
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Simen Salomonsen

Bio-plausible Neural Networks

A Comparative Study of the Computational
Demand and Capability to Infer Missing Values of
Predictive Coding Networks

Master’s thesis in Computer Science
Supervisor: Prof. Downing, K.
June 2023

Simen Salomonsen

Bio-plausible Neural Networks

A Comparative Study of the Computational Demand
and Capability to Infer Missing Values of Predictive
Coding Networks

Master’s thesis in Computer Science
Supervisor: Prof. Downing, K.
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
Artificial neural networks have had great success since their breakthrough using
error backpropagation, sparking innovation in image classification, regression,
generation, and many more fields. An issue backpropagation and artificial neural
networks face, however, is the biological plausibility of these models. These
issues relate to error representation, weight symmetry, and transmission of neuron
signals. The first of these three issues is the main issue addressed by the bio-
plausible neural network presented in this thesis. It will explore predictive coding
networks, a machine-learning model presented by Whittington and Bogacz [2017],
which builds on predictive coding theory originally presented by Rao and Ballard
[1999].

The thesis presents a study of predictive coding networks’ capability to infer
missing values in incomplete datasets and an analysis of their computational de-
mand compared against artificial neural networks using backpropagation. One
experiment was conducted for each aspect, where the first qualitatively establishes
that predictive coding networks can infer missing values in incomplete represen-
tational datasets — given the introduction of a decay term to their update rules.
The findings also show that the performance of using predictive coding networks
as an inference scheme lags behind k-Nearest Neighbors on both representational
datasets used in the study. The second experiment quantitatively establishes
that the number of floating point operations performed during the training of
predictive coding networks is an average of 738% larger than those of artificial
neural networks.

The findings of the first experiment show promise for predictive coding net-
works as a model capable of inference and prediction in both network directions
and substantiate the related works by asserting their ability to infer information
on visual and representational data. Future work can be aimed at investigating
the performance of predictive coding networks as a function of the completeness
of the utilized dataset. For the second aspect the thesis addresses, the findings
suggest an advantage of artificial neural networks concerning environmental im-
pact. Future research should explore ways to reduce the computational demand
of the model.

ii

Sammendrag
Kunstige nevrale nettverk har hatt stor suksess siden de fikk sitt gjennombrudd
ved hjelp av backpropagation, og har ført til innovasjon innen bildeklassifisering,
regresjon, generering og mange flere områder. Et problem med backpropagation
og kunstige nevrale nettverk er imidlertid modellenes biologiske troverdighet.
Disse problemene er knyttet til feilrepresentasjon, vektsymmetri og overføring av
nevronsignaler. Det første av disse tre problemene er hovedproblemet for det
bioplausible nevrale nettverket som presenteres i denne avhandlingen. Den vil
utforske prediktiv koding-nettverk, en maskinlæringsmodell presentert av Whit-
tington and Bogacz [2017], som bygger på teori rundt prediktiv koding opprinnelig
presentert av Rao and Ballard [1999].

Avhandlingen presenterer en studie av prediktiv koding-nettverks evne til
å fylle inn manglende verdier i ufullstendige datasett og en analyse av deres
komputasjonelle ressursbehov sammenlignet med kunstige nevrale nettverk som
bruker backpropagation. Et eksperiment ble gjennomført for hvert av aspektene,
der det første kvalitativt fastslår at prediktiv koding-nettverk kan utlede man-
glende verdier i ufullstendige representasjonsdatasett — gitt at det innføres et
’decay’-ledd i oppdateringsreglene for nettverket. Funnene viser også at ytelsen
av prediktiv koding-nettverk som inferensmetode er noe lavere enn k-Nærmeste
Naboer på begge representasjonsdatasettene som ble brukt i studien. Det andre
eksperimentet fastslår kvantitativt at antallet flyttallsoperasjoner som utføres
under trening av prediktiv koding-nettverk i gjennomsnitt er 738% høyere sam-
menliknet med kunstige nevrale nettverk.

Funnene fra det første eksperimentet viser potensiale for prediktiv koding-
nettverk som en modell som er i stand til både gjennomføre prediksjon i en retning
av nettverket og inferens i den andre, og underbygger de relaterte artiklene ved å
hevde modellens evne til å utføre inferens på både visuelle og representasjonelle
data. Fremtidig arbeid kan ta sikte på å undersøke ytelsen til prediktive koding
nettverk som en funksjon av hvor komplett datasettet er. Angående det andre as-
pektet avhandlingen tar for seg, tyder funnene på at kunstige nevrale nettverk har
et fortrinn når det kommer til det miljømessige fotavtrykket. Fremtidig forskn-
ing bør undersøke hvordan prediktiv koding-nettverks komputasjonelle behov kan
reduseres.

iii

Preface

The research presented in this paper was conducted at the Department of Com-
puter Science under the Faculty of Information Technology and Electrical En-
gineering at the Norwegian University of Science and Technology (NTNU). The
paper presents the culmination of research and experiment executed during the
Spring of 2023 as part of the Master Thesis course (TDT4900) for the integrated
computer science degree at NTNU. It is a continuation of the work presented in
the preceding specialization project (TDT4501) of fall 2022. Consequently, the
introduction, background, and related works, chapter 1, 2, and 3 respectively,
are heavily based on the chapters under the same name of the unpublished paper
from the specialization project Salomonsen [2022].

I want to give a special thanks to prof. Downing, K. for supervising the thesis,
providing invaluable insights and guidance through the research and motivating
throughout the whole year. A second thanks goes out to prof. Elster, A., and
assoc. prof. Hetland, M.L. for helping form the frames of the computational
analysis of the models in the thesis. Finally, a big thank you goes out to all the
friends and family that have supported me throughout the thesis and years at
the university.

Simen Salomonsen
Trondheim, June 10, 2023

iv

Contents

1 Introduction 1

2 Background 5
2.1 Artificial Neural Networks . 5
2.2 Bioplausibility Issues . 6

2.2.1 Error Representation . 6
2.2.2 Weight Symmetry . 6
2.2.3 Spike-timing Dependent Plasticity 6

2.3 Mathematical Definition of Artificial Neural Networks 7
2.3.1 Inference . 7
2.3.2 Learning . 8

2.4 Predictive Coding . 9
2.5 Summary . 11

3 Related Work 13
3.1 Whittington & Bogacz - Predictive Coding Networks 13
3.2 Millidge et al. - Application to Modern Structures 15
3.3 Sun & Orchard - Generative PCN 15
3.4 Salvatori et al. - Associative Memories 15
3.5 Tschantz et al. - Hybrid Predictive Coding 16
3.6 Scellier & Bengio - Equilibrium Propagation 17
3.7 Lillicarp et al. - Symmetrical Weight Requirement for BP 17
3.8 Arild Nøkland - Direct Feedback-Alignment 17
3.9 Hinton & Salakhutdinov - Restricted Boltzmann Machine 19
3.10 Schwartz et al. - Green AI . 19
3.11 Summary . 19

4 Methodology 21
4.1 Frameworks . 21

4.1.1 Artificial Neural Networks 22

v

vi CONTENTS

4.1.2 Predictive Coding Networks 23
4.1.3 Datasets . 27

4.2 Inference of Missing Attributes . 29
4.2.1 Adaptations of Frameworks 30
4.2.2 Setup . 30
4.2.3 Collected Metrics . 32

4.3 Computational Analysis . 34
4.3.1 Adaptations of frameworks 34
4.3.2 Setup . 34
4.3.3 Collected Metrics . 36

4.4 Summary . 37

5 Results and Analysis 39
5.1 Inference . 39

5.1.1 Results . 39
5.1.2 Analysis . 44

5.2 Computational Analysis . 48
5.2.1 Results . 48
5.2.2 Analysis . 50

5.3 Summary . 57

6 Conclusion 59
6.1 Thesis Review . 59
6.2 Research Questions . 60

6.2.1 RQ1 : PCNs’ Ability to Handle Missing Values 60
6.2.2 RQ2 : Computational Demand of PCN Compared to ANN . 61

6.3 Future work . 62
6.3.1 Inference of Missing Values 62
6.3.2 Environmental impact . 62
6.3.3 Final Remarks/Parting Thoughts 63

Bibliography 64

Appendices 67

A Access to source code 69

B Iris - Metadata 71

C Wine - Metadata 75

CONTENTS vii

D Inference of Missing Attributes 79
D.1 Standard Deviation . 79
D.2 Reconstructed Images from MNIST dataset 82
D.3 Data from Reconstructed-Trained Agents 85

D.3.1 Mean Accuracy of Agents Trained on D0.05
KNN and D0.05

PCN . . 85
D.3.2 Margins of Agents Trained on D0.05

KNN 85

E Computational Analysis 87

viii CONTENTS

List of Figures

2.1 Dynamics of predictive coding networks - Rao and Ballard [1999] . 11

3.1 Dynamics of neurons in PCN - Whittington and Bogacz [2017] . . 14
3.2 Comparison of scatter plot from generated samples of decay PCN

- Sun and Orchard [2020] . 16
3.3 Error distribution in DFA and BP networks - Nøkland [2016] . . . 18

4.1 PCN structure . 26
4.2 MNIST digit sample . 28
4.3 Inference - Experiment flowchart 33

5.1 Inference - MNIST reconstructed samples of ’5’, ’6’ and ’9’ 41
5.2 Inference - Comparison of agents trained on reconstructed datasets

across sparsity degrees . 42
5.3 Inference - ANN and PCN accuracies trained on reconstructed

datasets . 43
5.4 Computational analysis - Training flops for equal epochs 49
5.5 Computational analysis - Training flops for equal accuracy 51
5.6 Computational analysis - accuracy of ANN per epoch (Iris) 52
5.7 Computational analysis - accuracy of PCN per epoch (Iris) 53
5.8 Computational analysis - flops per epoch (Iris) 54

D.1 MNIST reconstructed - 0 . 82
D.2 MNIST reconstructed - 1 . 82
D.3 MNIST reconstructed - 2 . 83
D.4 MNIST reconstructed - 3 . 83
D.5 MNIST reconstructed - 4 . 83
D.6 MNIST reconstructed - 7 . 83
D.7 MNIST reconstructed - 8 . 84

ix

x LIST OF FIGURES

List of Tables

4.1 Hyperparameters used in experiments 31
4.2 Computational analysis - Accuracy targets 35

5.1 Inference - Standard deviations for Iris and Wine datasets 40
5.2 Inference - Control accuracies and changes to PCN agents 44
5.3 Computational analysis - Accuracies of agents for equal epoch

training approach . 48
5.4 Computational analysis - Accuracies and epoch produced by agents

of equal flops training approach . 50
5.5 Computational analysis - Epochs performed per dataset of equal

accuracy training approach . 50

D.1 Inference - Attribute means on Wine dataset 79
D.2 Inference - Attribute means on Wine dataset 80
D.3 Inference - Standard deviation per attribute for PCN and KNN on

Iris dataset . 80
D.4 Inference - Standard deviation per attribute for PCN and KNN on

Wine dataset . 81
D.5 Inference - Accuracy of agents trained on the reconstructed dataset 85
D.6 Inference - Changes to control accuracies for ANN agents 85

E.1 Computational analysis - Flops performed during training for equal
epochs . 87

xi

xii LIST OF TABLES

List of Algorithms

1 Learner test . 22
2 ANN predict . 22
3 ANN train . 23
4 ANN predict . 25
5 PCN - check_convergence . 25
6 PCN train . 27
7 Computational analysis - Equal accuracy training 36

xiii

xiv LIST OF ALGORITHMS

Chapter 1

Introduction

The last decades have shown significant advances in artificial intelligence (AI) re-
search. Especially machine learning (ML) and artificial neural networks (ANN)
using error backpropagation (BP) has gained a lot of traction since it was first
presented by Rumelhart, Hinton, and Williams (Rumelhart et al. [1986]). Among
the architectures that illustrate the success of BP are convolutional neural net-
works, natural language processing models, and deep neural networks.

An issue regarding neural networks relates to their biological plausibility com-
pared to the human brain. First, the brain is likely incapable of calculating and
propagating complex derivates of the error backward in the brain. Therefore,
a field of research that has had an upswing in the latter years looks into ex-
plicitly representing errors in the network and making local changes based on
them. Secondly, another concern posed by researchers in the field is that it is
unlikely for the brain to have symmetrical weights for the feedforward and feed-
back of messages in the brain used in BP. Lastly, it is known that nerve cells
in the brain communicate using spikes, communicating their activation only for
a limited amount of time. Neurons in ANNs, on the other hand, express their
activation continuously to the connected neighbors, creating another discrepancy
between ANNs and the brain.

This thesis will focus on the first of these three concerns, how errors are
represented in the brain. However, research that addresses the requirement for
symmetrical weights for BP to learn has been published (Liao et al. [2016]; Lil-
licrap et al. [2016]) as well as papers presenting ways to overcome the issue of
finding a derivative for the spiking function of biological neurons (Whittington
and Bogacz [2019]).

Elaborating on the first issue, two different classes of models have emerged
that tackle this problem: explicit error models and temporal models. The thesis

1

2 CHAPTER 1. INTRODUCTION

will focus on the former. Explicit error models are reminiscent of neural net-
works; however, they represent the error of the network explicitly in the network
and make updates to the network based on this representation. Of the models
following this approach, the predictive coding network presented in (Whittington
and Bogacz [2017]) will be the specific model used for the thesis. The theory
behind both ANNs using BP and PCNs will be presented in chapter 2.

PCNs have performed comparably to standard ANNs (using BP) on famous
machine learning benchmarks such as the MNIST dataset. Additionally, pa-
pers have shown that predictive coding (PC) is applicable to more sophisticated
models such as CNNs, RNNs, and LSTMs - with comparable results to their
BP counterparts. Finally, introducing decay terms to the update rules has also
proved the usefulness of PCNs in the generative domains. These papers will be
further explored in chapter 3.

With these advancements, PCNs contend with "vanilla" BP, and if further
improvements are made with equivalent "supplements" that have been found for
BP, such as, e.g., using the ReLU function as an activation function and batching
during training, PCNs could take over for ANNs as better and more bio-realistic
neural networks. The goal of this thesis project will be to further research the
viability of PCNs as a replacement for ANNs. With this, two research questions
have been formulated to help address this goal:

RQ1 Are PCNs better equipped to handle missing values compared to ANN
(with and without imputation of attributes)

Missing input values are a challenge for machine learning. Poor data gather-
ing leads to sparse datasets, which ANN using BP are not designed to handle.
However, PCNs have displayed memorization and reconstruction capabilities for
visual data, meaning the models could also be able to reconstruct numerical data
in other datasets and automatically infer the missing values while classifying the
sample. Finding a model that can handle missing values and possibly infer them
could yield great performance and efficiency benefits to the field of AI.

RQ2 How does PCN’s environmental impact compare to that of ANN?

Computational demands - As AI methods have become more powerful and widely
used, the computation and resource demands have also increased. This has been
linked to energy consumption and CO2 emissions. Neural nets using BP are very
computationally intensive, with error derivates that must be propagated along
many long paths in the network. Looking into less demanding alternatives for
computational resources can help combat some of the adverse effects of AI and
Big data on the environment.

3

These research questions provide the motivation behind the thesis, and this
paper will address them to contribute to the overall research goal of investigating
if PCN could be an alternative to ANNs that is more biologically plausible.

Outline of the paper : The necessary background theory will be presented
in chapter 2, continuing with related works in chapter 3. Moving forward, the
methodology for the implementation and experiments of the thesis will be pre-
sented in chapter 4, and the results of the experiments will be presented, analyzed,
and discussed in chapter 5 along with the implementation details of the planned
system. Lastly, chapter 6 will summarize the work and point to future work
based on the research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The following chapter will provide the background and go further in detail about
the preliminary knowledge for the thesis. Then, it will introduce artificial neural
networks, continue with the biological issues of ANNs, present a mathematical
definition of ANNs, and lastly, present the essential thoughts behind predictive
coding networks.

2.1 Artificial Neural Networks

An artificial neural network is a computational graph consisting of nodes con-
nected by edges representing a neural network similar to the ones found in mam-
mals. Typically the nodes in the network are referred to as neurons, and the
edges that connect the nodes as the weights between the neurons. The network
can have any arbitrary structure between the neurons, but often the neurons are
structured in a hierarchy where the nodes are ordered in layers. The connections
run from the neurons of one layer to the next layer, and the nodes within the same
level have no edges to each other. These networks can be used to make a predic-
tion about some problem given data about it by presenting the information at one
level and allowing the network to calculate the changes in the subsequent layers
to the output. This prediction-making phase is referred to as the inference phase.
The prediction can be improved upon by making adjustments to the weights, and
the phase responsible for this tuning is called the learning phase. The tuning is
typically done by an external algorithm named backpropagation. Section 2.3 will
go further into how this algorithm works, along with the mathematical definitions
of inference and learning in artificial neural networks.

5

6 CHAPTER 2. BACKGROUND

2.2 Bioplausibility Issues

The following section will present the biological issues of ANNs in more detail,
emphasizing the error representation issue as this is the issue the framework
presented later in the thesis tackles. The descriptions of the problems are based
on those given in (Whittington and Bogacz [2019]).

2.2.1 Error Representation

When updating an ANN, the error terms computed are based on an external
algorithm that propagates the errors backward through computationally inten-
sive calculations from the output to input neurons. Biological neurons update
their weight solely based on the activity of adjacent neurons, and seeing how the
brain would implement backpropagation which calculates the error terms glob-
ally, becomes difficult. With a local error representation in neural networks, the
networks can make local changes without using a global error function, bridging
the gap between the digital replica of our brain and the biological reality.

2.2.2 Weight Symmetry

During the backpropagation of errors, the error terms are calculated along the
same paths as the prediction during the forward pass. Using the same connections
in both directions implies that the connections in the brain are bidirectional.
While bidirectional connections have been found in the brain, they are not always
present. Even if the connections always were symmetrical in the human brain,
as in ANNs, there would still be the challenge of having the connections in the
brain align themselves correctly.

2.2.3 Spike-timing Dependent Plasticity

The last issue raised by Whittington and Bogacz relates to the communication of
neurons. Biological neurons in the brain use discrete spikes to communicate with
their neighbors, while artificial neurons transmit their continuous values. The
issue here relates to finding the derivative of spikes to propagate the errors in the
backpropagation algorithm, presenting another discrepancy between artificial and
biological neurons.

2.3. MATHEMATICAL DEFINITION OF ARTIFICIAL NEURAL NETWORKS7

2.3 Mathematical Definition of Artificial Neural
Networks

Based on the description of neural networks provided in 2.1, a mathematical ex-
planation will be presented to help elaborate on how the BP algorithm functions.
Suppose such a network exists where the activation of the neurons in the net-
work is given by x

(l)
i where i is the position of the neuron in the layer l that

the neuron belongs. Secondly let θ
(l)
i,j denote the weight between the i-th neuron

at layer l to the j-th neuron at layer l + 1. The following two sections will ex-
plain how ANN executes inference and learning and is based on the description
of backpropagation provided in (Downing [2023]).

2.3.1 Inference
The inference is made by presenting an input vector to the bottommost layer and
letting the change propagate through the network along the edges. That is

x(0) = x′ (2.1)

where x(0) is the collection of the neurons of the bottommost layer of the network
(referred to as the input layer), and x′ is a vector of the input. The activity of the
next layer is then calculated by aggregating the products of the weight of each
incoming edge and the activity corresponding pre-synaptical neuron before pass-
ing the aggregate through some non-linear activation function for each neuron in
the next layer. This step is repeated recursively until the change has propagated
to the final layer of the network, referred to as the output layer. Mathematically,
the value of a neuron i in layer l + 1 is given as

x
(l+1)
i = σ(

∑
j∈(l)

x
(l)
j θ

(l)
j,i) (2.2)

where σ is some non-linear activation function, such as the sigmoid logistic func-
tion or rectified linear unit function (ReLU).

The calculation of changes that takes place to predict a new datapoint is
often called forward pass, and using vector notation can simplify this expression,
yielding the following equation for the update of the layers:

x(l+1) = σ(x(l)θ(l)) (2.3)

where θ(l) denotes the weight matrix from layer (l) to layer (l + 1) and σ is an
element-wise application of the activation function for a vector.

To summarize, the inference phase is executed by presenting a data point to
the input layer and allowing the changes to propagate forwards in the network.

8 CHAPTER 2. BACKGROUND

The resulting prediction for a given data point will be the resulting values at the
output layer.

2.3.2 Learning

Learning in ANNs occurs by updating the network parameters based on the
calculated error after a prediction. Let E denote the error term. The two main
gradients which are needed then are ∂E

∂S and ∂E
∂w , which denotes the effect of the

sum of weighted inputs to a node on the error and the impact of the output weight
of a node on the error respectively. The former is used as a step to calculate the
latter, and letting S be defined as:

Si =
∑
j

xjθj,i (2.4)

yields that the following gradients hold for S:

∂Si

∂θj,i
= xj (2.5)

and
∂Si

∂xj
= θj,i (2.6)

Let δi for any neuron i be defined as ∂E
∂S . By using the chain rule, it can be

shown that
∂E

∂θi,j
=

∂Sj

∂θi,j

∂E

∂Sj
= xiδj (2.7)

The equation tells how any arbitrary weight in the network needs to be updated
to increase the error term. Flipping the direction of the gradient will provide the
minimization term, meaning

∆θi,j = −λ
∂E

∂θi,j
= −λxiδj (2.8)

defines the update rule for the network (where λ denotes the learning rate) that
will decrease the error in the network’s prediction.

Lastly, δj for any neuron in the network is found by defining the error term
E and using E to derive it. Suppose that

E =
1

2

∑
i

(x̂i − xi)
2 (2.9)

2.4. PREDICTIVE CODING 9

where x̂i is the target value for the same neuron xi. The difference in the (x̂i−xi)
must decrease to reduce the network error. As such, the gradient

∂E

∂xi
= −(x̂i − xi) (2.10)

gives the effect of each neuron on the error. Using the chain rule and eq. 2.10 on
the definition of δj yields

δi =
∂E

∂Si
=

∂xi

∂Si

∂E

∂xi
= −f ′(Si)(x̂i − xi) (2.11)

The target values for the output layer are calculated using the label of the
data point x′. At the same time, the subsequent error terms are found using
the chain rule and propagating the effect each node has on the remainder of the
network backward.

δi = f ′(Si)
∂E

∂xi
= f ′(Si)

∑
j∈(l+1)

[
∂Sj

∂xj

∂E

∂Sj

]
= f ′(Si)

∑
j∈(l+1)

[θi,jδj] (2.12)

Expanding δj equation 2.8 for the case of the output layer and hidden layer then
yields

∆θ
(l)
i,j = −λxiδj = −λxi

{
f ′(Si)(x̂i − xi) (l = Lmax)
f ′(Si)(

∑
k∈(l+1) θj,kδk) (l ̸= Lmax)

(2.13)

After a data point has been run, the errors, δi, are propagated backward in
the network based on the error calculated in the prediction of the output layer.
Afterward, equation 2.13 is run to update the weights in the right direction. The
layer index has been omitted in many cases to avoid notational clutter.

This description of ANNs using BP will serve as a basis for comparison to
PCNs covered in the next section. Further, it illustrates the biological issues
raised in section 2.2 by showing how the error is not represented locally but
globally by the BP algorithm.

2.4 Predictive Coding
The term predictive coding originates from psychology and neuroscience. It de-
notes a phenomenon where neurons predict the activation of neighboring neurons
and inhibits them from traveling further along the nerve path if the prediction
is correct. The prediction is also sent back to the neighboring neuron, where the
error is calculated and fed back to the original neuron along feed-forward paths.
This mechanism makes it so that only when the prediction of neurons is wrong

10 CHAPTER 2. BACKGROUND

is the signal propagated through the network. In this way, neural networks can
remove redundant signals by filtering out the predictable.

Rao and Ballard published a paper in 1999 presenting a model utilizing this
concept to process natural images visually (Rao and Ballard [1999]). The model
has sparked several new models inspired by predictive coding and has shown how
weight updates and learning can be made local by calculating the error terms
based on only adjacent nodes in the network. The dynamics of the inference phase
of the network have been summarized in figure 2.1, showing how the predictions
of subsequent layers inhibit the forward feeding of signals to successive layers.

In their framework, the optimization function is set to be the internal en-
ergy of both the network’s activations and error terms, building on theory from
energy-based models. Improvement is made by performing gradient descent on
the optimization function, like backpropagating ANNs. In their paper, this term
contains the sum of the squared error terms in the network, the activation of
nodes, and the weights in the network, but for brevity, let E denote this opti-
mization function. Further, their model presents a hierarchical structure where
the layers convey their predictions of the activation of the previous layer back-
ward and update their prediction based on the error fed forward again by that
previous layer in an iterative manner. This update in the activation of layers can
be defined as performing gradient descent on E

∆x = −∂E

∂x
(2.14)

for each datapoint, where x is the activation matrix of the nodes in the network.
In other words, this performs the network inference by reducing the error. Fur-
ther, after the network has equilibrated during inference, learning takes place by
updating the weights between the layers according to the equation

∆θ = −∂E

∂θ
(2.15)

after presenting the correct solution at the top-most layer in the hierarchy, where
θ is the weight matrix of the network. The core concepts are the same between
PCN and ANN in the goal of updating the parameters, but they differ in execu-
tion. For example, where ANNs’ objective function is a function of the error at
only the output, PCNs take the error in the whole network into account. Chapter
3 will further explore a paper by Bogacz which illustrates how BP can be seen as
an edge case of their PCN framework, and chapter 4 will use this theory in a set
of experiments designed to help explore the capabilities of PCNs in light of the
RQs.

2.5. SUMMARY 11

Figure 2.1: Dynamics of a predictive coding network as presented in (Rao and
Ballard [1999]). The figure shows how the iterative loop between two levels in the
hierarchical model converges towards a fixed point. The lower level will send the
residual error to the higher layer, which then sends a new prediction to the lower
level again for a new evaluation of the error term, repeating the cycle. (Source:
Replication based on figure 1a in (Rao and Ballard [1999]))

2.5 Summary
The theory presented in this chapter lays down the theoretical background for
the frameworks that will be developed for the experiments used to research the
RQs. In addition, the workings of backpropagation have been illustrated and
connected to how it is used in neural networks. Further, the chapter has also
presented the preliminary theory for the framework presented in (Whittington
and Bogacz [2017]), which will be further explained in section 3.1. Lastly, it has
elaborated upon the biological challenges ANNs using BP face. This foundation
will be elaborated upon in the next chapter, where related works of the research
field are presented and discussed. It will further be used to explain the frameworks
presented in chapter 4.

12 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

The following chapter will look at a set of related papers further discussing appli-
cations of predictive coding and other frameworks which explore different ways to
distribute the error term in the network, which have both motivated the research
questions, techniques to help research them, and related issues that PCN face
that will need to be addressed in the future.

3.1 Whittington & Bogacz - Predictive Coding
Networks

(Whittington and Bogacz [2017]) applies the theory of (Rao and Ballard [1999]),
and presents a framework for implementing predictive coding networks. By using
iterative updating of the activations based on the error nodes of the network, the
framework achieves inference according to

ẋ
(a)
b = −ε(a)b +

n(a−1)∑
i=1

ε
(a−1)
i θ

(a)
i,b f

′(x
(a)
b) (3.1)

where ẋ
(a)
b denotes the change in activation of neuron b in layer (a), ε denotes the

respective errors of their node, θ denotes the weight between the previous error
node and the neuron. Lastly, f ′(·) is the inverse of the activation function used
in the network (Eq. 2.18 in (Whittington and Bogacz [2017])). ε is defined as the
difference between the activation of the respective neuron at the same level and
the top-down prediction received from the next layer divided by the variance of
the neuron.

ε
(l)
i =

x
(l)
i − µ

(l)
i

Σ
(l)
i

(3.2)

13

14 CHAPTER 3. RELATED WORK

Figure 3.1: Dynamics of neurons in predictive coding network, as presented in
Whittington and Bogacz [2017], displaying how prediction errors are propagated
forward along excitatory paths, and predictions are fed backward in the network
along inhibitory paths. (Source: Figure 3 in (Whittington and Bogacz [2017]))

where µi is the top-down prediction and Σi denotes the variance of the neuron
(Eq. 2.17 in (Whittington and Bogacz [2017])). The update to the activation
equates to the gradient descent of the optimization function (ref Eq. (2.14))
from Rao and Ballard’s framework and will drive the network to the optimal
state given the current weights.

Once the network has stabilized, the weights are updated according to the
residual error found in the error nodes to minimize the objective function, here
denoted by F

∂F ∗

∂θ
(a)
b,c

= ε
∗(a−1)
b f(x∗(a)

c) (3.3)

where variables annotated by an asterisk denote their value at equilibrium. This
update will further improve on the optimization function F and equates to the
second gradient descent done on the network with regards to the weights (ref Eq.
(2.15)).

Figure 3.1 summarizes the network dynamics, and using this structure, they
implemented a neural network that was of comparable performance to that of an
equal BP counterpart. Applying the networks to MNIST, all were able to attain
a training error of 0.00% and a validation error of 1.7% to 1.8%.

Lastly, the paper also analyzes how the variance at the different layer affect
the network’s performance at various tasks. It uses this to argue that PCN can
approximate BP when the variance at the output layer is high. The paper bridges
the two frameworks and provides the fundamental structure for predictive coding
networks while illustrating their applicability to modern tasks.

3.2. MILLIDGE ET AL. - APPLICATION TO MODERN STRUCTURES 15

3.2 Millidge et al. - Application to Modern Struc-
tures

Based on the network structure presented by Whittington & Bogacz (2017), Mil-
lidge et al. showed a continuation of the work and implemented equivalent models
of convolutional neural networks (CNN), recurrent neural networks (RNN), and
long short-term memory networks (LSTM) using PC for the dynamics (Millidge
et al. [2022]). The models were also tested against their BP counterparts on
several datasets significantly more complex than MNIST; CIFAR, CIFAR100 &
SVHN for the CNN models, and character-level classification and prediction of
the complete works of Shakespeare for the RNN and LSTM models, respectively.
The performance of the ANN and PCN models were practically equivalent; how-
ever, the authors stated a 100 times higher computational cost of the PC mode
networks due to the need for convergence during the inference cycles, suggesting
an advantage of the BP counterparts concerning sustainability.

3.3 Sun & Orchard - Generative PCN
By introducing a new term to the update rules of the activation of neurons and
weights, Orchard and Sun made a predictive coding network that was both dis-
criminative and generative (Sun and Orchard [2020]). The added term introduces
decay to both activation and weights of the network, which acts as a way to con-
fine the possible causes (inputs) of a given class to the subset of plausible causes.
Decay forced the generated samples to converge to plausible explanations for the
supplied class instead of all possible, as shown by the narrowing of the grey scat-
ters in figure 3.2 from (a) to (b). The author explains how decay collapses the null
space of the inputs, causing the remaining possible explanations for the values
observed at the output to correspond to plausible values at the input. The decay
networks were applied to the MNIST dataset and could generate more realistic
images than a non-decay network. While the model in the paper is applied to
visual data, using a similar decay term may also prove helpful in a network tuned
to infer missing attributes in numerical datasets where the inputs are incomplete.

3.4 Salvatori et al. - Associative Memories
The paper (Salvatori et al. [2021]) explores the memory capabilities of predictive
coding networks. It illustrates that PCNs can retrieve, reconstruct, and clean
natural images. After training a network, the abilities were demonstrated by
presenting the network with a partial or corrupted image and allowing the pre-
dictions of higher layers to flow backward. The experiments were performed on a

16 CHAPTER 3. RELATED WORK

Figure 3.2: Comparison of generated samples from non-decay and decay networks.
(Source: Figure 6 in (Sun and Orchard [2020]))

2-layer PCN and compared to a 3-layer auto-encoder (AE) using BP. Using im-
ages from CIFAR10 and Tiny ImageNet, they found the PCN was superior to the
AE model in all instances and was generally able to reconstruct corrupted images
and retrieve images based on a fraction of the pixels, given that the network was
not overparameterized. In addition, the paper illustrates how PCN creates mem-
ories of the images in the dataset and how this can be used to reconstruct the
missing or corrupted parts of the picture. These memory abilities may also have
applications for inferring missing values in other fields and datasets containing
other non-visual data. Further, the paper also illustrates an advantage of PCN
over AE using BP of comparable size, suggesting a potential for a more sustain-
able and resource-effective replacement, improving the performance for the given
task.

3.5 Tschantz et al. - Hybrid Predictive Coding

A way to overcome the computationally demanding process of converging to a
fixed point during inference of PCN is presented in Tschantz et al. [2022]. They
propose a hybrid predictive coding (HPC) model, where standard predictive cod-
ing is used in both network directions. They differentiate inference into two parts,
iterative and amortized inference—the former accounts for extracting information
from sensory data while the latter accounts for rapid recognition and perception.
The main novelty of the framework is an extension where predictions and errors
are communicated in both directions. Top-down predictions still learn to gener-
ate the data hierarchically, while bottom-up predictions learn the beliefs of the
subsequent layers. In this way, the model can be trained to quickly create predic-

3.6. SCELLIER & BENGIO - EQUILIBRIUM PROPAGATION 17

tions using amortized inference without requiring the network to converge to an
equilibrium. Their model was tested against the MNIST data set, demonstrating
capabilities to classify and generate images of the class correctly, and illustrated
advantages over amortized inference alone and standard predictive coding both
in terms of performance and over standard predictive coding in terms of iterative
steps required.

3.6 Scellier & Bengio - Equilibrium Propagation

Looking at other frameworks for bio-plausible learning in neural networks, target-
propagation, as presented in (Bengio et al. [2015]), is a model where an energy
function drives the network to a local minimum based on an energy function.
After presenting the network with input by clamping the bottommost layer, the
net will settle to a state u0. The target value for the output layer is then presented
to the network, and the output nodes are nudged in the direction of that target,
causing a change to propagate backward in the net akin to the propagation of
error derivatives in BP. Once the net has converged to a new equilibrium state, uβ ,
the weight between the neurons is updated based on the difference in activations
of the two states uβ and u0. The authors dubbed this approach equilibrium
propagation, and experimental results show convergence towards 0.00% training
error and 2 − 4% validation error on the MNIST dataset. Further, the authors
also link the framework to spike-timing dependent plasticity, yielding insight into
how the issue discussed in section 2.2.3 might be approached for PCNs as well.

3.7 Lillicarp et al. - Symmetrical Weight Require-
ment for BP

The last biological issue discussed in section 2.2.2 regarding symmetrical weights
has also seen progress. In a paper by Lillicarp et al. (2016), they proved that
BP could also learn to classify the MNIST data set with asymmetrical weights
correctly. Another article by Liao et al. also researched the same and found it was
possible to make BP learn with random feedback weights given some assumptions
on their initialization (Liao et al. [2016]). Deploying similar approaches may prove
beneficial to strengthen the biological plausibility of PC models further.

3.8 Arild Nøkland - Direct Feedback-Alignment

A novel framework for training deep neural networks is presented in (Nøkland
[2016]) where the error at the output layer of the network is fed backward in

18 CHAPTER 3. RELATED WORK

Figure 3.3: Comparison of BP and DFA. Subfigure a) shows how the layers
propagate the error terms backward in the network through each layer. Subfigure
c) shows DFA, where the error terms are fed backward along direct paths from
the output layer to the preceding layers without going through higher layers.
(Source: Sections of Figure 1 in (Nøkland [2016]))

the network through direct feedback paths separate from the feed-forward path,
called direct feedback alignment (DFA). Figure 3.3 compares the informational
flow of BP and DFA. The method is also believed to be biologically plausible and
would have clear computational benefits over BP as the computational intensive
gradients propagated backward are replaced by a simpler directly computed error
term that bypasses the intermediary computations of BP. The paper also presents
theoretical results, and by using this method for learning, a DFA network achieved
a training error and validation error of zero and 1.45%, respectively. While
the performance lags behind BP, the savings in computational power is a clear
advantage, and PCNs may also benefit from a similar approach.

3.9. HINTON & SALAKHUTDINOV - RESTRICTED BOLTZMANN MACHINE19

3.9 Hinton & Salakhutdinov - Restricted Boltz-
mann Machine

A class of models highly influential in machine learning is the restricted Boltz-
mann machine (RBM). (Hinton and Salakhutdinov [2006]) presents an imple-
mentation of the model, and the model is structured as a bidirectional, fully
connected, hierarchical network where the layers converge to equilibrium and
are trained pairwise in sequence, similar to equilibrium propagation (Scellier and
Bengio [2017]) and predictive coding networks (Whittington and Bogacz [2017]).
The paper by Hinton & Salakhutdinov also displays reconstructional abilities by
implementing the RBM as an autoencoder that could reconstruct images. Similar
approaches have been used to make PCNs generative (Sun and Orchard [2020])
and may prove useful in reconstructing missing values.

3.10 Schwartz et al. - Green AI
An analysis of the sustainability of AI research is presented in (Schwartz et al.
[2020]). The paper presents a literary study of articles from large AI confer-
ences, including the annual meeting of the Association for Computational Lin-
guistics (ACL), the conference on Neurological Information Processing Systems
(NeurIPS), and the conference on Computer Vision and Pattern Recognition
(CVPR), looking into the main reported metrics of the models. The authors
found that most of the papers focus solely on the accuracy of the presented
models, and very few focus on the efficiency and the computational or resource
demands of the models. This lack of focus on effectiveness, they argue, is an issue
concerning sustainability issues and presents a discussion of metrics that can be
used to measure the environmental impact of AI. Ultimately, they advocate for
using floating point operations (flops) to report the computational demand of
models. As PCN is also a computationally heavy method, the metric also applies
to measure models’ efficiency. It enables comparison to similar models, such as
ANN using BP, that can report the same metric.

3.11 Summary
The works presented in this chapter give an overview of some of the ongoing re-
search in the field of predictive coding networks, as well as related fields. (Whit-
tington and Bogacz [2017]) formulates the basis that will be used to set up the
framework for creating PCN models to execute the experiments presented in
section 4. Additionally, the viability of this framework has been illustrated by
(Millidge et al. [2022]; Tschantz et al. [2022]). Further, (Schwartz et al. [2020])

20 CHAPTER 3. RELATED WORK

provides both a motivation and approach for RQ2 by discussing and proposing
a lack of reporting of clear, comparable metrics for computationally heavy AI
models as well as proposing using FLOPS as such a metric. A 3rd party library
will be used based on this discussion to make a comparison between PCNs and
ANNs using BP (Nøkland [2016]; Tschantz et al. [2022]; Salvatori et al. [2021])
also indicated resource-saving aspects of alternative approaches to ANNs using
BP, further motivating RQ2. Regarding RQ1, (Hinton and Salakhutdinov [2006])
illustrates RBMs’ capabilities as autoencoders, and (Salvatori et al. [2021]) shows
how PCNs can capture the memory of images within the network and can be used
to both recover and denoisify images, motivating RQ1. (Sun and Orchard [2020])
also addresses the reconstruction of inputs based solely on outputs by including
activation- and weight-decay to the update equations. The same technique will
be applied to see if PCNs can record the relationship between inputs and recon-
struct missing values in datasets. Lastly (Lillicrap et al. [2016]; Liao et al. [2016];
Bengio et al. [2015]) show alternative models and research that help bridge the
gap between machine learning and biology, and illustrate ways that can be useful
to tackle the other two issues raised in section 2.2.2 and 2.2.3. Chapter 4 will go
further in detail on how the framework will be developed and used to perform
the experiments to research the RQs.

Chapter 4

Methodology

Based on the RQs in the introduction, two experiments were set up to explore
these research questions. The following chapter will present the methodology for
these experiments, beginning by explaining the general frameworks for creating
ANN and PCN models and how they were implemented in section 4.1 before
moving on to the experiments. The first experiment, covered in section 4.2,
aimed at researching RQ1 by looking at PCNs’ specific capability to infer missing
values in a sparse dataset and how models would perform using a reconstructed
dataset made by a PCN model. The second experiment, described in section 4.3,
performed a computational analysis of both frameworks by collecting metrics
on the computational demand of models from both frameworks, looking into
the number of flops performed while the models operated. In both cases, the
sections are intended to answer three main aspects of the experiment; firstly,
which adaptations were made to enable the basic frameworks to cater to the
demands of the experiment; secondly, how is the experiment executed; and lastly,
which metrics were collected during the experiment.

4.1 Frameworks

Two frameworks were created, which were later adapted to the specific needs of
the experiments. The first was a framework for creating ANN models using BP
for learning, and the second was for creating PCN models. Both frameworks
adhered to a common learner interface designed to solve classification tasks.
This interface had two important methods: the first is called train and is used
to train the models, while the second is called test for testing the models. The
test method returns the model’s predictions and accuracy and is covered in Alg.
1. A model inheriting the interface would typically first train on the dataset for

21

22 CHAPTER 4. METHODOLOGY

a fixed number of epochs by repeatedly calling the train method before being
evaluated by calling the test method. Both methods require a prediction; hence
a third vital method was declared, __predict__, which differed between the
frameworks. The differing details of the __predict__ method will be given for
ANN and PCN in section 4.1.1 and 4.1.2, respectively, along with information
about the frameworks. Finally, section 4.1.3 will explain the datasets used for
validation during implementation and in the experiments.

Algorithm 1 Pseudo code explaining the test function of the learner interface

function test(X, Y)
P ← []
for x′ in X do

add (self.__predict__(x′)) to P
end for
acc←

∑
(argmax(P)==Y)

|Y |
return (P , acc)

end function

4.1.1 Artificial Neural Networks
The framework for the artificial neural networks was set up using the description
provided in section 2.3. It implements the __predict__ method by performing
the forward pass that allows the changes at the input layer to propagate through
the network, providing a prediction at the output layer. Accordingly, to execute
the forward pass, Eq. (2.3) is run repeatedly for each layer of the network, and
the prediction is read from the values of the final output layer. Alg. 2 reproduces
this functionality.

Algorithm 2 Pseudo code for the forward pass done in the ANN framework,
where Lmax denotes the output layer of the network.

function __predict__(x′)
x(0) = x′

for l = 1 to Lmax do
x(l) ← σ(x(l)θ(l))

end for
return x(Lmax)

end function

The __predict__ method is then reused in the test method, as seen in
Alg. 1, and in the train method. In the train method, the ANN produces a

4.1. FRAMEWORKS 23

prediction with __predict__ and uses this prediction in Eq. (4.1), the special
case of Eq. 2.11 for the output layer Lmax, to get the error at the output layer.

δ
(Lmax)
i = −f ′(Si)(x̂i − x

(Lmax)
i) (4.1)

The error term is then further used to propagate the error margins backward in
the net according to Eq. (2.12). Once all deltas have been propagated through the
network, the weights are updated according to 2.13. This process is repeated for
every sample in the provided dataset, allowing the net to improve its predictions
over time. The functionality is summarized in Alg. 3, where x̂i denoting the
label of a sample is replaced by y. For sake of brevity, the for-loops that would
iterate through each δi and θi,j are omitted.

Algorithm 3 Pseudo code for the training of ANN framework. The for loops
for the δ- and θ-updates which would increment the i-variable in these equations
have been omitted for sake of brevity.

function train(X,Y)
for (x′, y) in X do

self.__predict__(x′)
δ
(Lmax)
i ← Eq. (4.1)

for l = Lmax − 1 to 0 do
δ
(l)
i ← f ′(Si)

∑
j∈(l+1)[θi,jδj]

end for
for l = 1 to Lmax do

θ
(l)
i,j ← θ

(l)
i,j − λxiδj

end for
end for

end function

For the ANN framework, the activation function used for the forward pass
and backpropagation of errors was the sigmoid logistic function. No further
extensions were made to the framework, such as batching, where a set number of
samples are run before the weights are updated, or soft-maxing the output before
the final layer, where the activations are polarized to increase the confidence in
the final output to provide enhanced learning. These extensions were omitted to
make the comparison between ANN and PCN on the most basic level.

4.1.2 Predictive Coding Networks
The PCN framework bases itself on the description provided in (Whittington
and Bogacz [2017]). It performs its inference phase by performing gradient de-
scent on the energy function with respect to the activation of the neurons in the

24 CHAPTER 4. METHODOLOGY

network. The process includes an iterative updating of the activation and error
nodes of the net until it has settled into equilibrium. The inference phase starts
with an input presented at the input layer, causing a change in the error node
of the second bottommost layer. Consequentially, a cascade of change will ripple
throughout the network where activations are sent forward, and error messages
are sent backward until the conveyed signals become small enough for the net
to be considered equilibrated. An important difference between the implemented
framework and the one presented in their paper is that the enumeration of lay-
ers has been flipped. In (Whittington and Bogacz [2017]), the input layer was
considered as Lmax and the output layer as layer 0, whereas the implemented
framework uses layer 0 as the input layer and Lmax as the output layer. For the
sake of clarity, Eq. 3.1 has been reproduced in Eq. 4.2, showing how the update
margins for the activations nodes are calculated.

∆x
(l)
i = −ε(l)i +

∑
j∈(l+1)

ε
(l+1)
i θ

(l)
j,if

′(x
(l)
i) (4.2)

The calculation of errors is given by Eq. (3.2), where the prediction of a node
i at layer l, µ(l)

i , is given as the weighted sum of the activations from the previous
layer. The equation is slightly adapted from the original framework to ensure the
values of the activation nodes stay within the range of the activation function.

µ
(l)
i =

∑
j∈(l−1)

f(θ
(l−1)
i,j x

(l−1)
j) (4.3)

The error nodes are then used to find the update margins for the node acti-
vations as defined by Eq. (4.2). Once the net has reached equilibrium, the new
prediction can be read from its output layer. Alg. 4 describes how the PCN
models created by the framework produce their predictions, and figure 4.1 illus-
trates a network with two input nodes, one hidden layer with three nodes and
two output nodes. The figure also includes examples of the equations used to
calculate the value of the error nodes and the update margins for the activation
nodes of layer 1.

The last detail of the prediction method for the PCN networks relates to
when the network is determined to have converged and reached equilibrium. For
this framework, the convergence check was done by using the allclose-function
from Numpy, which takes as input two vectors, s and s′ representing the layers
of the network, and returns if the following equation is satisfied or not |s− s′| ≤
(tolabs + tolrel × |s′|). Alg. 5 reproduces this convergence check, and the values
used for the tolerances were tolabs = 1×10−2 and tolrel = 1×10−5. Additionally,
a cap, tmax, for the timesteps was included to prevent potential endless loops,
inhibiting the cycle of updating error and activation nodes from exceeding tmax,
as seen in Alg. 4.

4.1. FRAMEWORKS 25

Algorithm 4 Pseudo code for the forward pass done in the ANN framework,
where Lmax denotes the output layer of the network. The for loops for the ε-
and x-updates which would increment the i-variable in these equations have been
omitted for sake of brevity.

function __predict__(x′)
x(0) = x′

t← 0
while True do

S′ ← self.layers
for l = 1 to Lmax do

ε
(l)
i ←

x
(l)
i −µ

(l)
i

Σ
(l)
i

x
(l)
i ← x

(l)
i − ε

(l)
i +

∑
j∈(l+1) ε

(l+1)
i θ

(l)
j,if

′(x
(l)
i)

end for
if self.check_convergence(self.layers, S′) or t > tmax then

break
end if
t← t+ 1

end while
return x(Lmax)

end function

Algorithm 5 Pseudo code for the sub-method used in PCN’s __predict__
method to check if the net has equilibrated. s and s′ denotes the vectors repre-
senting the layers of the networks stored in the snapshots S and S′, respectively.

function check_convergence(S, S′)
for (s, s′) in (S, S′) do

if |s− s′| ≤ (tolabs + tolrel × |s′|) then
return True

end if
end for
return False

end function

26 CHAPTER 4. METHODOLOGY

Figure 4.1: Illustration of network structure for a small PCN. Mathematical
equations are included for the error nodes and margins of activation nodes at
layer l = 1. Note that some edges are excluded to avoid cluttering and are
instead sketched as grey, dotted lines

4.1. FRAMEWORKS 27

Like the ANN framework, the training phase for the PCN framework uses
the __predict__ method before updating the weights. The residual error in the
network, meaning the residual values in the error nodes at equilibrium, was used
to update the weight matrices of the network with the outer product between
the activation of the layers and the error nodes, as captured by Eq. (3.3). A
learning rate, λ, was also included here to ensure the steps taken were appropriate
regarding gradient descent on the objective function to prevent overshooting.
Thus, the update rule for the weights was defined as

∆θ(l) = λε(l+1) ⊗ x(l) (4.4)

where ⊗ denotes the outer product between the error nodes and the activation
nodes. In order to train the network and improve the predictions, the PCN
framework clamps both the output and the input. The net is then allowed to run
until convergence, and the weights are updated with the margins found by Eq.
(4.4). This approach was used to implement the train method, as seen in Alg.
6.

Algorithm 6 Pseudo code for the training of PCN framework

function train(X,Y)
for (x′, y) in X do

x(Lmax) = y
self.__predict__(x′)
for l = 0 to Lmax − 1 do

θ(l) ← θ(l)+ Eq. (4.4)
end for

end for
end function

As with the ANN framework, no further extensions were made to compare
the two machine-learning approaches at the most basic level of complexity. For
the PCN network, however, tanh was used as the activation function, which casts
values between the range (−1, 1) to calculate µi and the weight update margins.

4.1.3 Datasets
During the implementation of the framework, the Iris dataset, as mentioned, was
used to validate the frameworks to ensure they were learning correctly. An av-
erage accuracy over ten agents exceeding 0.8 was deemed acceptable to consider
the basic framework complete. Although it has been shown that PCN models
and ANN using BP can reach accuracies ≥ 0.95, the chosen threshold was se-
lected to avoid expending unnecessary time training and searching for optimal

28 CHAPTER 4. METHODOLOGY

hyperparameters. After the frameworks achieved the desired accuracy for the
Iris dataset, they were cross-validated against the Wine dataset from UCI. Both
datasets were used in the execution of the experiments described in section 4.3
and 4.2, along with MNIST, and all three datasets will be further described in
this section.

MNIST

The MNIST database is a labeled dataset of digitally handwritten digits, and is
commonly used in machine-learning tasks as an important benchmark. The digits
range from 0 to 9 and are represented as a matrix of 28× 28 grey scale values in
the range of 0 to 255. Together, they compose an image of a digit, as seen in figure
4.2, which shows the plotted image of a 5. The dataset has several applications,
including visual image processing or reconstruction training, and is here used
to train models of the frameworks to classify the digits. The complete dataset
comprises 60 000 training samples and 10 000 test samples, of which 1000 samples
from the training set were used for the experiments as preliminary tests showed
viable results using a reduced dataset while also cutting the computational time.

Figure 4.2: Picture of a sample depicting a handwritten ’3’ from the MNIST
dataset produced by plotting the grey scale values into a 28 x 28 grid.

Iris

Used for validation during the implementation of the frameworks, the Iris dataset
from UCI (Fisher [1988]) comprises 150 samples. The samples consist of four

4.2. INFERENCE OF MISSING ATTRIBUTES 29

attributes: sepal length, sepal width, petal length, and petal width. Based on
these, the models predict which species the samples belong to, and the possible
species are setosa, versicolor, and virginica. Because of the simplicity of the
dataset, it was chosen for the validation, making both computation time low
and troubleshooting more straightforward as the required model for classification
requires fewer parameters. For the full metadata provided by UCI, please refer
to appendix B.

Wine

While the simplicity of the Iris dataset has benefits in terms of rapid testability,
it also poses the risk of oversimplifying the model and overlooking vital parts
of the implementation. Therefore, the models were cross-validated against the
Wine dataset from UCI (Aeberhard [1991]). The dataset comprises 178 samples
of 13 attributes that include, but are not limited to, alcohol, color intensity,
hue, and total phenols as numerical values. The full list of attributes can be
found in appendix C. Based on these attributes, the models should map the
inputs to three undefined output classes enumerated from 1 to 3. This dataset
posed a more complex learning task relative to the Iris framework. Once both
frameworks passed the threshold for validity, the frameworks were considered
ready for adaptation to the experiments.

4.2 Inference of Missing Attributes

To research PCNs’ ability to handle missing values, as addressed by RQ1, an
experiment was designed to assert if PCN models can infer missing values in
numerical datasets and if the usage of these reconstructed datasets would yield
any benefits. The PCN framework needed to be adapted to update and infer
information about the input layer from the first hidden layer in the network.
The specific details of the adaptation made are covered in section 4.2.1. With
the updated framework, a trained model was used to infer the missing values in
several datasets of differing degrees of sparsity. Further, the datasets were evalu-
ated by comparing the inferred values to the standard deviation of the respective
attribute and class.

Additionally, a k-Nearest Neighbors (KNN) model was set up and used to
infer the same missing values. The performance of this model would be used as
a benchmark for PCN inferred values. Lastly, the datasets from both approaches
were used to train framework models to check their performance against the orig-
inal test and train split of the used dataset. How the experiment was set up and
what metrics were recorded are covered in section 4.2.2 and 4.2.3, respectively.

30 CHAPTER 4. METHODOLOGY

4.2.1 Adaptations of Frameworks
As the ANN models would only be used to predict the reconstructed datasets
from PCN and KNN, no adaptations were made to this framework. On the
other hand, the PCN framework needed to convey the errors calculated from the
overhead layer and update the values of the specific nodes with missing input
values. To update only these nodes, the clamp for the input layer was modified
so that non-missing attributes were clamped as before, while missing attributes
at the input layer were no longer clamped and left open for updates. With this
mechanism in place, the update margins of the input layer are given by Eq. (4.5)

∆x
(0)
i = f ′(x

(0)
i)

∑
j∈(1)

ε
(1)
j θ

(0)
j,i (4.5)

which is based on Eq. (3.1), but with errors nodes of the input layer omitted as no
predictions are coming from below to calculate the error term. Accordingly, the
models from the framework could also update their beliefs of the missing input
attributes while equilibrating. Lastly, the return of the prediction method of the
PCN framework was extended with the input layer to provide the predictions of
the missing input values.

Building on the theory presented in (Sun and Orchard [2020]), a second exten-
sion was made to the PCN framework. As mentioned in section 3.3, introducing
a decay term to equations for updating the activations and weights of a network
enabled it to generate realistic images of the classes provided at the output layer.
The same decay term was added to the equations updating the activations and
weights of the network, resulting in Eq. (4.6) and Eq. (4.7), where the activations
and weights are multiplied by some small decay-constant, γ where the subscript
denotes activation of weight decay, and subtracted from themselves, respectively.
The intention of introducing the same decay term was to enable the models to
make realistic predictions of missing values in representational data as well.

∆x
(l)
i = −ε(l)i + f ′(x

(l)
i)

∑
j∈(l+1)

θj,iε
(l+1)
j − γxx

(l)
i (4.6)

∆θ
(l)
i,j = ε

(l+1)
j f(x

(l)
i)− γθθ

(l)
i,j (4.7)

4.2.2 Setup
For the execution of the experiment, the input values of a given dataset, D, were
masked with progressively larger fractions, starting with 0.01 up to 0.05, creating
an array of sparse datasets referred to as D′. This fraction of values masked will
be referred to as the sparsity of the dataset. Further, a PCN model was trained
on D for 30 epochs, using the hyperparameters reported in table 4.1. Afterward,

4.2. INFERENCE OF MISSING ATTRIBUTES 31

the model was used to infer the missing attributes in the sparse datasets using
the adapted __predict__ method, and a copy of each sparse dataset was created
with the missing attributes replaced by the inferred values from the PCN model.
The set of these reconstructed datasets is further referred to as DPCN , of which
a specific dataset is denoted as D0.01

PCN , where the superscript denotes the degree
of sparsity; the fraction of samples where attributes are missing, which in this
case would be 0.01.

Secondly, a KNN Imputer was set up using the class of the same name from
the impute package of SciKit Learn. The imputer was set up using k = 5 and with
uniform weights, meaning the imputer would use the mean value for the missing
attributes of the five closest samples where the attribute was present, weighting
the samples uniformly. Accordingly, the KNN imputer was used to infer the
sparse datasets, making a second set of reconstructed datasets, DKNN , where
specific datasets follow the same naming convention as the PCN-reconstructed
datasets regarding sparsity.

Once all missing values of the datasets had been inferred, ten new agents of
each framework were set up and trained using the reconstructed training sets.
The hyperparameters used for these agents are reproduced in table 4.1, with a
change to epochs used for training the ANN agents on the reconstructed datasets
based on preliminary performance testing. The epochs used for this training
were 500 for the Iris and Wine dataset and 30 for MNIST. After training, the
agents were evaluated on the original train and test splits of D. The flow of the
experiment is visualized in figure 4.3.

Table 4.1: Hyperparameters used for the agents in the experiments. The listed
values were used for the inference and computational analysis experiments if not
specified otherwise in the text. The hidden layers are denoted as lists where the
elements in the list represent the number of nodes in the respective hidden layer.

Hyperparameter Value

Hidden layers
Iris [6]
Wine [15]
MNIST [500 500]

Epochs
Learning rate
Σ - error variance 4
γx - activation decay 1× 10−5

γθ - weight decay 1× 10−6

32 CHAPTER 4. METHODOLOGY

4.2.3 Collected Metrics
From the results of the execution of the experiment, two main metrics were col-
lected. The first regards the reconstructed datasets. Given the inferred values in
the reconstructed datasets, each value was measured against the respective stan-
dard deviation of the class and attribute they belonged to — i.e., the difference
between the inferred value and the mean value for the respective attribute and
class was divided by the standard deviation of that attribute. Eq. 4.8 reproduces
this logic in mathematical notation where α represents an attribute of a class, α′

denotes the inferred value by one of the inference schemes, ᾱ denotes the mean
of the attribute for the respective class, and σα denotes the standard deviation
of α.

σ(α′) =
|α′ − ᾱ|

σα
(4.8)

Secondly, the experiment aimed to check if the reconstructed datasets im-
proved the accuracy of models using them. Accordingly, the accuracy of the
agents was measured using the test method described in Alg. 1, which yielded
the accuracies listed:

• accANN (DPCN) - Accuracy of ANN agents on the PCN-reconstructed
datasets

• accANN (DKNN) - Accuracy of ANN agents on the KNN-reconstructed
datasets

• accPCN (DPCN) - Accuracy of PCN agents on the PCN-reconstructed
datasets

• accPCN (DKNN) - Accuracy of PCN agents on the KNN-reconstructed
datasets

4.2. INFERENCE OF MISSING ATTRIBUTES 33

Figure 4.3: Flowchart for the inference experiment. The illustration shows the
pipeline of the complete dataset D, from masking data with the sparsity fractions
resulting in D′, reconstructing them using the PCN model and KNN, yielding
DPCN and DKNN , and, finally, the evaluation of the agents trained on the
reconstructed dataset. The resulting accuracies are denoted by hexagons in the
illustration. Note that the final evaluation of the agents was done on the test
split from the original dataset with no missing values. The standard deviations of
the experiment were calculated based on the reconstructed datasets DPCN and
DKNN .

34 CHAPTER 4. METHODOLOGY

4.3 Computational Analysis
The second experiment regarded RQ2 and revolved around asserting the compu-
tational demands of predictive coding networks and how these demands relate to
artificial neural networks using backpropagation. To assert the demands, a third-
party library was used to count the number of floating-point operations executed
during the training and testing of the two frameworks, a method based on the
discussion of Schwartz et al. [2020] covered in section 3.10. The experiment was
divided into three parts, each exploring a different approach to training. Section
4.3.2 covers the details of this, preceded by section 4.3.1 discussing the adapta-
tions made to the frameworks. Ultimately, section 4.3.3 will cover the collected
metrics from the experiment.

4.3.1 Adaptations of frameworks
For the experiment, no adaptations were made to the frameworks themselves.
A wrapper was, on the other hand, implemented for the training of the models
from the frameworks, which used a third-party lib, Python PAPI (pypapi), that
utilizes hardware counters set up to count the number of flops performed while a
snippet of code is running. The wrapper would take in the agent and the number
of epochs to train the agent for. Before training the agent, the counter from
pypapi was started, which would count the number of flops performed by the
agent during training. Upon completion of the epochs, the wrapper would read
and reset the counter and return the trained agent along with the flop count.

4.3.2 Setup
The experiment was set up to analyze the flops performed during the training
of agents from the two frameworks. Training, however, can take several forms,
and three different approaches were settled on for the experiment to see the
computational demands from different angles. The first approach allowed the
agents to train for the same number of epochs, epochANN = epochPCN . The
second would allow the model of the two frameworks to, on average, train on
the same number of flops, that is, flopsANN = flopsPCN . Finally, the third
approach would allow the agents to train to the same average accuracy on the
test set so that accANN = accPCN .

For all experiments, 10 agents of each framework were set up using the hy-
perparameters reproduced in table 4.1. Before training the models, the datasets
were normalized according to the activation function used by the frameworks.
For the ANN, the input values were normalized to the range (0, 1), while for
the PCN, they were normalized to (−1, 1). After training, all agents’ accuracies
were evaluated by testing them against the training and test split. Lastly, the

4.3. COMPUTATIONAL ANALYSIS 35

number of flops was also measured during this final evaluation of the agents. The
remainder of this section will cover the details of the abovementioned approaches
to training in their respective order.

Equal epochs

During the training of the first approach, the number of epochs the agents trained
for remained consistent between the frameworks, and the number of epochs was
kept the same between all datasets at 30 epochs of training per agent. The
ANN models were trained first, and the PCN models were subsequently trained.
Afterward, the models underwent standard evaluation in the same order they
were trained.

Equal training flops

The second approach for training would train the agents for the same number of
flops. Based on preliminary tests, the PCNs performed the highest number of
flops per epoch. Accordingly, the PCN agents were trained first, recording the
number of flops each agent performed during training. After that, the average
number of flops was calculated based on the recorded flops over the ten PCN
agents and used as a stopping condition for the ANN agents. The ANN agents
were subsequently trained in intervals of 30 epochs, recording the flops performed.
Once the average number of flops over the ANN agents was equal to that of the
PCN agents, training of the ANN agents would stop, and the agents would go
through the standard end-evaluation.

Table 4.2: Accuracy targets for each dataset used in the accuracy training de-
scribed in 4.3.2

Dataset Accuracy
MNIST 0.75
Wine 0.8
Iris 0.8

Equal accuracy

Lastly, the approach measuring the flops where the agents would match accuracy
involved measuring the agents while they were training. The models of both
frameworks were given a shared target accuracy based on initial testing. The
specific targets for each dataset can be found in table 4.2 and were used as
a stopping criterion. The agents were trained with an epoch stepsize of ten,

36 CHAPTER 4. METHODOLOGY

epochstep = 10, and evaluated against the test set afterward. If the average
accuracy of the agents were above the target accuracy, the training of the agents
would stop; otherwise, the agents would go on to train for another ten epochs
until the average accuracy matched the target accuracy. Lastly, a cap for the
maximum number of epochs, epochmax = 500 was implemented here in case the
agents of a framework plateaued beneath the target accuracy, as seen in Alg. 7,
which summarizes how the agents were trained by this approach.

Algorithm 7 Pseudo code illustrating how the accuracy matching was imple-
mented. Assume agents is an array of the agents from the framework, acctarget
is the target accuracy based on the dataset found in table 4.2, acc denotes the
average over the elements in the array acc, and train_agent is the wrapper
described in section 4.3.1.

// ... Setup of agents and preprocessing of the dataset

epochcurr = 0
while epochcurr < epochmax do

acc = []
for i in |agents| do

train_agent(agents[i], Xtrain, ytrain, epochstep)
acc[i]← agents[i].test(Xtest, ytest)[1]

end for
epochcurr ← epochcurr + epochstep

if acc > acctarget then
break

end if
end while

// Evaluation and saving results ...

4.3.3 Collected Metrics
Like the experiment described in section 4.2, this experiment was run once for
each dataset presented in section 4.1.3, and for each training approach, the fol-
lowing metrics were recorded:

• Total flops during training

• Train accuracy after training

• Test accuracy after training

4.4. SUMMARY 37

• Flops performed during the evaluation

Additionally, the following metrics were recorded for the equal flops and equal
accuracy training approaches

Equal flops

• Total number of epochs performed

Equal accuracy

• Total number of epochs performed

• Flops performed during the epoch steps

• Accuracies of each model during training

4.4 Summary
This chapter has presented the experiments designed to explore the research
questions posed for the thesis. The first analyses PCNs’ inherent ability to handle
missing values by applying models to missing attribute problems, and the second
looks into the sustainable impact of PCN and compares it to ANN using BP by
recording the flops performed. Finally, the metrics collected will be used in the
ensuing chapter to analyze and draw a conclusion about the RQs.

38 CHAPTER 4. METHODOLOGY

Chapter 5

Results and Analysis

This chapter will present the results from the experiments and an analysis of them
with the primary objective of presenting key findings that can explain and help
conclude the research questions posed in the introduction of the thesis. Firstly,
the chapter will address the experiment analyzing PCNs’ ability to infer missing
values related to their inherent ability to handle them in section 5.1 as addressed
by RQ1. Secondly, the computational analysis of the two frameworks will be
discussed in section 5.2, providing the results necessary to conclude RQ2, which
looks at how the environmental impact of PCNs compares to ANNs. In both
sections, the aggregated metrics will be presented along with relevant analysis
before these findings are discussed in the following subsections.

5.1 Inference

Based on the inferred values, the standard deviation was calculated for each class
attribute for the given dataset on the representational datasets, Iris and Wine.
The inferred samples in the MNIST dataset were plotted into images which will
be presented in this section.

Further, the viability of the reconstructed datasets was evaluated by training
ten agents of each framework on each dataset and subsequently testing them on
the original train and test split. A selection of these results will be presented in
section 5.1.1 and discussed in section 5.2.2.

5.1.1 Results

The inference experiment results will bin the following two segments. In the
first segment, the standard deviations for each representational dataset will be

39

40 CHAPTER 5. RESULTS AND ANALYSIS

presented, along with the reconstructed images of the MNIST dataset. Subse-
quently, the accuracies of the agents for each dataset will follow in the second
segment.

Standard Deviation of Inferred Values

The mean standard deviation of the predicted values in DKNN and DPCN ag-
gregated across all sparsities, attributes, and classes are represented in table 5.1.
Standard deviations for each attribute for each class in the Iris dataset are in-
cluded in table D.3a and D.3b for the PCN and the KNN datasets, respectively,
in appendix D. Similarly, for the Wine dataset, the means and standard devia-
tions are included in table D.4a and D.4b of the same appendix for the PCN and
the KNN datasets, respectively. For the mean values of the attributes for each
class in the original Iris and Wine datasets, please refer to table D.1 and D.2,
respectively.

Table 5.1: Average standard deviation in predicted values of the KNN and PCN
reconstructed datasets aggregated across all attributes and classes of the dataset.
MNIST is omitted as it contains visual and not representational data.

Iris Wine
KNN 0.717 0.423
PCN 4.236 1.268

For the MNIST dataset, the standard deviation was omitted as it would be
more relevant to evaluate the result of the inference visually. Figure 5.1 provides
three examples, showing the samples from the original dataset, how they were
masked, and how each of the two inference schemes reconstructed the images.
For the sake of brevity, three samples are included in this section, with a sample
of the remaining output classes included in appendix D.2, figure D.1 - D.7.

Usage of Reconstructed Datasets

A comparison of the accuracies of the agents of each framework over the Iris
dataset is shown in figure 5.2. Appendix D reproduces the accuracies for D0.05

KNN

and D0.05
PCN in table D.5, and points to resources for the accuracies of the other

sparsity degrees. Due to low variability in the same metrics across sparsity de-
grees, the remaining results presented in this section are based on the data col-
lected from the evaluation of D0.05.

The test accuracies of the ANN and PCN agents on the reconstructed datasets
are illustrated in figure 5.3, with the accuracies of the ANN agents trained on
D0.05

KNN and D0.05
PCN shown in subfigure 5.3a and the PCN agents in subfigure 5.3b.

5.1. INFERENCE 41

(a) Sample depicting a ’5’

(b) Sample depicting a ’6’

(c) Sample depicting a ’9’

Figure 5.1: Plots of samples from the sparse dataset where 5% of the input values
were removed. From the left, the figure shows the original samples before having
the inputs masked, the masked sample with the missing values set to the median
value of the dataset (128), the reconstructed sample from the PCN approach,
and the reconstructed sample from the KNN approach. Subfigure 5.1a, 5.1b and
5.1c show the process for samples depicting a ’5’, ’6’ and ’9’, respectively.

42 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.2: Graphs showing mean accuracy of ANN and PCN agents on KNN
and PCN reconstructed datasets for the Iris dataset as a function of sparsity.
accANN (Dsparsity

KNN) is marked by pentagons, accANN (Dsparsity
PCN) is marked by cir-

cles, accPCN (Dsparsity
KNN) is marked by ×, and accPCN (Dsparsity

PCN) is marked by +.
The legend in the image follows an X:Y pattern where X denotes the inference
scheme used for the datasets the agents of framework Y were trained on.

5.1. INFERENCE 43

(a) Mean accuracy of ANN agents on the reconstructed dataset with
sparsity set to 0.05. The accuracy on D0.05

KNN is marked by pentagons,
and on D0.05

PCN is marked by circles

(b) Accuracies of PCN agents on the reconstructed dataset with spar-
sity set to 0.05. The accuracy on D0.05

KNN is marked by ×, and on
D0.05

PCN is marked by +

Figure 5.3: Graph showing the accuracy of the ANN and PCN agents on the
KNN and PCN reconstructed datasets, with the accuracies for the ANN agents
shown in subfigure 5.3a and the PCN agents in subfigure 5.3b.

44 CHAPTER 5. RESULTS AND ANALYSIS

As a comparison of the agents trained on the PCN-reconstructed dataset and
the control agents, metrics are listed in table 5.2, with the accuracies in subtable
5.2a and the respective changes shown in subtable 5.2b. A positive number
in subtable 5.2b indicates an improvement, as the margins were calculated as
accsparse − acccontrol.

Table 5.2: Accuracies and their changes to the sparsely trained agents in the
inference experiment. Subtable 5.2a shows the mean accuracies of the control
agents for each dataset, and subtable 5.2b shows their respective improvements.

(a) Mean accuracy of the ANN and PCN control agents for each dataset on the train
and test split.

Iris Wine MNIST
acctrain acctest acctrain acctest acctrain acctest

ANN 0.945 0.945 0.985 0.972 0.940 0.946
PCN 0.812 0.812 0.918 0.972 0.577 0.575

(b) Changes to the accuracies compared to the sparsely trained agents on the PCN
reconstructed datasets. A positive number in the table denotes an improvement in the
accuracy of the sparsely trained agents.

Iris Wine MNIST
acctrain acctest acctrain acctest acctrain acctest

ANN -0.007 -0.002 -0.020 0.000 -0.003 -0.008
PCN -0.016 -0.020 -0.006 -0.003 0.019 0.029

5.1.2 Analysis

The following section will address the results of the inference experiment, dis-
cussing the results, the limitations of the experiment, and their implications for
RQ1.

Discussion

Table 5.1 shows that the values inferred by the KNN method were better on both
the Iris and Wine dataset. The KNN method managed to predict, on average, the
missing values within less than one standard deviation for the respective value on
both datasets. The PCN approach performed worse, with the predicted values
being an average of 4.236 standard deviations away from the respective mean
value for the Iris dataset and an average of 1.268 away for the Wine dataset. The
difference here may be explained by the difference in cardinality of the samples
in the two datasets. If a value is missing in a sample of the Iris dataset, 25%

5.1. INFERENCE 45

of the information on the sample is missing, whereas, in the Wine dataset, only
7.70% is missing. Therefore, Wine samples have proportionally more information
the PCN model can use when inferring the missing value compared to the Iris
dataset. This explanation for the difference in standard deviation between the
datasets is supported by the same trend being observable for the KNN method
in table 5.1.

On the MNIST images of digitally written numbers, no numerical metric is
given, but the two approaches can be seen to make improvements to the corrupted
samples in figure 5.1, and in figure D.1 through D.7 of appendix D. The KNN-
reconstructed images display closer similarity to the original sample here as well
compared to the PCN-reconstructed image, further supporting the trend of KNN
outperforming PCN observed for the Iris and Wine dataset in table 5.1. For
this difference, two possible explanations are theorized. Firstly, it could be that
the PCN model cannot utilize the information of adjacent pixels effectively and
therefore does not completely reconstruct the image and only makes a general
improvement in the sample based on the average of the samples. This can be
seen in figure 5.1 where the PCN should have been able to use the adjacent pixels
in the black areas outside of the nine to infer that the corrupter pixels should
be zero as well. Secondly, the PCN model settles into equilibrium, and the used
convergence detection algorithm may not be sensitive enough to capture the
minor discrepancies that remain in the reconstructed samples. Still, the samples
are recognizable as their respective output class for both humans and, as the
evaluation of the reconstructed datasets shows, for the models as well.

Lastly, before moving on to the evaluation of the agents trained on D0.05
KNN and

D0.05
PCN , an advantage of the PCN approach for inferring missing values is how they

are used afterward. While the KNN might perform better, as seen for all three
datasets, it relies on an external algorithm to make sample predictions. The PCN
approach can reuse the model used to infer the missing values and predict new
samples. This finding suggests that the PCN model is able to use the bilateral
connections to not only drive predictions forward from input to output but also
to convey information backward by the layers learning to predict the activation
of upstream layers by observing the activation of downstream layers, presenting
an ML model capable of predicting and inferring data in both network directions.

The accuracy graphs of figure 5.2 reveal that the sparsity of the masked
dataset did not affect the accuracy of the agents, as evidenced by their low
variability. Several reasons may cause this; first, the sparsity of the datasets used
for training may still be low enough that the remaining undisturbed samples were
sufficient for the models to learn the patterns in the dataset and consequentially
not suffer from the masked samples. Secondly, it could indicate that the agents
were able to use the inferred values efficiently to solve the classification task for
both D0.05

KNN and D0.05
PCN despite the analysis of the standard deviation for D0.05

PCN

46 CHAPTER 5. RESULTS AND ANALYSIS

shows they did not closely resemble their respective mean.
As a reminder, all results presented after figure 5.2 in section 5.1.1 are based

on the evaluation of the agents on D0.05
KNN and D0.05

PCN . Hence the remaining
discussion presented in this segment is also based on the data collected from
evaluating the reconstructed datasets at 0.05 sparsity.

Looking at the performance of the ANN and PCN agents trained on D0.05
KNN

and D0.05
PCN in subfigure 5.3a and subfigure 5.3b, no advantage of the agents

trained on one reconstructed dataset can be established over agents trained on
the other. This observation can have two possible explanations, one of which
relates to the previously discussed limitation of low sparsity and the performance
degradation being negligible as a consequence. The other could be that using
the PCN-reconstructed dataset results in a comparable performance despite the
difference in the standard deviation of the predicted output values to the KNN
approach shown in table 5.1. If the latter is the case, the finding also indicates
that using PCN models to infer missing values is viable for subsequent use of
PCN agents and potentially for other ML models, as the ANN performed equally
well on the PCN and the KNN reconstructed datasets.

The control accuracies were used as a benchmark to compare with the ac-
curacies of the agents trained on the reconstructed datasets, and the margins
presented in subtable 5.2b and table D.6 of appendix D shows minor changes to
the accuracies between the agents. The explanation also lends itself to the raised
argument of low sparsity causing negligible degradation in accuracy, or the agents
were able to utilize the inferred values of both reconstructed datasets well enough
for there to be no observable difference to the control agents beyond expected
statistical variability.

Limitations

This segment will address the limitations of the experiment. First, it will explain
low sparsity’s impact on the observed results. Afterward, how the cardinality
of the dataset and, consequentially, the collected metrics affect the quantitative
differences will be discussed. Finally, the last limitation concerns the applicability
of the results to real-life situations of ML problems.

The sparsity level has been a reoccurring explanation for the presented ob-
servation of the evaluation of the agents trained on the reconstructed datasets.
With a low sparsity fraction, the masked values may be too few to impact the
agents’ performance. As such, the effect of masking the values becomes inde-
tectable in the results, causing the research to be inconclusive. The percentage
of masked data was not increased due to preliminary testing that indicated un-
usable outcomes for the Iris dataset at higher percentages. This could be partly
attributed to the dataset’s small size and low attribute count, resulting in the
loss of too much information for the agent to comprehend the data patterns that

5.1. INFERENCE 47

link input to output. Consequentially, the agent’s ability to reconstruct samples
in the opposite direction is also impacted.

The experiment was limited due to a few samples in the dataset linked to
both the dataset and the sparsity fractions. This low cardinality of samples
significantly affected the quantitative differences observed in the results. With
a small number of samples, it becomes challenging to extrapolate trends from
the data due to increased variance. An example illustrating this issue is the Iris
standard deviation in table D.3a. In this table, two outliers are present with
values of 10.220 and 17.811, while the remaining values range between 0.132
and 3.433. Comparing these values to the mean standard deviation presented
for the PCN approach in table 5.1, 4.236, it becomes clear that these outliers
significantly inflate the mean, causing it to surpass the range of the majority of
the values in the table. This observation demonstrates how poor performance on
one class attribute reduces the competitiveness of the PCN approach. The low
sparsity fraction contributes to the issue by further decreasing the samples which
are eligible for evaluation, as only missing samples are included in the calculation
of the standard deviations.

Lastly, the final limitation of the experiment regards the methodology and its
applicability in real-life ML problems. As described in section 4.2.2, the PCN
model responsible for reconstructing the masked value in the dataset was trained
on the complete dataset with no missing values before making the inferences. This
was done because the main focus of the experiment was to assert if a PCN could
infer missing values in representational data. Typically, datasets used in ML
problems are incomplete, and the PCN model cannot automatically be trained
on the complete dataset as in the experiment. Either the dataset needs to be
reduced to only complete samples, sacrificing the size of the training set, or the
model would have to train with the missing values, improving the prediction of
the missing values as the agent trained on similar samples.

Implications for RQ1

The results have shown that PCN models can infer missing values in incomplete
datasets with representational data. The values in table D.3 and D.4 of appendix
D show standard deviations for the PCN approach that are comparable to the
KNN approach. Consequentially, a qualitative answer to RQ1 can be given,
and the experiment has asserted that PCNs are not better equipped at handling
missing values than ANN if compared to a typical inference scheme used by ANNs
such as KNN.

A quantitative answer was asserted by evaluating the reconstructed datasets
on agents of both frameworks. However, due to the discussed limitations, the re-
sults remain inconclusive and further research needs to be conducted to conclude
a quantitative answer to RQ1.

48 CHAPTER 5. RESULTS AND ANALYSIS

5.2 Computational Analysis

By running the computational analysis on agents of the two frameworks, metrics
on the number of flops performed during training and accuracies were collected.
The following section will present these results in section 5.2.1 before discussing
the differences between the two frameworks in light of the presented results in
section 5.2.2.

5.2.1 Results

The results of the computational analysis experiment will be presented in the
following three segments. The training flops and post-training accuracies will
be given for equal epochs, equal flops, and equal accuracy training approaches
described in section 4.3.2, along with figures of the flops plotted against each
other and over time.

Equal Epochs

Given the same number of epochs to train on, the PCN models performed more
flops over the same training period than the ANN models. The trend is sum-
marized in the bar chart of figure 5.4, showing the PCN training flops as orange
bars to the right and ANN training flops as blue bars to the left for each dataset.
Further, the exact values of the flops performed during training are reproduced
in table E.1 of appendix E.

Secondly, table 5.3 reproduces the accuracies from the post-training evaluation
of the agents, displaying the means over the ten agents of each framework for the
train and test split.

Table 5.3: Table reproducing the mean accuracy of the ANN and PCN agents
per dataset from the equal epoch training approach (epochs = 30) of the compu-
tational analysis experiment.

Iris Wine MNIST
acctrain acctest acctrain acctest acctrain acctest

ANN 0.364 0.250 0.401 0.389 0.768 0.762
PCN 0.793 0.788 0.923 0.931 0.713 0.706

Equal Flops

For the approach with equal number of flops performed during the training of
the agents, the aggregated metrics are displayed in table 5.4, with the mean

5.2. COMPUTATIONAL ANALYSIS 49

Figure 5.4: Performed flops during training of models on each dataset for the
equal epochs training approach (epochs = 30). The figure shows the average
flops performed over the ten agents used in the experiment, with the PCN models
shown as orange bars and ANN as blue bars.

accuracies from the post-training evaluation contained in subtable 5.4a and the
number of epochs needed to achieve these results shown in subtable 5.4b. The
average number of flops performed by the PCN agents, which became the stopping
condition for the ANN models, were 1.649 × 108, 6.652 × 108, and 1.835 × 1012

for the Iris, Wine, and MNIST dataset, respectively.

Equal Accuracy

Given a shared accuracy goal, the models produced the bar chart shown in figure
5.5, with information about the number of epochs per dataset shown in table 5.5.

Further, the intermediate accuracies recorded during training for the Iris
dataset are visualized in figure 5.6 for the ANN models and in figure 5.7 for
the PCN agents. Additionally, figure 5.8 displays the number of flops performed
per epoch-step during training on the Iris dataset.

50 CHAPTER 5. RESULTS AND ANALYSIS

Table 5.4: Mean accuracies over the ANN and PCN agents for the train and
test split for each dataset from the experiment with equal flops performed during
training, shown in subtable 5.4a, along with the number of epochs to achieve the
accuracy, shown in subtable 5.4b.

(a) Mean accuracies over the train and test split of the datasets

Iris Wine MNIST
acctrain acctest acctrain acctest acctrain acctest

ANN 0.873 0.785 0.998 0.972 0.974 0.970
PCN 0.775 0.745 0.922 0.925 0.707 0.693

(b) Number of epochs training was performed over

Iris Wine MNIST
epochs epochs epochs

ANN 540 780 570
PCN 30 30 30

Table 5.5: Epochs performed during training for the equal accuracy training ap-
proach. Shows the epochs performed by models of the ANN and PCN framework,
respectively, for each dataset. Note that while the ANN agents can be seen to
perform more epochs than the PCN agents, the number of flops performed per
epoch by the ANN agents is lower than by the PCN agents, meaning a higher
epoch count does not necessarily equate to larger computational demand.

Iris Wine MNIST
epochs epochs epochs

ANN 500 170 30
PCN 210 20 10

5.2.2 Analysis

The following section will address the results of the computational analysis, dis-
cussing the results, the limitations of the experiment, and their implications for
RQ2.

Discussion

From the analysis of the recorded metrics, the training flops performed by the
PCN models were an order of magnitude larger than those performed by the ANN
models. This trend was observed for the equal epochs and equal accuracy training
approaches, where the agents were allowed to train for differing amounts of flops,

5.2. COMPUTATIONAL ANALYSIS 51

Figure 5.5: Performed flops during training of models for the equal accuracy
training approach. The figure shows the average flops performed over the ten
agents used in the experiment, with the PCN models shown as orange bars and
ANN as blue bars.

as seen in figure 5.4 and figure 5.5. The difference in the order of magnitude
between the recorded flops performed,

log10 flopsPCN − log10 flopsANN

supports this trend and reveals a 1.318 difference for the equal epoch approach
and a 0.738 difference for the equal accuracy approach on average over the
datasets — the difference between the training approaches being caused by the
ANN agents being required to achieve the target accuracy and thereby perform-
ing more epochs and not stopping at epochs = 30 in the equal accuracy approach.
Although the PCN agents outperformed the ANN agents concerning accuracy in
the equal epoch approach, the results from the equal accuracy approach prove
that the ANN models remain more computationally efficient at the same accuracy
performance as the PCN models.

Looking from a different angle, where the agents were granted the same com-
putational budget, the ANN models also outperformed the PCN models. The

52 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.6: Accuracy of ANN models on test split of Iris dataset as a function of
the training time over epochs. The black line displays the average accuracy over
the ten agents used in the experiment. Accuracies of the individual models are
also included, albeit with a lower opacity, to avoid cluttering the graph.

accuracies shown in subtable 5.4a confirm this advantage and show that the
accuracies achieved by the PCN lag slightly behind those of ANN for the repre-
sentational dataset with approximately 5% on the test split. For the visual data
of the MNIST, the PCN models were outperformed by the ANN with 26.7% and
27.7% for the train and test split, respectively. Further, the number of epochs
also reproduces the trend with an order of magnitude difference between the two
frameworks, as seen in subtable 5.4b, which is to be expected as the ANN mod-
els would perform one-tenth of the flops from the PCN models, hence needing
roughly ten times as many epochs to achieve the same number of flops.

The results from the equal accuracy training approach further establish the
advantage of the ANN framework over the PCN framework by showing the ANN
models arrive at the target accuracy quicker than the PCN models regarding
the flops performed during training. Figure 5.5 displays the flops performed per
dataset to achieve the accuracies used as stopping conditions for each dataset.
Like figure 5.4, it again shows lower flops performed by the ANN models than the
PCN models, albeit with slightly lower flops as the models were allowed to stop
before 30 epochs had passed if the average accuracy over the agents had surpassed

5.2. COMPUTATIONAL ANALYSIS 53

Figure 5.7: Accuracy of PCN models on test split of Iris dataset as a function of
the training time over epochs. The black line displays the average accuracy over
the ten agents used in the experiment. Accuracies of the individual models are
also included, albeit with a lower opacity, to avoid cluttering the graph.

the threshold. This finding shows that to achieve the same level of accuracy, the
flops performed by the PCN models will be, on average, 738% higher than those
performed by the ANN models.

Secondly, the equal accuracy approach also showed a correlation between the
flops performed during prediction and the accuracy of the PCN models. As seen
in 5.8, the graph increases at epoch = 180, being relatively constant before that
point. This increase signifies the number of flops performed during the epoch
step-size increases. Seen in relation to the graph of accuracy over the same
training, a similar upswing in the graph can be observed at the same point in
figure 5.7. The reason behind this correlation in the data is not known. Still, one
explanation might be that the increase in accuracy requires more finetuning of
the network before settling into an equilibrium. Looking at Eq. (3.2) could hint
to the variance being an issue for this significant increase in flops. If the variance
is chosen too low, it could result in the updates made in the activation nodes of
the network being too big concerning the gradient descent of the energy function
of the network with regard to the activation nodes. Should this be the case,
the network may end up oscillating back and forth between the local minimum

54 CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.8: Flops performed of PCN models as a function of the training time
over epochs on the Iris dataset. The black line displays the mean flop over the ten
PCN agents used in the experiment. Flops performed by the individual agents
are also included, albeit with a lower opacity, to avoid cluttering the graph.

of the sample for the energy function, resulting in an increase in the number of
computations performed and increasing the flop count.

Why this would happen towards the end of training, however, remains un-
known. One theory might be that two of the classes in the Iris dataset have very
similar input values, and the agent learns to first distinguish the last class from
the other two, making only rough calculations. Later in the training period, the
agent could perform more precise calculations, but because the variance in the
error nodes is set too low, the agent overshoots and has to perform many cycles
to equilibrate.

Limitations

Regarding the limitations of the experiment, several concerns have been identi-
fied. The first regard the metrics collected and the relevance to the environmental
impact of the framework. The second revolves around integrating the 3rd party
library used to collect the metrics. Further, low sampling frequency leads to few
data points in the collected metrics, and, lastly, the normalization scheme used
during the experiments. The following segment will address these limitations in

5.2. COMPUTATIONAL ANALYSIS 55

their listed order.
Firstly, one limitation of the experiment regards if the collected metric ac-

curately represents the environmental impact of the model. Flops can give an
idea of an ML model’s computational demands and power usage. Still, they do
not constitute the entire picture of the power usage and environmental impact
of it. Other metrics relate to the power usage of an ML model, as discussed in
(Schwartz et al. [2020]). One such metric is memory migrations which address
how data is moved between different levels of memory. The number of memory
migrations can vary significantly based on how the frameworks and models are
implemented and on which systems they are implemented. Flops, on the other
hand, remain consistent as they only target the operations done to floats by the
model. Hence, they serve as a metric that makes comparing models across dif-
ferent operating systems and implementations possible. They can indicate which
model is more efficient but not a definitive answer to which model has a lower
environmental impact.

Secondly, a limitation of the experiment’s reproducibility regards the inte-
gration of the 3rd party library used. The pypapi library utilizes hardware
performance counters from the Performance Application Programming Interface
(PAPI), which is operable on Linux/Unix-type systems. As such, if the system
the models are run on does not support PAPI or the hardware does not contain
the hardware counters, the experiment will not be reproducible.

Thirdly, the sampling frequency used for the Wine and the MNIST datasets
during the equal accuracy training approach proved too low. With epochstep =
10, the agent trained in 10 epoch intervals. As such, the ANN and PCN frame-
work had three data points and one data point for the MNIST dataset for ANN
and PCN, respectively, as is implied by table 5.5, because the agents achieved
the target accuracy by the completion of these first few epoch steps. Similarly,
PCN has two data points on the Wine dataset. Consequentially, extrapolating
any trend from the collected data becomes problematic when the data points are
few. Therefore, the findings regarding the upswing in flops and the correlation
between performed flops and accuracy for the PCN framework, as seen in figure
5.7 and figure 5.8, cannot be confirmed across the different datasets.

Lastly, regarding the normalization scheme used for the experiment, the train
and test split were normalized separately. In datasets, the test and train split
should ideally be representative of each other so that the min- and max-values
used to normalize the dataset should be similar. Should this not be the case,
however, the difference in the extremal values could cause two different values to
map to the same normalized values. This error was corrected, and the experiment
was rerun for the Iris and Wine dataset, reproducing accuracies approximating
the ones represented in table 5.3 and subtable 5.4a, and was therefore not consid-
ered a major limitation of the experiment. Due to time constraints, however, the

56 CHAPTER 5. RESULTS AND ANALYSIS

experiment was not rerun for the MNIST dataset, and it could explain the differ-
ence in the accuracies observed for the MNIST dataset in subtable 5.4a between
ANN and PCN.

As a side note, this phenomenon of train and test split that do not represent
each other well may also be the cause of the abnormal shape of the test-accuracy
graph in figure 5.7 where the accuracies are actually seen to decrease from around
epoch 60 to 150. A more typical learning graph can be seen for the ANN agents in
figure 5.6 where the accuracy monotonically increases. However, because these
graphs are based on the accuracy of the test split, the direction taken by the
PCN agents between 60 and 150 could be in the right direction with respect to
the observed samples of the train split but wrong for the test split.

Another possible explanation for the difference in accuracy between the agents
of each framework on the MNIST dataset and an error in the normalization
scheme was that the MNIST samples were normalized to be between 0 and 1
and subsequently used by both frameworks regardless of their activation func-
tion. Hence only half the range was used for the PCN models with respect to the
utilized activation function, tanh. This would affect how the models differenti-
ate between the black and white pixels in the original sample and, thereby, the
model’s accuracy. Consequentially, the implications of the results for the research
questions could be skewed.

Implications for RQ2

As discussed by the limitations, looking at only the flops to address the environ-
mental impact of an ML model does not constitute the entire picture. However,
flops can address the computational demands of a framework and thereby also
indicate the power consumption and environmental impact of the models. They
also allow for easy comparisons between different frameworks and, based on the
collected metrics and their presented analysis, do not support a computational
advantage of PCN models compared to ANN using BP.

The difference in computational demand between the two models is caused
by the way PCNs perform their prediction. While ANN using BP only needs
to perform the calculations for a node once to land on a prediction, PCN per-
forms calculations several times during the iterative equilibration process. While
potential improvements could be made to the convergence detection algorithms
that reduce the number of cycles the PCN models need to equilibrate when per-
forming predictions, the computational demand will still likely be higher than
ANN because it has to calculate the node values iteratively.

A definitive answer to the research question cannot be given because, as men-
tioned, flops do not capture the complete picture of the environmental impact
of an ML model. However, the results establish an advantage of ANNs using
BP over PCNs concerning computational demands, which also suggests a benefit

5.3. SUMMARY 57

regarding environmental impact, as the two aspects are linked through power
consumption and CO2 emissions.

5.3 Summary
The following section has covered the results of the experiments, presented an
analysis of them, discussed the limitations of the experiments, and lastly, ad-
dressed the implications of the findings for the research questions.

For the inference experiment, the results have shown the ability of PCN to
infer missing values in representational data and partially reconstruct visual data.
Based on the standard deviation of the inferred values compared to those of the
commonly used benchmark, KNN, it can be quantitatively concluded that the
inferred values by the PCN model are not as strong, indicating a negative response
to RQ1. Secondly, the experiment also tried to quantitatively assert the difference
in the performance of agents trained on the reconstructed datasets. Due to the
discussed limitations, however, the research remains inconclusive.

The second experiment performed a computational analysis between the frame-
works by recording the number of flops performed by agents of each framework.
Three different approaches, looking at the performed flops from different angles.
All three approaches suggested an advantage of the ANN agents, two of which
showed fewer flops performed by the ANN agents. The last showed higher accu-
racy of the ANN agents over the same number of flops performed during train-
ing. The findings established a higher computational demand for PCN agents
and performance differences favoring ANN. Consequentially, the findings suggest
that the environmental impact of PCN is higher than ANN, as addressed by RQ2,
although further research needs to be done to address the complete environmental
impact of PCN as an ML model.

58 CHAPTER 5. RESULTS AND ANALYSIS

Chapter 6

Conclusion

6.1 Thesis Review

The first chapter of the thesis introduced the research questions, which have
served as a connecting thread throughout the thesis and the motivation behind
them. The first research question addresses PCNs’ inherent ability to handle
missing values and asks if PCNs are better equipped at handling missing values
than ANNs using BP. The second research question revolved around the sustain-
ability of ML models and queries how PCN’s environmental impact compares to
ANN’s.

Chapter 2 lays the theoretical background to understand the frameworks im-
plemented for the thesis. The chapter visits the biological issues of ANNs, listing
three main issues, namely the issue of error representation, the issue of symmetri-
cal weights not being ubiquitous in the human brain, and the issue of transmission
of signals between neurons and finding a derivate of the spikes found in biologi-
cal neurons. Further, the chapter visits the theory behind ANNs using BP and
derives the equations for generating predictions from the forward pass and up-
date rules to improve the network’s accuracy. Lastly, the chapter ends with an
introduction to the main ideas behind PCN and briefly explains how ANNs and
PCNs relate to each other.

Moving on to the related works of the thesis, chapter 3 picks up where chap-
ter 2 leaves off by elaborating on and providing a specific framework for PCN
presented by Whittington and Bogacz (Whittington and Bogacz [2017]) that im-
plements the main ideas presented in the background. Additionally, the chapter
explores other articles that have researched similar topics relevant to the RQs.
These articles include ones that show how PCNs can be made to provide realistic
predictions of input data on visual datasets, how to evaluate the computational

59

60 CHAPTER 6. CONCLUSION

demand of ML methods, and how other frameworks have addressed the last two
biological issues of ANNs.

The Methodology, chapter 4, presents the frameworks implemented for the
thesis, one for creating ANN models and one for creating PCN models. The
chapter further explains two experiments that use the frameworks to address the
RQs. The first experiment explored PCNs’ capability to infer missing values
and how subsequent use of these inferred values affects the performance of ML
models. The second experiment analyzed the computational demand of the two
ML frameworks by recording the number of flops they performed during training.

Lastly, chapter 5, Results and Analysis, reproduces the results from the col-
lected metrics of the experiment, and presents an analysis of them and their im-
plications for the research questions. For the inference experiments, the results
presented include the standard deviation of the inferred values in the represen-
tational datasets, visualization of the reconstructed images of visual data, and
a comparison of the accuracy of agents utilizing the reconstructed datasets for
training. The results of the computational analysis experiment focused on the
flops performed and the resulting accuracies of the agents.

This final chapter will conclude the thesis, addressing the contributions of
the thesis research to the research questions and the field in section 6.2, and
discussing future directions the area may take in section 6.3.

6.2 Research Questions

Two frameworks have been created for the thesis to contribute new information to
the research field and question. The first is a framework to set up ANN models,
and the second is to set up PCN models for classification tasks. Further, two ex-
periments have been designed to gather quantitative data related to the research
questions. For both experiments, information from related articles in the field
has been used, and the following two subsections will briefly discuss the adapta-
tions, the key findings from the respective experiment, and the implications these
findings have on the research questions.

6.2.1 RQ1 : PCNs’ Ability to Handle Missing Values

In the first experiment, the PCN framework was extended to use activation and
weight decay. This extension was made based on the theory presented in (Sun
and Orchard [2020]), which shows how PCN can generate realistic input images
provided a label at the output layer on datasets containing visual data. The
transferability from visual data to representational data was tested in the first
part of the inference experiment. Qualitatively, the results found that the PCN
model could create predictions of the missing values. Quantitatively, the standard

6.2. RESEARCH QUESTIONS 61

deviations reveal that using PCN to infer missing values lags behind KNN, which
was used as a benchmark in the experiment.

The second part of the experiment could not establish the advantage of using
the PCN to the KNN reconstructed dataset as the resulting accuracies were
too close to the control agents trained on the complete dataset. The sparsity
fraction used in masking the data has been identified and discussed as the main
limitation, causing the number of samples affected to be ignorable for the agents,
causing inconclusive results from the second part of the experiment. Low sparsity
fractions were, however, seen as necessary to uphold the patterns in the Iris
dataset to test the inference capabilities of the PCN agents based on preliminary
testing.

Regardless the results have established that PCNs can be used as an infer-
ence scheme for missing values in incomplete datasets. Concerning the research
question, this indicates that PCNs are better equipped to handle missing values
than ANN alone. Still, the quantitative results show that it does not beat typical
methods used with ANN to manage missing values.

6.2.2 RQ2 : Computational Demand of PCN Compared to
ANN

The second experiment builds on the positional paper by Schwartz et al. [2020],
advocating for using flops as a metric to report the computational demand of
ML models. While the computational demand of a model does not constitute
the complete environmental impact, as discussed in the experiment’s limitations,
it can give an indication of the environmental impact. The results show for all
three training approaches tested an advantage in favor of ANNs over PCNs, qual-
itatively indicating that PCNs have a higher environmental impact than ANNs,
supported by the quantitative result showing that the flops performed by the
PCN models, on average, were 738% higher than those by the ANN models given
the same target accuracy.

This aspect was researched because it was deemed possible for ANNs to have a
higher computational demand than PCNs because of the complex error gradients
that must be propagated backward in the network for each node during training.
PCN, on the other hand, performs the error gradient calculations locally and
using a simpler calculation scheme. However, due to the equilibration process,
they still perform more flops than ANNs, and finding an effective way of reaching
equilibrium proved difficult both in terms of not overshooting the adjustments and
choosing the right convergence detection algorithm. Similarly, for the inference
scheme, choosing the correct values for both variances of error nodes, convergence
detection scheme, weight decay, and activation decay proved difficult to ensure
the PCN agents performed optimally.

62 CHAPTER 6. CONCLUSION

6.3 Future work
The following section will revisit some of the raised limitations of the experiments
and new directions for future work within the research field. Subsection 6.3.1
will address the limitations of the inference experiment, visiting the issue with
sparsity fractions and how it can be established if PCN models are a viable
approach to fill in missing values in datasets. Subsequently, subsection 6.3.2 will
address the concerns raised regarding the computational comparison between
the two frameworks and other future directions that came to light through the
experiment.

6.3.1 Inference of Missing Values
For the inference experiment, one of the main theorized limitations of the second
part of the experiment relates to the sparsity fraction. Because of the percent-
age of masked values, the agents could likely ignore the missing values and still
perform their predictions correctly, as evidenced by the marginal improvements
presented for the agents trained on the PCN- and KNN-reconstructed datasets.
It would be interesting to repeat the experiment with higher sparsity fractions
to see if it would impact the agents’ accuracies and the standard deviations of
the inferred values. Additionally, a second set of agents trained on the missing
dataset could be integrated, giving an estimator of the expected degradation of
the agents against which the reconstructed-trained agents could be compared.

Secondly, a side-by-side comparison of the performance between the inferred
values from PCN and KNN would also be interesting to investigate. Increasing
sparsity fractions could be used, and using the standard deviation of the inferred
values as a metric, the experiment could research the performance of the inference
schemes as a function of the completeness of the employed datasets.

6.3.2 Environmental impact
While the analysis of the training flops for the second experiment suggests a
higher environmental impact of PCN over ANN, other metrics also affect the foot-
print of machine learning models. Further research into metrics such as memory
migrations can help conclude the second research question. Secondly, it would
also be interesting to compare the power usage of PCN in embedded systems and
if PCNs are implementable on organic computing structures further down the
line.

Lastly, the discussion of the results of the second experiment addressed a
link between the accuracy of the PCN network and the flops performed during
each step size. It would be helpful to investigate if the same link also holds
up for other datasets. The connection could not be established in the current

6.3. FUTURE WORK 63

experiment due to a low number of data points for these datasets. To combat this,
a future experiment could reduce the epoch step size used for the equal accuracy
approach, thereby increasing the number of data points over the number of epochs
trained for. Secondly, the target accuracy could be increased to encourage more
epochs to be performed during training, thereby producing more intermediary
accuracies. Additionally, the research could also check if the hypothesized cause
of this increase, the variance in the error nodes being set too low, is true. If
this increase could be avoided, it could help make PCNs more environmentally
friendly.

6.3.3 Final Remarks/Parting Thoughts
Revisiting the overall research goal of investigating if PCNs can be a more bio-
logically plausible alternative to ANNs mentioned in the introduction, PCN does
show promise as a unified model of the brain. Qualitatively the study illustrates
that PCNs are able to infer values in incomplete datasets, something ANNs are
not capable of alone. It is, however, more uncertain of PCNs will replace ANNs.
The findings from the computational analysis indicate that PCN lags behind
ANNs both with respect to accuracy and computational demand.

Regardless, the research field is still in development, as the related works have
shown with other models addressing the other three biological issues of ANNs that
PCN might utilize in the future and with findings that show the scalability of the
framework to more complex machine learning problems.

64 CHAPTER 6. CONCLUSION

Bibliography

Aeberhard, Stefan & Forina, M. (1991). Wine. UCI Machine Learning Repository.
DOI: 10.24432/C5PC7J.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards
biologically plausible deep learning. arXiv preprint arXiv:1502.04156.

Downing, K. (2023). Gradient expectations. Publisher: MIT Press.

Fisher, R. (1988). Iris. UCI Machine Learning Repository.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507.

Liao, Q., Leibo, J., and Poggio, T. (2016). How important is weight symmetry
in backpropagation? In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning.
Nature communications, 7(1):1–10.

Millidge, B., Tschantz, A., and Buckley, C. L. (2022). Predictive coding approx-
imates backprop along arbitrary computation graphs. Neural Computation,
34(6):1329–1368. Publisher: MIT Press One Rogers Street, Cambridge, MA
02142-1209, USA journals-info

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural
networks. Advances in neural information processing systems, 29.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
neuroscience, 2(1):79–87.

65

10.24432/C5PC7J

66 BIBLIOGRAPHY

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536.

Salomonsen, S. (2022). Bio-plausible learning in neural networks.

Salvatori, T., Song, Y., Hong, Y., Sha, L., Frieder, S., Xu, Z., Bogacz, R., and
Lukasiewicz, T. (2021). Associative memories via predictive coding. Advances
in Neural Information Processing Systems, 34:3874–3886.

Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation. Frontiers in computational
neuroscience, 11:24. Publisher: Frontiers Media SA.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. (2020). Green ai.
Communications of the ACM, 63(12):54–63.

Sun, W. and Orchard, J. (2020). A predictive-coding network that is both dis-
criminative and generative. Neural computation, 32(10):1836–1862. Publisher:
MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-
info

Tschantz, A., Millidge, B., Seth, A. K., and Buckley, C. L. (2022). Hybrid
predictive coding: Inferring, fast and slow. arXiv preprint arXiv:2204.02169.

Whittington, J. C. and Bogacz, R. (2017). An approximation of the error back-
propagation algorithm in a predictive coding network with local hebbian synap-
tic plasticity. Neural computation, 29(5):1229–1262. Publisher: MIT Press One
Rogers Street, Cambridge, MA 02142-1209, USA journals-info

Whittington, J. C. and Bogacz, R. (2019). Theories of error back-propagation in
the brain. Trends in cognitive sciences, 23(3):235–250. Publisher: Elsevier.

Appendices

67

Appendix A

Access to source code

The source code containing the framework, experiments, and results is available at
github.com/simensal/BioplausibleNN_MasterThesis_Code. The source code is
not meant as a part of the submission for the thesis; all necessary logic to explain
the system is included in the pseudocode snippets and equations of the paper. A
link to the repository is only included for readers interested in using the system
for further research or exploring the raw data collected from the experiments. A
README file is included in the repository explaining the structure of it.

69

https://github.com/simensal/BioplausibleNN_MasterThesis_Code

70 APPENDIX A. ACCESS TO SOURCE CODE

Appendix B

Iris - Metadata

1. Title: Iris Plants Database
Updated Sept 21 by C.Blake - Added discrepency information

2. Sources:
(a) Creator: R.A. Fisher
(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
(c) Date: July, 1988

3. Past Usage:
- Publications: too many to mention!!! Here are a few.
1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
to Mathematical Statistics" (John Wiley, NY, 1950).

2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
-- Results:

-- very low misclassification rates (0% for the setosa class)
4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE

Transactions on Information Theory, May 1972, 431-433.
-- Results:

-- very low misclassification rates again
5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al’s AUTOCLASS II

71

72 APPENDIX B. IRIS - METADATA

conceptual clustering system finds 3 classes in the data.

4. Relevant Information:
--- This is perhaps the best known database to be found in the pattern

recognition literature. Fisher’s paper is a classic in the field
and is referenced frequently to this day. (See Duda & Hart, for
example.) The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is
linearly separable from the other 2; the latter are NOT linearly
separable from each other.

--- Predicted attribute: class of iris plant.
--- This is an exceedingly simple domain.
--- This data differs from the data presented in Fishers article

(identified by Steve Chadwick, spchadwick@espeedaz.net)
The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa"
where the error is in the fourth feature.
The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa"
where the errors are in the second and third features.

5. Number of Instances: 150 (50 in each of three classes)

6. Number of Attributes: 4 numeric, predictive attributes and the class

7. Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:

-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

8. Missing Attribute Values: None

Summary Statistics:
Min Max Mean SD Class Correlation

sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194

petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

73

9. Class Distribution: 33.3% for each of 3 classes.

74 APPENDIX B. IRIS - METADATA

Appendix C

Wine - Metadata

1. Title of Database: Wine recognition data
Updated Sept 21, 1998 by C.Blake : Added attribute information

2. Sources:
(a) Forina, M. et al, PARVUS - An Extendible Package for Data

Exploration, Classification and Correlation. Institute of Pharmaceutical
and Food Analysis and Technologies, Via Brigata Salerno,
16147 Genoa, Italy.

(b) Stefan Aeberhard, email: stefan@coral.cs.jcu.edu.au
(c) July 1991

3. Past Usage:

(1)
S. Aeberhard, D. Coomans and O. de Vel,
Comparison of Classifiers in High Dimensional Settings,
Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.
(Also submitted to Technometrics).

The data was used with many others for comparing various
classifiers. The classes are separable, though only RDA
has achieved 100% correct classification.
(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))
(All results using the leave-one-out technique)

75

76 APPENDIX C. WINE - METADATA

In a classification context, this is a well posed problem
with "well behaved" class structures. A good data set
for first testing of a new classifier, but not very
challenging.

(2)
S. Aeberhard, D. Coomans and O. de Vel,
"THE CLASSIFICATION PERFORMANCE OF RDA"
Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.
(Also submitted to Journal of Chemometrics).

Here, the data was used to illustrate the superior performance of
the use of a new appreciation function with RDA.

4. Relevant Information:

-- These data are the results of a chemical analysis of
wines grown in the same region in Italy but derived from three
different cultivars.
The analysis determined the quantities of 13 constituents
found in each of the three types of wines.

-- I think that the initial data set had around 30 variables, but
for some reason I only have the 13 dimensional version.
I had a list of what the 30 or so variables were, but a.)
I lost it, and b.), I would not know which 13 variables
are included in the set.

-- The attributes are (dontated by Riccardo Leardi,
riclea@anchem.unige.it)

1) Alcohol
2) Malic acid
3) Ash

4) Alcalinity of ash
5) Magnesium

6) Total phenols
7) Flavanoids
8) Nonflavanoid phenols
9) Proanthocyanins

10)Color intensity

77

11)Hue
12)OD280/OD315 of diluted wines
13)Proline

5. Number of Instances

class 1 59
class 2 71
class 3 48

6. Number of Attributes

13

7. For Each Attribute:

All attributes are continuous

No statistics available, but suggest to standardise
variables for certain uses (e.g. for us with classifiers
which are NOT scale invariant)

NOTE: 1st attribute is class identifier (1-3)

8. Missing Attribute Values:

None

9. Class Distribution: number of instances per class

class 1 59
class 2 71
class 3 48

78 APPENDIX C. WINE - METADATA

Appendix D

Inference of Missing
Attributes

The following appendix contains the data from the experiments run to research
PCNs’ abilities to reconstruct missing data in datasets. Section D.1 contains
results regarding the standard deviations on the representational datasets, sec-
tion D.2 contains the remaining samples of reconstructed images of the MNIST
dataset, and lastly section D.3 contains the metrics from the post-training eval-
uation of the agents trained on the reconstructed datasets.

D.1 Standard Deviation
Table D.1 contains the mean value for each attribute of each class in the iris
dataset, and table D.2 contains the mean for each attribute of each class in the
wine dataset. Subsequently, the mean standard deviation for each attribute of
each class for the iris and wine dataset can be found in table D.3 and D.4. The
inferred values at each sparsity upon which the values presented in table D.3 and
D.4 are available in the thesis repository referenced in appendix A.

Table D.1: Mean values for the attributes for each class of the iris dataset

Setosa Versicolor Virginica
Sepal Length 4.969 5.977 6.688
Sepal Width 3.372 2.741 3.000
Petal Length 1.438 4.241 5.588
Petal Width 0.236 1.300 2.044

79

80 APPENDIX D. INFERENCE OF MISSING ATTRIBUTES

Table D.2: Mean values for the attributes for each class of the wine dataset

Class 1 Class 2 Class 3
ABV 13.721 12.284 13.124
Malic acid 2.045 1.933 3.243
Ash 2.462 2.248 2.436
Ash alkalinity 17.173 20.421 21.449
Magnesium 105.4 95.776 99.795
Total Phen. 2.849 2.228 1.676
Flavanoids 2.979 2.082 0.799
Non-flav. Phen. 0.28 0.366 0.439
Proanth. 1.93 1.654 1.159
Color intesity 5.548 3.102 7.329
Hue 1.06 1.062 0.677
OD280/OD315 3.156 2.794 1.67
Proline 1099.156 526.966 627.564

Table D.3: Mean standard deviation for each attribute for each class in the
reconstructed iris dataset. The mean was calculated over DPCN and DKNN ,
respectively.

(a) PCN

Setosa Versicolor Virginica
Sepal Length 2.828 0.227 1.255
Sepal Width 0.893 0.710 0.132
Petal Length 17.811 0.864 3.433
Petal Width 10.220 0.852 3.067

(b) KNN

Setosa Versicolor Virginica
Sepal Length 0.790 0.897 0.730
Sepal Width 0.282 0.729 0.438
Petal Length 0.389 0.659 0.715
Petal Width 0.442 1.301 0.905

D.2. RECONSTRUCTED IMAGES FROM MNIST DATASET 81

Table D.4: Mean standard deviation for each attribute for each class in the
reconstructed wine dataset. The mean was calculated over DPCN and DKNN ,
respectively.

(a) PCN

Class 1 Class 2 Class 3
ABV 1.088 1.350 0.488
Malic acid 1.546 1.316 0.105
Ash 0.641 0.286 0.638
Ash alkalinity 1.281 0.171 0.700
Magnesium 0.728 1.081 1.155
Total Phen. 1.154 0.471 2.018
Flavanoids 1.086 0.766 6.249
Non-flav. Phen. 2.003 0.237 0.527
Proanth. 0.193 0.604 1.935
Color intesity 0.987 3.802 0.372
Hue 0.526 0.149 3.548
OD280/OD315 1.468 0.334 3.712
Proline 0.857 2.908 2.892

(b) KNN

Class 1 Class 2 Class 3
ABV 0.374 0.574 0.240
Malic acid 0.311 0.284 0.336
Ash 0.498 0.442 0.230
Ash alkalinity 0.420 0.299 0.155
Magnesium 0.368 0.347 0.685
Total Phen. 0.593 0.680 0.313
Flavanoids 0.635 0.476 0.155
Non-flav. Phen. 0.176 0.313 0.472
Proanth. 0.233 0.199 0.356
Color intesity 0.646 1.003 0.473
Hue 0.317 0.379 0.392
OD280/OD315 0.327 0.498 0.371
Proline 0.651 0.440 0.352

82 APPENDIX D. INFERENCE OF MISSING ATTRIBUTES

D.2 Reconstructed Images from MNIST dataset
Figure D.1-D.7 contain reconstructed images for each output class in the MNIST
dataset. The figures show the original, the corrupted, the PCN reconstructed,
and the KNN reconstructed samples.

Figure D.1: Reconstructed images of sample from the MNIST dataset depicting
a ’0’

Figure D.2: Reconstructed images of sample from the MNIST dataset depicting
a ’1’

D.2. RECONSTRUCTED IMAGES FROM MNIST DATASET 83

Figure D.3: Reconstructed images of sample from the MNIST dataset depicting
a ’2’

Figure D.4: Reconstructed images of sample from the MNIST dataset depicting
a ’3’

Figure D.5: Reconstructed images of sample from the MNIST dataset depicting
a ’4’

Figure D.6: Reconstructed images of sample from the MNIST dataset depicting
a ’7’

84 APPENDIX D. INFERENCE OF MISSING ATTRIBUTES

Figure D.7: Reconstructed images of sample from the MNIST dataset depicting
an ’8’

D.3. DATA FROM RECONSTRUCTED-TRAINED AGENTS 85

D.3 Data from Reconstructed-Trained Agents

D.3.1 Mean Accuracy of Agents Trained on D0.05
KNN and D0.05

PCN .
Table D.5 contains the accuracies of the ANN and PCN agents trained on the
reconstructed datasets D0.05

KNN and D0.05
PCN . The raw data for the other sparsities

can be found in the repository referenced in appendix A

Table D.5: Mean accuracy of agents on test split that had been trained on D0.05
KNN

and D0.05
PCN , for each dataset.

Iris Wine MNIST
DKNN DPCN DKNN DPCN DKNN DPCN

ANN 0.956 0.949 0.972 0.972 0.940 0.938
PCN 0.757 0.754 0.969 0.969 0.627 0.604

D.3.2 Margins of Agents Trained on D0.05
KNN

Table D.6 contains the margins for the mean accuracy of the agents trained on
D0.05

KNN and the control accuracies of subtable 5.2a.

Table D.6: Changes to the accuracies compared to the sparsely trained agents on
D0.05

KNN . A positive number in the table denotes an improvement in the accuracy
of the sparsely trained agents.

Iris Wine MNIST
acctrain acctest acctrain acctest acctrain acctest

ANN 0.000 -0.020 -0.015 0.000 -0.003 -0.006
PCN -0.013 -0.025 -0.001 -0.003 0.042 0.053

86 APPENDIX D. INFERENCE OF MISSING ATTRIBUTES

Appendix E

Computational Analysis

The following appendix contains data aggregated from the computational anal-
ysis. Table E.1 contains the mean flops performed during training of the equal
epoch approach and contains the data figure 5.4 visualizes.

Table E.1: Mean training flops of ANN and PCN agents for equal epoch training
experiment for each dataset.

Iris Wine MNIST
ANN 9.474× 106 2.591× 107 9.966× 1010

PCN 1.818× 108 6.567× 108 1.840× 1012

87

	Introduction
	Background
	Artificial Neural Networks
	Bioplausibility Issues
	Error Representation
	Weight Symmetry
	Spike-timing Dependent Plasticity

	Mathematical Definition of Artificial Neural Networks
	Inference
	Learning

	Predictive Coding
	Summary

	Related Work
	Whittington & Bogacz - Predictive Coding Networks
	Millidge et al. - Application to Modern Structures
	Sun & Orchard - Generative PCN
	Salvatori et al. - Associative Memories
	Tschantz et al. - Hybrid Predictive Coding
	Scellier & Bengio - Equilibrium Propagation
	Lillicarp et al. - Symmetrical Weight Requirement for BP
	Arild Nøkland - Direct Feedback-Alignment
	Hinton & Salakhutdinov - Restricted Boltzmann Machine
	Schwartz et al. - Green AI
	Summary

	Methodology
	Frameworks
	Artificial Neural Networks
	Predictive Coding Networks
	Datasets

	Inference of Missing Attributes
	Adaptations of Frameworks
	Setup
	Collected Metrics

	Computational Analysis
	Adaptations of frameworks
	Setup
	Collected Metrics

	Summary

	Results and Analysis
	Inference
	Results
	Analysis

	Computational Analysis
	Results
	Analysis

	Summary

	Conclusion
	Thesis Review
	Research Questions
	RQ1: PCNs' Ability to Handle Missing Values
	RQ2: Computational Demand of PCN Compared to ANN

	Future work
	Inference of Missing Values
	Environmental impact
	Final Remarks/Parting Thoughts

	Bibliography
	Appendices
	Access to source code
	Iris - Metadata
	Wine - Metadata
	Inference of Missing Attributes
	Standard Deviation
	Reconstructed Images from MNIST dataset
	Data from Reconstructed-Trained Agents
	Mean Accuracy of Agents Trained on DKNN0.05 and DPCN0.05.
	Margins of Agents Trained on DKNN0.05

	Computational Analysis

