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1. Introduction

Fettling is a process to remove sprues, runners, risers, and
flashing from sand casted parts. Flashing, also called burrs, is 
the excess material left on the cast part in the separation plane 
between the two molds, see Fig. 1. Fettling is important to 
ensure that the part meets its design requirements, and to ensure 
safe handling of the part for the operators. Sprues, risers, and 
runners can be removed in a cutting process that leaves a burr 
to be removed. These burrs, in combination with the flashing, 
is removed in a deburring process. Deburring is mostly done 
manually by operators today, where they are exposed to high 
noise and vibration levels. Therefore, it is desirable to automate 
the deburring process. In addition, For High-Mix Low-Volume 
manufacturing, setup time for a new part is a critical component 
of the total cost. A low setup time requires an automated 

method for generating a tool trajectory for the specific 
workpiece.

A deburring tool trajectory is traditionally planned using 
computer-aided manufacturing (CAM) software and a 
reference CAD model, or by demonstrating the tool path 
directly on a reference workpiece with the robot manipulator
[1]. A significant source of errors with these methods is that 
they are based on a known reference model. With cast parts, the 
geometry of the workpiece varies due to uneven shrinkage and 
deformation that can occur during solidifying in the casting 
process. The uneven shrinkage and deformation can be 
controlled by optimizing the casting process, but it cannot be 
completely avoided [2]. The shape and size of the burrs also 
vary, and they are on average larger than in other deburring 
processes. These variations means that the deburring system 
cannot be based on reference models alone but must be adapted 
to each individual workpiece.
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1.1. Related research

A deburring tool path is traditionally generated off-line 
based on the CAD model using a CAM software. This reference 
path can then be registered onto the workpiece by finding the 
corresponding relationship between the CAD model and the 
physical workpiece. The most widely used method for 
registration of 3D shapes is the iterative closest point (ICP) 
algorithm [3]. The ICP algorithm minimizes the difference 
between two points clouds – one point cloud is a 3D 
measurement of an actual workpiece – and another point cloud 
is a sampled CAD model.

Kosler et al. [4] present a method where a tool trajectory is 
generated using off-line teaching. This trajectory is adapted to 
the workpiece by finding the transformation through ICP 
registering of a 3D scan of the workpiece with the CAD model. 
A similar approach is presented in Song and Song [5] where the 
tool trajectory is generated using CAM software and corrected 
using ICP. Both methods assume that the deformations caused 
by solidification can be ignored since they are not significant 
for the overall geometry. 

Villagrossi et al. [6] present a method that generate a tool 
trajectory through teaching on a reference workpiece and adapt 
this to the actual workpiece in two steps: rough registration 
using ICP and compensate for deformations through a set of 
control points. The control points are chosen in a region where 
burrs are highly unlikely. This method assumes that the 
deformations are similar for the whole part. In Kuss et al. [7], a 
method is proposed where a series of CAD models are 
generated based on the dimensional tolerances of the 
workpiece. A 3D scan of the workpiece is then registered 
towards this pool of CAD models to find the best fit. The CAD 
model of the best fit is used to generate a tool trajectory using 
CAM software. This accuracy of this method relies of the pool 
of augmented CAD models. For more complex geometries, this 
pool must be very large to capture all possible geometric 
deformations. 

Béarée et al. [8] and Huang et al. [2] both propose methods 
that segment the part into smaller sections and do registration 
of each sub-segment. The generated tool trajectory is then 
adapted to each segment. These methods assume that the 
deformations are constant within one segment. 

An alternative method to generating a tool trajectory and 
adopting this to the workpiece is to generate trajectory directly 
on the workpiece using machine vision. In Lai et al. [9] and 
Princely et al. [10], a 2D vision system is used to recognize the 
outline of the workpiece and use this as the tool path. Both 
methods are based on straight line recognition and are verified 
on simple geometries with straight edges. 

1.2. Contribution

The existing solutions handle the geometric variations of the 
workpiece in various ways that work for parts with simple 
geometry and small geometric variations. For cast parts with 
more complex geometry and large geometric deformations, a 
new method is necessary. This paper presents a pipeline that 
automatically generates a robot trajectory for deburring 
specifically generated for each individual workpiece. The 

method is only using the available CAD model of the part and 
3D scans captured of the workpiece. The pipeline has been 
verified through simulation and experiment using physical 
robot manipulator. The paper is structured as follows: Section 
2 introduce the tool trajectory pipeline and implementation, 
Section 3 present the verification and test of the pipeline, 
Section 4 discuss the presented solution and future work.

2. Tool trajectory pipeline

There are several steps to go from workpiece and CAD
model to a tool trajectory. The pipeline of the process is shown 
in Fig. 2. Input to the system is the CAD model of the 
workpiece as well as the workpiece with burrs as indicated with 
the green boxes. A geometric representation of the workpiece 
to be deburred is necessary to generate a tool trajectory for the 
specific workpiece. This representation is found by 3D 
scanning the workpiece from different angles and aligning 
these point clouds. Once the point clouds are registered, the 
combined point cloud can be converted into a triangular mesh. 
This mesh is then used to generate a tool path. A tool trajectory 
is then calculated for the specified robot manipulator based on 
the tool path. The following sections will describe the various 
steps in more detail with a particular focus on the tool path and 
trajectory generation.

2.1. 3D scanning, registration, and burr region

The workpiece is 3D scanned from different angles to 
capture the whole piece with a Zivid, an industrial grade HD 
color 3D camera. The output from the Zivid is a point cloud 
containing the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) coordinates and RGB colors. Scans 
captured from different viewpoints must be registered to get 
them aligned into the same coordinate system. There are many 
registration methods, one of the most common methods is the 
iterative closest point (ICP) method. Because of the geometric 
variations of the workpiece, the large burrs, and because the 
scans are partial, traditional registrations methods fail to give a 
robust and accurate solution. A new and more robust method 
using sparse convolutional neural networks was therefore 
developed in collaboration with other researchers. This new 

Fig. 1. Cast part with riser, feeder, and flashing/burr.
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method allows differences between the reference model and the 
3D scans and allow partial scans. The method is hence robust 
to unmodeled geometry (burrs) and geometric deformations.
This method is presented in Mohammed et al. [11]. The work 
on 3D scanning and registration is presented in the paper and 
will not be presented in more detail here.

The output from the registration step is a point cloud with 
all the registered 3D scans as well as a labeled burr region. This 
burr region is a point cloud of the points that have been labeled 
as being part of a burr by the neural network. This labeling is 
initially used to improve the registration of the scans in the 
network and will also be further used in the tool path generation 
step.

2.2. Point cloud to mesh conversion

Output from the registration is a combined point cloud of 
the entire workpiece. It can be computationally heavy to work
with point clouds, and most geometric algorithms in computer 
vision and graphics operate on representations of 3D data based 
on surfaces [12]. It is therefore desirable to convert the point 
cloud into a surface representation like polygonal mesh, or 
more specifically triangular mesh to speed up computation. 

A point cloud can be converted into mesh using a surface 
reconstruction algorithm. Poisson surface reconstruction is a 
well-known technique for creating surfaces from oriented point 
samples acquired from 3D scanners that is robust to noisy data 
[13]. Since the point cloud from Zivid only contain the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
coordinates, it is necessary to first compute the point normals 
to get oriented point samples. Output from running Poisson 
Surface Reconstruction is a triangular mesh.

2.3. Tool path generation

Burrs are the excess material left on the cast part in the 
separation plane between the two molds. The tool path curve is 
found by taking the intersection between this separation plane 
and the reconstructed mesh from the previous step.

2.3.1. Implementation
The algorithms for calculating the tool path curve are 

implemented using Grasshopper [14] which is a visual 
programming language that runs within the Rhinoceros 3D 
CAD application. The software enables a programming
approach where it is possible to visualize all geometries in an 
interactive and intuitive environment.

2.3.2. Intersection curve
The intersection curve is the curve along the workpiece 

where the two molds meet during casting, and it is along this 
curve the burrs are located. The intersection curve is found by 
intersecting the separation plane and the mesh. The algorithm 
for calculating the intersection is presented in Algorithm 1. The 
mesh (M) was found in the previous step, and the burr region 
(B) is the point cloud of the labeled burr region calculated by 
the neural network for registration. The algorithm finds the z-
coordinate of the plane from the burr region, and the x and y 
dimension of the plane from the bounding box of the mesh. 
Output of the algorithm is the intersection curve (𝑐𝑐!) given as a 

polyline curve. A polyline curve is a series of connected line 
segments, or more formally a curve specified by a sequence of 
points called its vertices.

Algorithm 1: Intersection curve
Input: 3D mesh (M), Burr region (B)
Output: Intersection curve (𝑐𝑐!)
Step 1: Rotate M and B to fit burr region to the 𝑥𝑥 − 𝑦𝑦

plane
Step 2: (𝑋𝑋" , 𝑌𝑌" , 𝑍𝑍") = 𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵)
Step 3: // Calculate z-coordinate of plane

𝑧𝑧#$%&#'% = 𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷(𝑍𝑍")
Step 4: 𝐵𝐵𝐵𝐵( = 𝐵𝐵𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐷𝐷𝑥𝑥(𝑀𝑀)
Step 5: (𝑥𝑥"" , 𝑦𝑦"" , 𝑧𝑧"") = 𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵𝐵𝐵()
Step 6: // Location and dimension of plane

𝐷𝐷) = ?𝑥𝑥"" , 𝑦𝑦"" , 𝑧𝑧#$%&#'%@
Step 7: // Construct plane with direction

𝐷𝐷𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷" = 𝐶𝐶𝐷𝐷𝐵𝐵𝐷𝐷𝐶𝐶𝐴𝐴𝐵𝐵𝑐𝑐𝐶𝐶𝐶𝐶𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷(𝐷𝐷), {1,0,0}, {0,1,0})
Step 8: // Calculate intersection between mesh and plane

𝑐𝑐! = 𝐼𝐼𝐵𝐵𝐶𝐶𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑐𝑐𝐶𝐶𝐵𝐵𝐷𝐷𝐵𝐵𝑀𝑀𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷(𝑀𝑀, 𝐷𝐷𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷")

2.3.3. Section curve
The intersection curve consists of all intersections between 

the mesh and separation plane with a random start and stop 
point of the curve. It is desirable to be able to determine both 
start and stop point. They do not have to be in the same point 
in case it is desirable to not deburr some region of the part. 

The algorithm for setting start and stop point and sectioning 
the curve is given in Algorithm 2. The start and stop points are 

Fig. 2. Tool trajectory generation pipeline.
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set as points in Rhinoceros somewhere close to where mesh and 
intersection curve. They do not have to be set precisely on the 
intersection as this is calculated in the algorithm. The output of 
the algorithm is the sectioned polyline curve with modified 
start and stop point. This curve is the tool path for deburring.

Algorithm 2: Segment curve
Input: 3D mesh (M), Intersection curve (𝑐𝑐!), Start and 

Stop point (𝑝𝑝*+#&+, 𝑝𝑝*+,-)
Output: Tool path (𝑐𝑐+,,.)
Step 1: // Finding closest point on curve to start point

(𝑝𝑝/(*+#&+), 𝑡𝑡*+#&+, 𝐷𝐷*+#&+)
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝*+#&+, 𝑐𝑐!)

Step 2: (𝐶𝐶/ ,𝑊𝑊/ , 𝐾𝐾/) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶(𝑐𝑐!)
Step 3: // Finding closest point in point collection

(𝑝𝑝/,..%/+2,3, 𝐶𝐶, 𝑑𝑑) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝/(*+#&+), 𝐶𝐶/)
Step 4: // Shift point collection to start at starting point

𝐶𝐶*425+ = 𝑆𝑆ℎ𝐶𝐶𝑖𝑖𝑡𝑡(𝐶𝐶/ , 𝐶𝐶)
Step 5: // Reconstruct polyline curve

𝑐𝑐*425+%6 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶?𝐶𝐶*425+@
Step 6: // Finding closest point on curve to stop point

(𝑝𝑝/(*+,-), 𝑡𝑡*+,-, 𝐷𝐷*+,-)
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝*+,-, 𝑐𝑐*425+%6)

Step 8: // Segment curve to get tool path
(𝑐𝑐+,,. , 𝑐𝑐,+4%&) = 𝑆𝑆ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶(𝑐𝑐*425+%6 , 𝑡𝑡*+,-)

2.4. Tool trajectory generation

The tool path contains a description of how to get from the 
starting point to the end point given in cartesian coordinates. 
For the robot to follow the path, the inverse kinematics for the 
tool path must be solved. 

The robot programming is implemented in the same solution 
as the tool path generation using Rhino and Grasshopper. In 
addition, HAL Robotics is used for the robot programming 
specific tasks. HAL Robotics is an extensible and modular
software which adaptive programming of robot tasks, and 
motion planning for one or many robots working together. It is 
a robot vendor independent framework that support various 
robot vendors like KUKA, ABB, Universal Robots, and more.

2.4.1. Robot cell
A KUKA KR 60 is used in these experiments because it is 

the one available in our lab facilities, see picture of the 
simulated robot in Fig. 5. An HSD ES929 Spindle was chosen 
because it was in the default library of HAL robotics, and this 
is a machining application. No tool is attached to the physical 
robot.

2.4.2. Trajectory generation
The generated tool path is given as a polyline curve. This 

curve can be fed directly into a solver, together with the robot 
cell configuration, to solve the inverse kinematics. The 
movement space is set to Cartesian since the polyline curve is 
a set of cartesian coordinates. The generated solution can be 
evaluated directly in the software for feasibility and collision 
as well as be simulated to evaluate if the trajectory looks 
satisfactory. 

Once evaluated, the generated solution can be exported to 
robot vendor specific code ready to be uploaded on the 

controller of the specific robot.

2.4.3. Approach and exit
A critical part om a deburring process is the beginning 

where the tool is approaching the workpiece. To ensure a safe 
approach, an approach point has been set normal to the start 
point 10 cm away. Another point has been set 10 cm above this 
approach point in the z direction. The first movement to get 
from an arbitrary robot starting position to the first approach 
point is a joint move, to remove the risk failure due to moving 
close to a singular position. The same movement is repeated in 
opposite order for the exit point. Both movements are added to 

Fig. 3. The flow of geometric entities.

Fig. 4. Reconstructed mesh, burr region, and calculated burr plane.
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the generated robot trajectory, one at the start and the other at 
the end.

3. Tool trajectory generation, simulation, and experiment

An experiment was performed to verify the presented 
pipeline. Each step of the process was tested separately with 
the output from each step fed into the successive step.

3.1. Test part

The cast part in figure 1 is manufactured in bronze. This part 
is shiny, has few distinct geometric features and is hard 
compared to for example polymers. For experimental purposes 
it was therefore designed a test part with distinct geometric 
features to improve registration. The part is 3D printed in 
PETG to make is easier to 3D scan, cheaper and quicker to 
produce, and less required force in machining. The test part can 
be seen in Fig. 3. Glue was added to the sides after 3D printing 
to resemble burrs.

3.2. 3D scanning and registration

The test part was scanned from different angles on a rotary 
board using a Zivid. A manual registration process was used 
since the deep learning network is still under development.

The manual processing and registration of the 3D scans was 
performed in CloudCompare. First, the background of the 
scans was removed. Secondly, the scans were registered 
roughly using a point picking registration algorithm. Lastly, the 
scans underwent fine registration using ICP towards the point 
cloud of the CAD model. Using ICP directly without point 
picking first or without the CAD model resulted in a poor 
solution, proving the need for an improved registration system.

The labeled burr region was labeled manually by cutting a 
slice from the registered point cloud. The result of both the 
partial scans and the registered point cloud can be seen in 
Figure 3.

3.3. Surface reconstruction

The manually registered point cloud from the previous step 
was used in the mesh generation. Both the point normals and 
surface reconstruction is calculated using MeshLab. The point 
normals are calculated using the built-in function for 
calculating normal for point sets. Poisson surface 
reconstruction is calculated using the implementation of the 
algorithm presented in Kazhdan and Hoppe [15]. The 
reconstructed mesh is shown in the last picture in Figure 3. The 
generated mesh matches the geometry of the test part for most 
of the part, while the lower section is not well matched. This is 
because the part is not scanned underneath meaning that the 
reconstruction algorithm cannot know what the part is 
supposed to look like underneath. Since it is the burr region that 
is of interest, it is not important what the part looks like 
underneath.

3.4. Tool path and trajectory generation

The generated mesh from the previous step and the labeled 
burr region was used to verify the tool path and trajectory 
generation. A figure showing the calculated burr plane can be 
seen in figure 4 where the mesh is red, burr region is black and 
burr plane is green. The corresponding tool path, given start 
and stop point around front left corner, is indicated in green.
The generated tool path was fed into the trajectory generator. 
The corresponding robot trajectory for a KUKA KR 60 can be 
seen in blue in figure 5.

3.5. Experiment with physical robot

The KUKA KR 60 specific robot code exported from the 
generated tool trajectory was tested on a physical robot in the 
lab facilities. A picture of the robot can be seen in Fig.  4. 
During testing, it was found that it was necessary with minor 
changes to the exported robot code for it to run on the robot 
controller. 

The robot followed the trajectory well. The difference 
between the target coordinates and the measured position 
(measured using KUKA RSI) was negligible in the straight 
sections of the curve, and ± 0.1 mm in the curved section.

4. Evaluation and concluding remarks

4.1. Calibration

Calibration have not been mentioned in the presented 
solution. This is because every step of the process has been 
tested separately and calibration has not been necessary. When 
every step is connected it will be necessary with camera and 
robot calibration, and a stiff mounting of the workpiece.

4.2. Automatic solution

The goal and value of the presented method is to be fully 
automatic. This means feeding in the CAD model of the part 

Fig. 5. Simulated tool trajectory for KUKA KR 60.
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and 3D scans and out comes a finished tool trajectory. Today, 
the method includes several manual steps, like registration and 
surface reconstruction. Future work consists of connecting 
every step in the process to get a fully automated pipeline.

4.3. Cascading (in)accuracy

Converting the CAD model from solid to mesh and to point 
cloud, 3D scanning the part, registering the scans, surface 
reconstruction and the robot’s accuracy all affect the overall 
accuracy of the system. This can be referred to as cascading 
(in)accuracy [16]. It is important to be aware of the accuracy of 
each step, and how it affects the accuracy of the overall system. 
This has not been considered in this work and will be evaluated 
in future work.
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