
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 118 (2023) 507–512

2212-8271 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering
10.1016/j.procir.2023.06.087

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering

Keywords: Deburring; Robotics; Manufacturing; 3D Scan

1. Introduction

Fettling is a process to remove sprues, runners, risers, and
flashing from sand casted parts. Flashing, also called burrs, is
the excess material left on the cast part in the separation plane
between the two molds, see Fig. 1. Fettling is important to
ensure that the part meets its design requirements, and to ensure
safe handling of the part for the operators. Sprues, risers, and
runners can be removed in a cutting process that leaves a burr
to be removed. These burrs, in combination with the flashing,
is removed in a deburring process. Deburring is mostly done
manually by operators today, where they are exposed to high
noise and vibration levels. Therefore, it is desirable to automate
the deburring process. In addition, For High-Mix Low-Volume
manufacturing, setup time for a new part is a critical component
of the total cost. A low setup time requires an automated

method for generating a tool trajectory for the specific
workpiece.

A deburring tool trajectory is traditionally planned using
computer-aided manufacturing (CAM) software and a
reference CAD model, or by demonstrating the tool path
directly on a reference workpiece with the robot manipulator
[1]. A significant source of errors with these methods is that
they are based on a known reference model. With cast parts, the
geometry of the workpiece varies due to uneven shrinkage and
deformation that can occur during solidifying in the casting
process. The uneven shrinkage and deformation can be
controlled by optimizing the casting process, but it cannot be
completely avoided [2]. The shape and size of the burrs also
vary, and they are on average larger than in other deburring
processes. These variations means that the deburring system
cannot be based on reference models alone but must be adapted
to each individual workpiece.

16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘22, Italy

Automated Tool Trajectory Generation for Robotized Deburring of Cast
Parts Based on 3D Scans

Ingrid Fjordheim Onsteina,*, Magnus Bjerkengb, Kristian Martinsenb
aDepartment of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik, Norway

bDepartment of Mathematics and Cybernetics, SINTEF Digital, Oslo, Norway
cSINTEF Manufacturing AS, PO Box 163, 2831 Raufoss, Norway

* Corresponding author. Tel.: +47 48200366; E-mail address: ingrid.f.onstein@ntnu.no

Abstract

Manual removal of burrs on castings introduces health, safety, and environmental concerns. Automated removal of highly variable casting burrs
could improve safety, but requires a solution based on robots, smart sensors, and advanced algorithms to tackle the problem in a flexible and
cost-effective way. This paper presents a system for automatic tool trajectory generation for robotic deburring of cast parts with a specific focus
on the robotic tool trajectory generation algorithm. The system generates a robotic trajectory adapted to the specific workpiece based on CAD
model and 3D scans of the workpiece. The registered 3D scans and CAD model is used to generate a 3D model of each individual workpiece.
This is fed into the tool trajectory generation algorithm. The algorithm uses the generated 3D model as well as a priori knowledge of the casting
process to generate the tool trajectory. The tool trajectory planning algorithm has been tested on a set of various 3D models of cast parts, and the
generated robotic tool path has been both simulated and tested on a KUKA KR 60.

508 Ingrid Fjordheim Onstein et al. / Procedia CIRP 118 (2023) 507–512

1.1. Related research

A deburring tool path is traditionally generated off-line
based on the CAD model using a CAM software. This reference
path can then be registered onto the workpiece by finding the
corresponding relationship between the CAD model and the
physical workpiece. The most widely used method for
registration of 3D shapes is the iterative closest point (ICP)
algorithm [3]. The ICP algorithm minimizes the difference
between two points clouds – one point cloud is a 3D
measurement of an actual workpiece – and another point cloud
is a sampled CAD model.

Kosler et al. [4] present a method where a tool trajectory is
generated using off-line teaching. This trajectory is adapted to
the workpiece by finding the transformation through ICP
registering of a 3D scan of the workpiece with the CAD model.
A similar approach is presented in Song and Song [5] where the
tool trajectory is generated using CAM software and corrected
using ICP. Both methods assume that the deformations caused
by solidification can be ignored since they are not significant
for the overall geometry.

Villagrossi et al. [6] present a method that generate a tool
trajectory through teaching on a reference workpiece and adapt
this to the actual workpiece in two steps: rough registration
using ICP and compensate for deformations through a set of
control points. The control points are chosen in a region where
burrs are highly unlikely. This method assumes that the
deformations are similar for the whole part. In Kuss et al. [7], a
method is proposed where a series of CAD models are
generated based on the dimensional tolerances of the
workpiece. A 3D scan of the workpiece is then registered
towards this pool of CAD models to find the best fit. The CAD
model of the best fit is used to generate a tool trajectory using
CAM software. This accuracy of this method relies of the pool
of augmented CAD models. For more complex geometries, this
pool must be very large to capture all possible geometric
deformations.

Béarée et al. [8] and Huang et al. [2] both propose methods
that segment the part into smaller sections and do registration
of each sub-segment. The generated tool trajectory is then
adapted to each segment. These methods assume that the
deformations are constant within one segment.

An alternative method to generating a tool trajectory and
adopting this to the workpiece is to generate trajectory directly
on the workpiece using machine vision. In Lai et al. [9] and
Princely et al. [10], a 2D vision system is used to recognize the
outline of the workpiece and use this as the tool path. Both
methods are based on straight line recognition and are verified
on simple geometries with straight edges.

1.2. Contribution

The existing solutions handle the geometric variations of the
workpiece in various ways that work for parts with simple
geometry and small geometric variations. For cast parts with
more complex geometry and large geometric deformations, a
new method is necessary. This paper presents a pipeline that
automatically generates a robot trajectory for deburring
specifically generated for each individual workpiece. The

method is only using the available CAD model of the part and
3D scans captured of the workpiece. The pipeline has been
verified through simulation and experiment using physical
robot manipulator. The paper is structured as follows: Section
2 introduce the tool trajectory pipeline and implementation,
Section 3 present the verification and test of the pipeline,
Section 4 discuss the presented solution and future work.

2. Tool trajectory pipeline

There are several steps to go from workpiece and CAD
model to a tool trajectory. The pipeline of the process is shown
in Fig. 2. Input to the system is the CAD model of the
workpiece as well as the workpiece with burrs as indicated with
the green boxes. A geometric representation of the workpiece
to be deburred is necessary to generate a tool trajectory for the
specific workpiece. This representation is found by 3D
scanning the workpiece from different angles and aligning
these point clouds. Once the point clouds are registered, the
combined point cloud can be converted into a triangular mesh.
This mesh is then used to generate a tool path. A tool trajectory
is then calculated for the specified robot manipulator based on
the tool path. The following sections will describe the various
steps in more detail with a particular focus on the tool path and
trajectory generation.

2.1. 3D scanning, registration, and burr region

The workpiece is 3D scanned from different angles to
capture the whole piece with a Zivid, an industrial grade HD
color 3D camera. The output from the Zivid is a point cloud
containing the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) coordinates and RGB colors. Scans
captured from different viewpoints must be registered to get
them aligned into the same coordinate system. There are many
registration methods, one of the most common methods is the
iterative closest point (ICP) method. Because of the geometric
variations of the workpiece, the large burrs, and because the
scans are partial, traditional registrations methods fail to give a
robust and accurate solution. A new and more robust method
using sparse convolutional neural networks was therefore
developed in collaboration with other researchers. This new

Fig. 1. Cast part with riser, feeder, and flashing/burr.

Ingrid Fjordheim Onstein et al. / Procedia CIRP 118 (2023) 507–512 509

method allows differences between the reference model and the
3D scans and allow partial scans. The method is hence robust
to unmodeled geometry (burrs) and geometric deformations.
This method is presented in Mohammed et al. [11]. The work
on 3D scanning and registration is presented in the paper and
will not be presented in more detail here.

The output from the registration step is a point cloud with
all the registered 3D scans as well as a labeled burr region. This
burr region is a point cloud of the points that have been labeled
as being part of a burr by the neural network. This labeling is
initially used to improve the registration of the scans in the
network and will also be further used in the tool path generation
step.

2.2. Point cloud to mesh conversion

Output from the registration is a combined point cloud of
the entire workpiece. It can be computationally heavy to work
with point clouds, and most geometric algorithms in computer
vision and graphics operate on representations of 3D data based
on surfaces [12]. It is therefore desirable to convert the point
cloud into a surface representation like polygonal mesh, or
more specifically triangular mesh to speed up computation.

A point cloud can be converted into mesh using a surface
reconstruction algorithm. Poisson surface reconstruction is a
well-known technique for creating surfaces from oriented point
samples acquired from 3D scanners that is robust to noisy data
[13]. Since the point cloud from Zivid only contain the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
coordinates, it is necessary to first compute the point normals
to get oriented point samples. Output from running Poisson
Surface Reconstruction is a triangular mesh.

2.3. Tool path generation

Burrs are the excess material left on the cast part in the
separation plane between the two molds. The tool path curve is
found by taking the intersection between this separation plane
and the reconstructed mesh from the previous step.

2.3.1. Implementation
The algorithms for calculating the tool path curve are

implemented using Grasshopper [14] which is a visual
programming language that runs within the Rhinoceros 3D
CAD application. The software enables a programming
approach where it is possible to visualize all geometries in an
interactive and intuitive environment.

2.3.2. Intersection curve
The intersection curve is the curve along the workpiece

where the two molds meet during casting, and it is along this
curve the burrs are located. The intersection curve is found by
intersecting the separation plane and the mesh. The algorithm
for calculating the intersection is presented in Algorithm 1. The
mesh (M) was found in the previous step, and the burr region
(B) is the point cloud of the labeled burr region calculated by
the neural network for registration. The algorithm finds the z-
coordinate of the plane from the burr region, and the x and y
dimension of the plane from the bounding box of the mesh.
Output of the algorithm is the intersection curve (𝑐𝑐!) given as a

polyline curve. A polyline curve is a series of connected line
segments, or more formally a curve specified by a sequence of
points called its vertices.

Algorithm 1: Intersection curve
Input: 3D mesh (M), Burr region (B)
Output: Intersection curve (𝑐𝑐!)
Step 1: Rotate M and B to fit burr region to the 𝑥𝑥 − 𝑦𝑦

plane
Step 2: (𝑋𝑋" , 𝑌𝑌" , 𝑍𝑍") = 𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵)
Step 3: // Calculate z-coordinate of plane

𝑧𝑧#$%&#'% = 𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷(𝑍𝑍")
Step 4: 𝐵𝐵𝐵𝐵(= 𝐵𝐵𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐷𝐷𝑥𝑥(𝑀𝑀)
Step 5: (𝑥𝑥"" , 𝑦𝑦"" , 𝑧𝑧"") = 𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵𝐵𝐵()
Step 6: // Location and dimension of plane

𝐷𝐷) = ?𝑥𝑥"" , 𝑦𝑦"" , 𝑧𝑧#$%&#'%@
Step 7: // Construct plane with direction

𝐷𝐷𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷" = 𝐶𝐶𝐷𝐷𝐵𝐵𝐷𝐷𝐶𝐶𝐴𝐴𝐵𝐵𝑐𝑐𝐶𝐶𝐶𝐶𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷(𝐷𝐷), {1,0,0}, {0,1,0})
Step 8: // Calculate intersection between mesh and plane

𝑐𝑐! = 𝐼𝐼𝐵𝐵𝐶𝐶𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑐𝑐𝐶𝐶𝐵𝐵𝐷𝐷𝐵𝐵𝑀𝑀𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷(𝑀𝑀, 𝐷𝐷𝑝𝑝𝐴𝐴𝐵𝐵𝐷𝐷")

2.3.3. Section curve
The intersection curve consists of all intersections between

the mesh and separation plane with a random start and stop
point of the curve. It is desirable to be able to determine both
start and stop point. They do not have to be in the same point
in case it is desirable to not deburr some region of the part.

The algorithm for setting start and stop point and sectioning
the curve is given in Algorithm 2. The start and stop points are

Fig. 2. Tool trajectory generation pipeline.

510 Ingrid Fjordheim Onstein et al. / Procedia CIRP 118 (2023) 507–512

set as points in Rhinoceros somewhere close to where mesh and
intersection curve. They do not have to be set precisely on the
intersection as this is calculated in the algorithm. The output of
the algorithm is the sectioned polyline curve with modified
start and stop point. This curve is the tool path for deburring.

Algorithm 2: Segment curve
Input: 3D mesh (M), Intersection curve (𝑐𝑐!), Start and

Stop point (𝑝𝑝*+#&+, 𝑝𝑝*+,-)
Output: Tool path (𝑐𝑐+,,.)
Step 1: // Finding closest point on curve to start point

(𝑝𝑝/(*+#&+), 𝑡𝑡*+#&+, 𝐷𝐷*+#&+)
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝*+#&+, 𝑐𝑐!)

Step 2: (𝐶𝐶/ ,𝑊𝑊/ , 𝐾𝐾/) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶(𝑐𝑐!)
Step 3: // Finding closest point in point collection

(𝑝𝑝/,..%/+2,3, 𝐶𝐶, 𝑑𝑑) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝/(*+#&+), 𝐶𝐶/)
Step 4: // Shift point collection to start at starting point

𝐶𝐶*425+ = 𝑆𝑆ℎ𝐶𝐶𝑖𝑖𝑡𝑡(𝐶𝐶/ , 𝐶𝐶)
Step 5: // Reconstruct polyline curve

𝑐𝑐*425+%6 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶?𝐶𝐶*425+@
Step 6: // Finding closest point on curve to stop point

(𝑝𝑝/(*+,-), 𝑡𝑡*+,-, 𝐷𝐷*+,-)
= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝑝𝑝*+,-, 𝑐𝑐*425+%6)

Step 8: // Segment curve to get tool path
(𝑐𝑐+,,. , 𝑐𝑐,+4%&) = 𝑆𝑆ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶(𝑐𝑐*425+%6 , 𝑡𝑡*+,-)

2.4. Tool trajectory generation

The tool path contains a description of how to get from the
starting point to the end point given in cartesian coordinates.
For the robot to follow the path, the inverse kinematics for the
tool path must be solved.

The robot programming is implemented in the same solution
as the tool path generation using Rhino and Grasshopper. In
addition, HAL Robotics is used for the robot programming
specific tasks. HAL Robotics is an extensible and modular
software which adaptive programming of robot tasks, and
motion planning for one or many robots working together. It is
a robot vendor independent framework that support various
robot vendors like KUKA, ABB, Universal Robots, and more.

2.4.1. Robot cell
A KUKA KR 60 is used in these experiments because it is

the one available in our lab facilities, see picture of the
simulated robot in Fig. 5. An HSD ES929 Spindle was chosen
because it was in the default library of HAL robotics, and this
is a machining application. No tool is attached to the physical
robot.

2.4.2. Trajectory generation
The generated tool path is given as a polyline curve. This

curve can be fed directly into a solver, together with the robot
cell configuration, to solve the inverse kinematics. The
movement space is set to Cartesian since the polyline curve is
a set of cartesian coordinates. The generated solution can be
evaluated directly in the software for feasibility and collision
as well as be simulated to evaluate if the trajectory looks
satisfactory.

Once evaluated, the generated solution can be exported to
robot vendor specific code ready to be uploaded on the

controller of the specific robot.

2.4.3. Approach and exit
A critical part om a deburring process is the beginning

where the tool is approaching the workpiece. To ensure a safe
approach, an approach point has been set normal to the start
point 10 cm away. Another point has been set 10 cm above this
approach point in the z direction. The first movement to get
from an arbitrary robot starting position to the first approach
point is a joint move, to remove the risk failure due to moving
close to a singular position. The same movement is repeated in
opposite order for the exit point. Both movements are added to

Fig. 3. The flow of geometric entities.

Fig. 4. Reconstructed mesh, burr region, and calculated burr plane.

Ingrid Fjordheim Onstein et al. / Procedia CIRP 118 (2023) 507–512 511

the generated robot trajectory, one at the start and the other at
the end.

3. Tool trajectory generation, simulation, and experiment

An experiment was performed to verify the presented
pipeline. Each step of the process was tested separately with
the output from each step fed into the successive step.

3.1. Test part

The cast part in figure 1 is manufactured in bronze. This part
is shiny, has few distinct geometric features and is hard
compared to for example polymers. For experimental purposes
it was therefore designed a test part with distinct geometric
features to improve registration. The part is 3D printed in
PETG to make is easier to 3D scan, cheaper and quicker to
produce, and less required force in machining. The test part can
be seen in Fig. 3. Glue was added to the sides after 3D printing
to resemble burrs.

3.2. 3D scanning and registration

The test part was scanned from different angles on a rotary
board using a Zivid. A manual registration process was used
since the deep learning network is still under development.

The manual processing and registration of the 3D scans was
performed in CloudCompare. First, the background of the
scans was removed. Secondly, the scans were registered
roughly using a point picking registration algorithm. Lastly, the
scans underwent fine registration using ICP towards the point
cloud of the CAD model. Using ICP directly without point
picking first or without the CAD model resulted in a poor
solution, proving the need for an improved registration system.

The labeled burr region was labeled manually by cutting a
slice from the registered point cloud. The result of both the
partial scans and the registered point cloud can be seen in
Figure 3.

3.3. Surface reconstruction

The manually registered point cloud from the previous step
was used in the mesh generation. Both the point normals and
surface reconstruction is calculated using MeshLab. The point
normals are calculated using the built-in function for
calculating normal for point sets. Poisson surface
reconstruction is calculated using the implementation of the
algorithm presented in Kazhdan and Hoppe [15]. The
reconstructed mesh is shown in the last picture in Figure 3. The
generated mesh matches the geometry of the test part for most
of the part, while the lower section is not well matched. This is
because the part is not scanned underneath meaning that the
reconstruction algorithm cannot know what the part is
supposed to look like underneath. Since it is the burr region that
is of interest, it is not important what the part looks like
underneath.

3.4. Tool path and trajectory generation

The generated mesh from the previous step and the labeled
burr region was used to verify the tool path and trajectory
generation. A figure showing the calculated burr plane can be
seen in figure 4 where the mesh is red, burr region is black and
burr plane is green. The corresponding tool path, given start
and stop point around front left corner, is indicated in green.
The generated tool path was fed into the trajectory generator.
The corresponding robot trajectory for a KUKA KR 60 can be
seen in blue in figure 5.

3.5. Experiment with physical robot

The KUKA KR 60 specific robot code exported from the
generated tool trajectory was tested on a physical robot in the
lab facilities. A picture of the robot can be seen in Fig. 4.
During testing, it was found that it was necessary with minor
changes to the exported robot code for it to run on the robot
controller.

The robot followed the trajectory well. The difference
between the target coordinates and the measured position
(measured using KUKA RSI) was negligible in the straight
sections of the curve, and ± 0.1 mm in the curved section.

4. Evaluation and concluding remarks

4.1. Calibration

Calibration have not been mentioned in the presented
solution. This is because every step of the process has been
tested separately and calibration has not been necessary. When
every step is connected it will be necessary with camera and
robot calibration, and a stiff mounting of the workpiece.

4.2. Automatic solution

The goal and value of the presented method is to be fully
automatic. This means feeding in the CAD model of the part

Fig. 5. Simulated tool trajectory for KUKA KR 60.

512 Ingrid Fjordheim Onstein et al. / Procedia CIRP 118 (2023) 507–512

and 3D scans and out comes a finished tool trajectory. Today,
the method includes several manual steps, like registration and
surface reconstruction. Future work consists of connecting
every step in the process to get a fully automated pipeline.

4.3. Cascading (in)accuracy

Converting the CAD model from solid to mesh and to point
cloud, 3D scanning the part, registering the scans, surface
reconstruction and the robot’s accuracy all affect the overall
accuracy of the system. This can be referred to as cascading
(in)accuracy [16]. It is important to be aware of the accuracy of
each step, and how it affects the accuracy of the overall system.
This has not been considered in this work and will be evaluated
in future work.

Acknowledgements

The work reported in this paper was based on activities
within center for research-based innovation, SFI
Manufacturing, in Norway, and is partially funded by the
Research Council of Norway under contract number 237900.

References

[1] I. F. Onstein, O. Semeniuta, and M. Bjerkeng, “Deburring Using
Robot Manipulators: A Review,” in 2020 3rd International
Symposium on Small-Scale Intelligent Manufacturing Systems,
SIMS 2020, 2020, doi: 10.1109/SIMS49386.2020.9121490.

[2] W. Huang, X. Mei, G. Jiang, D. Hou, Y. Bi, and Y. Wang, “An on-
machine tool path generation method based on hybrid and local
point cloud registration for laser deburring of ceramic cores,” J.
Intell. Manuf., 2021, doi: 10.1007/s10845-021-01779-y.

[3] P. J. Besl and N. D. McKay, “Method for registration of 3-D
shapes,” Sens. Fusion IV Control Paradig. Data Struct., vol. 1611,
no. April 1992, pp. 586–606, 1992, doi: 10.1117/12.57955.

[4] H. Kosler, U. Pavlovčič, M. Jezeršek, and J. Možina, “Adaptive
Robotic Deburring of Die-Cast Parts with Position and Orientation
Measurements Using a 3D Laser-Triangulation Sensor,” Stroj.
Vestnik/Journal Mech. Eng., vol. 62, no. 4, pp. 207–212, 2016, doi:
10.5545/sv-jme.2015.3227.

[5] H.-C. Song and J.-B. Song, “Precision Robotic Deburring Based on
Force Control for Arbitrarily Shaped Workpiece Using CAD Model

Matching,” Int. J. Precis. Eng. Manuf., vol. 14, no. 1, p. 85, 2013,
doi: 10.1007/s12541-013-0013-2.

[6] E. Villagrossi, C. Cenati, N. Pedrocchi, M. Beschi, and L. Molinari
Tosatti, “Flexible robot-based cast iron deburring cell for small
batch production using single-point laser sensor,” Int. J. Adv.
Manuf. Technol., vol. 92, no. 1–4, pp. 1425–1438, Sep. 2017, doi:
10.1007/s00170-017-0232-2.

[7] A. Kuss, M. Drust, and A. Verl, “Detection of Workpiece Shape
Deviations for Tool Path Adaptation in Robotic Deburring
Systems,” in Procedia CIRP, 2016, vol. 57, pp. 545–550, doi:
10.1016/j.procir.2016.11.094.

[8] R. Béarée, J. Y. Dieulot, and P. Rabaté, “An innovative
subdivision-ICP registration method for tool-path correction
applied to deformed aircraft parts machining,” Int. J. Adv. Manuf.
Technol., vol. 53, no. 5–8, pp. 463–471, Mar. 2011, doi:
10.1007/s00170-010-2875-0.

[9] Z. Lai, R. Xiong, H. Wu, and Y. Guan, “Integration of Visual
Information and Robot Offline Programming System for Improving
Automatic Deburring Process,” in 2018 IEEE International
Conference on Robotics and Biomimetics, ROBIO 2018, 2018, pp.
1132–1137, doi: 10.1109/ROBIO.2018.8665148.

[10] F. Leo Princely and T. Selvaraj, “Vision assisted robotic deburring
of edge burrs in cast parts,” in Procedia Engineering, 2014, vol. 97,
pp. 1906–1914, doi: 10.1016/j.proeng.2014.12.344.

[11] A. Mohammed, J. Kvam, I. Onstein, M. Bakken, and H. Schulerud,
“Automated 3D burr detection in cast manufacturing using sparse
convolutional neural networks,” no. 3, pp. 1–12.

[12] W. A. P. Smith, “3D Data Representation, Storage and Processing,”
in 3D Imaging, Analysis and Applications, Springer International
Publishing, 2020, pp. 265–316.

[13] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” ACM Trans. Graph., vol. 32, no. 3, 2006, doi:
10.1145/2487228.2487237.

[14] S. Davidson, “Grasshopper,” 2022. [Online]. Available:
https://www.grasshopper3d.com/. [Accessed: 03-May-2022].

[15] M. Kazhdan and H. Hoppe, “Screened poisson surface
reconstruction,” ACM Trans. Graph., vol. 32, no. 3, pp. 1–13, 2013,
doi: 10.1145/2487228.2487237.

[16] I. F. Onstein, C. Haskins, and O. Semeniuta, “Cascading trade-off
studies for robotic deburring systems,” Syst. Eng., pp. 1–12, 2022.

