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BISDU: A Bit-Serial Dot-Product Unit for Microcontrollers

DAVID METZ, VINEET KUMAR, and MAGNUS SJÄLANDER, Norwegian University of Science

and Technology (NTNU), Norway

Low-precision quantized neural networks (QNNs) reduce the required memory space, bandwidth, and com-

putational power, and hence are suitable for deployment in applications such as IoT edge devices. Mixed-

precision QNNs, where weights commonly have lower precision than activations or different precision is

used for different layers, can limit the accuracy loss caused by low-bit quantization, while still benefiting

from reduced memory footprint and faster execution. Previous multiple-precision functional units support-

ing 8-bit, 4-bit, and 2-bit SIMD instructions have limitations, such as large area overhead, under-utilization

of multipliers, and wasted memory space for low and mixed bit-width operations.

This article introduces BISDU, a bit-serial dot-product unit to support and accelerate execution of mixed-

precision low-bit QNNs on resource-constrained microcontrollers. BISDU is a multiplier-less dot-product unit,

with frugal hardware requirements (a population count unit and 2:1 multiplexers). The proposed bit-serial

dot-product unit leverages the conventional logical operations of a microcontroller to perform multiplica-

tions, which enables efficient software implementations of binary (Xnor), ternary (Xor), and mixed-precision

[W×A] (And) dot-product operations.

The experimental results show that BISDU achieves competitive performance compared to two state-of-

the-art units, XpulpNN and Dustin, when executing low-bit-width CNNs. We demonstrate the advantage

that bit-serial execution provides by enabling trading accuracy against weight footprint and execution time.

BISDU increases the area of the ALU by 68% and the ALU power consumption by 42% compared to a baseline

32-bit RISC-V (RV32IC) microcontroller core. In comparison, XpulpNN and Dustin increase the area by 6.9×
and 11.1× and the power consumption by 3.8× and 5.97×, respectively. The bit-serial state-of-the-art, based

on a conventional popcount instruction, increases the area by 42% and power by 32%, with BISDU providing

a 37% speedup over it.
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1 INTRODUCTION

Quantized neural networks (QNNs) are neural networks with reduced bit-precision of weights
and activations. The quantization reduces the model size, which enables faster execution, less
power consumption, and lower memory requirements. Quantization has been particularly crucial
for executing machine learning on low-cost embedded processors instead of high-end CPUs or
GPUs. One of the main applications of QNNs lies in deployment of machine learning models at the
edge, as reduced precision enables their execution on resource-constraint IoT devices and mobile
devices [42]. In contrast to using a cloud, running machine-learning inference at the edge gives
the benefits of low latency, data privacy, reliability, reduced network traffic, and reduced energy
usage by not transmitting raw data from the device to the cloud. However, edge devices often have
tight resource constraints in terms of compute, memory, and importantly power budget.

Highly quantized neural networks, which use sub-byte or low-bit precision for their parameters,
are emerging as they have potential to further reduce the required memory space, bandwidth, and
computational power.

Binary [4, 25, 27, 30, 31] and ternary [8, 23, 24] neural networks are the extreme cases of quan-
tization and have demonstrated their use in applications, such as digit recognition [4, 15, 38],
object detection and image classification tasks [7, 18, 21, 23, 24, 35, 50], and ECG signal classi-
fication [43, 46]. The downside of QNNs is a potential accuracy loss as they approach lower bit-
widths of parameters. This can be overcome by using mixed quantization and quantization-aware
training [4, 5, 10, 26, 28, 44, 47–49]. In the mixed quantization approach, the different layers of a
neural network can have different bit-precision based on how sensitive the layer is with respect to
quantization [5, 26, 44]. Another mixed quantization approach, is to use different precision for the
weights and activations [4, 10, 47–49]. Many QNN use-cases prioritize a reduction in the precision
of weights over activations, because weights directly increase the permanent memory require-
ments, whereas the impact of activations on memory requirement depends on the architecture
of the neural network and its dataflow [36]. It has also been observed that activations are more
sensitive than weights, thus requiring higher bit-widths [48].

One drawback of mixed-layer precision is the need for hardware support of multiple precisions
(e.g., 2× 2 and 3× 3), instead of only supporting one single precision for all layers (e.g., 8× 8, which
is the smallest precision supported by most conventional instruction set architectures (ISAs)).
Mixed weight and activation precision requires mixed-operand arithmetic units for efficient im-
plementation, i.e., hardware that can support input operands of different bit widths (e.g., 2 × 1
for TAB [49] and 3 × 1 for FINN-R [4]). However, applying mixed quantization (both mixed-layer
and mixed-operand precision) can limit the accuracy loss caused by low-bit quantization, while
still benefiting from reduced memory footprint and faster execution. Examples of such mixed-
quantization use-cases are shown in Figure 1, where weight precision is limited to up to three bits.

FPGAs have proven to be the most efficient computation engines for executing mixed-precision
low-bit QNNs, due to their flexibility that makes it possible to adapt accelerators to the specific
needs of each QNN [32]. However, embedded machine learning mostly relies on the use of
microcontrollers (MCUs) for inference tasks, due to their low cost, low power, and software
programmability. The instruction set architectures (ISA) of commercial state-of-the-art
embedded MCUs do not commonly have hardware support for mixed-precision low-bit arithmetic
operations. However, researchers have proposed extensions to existing ISAs to support low-
precision operations. Garofalo et al. introduced XpulpNN [13], a multi-precision dot-product unit
integrated into a RISC-V core that enhances the efficiency of QNN inference on microcontrollers.
XpulpNN has support for 16-bit, 8-bit, 4-bit, and 2-bit single instruction multiple data (SIMD)
instructions. The extended core achieves 5.3× and 8.9× speed-up when considering 4-bit and 2-bit
operands respectively, compared to a baseline core that only supports 8-bit SIMD instructions [13].
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Fig. 1. Various bit-width requirements for QNNs (ReActNet [27], XNOR-Net [31], LQ-Nets [47], TAB [49],
FATNN [8], TRQ [23], DoReFa-Net [48], FINN-R [4] AQD [7], QIL [17], and SYQ [10]) .

This kind of fixed-datapath precision-scalable units have limitations, such as under-utilization of
multipliers for mixed-operand precision and large area overhead to support different bit-precision.
For instance, multiplications of two mixed-operands of size 3-bit and 1-bit will have to use a
4 × 4-bit multiplier, which results in under-utilization of the hardware. The use of non-native
operand-precision also either increases the memory footprint or requires special instructions
for unpacking lower bit-width values from memory to the multiplier width. The state-of-the-art
multi-precision dot-product units XpulpNN [13] and Dustin [11] are further discussed in Section 6.

Bit-serial operations have the advantage that in principle any precision can be supported with
the trade-off that computations requiring higher precision incur a lower performance, since more
bit-serial operations are required. Umuroglu and Jahre presented a bit-serial method for execut-
ing low-bit QNNs on an ARM Cortex-A57 [39]. They explain that integer matrix multiplication
can be carried out by a weighted sum of binary matrix multiplications using bit-serial operations
(Section 2.1). However, their work presents a pure software solution for implementing bit-serial
operations based on existing ARM instructions. Adding hardware support (custom instruction) can
further increase the speed of these operations and compete favorably with bit-parallel methods.

In this article, we propose BISDU a bit-serial dot-product unit and ISA extension, which en-
able efficient execution of bit-serial dot-products. The efficient execution of bit-serial dot-products
enables efficient software implementations of low-precision and mixed-precision matrix multipli-
cations (Section 3.4.2), convolutions (Section 3.4.3), and of complete convolutional neural net-

works (CNNs) (Section 5.3).
BISDU consists of only two new instruction types: (1) four variants of a binary dot-product

instruction that takes a logical result and an accumulator as input and produces a partial dot-
product as the result, and (2) a bit-packing instruction that takes bit-parallel values as input and
produces bytes of a single precision as the result (Section 3.2). The hardware support consists of
a multiplier-less dot-product unit with frugal hardware requirements and a multiplexer for bit-
packing. The dot-product unit uses existing ALU resources (logical And, Xor, and Xnor, parallel
adder, and negation), but requires a new population count (popcount) unit, if not already available
in the ISA, and 2:1 multiplexers (Section 3.1).

Though bit-serial computation is not a new idea, an efficient implementation of a bit-serial dot-
product unit for microcontroller devices is presented for the first time in this work. BISDU provides
the following contributions:

— BISDU has frugal hardware requirements, consisting of a popcount unit (if not already avail-
able in the ISA) and multiplexers, and requires only five instruction variants adhering to
standard RISC-V semantics.
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ALGORITHM 1: Bit-serial dot-product for vectors of two’s complement integers

Input: l-bit vector L, r-bit vector R, vector length N

Output: ACC = L·R
1 ACC = 0

2 for i = 0 ... l - 1 do

3 for j = 0 ... r - 1 do

4 sgnL (i == l - 1? - 1 : 1)

5 sgnR (j == r - 1? - 1 : 1)

6 sign = sgnL · sgnR

7 weight = sign · 2i+j

8 # Binary dot-product between L[i] and R[j]

9 # L
[i]
n refers to ith bit position of element n

10 for n = 1 ... N do

11 ACC = ACC + weight × (L
[i]
n · R

[j]
n )

12 end

13 end

14 end

— BISDU efficiently supports popular low- and mixed-precision quantization, such as binary,
ternary, and mixed precision (Weight × Activation), which are used in numerous QNNs as
depicted in Figure 1.

— BISDU is state-less, meaning that each operation is completed in a single cycle, which sim-
plifies the handling of hazards, interrupts, and context switches.

We evaluate BISDU by integrating it in a baseline 32-bit TinyRocket [3], a RISC-V (RV32) core
available in the open-source Chipyard framework [1], and compare it against state-of-the-art
works by executing matrix multiplications, convolutions, and CNNs. The results (Section 5) show
that BISDU achieves competitive performance compared to the state-of-the-art XpulpNN [13] and
Dustin [11] at a significantly lower area overhead and performs favorably when compared with a
conventional popcount instruction, the bit-serial state-of-the-art.

2 BACKGROUND

This section provides the necessary information for understanding how the bit-serial dot-product
works and how CNNs can be executed using bit-serial matrix multiplications.

2.1 Bit-Serial Dot-Product

The dot-product of two vectors is the sum of products of corresponding elements of the vectors.
The bit-serial method of computing the dot-product of two vectors is described in Algorithm 1,
which is derived from the bit-serial matrix multiplication algorithm proposed by Umuroglu and
Jahre [39]. Let L and R be two vectors consisting of N elements each and ACC be their dot-product.
The algorithm computes the dot-product by summing up weighted dot-products of binary vectors,
and is able to handle any bit-precision, but will require more binary dot-products for higher bit-
precision. If two vectors contain l- and r-bit numbers, the algorithm has to perform l × r binary dot-
products to compute the full dot-product. Since the number of binary dot-products scales linearly
with the number of bits of either operand, the number of binary dot-products scales quadratically
when the precision of both operands are increased. This makes the method attractive when one,
or both, of the operands use few bits.
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Fig. 2. Bit-position traversal order for a 3 × 3-bit accumulation.

Computing the dot-product of two binary vectors instead of two integer vectors has the benefit
that a multiplier is not required; the multiplication is simply done by a logical And operation (or
Xnor in the case of binarized networks or Xor in the case of ternary networks) and summation is
done by a popcount operation.

The binary dot-product, after multiplying it by a weight, is added to the accumulator, ACC, as
shown in Algorithm 1. This weighted dot-product would normally be computed in hardware by left
shifting the dot-product by a shift amount equal to the sum of bit positions, that is, i+j. However,
the sum of weighted dot-products can be computed by instead starting with the dot-product of
the most significant bit position and adding it to ACC. The accumulator is then left-shifted by one
when crossing to a less significant bit-position [37], as illustrated in Figure 2.

Computations with equal weighting, i.e., the same required shift, are grouped together, and the
group is called a wavefront. The binary dot-product is computed for each sum in a wavefront
and added to ACC. No shifting is done while moving within the same wavefront, as shown in
the figure. While moving from one wavefront to another, the previous ACC is shifted by one-bit
position and added to the current contribution. The optional negation is still applied to the current
contribution, when needed for bit-position combinations that yield a negative result, i.e., when the
most significant bit of either but not both operands is part of the dot-product.

2.2 Convolutional Neural Networks (CNNs)

CNNs are a commonly used neural network type, which employ convolution as the main com-
putation; specifically, two-dimensional convolution over a three-dimensional input tensor. The
dimensions of the input are height, width, and channel. A convolution is performed by calculating
the dot-product of the input and by applying a kernel as a stencil at different points in the height
and width dimension. As this is done for multiple different kernels, the output matrix has a channel
dimension equal to the number of kernels used.

When multiple different kernels are used, it can be beneficial to copy the elements involved in a
convolution into a matrix and the kernels into a second matrix, an operation referred to as im2col.
This way, an optimized matrix multiplication routine can be used, that benefits from being able to
access weights linearly. This is beneficial because multiple kernels are applied to the same data,
and this way the more complicated accesses for convolution have to only be performed once [19].

In order to reduce the height and width, pooling layers are used, which collect values in a step
size of N across the width and height dimension and calculate a function such as max, min, or
average over them. This returns one value for every step and is repeated across each channel,
resulting in an N times reduction in size in the height and width dimension [33].
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Fig. 3. The figure shows the proposed bit-serial dot-product unit. The highlighted area in green shows the
logic already present in an ALU for performing additions and subtractions. The additional logic consist of a
population count (Popcount) unit, which counts the number of “1”s in its input operand. The input operand
is the result of a previously performed logical operation (And, Xor, or Xnor) that has been stored in the
register referenced by RS1. The second operand, RS2, contains the accumulated value (or zero for the first
dot-product computation) and is either used as is, or right shifted by one if starting the computation of a
new wavefront, see Figure 2. The resulting value of the addition, represents the accumulated value of the
dot-product operation and is written back to the register referenced by RD. Since both RS2 and RD represent
the accumulated value, both are commonly referencing the same register.

In QNNs, the output of convolution is of higher bit-width than the input and hence, a quanti-
zation step is necessary to reduce the width for the next layer. This can be done through scaling
or thresholding, which stores thresholds and counts how many of them are smaller than a value.
The advantage of this approach is that thresholding can at the same time serve as an activation
function, introducing a nonlinearity into the network. Thresholding with an n-bit output requires
2n − 1 thresholds, and there can be separate thresholds for each channel [40].

The last layers of CNNs are commonly fully-connected layers, which are implemented using
matrix-vector multiplication [19].

3 THE PROPOSED BISDU

BISDU provides support for bit-serial dot-product and bit-packing instructions that operate on
the integer registers of a microcontroller. Each instruction takes two input registers (RS1 and RS2)
and produces one output register (RD). The new instructions are stateless, meaning there is no ad-
ditional architectural state that otherwise could complicate context switching, interrupt routines,
hazards, and so on. The following subsections present the proposed bit-serial dot-product unit,
bit-packing support, instruction formats, and software support.

3.1 Bit-Serial Dot-Product Unit

The dot-product unit (see Figure 3) computes the dot-product of two binary vectors of size 32. The
dot-product of two arbitrary long vectors is computed by executing the unit multiple times.

The input is the logical And of binary vectors, L[i] and R[j], the logical Xor, for ternary networks
or the logical Xnor for the special case of binarized neural networks where Xnor is used, since
–1 is encoded as 0 and 1 as 1. The binary vectors are obtained by grouping the ith and jth bits
of each element in vector L and R, respectively (see Section 3.2). The previous output (ACCout ) is
applied as input (ACCin) and then either left-shifted by 1-bit position or not shifted, depending on
whether the wavefront changes (see Figure 2).

BISDU is intended to be tightly integrated with the existing arithmetic logic unit (ALU) of
a microcontroller. The hardware used for a dot-product operation includes a population count
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Fig. 4. Bit-packing custom instruction and memory layout for 4-bit precision, with destinations for the bits
of the first eight elements indicated.

(Popcount) unit, a negation unit, a 32-bit adder, 1-bit shifter (implemented as just wires), and two
32-bit 2:1 multiplexers as shown in Figure 3. The adder and negation units are not realized sepa-
rately, as they are commonly available operations performed by the ALU, as shown in the figure.
However, additional 2:1 multiplexers are inferred when BISDU is integrated with the ALU. The
6-bit output of the Popcount adder-tree is zero-extended to 32 bits to match the width of the ALU.
If the ALU, into which BISDU is integrated, already has a Popcount unit, then the hardware over-
head is reduced to a handful of multiplexers and additional control signals.

3.2 Support for Bit-Packing

To fully utilize memory bandwidth, the matrices should be stored in memory in bit-serial fash-
ion [37]. The data layout in memory for bit-serial operations is quite different from bit-parallel
operations. In bit-serial operations, the bits are processed bit-position wise, for example, the bits
of vector-elements belonging to bit position zero are processed in parallel, then the bits belonging
to bit position one are processed, and so on. Therefore, the bits belonging to the same bit position
have to be arranged together in memory. First is the least significant bit (bit position zero) of all
elements in a matrix stored sequentially in memory, followed by all the bits from bit position one,
and so on. This can be done in software using existing instructions. However, this conversion from
bit-parallel to bit-serial is a costly operation if done using just logical and shift instructions, and
hence, to accelerate the vector bit-packing process, a custom instruction is introduced.

The bit-packing instruction takes eight byte-sized elements of a vector stored in two registers
(RS1 and RS2), and stores the rearranged bits in an output register (RD), as shown in Figure 4.
Only the first (bits 7–0) and the last (bits 31–24) bytes are shown for each register. Since there is
only one destination register for two source registers, it is only possible to process half of the bits
in the source registers. Put differently, the bit-packing instruction is only able to compact up to
4-bits from each byte in the sources registers. The four bit positions are shown by different colors
in Figure 4. The bit-packing instruction takes the least significant bit from all eight input bytes
(four from RS1 and four from RS2) and places them in the least significant byte of RD (shown in
purple). All the bits from bit position one are placed in byte one, bit position two in byte two, and
bit position three in the most significant byte of RD (shown in blue).

The packed bits in RD can then be stored to their destinations in memory using byte-sized stores,
that is, the memory is used to construct longer bit vectors of size 32 or more. Figure 4 illustrates
this as a vector with 32 bits in each element that stores one bit position. A byte-size store is used
to write the first eight bits of RD to the first byte of V[0], RD is then right-shifted by eight upon
which a new byte-sized write is performed to the first byte of V[1], and so on. The bin-packing
instruction would have to be repeated four times to fill all four bytes in each vector element. When
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Fig. 5. Custom instruction encoding used by BISDU.

packing elements with more than four bits of precision, the instruction has to be used twice, with
the inputs (RS1 and RS2) shifted to the right by four before the second invocation.

3.3 Instruction Formats

We use RISC-V as an example ISA for how the BISDU instructions can be added to an existing
ISA. Since all our custom instructions use two source and one destination registers, they all use
the R-type encoding. We use the custom-2 opcode reserved for custom extensions in the RV32
and RV64 ISA [45]. We use the funct7 field to specify five different operations: four are used
for the dot-product and one for the bit-packing operation. The four variants of the dot-product
(dot.S.N) are needed to specify if the input accumulator should be shifted by one (S : [s=shift by
one] or [n=no shift]) and if the popcount result should be negated due to including a signed bit (N :
[s=signed (negate)] or [u=unsigned]), see Line 6 in Algorithm 1. We further follow the convention
introduced by ROCC [3] to indicate the registers used via the funct3 field. The encoding scheme
is shown in Figure 5.

3.4 Software Support

BISDU’s native format is 32-bit words consisting of the same bit position of 32 consecutive bit-
parallel elements, e.g., the least significant bits of 32 consecutive bit-parallel elements are stored as
one 32-bit data word. We use the bit-packing instruction to convert any bit-parallel data to packed
32-bit data words. If multiple bits of precision are used, the bits for each bundle of 32 elements
are stored consecutively in ascending order from lowest to highest bit, as shown at the bottom of
Figure 4.

3.4.1 Dot-Product Computation. We define dot-product functions for different combinations of
precision. An example function written using the BISDU custom instructions is shown in Listing 1.
The function calculates the dot-product of two signed vectors (pointed to by L and R) with each
vector consisting of 32 elements stored in a packed serial format. The first 32 bits (index zero) of L
contain the lowest bit of each of its 32 elements, the second 32 bits (index one) contain the second
bit, and the third 32 bits (index two) contains the highest (sign) bit. R behaves accordingly, but
with only 2-bit precision. SIGN0 and SIGN1 are used to select between no negation and negation of
the popcount value, respectively (Figure 3). Similarly, SHIFT0 and SHIFT1 select between no shift
and shift of ACC by 1-bit position. Each BISDU_DOTP macro invocation generates a custom BISDU
instruction using the support for custom instructions in RISC-V inline assembly in gcc. The output
of each dot-product is accumulated in ACC.

A special case is ternary arithmetic. We use the representation and method described in TAB [49]
to encode and compute ternary arithmetic. The encoding used is 2-bit two’s complement, with the
encoding for −2, i.e., 10, being unused. The result of the multiplication of two ternary numbers is
always a ternary number, i.e., −1, 0 or 1. This method exploits the fact that only −1 and 1 change
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Listing 1. A 3-bit signed × 2-bit signed bit-serial dot-product function that processes 32 elements per invo-
cation. L contains 32 elements with 3-bit precision stored in serial fashion, and R contains 32 elements with
2-bit precision stored in serial fashion (similar to what is shown at the bottom of Figure 4).

Listing 2. A ternary × ternary bit-serial dot-product function that processes 32 elements per invocation. The
ternary values are encoded bit-serial in 2-bit two’s complement representation.

the result of an addition, while 0 does not. As a result, only two popcounts instead of four are
required. This is further optimized by counting any_ones, i.e., −1 or 1 and minus_ones, because
these can be generated using only three bit-wise operations. To compensate for using any_ones

instead of a count of +1, minus_ones has to be subtracted twice. A function implementing this
approach is shown in Listing 2.

TAB uses two separate popcount accumulators for any_ones and minus_ones, and only com-
bines them in the end after multiplying one of them by two. Since BISDU incorporates a shift
of the accumulator, as well as compute and negate of the popcount being added, we can directly
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Listing 3. A bit-serial matrix multiplication function using the macro from Listing 1. pa contains the packed
bits of matrix A of size l ×m, pb contains the packed bits of the transposed matrix B of size n×m. The shared
dimensionm has to be divisible by 32.

perform the combination at no cost, saving registers that can be used for tiling. A normal 2-bit by
2-bit bit-serial computation function requires four loads, four bit-wise operations and four BISDU
dot-product instructions for a total of 12 instructions. The improved ternary computation still re-
quires four loads, but only three bit-wise operations and two BISDU dot-product instructions, for
a total of nine instructions. This reduction of 25% is significant, since the dot-product forms the
computational core of matrix multiplications and thus also convolutions.

3.4.2 Matrix Multiplication. The dot-product macros can be used as a building block for matrix
multiplication, as shown in Listing 3. To improve performance and reduce the number of required
loads, the matrix multiplication can be unrolled across the outer two loops. This is preferable over
unrolling the innermost loop, since this way data loaded into registers can be reused, reducing the
number of required load operations. The limit to this form of unrolling is the number of available
registers, since the number of required registers varies based on the bit-precision, with higher
precision requiring more registers.

3.4.3 Convolution. The matrix multiplication shown in Listing 3 can either be used directly, or
as a building block for convolution. For convolution, we follow the general approach described by
CMSIS-NN [19] and PULP-NN [12]. The latter library is used by XpulpNN and Dustin.

Activations are stored in height-width-channel (HWC) order. As 2D convolutions move in
the height and width dimension, this enables copying all channel data of a pixel if it is used for a
convolution in a linear copy operation. We implement two different versions of convolution. The
first version is used when the input channel is a multiple of 32. This is commonly the case for the
inner layers of CNNs. In this case, the activations are stored packed. The packing can be done by
the preceding layer, which is commonly a convolution or max pooling layer, at low cost, due to
the packing instruction. The second version first copies the bits to a buffer, pads them, and then
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packs that buffer. Kernels are always stored bit-packed, but have to be padded if their number of
elements is not a multiple of 32.

The implemented convolution is either performed in full across all outputs (same height and
width for output and input) with the borders being padded with zeros during the im2col operation,
or only for valid outputs where the kernel completely overlaps the activations, leading to a smaller
output width and height.

4 METHODOLOGY

We evaluate BISDU using Chipyard [1], an open-source SoC design framework developed at UC
Berkeley. This framework provides the Rocket core [3], which is a configurable in-order RISC-V
core. We use the 32-bit TinyRocket configuration of Rocket as baseline. The core configuration
consists of a basic five-stage pipeline without virtual-memory or floating-point support and uses
a tightly coupled 512 KiB SRAM scratchpad. To reduce the core size further, support for debug,
atomic instructions, breakpoints, and physical memory protection are disabled.

We have extended the baseline TinyRocket core with common solutions such as SIMD and
popcount support, as well as the state-of-the-art solutions, XpulpNN [13], and Dustin [11]. We
evaluate the following core configurations:

— RV32IC is the baseline TinyRocket configuration that uses 8-bit integers for all operations.
Since we target resource-constrained IoT devices, we opt to not include a hardware
multiplier.

— RV32IMC is the RV32IC baseline, with support for the RISC-V M standard extension for
integer multiplication and division [45].

— SIMD is the RV32IC baseline extended with support for performing four 8-bit operations
in parallel. It is emulated using Dustin instructions.

— Popcount is the RV32IC baseline extended with a population count operation, which is
used for performing bit-serial matrix multiplications in software as described by Umuroglu
and Jahre [39].

— XpulpNN is the RV32IC baseline extended with our implementation of XpulpNN [13],
which supports 2, 4, and 8-bit SIMD operations but requires that both operands are of
equal precision.

— Dustin is the RV32IC baseline extended with our implementation of Dustin [11], which,
in addition to 2, 4, and 8-bit SIMD operations, is also able to perform mixed-precision
operations, e.g., 2 × 8-bit operations.

— BISDU is the RV32IC baseline extended with the proposed dot-product unit as described
in Section 3.

We implemented support for bit-packing and dot-products, but none of the other proposed
XpulpNN instructions, because we wanted to directly compare the performance of different types
of dot-product instructions on a level playing field. Rocket’s register file supports two register
reads, and one register write per cycle. This is in contrast to RI5CY, the basis of XpulpNN and
Dustin, which supports three reads and one write. As a consequence, the destination register can
not be read when implemented in Rocket, requiring additional instructions for accumulation. As
this limitation is shared across all units (BISDU could perform the And operation as part of the
same instruction if three registers could be read), this comparison remains fair and arguably more
appropriate for small embedded cores. The register file configuration also implies that address in-
crementing loads can not be supported. A further difference is that mixed-precision for Dustin
is implemented based on different instructions instead of an embedded controller. This increases
the number of opcodes needed but simplifies the software, as compared to the original work [11].
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We consider this a fair comparison, since the area cost of the embedded controller is saved and the
increase in decode complexity seems to be small, as the increase in core area is dominated by the
ALU. Furthermore, our comparisons focus on the size of the ALU instead of the whole core. Other,
non-ISA-related optimizations Dustin introduces, such as VLEM mode, are not considered [11].

We use Cadence Genus 19.15 to synthesize the TinyRocket core without scratchpads and fron-
tend, targeting a 28 nm FDSOI process to evaluate area and power of the implemented units. The
ALUs were marked to not be ungrouped, and switching power was evaluated using vectorless
power estimation. We use CACTI 7.0 [22] to estimate the leakage power and access power of the
SRAM scratchpad.

5 EVALUATION

We evaluate BISDU by an in-depth analysis of low-bit and mixed-precision matrix multiplication
for both statically and dynamically known matrix sizes. We discuss the performance for a single
convolutional layer, how it depends on the precision of the activations and weights, and how the
precision affects the required memory bandwidth. We end the evaluation by presenting the results
of several CNNs and compare BISDU against the other solutions in terms of performance, area,
power, and energy.

5.1 Matrix Multiplication

The performance of the different solutions are compared using tiled matrix-multiplication with
both inputs already packed and the weight matrix in transposed form. Tiling is applied by
calculating multiple results together, to reduce the number of loads needed. Different tiling
configurations (1 × 1, 1 × 2, 1 × 4, 2 × 2, 2 × 4, and 4 × 4) were created using inlining and the best
performing configurations have been used for the presented results. This automatically selects
the best configuration, in terms of register pressure, for a given combination of precisions.

The performance results in terms of multiply and accumulates (MACs) per cycle are shown
in Figure 6. We evaluate square matrices of two different sizes, 64 and 128. These sizes are known
at compile time, enabling compiler optimisations. The different bit-precision combinations in the
charts are denoted along the X-axis, and each combination represents the size (A ×W ) of the
activations (A) and weights (W ). The charts show only natively supported combinations populated
for each method, and are arranged so that for unpopulated values, the nearest combination to the
right would be used. For instance, for the 4 × 1 combination, XpulpNN and Dustin will use 4 × 4
and 4 × 2, respectively.

The performance is low for the RV32IMC baseline, as it does not have support for SIMD in-
structions. The RV32IMC performance is shown for an 8 × 8 combination, but will remain the
same for all other combinations. The figure also shows that BISDU achieves better performance
for low-bit precision, and the performance degrades towards 8-bit precision, especially if the pre-
cision for both weight and activation is increased. For example, the performance for 8 × 1 is still
acceptable, whereas for 8 × 8 the performance is slightly worse than the baseline. Compared to
XpulpNN [13] and Dustin [11], BISDU is almost 2× faster for 1 × 1 precision and slightly faster
for the 3 × 1 combination as well. However, the performance reduces for all other combinations,
including a marginal drop for some combinations, such as 2 × 1, 4 × 1, and 8 × 1. T × T uses a
ternary format for both weights and activations, as described in Section 3.4.1, leading to a speedup
over conventional 2 × 2 arithmetic.

The results reveal that BISDU’s performance is promising for all combinations up to four bits,
but the performance degrades significantly for higher bit-precision. The figure shows that BISDU
achieves better performance for mixed-precision cases, such as 3 × 1, 4 × 1, 3 × 2, and 4 × 2. This
is not surprising, since the number of required bit-serial operations scale with the product of the
input-operand precisions when performing multiplications. Thus, keeping the precision for one (or
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Fig. 6. Throughput for matrix multiplication of square matrices (only natively supported results are shown).

both) of the operands low, reduces the total number of operations. Luckily, there exist numerous
QNN models where weights use 1 or 2 bits and activation bit-widths range from 2 to 8 bits, as
shown in Figure 1. Furthermore, unless bit-serial operations are used, the data management of
a none-power-of-two precision becomes a significant burden, since memory systems commonly
only support 8, 16, 32, or 64 bit operations. Thus, bit-widths of 3, 5, 6, and 7 are unlikely to be
supported by bit-parallel hardware. Compared to just the 8 × 8 Dustin results, which represent
conventional 8-bit SIMD instructions, BISDU achieves a speedup of between 9.45× and 0.83× for
operands up to 4 bits, with only 4 × 4 being a slowdown.

The performance of XpulpNN and Dustin is equal for the combinations that are supported by
both, and favors Dustin where its mixed-precision support is applicable. BISDU experiences greater
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Fig. 7. Throughput for convolution. Kernel weights are packed and stride is 1.

register pressure compared to XpulpNN and Dustin, because multiple bit vectors have to be kept
in registers while they are combined, leading to less aggressive tiling being used in some combi-
nations. This results in more loads being required for these cases.

5.2 Convolution

The performance of BISDU when used for convolutions is shown in Figure 7. We evaluated the
first layer and the biggest inner layer of two different networks, CNV from the QONNX model
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Fig. 8. Memory footprint overhead compared to BISDU.

zoo [29] and the network described in CMSIS-NN [19]. CNV uses valid mode convolution and
targets low bit-precision, while the CMSIS-NN network uses full convolution and targets higher bit-
precision. The convolutions are performed using the approaches described in Section 3.4. Results
are reported in MACs/cycle to enable easy estimations of performance for similar layers and enable
direct comparisons between the convolution types, as well as to matrix multiplication.

The first layer of CMSIS-NN has an input size of 32 × 32 × 3 and a filter size of 5 × 5 × 3 ×
32 for a total number of, 2 457 600 MACs. Since the kernel size of 3 × 3 × 3 is not a multiple of
32, dynamic padding and packing is used. Results for the convolution are shown in Figure 7(a).
The first layer of CNV has an input size of 32 × 32 × 3 and a filter size of 3 × 3 × 3 × 64 for a
total number of, 1 555 200 MACs and also uses dynamic packing. Results for the convolution are
shown in Figure 7(b). These scenarios require a lot of copy, pad, and pack operations, leading to
a comparatively low number of MACs/cycle. Comparing BISDU and Popcount demonstrates the
importance of packing instructions for this type of layer. The larger vector size of 32 elements leads
to more padding being required for BISDU and Popcount when compared to Dustin and XpulpNN.
For Dustin or XpulpNN matrices have to be padded to a multiple of 16, 8 or 4, depending on
if the smallest operand size is 2, 4, or 8-bit. For the first layer of CMSIS-NN each kernel of 75
elements needs to be padded to 96 elements for BISDU and Popcount and either 76 or 80 elements
for Dustin and XpulpNN. For the first layer of CNV each kernel of 27 elements needs to be padded
to 32 elements for BISDU and Popcount and either 28 or 32 elements for Dustin and XpulpNN.
This leads to higher performance of the CNV layer for BISDU and Popcount, since less padding is
required compared to CMSIS-NN.

The dominant inner layer of CMSIS-NN has an input size of 32 × 32 × 32 and a filter size of
5 × 5 × 32 × 32 for a total number of, 26 214 400 MACs. Since the kernel size of 5 × 5 × 32 is a
multiple of 32, efficient packing can be used without need of padding. Results for the convolution
are shown in Figure 7(c). The dominant inner layer of CNV has an input size of 12 × 12 × 128
and a filter size of 3 × 3 × 128 × 128 for a total number of, 14 745 600 MACs. This convolution
uses packed activations and results for the convolution are shown in Figure 7(d). Theses scenario
shows that under suitable conditions, BISDU’s matrix multiplication performance translates to
efficient convolution implementations, that retain a large fraction of the performance seen during
matrix multiplications.

BISDU has zero memory overhead for storing the weights and activations of any precision, as
numbers can always be stored with the minimum number of bits required, whereas XpulpNN
and Dustin incur memory overheads ranging from 0 to 100% for different precisions, as shown
in Figure 8. Assuming a QNN that has 1-bit weights and 4-bit activations, they will be stored in
memory as 4-bit numbers in case of XpulpNN, therefore, resulting in three bits of overhead for
every five bits (1-bit weight + 4-bits activation). This equates to 60% memory overhead. Similarly,
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Table 1. Cycle Count when Running a CIFAR-10 CNN

Popcount BISDU Dustin XpulpNN SIMD
T × T T × 1 1 × 1 3 × 1 T × T T × 1 1 × 1 4 × 2 T × T 4 × 4 T × T 8 × 8

Reported Accuracy 89.03% 87.80% 84.22% 89.03% 87.80% 84.22% 89.03% 89.03% 79.9%

First Layer 5420980 3091908 3035509 1328912 2295224 1328912 1328912 1277548 1277548 2142837 2142790 3377830
Convolution 100% 57% 56% 24.5% 42.3% 24.5% 24.5% 23.6% 23.6% 39.5% 39.5% 62.3%

Packed 22509575 19726591 10295604 18956053 18967486 15728941 8273258 24308752 16276999 41063176 16277138 10831633
Convolution 100% 87.6% 45.7% 84.2% 84.3% 69.9% 36.8% 108% 72.3% 182.4% 72.3% 48.1%

Fully 166997 145527 76418 148691 141221 118485 66528 210912 154922 304759 154920 19320
Connected 100% 87.1% 45.8% 89% 84.6% 71% 39.8% 126.3% 92.8% 182.5% 92.8% 11.6%

Max Pooling 395040 395184 395090 395184 395184 395135 395136 395089 395132 395088 395180 283559
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 71.8%

Thresholding & 2881251 2638175 1547517 2571458 1050531 1050531 1163738 3592712 968597 3585466 969462 736135
Packing 100% 91.6% 53.7% 89.2% 36.5% 36.5% 40.4% 124.7% 33.6% 124.4% 33.6% 25.5%

Total (cycles) 31373843 25997385 15350138 23400298 22849646 18622004 11227572 29785013 19073198 47491326 19939490 15248477
Total (seconds) 0.027 0.023 0.013 0.020 0.020 0.016 0.010 0.026 0.017 0.041 0.017 0.013

100% 82.9% 48.9% 74.6% 72.8% 59.4% 35.8% 94.9% 60.8% 151.4% 63.6% 48.6%

Dustin will give rise to 20% of memory overhead for the same example, as it will store the weights
and activations as 2-bit and 4-bit numbers. This overhead is especially significant for weights, that
need to be stored during the whole run-time of an application. The only scenario in which BISDU
incurs memory overhead is when the shared dimension of two matrices is not a multiple of 32, and
they have to be padded, for example for layer one of CNV and CMSIS-NN.

5.3 Convolutional Neural Networks (CNNs)

We evaluated QNN performance using variations of CNV, a network from the QONNX model
zoo [29]. This network targets the CIFAR-10 dataset and is available in T ×T , T × 1, and 1 × 1 bit
configurations for activations and weights respectively, where T stands for ternary represented
using 2 bits. The configurations have reported accuracy of 89.03%, 87.80%, and 84.22%, respectively.
The advantage of the 1-bit weight configurations is that they require only half as much memory
to store weights. The first layer uses 8-bit activations in all configurations, making it both a mixed-
operand-precision and mixed-layer-precision network.

We also report results for an 8-bit quantized network for the same data-set described in CMSIS-
NN as a comparison point suitable for 8-bit SIMD. This network has a reported accuracy of
79.9% [19]. One potential reason for the lower accuracy is that the network is much smaller in
terms of number of weights, but it has comparable storage requirements and execution time due
to using 8-bit precision.

The results are shown in Table 1 and Figure 9. The table shows number of clock cycles taken for
executing different CNN layer types by different core configurations, as well as total execution time
in terms of cycles and seconds at a frequency of 1.15 GHz. The table also indicates the percentage
of cycles taken by each configuration with respect to theT ×T configuration run using Popcount.
Among all convolutional layers, Layer 1 uses dynamic packing, while others use packed inputs
achieved by packing as a part of the previous thresholding layer.

For the complete network, T ×T XpulpNN is 15% and Dustin 20% faster than BISDU, which is
largely caused by the convolution layers. The first layer uses 8-bit activations and ternary weights,
while all other convolutional layers use packed convolution with ternary activations and weights,
and show a lower slowdown over XpulpNN and Dustin for BISDU. Dustin and XpulpNN perform
largely comparable, since they only differ in the behavior of the first layer. Dustin uses 2-bit weights
for the first layer, while XpulpNN has to use 8-bit weights, leading to higher storage requirements.
The use of 2-bit and 8-bit weights also affects the amount of tiling possible and padding required,
with both favoring XpulpNN slightly. As a result, the performance benefit of mixed-operand sup-
port is lower for the first layer. Further discussion of the first layer can be found in Section 5.2.

The flexibility of BISDU enables trading of accuracy against run-time and memory requirements
for weights. This enables the use of T × 1 or 1 × 1 configurations, leading to both lower cycle
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Fig. 9. Cycle count when running different CIFAR-10 CNNs.

Table 2. Area and Power consumption of ALU and Core Using a 28 nm FDSOI Process Targeting 1.15 GHz

RV32IC Popcount XpulpNN [13] Dustin [11] BISDU

ALU Power (μW ) 1 159 1 518 1.31× 4 403 3.8× 6 923 5.97× 1 643 1.42×
ALU Area (μm2) 813 1 154 1.42× 5 649 6.9× 9 031 11.1× 1 366 1.68×
Core Power (μW ) 15 991 16 530 103% 19 768 124% 22 073 138% 16 712 105%
Core Area (μm2) 22 117 22 837 103% 27 528 124% 30 893 140% 23 159 105%

counts and weight storage requirements, as compared to Dustin and XpulpNN. Since Dustin and
XpulpNN do not natively support 1-bit precision, they would see no performance gain and would
only sacrifice the result accuracy.

Compared to the PopcountT ×T configuration, BISDU is overall 37% faster. However, on Layer
1, BISDU is 136% faster, largely due to the high cost of dynamic packing without dedicated in-
structions in Popcount. BISDU’s packing instructions lead to a 174% speedup over Popcount in
thresholding and packing layers.

We also present performance results for BISDU in a 3×1, XpulpNN in a 4×4 and Dustin in a 4×2
configuration, with the latter two being the minimum required to represent 3×1 on XpulpNN and
Dustin. We present these results even though we do not have accuracy numbers for them, to illus-
trate a use case where a higher result accuracy is required, but weight storage is limited. It is likely
that 3×1 would increase the accuracy over 2×1, without increasing the weight footprint. However,
this is not a valid option for Dustin and XpulpNN, since they are unable to use 1-bit weights.

5.4 Area, Power, and Energy

Table 2 shows the results after synthesizing the RV32IC baseline, Popcount, XpulpNN, Dustin, and
BISDU with a target frequency of 1.15 GHz, the highest frequency achievable by all designs. We
show the area and power for the whole core, excluding memory for instructions and data. However,
since core area and power are highly dependent on the specific core and its configuration, and since
the ALU is the most impacted part of the core, we also show the area and power for only the ALU.

The estimated core power consumption for the RV32IC baseline is 15 991 μW , as shown in
the table. This estimate is of limited reliability, since it was calculated using vectorless activation
propagation, which can give imprecise results for sequential designs. Nevertheless, XpulpNN and
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Fig. 10. Energy consumed by the core including 512 KB of memory when executing the CNNs described in
Section 5.3.

Dustin increase the core power consumption by 24% and 28%, respectively, compared to the RV32IC
baseline. The results show that Dustin’s support for mixed-precision comes at a significant cost
compared to XpulpNN in terms of power. In contrast, BISDU increases the core power consumption
by only 5%. The core area of the RV32IC baseline is 0.022mm2 and XpulpNN and Dustin increase
the area by 24% and 40%, respectively, while BISDU only increases the area by 5%.

A more interesting comparison is to look at the impact on the ALU, since the core constitutes a
large “constant” fraction that is not affected by either BISDU, XpulpNN, or Dustin. This constant
fraction will depend on the particular core and its configuration that the different techniques are
integrated into. The power estimation for the ALU is also more realistic, since it is a pure com-
binatorial circuit. The ALU power of the RV32IC baseline is only 1 159 μW (Table 2). XpulpNN
increases the power by 3.8×while Dustin increase it by 5.97×. In comparison, BISDU increases the
power by only 42% (i.e., 1.42×). The difference in area is even more dramatic, with XpulpNN and
Dustin being 6.9× and 11.1× larger than the RV32IC baseline ALU, while BISDU only increases the
ALU area by 68% (i.e., 1.68×).

Figure 10 shows the energy usage of the whole core, including the SRAM scratchpad energy
calculated using load and store count, when running the CNNs from Section 5.3. BISDU (554μJ ),
Dustin (550μJ ) and XpulpNN (538μJ ) have comparable energy usage that is significantly below
Popcount (734μJ ) forT ×T . BISDU and Popcount provide the option of significantly lowering the
energy usage at the cost of accuracy by using reduced precision for the weights, with BISDU more
than halving its energy usage to 269μJ for 1 × 1. Not yet taken into consideration here is the fact
that the reduced number of weights could lead to a smaller memory being viable, leading to a
further reduction in energy usage, as well as cost savings.

Another factor to consider is power consumed when not performing CNN calculations. The
large increase in ALU area and power consumption for Dustin and XpulpNN could have significant
impacts on standby power and power consumed during other tasks. While power gating the unit
might help mitigate this, it would further increase area and design complexity.

6 RELATED WORK

In recent works [11, 13], 4-bit and 2-bit SIMD instructions have been added to the RISC-V ISA
to support execution of low-bit QNNs on microcontrollers. These works extend the ISA of the
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32-bit RI5CY core [14], a state-of-the-art open-source RISC-V core. The baseline dot-product unit
available in the RI5CY core consists of two sets of multipliers, supporting 16-bit and 8-bit vector
operands. The XpulpNN ISA extension [13] adds support for 4-bit and 2-bit vector operands. The
added multipliers compute the dot-product of two vectors, each having either eight 4-bit elements
or sixteen 2-bit elements, and the result is accumulated in a 32-bit register using an adder tree.
XpulpNN has the limitation that it does not support mixed-precision operations, where operands
have different bit-widths. BISDU is able to support any combination of bit-precision, while fully
utilizing hardware resources and with no memory and bandwidth overhead.

Dustin [11] introduces a RISC-V ISA extension for mixed-precision and heavily quantized SIMD
instructions from 16 down to 2 bits. This work presents a mixed-precision dot-product unit that can
compute the dot-product of two vectors with different bit-widths as operands. For instance, 4-bit
operands can be multiplied with 2-bit operands while the numbers are stored in memory in 4-bit
and 2-bit packed formats. However, Dustin incurs a hardware overhead and requires an additional
mixed-precision controller to unpack the lower-bit operand to match its precision to the precision of

the higher-bit operand. Moreover, this controller introduces state in Dustin’s custom instructions
for performing dot-product operations. BISDU supports all forms of precision (not only those that
are a power of two) and has a completely state-less design, which simplifies exception and interrupt
handling as well as context switches.

Umuroglu and Jahre presented a bit-serial method for executing low-bit QNN on microcon-
trollers [39]. They explain that integer matrix multiplication can be carried out by a weighted sum
of binary matrix multiplications using bit-serial operations (Section 2.1). Cowan et al. [9] extended
the TVM framework to automatically generate high-performance kernels for QNNs using existing
popcount instructions in the Arm NEON instruction set [2]. They target application class proces-
sors with vector extensions employing parallelism and cache-aware memory layout optimization,
among other optimizations. Their focus is on maximizing performance using existing hardware
and ISA extensions rather than evaluating the cost of different extensions, and the class of hard-
ware targeted is different. BISDU is a hardware extension that provides efficient conversion of
bit-parallel to bit-serial data and efficient execution of bit-serial matrix multiplication and targets
lower power scenarios.

Several standalone bit-serial accelerators have been proposed [6, 16, 20, 32, 34, 41] with the
goal of efficient execution of precision variable neural networks. All these works are proposed
as standalone accelerators and are not tightly integrated into the datapath of a microcontroller.
As separate accelerators, they require more hardware than is commonly warranted for resource
constrained microcontrollers. BISDU is a light-weight extension for existing ISAs, which enables
efficient execution of precision variable neural networks on microcontrollers at a low hardware
cost (i.e., low silicon area increase).

7 CONCLUSION

This article has presented BISDU, a bit-serial dot-product unit that supports efficient processing
of mixed-precision and low-bit QNNs. BISDU is a simple and hardware-efficient dot-product
unit that is based on computing the dot-product of two binary vectors instead of integer vectors,
which eliminates the need for multipliers. BISDU can be used for fast processing of binarized
and ternary neural networks, which are gaining popularity for possible deployment on IoT edge
devices. These edge devices have tight constraints on hardware resources and power budget,
yet require good performance. This work demonstrates that BISDU can be easily integrated in
low-cost and low-speed embedded microcontrollers, providing a low-cost solution for performing
machine learning inference at the edge.
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