baselines. 49

5.6 Timestep survival performance (left) and computational time per step (right, using loga-
rithmic scale) of the MCTS agents, compared to the Junior /Senior neural network agents
employing a top-25 simulation security check, and the baselines. 50

5.7 Performance of the MCTS-trained algorithm, averaged for each of the training months,
throughout its 3 training iterations. 51

5.8 Timestep survival performance (left) and computational time per step (right, using loga-
rithmic scale) of the MCTS-trained prior prediction agent compared to the Junior /Senior
neural network agents, all employing a top-25 simulation security check, and the baselines. 52

5.9 Timestep survival performance (left) and computational time per step (right) of the MCTS-
trained MCTS agent compared to the Junior /Senior MCTS agents, and the baselines. . 53

5.10 Timestep survival performance (left) and MCTS iterations used per step (right) for the
distance-guided Junior-MCTS agent, compared to its non-guided base case and MCTS-
trained agent. 54

5.11 Timestep survival performance (left) and iteration count per timestep (right) survived for
the standard MCTS-training regime compared to the distance-guided training regime,
averaged per training iteration. 55

A.1 Training and validation accuracy of the neural network during the Junior training regime 65
A.2 Training and validation loss of the neural network during the Junior training regime . . . 66
A.3 Validation accuracy for the top-20 actions for the Junior trained neural network 66
A.4 Mean episodic reward per timestep during the Senior training regime, smoothed with a

window of value 10 . 67

List of Tables

4.1 Comparison of used and unused state variables, as for the neural network input 33
4.2 Junior Neural Network parameters and values . 33

5.1 Performance statistics (average and standard deviation) for the MCTS and prior predic-
tion agents compared to the baselines . 50

5.2 Direct comparison of the MCTS and non-MCTS methods 50
5.3 Direct comparison of the distance guided and non-distance guided MCTS-algorithms.

The base case used for comparison is the Junior-MCTS algorithm. Values are given
with averages and standard deviations. 54

5.4 Direct comparison of the distance guided and non-distance guided MCTS-algorithms
during training . 55

B.1 Junior Neural Network parameters and values . 68
B.2 Population Based Training Configuration for the Senior module, using Ray’s RLlib . . . 68
B.3 Senior Neural Network parameters and values . 69
B.4 Further description of the used variables during the training process of the Junior and

Senior neural networks . 70
B.5 Scenarios for both the Test and Hyperparameter set, used during hyperparameter vali-

dation and case studies . 71

viii

1
Introduction

Power grids are the backbone of our electricity system, facilitating the transfer of electricity from the
generation points to consumption locations. The rapid increase in electricity demand, driven by factors
such as heat pumps, electric vehicles, and the electrification of industry, is putting immense pressure
on power grids, pushing them to their maximum capacities [1]. Ensuring a constant, reliable, and safe
electricity supply is a challenge for power system operators, particularly with the growing integration
of intermittent renewable energy sources. These sustainable energy sources, such as wind and solar,
address our critical need of reducing greenhouse gas emissions but bring additional uncertainty and
limited flexibility. In previous studies researchers have shown an under-exploited flexibility of the power
grid in the form of grid or network topology control [2, 3]. This network topology control provides a pos-
sibility to enhance the power grid’s flexibility by altering the connections of its lines and configurations
of its buses to redirect power flows and alleviate overloads in transmission lines.

In the face of increasing uncertainties within an expanding grid with myriad configurations, conven-
tional computational methods are struggling with the complexity of finding optimal solutions for control.
Network operators often default to experiential intuition or predefined manuals, potentially resulting in
sub-optimal operation and, in extreme cases, blackouts. To address this challenge, the French system
operator, RTÉ, have set up a series of annual competitions, called ’Learning to Run a Power Network’,
or L2RPN. Competitors are encouraged to combine their expertise in machine learning (ML) and power
grids to investigate artificial intelligence (AI) driven solutions for network topology control, with a focus
on a particular branch of ML, called reinforcement learning (RL). AI agents, using either RL, its ad-
vanced version, called deep reinforcement learning (DRL) or other ML methods are trained to control
the power grid. The agents try to operate the power grid by altering generation set-points, changing
the topology, charging/discharging storage units or curtailing renewables. The agents follows multiple
objections: balancing generation and consumption, minimising losses, supplying all loads safely and
especially preventing cascading failures which could lead to blackouts. The aim of these competitions is
to offer a basis of investigation towards AI based techniques that could assist future network operators
in making informed decisions to keep the power grid operated economically, safely and sustainably.

1.1. Conventional Approaches & Motivation
Transmission switching as a means of grid control was first put forward in the eighties by Koglin & Müller
[4]. However, grids growing in size and complexity have made conventional computational methods
struggle to find optimal control solutions in real time, forcing grid operators to rely on their experience
or predefined manuals. This reliance can lead to sub-optimal outcomes or even blackouts.

In this context, the L2RPN competitions have been held by the French network operator, RTÉ, since
2019 [5–8]. In this competition competitors have explored the use of machine learning agents, partic-
ularly deep reinforcement learning agents, to control the grid using topological actions. These agents
aim to use the yet unused, cost-effective flexibility inherent in interconnected power systems, utilising
inexpensive topology changes instead of more costly redispatch actions [8].

1

1.2. Proposed Contributions 2

The L2RPN competition brought the development of many various agents employing diverse combina-
tions of machine learning techniques, simulation tactics, and heuristic rules. Notable methods include
curriculum learning [9], which involves training agents in progressively challenging steps, and model-
based approaches similar to AlphaZero, where promising actions are simulated to ensure their future
impact [10]. While these agents have achieved excellent improvements in performance, they still en-
counter difficulties rising from the vast complexity of the action space.

The large number of potential topological rearrangements in a power system results in an expansive
action space, hindering reinforcement learning agents in converging upon an optimal policy. Current
approaches address these challenges through brute force action space reduction methods. The com-
petitors from enliteAI, which have won the most recent L2RPN competition, reduce the original action
space of 72.958 topological actions to the 2000 most frequent actions through a brute-force search [11].
This heuristic creates an action space which may not be best-suited for optimising redispatch actions.
While this action space reduction method has been proven to work well, a clear answer for the optimal
size of the reduced action space has not been presented, as a sufficient amount of actions should be
available to keep the power system intact.

The consequences of actions can be drastic, as topological modifications often deteriorate the grid’s
ability to withstand disturbances or failures. During stable states, when supply meets demand with the
grid components all operating safely within its limits, not changing the grid topology often proves to be
the best course of action, whereas unsuitable topological actions during critical grid states can trigger
cascading outages and blackouts. Currently, heuristic expert rules are in place that prevent the agent
from taking actions during stable operations and aim to restore the grid to its optimal, fully connected
state. Remedial actions taken during critical states should therefore not put the system at risk.

1.2. Proposed Contributions
This thesis introduces a hybrid approach, combining a curriculum-trained machine learning agent with a
specialised MCTS, to improve the security of proposed actions in the power network. By incorporating
future outcomes through selective simulation of projected suitable actions, the MCTS aids in selecting
actions that show better long-term performance. The expert rules frequently employed by L2RPN
competition agents are elaborated upon and evaluated. The implications of using a reduced action
space is investigated, identifying the trade-off between performance and complexity. Such an optimal
reduced action space ensures both flexibility for addressing overloads and fast computational speeds,
to adhere to operational time constraints.

The proposedmethod utilises curriculum learning to generate labelled training data for a neural network.
Through supervised imitation learning, the neural network is trained to mimic the optimal actions in
specific states, the data of which are experimentally realised. The MCTS is used to improve the security
of its actions. A training algorithm based on MCTS outcomes is used to improve sample efficiency
and reduce training times. The rationale is that MCTS-verified actions, being simulation-tested, offer
immediate training feedback, eliminating the need to await scenario completion, and improve sample
efficiency, as better actions can be found directly.

Additionally, an electrically distance guided search is added to the MCTS to improve the convergence
process. Electrical distance, measured using a breadth-first search (BFS), measures the lowest line
count between an overload and a potential action, termed as ’hops’. This BFSmetric remains consistent
even when topological actions have significantly altered grid connections. By prioritising actions based
on electrical distance, theMCTS is guided towards actions closer to overloads, often themost influential,
thereby streamlining its selection process.

The performances of the different agents are compared using two baselines, do-nothing and brute-
force. The performance, training time and sample efficiency are analysed for different training regimes,
and the increased security of the MCTS is quantified.

1.3. Research Questions 3

1.3. Research Questions
This sections outlines the primary academic contributions of this thesis, along with their associated
research questions:

Objective 1: Develop a hybrid network topology control agent, utilising a curriculum-learning pre-
training regime and a Monte-Carlo Tree Search during operation.

Q1 How well can a hybrid agent leverage both the pre-training sample-efficiency from
the curriculum-learning regime and the improved security of the Monte-Carlo Tree
Search?

Q2 To what extent is the agent capable of maintaining network operations within limits
using only network topology control actions?

Objective 2: Utilise the capabilities of the Monte-Carlo Tree Search to generate training samples
for the agent to optimise its performance.

Q1 Can the robust actions proposed by the Monte-Carlo Tree Search, tested through
simulation, be utilised as viable training samples for the agent?

Q2 How significantly do the Monte-Carlo Tree actions improve the sample efficiency and
performance stability during training?

Objective 3: Incorporate the proximity of actions to the overflow as additional information in the
Monte-Carlo Tree Search.

Q1 How can the proximity be considered for estimating electrical distance and enhancing
Monte-Carlo Tree Search convergence?

Q2 How effectively does the inclusion of a proximity factor improve the convergence of
both the Monte-Carlo Tree Search and the agent action policy during training?

1.4. Thesis Outline
Chapter 2 discusses the necessary background for the thesis. This includes a concise description of
network operation, network security and transmission switching, as well as a foundational level clarifi-
cation of ML, RL and the usage of the MCTS in the AlphaGo/Zero algorithms. Additionally, this chapter
describes the details regarding to the L2RPN competition. After this Chapter 3 will establish an overview
of conventional and state-of-the-art methods for network topology control, and the barriers it still faces.
After this the two approaches, a curriculum-learning and a MCTS agent, are outlined, which form the
basis of the proposed method. The chapter concludes with a review and discussion on the different
methods for determining electrical distance within the power grid. Chapter 4 sequentially outlines the
proposed approach for combining curriculum-learning and a MCTS, its training regime and how electri-
cal proximity can be used to improve the convergence during operation and during training. Chapter 5
presents the case studies. Firstly, the hyperparameter analyses used for determining optimal operat-
ing settings are described, after which two sets of case studies highlight the performance of the MCTS
security, and electrical distance factor, respectively. Finally, Chapter 6 provides a discussion on the
results of the method, drawing a conclusion on the research questions and providing suggestions for
future work. A schematic of the thesis outline can be found in Figure 1.1.

1.4. Thesis Outline 4

Chapter 1: Introduction

Chapter 2: Background Chapter 3: Literature

Chapter 4: Methodology

Chapter 5: Case Studies

Chapter 6: Discussion &
Conclusion

Introduction, conventional
approaches, proposed approach

and thesis outline

Basics of network operation &
security, transmissive switching,
ML, RL, AlphaGo/Zero and the

L2RPN competition

Review on conventional methods
for topology control, outline of
curriculum-learning and MCTS
agent, and electrical distance

Methodology of the proposed
approach of the hybrid agent, its
training regime and the usage of

the electrical distance factor

Case studies determining
operational parameters and
highlighting performance of

proposed approach

Discussion and conclusion on
the methods and results of the

approach, suggestions for future
work

Figure 1.1: Flowchart illustrating the thesis outline

2
Background

2.1. Network operation
Power networks have undergone steady developments to become the structures that they are today,
the backbones of societies. Where historically power was predominantly generated by large thermal
units, burning fossil fuels such as coal, oil and gas, currently the drive for decarbonisation has led to an
increased share of renewable and variable sources such as wind, solar, hydro and distributed energy
resources (DER). The fossil fuels which were used to power the large thermal units were able to be
transported over land, allowing the power plants to be situated closely to the hubs of consumption. The
shift towards more carbon-free sources sees generation harnessing the power of natural resources,
which are frequently located in more remote areas. Combined with a larger share of smaller, dispersed
DER, the power generation distribution has changed in many ways over the last century, necessitating
more flexible operation to account for increased variability.

At their core, power networks are governed by three fundamental constraints, which need to be met to
ensure their seamless operation.

• Thermal limits. Upper limit to the amount of power that can be transferred. Surpassing these
limits for extended periods of time will likely amount to the failure and/or disconnection of the
equipment.

• Voltage regulation. The voltage needs to be kept within a defined range to ensure secure op-
eration, where large, unexpected deviations can cause severe disturbances in the system. A
larger share of renewable energy integration adds to the challenge by introducing more voltage
variability [12].

• Generation - load balance. Every power network operates on, or as closely around as pos-
sible, the equilibrium between the power generated and the power consumed, as prolonged or
significant deviations from the nominal values can destabilise the entire grid.

In modernising grids with increased levels of variable sources, congestion management needs to be
applied more often to reduce the violations within the grid. Historically, congestion management is done
by changing the active and reactive power output of different conventional power generators at different
points in the system, called redispatching. Redispatching conventional generators is still considered to
be the main source of flexibility in a system to cover the balance between supply and demand. Using
redispatching often requires using less cost-effective power generation units or utilising excessive oper-
ational reserves which both make for a higher cost for operating the system. Per illustration, the yearly
redispatching costs in the German transmission grid went from 13 million € in 2010 to 220 million € in
2016 [13]. These development within power network underscore the necessity for alternative methods
for congestion management. Network topology control, including line switching or node switching, can
offer flexible, cost-effective methods for congestion management. However, due to the computational
complexity of the countless possible switching topologies and the lack of qualified topology optimisation
methods, it is still underutilised within current grids.

5

2.1. Network operation 6

2.1.1. Network Security
For the secure operation of power networks it is imperative that stability within the system is maintained
both under regular operating conditions and during unforeseen contingencies. This means that:

• During normal operations: all parameters, including power flows on equipment, voltage, and
frequency, should remain within predetermined real-time limits.

• During contingency operations: all parameters, including power flows on equipment, voltage,
and frequency, should remain within predetermined limits after the loss of any one single element
in the network. This is called N-1 security [14].

The essence of secure operation lies in adhering to the three fundamental requirements for normal
operations; ensuring no breach of thermal limits on equipment, keeping voltage levels stable, and bal-
ancing power generation and consumption. However, the integration of renewable resources presents
a new set of challenges for network operators. Given the intermittent nature of renewables, such as
wind and solar, maintaining the networks three primary constraints becomes increasingly complex.

The requirement to adhere to all thermal limits in the system becomes increasingly difficult with a higher
concentration of fluctuating inputs from renewable sources, which lack the inherent stability found in
large thermal generation units, due to power electronic at the grid interface the fact that renewable
energies do not often comprise of large spinning units, which can counter grid variations due to its
large inertia [15]. Network operators need to use the right tools at their disposal to ensure thermal limit
constraints during routine operations. These tools also need to used preemptively to ensure that the
network operates within its limit after an expected or unexpected outage of any element in the system.
Network limits also possess a temporal element. Lines or cables within a grid can tolerate temporary
overflows while a solution is found to revert the grid back within its limits. An immediate overflow
does not typically result in an instantaneous disconnection of an element. However, correct mitigation
has to be undertaken such that a single overflow does not cause other components to malfunction.
Constraining to the thermal limits during normal operations and for the N-1 contingency operational
cases is vital in preventing simultaneous outages which can disturb the security of the entire grid. If the
thermal limits are not adhered to, highly loaded lines might have to be disconnected for security. The
power that was flowing through that connection will be rerouted, possibly raising nearby power flows
past their thermal limits, which can cascade a string of outages in a highly loaded network, ultimately
leading to a complete blackout [16].

The shift of intermittent renewable energy generation in the power grid does not only affect the stability
of the thermal limits within the network, but also poses new challenges for balance control between the
generation and the loads. Balancing power generation with consumption, which is needed to keep the
frequency stability of the system intact, has become progressively more challenging due to the intermit-
tent nature of many renewable energy sources. Renewable energy sources such as wind and solar are
expected to dominate the European power production in the coming decades [17]. Even though the
predicted production of these intermittent sources can be estimated, the variability throughout longer
periods of time such as days or seasons can establish more difficult production patterns for the en-
tire power mix. As production of wind and solar does not line up with general consumption patterns
for users, other measures, such as demand response or temporary energy storage, have to be put in
place such that the consumption in the grid can be met at all times [18].

In real-time, network operators employ a hierarchy of remedial actions to counteract system constraints,
such as line thermal overflows:

• Line switching: connecting or disconnecting lines in the network.
• Node switching/splitting: splitting or coupling busbars at a substation, or changing which bus-
bar an element is connected to. This groups or separates the connections within a busbar, or the
connections through the node.

• Generation redispatching: increasing or decreasing the generation at certain locations in the
network to increase or reduce the flows on the lines.

• Load curtailment: disconnecting a certain amount of load from the system which matches the
lack of generation in the system to keep the frequency balance intact.

2.1. Network operation 7

• Generation curtailment: similar to load curtailment, where an excess of power generation can
be disconnected to retrieve a frequency balance. Can sometimes be necessary if renewable
sources are producing too much power during periods of lower consumption [19].

Load or generation disconnection, while effective, is often a last resort due to its societal impacts and
potential business disruptions. Similarly, redispatching generation, governed by market dynamics, can
be cost-intensive. Using the inherent design flexibility of substations, which allows for partitioning or
coupling, can be an efficient way to manage line overflows and increase the system security and oper-
ational efficiency.

2.1.2. Transmission switching
Transmission switching, which entails both line switching and node splitting/switching, is the act of
changing the network topology by switching line or busbar connections in or out. By switching on/off
of transmission network elements, such as transmission lines or substation connections, the network
topology is altered, which then sees the active and reactive power flows rerouted as per the Kirchhoff
laws. This switching on/off is done by closing/opening the circuit breakers already present in the current
network topology. By rerouting the active and reactive power flows congestion management can be
done in a cost-effective way, which keeps the system secure and economically operated. An example
of using node splitting can be seen in Figure 2.1. In the example the overflowed line from the current
state is switched to the second bus of the node, changing the flows in the network and reducing the
overflow.

Figure 2.1: Example of node splitting to manage an overflow (Figure taken from Dorfer et al. [11])

Using the circuit breakers already in the system to control the network topology reduces operational
costs as no investment on additional assets are needed. Transmission control switching can not only
be used to try and tackle thermal flow limits, but can also be used as a way of coping with voltage
violations. By rerouting the reactive power or switching off the line that produces the reactive power,
often in lightly-loaded systems, the voltage violations can be helped. This also helps in reducing system
operational costs compared to installing costly FACTS (Flexible AC Transmission Systems) devices.

With more intermittent renewable energy coming into the system more flexibility is needed. Currently
limited network topology switching is used, only as a corrective mechanism by system operators based
on their own operator knowledge or on predetermined look-up-tables. This is only done is contingency
states to try and alleviate the thermal or voltage violations. These pre-determined switching actions
can be based on assumed steady-state system conditions which can cause unwanted consequences
during real-time operation. Reliable and large-scale system applicable simulators or frameworks are
needed which can simulate the real-time effect of these switching actions before network operators
can feel confident in applying network transmission control on a larger scale. It is expected that in the
future network operators are assisted by software selecting possible options for resolving thermal flow
or voltage violations, as can be seen in Figure 2.2.

2.2. Machine Learning 8

Topology reconfigurations are sparsely
employed
Topological actions are identified based
on operator experience
Flexibility of the grid is underutilised

Algorithms quickly define possible
options for topology reconfigurations
Facilitate training of new operators
Flexibility of the grid used optimally
Better grid control is achieved

Power Flow /
Planning tools

Violations / Congestion

Grid Operator Grid Operator

Selected
topological

action

Topology
control
options

Currently Future view

Power Flow /
Planning tools

Grid Topology
Optimiser

Violations /
Congestion

Figure 2.2: Future view of topology control integrated with system operator decision making (Adapted from Ruiz & Caspary
[20])

2.2. Machine Learning
In global power networks, the flexibility from topological changes remains an underutilised, cost-effective
solution for network security. The challenge lies in simulating the vast range of options in real-time with
the current operator model and toolkit. Historically, operators relied on their experience for network
issues, suitable for a static, predictable system. However, the evolving network, with its unpredictable
resources altering flow patterns, demands more advanced control solutions. In this new control sce-
nario ML agents can propose high probability switching or other control actions which can be simulated
and checked by the system operator. ML can offer a good alternative when the computational com-
plexity becomes too large so that a deterministic optimal solution cannot be found. ML is a subset of AI
that focuses on building systems that can learn from data. Rather than being explicitly programmed to
perform a certain task, these systems are trained using large amounts of data and algorithms that give
them the ability to learn how to perform the task [21]. By using function approximations properties of
neural networks high-dimensional action patterns, called policies, can be approximated and employed
[22]. The goal of this thesis is to advance node-switching control based on combining ML and do-
main knowledge to offer a good alternative in situations where computational complexity becomes too
substantial.

2.2.1. Neural Networks
A neural network is a computational ML model inspired by the way biological neural networks in the
human brain work [23]. It consists of interconnected nodes, called neurons, organised into layers.
A neural network can be used to learn and approximate complex, non-linear relations by adjusting
the weights of the interconnections between the nodes based on training data. An example of a fully
connected neural network can be seen in Figure 2.3. A neural network often comprises [24]:

2.2. Machine Learning 9

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ⁴

Figure 2.3: Schematic representation of a fully connected linear neural network, with one input layer, two hidden layers and
one output layer

Linear transformations: hk+1 = Whk

Non-linear activation functions: hk+2 = f(hk+1)

A loss function on the output, e.g.
Mean-squared error: l = ∥y∗ − y∥2

Log likelihood: l = logP [y∗]

Each node in the neural network propagates its input to the following layer using the linear transforma-
tion and non-linear activation functions. The weights of the nodal interconnections, which determine the
impact the propagated values, are iteratively trained during the training process using back-propagation.
This tuning algorithm calculates the gradient of the loss function with respect to each weight using
the chain rule, and performs gradient descent on the outcome to converge the model towards the
best-mapping solution [25]. Neural networks using these methods for training have shown impressive
approximation capabilities [26, 27].

2.2.2. Training Neural Networks
Neural networks can be seen as the mechanism used for representation learning. For a task with a
certain objective, the neural network can be trained to learn an approximate representation required to
achieve the objective of the task, directly from the raw or pre-processed inputs.

Supervised Learning
One common approach to training ML models is supervised learning. In this training strategy, an algo-
rithm is trained on labelled data, comprising input data and their associated correct outputs. Consider
a set {(x, y)}, x = 1 . . .M , where x is the input and y is the corresponding correct output for x. The
objective is to teach an algorithm to determine a function approximation f(x) that can capture the re-
lationship between the input and the output, such that f(x) ≈ y. This learned function can then be
utilised to accurately predict outputs for unseen input data [28].

Imitation learning is a type of ML where models learn by observing and imitating the behaviour of
an expert. Various ML training regimes can be used to learn to the desired behaviour by mimicking
the actions of an expert agent in similar situations. This approach can also be seen in the frame of
a supervised learning regime, where labelled data of an agents optimal actions for different situations
can be used as training examples. In cases where labelled training data is not readily available another
form of training can be used, called RL, where an agent learns an optimal action policy by interacting
with an environment.

2.2. Machine Learning 10

Agent

Environment

Action
At

Reward
Rt

State
St

Rt+1

St+1

Figure 2.4: The agent-environment interaction in an MDP, showcasing states, actions and rewards (Adapted from Sutton &
Barto [29])

2.2.3. Reinforcement Learning
In cases where labelled training data is not readily available another form of training can be used, called
RL. RL is a type of machine learning where an agent learns an optimal action policy by interacting with
an environment. The agent takes actions, receives feedback in the form of rewards or penalties, and
adjusts its strategies to maximise cumulative rewards over time. This trial-and-error learning approach
allows agents to discover optimal strategies even in complex, unknown environments.

The core approach of RL is learning through interaction. As the agent engages with its environment,
it observes changes and the rewards it obtains. Actions taken might influence not only immediate
rewards but also shape future outcomes, affecting subsequent rewards. Thus, an agent may opt for an
action with a lesser immediate reward, anticipating to be rewarded more in the future. Based on action
outcomes, the agent refines its strategy for future similar situations, which is similar to behaviourist
psychology observed in humans [29].

The RL environment can be described as a Markov Decision Process (MDP), which is characterised
by the following components:

• States: Observable conditions of the environment by the agent.
• Actions: Operations the agent can perform, influencing the environment and the received reward.
• Reward function: Specifies the reward based on the action taken in the current state.
• Transition function: Determines the resulting state from the action taken.

As the agent acts upon the environment, the state and reward are changed according to the reward
and transition functions. The RL agent’s task is to derive a policy (action strategy) that maximises the
total anticipated reward:

∞∑
t=0

γtr(st, at) (2.1)

The variable γ in this formula is called the discount factor, and is typically γ < 1. The reasons range
from mathematical considerations, as to prevent cumulative infinite returns, to behavioural tendencies,
where immediate rewards are favoured [30]. The RL process can be visualised as in Figure 2.4.

Generally, two primary strategies are considered to address reinforcement learning problems. The first
strategy comprises methods utilising a value function, while the second strategy comprises methods
centred on policy optimisation. For methods using value functions, the value or expected reward of
occupying a specific state is calculated. The state-value function, represented as vπ(s), indicates the
anticipated reward for a state s when following a certain policy π. Conversely, the action-value function,
qπ(s, a), predicts the reward for executing action a in state s and subsequently following policy π. To

2.2. Machine Learning 11

estimate the optimal values for these functions, policy iteration is used. This involves a dual process:
initially refining the value function using the policy, termed policy evaluation, and subsequently refining
the policy with this enhanced value function, termed policy improvement. Policy improvement involves a
’greedy’ approach, constantly selecting the option promising the highest expected reward. On the other
hand, policy optimisation techniques strive to directly pinpoint the optimal policy, denoted as π∗. Here,
a policy is established that directly correlates actions to input states, guided by specific parameters θ.
These parameters are updated in response to observed outcomes of interaction with the environment,
refining the policy.

A crucial distinction in reinforcement learning refers to the use of model-based versus model-free meth-
ods. In model-free approaches, no system model is derived from interactions with the environment.
However, in model-based methods, such a model is constructed based on interactions with the envi-
ronment, or a physics-basedmodel for the environment is constructed or available. Using this model the
transition function allows the prediction of a subsequent state from the current state and a proposed ac-
tion, allowing the need for actual action execution. Notably, several groundbreaking machine learning
achievements, like the AlphaGo/Zero algorithms, have relied on parts of both of these methodologies
[10, 31, 32].

Deep Reinforcement Learning
RL experiences many of the same hurdles that other algorithms face, in memory storage and com-
putational complexity [22]. These hurdles can be tackled using DRL. DRL merges the trial-and-error
methodology of traditional RL with the capabilities of deep neural networks. These networks, charac-
terised by numerous hidden layers, adeptly address challenges like memory storage and computational
complexity that RL faces. Leveraging the non-linearity of neuron activation functions, DRL can approx-
imate abstract continuous functions, especially when the neural network has a sufficient number of
neurons. By recognising and abstracting low-dimensional features from high-dimensional data, deep
neural networks can effectively estimate optimal policies and value functions without depending on
manually crafted features.

2.2.4. AlphaGo/Zero Algorithms
In recent years a breakthrough paper was released by researchers from the company DeepMind which
introduced an algorithm called AlphaGo [31]. Employing RL and deep neural networks, this algorithm
achieved the milestone of defeating a professional human player in the strategy game called ’Go’, a
feat which was thought to still be a century away. This influential algorithm forms the basis for the
approach taken in this thesis, and will therefore be outlined in the following section.

While other perfect information games such as chess and backgammon had already found their ma-
chine learning breakthrough in the late 90’s of the last century [33, 34], the game of Go was still thought
of as too complex to be solved to a near optimal extent. The initial 2016 algorithm of AlphaGo, trained
on expert human play and enhanced via reinforcement learning, combined two deep neural networks.
One neural network for the policy and another for the value network, augmented by a specific tree
search technique known as a MCTS. In a subsequent paper released in 2017 an updated algorithm,
called AlphaGo Zero, was defined [32]. This updated algorithm was notable for three main refinements:
firstly, no prior human knowledge was assumed, secondly, the value and policy network were combined
into a single deep neural network, and finally, a simpler tree search was used, which beat the prior algo-
rithm 100-0. This approach used by the AlphaGo Zero algorithm will be outlined here as its combined
use of model-free (deep neural networks) and model-based (MCTS) ML approaches offers promising
starting points for AI approaches for network topology control.

In the AlphaGo Zero algorithm a combined deep neural network is used for both the value network and
the policy network. It outputs a value evaluation v and move probabilities p, estimating the probability
of winning and which actions to take from a specific state, respectively. Using this integrated network a
MCTS is executed from the current position at each state, which outputs tree search move probabilities
π after completion of the simulation. This guided search outputs stronger actions compared to only the
neural network, and can therefore be used to improve the action policy. The algorithm then plays
against itself using this approach, and is able to use the outcome of the game at the end to improve

2.2. Machine Learning 12

its value function. This can be seen as policy iteration through iterative policy improvement and policy
evaluation to guide the neural network toward its optimal value.

In the MCTS, extensive game simulations from the current state shape the action policy, based on the
most valuable actions observed. Each simulation starts from the starting state, called the ’root node’.
Each state-action pair, (s, a), indicates a certain action taken from a specific state, and is also defined
as an ’edge’. Each edge contains several parameters:

• P(s, a): the prior probability of taking action a from state s;
• N(s, a): the visit count, equal to the amount of times the action a has been traversed from state
s in the tree, and;

• Q(s, a): the average action value, equal to the average value of all nodes below this edge

Each simulation fully traverses down the tree until a state is found which has not been discovered yet,
which is called a ’leaf’ state. Action selection at each step is guided by a so called upper confidence
bound (UCB), which is composed of the average action value Q(s, a) and a term based on prior prob-
ability and visit count. The chances to take an action increase with high prior probability and low visit
count, to encourage exploration of possible high value actions. When a leaf state is encountered, its
values get initialised using the neural network, which estimates a value for and the move probabilities
from that position. After such a leaf state is reached the parameters N(s, a) and Q(s, a) in the subtree
which got to that state are updated. After enough simulations the most visited actions are deemed to
be the strongest, and the action policy is based hereafter. The MCTS algorithm is laid out in Figure
2.5.

Figure 2.5: Monte Carlo Tree Search in AlphaGo Zero. a) Select: each action is taken based on the maximum upper
confidence bound. b) Expand and evaluate: the neural network initialises the action probabilities and value for a leaf state. c)

Backup: the visit count and average action value are updated throughout the subtree. (Taken from Silver et al. [32].)

Using the deep neural network and the MCTS the algorithm trains by playing full games against itself.
Post-game, the network is optimised to better predict the value according to the final outcome of the
game, and better align the predicted action probabilities with those derived from the tree search, con-
structing a reinforcement learning algorithm that surpasses human performance without pre-existing
human knowledge.

In the following years up to now two more papers were published, updating the AlphaGo algorithm.
AlphaZero, detailed in a 2018 paper [10], extended the approach to function solely on the game rules
without any domain-specific knowledge, and was applicable across different games. The 2020 paper
introducedMuZero [35], which, while still reliant onMCTS and built upon the AlphaZero framework, gen-
eralises to single-player games and non-terminating challenges. Furthermore, MuZero incorporates a
reward function that allows scenarios with intermediate rewards, aligning closely with the dynamics of
network topology control where such considerations are crucial for optimal functionality.

2.3. Learning To Run A Power Network (L2RPN) Competition 13

2.3. Learning To Run A Power Network (L2RPN) Competition
The application of ML and RL techniques in the realm of power networks has been seeing an increase in
interest in recent years. This is highlighted in the series of competitions organised by RTÉ, the French
transmission network operator, called ’Learning to Run a Power Network’ (L2RPN). This initiative seeks
to explore the usage of machine learning in enhancing the efficiency and reliability of power network
operations [8, 36]. Their competition not only offers a simulator and baselines but also provides edu-
cational resources. While power systems experts may lack knowledge of machine learning, and ML
experts might be unfamiliar with power systems, it is expected that a cooperative relationship between
the two domains can yield significant benefits. Having started in 2019, this annual competition shifts
its focus each year, addressing distinct challenges relevant to the future of power grids.

The competition models the real-time decision-making environment of transmission system operators,
emphasising the secure and efficient management of the transmission network. Here, machine learn-
ing agents play a pivotal role. They have the capacity to reconfigure the network, through line and
substation switching, to optimise line flows and prevent blackouts. Such agents can strategically use
these switching actions to reduce operational costs, given that these switching options are substantially
more economical than adjusting power plant outputs or resorting to curtailment. An illustration of this
operational approach is depicted in Figure 2.6.

Figure 2.6: L2RPN overview example: An agent observes the power network at timestep t, and sees that an overflow y4 is
present, and receives a negative reward. The agent takes the action to split a substation (node). The resulting topology does

not experience any overflows and the reward increases. (Taken from Marot et al. [36].)

The open-source framework developed for the competition, called ’Grid2Op’, lets users create and
simulate through realistic environments of sequential operation scenarios. Grid2Op is based on existing
non-linear physical power grid simulators and is able to simulate challenging but realistic scenarios
representative of current and future problems in the power grid:

• The uncertainty resulting from the increased penetration of renewable energies, which will in-
crease in the future.

• Static stability and robustness during line contingencies.

Their most recent framework offers a 118-node grid and realistic stochastic time series based on vary-
ing amounts of renewable energies. At the base of the control is the action space, consisting of cost-
effective topology actions altering network connections and more expensive generator redispatch ac-
tions. Depending on the challenge, the action space can span up to 70,000 discrete actions and a
40-dimensional continuous action space.

Following a couple of feasibility trials, the competitions addressing challenges centred on real-world
power grid issues started in 2020. That year, the competition tackled robustness and adaptability,
separated in two distinct tracks. The following years saw an evolution of these tracks. For instance, the
2021 competition emphasised the development of reliable agents capable of issuing alerts during low-
confidence scenarios. Meanwhile, the 2022 edition, which is most focused on the hurdles future grids
will face, utilised grids characterised by high renewables penetration, thereby introducing increased
variability and uncertainty.

2.3. Learning To Run A Power Network (L2RPN) Competition 14

2.3.1. Earlier competitions
L2RPN 2020
The 2020 competition featured two distinct tracks. The robustness track utilised a smaller 45-node grid
where an opposing agent could initiate grid attacks through line disconnections, simulating potential
outages due to weather anomalies or targeted assaults. This mirrors the real-world challenges of
ageing grids, increasing extreme weather events due to climate change, and the growing need to
factor in worst-case scenarios within computational limits. Subsequent competitions integrated this
adversarial agent to better equip systems for such challenges. The goal of this track is to develop a
method resilient in real-time under these adverse conditions.

The adaptability track, on the other hand, is set on a larger 118-node grid. Here, changing energy
distributions test system flexibility limits. As the transition towards decarbonised power and more re-
newable energy sources advances, the system encounters increased unpredictability and variability in
production. However, grid expansion lags. Agents in this track must manage energy compositions with
varying amounts of renewable energy integration, delving into the extent of flexibility AI can bring amid
slow grid developments.

Evaluation of participants was grounded in total operational costs per scenario, encompassing loss
costs, redispatching costs, and blackout costs if not completed. Scores, for clarity, were normalised
between [-100, 100]. An immediate blackout would score -100, doing nothing yielded a median score,
while a score of 80 was achieved by safely navigating all scenarios. The ultimate 20 points were
reserved for minimising losses while ensuring safety across all scenarios.

L2RPN 2021
The 2021 competition expanded on its 2020 predecessor, emphasising the trust dimension in AI agents.
Given the utmost of importance of reliability, AI will not gain full autonomy rapidly. To thrive in a
human-in-the-loop system, an AI agent must propose control actions, transparently indicating any low-
confidence decisions. Trust, as articulated by the Trust Equation by Charles Green, depends on credibil-
ity, reliability, and intimacy, combined with the impression that the AI represents human’s best interests.
Through consistent transparency, predictable responses, and discerning alerts, trust is built, paving the
way for future reliable autonomous systems. This edition also included the adversarial opponent that
unpredictably disconnects lines, compelling agents to adapt to unexpected outages.

The performance of competing agents was calculated by weighing operating cost and alarm scores, as
described by:

Score = 0.3× Scorealarm + 0.7× ScoreOperation Cost (2.2)

The alarm score evaluates timely and relevant alerting prior to a failure. With a constrained ”attention
budget”, agents must be thoughtful in sending alarms. Optimal alerting occurs 35 minutes before a
failure, but alarms within a 10-60 minute range also receiving lesser rewards. The grid has three
distinct areas, and alarms specific to the correct malfunction zone earn higher rewards. An optimal
alarm score is achieved without failures. If an alert precedes a failure, scores range between [0, 100],
but a -200 penalty is applied for un-alerted failures. This competition iteration probes the cooperation
between AI and human operators, emphasising the perception of AI on its own short-comings.

2.3.2. 2022 L2RPN competition
This thesis focuses on the 2022 L2RPN competition, where its 118-node grid is used for the develop-
ment and examination of the proposed agents, and for performing case studies. A brief overview of
the power grid environment and its rules is provided below. Please refer to the official documentation
for all details [37].

Focus of the competition
In the 2022 L2RPN competition the emphasis is put on the uncertainties and challenges anticipated in
future power grids [8]. Currently, research is being done to explore the feasibility of a 100% renewable

2.3. Learning To Run A Power Network (L2RPN) Competition 15

energy-powered network, dominated by fluctuating sources like wind and solar. While sustainable,
these intermittent energies pose integration challenges in the power grid due to their unpredictability,
stressing the necessity for some controllable, rotating-mass production in the grid. Additionally, dis-
tributed energy sources often reduce local power flows, elevating the risk of over-voltage issues.

This conceptual view of the future is modelled on a comprehensive 118-node grid, employing an RTÉ
developed library called Chronix2Grid to produce energy mix time series. The tools from this library
function as a sophisticated solver, matching required generation with diverse energy outputs, factoring
in weather conditions, and minimising carbon emissions. Consequently, the competitive energy mix
features only 2% carbon-emitting energy. Figure 2.7 depicts a sample time series for diverse energy
sources, arranged by Chronix2Grid.

Figure 2.7: Example of synthetic time series for varying energy sources (Taken from Serré et al. [8].)

Combining elements from the 2020 competition’s adaptability and robustness tracks, this edition in-
troduces a high renewable energy quotient and retains the adversarial disruptions. Enhancements
towards a more realistic grid include seven batteries for improved control and the ability to curtail re-
newable sources. The competition is reshaped into a new problem by having an updated simulator
and data which represents future zero carbon scenarios. This competition tries to advance AI in the
department of varying and unpredictable power system control.

L2RPN environment design
The power grid consist of generators, load, power lines, substation and storages, which follow pre-
determined output curves as defined by the Chronix2Grid library for each scenario. A layout of the
2022 grid can be seen in Figure 2.8.

Scenarios. Scenarios in the Grid2Op environment consist of week-long simulations, built up out of
2016 timesteps of 5 minutes. All grid data is provided by a chronic, structured data that changes the
input parameters of the system between one time step and another. A chronic provides data for gen-
erator setpoints, load consumption and structural information such as planned outages or unplanned
hazards, the adversarial attacks. 32 years of power grid data in 5 minute intervals is available for
developing and testing the agent.

Generators, loads & storages. Generators produce power, with renewables (sun, wind, hydro) influ-
enced by weather simulations and thermal generators (coal, gas, nuclear) following set output curves.
The outputs of generators can be adjusted: thermal power can be redispatched, and renewables cur-
tailed. Loads consume power and adhere to an pre-defined load pattern, unknown to the agent. Stor-
ages can store power over time, allowing for charging or discharging.

2.3. Learning To Run A Power Network (L2RPN) Competition 16

Substations and power lines. Substations link elements (generators, loads, lines) and have two
buses. Elements must be assigned to a bus, determining the grid configuration. Lines, connecting
substations, possess thermal limits. Exceeding these limits for more than a brief period of time, two
timesteps, leads to an auto-disconnect, with substantial overflows causing immediate disconnects and
potential cascading failures.

Figure 2.8: Schematic layout of the 2022 grid

The agents are tasked with managing the grid defined by the following:

• Action space. The algorithms can perform two main actions. They can modify the grid’s topology
or adjust power production. Specifically, there are over 70,000 discrete actions available for
topology adjustments and a 40-dimensional continuous space for altering power production.

• Observation space At every interval, the algorithm can access a complete snapshot of the power
grid status. This encompasses data on power nodes (both production and consumption), power
line flows, and other relevant metrics. After each action, the simulated environment updates,
providing the algorithm with a fresh observation.

• Reward mechanism. While participants have the liberty to customise their reward functions, the
final standings of the competition were determined based on the cumulative operational cost of
the network.

• Simulation. The agent has access to limited simulation for planning. Unlike the complete ob-
servation, it features forecasts of future load, generators, weather patterns and planned outages.
Therefore, while the agent can use this to test the general impact of an action, precision is impre-
cise.

• Game over. The simulation scenario concludes if the grid fails to meet the total power demand.

3
Literature review

3.1. Conventional Methods for Topology Control
Topology control has been a recent topic of interest for research as its applications can advance power
system security and its ability to operate in a cost-effective manner. Increased interest has come from
advancements in direct computational abilities or the advancement of good approximation methods
based on ML. There are however still hurdles to overcome before topology control as an optimal control
solution can be applied (semi-)autonomously by transmission system operators, and it is still an ongoing
field of research.

3.1.1. Network Topology Control
The advantages of the power grid which can be found in the form of versatile transmission topology
control has been shown in previous studies, for which its use is emphasised to currently remain under-
exploited [2, 3]. Substantial challenges remain to be addressed and overcome in order for topology con-
trol switching to be feasibly implemented in large-scale systems. Existing research has been confined
to small-scale models that used the needed approximations to facilitate computational manageability.
The primary obstacle to scaling up these optimisation models is their computational complexity, which
arises from multiple factors.

Transmission switching optimisation can be shaped as a mixed-integer programming problem, inher-
ently non-linear due to the non-linear dynamics of the power system. Binary variables are employed
to represent the switching status of transmission lines and substation links, while continuous variables
denote the operational parameters of the system. In expansive networks with nodes numbering in
the thousands, the computational complexity quickly escalates, aggravated by the need to incorpo-
rate additional security and power generation constraints. Present studies have primarily focused on
the binary decision-making involved in transmission line switching, which already poses computational
challenges for larger systems. Optimal transmission switching (OTS) using a DC (Direct Current) ap-
proximation of the power flow was used by a 2008 paper to convert the challenge to a mixed-integer
linear problem [38]. Recent state-of-the-art studies since then have focused on approximating the AC
non-linear problem to explore the flexibility to be gained by using OTS combined with other flexibility
methods, such as a dynamic thermal rating (DTR) or increased energy storage systems (ESS) [39].

Little research has yet been done into substation switching, despite its potential for re-configuring active
and reactive power flows [40]. The inclusion of substation switching would further amplify the number
of variables and the associated computational complexity. State-of-the-art methods use various ap-
proximating methods to approach the massive solution space [41, 42]. ML methods, such as RL, are
used to explore the flexibility of using substation bus-bar splitting, indicating efficient and diverse agent
behaviour [41]. Further research is being done to explore the effectiveness of ML methods when deal-
ing with real-sized grids. Deterministic methods for computing optimal topologies are held back by
the complexity introduced by the bus-bar switching variables. A recent method introduces Bus Split

17

3.1. Conventional Methods for Topology Control 18

Distribution Factors (BSDFs), allowing rapid computation of the effects of busbar splitting on the DC
load flow [42]. By modelling the busbar coupler as a branch of vanishing reactance and using trans-
formed line outage distribution factors (LODFs) faster screening of proposed topological actions can
be achieved, allowing for rapid N-1 checks, necessary for secure operation. These methods indicate
the usage of smart formulas during DC approximations of the power flow to improve topology control.
However, more research needs to be done to improve the methods towards actual grid use, including
scalability towards multiple busbars in substations and the added complexity of larger, real-sized grids.

System security is another critical aspect that requires attention, particularly as the grid integrates more
renewable energy sources, the variable nature of which introduces further uncertainty. Accounting for
such unpredictability necessitates additional computational resources. The variable generation from
renewables may also induce rapid changes in power flows, posing additional risks to system stability.
Incorporating robust security protocols, such as the N-1 criterion ensuring that the failure of any single
component does not endanger the system security, significantly intensifies computational demands.
Inter-temporal constraints, which become relevant in control systems where switching is instantaneous
but the ramping of generation or storage devices is not, have not been fully addressed in existing
studies. Furthermore, while the DC Power Flow (DCPF) model is frequently used in power system
simulations, the ACPF model may be necessary for comprehensive network topology control, or at
the very least for validating the feasibility of solutions proposed by the DCPF model. This transition
introduces a further increase in computational requirements.

3.1.2. Current usage and research barriers
The concept of transmission corrective switching emerged in the early 1980s, introduced by Koglin
& Müller [4], characterised as a strategy to rapidly identify improved network configurations despite a
vast array of switching possibilities. Their approach rests on the finding of potential switching actions
through reduction methods and the rapid assessment of the proposed actions. Nowadays, developed
topology control methodologies stemming from recent studies can be classified into three principal
categories [20]:

• Optimisation of network topology under normal operational conditions without accounting for
contingencies;

• Prevention of violating post-contingency states through preventive topology control during nor-
mal operational states, for planned outages and for co-optimising resource schedules for day-
ahead planning, and;

• Correction during violating post-contingency states through corrective topology control to miti-
gate overflows.

Currently, protocols for system operators are in place to assist with voltage problems or transfer ca-
pabilities. Lightly loaded lines might be taken out of service to mitigate the capacitive effects on the
voltages, while sometimes switching is done to increase capacity on other lines [39]. These switching
actions and protocols are however based on operator experience and down-scaled simulations, and
are not used for optimal transmission switching. While the under-exploited efficiency of busbar splitting
has been shown in research, the lack of computational methods to propose optimal topology control
actions has deterred current usage.

The objective of research across these domains is to alleviate existing or potential future violations
and to reduce overall operational costs. The strategies proposed employ computational shortcuts,
relaxations, or sophisticated heuristics to accelerate processing, as overcoming computational hurdles
remains central to enabling the widespread application of transmission switching.

The issue of computational complexity is a recurrent theme, presenting a significant obstacle for real-
time implementation in real-size extensive power systems. Investigations have tackled these chal-
lenges individually, but a comprehensive approach of all hurdles faced is necessary. The aforemen-
tioned elements: mixed integer programming, renewable integration and associated system security,
temporal control constraints, and compatibility with ACPF, are integral to the evolution of power sys-
tem management. These optimisation issues could be resolved using hypothetical, infinitely capable

3.2. Earlier competitors of the L2RPN competition 19

mixed integer programming solvers, yet such advanced solvers are not currently available. Current
research is increasingly focused on the potential of machine learning to address these complexities,
with initiatives like the L2RPN competition playing a pivotal role in advancing this field.

3.2. Earlier competitors of the L2RPN competition
During the L2RPN competitions, numerous participants have attempted to achieve optimal performance
by applying a diverse set of decision-making objectives, ML algorithms, domain expertise, or a union of
these components. A thorough literature review of past contestants was conducted to identify shared
strengths and common weaknesses. The aim is to propose a methodology that not only leverages their
collective competencies but also addresses the persistent challenges that remain unmitigated.

In the 2019 L2RPN feasibility challenge, agents were tested on a small 14-bus grid, presenting a full
action space encompassing 3,120 possibilities. This scenario, while not fully indicative of performance
scalability to larger grids, revealed constraints and common challenges inherent even at this minimal
level. Insights into prevalent difficulties and strategies emerged from this exploration. The most suc-
cessful agent experienced several issues in its preliminary development phase. Initial attempts utilising
a Deep Reinforcement Learning (DRL) framework with a Deep Q-Network (DQN [43]) that used the
entire action space failed to converge, attributed to the vast dimensionality of the action space [44,
45]. Their final strategy implemented imitation learning to initialise the parameters of a Deep Duelling
Q-Network (DDQN [46]). This approach, along with a reduced action space and the simulation and
verification of the top-N actions deduced by the DDQN, underscored the value of combining machine
learning techniques with domain-specific knowledge. Other methodologies, such as the one by Rama-
puram A. et al. [47], applied similar techniques, opting for a reduced action space restricted to node-
switching activities after identifying that line switching adversely affected grid stability. Additionally, a
novel training regimen using curriculum learning was deployed, structuring the learning process of the
agent through progressively complex stages to improve algorithmic convergence and reduce the need
for vast environment interaction [48].

In the competition of the subsequent year, competitors refined their approaches to accommodate more
complex systems in the robustness or adaptability track, working with a 45-bus and 118-bus system,
respectively. The winning competitor used an innovative genetic algorithm to refine their policy network
[49]. They, along with other contestants, adopted expert rules, such as simulating top action predictions
from the policy network and applying domain-specific expertise to narrow the action space, to enhance
stability [50, 51]. The runners-up integrated domain-knowledge informed expert rules with curriculum
learning and Deep Reinforcement Learning (DRL), specifically employing the Proximal Policy Optimi-
sation (PPO [52]) algorithm for the latter stages of neural network training.

Building on the robustness and adaptability tracks of the 2020 competition, the 2021 edition moved
towards gaining trust in autonomous AI systems by integrating an alarm mechanism. This feature en-
abled agents to signal about upcoming decisions of low confidence. The highest-scoring agent of this
competition deployed various modules tailored to specific operational goals. A low-level expert system
was programmed to re-establish the grid back to its default, fully connected configuration when no over-
flows were present in the system, a strategy proven to be resilient to unanticipated contingencies. The
core module executed single-step actions suggested by the policy network or devised multi-step strate-
gies through a combination of the policy network and forward planning to propose sequences of actions.
In scenarios where the primary agent module failed to resolve overflows, an emergency module was
used to attempt alternative mitigation tactics such as power redispatch or the execution of pre-set emer-
gency procedures. Additionally, an alarm module was incorporated to notify human operators during
those critical states [53]. Deviating from most approaches, the second-place finisher did not use ma-
chine learning altogether in its control policy. Instead, it employed a brute-force methodology to derive
a action space, simulating all possible actions during overflows to select the one minimising the system
maximum loading [54]. The third-place participant, a company called enliteAI, adopted a Monte Carlo
Tree Search (MCTS) approach similar to the one used in AlphaGo, as seen in section 2.2.4, comple-
mented by a low-level expert rule system that restricted actions to critical situations, thereby enhancing
operational efficiency and decision-making precision [55].

3.2. Earlier competitors of the L2RPN competition 20

Earlier competitor review summary
The competitor review highlights a variety of strategies employed to address the topology challenge,
yet similarities are found across the methodologies that underscore their critical nature:

• Reduced Action Space. Although not utilising the full action space may introduce a degree of
bias in control policies, competitors universally adopt reduced action spaces. This is primarily
because the machine learning or computational methods at their disposal are not able to handle
such expansive computational dimensions.

• Expert Rules. A majority of agents rely on low-level expert rules to enhance system stability and
resilience against unforeseen outages. The three principal expert rules involve: a) re-establishing
connection of disconnected lines whenever feasible, b) resetting the grid to its default, fully inter-
connected state in non-critical situations, and c) requesting an action from the agent only when
the maximum grid load exceeds a specified threshold.

• Safety Check for Top-N Actions. Rather than executing the highest-ranking action suggested
by the policy, most agents introduce a layer of safety checking by simulating potential actions.
This ensures the selection of the safest course of action.

In the subsequent sections, we delve deeper into two distinct competitor methodologies, as they form
the foundational framework upon which this thesis proposes to build and enhance. These approaches
have been selected due to their usage of the premises found in literature, while innovating their ap-
proach to the challenges inherent in topology control. The ensuing description aims to explore the
strengths and limitations of these strategies, setting the stage for the introduction of the proposed
method which seeks to incorporate the strengths of both approaches.

3.2.1. CurriculumAgent
Curriculum learning is the act of presenting tasks organised in order of complexity to a learning al-
gorithm. Humans and animals are know to learn much better when the information they receive is
not random but throughout progressively complex concepts, and research has shown that neural net-
works exhibit advanced behaviour, achieving improved generalisation and quality of local minima [56].
Leveraging such a training regime, in which the agent was build up using increasingly complex training
tasks, Binbinchen’s CurriculumAgent was able to achieve the second place during the 2020 L2RPN
competition. Their ’Teacher-Tutor-Junior-Senior ’ framework, in which a RL agent is trained after earlier
imitation learning steps of a rule-based agent, is outlined. Initially, the Teacher employs brute force to
evaluate all 66,918 possible actions topological actions, reducing the action space to a set of 208 im-
pactful actions. These actions are used by the Tutor in creating observation–action pairs for the Junior
model, a feed-forward network, to learn from. Finally, the Senior RL agent is trained within a Grid2Op
training setting, initiated with the weights from the Junior to quicken learning and convergence. The
complete framework will subsequently be discussed per module.

Teacher
While there are a total of 66,918 topological actions in the grid, not all actions are needed, as many
action are found at the larger substations, where a significant number of actions results in similar topolo-
gies. This introduces unneeded complexity, which needs action reduction. The Teacher model under-
takes this by exhaustively evaluating all the actions. This process involves simulating various scenarios,
brute-force simulating through all actions and selecting the action that minimises the maximum loading
present in the simulated next time step, and recording the results. Following extensive simulations, a
reduced action space can be created by frequency, where the top-N most prevalent actions are to be
induced in the reduced set. A schematic overview of the Teacher module can be seen in Figure 3.1.

3.2. Earlier competitors of the L2RPN competition 21

Figure 3.1: Schematic overview of the Teacher module (Taken from AsprinChina [57])

Tutor
Using the selected action set from the Teacher, a rule based Tutor module is constructed to generate
training data for the Junior stage of the framework. This Tutor operates as a functional agent within
the Grid2Op environment, capturing observations and corresponding actions to build its experience
archive. The Tutor is also rule-based, where it will not interact with the grid if the defined threshold
for the maximum loading in the system is not breached. If the maximum loading in the system does
exceed the limit, the Tutor evaluates each of the actions from the reduced action set, greedily choosing
the action that minimises the projected next-step maximum loading. Another expert rule is found in
this module, which sees the agent automatically reconnect disconnected power lines if possible. A
schematic overview of the Tutor module can be seen in Figure 3.2.

Figure 3.2: Schematic overview of the Tutor module (Taken from AsprinChina [57])

Junior
The Junior agent, a straightforward feed-forward neural network, tries to mimic the decisions by the
Tutor. Its architecture is simple: the input layer accepts observations shaped like those from the Tutor,
and the output layer corresponds to the topological actions of the reduced action set. In Binbinchen’s
design, the network features four layers, each with 1000 neurons using ReLU (Rectified Linear Unit)
activation, to handle the data processing. The neural network is imitation learned to match the labelled
one-hot encoded data from the Tutor, signifying the optimal action per observation. Its weights are
thereafter used as a starting point for the Senior training regime. A schematic overview of the Junior
module can be seen in Figure 3.3.

3.2. Earlier competitors of the L2RPN competition 22

Figure 3.3: Schematic overview of the Junior module (Taken from AsprinChina [57])

Senior
The Senior agent, developed as the final component in this framework, adopts the same neural network
structure as the Junior. It is trained using the advanced Proximal Policy Optimisation (PPO) algorithm,
and the initial weights of the Senior neural network are inherited from the Junior to facilitate a quicker
learning curve. It is programmed to act only when critical conditions are met, specifically when the
maximum loading of the system exceeds the threshold, except for necessary line reconnections. During
its training, the Senior collects the standard Grid2Op rewards across steps. Upon reaching a stable
performance, the RL agent is integrated with heuristic tactics, such as the operation limit and line
reconnection, forming a sophisticated final agent. In this final stage the RL model is only asked to act
when the set threshold is surpassed, then generating a sorted probability list of actions from the RL
policy. This list is then methodically examined to select an appropriate action. A schematic overview
of the teacher module can be seen in Figure 3.4.

Figure 3.4: Schematic overview of the Senior module (Taken from AsprinChina [57])

3.2.2. enliteAI Agent
Building on their 2021 submission, as seen in section 3.2, enliteAI has developed a refined version of
their L2RPN submission agent, which achieved the first rank during the 2022 version of the competition
[11]. Their approach used an AlphaZero-based grid topology optimisation agent, leveraging its selection
mechanism to streamline the simulation process such that control solutions are found, which are optimal
considering future operation of the power system as well. Their MCTS algorithm and the expert rules
that the agent adheres to are outlined in the following sections.

Reduced action space
The expansive action space in the L2RPN 2022 grid, totalling 72,958 possible topological changes,
excludes the direct application of AlphaZero given realistic compute constraints. Both the output layer
of the policy network, and the MCTS branching factor would need to handle this vast number of pos-
sibilities. To address this, a brute-force search was performed to reduce the action space down to the
2,000 most common actions.

3.2. Earlier competitors of the L2RPN competition 23

Expert rules
The enliteAI agent also leverages some low-level expert rules to increase security, by ensuring agent
inaction during non-critical states and having a default, most resilient topology. Their module called
’Grid State Observer ’ determines whether or not a state is safe, defined using the maximum line loading
in the system. Agent remedial actions are skipped during these states. During these non-critical states
topology recovery is used as well to return the grid topology to its fully connected state.

Monte Carlo Tree Search
At the core of the control algorithm stands a MCTS algorithm based on Google Deepmind’s AlphaZero
algorithm [32]. Each search through the search tree consists of a certain numbers of iterations, travers-
ing the tree from the root node each time until a leaf state is encountered and added. The action
selection at each node in the tree is governed by a smart selection process based on the UCB, that
promotes exploration of high probability and little visited actions. Once the set amount of iterations has
been reached, an action is taken based on long-term power system stability.

Action selection process
The AlphaZero algorithm is trained tabula rasa, which necessitates massive data during training. 5,000
Tensor Processing Units (TPUs) for self-play game generation and 64 TPUs for neural network training
in games like Chess, Shogi, and Go. To limit the resource demands, enliteAI introduced an MCTS
early stopping protocol that stops the search when a sufficiently good solution emerges. The early-
stopping protocol is based on two criteria: the count of unique recovery nodes in the search tree, or
the existence of a node the end of a training episode. Recovery nodes are states in the simulation that
were deemed stable by the Grid State Observer for a pre-determined amount of steps before requiring
agent intervention again. The methodology stops the simulation when the number of recovery states
hits a defined threshold, beginning the action selection algorithm. The action selection step would
commence at the state of the tree in Figure 3.5, for the example with parameters of tskipped = 10 and
tstopping = 6.

Figure 3.5: Example of a grid topology MCTS tree. Nodes represent states (root is the current state); edges are simulated
actions. Yellow nodes are critical states, red nodes are black-out states and blue nodes are critical states that internally

skipped steps because they were deemed safe by the Grid State Observer. Edges correspond to topology actions with the
action ID (in brackets) and the corresponding upper confidence bound. (Taken from Dorfer et al. [11])

Due to this early termination of MCTS, the traditional action AlphaZero selection metric, visit count,
cannot be used. Instead, the action leading to the child node with the highest number of survived steps
in the tree is chosen. This coincides with selecting the action with action id 1646 in Figure 3.5, as.

3.3. Impact of Electrical Distance 24

Heuristic Value Function
The AlphaZero algorithm is modified by substituting a learned neural network with a heuristic value
function derived from domain expertise. This adaptation speeds up training and yields more consistent
learning outcomes, facilitated by the straightforward rewards structure of the power grid environment.
Similar to AlphaZero, values for nodes in the MCTS tree are averaged from the branch values be-
low, normalised by visitation frequency. New leaf nodes get an initial heuristic value rather than one
predicted by a neural network, enhancing search stability in the variable-reward landscape of power
grids. Their heuristic assumes rewards remain consistent in the short term, a reasonable expectation
for power grids where significant changes are rare outside of unpredictable events.

3.3. Impact of Electrical Distance
The effective management of power systems involves a comprehensive understanding of the opera-
tional dynamics of the system, including how electrical distance impacts the reduction of line overflows.
Electrical distance, defined through various metrics such as admittance and hop count, significantly
influences the redistribution of power flows and the strategic interventions for overload mitigation. In
this section the definition of electrical distance and its influence on mitigation solutions will be outlined.

3.3.1. Definitions of Electrical Distance
Electrical distance defines the closeness of elements in the power grid to one another, indicating a
higher linkage and higher influence between power flow, voltage, or frequency. Electrical distance in a
power grid can be defined using various metrics:

• Admittance based. Admittance, denoted as the inverse of impedance (Y = 1
Z), provides a

measure of how easily electrical current can flow in a system in between elements. In the context
of a power system, the admittance between two nodes accounts for both the resistance and the
reactance of the connecting lines. Glover et al. [58] suggests that lines with higher admittance
are electrically closer, and therefore have more influence on power flow of each other.

• Impedance based. Similar to admittance-based but uses the impedance of lines to determine
electrical closeness, which includes both resistance (R) and reactance (X). Impedance based
electrical distance is more commonly used in protection relaying for fault detection and location.

• Power Transfer Distribution Factors (PTDFs). PTDFs indicate how power flows between differ-
ent parts of the system will change in response to injections and withdrawals of power at various
locations, providing dynamic picture of electrical distance based on load and generation [59].
PTDFs are valuable in managing congestion and adhering to system stability limits when evalu-
ating the impact of proposed generation trades in the energy market.

• Line Outage Distribution Factors (LODFs). LODFs are similar to PTDFs, but indicate how
power flows in lines in the system change in response to outages of other lines [60]. According
to Wei [61], the values for the LODFs are higher between electrically close lines, indicating a
significant impact between power flows in the lines.

• Hop-Based Electrical Distance. A hop represents a direct connection between two network
elements. Hop-based distance can be explained as a topological estimate of electrical distance,
independent of the physical properties of the lines. While it does not always accurately reflect the
influence of one component on another due to neglecting line impedance or system connectivity, it
does show the trend that hop-based closer elements in the grid are found to have higher electrical
influence on one another [62].

3.3.2. Application of Electrical Distance
In practical terms, electrical distance can be used to identify operating actions that are electrically close
to the affected overflowing line, as the effects are greater then. Generation dispatch can be altered
based on Power Transfer Distribution Factors (PTDFs), or topology optimisation can be applied where
alternate paths are identified using a metric for electrical distance, as targeting the closest branches
to the overflows often results in the most significant reduction in overflow [63]. Hop-based methods
to estimate electrical distance can be used to generate a quick estimate of influence, or in situations
where connectivity parameters as impedance or admittance are not known.

3.3. Impact of Electrical Distance 25

Hop-based methods however, while not being a direct indication of the influence, but rather an estimate,
are subject to many variables. It best estimates the electrical distance in systems where line parameters
are similar, and grids are interconnected. In systems where line parameters vary greatly the estimate
might be less precise, as hop-based distance is not dependent on physical parameters, disregarding
the effect of the physical line properties. In highly meshed and interconnected grids faults or outages
may have a stronger local effect, highlighting the usefulness of using hop-based estimates for electrical
distance. However, in large parallel or radially connected systems the effects of outages might traverse
much further due to its inherent ’closeness’ of certain connections. Therefore, caution has to be taken
before establishing hop-based approximations for electrical distance in certain systems.

In real-sized grids where exhaustive N-k simulations are not feasible, using electrical distance can help
in quickly identifying corrective measures. Current methods for identifying contingencies do not de-
pend on exhaustive searches, but on fast screening of most severe possible contingencies. Utilising
a ranking based on performance indices contingencies are arranged based on their expected severity
[64]. State-of-the-art methods are able to rank the contingencies using AC power flow methods, indicat-
ing action trajectories for power system operators [65]. Using AC methods for quickly determining the
most impactful contingencies and electrical distance methods for rapidly finding topological corrective
measures, practical solutions may be within real-time limits of operation for power grids.

In conclusion, the strategic manipulation of generation dispatch and topology optimisation, guided by
electrical distance metrics, forms practical uses for alleviating overflows in power systems. These
methods ensure that interventions are directed at the network elements most influential to the issue,
providing a robust response to alleviating overflows. Hop-based approaches offer quick estimates
of network influence for immediate decision-making or when connectivity details are scarce, where
PTDF or LODF-guided actions allow for a more detailed understanding and system management, each
method playing a vital role in maintaining the operation and stability of the power grid independently.

4
Methodology

A hybrid approach combining a curriculum-trained ML agent with a specialised MCTS (MCTS) is pre-
sented. The proposed approach leverages the sample-efficient training regime of curriculum learning,
while introducing an improved level of security by incorporating the simulation of promising actions
through a guided tree search, improving performance during both training and testing. The search
process is extended by including an electrical distance term to enhance the convergence process. For
this, a quick BFS is used to calculate the lowest line count, measured in hops, consistent during any
grid topology.

The proposed implementation is schematically visualised in Figure 4.1, where dotted lines indicate a
transfer of data and connected lines indicate the usage of a function or module. Section 4.1 discusses
the low-level expert rules used by all agents, and how to determine their operating limits. Section 4.2
outlines the curriculum-learning regime for the agent, while section 4.3 describes the improvements
and training algorithm of the MCTS extension. In section 4.4 the electrical distance search is detailed.

26

27

Generating brute-force action
space data & creating and
assessing action spaces.

M3.1 - Teacher

Function to restore line
connections in the grid when

possible.

M1.1 - Line reconnection

Function to generate the
MCTS for a specific state.

M1.4 - Monte-Carlo Tree
Search

Function that defines the
distance factor based on a
quick breadth-first search.

M1.5 - Breadth-first search

Preparation of labelled
training data for Junior

module.

M3.2 - Tutor

Imitation learning a neural
network to mimic Tutor

behaviour.

M4.1 - Junior

Improving neural network
behaviour through

reinforcement learning.

M4.2 - Senior

Function to return the grid to
a fully connected state when

possible.

M1.2 - Grid recovering

Function to limit agent
interaction to necessary

states.

M1.3 - Action treshold

Improving neural network
behaviour through training
towards MCTS-checked

actions.

M4.3 - MCTS training

Improving neural network
behaviour through training
towards MCTS-checked
actions found using the

distance factor.

M4.4 - Distance training

Agent basis utilising expert
rules, requiring only an action

selection algorithm.

M2.1 - Agent rule basis

Agent utilising expert rules
and MCTS-proposed grid

actions.

M2.2 - Monte-Carlo Tree
Search agent

Agent utilising expert rules
and MCTS-actions, proposed

through a search including
the distance factor.

M2.3 - Electrical distance
MCTS agent

M1 - Functions

M2 - Agents

M3 - Data preparation

M4 - Training regimes

Testing agent performances and
computational times on pre-defined

testing sets & scenarios.

M5.1 - Testing module

Modules

Expert rules
Curriculum regime
Monte-Carlo Tree Search
Electrical distance

Implementation of
proposed methodology

Figure 4.1: Full schematic overview of the workflow of the methodology.

4.1. Expert rules 28

4.1. Expert rules
In section 3.2 the discovered similarities between competing agents are highlighted and discussed.
The following practices are found in most, if not all, of the agents, indicating their value:

• Reduced action space
• Expert rules: re-establishing line connections, recovering the grid to its most resilient, fully-
connected state and having an action threshold for requesting agent actions.

• Safety check for top-N actions

The process of realising the reduced action space and its most optimal performance will be discussed
in section 4.2, while the improved level of safety and security will be explained through the MCTS
mechanism in section 4.3. This section discusses the application and implementation of the expert
rules. A visual schematic overview of this part of the methodology can be seen in Figure 4.2.

Generating brute-force action
space data & creating and
assessing action spaces.

M3.1 - Teacher

Function to restore line
connections in the grid when

possible.

M1.1 - Line reconnection

Function to generate the
MCTS for a specific state.

M1.4 - Monte-Carlo Tree
Search

Function that defines the
distance factor based on a
quick breadth-first search.

M1.5 - Breadth-first search

Preparation of labelled
training data for Junior

module.

M3.2 - Tutor

Imitation learning a neural
network to mimic Tutor

behaviour.

M4.1 - Junior

Improving neural network
behaviour through

reinforcement learning.

M4.2 - Senior

Function to return the grid to
a fully connected state when

possible.

M1.2 - Grid recovering

Function to limit agent
interaction to necessary

states.

M1.3 - Action treshold

Improving neural network
behaviour through training
towards MCTS-checked

actions.

M4.3 - MCTS training

Improving neural network
behaviour through training
towards MCTS-checked
actions found using the

distance factor.

M4.4 - Distance training

Agent basis utilising expert
rules, requiring only an action

selection algorithm.

M2.1 - Agent rule basis

Agent utilising expert rules
and MCTS-proposed grid

actions.

M2.2 - Monte-Carlo Tree
Search agent

Agent utilising expert rules
and MCTS-actions, proposed

through a search including
the distance factor.

M2.3 - Electrical distance
MCTS agent

M1 - Functions

M2 - Agents

M3 - Data preparation

M4 - Training regimes

Testing agent performances and
computational times on pre-defined

testing sets & scenarios.

M5.1 - Testing module

Modules

Expert rules
Curriculum regime
Monte-Carlo Tree Search
Electrical distance

Implementation of
proposed methodology

Figure 4.2: Modules of the methodology including the expert rules

4.1.1. Re-establishing line connections
Optimal grid performance is contingent on keeping all power lines operational, as it ensures full grid
capacity and offers flexibility for topological changes that can prevent overflows. The Grid2Op envi-
ronment provides control for this through parameters such as ’line_status’, ’connection_status’, and
’cooldown_time’. The ’line_status’ parameter indicates if a certain line is functional or out of order,
while ’connection_status’ details the buses each line is connected to. Any non-functional line that is
disconnected due to an overflow or maintenance, has a non-zero value for ’cooldown_time’, which
counts down the time until the line can be reconnected.

4.1. Expert rules 29

The line reconnection function first checks if there are any lines not in service, using the ’line_status’
values of the current observation. It considers ’cooldown_time’ to identify lines eligible for reconnection.
To ensure reconnections do not deteriorate grid stability, the simulation capabilities are used to predict
the impact on line loading. Actions that lower the maximum line flow in the grid are considered, and
among those, the action that best reduces the maximum flow is selected. This methodical approach
to line reconnection underscores the trade-off between maintaining grid capacity and ensuring stability.
The pseudo-code for this function can be found in Algorithm 1.

Algorithm 1 Line Reconnection
1: function reconnect_line(observation)
2: if no disconnected lines then return None
3: end if
4: bestAction← None
5: bestReduction← 0
6: for each line in disconnectedLines do
7: Skip line if still in cooldown
8: Evaluate reconnection potential
9: Update bestAction if improvement found
10: end for
11: return bestAction
12: end function

4.1.2. Automatic Grid Recovery
Multiple competitors in the L2RPN competition observed optimal grid resilience when all elements at
the substations were were connected to the same bus. This default, fully-connected configuration max-
imised connectivity and flow distribution, and provided maximum flexibility for the usage of transmission
control switching in critical scenarios.

Nodes in the Grid2Op environment possess the same operating parameter as lines in cooldown_time,
determining when they can be acted upon. The state of connections at substations, whether to bus 1,
bus 2, or disconnected, is captured by the vector topo_vect. This vector is checked to see if the grid is
fully connected. If deviations are found, actions are considered if the cooldown_time has passed. Just
like line reconnections, substations are assessed for their default state. Substation actions that lead
to a fully-connected state are simulated node by node, chosen if they are predicted to optimise line
load. If there are multiple beneficial actions, the one offering the most flow reduction is selected. The
pseudo-code for this function can be found in Algorithm 2.

Algorithm 2 Automatic Grid Recovery
1: function recover_topology(observation)
2: if grid is fully-connected then return None
3: end if
4: bestAction← None
5: bestImprovement← 0
6: for each node in grid do
7: if node not fully-connected then
8: Skip node if still in cooldown
9: Evaluate reconnection potential
10: Update bestAction if improvement found
11: end if
12: end for
13: return bestAction
14: end function

4.2. Curriculum learning regime 30

4.1.3. Agent action threshold
In power grid management, the topological actions of the agent taken can be critical. During safe states,
where operational limits are within bounds, doing nothing is often the best action, where inappropriate
grid reconfigurations can potentially destabilise the system. Agents are therefore only subject to pro-
pose topology actions when the system limits are breached, indicating a necessity for mitigating actions.
To enforce this principle, an action threshold for agent actions is used.

This threshold is defined using the maximum line loading of the system for each step. If the maximum
value of the line loading in the system is lower than the threshold, no agent actions are requested, and
line reconnection or topology recovery actions are considered. If none of these actions are needed,
the do-nothing action is employed. If the threshold is breached, mitigation efforts are needed, and
the action proposed by the agent is considered. This can be an action chosen directly from a neural
network, through extensive simulation or from a brute-force algorithm. The basic algorithm for all agents
using expert rules is outlined in Algorithm 3.

Algorithm 3 Expert Rule Agent Basis
1: function act(observation)
2: maximum loading← observation.max_rho()
3: if maximum loading > threshold then
4: bestAction← GetActionFromAgentAlgorithm()
5: else
6: bestAction← reconnect_line(observation)
7: if bestAction = None then
8: bestAction← recover_topology(observation)
9: end if
10: if bestAction = None then
11: bestAction← doNothing
12: end if
13: end if
14: return bestAction
15: end function

Setting the right value for the action threshold is an important process, as the correct trade-off needs
to made between timely responding to critical states and preserving maximum resilience during safe
operations. To assess the most optimal action threshold brute-force agents are employed, which differ
in their strategy only in the values for the action threshold. To determine the optimal value, the perfor-
mances are compared, based on the metric of maximum time steps survived over different scenarios.
The results for the action threshold testing can be found in Chapter 5.

4.2. Curriculum learning regime
The curriculum learning approach for the agent is presented in this section. The used methods for
creating and assessing the reduced action space is presented first, after which the preparation of the
training data for the neural network is outlined. The neural network fitting and its subsequent training
using RL are described in the ensuing sections. The neural network model developed during those
sections are used further throughout this training as the basis for further model development or for
baseline testing. Methods are based on Lehna et al. [66]. A visual schematic overview of this part of
the methodology can be seen in Figure 4.3.

4.2.1. Reduced Action Space Generation ('Teacher')
The network of the 2022 L2RPN competition allows for 72,958 topological actions. Since it is com-
putationally infeasible to evaluate all actions during real-time operations for their impact, a reduced
set of actions is created, which allows the agent for optimal trade-off between computational time and
flexibility. This condensed action space only comprises binary substation topological actions, which
represent the bulk of potential actions. Actions involving line switching are excluded to avoid compro-

4.2. Curriculum learning regime 31

Generating brute-force action
space data & creating and
assessing action spaces.

M3.1 - Teacher

Function to restore line
connections in the grid when

possible.

M1.1 - Line reconnection

Function to generate the
MCTS for a specific state.

M1.4 - Monte-Carlo Tree
Search

Function that defines the
distance factor based on a
quick breadth-first search.

M1.5 - Breadth-first search

Preparation of labelled
training data for Junior

module.

M3.2 - Tutor

Imitation learning a neural
network to mimic Tutor

behaviour.

M4.1 - Junior

Improving neural network
behaviour through

reinforcement learning.

M4.2 - Senior

Function to return the grid to
a fully connected state when

possible.

M1.2 - Grid recovering

Function to limit agent
interaction to necessary

states.

M1.3 - Action treshold

Improving neural network
behaviour through training
towards MCTS-checked

actions.

M4.3 - MCTS training

Improving neural network
behaviour through training
towards MCTS-checked
actions found using the

distance factor.

M4.4 - Distance training

Agent basis utilising expert
rules, requiring only an action

selection algorithm.

M2.1 - Agent rule basis

Agent utilising expert rules
and MCTS-proposed grid

actions.

M2.2 - Monte-Carlo Tree
Search agent

Agent utilising expert rules
and MCTS-actions, proposed

through a search including
the distance factor.

M2.3 - Electrical distance
MCTS agent

M1 - Functions

M2 - Agents

M3 - Data preparation

M4 - Training regimes

Testing agent performances and
computational times on pre-defined

testing sets & scenarios.

M5.1 - Testing module

Modules

Expert rules
Curriculum regime
Monte-Carlo Tree Search
Electrical distance

Implementation of
proposed methodology

Figure 4.3: Modules of the methodology including the curriculum learning regime

mising system resilience, with line connections managed by a dedicated expert module. Continuous,
non-topological actions like redispatching or battery interventions are also omitted allowing the most op-
timal use of the neural network and the proper evaluation of network control using solely economically
topological actions.

Collection of Action Data
The first step in creating the reduced action space is computationally extensive, as all actions need to
be evaluated during different scenarios to assess their impact. To achieve these results, a brute-force
’Teacher ’ module is used. The following steps are used by the module:

• First step. The agent executes through environment scenarios until an overflow occurs. When
such an overflow occurs, all possible topological substation actions are simulated, and the re-
sulting states are evaluated. Any action that is simulated to reduce the overflow is saved to an
experience file.

• Second step. The action experience file generated in step 1 is analysed and filtered. Any action
that does not relieve the overflow by > 2% is filtered out. Likewise, any ’do-nothing’ actions are
also filtered out.

• Third step. All remaining actions are sorted in order of frequency.

Creating and Assessing Action Spaces
The action space can be generated by cutting off the remaining actions, in order to generate a set
with the actions that are most frequently shown to relieve overflows. A trade-off between flexibility and
computational performance is made by setting the limit for the cut-off. Introducing more actions in the
action space allows for more flexibility in actions, but can hinder the convergence during training or
the computational complexity during real-time operation. A brute-force algorithm is used to determine
the flexibility and computational complexity of different action space sizes, after which the most optimal
performing size can be chosen. The brute force agent enlists the earlier defined expert rule basis,
where an action is requested once the threshold for maximum loading is surpassed. To define the
’best action’ in these states, the agent simulates over all actions in the provided action space, opting

4.2. Curriculum learning regime 32

for the action that offers the best reduction. Performance, based in timesteps survived throughout the
scenarios, and computational time, are saved. The brute-force algorithm can be seen in Algorithm 4.
The results of the action space testing can be found in Chapter 5.

Algorithm 4 Brute-Force Agent Algorithm
1: function act(observation)
2: maximum loading← observation.max_rho()
3: if maximum loading > threshold then
4: bestAction← BruteforceSimulateAllActions()
5: else
6: bestAction← reconnect_line(observation)
7: if bestAction = None then
8: bestAction← recover_topology(observation)
9: end if
10: if bestAction = None then
11: bestAction← doNothing
12: end if
13: end if
14: return bestAction
15: end function

4.2.2. Preparation of Training Data ('Tutor')
The next module in the curriculum learning process utilises the reduced action space from the ’Teacher ’
module to generate a set of training data for fitting a NN, the next step in the learning pipeline. The
so-called ’Tutor ’ module tries to approximate optimal behaviour through a brute-force approach, which
the neural network can try to mimic.

Creating the Training Set
A similar approach to the ’Teacher ’ module is used where all actions are considered during states of
overflow. However, during this stage only the best performing actions are saved, to prepare a labelled
dataset that can be used for imitation learning the next step, in the form of:

training dataset =


state, best action
state, best action
state, best action

...
...

state, best action



The process to generate this dataset can be outlined as follows:

• First step. The agent executes through environment scenarios until an overflow occurs. When
such an overflow occurs, all actions from the provided reduced action space are simulated, and
the resulting states are evaluated. The best performing action in terms of overflow reduction is
saved, together with the current state of the environment.

• Second step. All gathered data is shuffled and partitioned into a training set, a testing set and a
validation set, using 80%, 10% and the remaining 10%, respectively.

4.2.3. Neural Network Configuration via Imitation Learning ('Junior')
The third module within the curriculum learning pipeline is called the ’Junior ’, and comprises the first
deep learning method. The goal of this module is to train a sequential neural network using the data
generated by the ’Tutor ’ module, aiming for the neural network to mimic the training data. That is,
aiming for the sequential neural network to have its highest prediction output for a certain best brute-
force action, when the associated state is fed forward.

4.2. Curriculum learning regime 33

The neural network has a relatively simple design, where the input layer has the shape of the state
from the ’Tutor ’ dataset, and the output layer has the shape of the amount of actions from the reduced
action space. The states used for the input layer are filtered, as not all parameters are equally valuable
in determining the best mitigation action. Including all variables would increase the computational com-
plexity unnecessarily. Variables that were constant throughout the scenario offer no extra information,
while other variables were skipped due to the agent’s inability of performing those actions, such as
generator ramping values or the attention budget used for giving alarms. Used and unused variables
are described in Table 4.1, while further details about the used variables can be found in Table B.4.

Table 4.1: Comparison of used and unused state variables, as for the neural network input

Used Variables Unused Variables
Timestamp Features Alarm Features
Generation Features Storage Features
Load Features Dispatch Features
Line Features Curtailment Features
Bus Features Generation Adjustment Features
Cooldowns Alert and Attack Features
Maintenance Information -

Training Details
The sequential neural network is trained using the ’fit()’ method from TensorFlow [67]. The state entries
in the data are first scaled using scikit’s MinMaxScaler() [68]. Using this scaler all variables within
the training data are scaled between 0 and 1, and the scaler parameters are saved, so that unseen
validation or testing data are scaled using the same values. The training function is used on the ’Tutor ’
training set, while the validation set is used to determine the loss per iteration. An early stopping
mechanism, where the training is cut short if the loss has ceased to improve over a set number of
iterations, is used to prevent the model from overfitting. The used sequential neural network is based
on the layer design of the Binbinchen agent, where hyperparameter tuning is used to obtain the layer
parameters. An overview of the layer parameters and values can be found in Table 4.2, while the
additional training variables can be found in Table B.1. The training and validation accuracy and loss,
and the accuracy for the top-20 predicted actions can be found in Figures A.1, A.2 and A.3, respectively.

Table 4.2: Junior Neural Network parameters and values

Parameter Value
Input Layer 1221 Variables
Hidden Layer 1 400 Neurons
Dropout Layer 1 0.25
Hidden Layer 2 773 Neurons
Dropout Layer 2 0.40
Hidden Layer 3 1044 Neurons
Hidden Layer 4 344 Neurons
Output Layer Linear 100 Actions

Employing these parameters the neural network is trained to best output the correct ’best action’. How-
ever, in grids where input variables are very similar throughout training scenarios with different values
for their corresponding ’best actions’, achieving high values for mimicking can be difficult. Outputting
the wrong grid actions might only further deteriorate grid stability during highly loaded times, calling for
additional training methods to improve performance and security.

4.2.4. Exploration through Reinforcement Learning ('Senior')
In final stage of the curriculum learning regime the pre-trained ’Junior ’ neural network is improved upon
through reinforcement learning. The ’Senior ’ model is identical to the trained ’Junior ’ model, sharing

4.3. Monte Carlo Tree Search 34

its layer and neuron structure. The weights of the imitation trained model are used as a head start for
the RL algorithm.

Training Setup
The neural network is trained using the Ray package, which allows for efficient use of training resources
which distributes the training between a head node, for training, and multiple worker nodes, for generat-
ing the trajectories [69]. A custom environment is created which allows the expert rules to be integrated
into the decision making process for the RL algorithm, while also allowing the training model to receive
the reward over steps where no agent action was required. The model is trained using the actor-critic
RL algorithm PPO [52]. The gathered basic Grid2Op reward is used to determine the effectiveness of
actions, which is based on the operational costs of the whole grid. Surviving for more timesteps would
award the agent with a higher score, indicating a better course of action.

A population based training (PBT) algorithm is used for hyperparameter tuning. This state-of-the-art
algorithm, proposed by Google’s DeepMind in 2017, efficiently discovers schedule of hyperparameter
settings using a fixed computational budget [70]. The algorithm uses a pre-defined value of workers,
each with a set of hyperparameter settings taken from a pre-defined range. The algorithm is able to
evaluate the performance during training, discarding worse-performing sets of hyperparameters, while
prioritising exploration around better performing sets. This eliminates the need for more computationally
expensive or time-extensive search methods. Further details about the PBT and training set-up can
be found in Tables B.2 and B.3, while the results of the mean episodic reward throughout the training
regime can be found in Figure A.4.

4.2.5. Final Agent
The final agent is realised after all curriculum learning modules are concluded. The RL trained agent
from the final stage is combined with the expert rules module. An agent action is required only after the
grid threshold has been breached, and the best proposed action is then applied, or the top-N actions
are simulated to allow for a slight security check.

There are a few drawbacks to this approach. Firstly, actions are only chosen based on the neural
network output and their direct influence, negating possible future impact. Neural network training using
RL is still time-consuming. Hyperparameter tuning can be troublesome, with great impact on the training
outcome, and no guaranteed convergence. When the neural network has poor initial performance,
more actions have to be simulated before a safe course of action can be chosen, essentially reverting
back to a greedy brute-force approach. To combat these shortcomings a guided tree search method is
introduced in the following section.

4.3. Monte Carlo Tree Search
To overcome the limitations of brute-force based methodologies and enhance the reliability of remedial
measures, it is essential to consider potential future outcomes. To tackle this problem a MCTS addition
to the curriculum-learning based agent is developed. Notably, MCTS-based agents, including the Alp-
haZero algorithms [10] and the 2022 L2RPN competition winner [11], have demonstrated exceptional
success in environments with expansive action spaces.

In the MCTS the branches of the tree are explored depending on their expected value, which is based
on a prior probability and a visit count, favouring nodes with high preliminary probabilities and fewer
visits. Attempting to exhaustively explore all possible states in a broad action space quickly becomes
infeasible. However, this guided search ensures a great improvement in finding the right actions with
minimal computational effort. The tree’s structure enables the agent to evaluate the impact of immediate
and sequenced actions, basing choices not only based on their simulated direct impact, but on future
performances as well. Using a combination of approaches allows for the added layer of security during
further training and testing. Concurrently, the neural network,responsible for predicting prior action
probabilities, is pre-trained through the curriculum-learning process for enhanced sample efficiency. A
visual schematic overview of this part of the methodology can be seen in Figure 4.4.

4.3. Monte Carlo Tree Search 35

Generating brute-force action
space data & creating and
assessing action spaces.

M3.1 - Teacher

Function to restore line
connections in the grid when

possible.

M1.1 - Line reconnection

Function to generate the
MCTS for a specific state.

M1.4 - Monte-Carlo Tree
Search

Function that defines the
distance factor based on a
quick breadth-first search.

M1.5 - Breadth-first search

Preparation of labelled
training data for Junior

module.

M3.2 - Tutor

Imitation learning a neural
network to mimic Tutor

behaviour.

M4.1 - Junior

Improving neural network
behaviour through

reinforcement learning.

M4.2 - Senior

Function to return the grid to
a fully connected state when

possible.

M1.2 - Grid recovering

Function to limit agent
interaction to necessary

states.

M1.3 - Action treshold

Improving neural network
behaviour through training
towards MCTS-checked

actions.

M4.3 - MCTS training

Improving neural network
behaviour through training
towards MCTS-checked
actions found using the

distance factor.

M4.4 - Distance training

Agent basis utilising expert
rules, requiring only an action

selection algorithm.

M2.1 - Agent rule basis

Agent utilising expert rules
and MCTS-proposed grid

actions.

M2.2 - Monte-Carlo Tree
Search agent

Agent utilising expert rules
and MCTS-actions, proposed

through a search including
the distance factor.

M2.3 - Electrical distance
MCTS agent

M1 - Functions

M2 - Agents

M3 - Data preparation

M4 - Training regimes

Testing agent performances and
computational times on pre-defined

testing sets & scenarios.

M5.1 - Testing module

Modules

Expert rules
Curriculum regime
Monte-Carlo Tree Search
Electrical distance

Implementation of
proposed methodology

Figure 4.4: Modules of the methodology including the Monte-Carlo Tree Search

The needed elements for the tree traversal and selection process are outlined in section 4.3.1, after
which the tree algorithm is explained in section 4.3.2. Section 4.3.3 describes how the action is chosen
once the tree simulations have stopped, and section 4.3.4 explains how the secure actions chosen by
the MCTS can be used to further train the prior neural network in an efficient manner.

4.3.1. MCTS Elements
In this section the important elements for the tree simulation, as well as the final action selection are
outlined.

Safety Checker
The safety checker serves to evaluate the security status of a node within the tree. This status is
determined by the number of timesteps a node can endure before surpassing the threshold for the load
limit, necessitating agent intervention. A state is deemed safe if it can endure a pre-defined number
of timesteps, referred to as ’t_skipped’, without agent intervention. The employed criterion, ’t_skipped
= 10’, is supported by literature [11] and practical validation, showing its effectiveness in allowing the
power grid to stabilise post-overflow events.

4.3. Monte Carlo Tree Search 36

Neural Network
Within the tree, the curriculum-trained neural network predicts the initial probabilities for the actions
from each node. Each newly initialised state employs a forward pass neural computation, assigning the
probability of each potential action, where higher values indicate preferable actions. These probabilities
shape the sequence of actions explored during tree navigation.

Value Network
Value networks play an important part in the action selection process of the MCTS algorithms seen in
literature, but are assessed to underperform in this application. The Grid2Op reward is based on all grid
operating costs, which are highly linked with the amount of timesteps survived in an algorithm, assigning
little value to grids operated at lower levels of loading. To clarify the decision-making process and
mitigate the inconsistencies of value networks derived from reinforcement learning, an action selection
algorithm based on the ’safe’ timestep count and grid loading metrics of a state is used.

Edges
In the tree, edges represent the transitions between nodes, indicating the actions executed. These
edges possess distinct variables: the originating node, the action, and the prior probability of that
action from the originating state. At each decision point within the tree, edges are used to compute
their Upper Confidence Bound (UCB) score, determining the subsequent path choice.

Nodes
Nodes contain the state of the power grid following a specific action. Key attributes of a node include
the path of actions leading to that state, the maximum timestep the node can sustain without agent
interaction, as verified by the safety checker, and the specifics of the grid loading condition. The node
with the most optimal grid state is chosen after simulating through the search tree, with the first entry
in the action path indicating the operation to take.

4.3.2. Simulation Tree Algorithm
Now that the important elements of the tree are clarified, the algorithm for simulating through the tree
can be described. Each time an action of the MCTS agent is required, the root node of the tree gets
initialised using the current state of the environment for the specifics of the grid loading, and a forward
pass through the neural network to assigning the action probabilities from that state. A decision to
traverse to a new node in the tree is based on the Upper Confidence Bound (UCB):

U(s, a) = P (s, a)

√∑
b N(s, b)

1 +N(s, a)
(4.1)

where:
U(s, a): Upper Confidence Bound for action a in state s.
P (s, a): Prior probability of selecting action a in state s.
N(s, a): Number of times action a has been selected from state s.∑

b N(s, b): Total visit counts for all possible actions b from state s.

The approach based on this formula prioritises the selection of states with the highest initial probabilities.
Subsequently, a balance is struck at each decision point, weighing the probability of the action against
its visit frequency to ensure a thorough investigation of all highly estimated states. Navigation through
the decision tree involves making choices at each intersection, guided by the Upper Confidence Bound
(UCB) algorithm, until a previously unexplored state is reached. This new ’leaf node’ is established
using the current grid conditions following the last action and employs the neural network to set the
prior probabilities for potential actions. After initialising the leaf state, the process returns back to the
root node to restart the action selection process. This loop persists either until a predetermined number
of simulation iterations have been completed or the simulation is early-stopped.

Early Stopping Mechanism
To reduce the computational complexity, an early stopping mechanism is used that concludes the sim-
ulation search once a good (enough) solution is found. The criteria for stopping are defined as follows:

4.3. Monte Carlo Tree Search 37

• Once a pre-defined number of safe states have been found, or:
• Once a state has been found that reaches the end of a scenario

The safe states are defined as the states which are able to skip through a set number of timesteps,
’t_skipped’, before the threshold for the load limit is crossed, necessitating agent intervention, deemed
safe using the Safety Checker from Section 4.3.1. Once a pre-set number of safe states have been
reached, the early stopping algorithm is terminated and the algorithm for selecting the action com-
mences. The used value for the early stopping criterion, ’s_safe = 10’, is supported by literature [11]
and practical validation, displaying a good trade-off between computational improvements and retrieval
of appropriate actions. The algorithm describing the simulation tree algorithm can be found in Algorithm
5.

Algorithm 5 Simulation Tree Algorithm
1: function run(iterations)
2: iterationCount← 0
3: safeCount← 0
4: for _ in range(iterations) do
5: leaf← selectLeafUCB()
6: if leaf reaches endOfEpisode then
7: break
8: end if
9: if leaf is safe then
10: safeCount← safeCount + 1
11: end if
12: if safeCount ≥ safeStates then
13: break
14: end if
15: iterationCount← iterationCount + 1
16: end for
17: return simulationTree
18: end function

4.3.3. Action Selection Algorithm
Once the simulation tree has been fully traversed, either because the set number of iterations is reached
or because the early-stopping mechanism has been employed, the action selection algorithm com-
mences. In the original MCTS approach, from Silver et al. [10, 31, 32], action selection is done based
on visitation count. However, to adjust for a new objective, namely operating the grid for as long as pos-
sible, the action selection progress is altered. The best node is determined depending on two different
scenarios:

• If any safe states have been discovered: the safe state with the maximum number of reachable
steps is chosen.

• If no safe states have been discovered: the state with the maximum number of reachable steps
is chosen.

If multiple nodes have the same value for maximum number of reachable steps in either of these
scenarios, the node with the lowest maximum grid loading is chosen. Once the most optimal node
has been chosen, the first entry in the action path leading to that node is chosen to be applied in the
environment of the root node. An example of the action selection algorithm for the case that safe states
have been found can be seen in Figure 4.5, while an example of the algorithm for the case no safe
states have been found can be seen in Figure 4.6.

4.3. Monte Carlo Tree Search 38

Timestep: 812
Max ρ: 112%

Root

Timestep: 813
Max ρ: 101%

Action 56

Timestep: 842
Max ρ: 98%

Action 35

Timestep: 813
Max ρ: 121%

Action 24

Timestep: 813
Max ρ: 106%

Action 50

Timestep: 824
Max ρ: 96%

Action 81

Timestep: 814
Max ρ: 105%

Action 72

Timestep: 814
Max ρ: inf

Action 42

Timestep: 841
Max ρ: 97%

Action 12

Timestep: 830
Max ρ: 98%

Action 15

Timestep: 815
Max ρ: 103%

Action 74
Timestep: 842
Max ρ: 103%

Action 14

Timestep: 841
Max ρ: 97%

Action 94

Timestep: 816
Max ρ: 130%

Action 69

Timestep: 905
Max ρ: 98%

Action 23

Timestep: 843
Max ρ: 105%

Action 40

Figure 4.5: Action selection example if safe states have been found. Nodes represent grid states, root is the current state.
Grey nodes are violating states (maximum line load > 98%), red nodes are black-out states and blue nodes are states deemed
safe by the Safety Checker (able to skip ’t_skipped’ timesteps without agent intervention needed. Safe grid state able to reach

the maximum number of steps is chosen, and the action leading there is chosen at the root (action 24).

Timestep: 812
Max ρ: 112%

Root

Timestep: 813
Max ρ: 101%

Action 56

Timestep: 814
Max ρ: inf

Action 35

Timestep: 813
Max ρ: 121%

Action 24

Timestep: 813
Max ρ: 106%

Action 50

Timestep: 814
Max ρ: 133%

Action 81

Timestep: 814
Max ρ: 105%

Action 72

Timestep: 814
Max ρ: inf

Action 42

Timestep: 814
Max ρ: 104%

Action 12

Timestep: 815
Max ρ: 112%

Action 15

Timestep: 815
Max ρ: 122%

Action 74
Timestep: 815
Max ρ: 103%

Action 14

Timestep: 816
Max ρ: inf

Action 94

Timestep: 816
Max ρ: 130%

Action 69

Timestep: 816
Max ρ: 123%

Action 23

Timestep: 816
Max ρ: 100%

Action 40

Figure 4.6: Action selection example if no safe states have been found. Nodes represent grid states, root is the current
state. Grey nodes are violating states (maximum line load > 98%) and red nodes are black-out states. The grid state able to
reach the maximum number of steps is chosen. If multiple states have the same value for reachable timesteps, the grid state

with the lowest maximum loading is chosen, and the action leading there is chosen at the root (action 50).

4.3. Monte Carlo Tree Search 39

Action Selection Safeguard
Selecting the state with the maximum number of reachable timesteps can sometimes lead to a sub-
optimal action strategy, particularly when no safe states are found. This happens when a state may
be chosen solely because its path has been more frequently visited, causing it to be situated one
layer more down, and thus one more timestep ahead. To enhance the security of the action selection
algorithm in scenarios lacking safe states, a safeguard is implemented.

The safeguard is activated when an action has to be chosen when no safe states are found, and
operates as follows:

• Step 1. The algorithm identifies the immediate predecessor, or ’parent’, of the state selected by
the primary selection algorithm.

• Step 2. It then assesses all other nodes in the tree with the same timestep value as this parent,
based on the maximum line loading values.

• Step 3. If any of these nodes have a significantly lower maximum loading, determined by the
’safeguard_threshold’, the node with the lowest maximum loading is chosen instead.

The ’safeguard_threshold’ is a crucial parameter for fine-tuning the selection process. Setting it too
low value can disregard the benefit of reaching further in the scenario, whereas setting it too high
can minimise the opportunities to reevaluate decisions, potentially allowing unsafe actions. For the
purposes of this thesis, an experimental determination has led to a ’safeguard_threshold’ set at 5%.
The findings of this investigation are detailed in Chapter 5. An example of the action re-selection
algorithm based on the ’safeguard_threshold’ can be seen in Figure 4.7.

Timestep: 812
Max ρ: 112%

Root

Timestep: 813
Max ρ: 101%

Action 56

Timestep: 814
Max ρ: inf

Action 35

Timestep: 813
Max ρ: 121%

Action 24

Timestep: 813
Max ρ: 114%

Action 50

Timestep: 814
Max ρ: 133%

Action 81

Timestep: 814
Max ρ: 105%

Action 72

Timestep: 814
Max ρ: inf

Action 42

Timestep: 814
Max ρ: 125%

Action 12

Timestep: 815
Max ρ: 112%

Action 15

Timestep: 815
Max ρ: 105%

Action 74

Timestep: 815
Max ρ: 126%

Action 14

Timestep: 816
Max ρ: inf

Action 94

Timestep: 816
Max ρ: 126%

Action 69

Timestep: 816
Max ρ: 102%

Action 23

Timestep: 816
Max ρ: 128%

Action 40

Timestep: 817
Max ρ: 142%

Action 3

Change Selected Action

Figure 4.7: Action re-selection example using the safeguard, if no safe states have been found. Nodes represent grid
states, root is the current state. Grey nodes are violating states (maximum line load > 98%) and red nodes are black-out states.
The grid state able to reach the maximum number of steps is chosen. The safeguard compares the maximum loading of the
nodes on the same timestep as the parent node of the action chosen, and re-selects the best node if a reduction in loading >

’safeguard_threshold’ is found. The action leading to the chosen node is selected at the root (action 24).

4.4. Electrical Distance Guided Search 40

4.3.4. Training Regime
The MCTS addition to the curriculum-learned agent is used to improve the security of the proposed
control sequences, while the strengths of the curriculum-learned approach are used initially to provide
a head-start to the prior network. However, using RL approach for further training requires extensive
tuning of parameters, massive exploration and therefore a great deal of training samples. Therefore,
further training using the MCTS-proposed actions is recommended. The proposed approach utilises
the robust simulation capabilities of the MCTS to guide the action selection process, subsequently sup-
plying the training dataset with high-quality, simulation-tested actions. By using the foresight provided
by MCTS outcomes, the algorithm can iteratively refine its policy without the necessity of exploring the
full breadth of scenarios first. This shift in training approach not only accelerates the learning curve but
also conservatively utilises the available samples.

Employing MCTS within the training pipeline introduces numerous advantages. Firstly, it enhances
sample efficiency through simulation and concentrating on promising areas of the action space, thereby
reducing the number of interactions needed to reach optimal performance. Secondly, the immediate
feedback loop from the simulations reduces the variance typically associated with the trial-and-error
nature of RL. This improves convergence to a well-working policy and mitigates the risk of reaching
local solution optima.

Training Set-up
The training set-up requires a batch of training data, which are generated every time that an MCTS
action is required. Due to the robust nature of the MCTS-checked actions, batching data sample to
reduce variance is not needed, reducing the training complexity:

training dataset =
[
state, best action

]

The training of the model employs the Adam optimisation algorithm, well-known for its effective moment
estimation and bias correction capabilities, which are particularly useful in navigating the challenges
posed by high-dimensional spaces [71]. This optimiser refines the neural network parameters by min-
imising the ’sparse categorical cross-entropy’ loss of the training samples, which is well-fitting for mod-
els with categorical target labels. To speed-up training and enhance hardware-efficiency the sample
scenarios are split up and processed in parallel, each optimiser dedicated to the scenarios of a distinct
month of the yearly dataset. After each iteration of the training data the parameters of the parallel
trained models are averaged, and redistributed to the optimisers for the next training iteration. Utilising
this training method ensures optimal usage of available training resources, while model averaging can
even introduce a reduction of variance in the training regime [72].

4.3.5. Testing Regime
During the testing cases, as seen in Chapter 5, no optimisation occurs. The MCTS is fully traversed at
every step necessitating agent interaction to determine the course of action, though no training data is
generated, and the neural network providing the MCTS with the prior predictions for the actions does
not get improved. Each full MCTS simulation concludes either due to the early-stopping algorithm, or
when the set amount of maximum iterations within the tree is reached.

4.4. Electrical Distance Guided Search
The inclusion of an MCTS framework adds a significant layer of security to the action selection process.
However, if the initial training of the neural network is not optimal, the search tree might struggle to
quickly identify viable solutions, hindering a quick training process. To address this, an electrical dis-
tance guided term in the search tree is proposed, which helps streamline the action selection process
within the tree and improve the convergence of the training regime. A visual schematic overview of this
part of the methodology can be seen in Figure 4.8.

4.4. Electrical Distance Guided Search 41

Generating brute-force action
space data & creating and
assessing action spaces.

M3.1 - Teacher

Function to restore line
connections in the grid when

possible.

M1.1 - Line reconnection

Function to generate the
MCTS for a specific state.

M1.4 - Monte-Carlo Tree
Search

Function that defines the
distance factor based on a
quick breadth-first search.

M1.5 - Breadth-first search

Preparation of labelled
training data for Junior

module.

M3.2 - Tutor

Imitation learning a neural
network to mimic Tutor

behaviour.

M4.1 - Junior

Improving neural network
behaviour through

reinforcement learning.

M4.2 - Senior

Function to return the grid to
a fully connected state when

possible.

M1.2 - Grid recovering

Function to limit agent
interaction to necessary

states.

M1.3 - Action treshold

Improving neural network
behaviour through training
towards MCTS-checked

actions.

M4.3 - MCTS training

Improving neural network
behaviour through training
towards MCTS-checked
actions found using the

distance factor.

M4.4 - Distance training

Agent basis utilising expert
rules, requiring only an action

selection algorithm.

M2.1 - Agent rule basis

Agent utilising expert rules
and MCTS-proposed grid

actions.

M2.2 - Monte-Carlo Tree
Search agent

Agent utilising expert rules
and MCTS-actions, proposed

through a search including
the distance factor.

M2.3 - Electrical distance
MCTS agent

M1 - Functions

M2 - Agents

M3 - Data preparation

M4 - Training regimes

Testing agent performances and
computational times on pre-defined

testing sets & scenarios.

M5.1 - Testing module

Modules

Expert rules
Curriculum regime
Monte-Carlo Tree Search
Electrical distance

Implementation of
proposed methodology

Figure 4.8: Modules of the methodology including the electrical distance factor

4.4.1. Motivation for the Usage of an Electrical Distance Factor
Literature has shown that topological interventions located closer to overflows tend to have a higher
impact, increasing their effectiveness in reducing violations, as outlined in Section 3.3. Guiding the
agent towards actions in the tree that are found electrically closer improves the convergence of the
tree algorithm and ensures enhanced selection of effective actions for mitigation control. The metric for
electrical distance used is ’hops’, quantified as direct connections between an overflow and an action’s
location, due to its availability and usability in quickly calculating the metric. While this metric does not
provide an absolute measure of influence, it can offer a valuable estimate of the impact of an action
to the agent. The positive relationship between the electrical ’hop’ distance and the effectiveness of
mitigation actions is experimentally tested. Utilising the earlier described brute-force algorithm, outlined
in Algorithm 4, a variety of scenarios are simulated, indicating the hop distance of each ’best action’
encountered, which is the action that provides the highest reduction in maximum loading. The results,
as shown in Figure 4.4, highlight a greater effect from actions found up to three ’hops’ from the overflow,
as almost 85% of best actions are to be found within a 3 hop perimeter of the line experiencing the
violation.

4.4. Electrical Distance Guided Search 42

0 1 2 3 4 5 6 7 8 9 10
Electrical Distance

0

5

10

15

20

25
Be

st
 A

ct
io

ns
 [%

]

Figure 4.9: Percentage of actions found that most optimally reduce loading, per electrical distance as measured in ’hops’.

4.4.2. Determining Electrical Distance
The electrical distance metric is needed during each step of the simulation tree, necessitating a quick
algorithm capable of accurately determining the closest electrical connection between an overflow and
all possible actions. A BFS algorithm is proposed, offering reliable determination of the closest electrical
distance, while being sufficiently computationally efficient.

The proposed BFS algorithm, embedded within the MCTS framework, efficiently calculates the shortest
’hop’ distance within the power grid represented in a Compressed Sparse Row (CSR) matrix. This
matrix format is optimal for sparse data such as grid systems, where each bus is connected to only
a few others, resulting in a matrix dominated by zeroes.The CSR format becomes computationally
advantageous with increasing grid sizes, by storing only non-zero elements and their respective indices.
The BFS algorithm systematically explores adjacent connections starting from the overflowing line,
avoiding revisiting previously explored nodes, until the destination node is found, guaranteeing the
shortest path. This dynamic exploration algorithm succeeds in finding the shortest distance even when
extensive adjustments to the grid topology have been made, possibly altering earlier direct connections.
This gives the algorithm an edge over static methods of determining the distance, such as a look-up
table (LUT).

4.4.3. Adding an Electrical Distance Term to the Tree Algorithm
To integrate the electrical distance into the simulation process, the BFS algorithm dynamically computes
the hop electrical distance for use within a factor that guides the tree search algorithm. This factor is
designed to prioritise actions that are electrically closer, specifically giving the highest preference to
actions within a 3-hop distance, corresponding to the findings from the brute-force testing. The electrical
distance factor is applied to direct the tree search toward proximate actions, balancing between leaving
room for exploration, and guiding towards anticipated impactful interventions. This factor is described
in a formula that adjusts the selection weight based on the hop distance, thereby optimising the search
for effective solutions within the MCTS framework. The formula describing the distance factor is chosen
to be used in an additive way, where the closest actions at most double their UCB advantage within the
search tree, while the actions furthest away are barely altered. The cut-off for the formula is chosen to
be at the electrical distance of 4, matching the findings from Figure 4.9, giving the following formula:

4.4. Electrical Distance Guided Search 43

DF (d) =
1

1 + e(d−4)
(4.2)

where:
DF (d): Distance factor as a function of electrical distance d.

d: Electrical distance measured in hops.

The distance factor is visualised in Figure 4.10.

0 1 2 3 4 5 6 7 8 9 10
Electrical Distance [Hops]

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e
Fa

ct
or

DF(d) = 1
1 + e(d 4)

Figure 4.10: Graph of the Distance Factor Formula

In the context of the MCTS, the distance factor serves as an influence rather than a brute-force method.
It refines the tree selection process by adjusting the Upper Confidence Bound (UCB) values of the
edges originating from each node. This additive integration respects the prior action probabilities while
subtly guiding the decision-making process in favour of actions that are electrically closer and, presum-
ably, more impactful. The UCB formula, which balance exploration and exploitation, are thus modified
to give a slight advantage to actions within a closer electrical distance, resulting in the following adjusted
UCB formula:

U(s, a) = P (s, a) ·

√∑
b N(s, b)

1 +N(s, a)
× (1 +DF (d)) (4.3)

where:
U(s, a): Upper Confidence Bound for action a in state s.
P (s, a): Prior probability of selecting action a in state s.
N(s, a): Number of times action a has been selected from state s.∑

b N(s, b): Total visit counts for all possible actions b from state s.
DF (d): Distance factor as a function of electrical distance d.

4.4. Electrical Distance Guided Search 44

4.4.4. Training Using the Distance Factor
This section describes the incorporation of an electrical distance factor into the training regime of an
MCTS agent, mirroring the training methodology established in Section 4.3.4. The training process re-
mains consistent with that of the standard MCTS agent, leveraging robust simulated actions generated
by MCTS to guide the optimisation process. The introduction of the electrical distance factor is aimed
at guiding the agent’s policy towards optimal solutions. It serves as a guiding heuristic, initially steering
the policy search but gradually decreasing in influence as the training progresses. This dynamic scal-
ing of the distance factor is designed to ensure that as the agent’s policy advances and converges, the
artificial bias introduced by the distance bonuses becomes less significant, allowing the agent to rely
on the strength of its learned strategy rather than the heuristic. The result is an agent that, while initially
informed by the distance factor, ultimately achieves convergence through the policy itself, without the
need for continued heuristic influence.

5
Case Studies

5.1. Test Settings and Network
All testing cases are performed on the Grid2Op 118-bus ’WCCI_L2RPN_2022’ system. Figure 5.1
shows the grid, containing 118 substations, 186 powerlines, 91 loads and 62 generators.

Figure 5.1: Schematic overview of the ’WCCI_L2RPN_2022’ grid from Grid2Op, used for all testing cases.

All test cases are performed on a test or hyperparameter set consisting of 52 weekly scenarios, com-
posed of scenarios from each month of the year, to offer realistic variance in load consumption and
difficulty. For the test set, the 52 weekly scenarios from the 2022 L2RPN competition are used [8]. The
test set is distinct from the validation set used for determining the hyperparameter values, introducing
no initial bias. For the validation set 52 different scenarios are used, offering a similar level of variance in
load consumption and difficulty. This validation set is only used for hyperparameter determination test
cases and not for other case studies. For both the test and the validation set the opponent agents are
seeded randomly 4 different times, changing their attack locations and times, essentially quadrupling
the test and validation set size and reducing the outcome variance. The details of the used scenarios
for the test and validation set can be found in Table B.5.

45

5.2. Hyperparameter Analyses 46

The data necessary for the realisation of the action spaces is generated on a simple 16.0 GB RAM
laptop with an AMDRyzen 7 4800U 1.80 GHz core. The ’Teacher ’ module collecting overflow instances
and actions reducing overflows is run for 40 hours, resulting in 63,308 overflow samples. Imitation
learning and RL for the Junior and Senior is also done on this 16,0 GB RAM laptop with an AMD
Ryzen 7 4800U 1.80 GHz core. All testing cases are performed using DelftBlue’s supercomputer Intel
XEON E5-6248R 24C 3.0GHz CPU cores [73]. The 1.9.3 version of the Grid2Op package, the 0.7.3
version of the LightSim2Grid, and the 2.11.1 package of pandapower are used.

5.2. Hyperparameter Analyses
Before the case studies, the control and operation parameters for the agent are determined through
experimental verification. The following parameters are tested in this section:

• Reduced Action Space (RAS). Action spaces of various sizes are compared through perfor-
mance and computational time to determine the optimal size.

• Agent Action Threshold (AAT). The optimal value for the limit for the maximum line loading in
the grid before an action of the agent is required is determined, based on performance, as seen
in Section 4.1.3.

• MCTS safeguard (MCTS-SG). The optimal value of the safeguard, determining whether another
node in the search tree should be chosen, as described in Section 4.3.3, is determined.

The brute-force algorithm, as outlined in Algorithm 4, is used for the RAS and AAT testing, where the
action space size for the RAS testing and the action threshold for the AAT testing are the only variables.
This brute-force algorithm utilises the expert base rules, requesting an agent action when the action
threshold is surpassed. The brute-force agent will then simulate through all actions in the employed
reduced action space, opting for the action resulting in the lowest maximum loading. For the MCTS-
SG testing, an agent employing the MCTS algorithm for simulation and action selection, as defined
in Algorithm 5 and Section 4.3.3, is used. The Junior neural network is used for predicting the prior
probabilities of each state within the MCTS, as outlined in Section 4.2.3. The only variable during this
testing is the ’safeguard_threshold’, determining when an earlier, safer node should be chosen within
the search tree.

5.2.1. RAS Analysis
Filtering the overflow action data to distinct actions used for reducing overloads by > 2%, 2,700 unique
actions remain. The actions are sorted and prepared into action spaces by taking the first-N most
frequent actions for an action space. The action space sizes evaluated for RAS are: 50, 100, 250, 500,
1000, 2000, and 2700. The results of the RAS testing case can be found in Figure 5.2.

The RAS testing cases clearly show the expected trend of increased computational complexity with a
growing action space size, while the increase in performance stagnates after the usage of larger action
space sizes than 100. The performances of the agents utilising various action space sizes show the
impressive utility of only a small portion of the most influential actions, where compelling performance
can be achieved using an action space of containing less than 4% of the actions in the largest action
space, and less than 0.15% of the total action space. Interestingly, utilising the largest available action
space decreases performance, underlining the importance of selecting the appropriate actions, instead
of the most optimal ones for the current timestep. The computational time does not show a direct linear
relation, due to the universal usage of the expert-rule bases for all agents, but increasingly growing
computational complexity is still expected during neural network training and MCTS convergence, both
growing exponentially with increasing actions. Therefore the reduced action space size of 100 is chosen
to be used for further agent development, striking the right balance between offering good flexibility
while allowing for rapid computation.

5.2.2. AAT Analysis
The only variable in this testing case is the value for ’action_threshold’, for which the values 80%, 90%,
95%, 98% and 100% are tested. The results of the AAT testing case can be found in Figure 5.3.

5.2. Hyperparameter Analyses 47

50 100 250 500 1000 2000 2700
Action Space Size [-]

700

800

900

1000

1100

1200

1300

1400

1500
Ti

m
es

te
ps

 S
ur

vi
ve

d
[-]

0

1000

2000

3000

4000

5000

C
om

pu
ta

tio
na

l T
im

e
[s

]

Figure 5.2: Effect of the action space size, used by the brute-force algorithm, on the performance and computational time per
scenario. Average values and standard deviations are indicated using markers and error bars, respectively.

80 90 95 98 100
Agent Action Threshold [%]

800

900

1000

1100

1200

1300

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
om

pu
ta

tio
na

l T
im

e
[s

]

Figure 5.3: Effect of the Agent Action Threshold (AAT) , used by the brute-force algorithm, on the performance and
computational time per scenario. Average values and standard deviations are indicated using markers and error bars,

respectively.

The results of the performance show a clear preference for an agent action threshold that requires
mitigation actions only when the grid has a maximum loading present of > 98%. The results of the
computational times show the practicality of using a higher value for the agent action threshold, as
unnecessarily requesting agent actions greatly increases computational times. During further agent
developments and case studies in this thesis a value for the agent action threshold of 98% is used,
striking the right balance between intervening when needed without unnecessarily deteriorating the

5.3. Case Study 1: MCTS Security and Sample Efficiency 48

grid during normal operations.

5.2.3. MCTS-SG Analysis
In this testing case, the only variable tested is the value for ’safeguard_threshold’, determining the
level of reduction in maximum loading that must be found in earlier nodes before the action selection
algorithms opt to change their initial selection. The values tested are 0%, 1%, 2%, 5%, 10%, 20%, and
50%. A baseline (BL) that never opts for an earlier, safer action is also included. The results of the
MCTS-SG testing case can be found in Figure 5.4.

BL 0 2 5 10 20 50
Safeguard [%]

950

1000

1050

1100

1150

1200

1250

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Figure 5.4: Effect of the safeguard value, as employed by the Junior-MCTS algorithm, on the average agent performance,
including a baseline (BL) algorithm that never re-thinks its course of action.

The experimental findings indicate that configuring the ’safeguard_threshold’ to a value of 5% yields
the most enhancements in performance metrics. Comparative analysis shows that all MCTS-SG algo-
rithms either match or surpass the baseline performance, underlining the advantage of selecting actions
that guide the system towards nodes associated with slightly reduced maximum timestep values, but
resulting in superior grid performance with respect to the maximum loading observed.

5.3. Case Study 1: MCTS Security and Sample Efficiency
In the first set of case studies objectives 1 and 2 of the research questions are evaluated. The added
level of security of the MCTS is evaluated and compared to the baselines. The performance of agents
using only network topology control actions are quantified and evaluated, looking into the effects of
using MCTS-sampled actions on the training stability and sample efficiency. The following metrics are
used to evaluate their performance:

• Security. What is the level of security added by utilising a MCTS algorithm? This is quantified
by the amount of timesteps survived per scenario.

• Speed. How fast is the proposed method compared to the baseline?
• Sample efficiency and stability. Does the proposed method improve the sample-efficiency and
stability of the training setting?

For effective comparison of the level of security added, the prior networks of the Junior and Senior
are evaluated using the expert rules and the extra safety check for their top-N actions. The NN’s
performance was measured in three scenarios settings: using the top prediction alone, simulating

5.3. Case Study 1: MCTS Security and Sample Efficiency 49

the top-5 actions to select the one with the most significant reduction, and similarly with the top-25
actions. These were benchmarked against an MCTS agent incorporating the NN’s for prior estimations,
constrained to 150 iterations per step due to computational limits. Additionally, comparisons were
made with two baseline agents: a do-nothing agent, and a brute-force agent. The brute-force agents
simulates through the entire reduced action space once an action is requested, opting for the action
with the resulting lowest value for maximum loading, as outlined in Algorithm 4. The do-nothing agent
does not perform any topological mitigation actions, solely re-establishing line connections and the
default topology as per the expert rules.

The MCTS training protocol, as outlined in Section 4.3.4, harnessed the entirety of 32 years’ worth of
grid scenarios, divided into 1,663 weekly segments. For a single training iteration all 1,663 scenarios
are simulated to completion or game-over. The optimiser trains the neural network separately for each
month of the training scenarios, after which the parameters of the parallel trained model are averaged,
and distributed to the optimiser for the next training iteration, as outlined in Section 4.3.4. For each
iteration, the opponent is seeded randomly, such to not repeat precisely similar training scenarios. The
MCTS-trained model used for evaluation is trained for 3 iterations.

5.3.1. MCTS Security Analysis
First, the results for the MCTS security testing are presented.

Figure 5.5 presents the comparisons of the performance of the neural network prior predictions of
the Junior and Senior compared to the baselines on the left side, while the right side presents the
computational times per timestep of the agents.

Do-N
oth

ing

Ju
nio

r T
op

-1

Ju
nio

r T
op

-5

Ju
nio

r T
op

-25

Sen
ior

 To
p-1

Sen
ior

 To
p-5

Sen
ior

 To
p-2

5

Brut
e-f

orc
e

500

600

700

800

900

1000

1100

1200

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Do-N
oth

ing

Ju
nio

r T
op

-1

Ju
nio

r T
op

-5

Ju
nio

r T
op

-25

Sen
ior

 To
p-1

Sen
ior

 To
p-5

Sen
ior

 To
p-2

5

Brut
e-f

orc
e

6

7

8

9

C
om

pu
ta

tio
na

l T
im

e
pe

r S
te

p
[s

]

×10
3

Figure 5.5: Timestep survival performance (left) and computational time per step (right) of the NN-agents, using their top
prediction, or simulating the top-5/25 predicted actions, compared to the baselines.

The agents employing neural networks trained via imitation learning exhibited performance that is only
marginally improved over the do-nothing baseline, where the agent simulating the 25 top actions is the
only agent able to improve over this baseline. The agents trained through reinforcement learning (RL)
show better performance, already surpassing the do-nothing baseline and all imitation learned agents
only by using its top prediction, showing a clear improvement. The improvements in performance of the
Senior agents simulating its top-5/top-25 actions shows how the security can improve by including the
safety check expert rule. However, both the Junior and theSenior agents still fall short of surpassing the
brute-force baseline. This underscores the criticality of optimal action selection, as most actions tend to
be sub-optimal in the majority of states. The assessment of computational time reveals a positive trend
to relate with performance. The Senior (RL) agents have reduced computational times, indicating the
selection of actions that bring more stability, leaving the grid to operate within limits for longer without

5.3. Case Study 1: MCTS Security and Sample Efficiency 50

renewed agent intervention. The neural network agents however do not offer any performance increase
to benefit from their quicker computation.

Figure 5.6 displays the performance of the MCTS agents on the left side, which includes a comparison
with both baseline agents and the agents utilising only expert rules with a simulation safety check, while
the right side presents the computational times per step for each agent.

Do-N
oth

ing

Ju
nio

r T
op

-25

Sen
ior

 To
p-2

5

Sen
ior

 M
CTS

Brut
e-f

orc
e

Ju
nio

r M
CTS

500

600

700

800

900

1000

1100

1200

1300

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Do-N
oth

ing

Ju
nio

r T
op

-25

Sen
ior

 To
p-2

5

Sen
ior

 M
CTS

Brut
e-f

orc
e

Ju
nio

r M
CTS

0.01

0.10

1.00

C
om

pu
ta

tio
na

l T
im

e
pe

r S
te

p
[s

]

Figure 5.6: Timestep survival performance (left) and computational time per step (right, using logarithmic scale) of the MCTS
agents, compared to the Junior /Senior neural network agents employing a top-25 simulation security check, and the baselines.

The results of the performance and the computational time per step are also detailed in Tables 5.1 and
5.2 for proper comparison.

Table 5.1: Performance statistics (average and standard deviation) for the MCTS and prior prediction agents compared to the
baselines

Time Steps Survived [-] Computational Time per step [s]
Do-Nothing 603 (±59) 5.6 · 10−3 (±2.9 · 10−4)
Junior top-25 630 (±73) 7.7 · 10−3 (±3.3 · 10−4)
Senior top-25 827 (±83) 6.8 · 10−3 (±9.2 · 10−5)
Senior MCTS 877 (±94) 0.76 (±0.06)
Brute-Force 1060 (±81) 9.2 · 10−3 (±3.7 · 10−4)
Junior MCTS 1110 (±99) 0.63 (±0.08)

Table 5.2: Direct comparison of the MCTS and non-MCTS methods

Junior Agent Senior Agent
Performance Increase +76% +6%
Computation Time Increase x81 x112

A significant enhancement in security of the actions chosen is observed for the neural network agents
through the integration of a MCTS in the action selection phase. The agent leveraging the Junior neural
network with MCTS surpasses the brute-force baseline in terms of performance, while the agent based
on the Senior neural network sees improvements but does not outperform the brute-force approach.
The differences in performance of both MCTS agents highlight the effect that combining different train-
ing regimes may have, where advanced performance through both methods, RL and the MCTS, do not
automatically add. The lower performance of the Senior-MCTS agent may imply that the RL-trained

5.3. Case Study 1: MCTS Security and Sample Efficiency 51

model has higher confidence in its predicted actions, outputting higher values for singular actions, ver-
sus a more diverse array actions with relatively low predicted values. When this model is not trained
to an optimal extent yet, the performance increase due to the actions chosen might not weigh up ver-
sus the reduced exploration in the search tree due to the more particular predictions. The results of
both the Junior and Senior agents show a positive effect of combining an imitation learned pre-trained
neural network with a MCTS for added security. These findings affirm the effectiveness of incorpo-
rating MCTS in action selection, which aids the agent with the identification of action sequences that
are better-suited for long-time operation rather than solely focusing on the immediately most advan-
tageous actions. Even though this performance boost comes at the cost of significant computational
time increase, computation stays under 1 second per 5 minute timestep, showcasing applicability within
real-time operations.

5.3.2. MCTS Training Regime Analysis
In this section the results for the training regime improvements are presented.

Figure 5.7 shows the performances of the MCTS-training algorithms throughout each of the iterations
of the training data, where all 1,663 scenarios, split up into monthly segments, are used to generate
MCTS-robust data samples for the algorithm to train towards. The averaged parameters of the 12
monthly models are used at the start of the new iteration.

Ja
nu

ary

Feb
rua

ry
Marc

h
Apri

l
May

Ju
ne Ju

ly

Aug
us

t

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

0

200

400

600

800

1000

1200

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Iteration
1 (--- average)
2 (--- average)
3 (--- average)

Figure 5.7: Performance of the MCTS-trained algorithm, averaged for each of the training months, throughout its 3 training
iterations.

The results of the MCTS-training show that MCTS-approved robust training samples of best actions
can be efficiently used to train the MCTS agent. Leveraging these robust actions more than a 25%
percent improvement in performance is seen throughout only 3 iterations of 1,663 samples, a fraction
of the amount of interactions used by RL algorithms through training. The first iteration performs poorly
for the month of May, under-performing its average, compared to the the second and third iteration
outperforming its average in this month. Even omitting this outlier, an improvement of more than 20%
can be seen throughout the training iterations. This shows improved performance in sample-efficiency,
using far fewer samples than a RL-training approach, while also highlighting the stability of the training
regime. The results showcase only very minor monthly dips in performance throughout the steadily
improving training iterations. An overarching curve can be seen throughout all training data, having
its peak throughout the summer months, and experiencing the highest difficulty in finishing scenarios

5.3. Case Study 1: MCTS Security and Sample Efficiency 52

throughout the winter months. The higher electricity consumption during colder times in the winter
months put the network at a higher level of capacity, hindering options for topology mitigation actions
and their effectiveness. However, the influence and effect of the adversarial agent is also clearly visi-
ble, where changing opponent seeds through each iteration can hinder performance, indicating a limit
towards what can be achieved using solely node-switching actions during violations caused by the
unexpected outages of highly loaded lines. These training results demonstrate the effectiveness of
training using robust samples, but show that optimal performance independent of the scenarios might
only prove possible using a combined approach of switching actions and redispatch actions.

Figure 5.8 presents the performance of the MCTS-trained neural network on the left side, compared
with the Junior andSenior NN-agents and the baselines, while the right side presents the computational
times per step of the agents.

Do-N
oth

ing

Ju
nio

r T
op

-25

MCTS-tra
ine

d T
op

-25

Sen
ior

 To
p-2

5

Brut
e-f

orc
e

500

600

700

800

900

1000

1100

1200

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Do-N
oth

ing

Ju
nio

r T
op

-25

MCTS-tra
ine

d T
op

-25

Sen
ior

 To
p-2

5

Brut
e-f

orc
e

6

7

8

9

C
om

pu
ta

tio
na

l T
im

e
pe

r S
te

p
[s

] ×10
3

Figure 5.8: Timestep survival performance (left) and computational time per step (right, using logarithmic scale) of the
MCTS-trained prior prediction agent compared to the Junior /Senior neural network agents, all employing a top-25 simulation

security check, and the baselines.

The prior predictions of the neural network from the MCTS-trained agent exhibits performances that are
only marginally better compared to the Junior neural network agent, despite refining its prior network
through many iterations of robust training samples, showcasing that the training regime using MCTS-
samples has not reached a decent level of convergence yet. If such a level would have reached, the
optimal action in each state of overflow would be proposed. However, due to the usage of the MCTS
during action selection, the most optimal action does not require a maximum preference from the neural
network, as long as the optimal action has a high enough prediction value allowing it to be found within
the set amount of iterations. The MCTS-trained neural network does not surpass the agent using a RL
neural network network, not very surprisingly, as the RL agent has trained specifically for the purpose
of optimising its prior predictions, where the MCTS-approach offers some leeway through its expansive
simulation methods.

Figure 5.9 displays the performance and iteration count for the MCTS-trained agent, compared to the
Junior /Senior MCTS agents. The results show a positive effect of utilising robust MCTS-confirmed
actions for the training process, improving the performance of the Junior MCTS agent while using
little extra in terms of computational times. The improvements throughout the training iterations of the
MCTS-trained agent do not directly translate to the testing set, where only a slight improvement can
be seen, compared to the 25% increase throughout the training regime. This again shows constraining
limits in the form of the adversarial agent, whose unexpected disconnections might not be overcome
using only node-switching actions. The comparison to the RL trained MCTS agent showcases its
effectiveness in sample efficient training. Where the RL has been trained using more interactions,
fewer but more robust samples of the MCTS-streamlined training approach offer a higher utility of

5.4. Case Study 2: Distance Factor 53

training scenarios. The results showcase the difference in training approach between RL and MCTS-
training, where exploration is preferred in RL, advancing its prior predictions, while the MCTS-training
showcases applicability in advancing robust operation through the scenarios.

Do-N
oth

ing

Sen
ior

 M
CTS

Brut
e-f

orc
e

Ju
nio

r M
CTS

MCTS-tra
ine

d
500

600

700

800

900

1000

1100

1200

1300

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]

Do-N
oth

ing

Sen
ior

 M
CTS

Brut
e-f

orc
e

Ju
nio

r M
CTS

MCTS-tra
ine

d

0.01

0.10

1.00

C
om

pu
ta

tio
na

l T
im

e
pe

r S
te

p
[s

]

Figure 5.9: Timestep survival performance (left) and computational time per step (right) of the MCTS-trained MCTS agent
compared to the Junior /Senior MCTS agents, and the baselines.

5.4. Case Study 2: Distance Factor
In the second set of case studies objective 3 of the research questions is evaluated. The effect of
the inclusion of a proximity factor on MCTS-simulation and performance convergence is evaluated
and compared to the previously developed models. The following metrics are used to evaluate the
performance:

• Performance. What is the level of direct performance increase when the distance factor is used
to streamline the action selection process of the MCTS during testing?

• Simulation Converge Does the inclusion of the distance factor reduce the amount of MCTS
simulations needed to find a good solution?

• Training convergence. Does the inclusion of the distance factor during training advance con-
vergence of the action policy?

The distance factor will be added to the Junior-MCTS agent, the best performing agent so far, for
optimal evaluation. The time steps reached and simulation iterations will be compared for the non-
MCTS trained base case. The surviving abilities and iteration performance of the trained models will
be evaluated, compared with the reinforcement learned Senior model to allow for direct comparison in
sample efficiency. Both the MCTS-trained and distance-trained model used for evaluation are trained
for three full iterations of 1,663 scenarios in the training regime, as explained in Sections 4.3.4 and
4.4.4.

5.4.1. Distance Bonus Analyses
Firstly, the results for the case where the distance bonus is added to the simulation search of the
MCTS-Junior agent are presented, compared to the base-case without the distance bonus and the
MCTS-trained agent. Baselines are not included in the results for the MCTS iterations, as they do not
employ a tree search. The results for the performance can be found on the left side of Figure 5.10,
while the iteration results can be found on the right side. Details of the results, including computational
times can be found in Table 5.3.

The results show that a noticeable increase in performance can be obtained when using a distance-
guided search, performing at similar levels as the model that has been subjected to three iterations

5.4. Case Study 2: Distance Factor 54

Ju
nio

r M
CTS

Dist
an

ce
-gu

ide
d J

un
ior

MCTS-tra
ine

d
1000

1050

1100

1150

1200

1250

1300
Ti

m
es

te
ps

 S
ur

vi
ve

d
[-]

Ju
nio

r M
CTS

Dist
an

ce
-gu

ide
d J

un
ior

MCTS-tra
ine

d

1.0

1.1

1.2

1.3

1.4

1.5

1.6

M
C

TS
 it

er
at

io
n

pe
r s

te
p

[-]

Figure 5.10: Timestep survival performance (left) and MCTS iterations used per step (right) for the distance-guided
Junior-MCTS agent, compared to its non-guided base case and MCTS-trained agent.

Table 5.3: Direct comparison of the distance guided and non-distance guided MCTS-algorithms. The base case used for
comparison is the Junior-MCTS algorithm. Values are given with averages and standard deviations.

Base Case Distance-guided MCTS-trained

Performance [-] 1110 (±99) 1130 (±83) 1138 (±73)
Performance Increase - +1.8% +2.5%

Iteration Count per Step [-] 1.29 (±0.18) 1.22 (±0.16) 1.44 (±0.10)
Iteration Count Increase - −5.4% +11.6%

Computational Time per Step [s] 0.63 (±0.08) 0.75 (±0.10) 0.82 (±0.08)
Computational Time Increase - +19% +26%

of training data. The performance boost seems small, gaining only about a 2% increase in timesteps
survived. However, such an increase corresponds to an extra 3 hours of survival through highly loaded
states each scenario, allowing The results for the MCTS-iterations needed per step show that the
distance-guided search is able to find appropriate course of action with fewer simulations needed within
the search tree, without having to sacrifice in performance. This results offers positive insights into
future application into a larger grid, where the greater distances and amplified level of connections
can quickly threaten guaranteed tree convergence. In such larger grids, local influences can help
guide a more vast search tree towards operation within real-time constraints. Equally insightful is the
performance with respect to computational speed of the distance-guided method. The usage of a quick
BFS algorithm does not hinder the speed significantly, staying well within 1s per 30 minute timestep.
However, larger grids containing a greater, more difficult structure unfit for using this search method
within operational time-limits might have to resort to different, such as static, methods.

The final case study tests regard the differences between training results obtained by the distance-
guided training regime compared to the ’standard’ MCTS-training regime, as outlined in sections 4.3.4
and 4.4.4. The results highlight the effect the distance factor has on training performance. It presents
the average amount of timesteps completed per scenario, and it outlines the amount of iterations per
timestep needed for the MCTS. The results are shown on the left side of Figure 5.11 for both perfor-
mances and on the right side for the comparison between iteration count needed per timestep. The
details of these results are described in Table 5.4.

The results stemming from training the MCTS algorithms with and without the distance-guided search
shows various findings. Firstly, it shows that assessing all scenarios during the training process proves
to be more difficult than the selected testing scenarios, achieving lower performances for timesteps

5.4. Case Study 2: Distance Factor 55

Tra
ini

ng
 Ite

rat
ion

 1

Tra
ini

ng
 Ite

rat
ion

 2

Tra
ini

ng
 Ite

rat
ion

 3
0

200

400

600

800

1000

Ti
m

es
te

ps
 S

ur
vi

ve
d

[-]
Training Regime

MCTS-trained
Distance trained

Tra
ini

ng
 Ite

rat
ion

 1

Tra
ini

ng
 Ite

rat
ion

 2

Tra
ini

ng
 Ite

rat
ion

 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ite
ra

tio
n

C
ou

nt
 p

er
 S

te
p

[-] Training Regime
MCTS-trained
Distance trained

Figure 5.11: Timestep survival performance (left) and iteration count per timestep (right) survived for the standard
MCTS-training regime compared to the distance-guided training regime, averaged per training iteration.

Table 5.4: Direct comparison of the distance guided and non-distance guided MCTS-algorithms during training

Training Iteration MCTS-trained Distance Trained

1 Performance 581 665
Iteration Count per Step 2.61 2.33

2 Performance 691 733
Iteration Count per Step 2.28 2.14

3 Performance 731 839
Iteration Count per Step 2.21 1.97

survived throughout the entire training set than compared to the testing set. This further displays the
effect that the selection of testing scenarios has on the performance, where optimal performance for
testing scenarios throughout the year is hard to achieve. Improved training convergence can be seen
throughout the training iterations for the distance-guided training regime, which sees a performance
boost of nearly 45% for the distance trained agent trained over 3 iterations compared to its starting
point. The average iteration count throughout the training regimes show higher values compared to
the training set, which can correspond with worse performance. If better courses of actions are found,
overflows might be relieved quicker, leaving the grid to operate within its limits for an extended period
of time. Such periods of stability lower the average iteration count per timestep. In conclusion, the
results of the training regimes affirm the hypothesis that using a distance-guided search during training
can improve performance in both the ability of the agent to survive through the scenarios, as the ability
of the MCTS to find more optimal control sequences through fewer simulation iterations.

6
Conclusion and Discussion

The drive for decarbonisation combined with a rapid increase in electricity demand is shifting the op-
erational approach of the grid to a distributed solution with higher variance in generation and flows
throughout the system. Ensuring a constant, reliable and safe electricity supply is increasingly becom-
ing a challenge for network system operators. Recently, network topology control has been shown as
an under-exploited flexibility in the grid, able to redirect power flows to alleviate overflows and voltage
problems. Conventional computational methods are struggling with the complexity of finding optimal
control strategies for this expansive problem. System operators often default to experiential intuition
or pre-defined control solutions, resulting in sub-optimal operation. This urges the need for a method
able to quickly approximate optimal network topology solutions, improving system security through the
flexibility inherent to the system. In this thesis, a combined ML and tree search approach is introduced
to address the challenges associated with computational complexity of the transmission switching prob-
lem.

6.1. Proposed Approach
The proposed approach aims to utilise the sample efficient training regime from a curriculum learned
neural network, combined with the added security of a specialised Monte-Carlo Tree Search (MCTS).
Using various modules of increasing difficulty labelled training data is generated for a neural network,
which is then trained using imitation learning and reinforcement learning to mimic the training data
and to improve its performance through experimentation, respectively. These neural networks are
combined with the MCTS, which incorporates future outcomes through guided simulation, aiding in
selecting actions that show better long-term performance. A training algorithm based on MCTS-verified
actions is used for a sample efficient and stable training regime. To include further grid dependent
information an electrical distance estimate based on hops is used. This proximity factor is used to
guide the simulation tree towards actions closer to overloads, streamlining its selection process.

6.2. Research Questions and Answers
In this chapter the research questions are revisited and discussed based on the outcomes of the case
studies. The resulting discussions and drawn conclusions are outlined in the following section.

6.2.1. Hybrid Curriculum Learning and Monte-Carlo Tree Search Approach
The first academic contribution of the thesis concerns the hybrid approach between the curriculum
learning regime and a specialised MCTS to employ both the sample efficiency and the added security.
The associated objective and research questions for this contribution are as follows:

56

6.2. Research Questions and Answers 57

Objective 1: Develop a hybrid network topology control agent, utilising a curriculum-learning pre-
training regime and a Monte-Carlo Tree Search during operation.

Q1 How well can a hybrid agent leverage both the pre-training sample-efficiency from
the curriculum-learning regime and the improved security of the Monte-Carlo Tree
Search?

Q2 To what extent is the agent capable of maintaining network operations within limits
using only network topology control actions?

Q1 - Sample efficient and secure hybrid agent The first research question defines the applicability
of obtaining the advantages of both regimes within a hybrid approach. The proposed approach is able
to leverage the curriculum learning training regime to pre-train the neural networks for the hybrid agent.
The earlier modules within the curriculum learning regime are able to define the reduction potential
for the action space size, and the effects of opting for an action space size of 100. The imitation
learning module is able to quickly pre-train the neural network for usage in further models, where the
RL module can be used to improve the performance of the neural networks. While RL offered an
increase in performance compared to solely the imitation learningmodule, the agents combined with the
MCTS showed significant enhancements in their performance. The integration of MCTS improved the
decision-making process by focusing on longer-term strategic actions, allowing the agents to surpass
the brute-force baseline, particularly when employing the Junior neural network.

That being said, the optimisation of hyperparameters and variables used throughout the training and
testing regimes are found to be very influential, possibly offering an performance improvement through-
out training and testing. In the case of this thesis there are two main groups of hyperparameters. Firstly,
there are the parameters related to the agent and the environment: the action space it is able to use, the
loading threshold before an agent action is required, and parameters concerning the action selection
in the search tree. The action space used throughout this thesis offered greatly reduced computational
times while offering only slightly lower flexibility. However, significant performance improvements are
able to be obtained using larger action space sizes. Ideally, an optimal reduced action space does
not compromise on flexibility, while greatly reducing computational times. The results from gathering
action space data confirms that such an action space can be found, where less than 4% of the total
actions available are shown to be used to reduce the loading.

The second group of hyper-parameters relate to the architecture and training settings of the neural
networks. Hyper-band optimisation is used to determine the optimal training settings for the imitation
learning stage. Tweaking the hyperparameters greatly influenced the obtained results, however, even
using the found optimal settings, a relatively low accuracy for imitating the best actions is obtained.
This is in accordance to state-of-the-art methods [66], where performance of the imitation learning
was found to be relatively low. The results obtained better performance, however, only a subset of
the 118-bus grid was used, entailing 35 buses. These results show that neural networks employing
different architectures with greater generalisation capabilities might be needed to capture the complex
relationship between the grid variables and the optimal transmission switching action.

To conclude, utilising a hybrid approach of a curriculum learning regime together with a specialised
MCTS can improve the performance of a topology agent, proposing secure action trajectories able to
surpass the baseline that does not incorporate future outcomes. However, more researched tuning of
network architecture and training parameters is needed to accurately approximate optimal transmission
switching actions.

Q2 - Network topology control limitations The second research questions aims to determine to
what extent the grid can be maintained using solely topological reconfigurations for control actions. The
results from the case studies show that utilising the MCTS to selectively simulate future outcomes can
greatly help improve the performance of an agent utilising only grid reconfigurations, even surpassing
the brute-force baseline. However, the details of the attacks by the adversarial agents greatly influence
the performance, showcasing a limit to what can be obtained utilising the current approach.

6.2. Research Questions and Answers 58

While the topological agent is able to find better action trajectories of topological actions to alleviate
overloads through highly loaded scenarios, it may fail to perform after unforeseen adversarial attacks.
The adversarial agent can be compared to N-1 security, where the outage of a single component should
not compromise the system security. While employing several base-level expert rules, N-1 simulation
capabilities are not available for the tested agent. The expert rule employed to ensure automatic grid
recovery is used to increase resilience during times when no overflows are present. However, this also
means that grid reconfigurations to better prepare for N-1 scenarios during times where operational
limits are about to be breached are not applied. Topological actions stemming from the MCTS are also
not checked for N-1 stability, possibly decreasing grid resilience in times where overflows are present.
This further implies unused flexibility in the case of preventive transmission switching, instead of the
proposed method of corrective transmission switching.

To conclude, all agents seem to reach a level of performance after which improvements stagnate,
where large advances in the performance throughout the training set do not directly translate to the
same level of improvements throughout the testing set. This implies a ceiling, which might not be able
to be surpassed using topological reconfiguration actions alone. This supports the further development
and research into methods combining redispatch actions and topological reconfiguration, where smart
usage of the flexibility of the grid can greatly reduce operational costs of the system, and where re-
dispatching actions can come during states of high stress, which transmissive switching only can not
solve.

6.2.2. Monte-Carlo Tree Search based Training Regime
The following academic contribution of the thesis that will be discussed concerns the usage of MCTS-
checked actions for training, allowing direct training and improving sample efficiency. The associated
objective and research questions for this contribution are as follows:

Objective 2: Utilise the capabilities of the Monte-Carlo Tree Search to generate training samples
for the agent to optimise its performance.

Q1 Can the robust actions proposed by the Monte-Carlo Tree Search, tested through
simulation, be utilised as viable training samples for the agent?

Q2 How significantly do the Monte-Carlo Tree actions improve the sample efficiency and
performance stability during training?

Q1 - MCTS training regime attainability The first research question of this objective examines
the attainability of using MCTS-prepared samples to establish a stable and sample-efficient training
regime. The proposed approach is able to use the available 1,663 scenarios for sequential simulation,
employing theMCTS according to the specified agent variables. The actions proposed by theMCTS are
simulation tested and robust, and are able to be used directly, to improve the performance throughout
the training set with more than 25% after only three iterations.

The training approach is set up to utilise a distributed training regime, where each month is trained
separately to increase computational times. The optimiser trains the neural network after each training
sample, offering direct improvement and easy training, not necessitating a large, non-local reachable
buffer. However, state-of-the-art training methods utilise random sampling and batch training to reduce
training biases and variance [31]. So, while the proposed training regime is able to optimise the neural
network performance directly through MCTS-verified actions, more research can be done to determine
more optimal convergence in approximation capabilities through random sampling and batch training.

Q2 - Improved sample efficiency and performance stability The second research question of
this objective aims to determine the improvements in sample efficiency and performance stability to
be gained throughout the MCTS-training regime, especially compared to the RL training. The training
regime utilises the available 1,663 scenarios for a single iteration, significantly improving performance
through each iteration using only a fraction of the amount of interactions needed for the RL algorithm.
Even while having complete a simulation tree for each action, computational times are still reduced

6.2. Research Questions and Answers 59

through the improved stability. The stability is showcased through the monthly performances through-
out the training iterations, where only a few slightly worse performances are recorded from the next
iteration to the one before. This indicates that the newer trained model, averaged over all the monthly
trained models of the last iteration, has improved approximation capabilities to improve performance
throughout the yearly scenarios.

The differences in performances of the prior prediction agents and the MCTS-agents reveal that the
training regime chosen has a high impact on performance in different scenarios. Even though the RL
trained agent outperforms the MCTS-trained when utilising only its prior predictions, the RL trained
agent did not achieve the same level of performance when combined with the MCTS. The RL trained
neural network, while more optimised towards providing better actions directly, might allow for less
exploration within the search tree, hindering improved performance. An optimally trained RL neural
network should allow the same action trajectories to be found, however, when this convergence has
not yet been reached, performance might weaken.

In conclusion, the use of robust MCTS-confirmed actions during the training phase proved beneficial.
It allowed for direct improvement in robust operations, increasing sample efficiency through verifying
sample actions and increasing stability by incorporating exploration in the simulation tree, and limiting
exploration needed during the training regime.

6.2.3. Incorporating Proximity through an Electrical Distance Factor
The final academic contribution of the thesis that will be discussed involves the added proximity factor
within the search tree to increase simulation and training convergence. The associated objective and
research questions for this contribution are as follows:

Objective 3: Incorporate the proximity of actions to the overflow as additional information in the
Monte-Carlo Tree Search.

Q1 How can the proximity be considered for estimating electrical distance and enhancing
Monte-Carlo Tree Search convergence?

Q2 How effectively does the inclusion of a proximity factor improve the convergence of
both the Monte-Carlo Tree Search and the agent action policy during training?

Q1 - Hop based proximity factor The first question regarding the final objective tries to determine
how the proximity of actions can be incorporated into the search tree. This question touches on the
suitability of using a hop based approximation for electrical distance and the operational applicability
when applied using a breadth-first search. Test results showed the positive relationship between hop
distance and effectiveness of actions, indicating the applicability of using the hop approximation to
enable quick proximity calculations. Utilising the proximity factor within the search tree facilitated a
performance boost similar to the increase seen after three MCTS training iterations, while reducing
the iterations needed to reach convergence within the search tree. Employing the breadth-first search
for defining the proximity factor showcases that, while the computational time increases, no significant
hinder is found through this increase, keeping the operational times within a second for a 30 minute
time frame.

However, the proposed method does not utilise line or connection parameters to calculate electrical
distance to determine a proximity factor. While LODF methods are very quick in determining line flow
changes once the initial LODFmatrix has been computed, it is less applicable to use in the setting where
altering the topology is used to alleviate overflows. Each time a new topology configuration would be
used, the LODF matrix would have to be recalculated. A state-of-the-art method uses transformed
LODFs to allow rapid computation of the effects of busbar splitting on the DC load flow [42]. However,
more research is needed to allow the usage within larger grids to make a better estimation of the
actual electrical influence a topological action can have on an overflowing line. Further research is
also needed to tune the formula for defining and applying the proximity factor. In the current proposed
method, the proximity factor is used to boost the initial prior predictions of the actions, prioritising those
closer to the highest overflow in the system. More elegant methods might improve the performance

6.3. Future Work 60

by integrating information about the level of overflow, or information about multiple lines close together
experiencing an overflow, shifting the focus towards electrical distance when needed most.

In conclusion, while a hop based proximity factor can be used to improve convergence within the MCTS,
more research can be done to explore better approximations of electrical distance, and how to elegantly
apply the factor when needed most.

Q2 - Effectiveness in improving convergence The final research question aims to define the im-
provements to be gained within the convergence of the simulation tree and of the entire MCTS-training
regime, when utilising the proximity factor within the tree search. The results of the case studies show
that direct application of the proximity factor within the Junior-MCTS agent improves performance sim-
ilar to three training iterations, while reducing the amount iterations needed per timestep by more than
5%. This showcases a significant reduction, taking into account that in many timesteps the simulation
tree will have to go to its limit in both test cases, as no actions are available to provide long-term re-
duction and early-stop the simulation algorithm. Similar to higher reductions in iteration counts were
also found throughout the MCTS-training regime adapting the proximity factor, highlighting quicker
convergence within the search tree. The performance regarding timesteps survived is able to improve
quicker throughout the proximity factor MCTS-training regime, indicating that quicker convergence of
the training algorithm can be obtained.

However, the current approach applies the proximity factor experimentally for each iteration, reducing
the influence throughout the training iterations, guiding the network towards a converged state where
no more ’bonuses’ should be needed. Further research can be done towards determining the optimal
function, or other method, for applying the distance factor gradually throughout training. This can go
hand-in-hand with further research into better approximation methods for the electrical distance or how
to best define the proximity factor formula.

In conclusion, the quick computational methods and effectiveness in reducing convergence within the
search tree paves the way for application within larger, real-time grids, efficiently identifying optimal
control sequences. However, further research needs to be done towards determining better approxi-
mations or calculations for actual electrical distance, and how to best apply this within a training regime
for an AI model.

In final conclusion, while fully autonomous AI-based optimal grid operation still seems far away, the
findings of the case studies investigating the developed agents show that the combination of smart
heuristics, ML and model-based methods opens the door to robust and possibly scalable solution for
assistive grid topology control.

6.3. Future Work
Extending on this thesis, further developments of the proposed approach first and foremost involves the
inclusion of an N-1 check. Within grid operation, N-1 security is not an addition, but a necessity. LODFs
can be utilised to quickly determine the most drastic effects of possible unplanned outages, where
topological actions can be used as a preventive measure to increase resilience. Further developed
research into Bus Split Distribution Factors (BSDF) may allow the rapid assessment of N-1 security
within the search tree, where the top-k proposed actions might be simulated to assess the resilience of
the resulting state.

The optimal tuning of the agent parameters, such as the reduced action space and the agent action limit
should be further researched. While a reduced action space of 100 was chosen for this approach due
to prior estimated computational complexity, larger action spaces might offer better improvements in
performance while still allowing real-time operation. A more extensive hyperparameter search should
be applied to determine their influence for different combinations.

Further extensions can be made regarding the application of combined actions. Currently, only topo-
logical actions regarding a single substation are used at any one timestep. While such an action may

6.3. Future Work 61

comprise multiple switching actions within the same substation, combining actions of multiple substa-
tions might prove useful to relieve overloads quickly in instances where single actions cannot achieve
this. While allowing sub-steps of actions within a single timestep would quickly increase computational
complexity, smart methods might be used to determine several valuable combinations, similar to defin-
ing the best single actions using the curriculum learning modules. These combinations might be used
as either an emergency module, or to simulate with the top-k proposed actions to check for suitabil-
ity. Similarly, line reconnections and grid recovery might be combined to be allowed within times of
overflows as well, as long as resilience is not simulated to decrease.

Added research can be done in the utility of the pre-trained neural networks. Varying neural network ar-
chitectures should be considered and tested, including extensive hyperparameter testing using hyper-
band optimisation. The introduced limitations of using a pre-trained neural network for a MCTS ap-
proach should be analysed in the case the training performance is not as desired.

Inclusion of an agent that proposes actions on the continuous operations within the grid can help extend-
ing the conclusions about performance of utilising both topological and redispatching actions. Currently,
an L2RPN baseline employs an agent based on CVXPY and the DC approximation of the power flow,
defining optimal actions for the continuous operations within the grid [74]. Solely using this can deter-
mine a baseline in performance and economic effects of using redispatching, while combining it with
the proposed method can help determine their combined effectiveness. While this method is relatively
slow, it could be employed only at times where the MCTS cannot find any fitting topological actions,
reducing the computational times to appropriate levels.

References

1. Tennet steekt 13 miljard in Versnelde vernieuwing Stroomnetwerk July 2022. https://nos.nl/
artikel/2435398-tennet-steekt-13-miljard-in-versnelde-vernieuwing-stroomnetwerk.

2. Korad, A. S. & Hedman, K. W. Robust corrective topology control for system reliability. IEEE
Transactions on Power Systems 28, 4042–4051 (2013).

3. Ruiz, P. A., Foster, J. M., Rudkevich, A. & Caramanis, M. C. Tractable transmission topology
control using sensitivity analysis. IEEE Transactions on Power Systems 27, 1550–1559 (2012).

4. Koglin, H. & Müller, H. Corrective switching: a new dimension in optimal load flow. International
Journal of Electrical Power & Energy Systems 4, 142–149 (1982).

5. Kelly, A., O’Sullivan, A., de Mars, P. & Marot, A. Reinforcement learning for electricity network
operation. arXiv preprint arXiv:2003.07339 (2020).

6. Marot, A. et al. L2rpn: Learning to run a power network in a sustainable world neurips2020 chal-
lenge design. Réseau de Transport d’Électricité, Paris, France, White Paper (2020).

7. Marot, A. et al. Learning to run a power network with trust. Electric Power Systems Research 212,
108487 (2022).

8. Serré, G. et al. Reinforcement learning for Energies of the future and carbon neutrality: a Chal-
lenge Design. arXiv preprint arXiv:2207.10330 (2022).

9. Matavalam, A. R., Guddanti, K. P., Weng, Y. & Ajjarapu, V. Curriculum Based Reinforcement
Learning of Grid Topology Controllers to Prevent Thermal Cascading. IEEE Transactions on
Power Systems (2022).

10. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science 362, 1140–1144 (2018).

11. Dorfer, M., Fuxjäger, A. R., Kozak, K., Blies, P. M. & Wasserer, M. Power Grid Congestion Man-
agement via Topology Optimization with AlphaZero. arXiv preprint arXiv:2211.05612 (2022).

12. Petinrin, J. & Shaabanb, M. Impact of renewable generation on voltage control in distribution
systems. Renewable and Sustainable Energy Reviews 65, 770–783 (2016).

13. Behnert, M. & Bruckner, T. Causes and effects of historical transmission grid collapses and im-
plications for the German power system tech. rep. (Beiträge des Instituts für Infrastruktur und
Ressourcenmanagement, 2018).

14. Gourtani, A., Xu, H., Pozo, D. & Nguyen, T.-D. Robust unit commitment with n-1 n-1 security
criteria. Mathematical Methods of Operations Research 83, 373–408 (2016).

15. Fernández-Guillamón, A., Gómez-Lázaro, E., Muljadi, E. & Molina-García, Á. Power systems
with high renewable energy sources: A review of inertia and frequency control strategies over
time. Renewable and Sustainable Energy Reviews 115, 109369 (2019).

16. Hines, P., Balasubramaniam, K. & Sanchez, E. C. Cascading failures in power grids. Ieee Poten-
tials 28, 24–30 (2009).

17. Lowe, R. & Drummond, P. Solar, wind and logistic substitution in global energy supply to 2050–
Barriers and implications. Renewable and Sustainable Energy Reviews 153, 111720 (2022).

18. Gils, H. C. Balancing of intermittent renewable power generation by demand response and ther-
mal energy storage (2015).

19. Bird, L. et al.Wind and solar energy curtailment: A review of international experience. Renewable
and Sustainable Energy Reviews 65, 577–586 (2016).

20. Ruiz, P. A. & Caspary, J. Transmission Topology Optimization: a software solution for improving
congestion management Energy Systems Integration Group. https://www.esig.energy/re
sources/transmission- topology- optimization- a- software- solution- for- improving-
congestion-management-webinar-recording/.

21. Zhou, Z.-H. Machine learning (Springer Nature, 2021).
22. Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. A brief survey of deep rein-

forcement learning. arXiv preprint arXiv:1708.05866 (2017).

62

https://nos.nl/artikel/2435398-tennet-steekt-13-miljard-in-versnelde-vernieuwing-stroomnetwerk
https://nos.nl/artikel/2435398-tennet-steekt-13-miljard-in-versnelde-vernieuwing-stroomnetwerk
https://www.esig.energy/resources/transmission-topology-optimization-a-software-solution-for-improving-congestion-management-webinar-recording/
https://www.esig.energy/resources/transmission-topology-optimization-a-software-solution-for-improving-congestion-management-webinar-recording/
https://www.esig.energy/resources/transmission-topology-optimization-a-software-solution-for-improving-congestion-management-webinar-recording/

References 63

23. Rumelhart, D. E., Widrow, B. & Lehr, M. A. The basic ideas in neural networks. Communications
of the ACM 37, 87–93 (1994).

24. Silver, D.DeepReinforcement Learning Tutorial Lecture slides available at David Silver’s personal
website. 2020. https://www.davidsilver.uk/wp- content/uploads/2020/03/deep_rl_
tutorial_small_compressed.pdf.

25. Learning, M. Alexander Jung.
26. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approxi-

mators. Neural networks 2, 359–366 (1989).
27. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural networks 4, 251–

257 (1991).
28. Reed, R. & MarksII, R. J. Neural smithing: supervised learning in feedforward artificial neural

networks (Mit Press, 1999).
29. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction (MIT press, 2018).
30. Silver, D. Introduction to Reinforcement Learning with David Silver, Lecture 2: Markov Decision

Processes https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf.
31. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. nature 529,

484–489 (2016).
32. Silver, D. et al.Mastering the game of go without human knowledge. nature 550, 354–359 (2017).
33. Campbell, M., Hoane Jr, A. J. & Hsu, F. Deep blue. Artificial intelligence 134, 57–83 (2002).
34. Tesauro, G. & Galperin, G. On-line policy improvement using Monte-Carlo search. Advances in

Neural Information Processing Systems 9 (1996).
35. Schrittwieser, J. et al. Mastering atari, go, chess and shogi by planning with a learned model.

Nature 588, 604–609 (2020).
36. Marot, A. et al. Learning to run a power network challenge: a retrospective analysis in NeurIPS

2020 Competition and Demonstration Track (2021), 112–132.
37. RTÉ France. Grid2Op Documentation Revision a819a777. https://grid2op.readthedocs.io/

en/latest/.
38. Fisher, E. B., O’Neill, R. P. & Ferris, M. C. Optimal transmission switching. IEEE Transactions on

Power Systems 23, 1346–1355 (2008).
39. Numan, M. et al. The Role of Optimal Transmission Switching in Enhancing Grid Flexibility: A

Review. IEEE Access (2023).
40. Heidarifar, M. & Ghasemi, H. A network topology optimization model based on substation and

node-breaker modeling. IEEE Transactions on Power Systems 31, 247–255 (2015).
41. Subramanian, M., Viebahn, J., Tindemans, S. H., Donnot, B. & Marot, A. Exploring grid topol-

ogy reconfiguration using a simple deep reinforcement learning approach in 2021 IEEE Madrid
PowerTech (2021), 1–6.

42. Van Dijk, J., Viebahn, J., Cijsouw, B. & van Casteren, J. Bus Split Distribution Factors (2023).
43. Mnih, V. et al. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

(2013).
44. Lan, T. et al. AI-based autonomous line flow control via topology adjustment for maximizing time-

series ATCs in 2020 IEEE Power & Energy Society General Meeting (PESGM) (2020), 1–5.
45. GEIRINA, RTE& INRIA. Learning to Run a Power Network Competition: https://competitions.codalab.org/competitions/20767.

Requires Python >= 3.6. License: GNU Lesser General Public License v3.0. 2019. https://
github.com/shidi1985/L2RPN.

46. Wang, Z. et al. Dueling Network Architectures for Deep Reinforcement Learning in Proceedings of
The 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.)
48 (PMLR, New York, New York, USA, June 2016), 1995–2003. https://proceedings.mlr.
press/v48/wangf16.html.

47. Matavalam, A. R. Learning to Run the Power Network using a Reinforcement Learning Actor
Agent RTÉ. 2020. https://drive.google.com/file/d/1e6Q0taq7UaN- h- OPLMkVmId4xg_
XrBL4/view?usp=drive_link.

48. Narvekar, S. et al. Curriculum learning for reinforcement learning domains: A framework and sur-
vey. The Journal of Machine Learning Research 21, 7382–7431 (2020).

49. Zhou, B. et al. Action set based policy optimization for safe power grid management in Machine
Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Confer-

https://www.davidsilver.uk/wp-content/uploads/2020/03/deep_rl_tutorial_small_compressed.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/deep_rl_tutorial_small_compressed.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf
https://grid2op.readthedocs.io/en/latest/
https://grid2op.readthedocs.io/en/latest/
https://github.com/shidi1985/L2RPN
https://github.com/shidi1985/L2RPN
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html
https://drive.google.com/file/d/1e6Q0taq7UaN-h-OPLMkVmId4xg_XrBL4/view?usp=drive_link
https://drive.google.com/file/d/1e6Q0taq7UaN-h-OPLMkVmId4xg_XrBL4/view?usp=drive_link

References 64

ence, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part V 21 (2021),
168–181.

50. Chauhan, A., Baranwal, M. & Basumatary, A.Powrl: A reinforcement learning framework for robust
management of power networks in Proceedings of the AAAI Conference on Artificial Intelligence
37 (2023), 14757–14764.

51. Yoon, D., Hong, S., Lee, B.-J. & Kim, K.-E.Winning the l2rpn challenge: Power grid management
via semi-markov afterstate actor-critic in International Conference on Learning Representations
(2020).

52. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347 (2017).

53. Wang, C., Xie, W., Zhang, X., Qin, R. & Yu, Y. L2RPN-ICAPS 2021 presentation EPRI. 2021.
https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvl
hLZ&index=4.

54. Martinez, H. Learning to run a power network competition - ICAPS 2021 presentation EPRI. 2021.
https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvl
hLZ&index=4.

55. enliteAI. Maze-RL L2RPN - ICAPS 2021 Submission https://github.com/enlite-ai/maze-
l2rpn-2021-submission. 2021.

56. Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning in Proceedings of the
26th annual international conference on machine learning (2009), 41–48.

57. AsprinChina. NeurIPS Competition 2020: Learning to Run a Power Network (L2RPN) - Robust-
ness Track https://github.com/AsprinChina/L2RPN_NIPS_2020_a_PPO_Solution. The
solution based on this repository ranks 2nd in the NeurIPS 2020, Track 1 L2RPN competition.
2020.

58. Glover, J. D., Sarma, M. S. & Overbye, T. J. Power systems analysis and design 2012.
59. Dobson, I. et al. Electric power transfer capability: concepts, applications, sensitivity and uncer-

tainty. PSerc Publication (2001).
60. Bergen, A. R. Power systems analysis (Pearson Education India, 2009).
61. Wei, N.A LineOutage Study for Prediction of Static Power FlowRedistributionPhD thesis (Virginia

Tech, 2016).
62. Von Meier, A. Electric power systems: a conceptual introduction (John Wiley & Sons, 2006).
63. Wood, A. J., Wollenberg, B. F. & Sheblé, G. B. Power generation, operation, and control (John

Wiley & Sons, 2013).
64. Fu, C. & Bose, A. Contingency ranking based on severity indices in dynamic security analysis.

IEEE Transactions on power systems 14, 980–985 (1999).
65. Sekhar, P. & Mohanty, S. Power system contingency ranking using Newton Raphson load flow

method in 2013 Annual IEEE India Conference (INDICON) (2013), 1–4.
66. Lehna, M., Viebahn, J., Marot, A., Tomforde, S. & Scholz, C. Managing power grids through

topology actions: A comparative study between advanced rule-based and reinforcement learn-
ing agents. Energy and AI 14, 100276 (2023).

67. Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems Soft-
ware available from tensorflow.org. 2015. https://www.tensorflow.org/.

68. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search 12, 2825–2830 (2011).

69. Moritz, P. et al. Ray: A distributed framework for emerging {AI} applications in 13th USENIX
symposium on operating systems design and implementation (OSDI 18) (2018), 561–577.

70. Jaderberg, M. et al. Population based training of neural networks. arXiv preprint arXiv:1711.09846
(2017).

71. Kingma, D. P. & Ba, J. Adam: Amethod for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

72. Naftaly, U., Intrator, N. & Horn, D. Optimal ensemble averaging of neural networks. Network: Com-
putation in Neural Systems 8, 283 (1997).

73. (DHPC), D. H. P. C. C. DelftBlue Supercomputer (Phase 1) https://www.tudelft.nl/dhpc/ark:
/44463/DelftBluePhase1 (2022).

74. France, R. L2RPN_Baselines: Repository hosting reference baselines for the L2RPN challenge
https://github.com/rte-france/l2rpn-baselines. 2023.

https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvlhLZ&index=4
https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvlhLZ&index=4
https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvlhLZ&index=4
https://www.youtube.com/watch?v=WOt8xgpC370&list=PLWVnM03ByAqJ9KmaUQ-LTu7lVnhvvlhLZ&index=4
https://github.com/enlite-ai/maze-l2rpn-2021-submission
https://github.com/enlite-ai/maze-l2rpn-2021-submission
https://github.com/AsprinChina/L2RPN_NIPS_2020_a_PPO_Solution
https://www.tensorflow.org/
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://github.com/rte-france/l2rpn-baselines

A
Figures

Figure A.1: Training and validation accuracy of the neural network during the Junior training regime

65

66

Figure A.2: Training and validation loss of the neural network during the Junior training regime

Figure A.3: Validation accuracy for the top-20 actions for the Junior trained neural network

67

Figure A.4: Mean episodic reward per timestep during the Senior training regime, smoothed with a window of value 10

B
Tables

Table B.1: Junior Neural Network parameters and values

Parameter Value
Input Layer 1221 Variables
Hidden Layer 1 400 Neurons
Dropout Layer 1 0.25
Hidden Layer 2 773 Neurons
Dropout Layer 2 0.40
Hidden Layer 3 1044 Neurons
Hidden Layer 4 344 Neurons
Output Layer Linear 100 Actions

Activation Relu Activation
Batchsize 768
Initialiser Orthogonal
Learning Rate 5e-5
Epochs 1000
Early Stopping 100 steps

Table B.2: Population Based Training Configuration for the Senior module, using Ray’s RLlib

Parameter Value
Time Attribute ”training_iteration”
Metric ”episode_reward_mean”
Mode ”max”
Perturbation Interval 50
Resample Probability 0.5
Learning Rate Mutations [1e-3, 5e-4, 1e-4, 5e-5, 1e-5]
Number of SGD Iterations Mutations Randint(3, 10)
VF Loss Coefficient Mutations Randuniform(0.5, 1)
Clip Parameter Mutations Randuniform(0.01, 0.5)
Gamma Mutations Randuniform(0.975, 1)
Entropy Coefficient Mutations Randuniform(0.00001, 0.01)

68

69

Table B.3: Senior Neural Network parameters and values

Parameter Value
Learning rate 1e-5
Clip Parameter 0.07689201
Entropy Coefficient 0.00093928
Gamma 0.98829384
VF Loss coefficient 0.79847594
Number of SGD Iterations 4
Input Layer 1221 Variables
Hidden Layer 1 400 Neurons
Dropout Layer 1 0.25
Hidden Layer 2 773 Neurons
Dropout Layer 2 0.40
Hidden Layer 3 1044 Neurons
Hidden Layer 4 344 Neurons
Output Layer Linear 100 Actions

70

Table B.4: Further description of the used variables during the training process of the Junior and Senior neural networks

Category Variable Description
Time Values month Month of the Scenario

day Day in time step t
hour_of_day Hour of time step t
minute_of_hour Minute of time step t
day_of_week Weekday of time step t

Generation and Load gen_p, gen_q Active and reactive production value of each
generator

gen_v Voltage magnitude of each generator at con-
nected bus

load_p, load_q Active and reactive load value of each con-
sumption

load_v Voltage magnitude of each consumption at
connected bus

Lines p_or, q_or Active and reactive power flow at the origin
end of each power line

v_or Voltage magnitude at the origin end of each
power line

a_or Current flow at the origin end of each power
line

p_ex, q_ex Active and reactive power flow at the extrem-
ity end of each power line

v_ex Voltage magnitude at the extremity end of
each power line

a_ex Current flow at the extremity end of each
power line

rho Capacity of each power line
line_status Whether the line is connected or discon-

nected
time_step_overload_low Number of time steps since overflow

Bus Information topo_vector Vector of the topology configurations

Cooldowns time_before_cooldown_line Time before an action can be done on the
line

time_before_cooldown_sub Time before an action can be done on the
substation

Maintenance time_next_maintenance Time when the next maintenance of line is
planned

duration_next_maintenance Duration of planned maintenance

71

Table B.5: Scenarios for both the Test and Hyperparameter set, used during hyperparameter
validation and case studies

Scenarios Test Set Scenarios Hyperparameter Set
2050-01-03_17 2050-01-03_7
2050-01-10_17 2050-01-10_5
2050-01-24_17 2050-01-17_2
2050-02-07_18 2050-01-24_6
2050-02-14_3 2050-01-31_2
2050-02-21_18 2050-02-07_4
2050-03-07_17 2050-02-14_6
2050-03-14_17 2050-02-21_3
2050-03-21_17 2050-02-28_2
2050-03-28_17 2050-03-07_6
2050-04-04_17 2050-03-14_14
2050-04-11_17 2050-03-21_6
2050-04-11_3 2050-03-28_17
2050-04-25_17 2050-04-04_6
2050-05-02_17 2050-04-11_6
2050-05-09_17 2050-04-18_19
2050-05-16_17 2050-04-25_14
2050-05-23_17 2050-04-25_6
2050-05-30_14 2050-05-09_6
2050-05-30_17 2050-05-16_4
2050-06-06_17 2050-05-23_6
2050-06-13_17 2050-05-30_6
2050-06-20_17 2050-06-06_6
2050-06-27_17 2050-06-13_12
2050-07-04_1 2050-06-20_6
2050-07-04_17 2050-06-27_10
2050-07-11_17 2050-07-04_6
2050-07-18_17 2050-07-11_6
2050-07-25_17 2050-07-18_11
2050-08-01_17 2050-07-25_6
2050-08-08_17 2050-08-01_6
2050-08-15_17 2050-08-08_6
2050-08-15_3 2050-08-15_6
2050-08-22_17 2050-08-22_6
2050-08-29_17 2050-08-29_6
2050-09-05_17 2050-09-05_6
2050-09-19_17 2050-09-12_6
2050-09-26_17 2050-09-19_16
2050-10-03_17 2050-09-26_6
2050-10-03_18 2050-10-03_6
2050-10-10_17 2050-10-10_6
2050-10-17_3 2050-10-17_6
2050-10-24_17 2050-10-24_6
2050-10-31_17 2050-10-31_6
2050-11-07_17 2050-11-07_6
2050-11-28_17 2050-11-14_6
2050-12-05_17 2050-11-21_1
2050-12-12_1 2050-11-28_6
2050-12-12_17 2050-12-05_6
2050-12-19_17 2050-12-12_6
2050-12-26_17 2050-12-19_9
2050-12-26_7 2050-12-26_11

	Acknowlegdements
	Abstract
	Nomenclature
	List of Figures
	List of Table
	Introduction
	Conventional Approaches & Motivation
	Proposed Contributions
	Research Questions
	Thesis Outline

	Background
	Network operation
	Network Security
	Transmission switching

	Machine Learning
	Neural Networks
	Training Neural Networks
	Reinforcement Learning
	AlphaGo/Zero Algorithms

	Learning To Run A Power Network (L2RPN) Competition
	Earlier competitions
	2022 L2RPN competition

	Literature review
	Conventional Methods for Topology Control
	Network Topology Control
	Current usage and research barriers

	Earlier competitors of the L2RPN competition
	CurriculumAgent
	enliteAI Agent

	Impact of Electrical Distance
	Definitions of Electrical Distance
	Application of Electrical Distance

	Methodology
	Expert rules
	Re-establishing line connections
	Automatic Grid Recovery
	Agent action threshold

	Curriculum learning regime
	Reduced Action Space Generation ('Teacher')
	Preparation of Training Data ('Tutor')
	Neural Network Configuration via Imitation Learning ('Junior')
	Exploration through Reinforcement Learning ('Senior')
	Final Agent

	Monte Carlo Tree Search
	MCTS Elements
	Simulation Tree Algorithm
	Action Selection Algorithm
	Training Regime
	Testing Regime

	Electrical Distance Guided Search
	Motivation for the Usage of an Electrical Distance Factor
	Determining Electrical Distance
	Adding an Electrical Distance Term to the Tree Algorithm
	Training Using the Distance Factor

	Case Studies
	Test Settings and Network
	Hyperparameter Analyses
	RAS Analysis
	AAT Analysis
	MCTS-SG Analysis

	Case Study 1: MCTS Security and Sample Efficiency
	MCTS Security Analysis
	MCTS Training Regime Analysis

	Case Study 2: Distance Factor
	Distance Bonus Analyses

	Conclusion and Discussion
	Proposed Approach
	Research Questions and Answers
	Hybrid Curriculum Learning and Monte-Carlo Tree Search Approach
	Monte-Carlo Tree Search based Training Regime
	Incorporating Proximity through an Electrical Distance Factor

	Future Work

	References
	Figures
	Tables

