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Abstract

Spintronics is a technology driven field aimed at harnessing the electron spin for 
novel devices [1]. This is in contrast to traditional electronics, where the electron 
charge is used as an information carrier. Advances in electronics has to a large 
extent relied on making components smaller and stacking them closer together. 
When the components become very small, we enter the quantum mechanical 
realm, where the properties of the electron are very different. And when we 
stack the components closer together, we generate a lot of heat. Spintronics 
may solve some of the challenges traditional electronics face today.

Magnons can be used as information carriers in spintronic devices. Magnons 
are bosons, and are allowed to share the same quantum state. When a large 
population of magnons thermalize down to the lowest energy state of the system, 
they may form what we call a Bose-Einstein condensate [2]. The particles in the 
condensate behave coherently, and they represent a macroscopic manifestation 
of a single quantum state. These condensates are interesting to fundamental 
research, and recently we realize that they may also have some exotic practical 
applications [3, 4, 5]. If we want to utilize the magnon condensates for practical 
applications, we need to be able to control their properties. This is the main 
motivation behind the research in the present thesis.

The research accompanying this thesis contains theoretical investigations of 
methods for creating and controlling magnon condensates. In Ref. [6], we 
present how the presence of spin-transfer-torques may be used to assist or in-
hibit magnon creation. In Ref. [7], we provide a theoretical explanaition of 
how an out-of.plane easy-axis anisotropy may assist condensate formation, as 
observed experimentally by Divinskiy et al. [8]. In Refs. [7, 9] we calculate the 
magnon interactions for condensate magnons in a thin-film ferromagnet, a uniax-
ial antiferromagnet, and in a biaxial antiferromagnet. In Ref. [7] we investigate 
how the two condensate populations in the ferromagnetic film are affected by 
the external field strength, film thickness and out-of-plane easy-axis anisotropy. 
We show how these parameters can be used to control properties such as the 
magnon distribution between the two populations. In Ref. [9] we show how 
the two condensate populations in the uniaxial film with DzyaloshinskiiMoriya 
interaction (DMI) are affected by parameters such as the DMI-strength and 
strength of the in-plane easy-axis anisotropy.
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Motivation

We live in the age of electronics. Today, many of our devices are based on
classical physics. But some of the electronic components are becoming very
small. As we start to work with features below a few nanometers, we are
approaching the quantum mechanical regime where everything is unfamiliar
and seemingly unpredictable.

For the last fifty years, the number of transistors on a microchip as doubled every
two years. This trend is known as Moore’s law [10]. The doubling of transistors
on a chip can be translated into an expectation of roughly a doubling in speed
and other performance parameters per watt. Our devices are also becoming
more energy efficient, and Koomey’s law described the trend that the energy
consumption decreases by a factor of two for every 2.5 years [11]. Koomey’s law
is strongly correlated to Moore’s law. Recently, it seems like both trends are
slowing down [12, 13].

Until now, our strategy for improving devices has to a large extent relied on mak-
ing components smaller, and cramming them closer together. But this strategy
can not continue forever. When we approach the quantum regime, the posi-
tion and behaviour of the electrons differ from classical predictions. The next
innovations in computation needs to rely on other strategies than shrinking com-
ponents and stacking them closer. One of the exciting new solutions is to design
quantum computation systems that take advantage of quantum properties such
as the superposition and entanglement principle [14, 15, 16, 17, 18, 19]. These
systems will likely be able to perform certain tasks such as factorizations and
discrete Fourier transforms much faster than a classical computer [20], and will
represent a revolution in computation. But there are many challenges, as many
of the suggested architectures are difficult to scale up, and often require cold
temperatures [21].

Technology can move forward in a continuous development or in a more disrup-
tive fashion. Quantum computers are examples of novel technology that have
many challenges to overcome before they are ready to be commercialized [21].
However, it turns out that we may solve some of the obstacles of charge-based
electronics through quite simple spin-based ideas. Moreover, many of these
ideas can be integrated with current electronics. We have already started walk-
ing down this path, which has led to a field of spin-based electronics; Spintronics
[1].

In traditional electronics, the electron charge is the main information carrier.
Electrons travelling in a material typically produce a significant amount of Joule
heating. If we send a pure spin current without the accompanying charge, we
may avoid the problems of Joule heating. We expect spintronic devices to of-
fer fast computation at low energy costs [22]. while most proposed quantum
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computation architectures can only operate in the milli-Kelvin range [4], many
spintronic architectures are designed to operate at room temperature. Another
benefit of spintronic devices is that they may be suitable for integration with
traditional electronics [22]. In addition to walking hand-in-hand with develop-
ments in quantum computation, spintronics may play well with other visionary
technologies. In particular, spintronic devices might be relevant as components
in neuromorphic computation architectures, which is a novel field of computa-
tion aiming to mimic the way our brain and nervous system works [23, 24].

In a similar way as sound waves need a medium to propagate through, spin
waves need a spin system to travel in. Magnetic materials have organized spin
systems, and one can disrupt the order of the spin system to send spin waves.
We often find it useful to describe the particle-like properties of the sound wave
as a phonon. Similarily, we can describe the spin wave as a magnon. The
phonon and magnon are both examples of quasiparticles. Magnons behave like
particles in the sense that they have properties such as energy, momentum and
spin. Magnons are bosonic quasiparticles, and they are alowed to share the same
quantum state. They can form Bose-Eistein condensates at room temperature
[2]. In this condensate, all the particles occupy the lowest energy state. The
particles behave coherently, and represent a macroscopic manifestation of a
particle population in the same quantum state.

There has been extensive experimental and theoretical work done the last years
to investigate the condensate properties [25, 26, 27, 28, 29, 30, 31, 8]. The
condensates are interesting research subjects for fundamental science, and we are
recently investigating possible practical applications. Magnon condensates have
been suggested as qubit units for quantum computation architectures [3, 32]. It
has also been suggested to implement a semi-classical room temperature qubit
based on the magnon condensate [4]. Any practical applications of a magnon
condensate would require us to understand how they form, how we can stabilize
them, and how we can control their properties. This is the central topic of the
present thesis.

Organization of Thesis

This thesis investigates methods to form and control magnon condensates. In
2006, Demokritov et al. published the first experimental observation of a
magnon Bose-Einstein condensate at room temperature in a ferromagnetic film
[2]. Since then, there has been extensive research on magnon condensates
[25, 26, 27, 28, 29, 30, 31, 8]. Although the condensates are valuable for fun-
damental research, we only recently started to chart their future in practical
applications [3, 32, 4, 5]. This requires an effort to control and manipulate the
properties of the magnon condensate.
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Thesis introduction

In the last part of the thesis, three research papers are presented. The introduc-
tory chapters of the thesis give a quick overview of the theoretical frameworks
used in the papers, and provide a context to the work in terms of the research
field and technological opportunities. We try to keep the introductory chapters
as general as possible, but to illustrate how to use the theoretical frameworks
in Chapter 3, we include a few examples for ferromagnetic and antiferromag-
netic systems. The papers contain the main findings of our research. A short
summary of the results can be found in Chapter 4 of the thesis introduction.

The first chapter introduces the electron spin, and its usefulness in future tech-
nologies. We discuss the potential of spintronic devices, how spintronic concepts
can solve problems with traditional electronics, and how spin technology can be
coordinated with other novel fields such as quantum computation and neuro-
morphic computation.

The second chapter is an introduction to magnon condensates. We start with
an introduction to Bose-Einstein condensates before we move on to magnon
condensates. The magnon condensate is a relatively new field of research, and
certain aspects of the condensation has sparked debate and even some contro-
vercy [33]. We mention some properties we expect to find in Bose-Einstein
condensates, and discuss some aspects around the nomenclature and quantum
nature of the condensate.

The third chapter introduces some theoretical frameworks used to study spin
waves or magnons. In the accompanying research papers, we have used two
quite different approaches. The first approach is to describe spin waves in a
semi-classical way, through the Landau - Lifshitz - Gilbert equation and micro-
magnetic simulations. The second approach is a quantum mechanical treatment,
where the Holstein-Primakoff transformation is used to replace the spin oper-
ators by bosonic creation and annihilation operators. We also introduce the
Dyson-Maleev transformation, and how it differs from the Holstein-Primakoff
transformation. Our focus is aimed at describing the magnetization dynamics
in a thin film ferromagnetic film, since this is a common system for xperimen-
tal work on magnon condensates [2, 8]. However, we have also included some
demonstrations of antiferromagnetic systems.

The fourth chapter is a short summary where we present some results from the
papers attached to the thesis.

Thesis research

Paper I [6] investigates the interplay of two mechanisms that can be exploited
to create magnon condensates in ferromagnetic films; parallel pumping [2] and
spin-transfer torques [8]. We present how a weak spin-transfer torque can ei-
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ther assist or inhibit the parallel pumping. We conduct numerical simulations,
and present a picture on the magnon density one could expect from the two
excitation techniques, and how the density changes as a function of external
field strength and excitation strength. These parameters could act as control
parameters for the magnon condensate creation. We also present examples of
which magnon modes we can expect to get from the two excitations techniques.

Paper II [7] is a theoretical explanation on how an out-of-plane easy-axis anisotropy
assists the formation of magnon condensation in a thin ferromagnetic film. Our
results are based on analytical calculations in the Holstein-Primakoff frame-
work, in addition to micromagnetic simulations in the Landau-Lifshitz-Gilbert
framework. We argue that the anisotropy makes the depth and shape of the
thin film dispersion relation more pronounced, and that this is beneficial to the
condensation process. We also present calculations of the magnon interactions
as a function of system parameters such as the film thickness, strength of the
anisotropy, and strength of the external field applied to the film. We describe
the two condensate populations by their phase and number of magnons. We
may the study the difference in magnon number between the two condensate
populations, and the sum of their phases. The non-linear magnon interactions
of the system is a function of the distribution difference and phase sum of the
two magnon populations. We are particularly interested in knowing whether
the two condensates are likely to have a symmetric population distribution, or
if more magnons tend to gather in one of the two minima. We find that by
changing the system parameters such as the external field strength, one could
manipulate the distribution difference.

Paper III [9] presents theoretical investigations of magnon condensation in two
antiferromagnetic systems. The first system is a uniaxial antiferromagnet, while
the second system is a biaxial antiferromagnet. Similar to Paper II, we conduct
analytical calculations in the Holstein-Primakoff framework. We also conduct
calculations in the Dyson-Maleev framework, and highlight the similarities and
differences between these two bosonization techniques. We calculate the nonlin-
ear magnon-magnon interactions of the condensate magnons. Our results can
be used to predict properties such as the magnon distribution difference and
phase sum of the condensate populations.
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Chapter 1

Spintronics - Harnessing
the electron spin

In this chapter, we will get to know spintronics [1]. Spintronics is a portmanteau
of spin and electronics. Spintronics is a technology-motivated field of science
where the electron spin properties are being utilized. This is in contrast to
traditional electronics, which mainly makes use of the electron charge.

We will start the chapter with introducing the electron spin in Section 1.1. Next,
in Section 1.2 we describe the magnetic materials in which spin waves can travel.
Section 1.3 is a short introduction to spin waves. Then, in Section 1.4 we are
ready to discuss how recent discoveries in spintronics may be used to address
the challenges traditional spintronics face today. We highlight one of the true
strengths of spintronics; its prospects for integration with other novel fields
of technology, such as quantum computation and neuromorphic computation
[34, 35, 36, 23].

1.1 Spin

The electron is a tiny elementary particle with a negative charge. We can use
the charge to sustain a range of useful devices. In our daily lives, we use electric
charge currents as an energy source for our cars and household appliances, and
we use the charge as an information carrier in countless electronic gadgets.

Like all elementary particles, the electron has a feature known as spin. Spin
is a quantum mechanical property. We can measure the spin of a particle [37].
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CHAPTER 1. SPINTRONICS - HARNESSING THE ELECTRON SPIN

Yet, it is difficult to provide an intuitive picture of what spin really is. Some
like to think of the spin as an intrinsic quantum mechanical property. It differs
from the angular momentum associated with the electrons orbital motion. In
the next section, we will find out how we can use the electron spin to advance
electronics.

1.2 Magnetic materials

We have known about magnetic materials for thousands of years. I northern
Greece, close to a location known as Magnesia, people found stones that could
attract iron [38]. We have records of people playing with magnetic materials
in the ancient civilizations of Greexe, China, and Egypt [39]. We can assume
that these civilizations also made observations of static electricity. The invisible
magnetic and electric forces acting between objects at a distance was must have
been fascinating to play with, and it is likely that very early on, people had an
intuition that there is a strong relationship between magnetism and electricity.
This relationship was studied by Ørsted in 1820 [40]. The following years were
filled with a series of groundbreaking experiments by well-known names such
as Ampere, Biot, Savart, Gauss, Tesla, Edison and Faraday. Maxwell demon-
strated how electric charges and fields related to magnetic fields in his well
known Maxwell’s equations [41]. Einstein expanded on these laws in his work
on special relativity [42]. His work made it possible to study the relationship
between electricity and magnetism in different reference frames, accompanied
by solutions of how to transform the Maxwell equations accordingly.

If an electric current flows in a circular coil, it produces a magnetic field, which
can be calculated using the Biot-Savart law [43]. Although it is not a correct
picture, we can imagine that the electrons in an atom travel in a circular motion
around the nucleus, and that this orbital motion produces an orbital magnetic
moment. The orbital magnetic moment, together with the electron intrinsic spin
magnetic moment, makes up the magnetic properties of the material. The origin
of magnetism can not be fully understood within the framework of classical
physics. When analyzing magnetism in materials within statistical mechanics
and classical physics, it is found that the thermal average of the magnetization
cancels out. This statement is known as the Bohr-Van Leeuwen theorem [44, 45,
38]. Magnetic materials must be understood from a quantum physics viewpoint,
considering the electron spin and the Pauli exclusion principle.

In most materials, the magnetic moments of the individual atomic sites are
randomly oriented. In this case, the material does not have a macroscopic
magnetic field, and no ordered spin system. However, in some materials, the
moments align spontaneously, as long as the temperature is below some critical
threshold. In this thesis, we are interested in the magnetization dynamics of

2



1.2. MAGNETIC MATERIALS

Figure 1.1: A ferromagnetic chain. Here, each site has a magnetic moment
aligned parallel to each other.

Figure 1.2: An antiferromagnetic chain with two sublattices. The magnetic
moments of the two sublattices point in opposite directions. Since the magnetic
moments on the two sublattices are equal in strength, the net magnetization of
the antiferromagnet vanishes.

ferro/ferrimagnets and antiferromagnets. The critical temperature limit of the
ferromagnet and antiferromagnet is referred to as Curie temperature and Néel
temperature, respectively.

In Chapter 3, we will investigate some of the ways the magnetic moments in
a material interact with each other and their surroundings. In particular, the
exchange interaction between the moments will describe the tendency of the
moments to align in parallel or antiparallel to each other. If we assume an
isotropic homogeneous coupling, we can model the exchange interaction between
neighbouring spins as [46, 47],

Hex = −1

2
Jex

∑
i,j

Si · Sj . (1)

The sign of the exchange constant Jex can be both positive and negative. If Jex >
0, then the spins will tend to align themselves parallel to each other, favouring
ferromagnetism. If Jex < 0, an antiferromagnetic arrangements is favoured.
Fig. 1.1 illustrates a ferromagnetic spin system, while Fig. 1.2 illustrates an
antiferromagnetic spin system.

In ferromagnets, the magnetic moments align to points in the same direction.

3



CHAPTER 1. SPINTRONICS - HARNESSING THE ELECTRON SPIN

The ferromagnet has a non-zero macroscopic total magnetic moment. In prac-
tice, a slab of ferromagnetic material may have several domains [48], where the
orientation of the moments differ from domain to domain. In this case, the
resulting magnetic field of the entire slab may amount to zero.

In ferrimagnets, there are two or more sublattices, where the magnetic moments
are collinear. One of the sublattices could be antiparallel, but have weaker
magnetic moments than the other sublattice. In this case, there is a non-zero
macroscopic total magnetic moment. Since both ferrimagnets and ferromagnets
have a macroscopic total moment, we sometimes neglect distinguishing the fer-
rimagnetic character. For instance, it is common to refer to yttrium iron garnet
(YIG) as a ferromagnet, although it has a ferrimagnetic structure [48]. YIG can
be considered as a ferromagnet only in the low-energy limit [49].

In antiferromagnets, there are two or more sublattices with a total macroscopic
moment that cancels out to zero. In the most simple case, the antiferromagnet
has two antiparallel sublattices [48], so that the magnetic moments are equal in
size, but have opposite direction.

There are several other possibilities of ordered spin systems, some of which can
not be described by simple models of sublattices [48]. And often, a material
might have local variations or several domains, where the spins have different
direction.

In the present thesis, we are particularly interested in the ferrimagnetic insulator
yttrium iron garnet (YIG, Y3Fe2(FeO4)3) [49]. The garnet has a high Curie
temperature Tc = 560 K, and a complicated unit cell containing 80 atoms [48].
In the low-energy limit, YIG can be considered a ferromagnet [49]. YIG is a
material of high interest to spintronic applications [50]. Some of the reasons
for the popularity of YIG lies in the low spin wave damping of the material,
which makes it possible to transfer pure spin waves over long distances. One can
obtain thin YIG films with very low Gilbert damping parameter (see Eq. (1)),
in the range of α ∼ 10−5 or ∼ 10−4 [51, 52]. The low damping makes YIG an
excellent candidate for investigating spin wave propagation, magnon lifetimes,
and thermalization properties [52].

1.3 Spin waves

Magnetic materials are examples of ordered spin systems. Such ordered spin
systems might have one or several ground states with respect to the direction of
the magnetic moments. In the early 1930s, Bloch considered the excitations in
spin systems, and introduced the concept of spin waves [53, 54]. Bloch’s ideas
were later extended by Heller and Kramers [55], and developed into a semi-
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1.4. SPINTRONICS

classical description by Landau and Lifschitz [56], which we will return to in
Chapter 3.

In Figs. 1.1 and 1.2, we visualized the ferromagnetic and antiferromagnetic spin
systems as a chain of magnetic moments pointing in a certain direction. The
magnetic moments couple to each other through e.g. the exchange interaction
of Eq. (1) and other coupling mechanisms we will introduce in Chapter 3. If
we consider a spin system in its ground state, we can create excitations in the
system by for example flipping a spin. We could also create some other distur-
bances from the ground state, for example by creating a torque that causes the
magnetic moment to rotate. Since the magnetic moments interact with each
other, the disturbance may propagate through the system, and generate a col-
lective excitation of the spin system. Such an excitation can often be described
as a spin wave which carries energy and momentum, and we can identify them
by their wave length, frequency and amplitude. When describing the propagat-
ing spin wave we often introduce the concept of magnons. The magnon is a
quasiparticle describing the quantized spin wave. Magnons behave like particles
in the sense that they have energy, momentum and spin. They can be created
and annihilated, and they interact with each other. The magnon is bosonic
in nature, and has spin-1. Five years after Landau and Lifshitz developed
their semi-classical spin wave approach [56], Holstein and Primakoff developed
a quantum bosonization approach, focusing on the particle-like properties of the
magnon [57]. We will return to both the semi-classical approach and quantum
mechanical bosonization treatment in Chapter 3.

1.4 Spintronics

Spintronics is the field of science and technology where the electron spin prop-
erties are being utilized [1]. In some spintronic devices, the spin plays a passive
role, while in others, spin plays an active role, using spin waves as the main in-
formation carrier. The branch of spintronics that focuses on magnon dynamics
in magnetic structures is often referred to as magnonics [50, 58, 59, 60]. In gen-
eral, information transfer through spin currents can take place with or without
any accompanying charge transfer. The field where information is transferred
only through pure spin currents is promising for developing technology with low
power consumption. By transferring spin currents only, one avoids the Joule
heating associated with an electric charge travelling through a material. Most
spintronic devices still rely on travelling electrons as the main information carrier
[22]. The field of spintronics that focuses exclusively on utilizing high-fidelity
pure spin currents is magnetic insulators is referred to as insulatronics [22].

Both antiferromagnets and ferromagnets are of interest to spintronic applica-
tions. Ferromagnets usually have precession frequencies in the GHz range, while

5



CHAPTER 1. SPINTRONICS - HARNESSING THE ELECTRON SPIN

antiferromagnets have precession frequencies in the THz range [22]. Working in
the GHz regime is more convenient for experimental work and applications, and
allows for a more smooth integration with other electronic devices that also op-
erate in the GHz regime. Although the THz regime of antiferromagnets can be
challenging to work with, there has been an increased interest in investigating
the ultrafast dynamics [61]. The THz regime is in the range of far infrared light
frequencies, and one might gain advantages from coupling to optical properties
[61]. Moreover, antiferromagnets do not produce stray fields. This means they
are resistant to disturbances by external magnetic noise. However, for the same
reasons, they are also harder to manipulate and detect than their ferromagnetic
counterparts [62].

The first steps toward spin-based electronics were taken in the 80s, when mag-
netic nanostructures were beginning to gain popular interest [63]. Two ferro-
magnetic layers, separated by a thin non-magnetic layer, may interact with each
other, mainly through an indirect exchange interaction. The groups of Albert
Fert and Peter Grünberg found that a parallel or antiparallel alignment of the
magnetization of the two ferromagnetic layers would lead to the device pos-
sessing a low of high electrical resistance, respectively [64, 65]. Even a small
difference in the magnetization direction of two ferromagnetic layers can give
a large change in the measured electrical resistance, and the effect got to be
known as the giant magneto resistance (GMR). The discovery proved itself to
be very useful, as it was later used for magnetic sensors, and subsequently for
reading data in hard disk drives. Fert and Grünberg received the 2007 Nobel
Price in physics for their independent discoveries [66]. The read heads in mag-
netic hard drives was one of the big commercial successes following the research
on the GMR [67]. Another important commercialization includes the magnetic
random access memory (MRAM) [68], which is a non-volatile memory where
data is stored in magnetic domains. Other interesting suggestions for spintronic
memories include the racetrack memories [69, 70]. Today, many electronic de-
vices are based on von Neumann architectures [71], where the working memory
and CPU are separated, and must communicate with each other through a sin-
gle shared bus, which can only access one of the two components at a time.
The number of information units the bus can handle is often lower than what is
suitable for a high-performance CPU, which means that the CPU may spend a
fair amount of time waiting. This is what we refer to as the von Neumann bot-
tleneck [71]. In general, embedded systems such as the MRAM can be solutions
to the challenges of the the von Neumann bottleneck.

The successes of the magnetic hard drive read heads and the MRAM are partly
responsible for the attention the spintronics field gets from the commercial mar-
ket. The spintronics field is wide, and includes applications based on magnetic
and magneto-resistive effects [37], and developments of devices such as the spin
valve sensors used in MRAMs [72], logic devices based on tunnel junctions [73],
and sensors for rotational speed control [74] or spin-valve based current sensors
[75].
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Another reason spintronics is a successful field, is that the field makes use of syn-
ergies with other research fields, such as nanotechnology and microelectronics
[76]. Spintronic developments are well suited to be integrated with conventional
electronics [22]. However, the spintronics field may also bring more novel com-
putational devices based on Ising machines [77, 78], reservoir computing [79]
and spin wave computing components [80, 35, 81]. In particular, spintronic
platforms may be suitable for analog devices. Analog devices might be the per-
fect platforms for one of the fastest expanding fields today; machine learning
[82]. Analog architectures may utilize the evolution of a continuous physical
system to perform calculations [82, 83, 84, 85]. Analog systems can be designed
to perform a specialized task, and may do so at high speeds compared to digital
multipurpose devices. In particular, the interest in neuromorphic computation
is partly motivated by the inefficiency of digital systems such as CPUs and GPUs
to perform inherently analog tasks [36]. It is possible to use a general physical
wave system with trainable parameters to implement analog components for
machine learning [82]. A ferromagnetic film can be a suitable medium. One
can train a magnetic medium by e.g. scatterers or magnetic arrays to produce
the desired output signal based on one of several input signals [36]. The pro-
cess of specifying the desired outcome first, and then changing the device design
through feedback-based algorithms is known as inverse-design [86]. The concept
of inverse-design is well known from photonics [87], and recently, we have started
to take steps towards inverse-design magnonics [86, 88]. Such systems may play
very well together with the developments in neuromorphic computation.

We will proceed to present a few cherry-picked ideas of how spintronics can be
used in quantum computation and neuromorphic computation.

1.4.1 Spintronics and quantum computation

One of the most exciting prospects for the future of computation is the quantum
computer [14, 34]. One of the basic units of the quantum computer is the
quantum bit, or qubit. A qubit could be a quantum two-level system, where the
system finds itself to be in one of two states, or a superposition between the
two. One would need some way to prepare the qubit in the desired state, and
to read out the state. One would also need to implement single- and two-qubit
gates to manipulate the qubit state. Furthermore, the decoherence times of the
qubits must be longer than the gate operation times, and the system must be
scalable [34].

There are many suggestions on how to realize a qubit system [15, 16, 17, 18, 19].
One of the more explored applications of spin technology in quantum computa-
tion is the use of spin qubits [34]. One could use the spin state of an electron
as a two-level system. We could imagine that spin qubits can be manipulated
by spin-dependent transport, spin-orbit interactions and magnetic fields, which
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are all central aspects in the development of spintronic devices. Furthermore,
advances in novel spintronic materials could help spin qubits become more resis-
tant to decoherence. And perhaps most important, the techniques researched in
spintronics could be used to prepare and read out spin states. Spintronics could
facilitate the potentially difficult integration of quantum and classical computa-
tion. The field where magnonic systems are integrated with quantum platforms
has been referred to as quantum magnonics [89].

There has also been suggestions for different ways to utilize magnon condensates
for qubits and semi-classical qubits [3, 32, 4]. There are several advantages of us-
ing magnon condensates. Magnon condensates can have quite long decoherence
times, and magnons are not sensitive to electric noise [3].

1.4.2 Spintronics and neuromorphic computation

In neuromorphic computation, we want to mimic the way the brain works, both
in the way we write software, and also in the way we engineer the hardware.
This could be done by engineering specialized components, consisting of neu-
ron models, synaptic models, memristors, circuits and sensors, and try to apply
parallel processing and learning algorithms that are similar to how the neurons
in our brain operate and communicate to each other. We could expect that neu-
romorphic computers will perform well in pattern recognition and predictions
[90]. Another advantage of designing a whole new memory structure, is that we
may avoid the issues of the von Neumann bottleneck [71].

Spintronic analogies to synapses and neurons are already being developed [90].
Components such as the magnetic tunnel junction can be used as building blocks
in neuromorphic architectures [91]. One could also design small specialized sys-
tems where spintronic nano-oscillators act as the basic unit in the neural network
[92]. In particular, weighted spin torque nano oscillators could be promising
units in multilayer architectures. Other devices of interest include suggestions
for analog magnon adders [93] and domain-wall based leaky integrate-and-fire
neurons [94].
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Chapter 2

Magnon condensates

In this chapter we discuss the main research subjects of this thesis; magnon
condensates.

The research on Bose-Einstein condensates (BECs) started roughly a century
ago, initiated by theoretical predictions by Satyendra Nath Bose and Albert
Einstein [95, 96]. The work on bosons, Bose-Einstein statistics and the Bose-
Einstein condensate has been important, and the 2001 Nobel Price in physics
went to Cornell, Wieman and Ketterle for ”the achievement of Bose-Einstein
condensation in dilute gases of alkali atoms, and for early fundamental studies
of the properties of the condensates” [97].

We discuss general Bose-Einstein condensates in Section 2.1. We proceed to
discuss the magnon condensate and Bose-Einstein statistics in Section 2.2. In
Section 2.3, we highlight some features we expect Bose-Einstein condensates to
possess, and try to discuss whether the magnon condensate fulfils thesis criteria.
In Section 2.4, we list a few proposed applications for BECs.

2.1 Bose-Einstein condensation

Subatomic particles can be classified based on their spin quantum number.
Bosons have integer spin quantum number, while fermions have odd half-integer
spin number. The Pauli exclusion principle states that fermions, such as the
electron cannot occupy the same quantum mechanical state. Bosons, however,
do not obey these rules. Any number of bosons are allowed to occupy the same
quantum state. This means that it is possible for a large number of bosons to
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all occupy the same state. Condensation can happen when the bosons share
the lowest accessible ground state. The population becomes a macroscopic rep-
resentation of a quantum mechanical state. This macroscopic occupation of
a single quantum state is a phase transition we today know as Bose-Einstein
condensation [98].

In 1924, Einstein published some of his work on the quantum theory of the
monoatomic ideal gas [96, 99]. He had been reading through works by Bose
[95], and was inspired to continue the research on boson gases. Einstein realized
that the gas could transition into a phase where all the bosons occupied the
lowest quantum state, and he expected that this new type of phase would have
exotic properties. The theoretical predictions were solid, but there was a doubt
whether it would be possible to find a physical realization of the boson conden-
sate. If one would consider atomic gases, one would need a very high density
to reach the BEC phase. More than a decade later, Fritz London suggested
that there was some link between superfluidity in helium-4 and macroscopic
wavefunctions such as the ones predicted in the theories on Bose-Einstein con-
densation [100, 101]. These claims were controversial at the time. A few years
after Londons theories, Landau studied Bose liquids, and found that at low
enough temperatures, there exists conditions where the liquid may show super-
fluid behaviour [102]. These ideas were further investigated by Bogoliubov, who
developed models for a weakly interacting Bose-gas [103, 104].

The experimental verifications of the theories by Bose and Einstein turned out
to become a long and confusing journey [105]. Now that we look back, we can
say that the first experimental demonstration of a condensed Bose-gas might
have been the work on liquid helium-4 by Kapitza [106] and Allen and Misener
[107] in 1938. At that time, many scientists believed that liquid helium-4 could
be an example of a BEC. But this was not straight forward to establish, as there
were also some scientists that shared strong arguments for the opposing view
[105]. It turned out to be very difficult to obtain any experimental evidence on
the existence for any other type of bosonic condensate at the time.

By the time the 1990s arrived, scientists were still debating whether the liquid
helium-4 systems were true BECs [105]. But the obstacles soon loosened up
and in 1995, three different groups from the US reported observations of BEC
behaviour in ultracold atomic gases [108, 109, 110]. After further investigations,
Cornell, Ketterle and Wieman shared the 2001 Nobel Price in physics for their
initial discoveries and subsequent work on the properties of the condensates [97].
The 2000s brought further observations of BEC in a range of systems, including
quasiparticle condensates. For a comparison of some different BECs and their
properties, one may refer to Ref. [105].
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2.2 Magnon condensates and Bose-Einstein statis-
tics

Figure 2.1: Figure from Ref. [2] illustrating the experimental setup used by
Demokritov et al. when studying a magnon condensate in a thin YIG film.
Magnons are excited by parametric pumping, and the resulting magnetization
dynamics is studied by Brillouin light scattering. Spin waves travelling in the
same direction as the external field have the lowest energy. This branch of
the spin wave spectra has a double minima at finite wavevector number, where
two condensate populations can form. During pumping, magnons are excited at
opposite wavevectors at half of the pumping frequency, as illustrated by the blue
dashed arrows. The magnons thermalize down to the minima. The red marking
beneath the dispersion relation indicates the wave vector range accessible by
Brillouin light scattering.

In 2006, Demokritov et al. reported their observations of a magnon BEC at
room temperature in a thin ferromagnetic film [2]. This type of condensates are
the main topic of this thesis. Quickly after the initial publication in 2006, several
additional experiments were performed to investigate some central aspects of the
condensate, such as the thermalization process and the resulting coherence[25,
26, 27, 28, 29, 30, 31]. In most of these early experiments on room temperature
magnon BECs, the condensate is created by microwave pumping in a YIG film.
Usually, a static field is orienting the magnetization to point along a chosen
in-plane direction, and the pumping field in applied in parallel to the static
field. Fig. 2.1, taken from Ref. [2], illustrates the experimental setup used
by Demokritov et al. Magnons are excited in by parallel pumping, and the
dynamics of the system is investigated by Brillouin light scattering (BLS). The
parallel pumping technique and spin wave spectra of the thin ferromagnetic film
will be discussed in Chapter 3. For now, it is sufficient to mention that because
of the effects of the dipolar and exchange interaction, the dispersion for spin
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waves travelling along the direction of the external fields will typically have a
double minima at some finite wavevector number. Normally, BECs in other
systems are described by a single spatially uniform wave function, while the
ferromagnetic double condensate can be described by a linear combination of two
non-uniform wave-functions [30]. In 2012, experiments by Nowik-Boltyk et al.
showed that the double degenerate condensate results in the formation of a non-
uniform ground state, where the condensate shows a standing wave pattern in
real space [30].The observation is interpreted as a direct evidence that the double
condensate shows spatial coherence. Recently, it was found that one can move
magnon condensates spatially [111]. One can study the interactions between the
two condensate populations theoretically using bosonization techniques. We will
return to this topic in Chapter 3.

2.2.1 Bose-Einstein statistics

Magnons are bosonic quasiparticles, and follow Bose-Einstein statistics. Accord-
ing to Bose-Einstein statistics, the average number of bosons n̄k in a particular
state with energy ℏωk in thermal equilibrium is given by the Bose-Einstein dis-
tribution function [112],

n̄k = [e
ℏωk
kBT − 1]−1 (1)

Here, kB is the Boltzmann constant and T is the temperature. In thermal
equilibrium, the corresponding probability ρth(nk) of finding nk magnons at a
certain energy ℏωk is found by [112, 113],

ρth(nk) =
(n̄k)nk

(1 + n̄k)nk+1
. (2)

In contrast, the probability ρcoh(nk) to find nk magnons in a coherent state
|αk⟩ such as the expected condensate state is given by a Poisson distribution
[112, 113],

ρcoh(nk) =
|αk⟩2nk

nk!
e−|αk|2 . (3)

Note that the coherent probability distribution ρcoh(nk) describes a peak cen-
tered at ⟨nk⟩ = |αk|2, while the thermal distribution ρth(nk) resembles an ex-
ponential decay ∝ e−n̄k for high number of magnons [112].
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In the experiments on magnon BECs, a microwave field oscillating at frequency
ωp pumps magnons into the system and these magnons will have energies at
ωp/2. The number of pumped magnons is large conpared to the themal magnon
population. The magnons may scatter and redistribute over a broad range of
frequencies and wavevectors, before thermalizing down to the dispersion minima
at ωmin. In YIG, we expect that the spin-lattice relaxation time is low compared
to the inter-magnon decay time [112]. The injected magnon gas then has a long
life time over which its magnon number does not change drastically, and we can
think of this population as being decoupled from the surrounding system. We
now restate the Bose-einstein distribution for this population as,

n̄BEC = [e
ℏω−mu
kBT − 1]−1 (4)

Here, µ is the chemical potential. A spin system in thermal equilibrium has a
chemical potential of zero [101]. At high temperatures (kBT ≫ µ), the distribu-
tion is similar to the classical Maxwell-Boltzmann distribution, and the bosons
behave similarly to classical particles. At low temperatures (kBT ≪ µ), the
number of bosons in the lowest energy state can become macroscopically large.
As the chemical potential approaches the ground state energu, the boson gas
may undergo a phase transition into a BEC.

For systems with constant number of particles, we usually use Eq. (4) and not
Eq. (1), provided that the system is in equilibrium and there is no interaction
between the bosons of the populations [112]. As a crude model with two tem-
peratures, we could view the system of microwave pumped BEC to be consisting
of two subsystems [112]. The first is the thermal equilibrium populations for
magnons at energies higher than ωp/2. The second subsystem is the population
described by Eq. (4) for magnons at energies between ωmin and ωp/2. The sec-
ond subsystem can be said to have its own effective temperature, which is high
compared to the first subsystem.

2.3 Bose-Einstein condensate properties

Although Bose-Einstein condensation manifests in a different way in the wide
range of bosonic systems, there are some common characteristics we expect the
BEC to possess. There is wide agreement that magnons form coherent popula-
tions at the lowest energy state, and today, this phenomena is usually referred
to as a Bose-Einstein condensate. In the case of a ferromagnetic double magnon
condensate at positive and negative wave vector number, there has been exper-
imental observations of spatial interference between the two condensate pop-
ulations, which suggests that the condensate is indeed coherent [30, 101]. In
addition to this absolute requirement, we should also address another canonical
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property of Bose-Einstein condensation; the spontaneous emergence of the co-
herent state [33]. When we demand that the magnon condensate should appear
spontaneously, this means that we should not inject magnons straight into the
lowest energy state, keep driving the system in this state, and then refer to it as
a magnon BEC. One should observe that magnons that occupy one or several
other energy states thermalize down to the lowest energy state. The BEC ter-
minology is usually associated with quantum behaviour, such as superfluidity
and Josephson oscillations [114, 5, 115, 116, 117, 118, 119, 120, 117]. However,
certain aspects of the magnon condensation can be explained by semi-classical
physics [121]. Ref. [33] suggests that we could adopt a more general terminol-
ogy, and describe the magnon condensate simply as a spontaneous emergence of
coherence.

Therese has been as discussion whether the concept of Bose-Einstein condensa-
tion truly should apply to magnons [33]. One of the first questions to consider
is whether there really can be anything such as a quasiparticle BEC. Quasi-
particles have finite lifetimes. However, if the lifetime of the particle is long
compared to their scattering times, one should be able to say that condensation
is possible [33]. In the case of magnons, their lifetime is strongly dependent on
factors such as material parameters. For ferromagnets with low damping, the
ratio of the magnon lifetime to the thermalization time can be as large as 500
[2].

2.4 Bose-Einstein condensate application

BECs are interesting subjects in fundamental research, since they represent
a macroscopic quantum state. The condensates may also have some relevant
practical applications. The coherent nature of the condensates could perhaps be
useful for precision measurements, e.g. in the form of sensors. For example, one
could use BECs for highly accurate atomic clocks [122] or sensors for detecting
gravitational waves [123].

As we discussed in Section 1.1, the magnon BECs may be useful for potential
quantum computation platforms [3, 32], even if we do not take advantage of
all quantum properties of the condensate [4]. The room temperature magnon
BEC would be convenient to work with for future applications. Fig. 2.2 from
Ref. [4] illustrates a semi-classical magnon qubit. The double condensate sys-
tem is characterized by the relative phases of the condensates, and the number
of magnons in the condensate populations. In this way, the condensate can
be in a variety of states. There are examples of problems one can solve using
quit calculus that is not dependent on entanglement [35], including the quan-
tum Fourier transform [125, 126, 35]. The coupling between the magnon BEC
qubits could be implemented through magnon supercurrents and Josephson os-
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Figure 2.2: Figure from Ref. [4] illustrating how the magnon Bose-Einstein
condensate can be used as a semi-classical qubit for a quantum computation
platform. The Bloch sphere [124] in (a) shows the pure states |+⟩ (green) and
|−⟩ (blue), representing populations in the two energy minima of the dispersion
relation. The condensate can also be found in a mixed state (red). By controlling
the number of magnons in each of the condensates and the relative phase of the
condensate, one may reach any position on the Bloch sphere. Figure (b) shows
the well known dispersion relation of the ferromagnetic film. The two pure
states are indicated by the green and blue part of the symmetric dispersion.

cillations [35, 4, 120, 119]. The semi-classical magnon BEC qubit might help
bridge the gap between traditional computation and quantum computation.
The Josephson oscillations of magnon BECs [127] may become interesting also
for other applications, in light of suggestions that magnon BECs may be used
to generate and control spin-wave currents in ferromagnetic insulators [5].

Today, Bose.Einstein condensation represents a large interdisciplinary field of
research. The advances and setbacks of creating and observing different BECs
constitute a chaotic storyline. One can consult the book Universal Themes of
Bose-Einstein Condensation [98] for a valuable and entertaining summary.
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Chapter 3

Theoretical frameworks

In this chapter, we introduce some theoretical frameworks that are useful when
studying magnetic systems.

We focus on two main strategies; a semi-classical approach and a quantum ap-
proach. We will demonstrate how these two different methods can be applied to
study a magnetic system, and which information we can gain about the system
by the two approaches. Our main interest is to use the frameworks to study
magnon creation, magnon interactions, and subsequently the magnon conden-
sates. Since the experimental work on magnon condensates often is performed
for thin ferromagnetic films, we will start by focusing on ferromagnetic spin
dynamics.

Section 3.1 is a short introduction to some different ways to study magnetic
systems. Section 3.2 will introduce how to set up micromagnetic simulations
utilizing the Landau-Lifshitz-Gilbert (LLG) equation, which allows us to calcu-
late the dynamics of magnetic moments due to some effective field describing
the surroundings. We discuss the spin wave spectra of a thin ferromagnetic
film. We also discuss two ways to create magnons in the thin-film ferromagnet;
parallel pumping and spin-transfer torques. The section is intended to explain
the frameworks used in Ref. [6]. Section 3.3 introduces a quantum approach
where the Holstein-Primakoff transformation allows us to express the spin sys-
tem in terms of bosonic creation and annihilation operators. This approach is
familiar from quantum mechanics, and is more directed towards the particle-like
properties of the magnon. We discuss how one can use the expressions for the
magnon interactions to gain knowledge about the properties of the two magnon
populations in a thin ferromagnetic film. The section is meant to explain the
frameworks we used in our work in [7]. In Section 3.4 we present some examples
on how to apply the bosonization techniques from Section 3.3 to antiferromag-
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netic systems. In addition, we take a quick look at an alternative bosonization
approach; the Dyson-Maleev transformation. Since we are already familiar with
the bosonization approach from Section 3.3, we use the opportunity to present
the uniaxial and biaxial antiferromagnetic systems of our research in Ref. [9].

3.1 Studying magnetic systems

Figure 3.1: Figure from Ref. [128]. Ab initio methods are generally useful for
small systems with fast spin dynamics. Micromagnetic simulations can be used
for larger systems. Atomistic spin-dynamics (ASD) can bridge the gap between
the two modelling tactics [128].

The most accurate quantum mechanical picture of a magnetic system would
require modelling every spin as a separate unit, and then solving the n-body
problem. Only the most simple systems would be possible to solve analytically
without approximations [129].

There are several methods based on ab-initio approaches that produce useful
predictions of macroscopic material properties. For instance, density functional
theory (DFT) calculations [130] allows us to study band formation and spin
pairing of materials. This can provide us information on the expected magnetic
properties of a material, and the expected distribution of magnetization density
in a lattice [38]. Nevertheless, one can not expect to be able to explain all
features of a magnetic material starting from first-principle calculations.

In practice, most ab initio approaches are usually restricted to length scales
below a few nanometers. In general, micromagnetics are suitable for studying
spin wave dynamics of systems that are in the range of a few nanometers to a
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few micrometers, or even millimetres [129, 128]. Approaches such as atomistic
spin dynamics can bridge the gap between ab initio methods and micromagnet-
ics [131, 128]. There are more factors to consider than the size of the system.
In the micromagnetic approach we normally consider some average magnetiza-
tion for the whole lattice unit, and we lose lattice structure information. The
micromagnetic approach does not account for atomic-size defects [131].

In general, the time and length scales for our system strongly influences which
theoretical model we use to describe the systems [131, 128]. Fig. 3.1 from
Ref. [128] summarizes the typical length and time scales where micromagnetic
simulations are useful.

3.2 The semi-classical approach : micromag-
netics

Figure 3.2: The magnetization m precesses around the effective field Heff due
to the field-like-torque −m × Heff. The damping −m × (m × Heff) tends to
align the magnetization along the ground state determined by the effective field.
The damping can be manipulated by applying spin-transfer-torques via the spin
accumulation µS as in Eq. (17). The figure is from Ref. [6].

Magnetic materials usually have one or several ground states, determined by the
magnetic free energy of the system. If the individual magnetic moments are not
aligned according to the ground state of the spin system, the moments will expe-
rience a torque. This torque will induce a precession of the magnetic moments.
In addition to the free energy terms that we combine into the concept of an ef-
fective field, the system also has processes we associate with energy loss, or spin
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wave damping. There are several mechanisms that may lead to spin wave damp-
ing. In actual experimental systems, spin waves couple to their environment,
and the spin-lattice interactions lead to a loss of energy that is often realized
as phonons. But one can also have damping due to spin-spin interactions. An
example is the intrinsic spin-spin relaxation due to magnon scattering processes
involving three or more magnons [59, 132]. One can quantify the damping of a
material experimentally by conducting ferromagnetic resonance linewidth mea-
surements [132]. Altogether, the magnetic moment will pursuit to align itself
along the ground state, so that the energy is minimized. The resulting motion
is therefore a precession with damping towards the ground state.

In 1035, Landau and Lifshitz presented a dynamical equation predicting the time
development of a magnetic moment due to their surroundings magnetic free en-
ergy [56]. The equation was later extended by Gilbert to include a damping
term, describing the dissipation of energy, or magnon annihilation [133]. The
resulting Landau-Lifshitz-Gilbert equation gives us the dynamics of the magne-
tization,

ṁ = −γ(m×Heff) + α(m× ṁ) . (1)

Here, m is the reduced magnetization of unit length, α is the dimensionless
Gilbert damping constant, and γ = 1.7595 × 1011 rad T−1 s−1 is the gyromag-
netic ratio. The effective field Heff = − 1

µ0MS

∂U
∂m is the variational derivative of

the magnetic free energy U with respect to the magnetization [129]. MS is the
saturation magnetization. The effective field includes the chosen contributions
of magnetic free energies in the system, such as externally applied fields, the ex-
change interaction, dipolar interactions, magneto-crystalline anisotropies, and
the Dzyaloshinskii-Moriya interaction [134]. We will encounter these energies in
Section 3.2.3.

Fig. 3.2 illustrates the temporal dynamics of the magnetization as described
by the LLG-equation. The first term of Eq. (1) represents the precession of
the magnetization around the effective magnetic field. The term is sometimes
referred to as the field-like torque. The second term represents the damping. If
allowed enough time, a system will tend to align itself to the ground state along
the effective field.

The LLG equation was initially derived phenomenologically [56, 133], meaning
that it was not entirely derived from first principles, but partly based on exper-
imental observations. We highlight three properties of the LLG equation [135].
The first point to mention, is that the LLG equation preserves the length of
the normalized magnetization. Secondly, the equation is said to have a Lya-
punov structure [135, 129] given that the applied field is constant and we do not
include anti-damping-like terms such as the spin-transfer-torques of Eq. (17).
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This means that the free energy will never increase as a function of time. At any
point, the system will approach a state of lower energy, though this might not
necessarily be the global energy minima. Thirdly, if we ignore the damping-like
terms, the LLG equation has a Hamiltonian structure [136, 129].

The LLG equation is derived within the continuum model that assumes that the
magnetic properties of the system is continuous and smooth, instead of discrete.
For the continuum model to be valid, one assumes that the relevant length
scales of the system are large enough so that we can substitute the individual
spins with a continuous magnetization function. In general, such a classical
continuum description requires that the magnetization is nearly homogeneous
over a length scale greater than the lattice constant of the material. On the other
end, the relevant length scales should be small enough to resolve any important
features such as domain walls and vortices [137]. In this sense, one expects
that the spin direction does not change dramatically between the neighbouring
sites. In the case of a ferromagnet, the magnetic moments are near perfectly
aligned, given that the temperature is below the Curie temperature. In this case,
the magnetization can be expressed in terms of the homogeneous saturation
magnetization strength MS .

We will proceed to show how the LLG equation can be used in numerical sim-
ulations.

3.2.1 Micromagnetics

The LLG equation is nonlinear. There are few situations where one can work an-
alytically with the LLG equation, even when applying linearization techniques.
However, micromagnetic simulations based on the LLG equation have become
popular [138].

When using micromagnetic simulations to analyze a device or material, one
would start off be defining a suitable geometry and material properties. The
geometry is then discretized into cells, each defined by a magnetization unit
vector mi at position ri. The positions can be arranged using finite difference
methods, where the geometry is divided into predetermined sites, usually with
a fixed distance between each point. This is convenient when working with
geometries that are easily discretized into straight arrays of cuboids. For some
geometries and parameter choices, a primitive cuboid discretization may add up
to non-negligible errors, especially when calculating the dipolar interactions. If
one needs more flexibility in the chosen geometry one could choose an approach
based on finite element methods instead. The improved error estimates will
generally be accompanied by an increase in the computational costs.

Given some initial magnetization state, one can calculate the magnetic free
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energy, and solve the LLG equation for each successive time step. This ap-
proach gives the user a complete description of how the magnetization behaves
at each point as time advances. From this, one can analyze which spin waves are
present, and resolve them in momentum and frequency through discrete Fourier
transforms, such as in Eq. (4).

Micromagnetic simulations allow us to model the magnetization dynamics for
the magnetic moment in each cell, and one can obtain full information of which
magnons are present in the system. The simulations also allow us freedom
to investigate exciting geometries. This means that one can study and create
theoretical prototypes for devices [139, 59, 140, 86].

Working with micromagnetic simulations can be challenging. In some ways,
conducting simulations may feel a bit similar to running an experiment one
does not know the outcome of. The LLG equation in nonlinear, and even in
a simple system, one encounters hysteretic behaviour, critical thresholds for
magnon creation, critical thresholds for condensate formations, and so on.

Even though the simulations give us full information on the spin waves, it is
difficult to analyze concepts we think of as particle-like, such as the interaction
between magnons. Another challenge with the simulations is the computational
cost. Usually, the dipole-dipole energies will be the most computationally ex-
pensive term, since it needs to take into account the long range interactions
between each magnetic moment.

Micromagnetic simulations are getting popular, and there exist several options
for prewritten micromagnetic software. Many frameworks are open-source.
Some of the more popular choices of micromagnetic software includes OOMMF
[141], MicroMagnum [142], MuMax3 [134], Nmag [143], FastMag [144] and Boris
[145]. In Refs. [6] and [7] we used MuMax3m which utilizes GPU computations.
MuMax3 is based on finite-difference discretization which is sufficient for our
square film system. The software has low memory requirementsm and allows
us to model a range of phenomena, including the presence of time-dependent
external magnetic fields and spin-transfer torques [134].

3.2.2 Thin film simulations

Let us consider a thin film ferromagnet in the ŷ,ẑ-plane. The film has lateral
lengths Ly = Lz which are much larger than the film thickness Lx. We choose
to model the film as a 2D-system, where the magnetization in the thickness
direction is uniform. The film is discretized into Ny ×Nz cells, each containing
a magnetization unit vector m(ri, t).

There are several considerations to make when choosing system parameters for
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performing micromagnetic simulations. As a general rule, one should try to
keep the cell size small enough, e.g. ∆y,∆z ≤ lex, where lex is the exchange
length of Eq. (7). We would also like the cell sizes ∆x,∆y,∆z to be within two
orders of magnitude of each other [134].

After considering the resolution in real space, one should also plan for the reso-
lution one needs in momentum and frequency space [146]. We may analyze the
spin wave frequency and wavevectors by performing discrete Fourier transforms
such as in Eq. (4). The resolved waves then have a wavevector and frequency
discretization ∆k and ∆f , while the highest wavevector and frequency we can
resolve is kmax and fmax.

∆kz =
1

Nz∆z
=

1

Lz

kmax
z =

1

2∆z

∆f =
1

Nt∆t

fmax =
1

2∆t

(2)

Here, Nt and ∆t is the number of time steps and length of each time step for the
time window tF = Nt∆t we do the Fourier transform over. A good wavevector
and frequency resolution (low ∆kz and ∆f) requires a large film size Nz∆z and
time window Nt∆t. As a general requirement, we should choose a low enough
∆y,∆z,∆t to represent the spin waves, e.g. by choosing discretizations that
satisfy the Nyquist-Shannon sampling theorem [147, 148].

When choosing time discretization, one should think about which magnetization
dynamics one expects to appear in the system. Typically, ferromagnets have
frequencies in the GHz range. In the case of the thin ferromagnetic film, the
dispersion relation is well known, and we have some idea about the frequencies
and wavevector numbers of the expected spin waves in the system. If we want
to analyze high-energy magnons we must make sure that the numerical fmax of
Eq. (2) is high enough, which means we need small time steps. Furthermore, if
we study a thin ferromagnetic film with a very flat dispersion relation minima,
we may want to have a high resolution in frequency space. This requires us to
do the Fourier transformation over a large time window, and we may risk that
our condensate properties will have changed during that time window. For this
reason, one may prefer to study semi-stable states where properties such as the
magnon density does not change drastically during the relevant time window.

When running simulations, one gets information on the magnetization at each
timestep. The magnon density in the film is proportional to the average devia-
tion from the ground state. If this is along the external field in the z-direction,
then the magnon density η is determined by the longitudinal component of the
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average magnetization,

η = 1 − ⟨mz⟩ = 1 − 1

N

N∑
i

mz(yi, zi) . (3)

The frequencies and wavevectors of the magnons in our simulation are analyzed
by performing a discrete Fourier transform over the transversal magnetization
components as a function over both the spatial and temporal dimensions, i-e-
our plane directions and time. This gives us the magnon distribution ξ(ky, kz, ω)
[6],

ξ(ky, kz, ω) = |F [mx(x, y, t)]|2 + |F [my(x, y, t)]|2 . (4)

We will now introduce the magnetic free energies that are commonly included
in the effective field Heff of Eq. (1).

3.2.3 Magnetic free energies

The magnetic free energy of a ferromagnetic film typically contains terms such
as the exchange energy, dipolar energy, magneto-crystalline anisotropies and
external fields. These energy terms can be linearly combined into the effective
field Heff of Eq. (1).

Zeeman field

We can orient the magnetization of a spin system along a desired direction by
applying a sufficiently strong static field of strength H0. Id we choose to apply
the static field in the ẑ-direction, the resulting Zeeman energy reads [6],

Hext = H0ẑ . (5)

When modelling magnon excitation by parametric pumping, one may also choose
to include additional dynamic fields to this external field term, such as in Ref.
[6].
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Exchange field

The exchange field originated from the quantum mechanical Heisenberg ex-
change interaction. the exchange interaction is short-range, and usually only
computed for spins at the nearest neighbour sites. For a ferromagnet, the ex-
change field promotes a homogeneous magnetization. In the micromagnetic
formulation for a ferromagnet, the exchange field can be expressed as [134],

Hexch = 2
Aex

MS
∇2m . (6)

Here, Aex is the exchange stiffness [149], and MS is the saturation magnetization.
We define the exchange length as,

lex =
√

2Aex/(µ0M2
S) . (7)

The exchange length [137] may act as a measure for the relative importance of
the exchange energy compared to the demagnetization energy.

Dipole field

The dipole field consists of two-parts; the static demagnetization field and the
dynamic terms due to the long-range magnon-magnon interactions. In general,
the dipole field at position r can be expressed in terms of contributions from
the magnetization m(r′) at distance d = r−r′, integrated over the film volume
V [150],

Hd-d(r) =
µ0

4π
MS

∫
V

dr′
3(m(r′) · d)d

|d|5
− m(r′)

|d|3
. (8)

Here, µ0 is the permeability of free space. The dipole field can be rewritten in
terms of a 3 × 3 tensor Ĝ(r, r′),

Hd-d(r) = µ0MS

∫
V

dr′Ĝ(r, r′) ·m(r′) . (9)

Here, the tensor elements of Ĝ(r, r′) are Gα,β = − 1
4π

∂
∂α

∂
∂β

1
|d| , for coordinates

α, β = x, y, z.
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Anisotropy field

The magnetic anisotropy describes the tendency of the magnetic moments to
prefer a certain direction within the lattice. These preferred directions are
often referred to as easy-axes. The magnetic anisotropy energy accounts for the
deviation from these directions. One may also have hard-axes, which describes
directions the magnetic moments prefer not to align to.

A material might have one or several preferred axes to align to. Often, the source
of the anisotropy can come from spin-orbit interactions in the material, or from
some shape anisotropy from the dipolar interaction. One can to some extent
manipulate the anisotropy by doping the material [151]. In particular, one can
introduce anisotropy by doping the material with a heavy metal with large spin-
orbit interaction [8]. One may also introduce stress or strain to the material
[152]. Stress and strain may break the symmetry so that one can increase the
materials spin-orbit interaction which in turn affects the anisotropy.

A simple easy-axis uniaxial anisotropy along a direction n̂ can be modelled as
[134],

Hanis =
2Kan

µ0MS
(n̂ ·m)n̂ . (10)

Here, Kan > 0 is the anisotropy constant [134]. One can change the sign of the
anisotropy constant so that Eq. (10) describes a hard-axis instead. A hard-axis
anisotropy in e.g. the x̂-direction would correspond to an easy-plane in the
ŷ, ẑ-directions.

Spin wave spectra for the thin film ferromagnet

Spin waves in ferromagnets have been extensively studied for more than half a
century [153, 154, 155, 156, 157, 158, 159, 160, 112, 121].

For a YIG film where the magnetization is oriented by an external field, it is
customary to include the Zeeman, exchange, and dipole interaction terms. We
follow the procedure in Ref. [6], where we employ a thin-film approximation by
assuming that there is no variation in the magnetization in the film thickness
direction, which we will call the x̂-direction in our chosen geometry. We express
the Hamiltonian of the thin film in terms of the in-plane coordinate ρ = yŷ+zẑ,
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Heff(ρ, t) = H0ẑ + 2
Aex

MS
∇2

ρm(ρ, t)

+µ0MS

∫
S

Ĝ(ρ,ρ′)m(ρ′, t)dρ . (11)

Since the system is effectively 2-dimensional, we can integrate the dipolar ex-
pression over the thickness direction. We assume that the lateral lengths of
the film are much larger than the thickness. When calculating the dipole
terms, we may then do the integration over infinite lateral lengths [150]. Fur-
thermore, we consider a linear response regime, with magnetization vector
m(y, z, t) = ẑ + δm(y, z, t). Here, the small deviation δm(y, z, t) from the
ground state lies in the (x̂,ŷ)-plane. We retain only first-order terms in the
deviation, and we assume that the magnetization precesses with frequency ω,
so that δm(y, z, t) = δm(y, z)eiωt. Then, we can express the LLG equation as
an eigen value problem, where the eigenvalues are the precession frequencies ω.

We define the angle θk as the angle between the spin wave propagation di-
rection and the ground state direction ẑ. the magnon wavevector is then
k = |k|(cos(θk)ŷ + sin(θk)ẑ).

We proceed to define the Fourier transform pair,

m(k) = F [m(ρ)] =
1

2π

∫
m(ρ)e−ik·ρdρ . (12)

m(ρ) =

∫
m(k)e−ik·ρdk . (13)

This allows us to express the magnon energies in terms of the wavevector, and
we may obtain the dispersion relation [156, 160, 121, 6],

ω(k, θk) =

√
ωH + ωM l2exk

2 + ωM (1 − fk) sin2(θk)

×
√

ωH + ωM l2exk
2 + ωMfk . (14)

Here, ωM = γµ0MS , ωH = γH0 and lex is the exchange length from Eq. (7). The
form factor fk arising form the dipole interaction account for the film thickness,

fk =
1 − e−|k|Lx

|k|Lx
(15)
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Fig. 3.3 shows the spin-wave dispersion of Eq. (14). Spin waves travelling in the
direction of the external field (θk = 0) have the lowest energy. We note that the
dispersion relation is symmetric in k, and has a double minima at finite wavevec-
tor number k = ±Q. At high wavevectors, k ≫ l−1

ex , the exchange interaction
dominates, and the precession is circular. At small wavevectors, k < L−1

x , the
dipole interaction dominates and the precession is more elliptical. In the case
of spatially uniform precession (k = 0), the system is said to be in ferromag-
netic resonance (FMR). The spin wave spectra also gives the information on the
group velocity, which is proportional to the derivative dω/dk.

The different spin waves of a ferromagnetic system has been characterized by
Damon and Eshbach [153]. There are three types of magnetostatic spin waves
that are particularly relevant to the thin-film ferromagnet [59, 161].

Backward-volume magnetostatic spin waves (BVMSWs) are spin waves ravel-
ling in parallel to the in-plane external magnetic field (see the solid branch of
Fig. 3.3). These spin waves have low energy. The magnon condensates we dis-
cuss in this thesis are usually formed for these low energy magnons. At low
wavevector number, they have negative group velocity.

Magnetostatic surface-spin waves (MSSWs) are spin waves travelling perpen-
dicular to the external in-plane field (see the dotted branch of Fig. 3.3). They
are sometimes referred to as Damon-Eshbach modes [162], and have positive
group velocity.

Forward-volume magnetostatic spin waves (FVMSWs) are spin waves that travel
in the film plane, in a system where the external field is directed out of the film
plane. This means that the spin waves travel perpendicular to the field.

3.2.4 Magnon excitation

Now that we have derived the spin wave spectra for the thin film ferromagnet
in Eq. (14), we may discuss how to excite magnons in the system. Magnon
creation can happen through a range of mechanisms. At finite temperatures,
the spin system will experience random fluctuations. This means that a spin
system at non-zero temperature will have a population of incoherent thermal
magnons at low energies. Furthermore, magnons can be created by an external
magnetic field. In a ferromagnet, the spins in the material will align with the
direction of the magnetic field if the field is strong enough, and one can use the
field to create oscillations (or spin flips) in the material.

We will focus on two common techniques for magnon creation in ferromagnetic
thin films; parallel parametric pumping by a microwave field, and spin-transfer
torques. Both parametric pumping [2] and spin-transfer torques [8] have been
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utilized to create magnon BECs in thin ferromagnetic films.

Parametric pumping

Figure 3.3: Figure from Ref. [6]. The dispersion relation for a thin ferormag-
netic film. We show the lowest energy branch, which corresponds to spin waves
that travel in the plane in the same direction as the applied magnetic field. Spin
waves traveling perpendicularly to the field have higher energies, as indicated
by the dashed line. During parametric pumping, two magnons are created at
wavevectors of opposite signs. These magnons both have half of the frequency
of the pumping field fp. In the kz branch, these magnons are found at ±kp1 or
±kp2. In turn, they thermalize and eventually occupy the dispersion minimum
at kmin.

Parametric pumping is a non-linear excitation technique where an external mi-
crowave field creates magnons in the spin system [163]. In this way, we could
think of the pumping as a process where photons are converted into magnons.
The technique was introduced in the 1950s [164, 165, 166]. The paramet-
ric pumping ha become quite common, and was utilized to generate the first
magnon Bose-Einstein condensate in a room temperature ferromagnetic film in
2006 [2]. The relevance to the BEC has motivated further studies on magnon
creation by pumping, thermalization processes of the created magnons, and the
coherence of the emerging condensate [167, 168, 169, 170, 171]. The parametric
pumping technique has also been investigated as a tool to amplify spin waves
[172, 173, 163].

We will focus on the parallel pumping geometry. We consider a ferromagnetic
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film where the external static magnetic field orients the magnetizationalong the
in-plane direction ẑ. A microwave AC pumping field is applied in parallel to the
static external field. The pumping field of frequency ωp will couple to the longi-
tudinal component mz of the ferromagnets magnetic moments. If the pumping
field is strong enough, the coupling will subsequently induce oscillations in the
transversal magnetization components mx and my. The transversal compo-
nents will oscillate at half of the frequency of the longitudinal component.

Fig. 3.3 shows the familiar dispersion relation for the ferromagnetic film. The
solid line is the branch for magnons travelling along the direction of the magnetic
field H0ẑ. During parallel pumping, two magnons will be created at opposite
momenta, at half the pumping frequency. The excitation by parallel pumping
is most effective for elliptical modes. Circular modes have less oscillation in the
longitudinal magnetization component, which mean that they couple weaker
to the pumping field. The dipole-dominated modes at low wavevectors are
elliptical, while the exchange-dominated modes at high wavevector precess more
circularly. We therefore expect that magnons are pumped in the kz-branch at
kz = kp1, rather than at kz = kp2, illustrated in Fig. 3.3. Moreover, we expect
that the most efficient pumping occurs when kp1 = kp2 = 0, at ferromagnetic
resonance conditions, since the ellipticity is highest in that situation.

I the micromagnetic simulations, we may include the effects of the pumping field
in the Zeeman term of Eq. (5). The effective field Heff of the LLG equation in
Eq. (1) then gets the following contribution,

Hext = (H0 + hp cos(ωpt))ẑ . (16)

Here, H0 is the strength of the external static field, while hp is the strength of the
pumping field. The strength of the pumping field must overcome some critical
threshold strength before any spin wave is excited. This threshold is likely to
show some hysteretic behaviour, since it is easier to drive spin waves that are
already present in the system, than to excite spin waves in a homogeneous ”stiff”
spin system.

The parallel pumping allows us to excite magnons at a specific energy. This
means we have a high control of the types of magnons we create.

Spin-transfer torques

The spin-transfer torques (STTs) are a more recent approach to generate magnons
in thin films [63, 174]. It has been found that the STT can be used as a control
mechanism for the formation properties of the magnon BEC [175].
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In the early 1970s, Dyakonov and Perel investgated the coupling mechanisms
between charge and spin currents [176, 177, 132]. Almost 30 years later, Hirsch
realized that this coupling mechanism could be very useful, and referred to the
effect as the spin-Hall effect (SHE). In metals with strong spin-orbit interactions,
the spin-Hall effect can convert a charge current into a transverse spin current
[22].

The research on STTs can be said to begin in the late 70s with Bergers work on
domain wall motion [178, 179, 63]. The torques did not gain a lot of attention
at the time. The film dimensions were in the millimetre regime, and one needed
very high currents to achieve a significant response in the system [63]. How-
ever, as the research on interactions between the magnetic layers of the GMR
nanostructures began to gain traction in the late eighties, there were some very
productive years with much work on interlayer exchange coupling [63].

n the late nineties, Slonczewski and Berger independently published works on
multilayer structures similar to the nanostructures used when studying the GMR
effect [180, 181]. They saw that the STT in their systems was strong enough to
control the magnetization in a ferromagnetic layer. This could be used to switch
the direction of the magnetization, or to create spin waves in the ferromagnet.

The SHE also has a reciprocal mechanism where the spin current can cause a
charge current. This effect is known as the inverse spin-Hall effect (ISHE) [22].
When the ferromagnet is layered next to the normal metal, the dynamics of
the ferromagnet may exert a torque on the spins of electrons in vicinity of the
ferromagnet [182, 183, 184]. In this way, a spin current in a ferromagnetic system
may transfer spin angular momentum to an adjacent normal metal [185]. This
effect is known as spin pumping, and makes it possible to inject a pure spin
current into the metal, without the accompanying charge current [132]. The
spin-Hall and inverse spin-Hall effect allow us to create a connection between
charge-based and spin-based signals [174]. This makes spin-transfer torques and
spin pumping useful for bridging spintronic devices with electronic devices.

A typical experimental setup for exciting magnons by STT is to layer a normal
metal on top of the ferromagnet. Often platinum is chosen, as this metal has a
high spin-orbit coupling. A charge current is applied in the metal layer, which
produces a spin accumulation.

The LLG equation can be extended to account for the effects of the STTs. We
consider a thin film in the ŷ, ẑ-plane, where an external magnetic field is applied
so that the magnetization mainly points along the ẑ-direction. We may model
a spin accumulation polarized along the ẑ-axis. The resulting torque on the
ferromagnetic film interface is expressed in terms of the spin-mixing conductance
per area g⊥ ∼ [1/Ωm2] and spin accumulation density µS = µSuvecz [134],
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ṁ = −γ(m×Heff) + α(m× ṁ)

− γℏ
2e2LxMS

g⊥m× (m× µS) . (17)

Here, e is the elementary charge, and ℏ is the reduced Planck constant. Lx is
the film thickness. We see that the torque term is similar to the damping term
of Eq. (1). In our geometry, a positive (negative) spin accumulation results in
a damping-like (anti-damping-like) STT. In this way, the STT can be used as
a tool to control the damping, as illustrated in Fig. 3.2. Depending on the sign
of the the spin accumulation, the STT may be used to create magnons, or to
increase the damping and subsequently inhibit magnon creation [185, 186].

The STT is a surface technique, which usually requires strong spin currents.
This also means that the ferromagnetic film must be quite thin, often below 100
nanometers. It has been difficult to obtain magnon BECs in such thin films,
but recently STT was used to create a magnon BEC in a thin-film BiYIG [8].
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3.3 The quantum approach : boson operators

In this section, we w will study the magnons in terms of quantum mechanical cre-
ation and annihilation operators. There are several variations on bosonization
techniques. This section will focus on the Holstein-Primakoff transformation.
We will also introduce the alternative Dyson-Maleev transformation.

In 1940, five years after Landau and Lifshitz presented their classical equations
[56], Holstein and Primakoff published their quantum mechanical treatment of
the spin wave [57, 54]. They developed a representation of the spin system where
spin operators were expressed in terms of bosonic creation and annihilation
operators. The approach facilitated a quantum mechanical view, focused on the
magnon as a particle, instead of the spin waves through a lattice of spins.

The bosonization approach stared with considering the Heisenberg exchange in-
teraction [187]. Later, the approach was expanded to include a wide range of
magnetic interactions, including the dipole-dipole interactions. For a spin sys-
tem with some noise or temperature, there will always be some small deviations
from its ground state. Holstein and Primakoff were able to show that these
deviations would lead to propagating spin waves. They could also show that
magnons behave like weakly interacting bosons.

3.3.1 The Holstein-Primakoff transformation

Let us consider a system where the ground state and quantization axis lies in
the ẑ-direction. The spin components Sx and Sy can be expressed in terms of
the spin-raising and lowering operators S+ and S−,

Sx =
1

2
(S+ + S−) (18)

Sy =
1

2i
(S+ − S−) (19)

The Holstein-Primakoff spin-boson transformation [57] allows us to express the
spin operators in terms of magnon creation and annihilation operators â† and
â.
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S+ = ℏ
√

2S(
√

1 − â†â/(2S))â (20)

S− = ℏ
√

2Sâ†(
√

1 − â†â/(2S)) (21)

Sz = ℏ(S − â†â) (22)

In the case for YIG, S ≈ 14.2 [188, 189, 190] is large, and we may apply the
binomial approximation,

S+ ≈ ℏ
√

2S(â− â†ââ/(4S)) (23)

S− ≈ ℏ
√

2S(â† − â†â†â/(4S)) (24)

We proceed to introduce the magnetic free energies in terms of the spin opera-
tors.

3.3.2 Magnetic free energies

We have already encountered the magnetic free energies expressed in context
of the continuum model. Here, we will quickly list the corresponding energies
in terms of spin operators. We include the DzyaloshinskiiMoriya interaction,
which is not usually included in the YIG systems we have focused on bit is
relevant to our work in [9].

Zeeman field

The Zeeman energy due to an in-plane external magnetic field of strength H0

along the ẑ-direction reads [46, 47],

HZ = −gµBH0

∑
i

Sz
i . (25)

Here, µB is the Bohr magneton and g is the effective Landé g-factor.

34



3.3. THE QUANTUM APPROACH : BOSON OPERATORS

Exchange field

The exchange energy between the nearest neighbouring spins for an istropic
homogeneous coupling reads [46, 47],

Hex = −1

2
Jex

∑
i,j

Si · Sj . (26)

Here, Jex > 0 (or Jex < 0 ) is the ferromagnetic (or antiferromagnetic) exchange
constant.

Dipole field

The dipolar field can be expresssed as [160],

Hdip = −1

2

∑
i,j

∑
α,β

Dα,β
i,j Sα

i S
β
j , (27a)

Dα,β
i,j = (gµB)2(1 − δi,j)

∂2

∂rαij∂r
β
ij

1

|rij |
. (27b)

Here, rij is the distance vector between the spin sites i and j. α, β denote the
spatial components x, y, z.

Magneto-crystalline anisotropy field

A simple model for a magneto-crystalline anisotropy along the n̂-direction is
given by,

Han = −Kan

∑
i

(Si · n̂)2 . (28)

Here, Kan > 0 (or Kan < 0) is the easy-axis (or hard-axis) anisotropy constant
[191].
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DzyaloshinskiiMoriya interaction (DMI)

Thin films with out-of-plane symmetry breaking may have an induced Dzyaloshin-
skiiMoriya interaction [192, 134]. In our chosen geometry, it is expressed as the
z-component of the cross product between two spin sites.

HDMI = KDMI

∑
i,j

vij [Si · Sj ]z . (29)

Here,KDMI is the strength of the interaction, and the sign parameter vij ac-
counts for the ferromagnetic or antiferromagnetic symmetry, see Ref. [193].
The DMI interaction is calculated for nearest neighbouring spins. While the
Heisenberg exchange interaction promotes a parallel aligment in ferromagnets,
the DMI interaction promotes a perpendicular alignment. When these two in-
teractions combine, it may facilitate the stability of exotic magnetic structures
with winded symmetries, such as skyrmions [194].

3.3.3 Thin-film ferromagnet

We now return to the thin film ferromagnet. An external field directs the mag-
netization along the in-plane axis ẑ. We will consider an easy-axis anisotropy
in the our-of-plane direction x̂, since this is relevant to our work in Ref. [7],

Han = −Kan

∑
i

(Si · x̂)2 . (30)

The Hamilton operator for our system contains the Zeeman energy, exchange
energy, dipolar energy and anisotropy,

H = HZ + Hex + Hdip + Han (31)

The expressions for HZ, Hex and Hdip are listed in Section 3.3.2. The mag-
netic free energy terms are usually first- or second-order in the spin-operators.
From the Holstein-Primakoff transformation in Eq. (24) we may then expect
that our Hamiltonian operator will contain terms up to 6th-order in magnon
operators. Since S is large, the high-order terms are small, and we may choose
to only collect terms up to 4th-order. The dipolar interaction could ave given
us third-order terms in magnon operators. However, if we consider a thin film
ferromagnet with lateral lengths that are much larger than the film thickness,
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we can view the system as being quasi-2D. It can then be shown that the off-
diagonal terms (α ̸= β) of Eq. (27b) vanishes. [195, 160]- For this reason, our
Hamiltonian operator can then be divided into a two-magnon part H2 and a
four-magnon part H4

H = H2 + H4 . (32)

We note that when swapping operators we may end up with renormalization
terms. However, we will not collect any 2-magnon renormalization terms, as
they are an order 1/S smaller in magnitude.

The two magnon Hamiltonian gives us the magnon energies, while the four-
magnon Hamiltonian gives us the magnon interactions. We will discuss them
separately in the following sections.

Spin wave spectra

We express the bosonic operators through their Fourier transform,

âj =
1

N

∑
k

e−ikrj âk, (33)

â†j =
1

N

∑
k

eikrj â†k. (34)

When evaluating sums over multiple Fourier terms, the following relation is
useful,

∑
k

eik(rj+rj′ ) = Nδj,j′ (35)

Here, δj,j′ is the Kronecker delta function, and N is the number of sites we sum
over.

The general two-magnon Hamiltonian can be expressed as,

H2 =
∑
k

Akâ
†
kâk +

1

2
Bkâkâ−k +

1

2
B∗

k â
†
kâ

†
−k. (36)

Here, the expressions for Ak and Bk will contain contributions from the magnetic
free energies of the system. The two-magnon Hamiltonian can be diagonalized
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by utilizing the Bogoliubov transformation,

âk = uk ĉk + vk ĉ
†
−k (37)

â†k = uk ĉ
†
k + vk ĉ−k (38)

Here, uk and vk are the Bogoliubov constants, which we express as [188],

uk =

√
Ak + ℏωk

2ℏωk
(39)

vk = sgn(Bk)

√
Ak − ℏωk

2ℏωk
(40)

Here, sgn() is the sign-function. After diagonalizing the system, the magnon
dispersion in the Bogoliubov operator basis gives us the spin wave spectra,

H2 =
∑
k

ℏωk ĉ
†ĉ =

√
Ak − |Bk|2. (41)

Here, ĉ† ( ĉ) are the creation (annihilation) operators in the new Bogoliubov
basis.

In Ref. [7] we derive the spin wave spectra of a ferromagnetic film with out-
plane anisotropy using the Holstein-Primakoff transformation, and express the
lower branch of the magnon dispersion as,

Ak = Dexk
2 + γ(H0 + 2πMSfk) −KanS, (42)

Bk = 2πγMSfk −KanS. (43)

Here, Dex is the exchange stiffness (see Ref. [7]) and fk is the formfactor[196,
197] from Eq. (15).

Magnon interactions

The thin film Hamiltonian operator of Eq. (31) will produce terms that are
fourth order in magnon operators. Each of these terms will produce 16 four-
operator terms in the new Bogoliubov basis after we apply Eq. (38). These
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terms are evaluated in the two minima k = ±Q. Due to conservation laws,
there are only a few possible combinations of four-magnon operator terms that
appear in the final interaction Hamiltonian. For our thin-film ferromagnet, the
general expression of the nonlinear four-magnon interactions consists of intra-
and inter-band contributions,

H4 = Hintra + Hinter (44)

Hintra = A(ĉ†Qĉ
†
QĉQĉQ + ĉ†−Qĉ

†
−Qĉ−Qĉ−Q) (45)

Hinter = 2B(ĉ†Qĉ
†
−QĉQĉ−Q)

+ C(ĉ†QĉQĉQĉ−Q + ĉ†−Qĉ−Qĉ−QĉQ + h.c.)

+ D(ĉ†Qĉ
†
Qĉ

†
−Qĉ

†
−Q + h.c.) (46)

Here, A,B,C,D are 4-magnon interaction amplitudes, see Ref. [7] for details.
The 4-magnon interactions have been studied earlier in Refs. [198, 195, 188,
47] for ferromagnetic systems without anisotropy. Ref. [7] lists the calculated
amplitudes we found for A,B,C,D for a ferromagnetic film with out-of-plane
anisotropy.

We now proceed to perform the Madelungs transform to describe the two
magnon condensation populations with a coherent phase ϕ±Q and a popula-
tion number N±Q [188, 47],

ĉ±Q =
√
N±Qe

iϕ±Q . (47)

The total number of condensed magnons is Nc = NQ +N−Q while the distribu-
tion difference is δ = NQ−N−Q. We also define the total phase as Φ = ϕQ+ϕ−Q.
The four-magnon Hamiltonian is then expressed as,

H4(δ,Φ) =
N2

c

2

(
A + B + D cos(2Φ) + 2C cos(Φ)

√
1 − δ2

N2
c

− (B −A + D cos(2Φ))(
δ2

N2
c

)
)

(48)

We want to know which values of δ and Φ we are likely to find our condensates
in. We should then find the minima of H4. We find five critical points that may
be candidates for being valid minima [47],
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δ1 = 0,Φ1 = 0; (49a)

δ2 = 0,Φ2 = π; (49b)

δ3 = 0,Φ3 = cos−1(− C

2D
); (49c)

δ4 = Nc

(
1 − (

C

B −A + D
)2
) 1

2 ,Φ4 = 0; (49d)

δ5 = δ4,Φ4 = π. (49e)

The second derivative discriminant D of the function determines whether any
of the critical points are a minima,

D =
[
(
∂2H4

∂δ2
)(
∂2H4

∂Φ2
) − (

∂2H4

∂δ∂Φ
)2
]

(50)

The discriminant should be positive for the critical point to be a maxima or

minima. To find the minima, we require (∂2H4

∂δ2 ) > 0 and (∂2H4

∂Φ2 ) > 0.

Whether the critical points listed in Eq. (49) may be minimas, depends on
the numerical values of the prefactors A,B,C,D. The prefactors are functions
of material and system parameters such as the external field strength, film
thickness, and strength of the anisotropy. In Ref. [7] we find that the anisotropy
can affect whether we are likely to find a symmetric or asymmetric magnon
population distribution between the two magnon populations.

3.4 Antiferromagnetic systems

In this section, we will apply the Holstein-Primakoff bosonization technique to
two antiferromagnetic systems. We will also include a short demonstration of
the alternative Dyson-Maleev approach.

We model our antiferromagnetic system as a chain of magnetic moments that
alternate between pointing in the positive or negative ẑ-direction, as illustrated
in Fig. 1.2. We will refer to these as sublattice A and B. In antiferromagnets,
the net magnetization cancels out, and the dipolar interactions are very weak.
For this reason, an antiferromagnetic model usually does not include the dipolar
interactions.

We present a general Hamiltonian that contains contributions for an external
magnetic field in the ẑ-direction, the exchange interaction, the DMI interaction,
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and two anisotropy terms. The first anisotropy is an easy axis in the in-plane
direction ẑ, while the second term is a hard axis in the out-of-plane direction x̂,

H = − gµBH0

∑
j

Sz
j + Jex

∑
i,j

Si · Sj + KDMI

∑
i,j

vij [Si · Sj ]z

−KAz

∑
j

(Sj · ẑ)2 + KAx

∑
j

(Sj · x̂)2 (51)

Here, Jex > 0 is the antiferromagnetic exchnge constant, KAz > 0 and KAx > 0
are the easy-axis and hard-axis anisotropy strengths, and KDMI is the DMI-
constant. Se Ref. [9] for details. the sign parameter vij = −vji accounts for the
DMI symmetry, since we model the DMI vector as KDMI = vij ẑ with opposite
sign for the sublattices [193].

3.4.1 The Holstein-Primakoff transformation

The spin operators at sublattice A are,

S+
i ≈ ℏ

√
2S(âi − â†i âiâi/(4S)) (52)

S−
i ≈ ℏ

√
2S(â†i − â†i â

†
i âi/(4S)) (53)

Sz
i = ℏ(S − â†i âi) (54)

The spin operators at sublattice B are,

S+
j ≈ ℏ

√
2S(b̂†j − b̂†j b̂

†
j b̂j/(4S)) (55)

S−
j ≈ ℏ

√
2S(b̂j − b̂†j b̂j b̂j/(4S)) (56)

Sz
j = −ℏ(S − b̂†b̂) (57)

3.4.2 The Dyson-Maleev transformation

We proceed to present the spin operators in the Dyson-Maleev bosonization
[199].

The spin operators at sublattice A are,
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S+
i ≈ ℏ

√
2S(âi − â†i âiâi/(2S)) (58)

S−
i ≈ ℏ

√
2S(â†i ) (59)

Sz
i = ℏ(S − â†i âi) (60)

The spin operators at sublattice B are,

S+
j ≈ ℏ

√
2S(b̂†j − b̂†j b̂

†
j b̂j/(2S)) (61)

S−
j ≈ ℏ

√
2S(b̂j) (62)

Sz
j = −ℏ(S − b̂†b̂) (63)

This transformation differs in the sense that we do not need to apply any ap-
proximation like we did from Eq. (22) to Eq. (24). However, we see that S+

and S− no longer commute. Furthermore, we see that some combinations,
e.g. S−

i S−
j , no longer produce any 4-magnon or 6-magnon operator terms. the

question then arises whether one can expect to get similar results using the
Holstein-Primakoff transformation and Dyson-Maleev transformation[199]. In
[9] we address this issue for a uniaxial antiferromagnetic system, and demon-
strate that the Dyson-Maleev approach might give non-Hermitian terms in the
four-magnon interactions. We will return to this topic in Section 3.5.

3.4.3 Spin wave spectra

The approach to analyze the spin wave spectra is similar to the approach dis-
cussed in Section 3.3. We may apply a Fourier transform to the magnon oper-
ators and their complex conjugates,

âi =
1

N/2

∑
k

e−ikrj âk, (64)

b̂j =
1

N/2

∑
k

e−ikrj b̂k. (65)

We define the following energies,
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ωE = 2SJex (66)

ωD = 2SKDMI (67)

ωAx = SKAx (68)

ωAz = SKAz (69)

ωH =
1

2
µH0. (70)

We proceed by presenting two systems that are relevant to the work in Ref. [9];
an uniaxial antiferromagnet with DMI-interaction, and a biaxial antiferromag-
net without DMI-interaction.

3.5 Uniaxial antiferromagnet with DMI

We consider the Hamiltonian of in the case where Kx = 0. In the presence of
the DMI-interaction, the spin wave spectra of the antiferromagnet may have
minimas at finite wavevector k = ±Q [200]. We follow the approach in Ref.
[193] to derive the spin wave spectra. The two-magnon Hamiltonian can be
diagonalized using a Bogoliubov transform,

âk = ukα̂k − vkβ̂
†
−k, (71)

b̂−k = −vkα̂k + ukβ̂
†
−k. (72)

Here, α̂ and β̂ are the magnon operators in the new Bogoliubov basis. uk and
vk are given by [193],

u2
k =

√
(ωE + ωAz)2

(ωE + ωAz)2 − (ωE cos(k) + ωD sin(k))2
+ 1 (73)

v2k =

√
(ωE + ωAz)2

(ωE + ωAz)2 − (ωE cos(k) + ωD sin(k))2
− 1 (74)

In Ref. [9] we find that the spin wave spectra of the two magnon populations
are,
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ωα =
√

(ωE + ωAz)2 − (ωE cos(k) + ωD sin(k))2 + ωH , (75)

ωα =
√

(ωE + ωAz)2 − (ωE cos(k) + ωD sin(k))2 − ωH . (76)

Figure 3.4: Figure from Ref. [9]. The dispersion relation for the uniaxial
antiferromagnet of Eq. (76) is plotted as a function of wavevector k. In the
presence of the easy axis anisotropy, the external field breaks the degeneracy
of the dispersion relation for the magnon populations α and β of right handed
(clockwise) and left handed (counterclockwise) magnetization precession (see
Ref. [193]). The DMI interaction shifts the two bands horizontally, so that
the minimas appear at finite wavevector numbers. The strengths of the DMI-
interaction, anisotropy and external field compared to the exchange energy are
KDMI/Jex = 0.03, KAz/Jex = 0.05 and H0/Jex = 0.01.

We plot the dispersion relation of Eq. (76) in Fig. 3.4. We find that the external
field will create a band splitting, while the DMI interaction shifts the dispersions
horizontally so that we get a double minima at finite wavevector number k =
±Q. We are interested in the populations that form in the two minima, and
proceed to investigate the four-magnon terms that are combinations of α̂−Q,

β̂Q, and their hermitian conjugates. The expression for the magnon interactions
becomes,

H4 =A1,2[α̂−Qβ̂
†
Qβ̂Qβ̂Q + β̂†

Qα̂−Qα̂
†
−Qα̂

†
−Q]

+A3,4[α̂−Qα̂−Qβ̂Qα̂
†
−Q + β̂†

Qβ̂
†
Qβ̂Qα̂

†
−Q]

+B[α̂−Qα̂−Qβ̂Qβ̂Q + h.c.]

+C[α̂−Qα̂−Qα̂
†
−Qα̂

†
−Q + β̂Qβ̂Qβ̂

†
Qβ̂

†
Q]

+D[α̂−Qα̂
†
−Qβ̂Qβ̂

†
Q] (77)

Ref. [9] lists the calculated amplitudes A1,2, A3,4, B, C,D we found. We perform
the Madelung transformation,

⟨α−Q⟩ →
√
Nαe

iϕα , (78)

⟨βQ⟩ →
√
Nβe

iϕβ . (79)

Here, Nα and Nβ are the number of magnons in the two condensate populations,
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while ϕα and ϕβ are their phases. We proceed to define

A =
1

2
(A1,2 + A3,4), (80)

∆A =
1

2
(A1,2 −A3,4), (81)

Nc = Nα + Nβ , (82)

δ = Nα −Nβ , (83)

Φ = ϕα + ϕβ . (84)

We then arrive at the following expression for the four-magnon Hamiltonian,

H4 =
N2

c

2

[
(
1

2
D + B cos(2Φ))(1 − (

δ

Nc
)2) + C(1 + (

δ

Nc
)2) (85)

+

√
1 − (

δ

Nc
)2(2A cos(Φ) + 2i

δ

Nc
sin(Φ)∆A)

]
(86)

In the Holstein-Primakoff transformation, we find that ∆A = 0. However, in
Ref. [9] we find ∆A ̸= 0 using the Dyson-Maleev approach, and the interaction
generally has a non-Hermitian term. However, we find that the real part of
Eq. (86) is minimized for Φ = 0 or Φ = π. In these critical point, the imaginary
term of Eq. (86) vanishes. In this sense, the Holstein-Primakoff transformation
and Dyson-Maleev transformation results in the same predictions for which
distribution difference δ and phase sum Φ will minimize Eq. (86).

3.6 Biaxial antiferromagnet without DMI

We consider the Hamiltonian of Section 3.5 in the case where KDMI = 0. This
system is similar to the one studied in Ref. [201]. For materials such as NiO we
would assume that Jex > KAx > KAz [201, 191]. We present calculations in the
Holstein-Primakoff transformation only.

The spin wave spectra has a minima at k = 0 [201], and the magnon energies
in the minima are given by,

ω2
α,β =

1

4
(ωE + ωAx + 2ωAz)2 + ωH − 1

4
(ω2

Ax + ω2
E)

± 1

2

√
4ωH((ωE + ωAx + 2ωAz)2 − ω2

E) + ω2
Eω

2
Ax (87)
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Here, β-magnons have the lowest energy. We see that the degeneracy of is broken
even if H0 = 0, due to the presence of the out-of-plane hard-axis anisotropy. To
diagonalize the Hamiltonian, we apply the following Bogoliubov transformation
for k = 0,

â =uαα̂− vβ β̂
† (88)

b̂† = − vαα̂ + uβ β̂
†. (89)

We use the approximated Bogoliubov parameters evaluated at k = 0 from Ref.
[201],

uα,β =

√
(ωE + ωAx + 2ωAz)2 + ωα,β

2ωα,β(H0 = 0)
(90)

vα,β =

√
(ωE + ωAx + 2ωAz)2 − ωα,β

2ωα,β(H0 = 0)
(91)

We are interested in analyzing the interactions of the magnon population of
lowest energy. We will only collect four-magnon operator terms that are com-
binations of β̂ and β̂†,

H4 = C2(β̂β̂β̂†β̂†) + G5,8(β̂β̂β̂β̂ + h.c.) + G6,7(β̂β̂β̂β̂† + h.c.) (92)

We present the interaction amplitudes C2, G5,8, G6,7 in Ref. [9]. We proceed
to perform the Madelung transformation,

⟨β⟩ →
√

Nβe
iϕβ . (93)

Here, Nβ and ϕβ are the magnon number and phase of the condensate popula-
tion. We arrive at the following expression for the magnon interactions,

H4/(N2
β) = C2 + 2G6,7 cos(2ϕβ) + 2G5,8 cos(4ϕβ) (94)

In Ref. [9] we find that G5,8 = 0. The possible critical points for Eq. (94) is
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then,

ϕβ
1 =

1

2
cos−1(− C2

2G6,7
), (95a)

ϕβ
2 = nπ − 1

2
cos−1(− C2

2G6,7
). (95b)

In Ref. [9] we find that | C2

2G6,7
| > 1, so there are no valid critical points with

respect to the phase ϕβ .
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Chapter 4

Summary : controlling
magnon condensates

This final chapter gives some thoughts on which information on magnon BECs
we gained using the theoretical frameworks presented in Chapter 3.

4.1 Magnon creation

The parallel pumping and STT techniques have both been used to create magnon
condensates in thin ferromagnetic films [2, 8]. In Ref. [6], we investigated
magnon excitation by the two techniques, and a combination of them. We per-
formed micromagnetic simulations based on the LLG equation. We presented a
picture on how the density of magnons varied as a function of the external field
strength H0 and pumping strength hp. We showed how this pictures changed
as we applied a weak damping-like or anti-damping like STT. Fig. 4.1 from
[6] shows how the presence of the torques affect the expected magnon densi-
ties. The simulations confirm that the torque can be used to assist or inhibit
magnon creation. We expect that the STT can be used to assist and inhibit
the formation of the magnon condensate. The possibility of using the STT as
a control of the magnon condensate has also been investigated experimentally
in Ref. [175]. In Ref. [6] we also performed simulations of magnon creation by
STT only. We investigated which magnons were excited by the two methods,
and confirmed our expectations that the parallel pumping produces dipole dom-
inated spin waves along the direction of the external field, while STTs produce
magnons at a wide range of different energies and wavevectors.
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4.2 Magnon energy spectra

If the ferromagnetic film is very thin, the minima in the spin wave spectra of
Eq. (14) is very flat. This is perceived as challenging got the condensation
process, since magnons at roughly the same energy can have a wide variety in
wavevector number. In Ref. [7], we found that the presence of an out-of-plane
easy-axis anisotropy makes the minima deeper and increases the curvature. We
argue that both effects are beneficial for the condensation process. Our findings
support experimental work by Divinskiy et al. [8]. Fig. 4.2 shows the magnon
density from micromagnetic simulations, comparing a system with and without
anisotropy. The simulations support the analytical arguments that the presence
of the anisotropy is beneficial for the condensation process. The condensate
population in the film with anisotropy is clearer, and has less variation in energy
and wavevector number.

In Ref. [9] we studied the spin wave spectra of a uniaxial antiferromagnet. If
the system is only influenced by the exchange interaction and in-plane easy-
axis anisotropy, then the spin wave spectra has a minima at k = 0. If we add
an external magnetic field, we can create a band splitting. If we further add
the presence of the DMI interaction, then this induces a horizontal shift in the
spectra, so that we will have two non-degenerate minima at finite wavevector
number. We also studied a biaxial antiferromagnetic system without the DMI
interaction, similar to Refs. [201, 191]. In addition to the easy in-plane axis, the
system now was an out-of-plane hard-axis. The spectra has minima at k = 0,
and due to the hard-axis, the minima is non-degenerate, even in the absence
of the external magnetic field. Our interest is then to investigate the magnon
interactions in the condensate populations.

4.3 Magnon interactions

In Ref. [7] we calculated the magnon interactions between the two condensate
populations in a ferromagnetic film with out-of-plane easy axis anisotropy. The
magnon interactions depend on parameters such as the strength of the external
field, the film thickness, and the anisotropy strength. The magnon interactions
also depends on condensate parameters such as the difference in magnon number
and the phase sum of the two populations. By minimizing the magnon interac-
tion expression, we may predict whether the system may have a symmetrical or
asymmetrical distribution of magnons between the two condensate populations.
The anisotropy and film thickness are usually fixed parameters for a system, but
the external field strength may be used to control the energy levels and magnon
interactions, which in turn controls the properties of the condensate.
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In Ref. [9], we calculated the magnon interactions between the two conden-
sate populations in a uniaxial antiferromagnetic system. We also calculated
the magnon interactions for the lowest condensate population in a biaxial anti-
ferromagnetic system. In the uniaxial case, we presented the criteria to pre-
dict the phase sum of the two condensate populations, and predictions on
the magnon distribution between the two condensates. We also compared the
Holstein-Primakoff bosonization and the Dyson-Maleev bosonization technique.
We found that although the Dyson-Maleev approach gives the same spin wave
spectra, we may get non-Hermitian terms in the expression for the magnon
interactions. In the case of the uniaxial antiferromagnetic system, we found
that this would not affect the predictions on the condensates phase sum and
distribution difference.
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Figure 4.1: Figure from Ref. [6]. the relative magnon density found by mi-
cromagnetic simulations during parallel parametric pumping of a thin (100nm)
YIG film. H0 and hp are the strengths of the static external field and pumping
field. In a) and c) an STT due to a weak spin accumulation µS is applied.
a) Damping-like STT, µSg⊥/e = −1 × 1010 A m−2

a) No STT, muS = 0
c) Anti-damping-like STT, µSg⊥/e = 1 × 1010 A m−2

The simulation series for each fixed H0 represent one column of he figures, where
each pixel represents the relative magnon density from Eq. (3). See Ref. [6] for
parameters and details.
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Figure 4.2: Figure from Ref. [7]. Magnon distribution from micromagnetic
simulations of a 50nm thick ferromagnetic film. Magnons are created by STT.
In a) and b), there is no anisotropy in the system. I c) and d) there is an easy-
axis out-of-pane anisotropy. We show the early stages of magnon excitation
i a) and c). After some time, the system reaches a quasi-equilibrium steady
state, and we see that the magnons have condensed. The dashed line is the
analytical spin wave spectra. Due to the nonlinear magnon interactions, we
may observe a spectrum shift in the simulated magnon dispersion compared to
the noninteracting analytical results. See Ref. [7] for parameters and details.
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The combination of parametric pumping and spin-transfer torque is a powerful approach that enables high-
level control over magnetic excitations in thin-film ferromagnets. The excitation parameters, such as pumping
power and external field strength, affect the instabilities of individual magnon modes. We theoretically explore
how the simultaneous effects of parametric pumping and spin transfer torque influence these magnetic insta-
bilities in a thin-film ferromagnet. Within the Landau-Lifshitz-Gilbert framework, we perform micromagnetic
simulations of magnon excitations in yttrium iron garnet by pumping, spin transfer torque, and a combination
of the two. We find that consistent with experimental results, the magnitude and direction of the spin-transfer
torque tune the parametric instability thresholds.

DOI: 10.1103/PhysRevB.106.024423

I. INTRODUCTION

Spin waves function as information carriers in spintronics.
Magnons, the quanta of spin waves, may be created in fer-
romagnetic materials through numerous methods. Here, we
address two common approaches for exciting the magnetiza-
tion dynamics of thin-film ferromagnets.

Parametric pumping is a conventional nonlinear excita-
tion method that uses a microwave field [1,2]. There is an
applied AC magnetic field in the same direction as the ex-
ternal static magnetic field orienting the magnetization during
parallel parametric pumping. The alternating pumping field
induces oscillations in the ferromagnetic spin system. When
the strength of the pumping field exceeds a certain threshold,
an instability occurs that creates two magnons with opposite
momenta. Energy conservation ensures that the two magnons
have a lower frequency than the driving microwave field.
Parametric pumping was introduced in the 1950s [3,4,6]. In
2006, parametric pumping generated Bose-Einstein condensa-
tion (BEC) of magnons in yttrium iron garnet (YIG) at room
temperature [7]. This work motivated further discussions on
magnon creation by pumping, thermalization processes of the
created magnons, and the coherence of the emerging conden-
sate [5,8–21]. Parametric pumping was further investigated as
a tool for spin wave amplification [22,23].

Spin-transfer torque (STT) is a more recent approach to
create magnons [24,25]. An external current or voltage in-
duces a magnetization torque. One possible realization is to
pass an electrical current through an adjacent metal such that
the spin-Hall effect creates a spin accumulation in the metal.
The spin accumulation may subsequently generate a torque on
the magnetization in the neighboring ferromagnet. The STT
may be employed to either inhibit or assist magnon creation
because the torque has a component that acts dampinglike
or antidampinglike, depending on the sign of the spin accu-
mulation [26–30]. This control over the damping can create
spin-torque oscillators. In this case, the current or voltage
controls the oscillator frequency. STT can also be used to

switch the magnetization configuration [31–33]. The latter
feature enables concepts for magnetic random access mem-
ories. Recently, STT was utilized to create BEC in thin-film
BiYIG [34].

Combining parametric pumping and STT achieves high-
level control over magnon creation. It is known that STT
tunes the instability thresholds of the parametric pumping
mechanism [26,27,35]. Lauer et al. [35] merged parallel para-
metric pumping and STT on a thin (100 nm) YIG film. They
monitored the resulting magnetization dynamics by Brillouin
light scattering spectroscopy. The experiment revealed that
the STT tunes the effective damping, thereby changing the
threshold pumping power required to excite magnons by para-
metric pumping. Motivated by this experimental study, we
conduct a large-scale micromagnetic simulation of a similar
system. We apply both a parallel pumping field and STT.
We determine the temporal evolution of the magnetization,
from which we determine the stability phase diagram of spin-
transfer-assisted parametric pumping. We also resolve the
wave vector dependence on the nonequilibrium population of
magnons.

We organize the remainder of this paper as follows. First,
Sec. II introduces the theoretical framework. Therein, we
present the Landau-Lifshitz-Gilbert (LLG) equation that de-
scribes the magnetization dynamics of the thin YIG film.
Section III presents the setup for our micromagnetic sim-
ulations. To separate the effects of magnon excitation by
parametric pumping and STT, we perform different sim-
ulations for the two phenomena. Finally, we simulate the
combination of parametric pumping and STT applied to the
YIG film. Section IV presents the results, and Sec. V summa-
rizes our findings.

II. MAGNETIZATION DYNAMICS

We calculate the time evolution of the unit vector along the
magnetization direction m(r, t ) within the LLG framework.

2469-9950/2022/106(2)/024423(8) 024423-1 ©2022 American Physical Society
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The LLG equation reads

ṁ = −γ (m × Heff ) + α(m × ṁ). (1)

Here, γ = 1.7595 × 1011 rad T−1s−1 is the gyromagnetic ra-
tio, and α is the dimensionless Gilbert damping constant.
The effective field Heff includes contributions from the ex-
change field Hexch, the external magnetic field Hext, and the
dipole-dipole field Hd-d. In our free energy we disregard the
crystalline anisotropy since it is very small in YIG.

The exchange field arises from the Heisenberg exchange
interaction between neighboring spins, and it promotes a ho-
mogeneous magnetization,

Hexch = 2
Aex

MS
∇2m. (2)

Here, Aex is the exchange stiffness, and MS is the saturation
magnetization.

We can orient the magnetization in YIG along a desired
direction by applying a sufficiently high static field of strength
H0. We define a film in the (x, y) plane and choose to apply the
static field in the x̂ direction,

Hext = H0x̂. (3)

The external field term may include additional dynamic fields
applied to the film.

The dipole-dipole field consists of the static demagne-
tization field and dynamic terms due to the long-range
magnon-magnon interactions. In general, the dipole field at
position r can be expressed in terms of contributions from the
magnetization m(r′) at distance d = r − r′ integrated over the
film volume V ,

Hd-d(r) = μ0

4π
MS

∫
V

dr′ 3[m(r′) · d]d
|d|5 − m(r′)

|d|3 . (4)

Here, μ0 is the permeability of free space. The dipole field can
be expressed in terms of a 3 × 3 tensor Ĝ(r, r′) [36,37],

Hd-d(r) = μ0MS

∫
V

dr′Ĝ(r, r′) · m(r′). (5)

The tensor elements of Ĝ(r, r′) are Gαβ = − 1
4π

∂
∂α

∂
∂β

1
|d| for

α, β = x, y, z.

A. Spin-wave spectra

We now employ the thin-film approximation by assuming
that the magnetization is uniform in the ẑ direction. Therefore,
the thin film is effectively two-dimensional. In the expression
for the dipole field Eq. (5), we average across the variation in
the ẑ direction by integrating over the film thickness Lz. The
total effective field of the LLG equation becomes a surface
integral over the in-plane coordinate ρ = xx̂ + yŷ,

Heff(ρ, t ) = H0x̂ + 2
Aex

MS
∇2

ρm(ρ, t )

+ μ0MS

∫
S

Ĝ(ρ, ρ′)m(ρ′, t )dρ′, (6)

where the effective two-dimensional dipole tensor becomes

Ĝ(ρ, ρ′) = 1

Lz

∫ Lz/2

−Lz/2
dz

∫ Lz/2

−Lz/2
dz′Ĝ(r, r′). (7)

FIG. 1. The magnetization m precesses around Heff due to the
fieldlike torque −m × Heff. The damping −m × (m × Heff ) can be
tuned by applying an STT. The torque acts as a dampinglike or anti-
dampinglike torque depending on the sign of the spin accumulation
μS . The precession in the (y, z) plane is elliptical due to the dipole
contributions from the finite film thickness in the ẑ direction.

We will consider the nonlinear response of the magnetization
to the parallel pumping field in our numerical investigations
presented below. However, relating our results to the linear
response regime is also instructive.

In the linear response regime, the magnetization direction
is m(ρ, t ) = x̂ + δm(ρ, t ), where the small out-of-equilibrium
deviation δm(ρ, t ) lies in the (y, z) plane, as shown in Fig. 1.
Additionally, we assume the magnetization is precessing with
frequency ω; thus, δm(ρ, t ) = δm(ρ)eiωt . We insert the effec-
tive field into the LLG Eq. (1). In the linear response regime,
we retain only the first-order terms in the deviation δm(ρ, t ).
We proceed to define the spatial Fourier transforms,

m(k) = F[m(ρ)] = 1

2π

∫
m(ρ)e−ik·ρdρ, (8)

m(ρ) =
∫

m(k)e−ik·ρdk. (9)

Here, k = |k|(cos θk x̂ + sin θk ŷ) is the magnon wave vector.
We can express the LLG equation as an eigenvalue problem,
where the precession frequencies are the eigenvalues. We may
then obtain the well-known dispersion relation for an extended
thin film [36,38,39],

ω(k, θk ) =
√

ωH + ωMl2
exk2 + ωM (1 − fk ) sin2 θk

×
√

ωH + ωMl2
exk2 + ωM fk. (10)

Here, we have defined ωM = γμ0MS , ωH = γμ0H0, and the

magnetic exchange length lex =
√

2Aex/μ0M2
S . The form fac-

tor fk accounts for the film thickness,

fk = 1 − e−|k|Lz

|k|Lz
. (11)

The spin waves traveling in the x̂ direction (θk = 0) have
the lowest energy. This lower magnon branch is shown in
Fig. 2. It is symmetric in k and has a double minimum at
k = ±kmin. The exchange energy controls the spin waves at
high wave vectors k � l−1

ex , so that the dispersion is quadratic

024423-2
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FIG. 2. The dispersion relation for spin waves traveling in the
x̂ direction of a thin YIG film (kx branch), as given by Eq. (10).
Spin waves traveling in the ŷ direction have higher energies, as
indicated by the dashed line (ky branch). During parametric pumping,
two magnons are created at wave vectors of opposite signs. These
magnons both have frequency ωp/2. In the kx branch, these magnons
are found at ±kp1 and ±kp2. In turn, they thermalize and eventually
occupy the dispersion minimum at kmin. The parameters are from
Tables I and II, with μ0H0 = 190 mT.

in k. On the other hand, the dipole interaction controls the spin
waves at small wave vectors k < L−1

z .

B. Magnon excitation

We proceed to examine magnon excitation by parametric
pumping. In the parallel pumping geometry, the magnetization
is in plane and oriented along the x̂ axis by a static field of
magnitude H0. There is an additional alternating microwave
field hp(t ) parallel to the static field that functions as a magnon
pump. The external field has static and oscillating contribu-
tions,

Hext = [H0 + hp sin(ωpt )]x̂. (12)

Here, hp is the amplitude, and ωp is the frequency of the
oscillating pumping field. When the strength of the pumping
field exceeds a critical threshold, hp > hcrit

p (H0), the magne-
tization starts to precess around the x̂ axis. For a thin film,
this precession is elliptical due to the dipole interactions from
the finite thickness in the ẑ direction. By energy conservation,
the created magnons have half the frequency of the pumping
field, ωk = ω−k = ωp/2, and are opposite wave vectors, as
illustrated in Fig. 2. This is the oscillation of the x component
of the magnetic moments that couple to the magnetic pulse
in the parallel pumping mechanism. Since dipolar magnons
in YIG are elliptically polarized, the x component of mag-
netic magnons oscillates, and therefore, parallel pumping is
possible. Parametric pumping mainly excites elliptical dipole-

TABLE I. Material parameters of YIG.

Parameter Symbol Value in SI

Saturation magnetization [35] μ0MS 173 mT
Exchange stiffness [44] Aex 3.65 × 10−12 J m−1

Gilbert damping parameter α 0.01

TABLE II. System parameters.

Parameter Symbol Value in SI

YIG film thickness Lz 100 nm
YIG film lateral dimensions Lx,y 5 µm
Lateral number of cells nx,y 29

Lateral cell size lx,y ∼10 nm
Microwave pumping frequency ωp = 2π fp 2π × 14 GHz

dominated low-energy magnon modes. We therefore expect
that magnons are pumped in the kx branch at points kx = ±kp1,
as illustrated in Fig. 2. Following this reasoning, the most ef-
ficient pumping occurs when kp1 = kp2 = 0 at ferromagnetic
resonance (FMR) conditions since the ellipticity is highest in
that situation. For a fixed pumping frequency ωp, the external
magnetic field strength HFMR corresponding to the resonance
frequency ωFMR is approximated by the Kittel formula [40], as
expected from Eq. (10) in the limit k → 0,

ωFMR = ωp/2 = γ
√

HFMR(HFMR + μ0MS ). (13)

Next, we consider how the STT affects the magnetiza-
tion dynamics. In thick films, the effective volume of surface
modes is smaller than that of volume modes. Therefore, excit-
ing surface modes by STT is easier than exciting bulk modes
by STT [41,42]. However, we consider a thin film without any
surface anisotropy, where the magnetization is uniform along
the thickness direction. Surface modes are thus less important
in this case, and we will not discuss them further.

The STT typically arises from a spin accumulation in an
adjacent normal metal. We assume that a charge current in the
adjacent metal layer (e.g., Pt) produces the spin accumulation
polarized along the x̂ axis. The resulting torque on the YIG
interface is expressed in terms of the spin-mixing conduc-
tance per area g⊥ [1/
m2] and spin accumulation density
μS = μS x̂,

ṁ = −γ (m × Heff ) + α(m × ṁ)

− γ h̄

2e2LzMS
g⊥m × (m × μS). (14)

Here, e is the elementary charge, and h̄ is the reduced Planck
constant. In our geometry, a positive (negative) spin accu-
mulation results in a dampinglike (antidampinglike) STT. We
proceed to find an expression for the critical spin accumula-
tion μcrit

S at which the damping is overpowered. As before,
the effective field in Eq. (6) includes the static field, exchange
interaction, and dipole interactions. Inserting the effective
field into Eq. (14), the imaginary part of the eigenfrequencies
determines the critical spin accumulation required to excite
magnons with a specific wave vector,

μcrit
S (k, θk ) = −2Lze2αMS

h̄g⊥γ

{
ωH + ωMl2

exk2

+ 1

2
ωM[ fk + (1 − fk ) sin2 θk]

}
. (15)

Equation (15) can be minimized to yield the first magnon
wave vector to be excited by STT. This wave vector denoted
by kSTT is in the kx branch (θk = 0), as illustrated in Fig. 3.
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FIG. 3. The critical spin accumulation −μcrit
S g⊥/e for exciting

spin waves traveling in the x̂ direction of a thin YIG film (kx branch),
as given by Eq. (15). Spin waves traveling in the ŷ direction require a
higher spin accumulation, as indicated by the dashed line (ky branch).
The parameters are from Tables I and II, with μ0H0 = 100 mT.
For these parameters, we find that the first magnons are excited
at θk = 0, |kSTT| ≈ 15.5 µm−1 for the critical spin accumulation
μcrit

S (kSTT)g⊥/e ≈ −6.55 × 1010 Am−2.

We note that the threshold spin accumulation in Eq. (15) is
linear in the external field strength.

III. NUMERICAL APPROACH

We consider the magnetization dynamics in a thin film of
YIG. First, we define a square film with lateral side lengths
Lx,y in the (x, y) plane. The film thickness Lz = 100 nm
is much smaller than the lateral side lengths. We use the
thin-film approximation in which there is no magnetization
variation in the ẑ direction. Laterally, we divide the film
into N = n2

x,y cells, each of size l2
x,y × Lz. The unit vector in

the magnetization direction of each cell is m(ρi, t ). We find
the time evolution of each magnetization vector by solving
the LLG equation at successive time intervals.

The simulations provide full information on the local mag-
netization within each cell of the film. This information allows
the definition of a relative magnon density η in terms of the
longitudinal component of the average magnetization,

η = 1 − 〈mx〉, (16)

where 〈mx〉 = ∑i=N
i=1 m(ρi, t )/N . We can find the magnon dis-

tribution ζ (kx, ky) as a function of the wave vector evaluating
the Fourier transform of the transverse components of the
magnetization,

ζ (kx, ky) = |F[my(ρ, t )]|2 + |F[mz(ρ, t )]|2. (17)

Here, F[·] denotes a discrete Fourier transform defined simi-
lar to the continuous transform in Eq. (8).

Our simulations include magnon excitation by parallel
pumping, the STT, and the combination of the two. To this
end, we use the open-source GPU-accelerated software MU-
MAX3 [43]. The simulations start from an initial magnetization
state m(ρi, t = 0), which must deviate from the uniform state
for the magnetization dynamics to start. We apply the pump-
ing fields and/or the STT over the entire surface of the film,
and we investigate the resulting magnon density as a function

FIG. 4. The temporal evolution of the spatial average of the mag-
netization 〈mx〉(t ). At t = 0, the magnetization randomly deviates
from the uniform state. The shaded areas show the initialization
intervals I−2 and I−1. During these intervals, the pumping is strong
and creates an initial state. Thereafter, the pumping power hp de-
creases in intervals Ij (purple). Within each interval, we compute
the temporal average of the magnetization (orange) resulting in the
magnon density η(H0, hp). The presented data are an excerpt from
the simulations at μ0H0 = 190 mT.

of the bias field H0, the pumping field amplitude hp, and the
spin accumulation μS . Section IV provides more details on the
initialization and parameter variation of each simulation. Al-
though the lateral size of the film is much larger than the film
thickness, we expect some finite-size effects. The material pa-
rameters for YIG are listed in Table I. The damping coefficient
α = 10−2 is set higher than, e.g., Ref. [35] (α ∼ 10−4), such
that the magnetization may reach steady state at acceptable
running times. We detail the typical numerical parameters of
the simulations in Table II.

IV. NUMERICAL RESULTS

We discuss the numerical results of three scenarios: (i)
excitations performed exclusively by parallel pumping, (ii)
excitations performed exclusively by STT, and (iii) excitations
resulting from the combination of pumping and STT.

A. Magnon excitation by parallel parametric pumping

We first present simulations of magnon excitation by par-
allel parametric pumping. The number of created magnons
is a measure of the efficiency of the pumping process. The
simulations determine the relative magnon density as a func-
tion of the external field strength H0 and pumping power hp.
In doing so, the simulations provide the critical threshold
strength hcrit

p (H0) required to excite magnons. The threshold
excitation strength may show hysteretic behavior depending
on whether we increase or decrease H0 [45,46]. For each fixed
value of H0, we run simulations in which hp is decreased
in steps for each time interval of length t , as illustrated in
Fig. 4.

Each simulation starts from a chosen initial magnetization
state. A noisy input state is created by randomly pulling each
magnetization vector slightly away from its uniform state.
This contributes to the initial magnon density, as observed at
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FIG. 5. The relative magnon density η(H0, hp) during the para-
metric pumping of a thin YIG film. H0 and hp are the strengths
of the external magnetic field and pumping field. The simulation
series for each fixed H0 (similar to Fig. 4) represents one column,
where each pixel represents the relative magnon density η(Ij ). In
(a) and (c), an STT due to the weak spin accumulation μS is applied.
(a) Dampinglike STT, μSg⊥/e = +1 × 1010 Am−2. (b) No STT,
μS = 0. (c) Antidampinglike STT, μSg⊥/e = −1 × 1010 Am−2.

t = 0 in Fig. 4. We proceed to strongly pump the system for
two intervals I−2 and I−1. The gray shading in Fig. 4 shows
these initialization intervals, which are not included in the
extracted results in Fig. 5. After the initialization, we pump
the systems in intervals I j ( j = 0, 1, 2, . . . ) while decreasing
the pumping strength for each interval.

Figure 4 shows how the magnetization reaches a steady
state when the pumping is decreased. In the steady state, the
magnetization precession is elliptical. The spatial average of
the magnetization 〈mx〉(t ) determines the relative density of
the magnons, as in Eq. (16). We compute a time-averaged
value η(I j ) for the magnon density within a time window
of 50 ns at the end of each interval, as illustrated in Fig. 4.
The resulting magnon density represents one data point in
Fig. 5(b).

FIG. 6. The temporal evolution of the spatial average of the mag-
netization 〈mx〉(t ) during excitation by STT. The simulations start
from a magnetization state with random deviations from the uniform
state. Magnons are created by the application of a large spin accu-
mulation that results in an antidamping STT. The spin accumulation
decreases in intervals Ij (purple). We compute the temporal aver-
age of the magnetization (orange) resulting in the magnon density
η(H0, μS ). The presented data are an excerpt from the simulations at
μ0H0 = 100 mT.

The threshold parametric pumping power hcrit
p (H0) to ex-

cite magnons is occasionally referred to as a butterfly curve
[17,46,47]. The minimum of the threshold curve lies near the
external field corresponding to resonance conditions HFMR,
which can be approximated by the Kittel formula in Eq. (13).
Inserting the values of MS and ωFMR = ωp/2 from Table II
results in HFMR ≈ 178 mT. Note that the Kittel formula is
valid for extended thin films, where Lz/Lx,y → 0. In con-
trast, Lz/Lx,y ≈ 0.02 in the simulated film (see Table II).
This causes a small deviation between the simulated FMR
frequency and the Kittel formula. Furthermore, because the
lateral lengths of the simulated films are finite, the magnon
energy levels are discrete. Looking at Fig. 5(b), we find that
the discrete energy levels result in spikes, where it is difficult
to excite magnons. The threshold curve can be compared to
experimental results by Lauer et al. [35].

B. Magnon excitation by STT

We now proceed to discuss how STT generates magnons.
The number of magnons created by STT is a function of
the spin accumulation μS and the external field strength H0.
The STT effectively controls the damping. The sign of the
spin accumulation determines whether the torque acts as a
dampinglike or antidampinglike torque.

We use a range of applied bias field strengths to investi-
gate the threshold spin accumulation for exciting magnons
by STT. We decrease the strength of the spin accumulation
in intervals for each H0 series, as illustrated in Fig. 6. The
initial magnetization at t = 0 is set to randomly deviate from
the uniform state. An applied spin accumulation (μSg⊥/e =
−8 × 1010 Am−2) causes a strong STT well above the excita-
tion threshold. The torque is present at the entire surface of the
film. Next, we gradually decrease the strength of the torque at
intervals I j of duration t j . The magnetization dynamics is
chaotic, and occasionally, the system does not easily find a
steady state at high current strengths, as shown in Fig. 6. The
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FIG. 7. The relative magnon density η(H0, μS ) during STT ex-
citation of a YIG film as a function of the external magnetic field
and spin accumulation. The simulation series for each fixed H0 as
in Fig. 6 represents one column, where each pixel represents the
relative magnon density η(Ij ). The dashed blue line is the critical spin
accumulation μcrit

S (kSTT) required to excite magnons, as in Eq. (15).
For comparison, the solid blue line shows μcrit

S (k = 0).

magnon densities η(H0, μS ) calculated for the time windows
are shown in Fig. 7.

We now consider the spin accumulation found by ana-
lytical approximations. The threshold spin accumulation for
exciting magnons at wave vector k is given in Eq. (15). For
the chosen parameters in Tables I and II, we find that μcrit

S (k)
reaches its minimum when θkSTT = 0, |kSTT| ≈ 15.5 µm−1.

C. Parallel parametric pumping and weak STT

The STT is dissipative and effectively changes the Gilbert
damping parameter. We therefore expect that the STT changes
the threshold of parametric pumping. We investigate this
expectation by applying a weak STT (μSg⊥/e = ±1 ×
1010 Am−12) while performing parametric pumping on the
YIG film. The procedure of initialization and interval pump-
ing is similar to that in Sec. IV A.

The torque is applied at the entire surface of the film at
all times, including during the initialization intervals I−2 and
I−1. In our sign convention, a positive (negative) spin accu-
mulation results in a dampinglike (antidampinglike) torque.
Figure 5(a) shows the effect of applying a dampinglike torque.
The magnon instability threshold moves to higher pumping
powers since the torque results in a higher effective damping.
Figure 5(c) shows the results of an antidamping torque, which
moves the threshold to lower pumping powers required to
excite magnons. Note that in the high magnon density limit,
which is the case in the presence of an antidampinglike torque,
the magnetization dynamics is highly nonlinear.

D. Excited magnon modes

Parametric pumping favors the excitation of spin waves
with elliptical precession. The dipole interaction dominates
the dispersion in the long-wavelength limit when the spins
precess with an elliptical character. In contrast, the exchange-
dominated spin waves with a shorter wavelength have a
circular precession. As illustrated in Fig. 2, we expect
to mainly pump magnons at relatively long wavelengths,

FIG. 8. The relative distributions of the magnons as a function
of frequency and wave vector kx , (ky = 0). Magnons are excited in
the YIG film during (a) only parametric pumping, μ0H0 = 190 mT,
μ0hp = 18 mT, and (b) only STT, μ0H0 = 100 mT, μSg⊥/e =
−6.5 × 1010 Am−2. We show the square root of the magnon distri-
bution,

√
ζ (kx, ky ), from Eq. (17), where we disregard edge effects

by taking the Fourier transform over the film middle (64 cell edges).
The data are normalized with respect to the maximum intensity. In
(a), the analytical energy dispersion from Eq. (10) is illustrated by
a gray dashed line, while the pumping frequency is drawn with a
purple dashed line.

k = kp1. To further investigate this aspect, we perform a
Fourier transform of the magnetization during parametric
pumping and present the results in Fig. 8(a). Our numerical re-
sults confirm that the pumped magnons center around k = kp1.
Keeping the pumping frequency fixed, kp1 can be moved to
higher (lower) values if we increase (decrease) the strength of
the bias field.

In general, the STT excites spin waves at a wide range of
frequencies and wave vector numbers [48]. For weak currents,
the STT is expected to predominantly excite magnons at kSTT,
the magnon wave vector that minimizes the spin accumulation
given in Eq. (15). Starting from the lowest spin accumulation
needed to excite magnons by STT, kSTT is the wave vector
of the first magnons that we expect to excite. kSTT does not
change with the bias field strength, but it depends on the film
thickness. From Fig. 8(b), we find that we also excite magnons
at neighboring energies. We find that the parametric pumping
mainly creates dipole-dominated magnons at kx = kp1 � kmin.
The exchange-dominated magnons at kx � kmin are more eas-
ily excited by using the STT.

V. CONCLUSIONS

We have theoretically investigated the density of magnons
excited by parametric pumping, STT, and a combination of the
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two. The excitation processes in a thin YIG film are studied by
performing micromagnetic simulations. Spin waves traveling
parallel to the bias field direction (kx branch) have lower
energy than perpendicular spin waves. During parametric
pumping, magnons of elliptic precession are predominantly
excited at low wave vector numbers (k = kp1) in the kx branch.
For STT, we expect the first magnons to be excited at k = kSTT

before being distributed around the energy minimum of the kx

branch.
We found the critical pumping amplitude or spin accumu-

lation for exciting magnons. The presence of a dampinglike
or antidampinglike STT increases or decreases the threshold
power for parametric pumping, depending on the sign of the

STT. Our computed results are consistent with the measure-
ments in recent experiments [35].
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We theoretically demonstrate that adding an easy-axis magnetic anisotropy facilitates magnon
condensation in thin yttrium iron garnet (YIG) films. Dipolar interactions in a quasi-equilibrium
state stabilize room-temperature magnon condensation in YIG. Even though the out-of-plane easy-
axis anisotropy generally competes with the dipolar interactions, we show that adding such magnetic
anisotropy may assist the generation of the magnon condensation electrically, via the spin transfer
torque mechanism. We use analytical calculations and micromagnetic simulations to illustrate this
effect. Our results may explain the recent experiment on Bi-doped YIG and open a new pathway
toward application of current-driven magnon condensation in quantum spintronics.

Introduction—. Magnon condensation with nonzero
momentum at room temperature [1] is a fascinating phe-
nomenon first observed in 2006. The condensed magnons
were observed at the two degenerate magnon band min-
ima of yttrium iron garnet (YIG), and easy-plane fer-
rimagnetic insulator with very low magnetic dissipa-
tion [2, 3], as the spontaneous formation of a quasi-
equilibrium and coherent magnetization dynamics in the
momentum space [4]. To generate condensate magnons,
magnon must be pumped into the system by an inco-
herent stimulus such as parametric pumping [1, 5–14]
and/or spin-transfer torque [15–19]. The system may
thermalize above a critical magnon density to form a
quasi-equilibrium magnon condensation state at the bot-
tom of magnon bands. The study of magnon conden-
sation is not only interesting from an academic point of
view, but it is also of great importance in various areas of
quantum technology and applied spintronics [11, 20–22].

At high magnon densities, the relevant regime for
the magnon condensation state and nonlinear magnon-
magnon interactions becomes important. A (meta)stable
and steady quasi-equilibrium magnon condensation re-
quires an effective repulsive interaction between magnon
quasiparticles. It was shown that in a system mainly
influenced by exchange interaction, magnons are attrac-
tive, but dipolar interactions in YIG may change the sign
of nonlinear magnon interactions and thus are crucial for
the creation of a (meta)stable condensate magnon state
[8–10, 23–29].

Recently, it was shown that the thermalization time of
magnon condensation is reduced in confined nanoscopic
systems [30]. It was also demonstrated that the lat-
eral confinement in YIG enhances the dipolar interac-
tion along the propagation direction and causes a deeper
band depth, i.e., the difference between ferromagnetic
resonance (FMR) and magnon band minima. Increasing
the magnon condensation lifetime was attributed to this
enhancement of the band depth [30].

In another recent achievement in magnon condensa-
tion experiments, Divinsky et al. [31] found evidence of

condensation of magnons by spin-transfer torque mech-
anism. They introduced a small perpendicular magne-
tocrystalline anisotropy (PMA) through bismuth doping
in the thin film of YIG, while the magnetic ground state
still resides within the plane. This discovery opens a new
route toward electronic control of magnon condensation.
However, the interplay between the dipolar interac-

tions, which was previously shown to be essential for
the stability and thermalization of magnon condensation,
and the counteracting out-of-plane easy-axis magnetic
anisotropy, is so far uncharted. This article studies the
nonlinear magnon interactions by analyzing the mech-
anism behind the anisotropy-assisted formation of the
magnon condensate. We present simulations within the
Landau-Lifshitz-Gilbert framework [32–34] that support
analytical calculations.
Model—. We consider a thin ferromagnetic film in the

y−z plane to model YIG. The magnetic moments are di-
rected along the z direction by an external magnetic field
of strengthH0. The magnetic potential energy of the film
contains contributions from the isotropic exchange inter-
action Hex, Zeeman interaction HZ, dipolar interaction
Hdip, and additionally a PMA energy Han in the x direc-
tion, normal to the film plane. YIG has a weak in-plane
easy-axis that can be neglected compared to the other
energy scales in the system. The total spin Hamiltonian
of the system reads,

H = Hex +HZ +Hdip +Han. (1)

The PMA energy is given by,

Han = −Kan

∑
j

(Sj · x̂)2, (2)

where Kan > 0 is the easy-axis energy, ℏSj is the vector
of spin operator at site j, with ℏ is the reduced Planck
constant. Details of the Hamiltonian can be found in the
Supplemental Material (SM) [35].

The Holstein-Primakoff spin-boson transformation [36]
allows us to express the spin Hamiltonian in terms of the
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magnon creation and annihilation operators. The ampli-
tude of the effective spin per unit cell in YIG at room
temperature is large ℏS ≈ 14.3ℏ, [27, 37, 38], and thus
we can expand the spin Hamiltonian in the inverse pow-
ers of the spin S. Up to the lowest order in nonlinear
terms, the magnon Hamiltonian H of a YIG thin film
can be expressed as the sum of two components: H2 and
H4. The former represents a noninteracting magnon gas
comprising quadratic magnon operators. The latter, on
the other hand, constitutes nonlinear magnon interac-
tions characterized by quartic magnon operators; see the
SM for details [35]. Note that three-magnon interactions
are forbidden in our geometry by the conservation laws
[39]

Magnon dispersion of YIG with a finite PMA—. The
magnon dispersion in YIG is well known and has been
studied extensively in both experimental and theoretical
works [2, 40, 41]. Magnons travelling in the direction
of the external magnetic field have the lowest energy.
These so-called backward volume magnetostatic (BVM)
magnons have a dispersion with a double degenerate min-
imum at finite wavevectors qz = ±Q. When pumping
magnons into the thin film, the magnons may thermal-
ize and eventually form a condensate state in these two
degenerate minima with opposite wavevectors.

The noninteracting magnon Hamiltonian and the dis-
persion of BVM magnons, along the z direction, in the
presence of a finite PMA reads,

H2 =
∑

qzℏωqz ĉ
†
qz ĉqz , (3a)

ℏωqz =
√

A2
qz −B2

qz , (3b)

where ĉ†qz (ĉqz ) are the magnon creation (annihilation) op-
erators, and

Aqz = Dexq
2
z + γ(H0 + 2πMSfq)−KanS, (4a)

Bqz = 2πMSfq −KanS. (4b)

Here, Dex is the exchange stiffness, MS = γℏS/a3 is the
saturation magnetization, with γ = 1.2 × 10−5 eVOe−1

is the gyromagnetic ratio, and a = 12.376Å is the
lattice constant of YIG. The form factor fq = (1 −
e−|qz|Lx)/(|qz|Lx) stems from dipolar interactions in a
thin magnetic film with thickness Lx [42, 43].

Fig. 1 shows the effect of PMA on the magnon dis-
persion of YIG. PMA decreases both the ferromagnetic
resonance (FMR), and the magnon band gap at the Γ
point ωqz=0, in addition to a greater decrease in the
magnon band gap at the band minima ωqz=±Q. There-
fore the band depth ∆ω = ωqz=0 − ωqz=±Q is increased.
The position of the band minima at qz = ±Q is also
shifted to larger momenta. In addition, the curvature
of the minima increases as a function of the anisotropy
strength. Above a critical PMA, Kc2

an, the magnetic
ground state is destabilized and the in-plane magnetic
state becomes out-of-plane. We are interested in the

FIG. 1. The dispersion of noninteracting BVM magnons in a
YIG thin film for various PMA strengths. The inset shows the
depth of the band minima as a function of the PMA strength.
We set Lx = 50nm and H0 = 1kOe

regime in which the magnetic ground state remains in-
plane, and thus the effective saturation magnetization is
positive Meff = MS − 2Kan/(µ0MS) > 0

The effect of PMA on magnon dispersion resembles the
effect of confinement in the magnon spectra of YIG. In
Ref. 30, it was shown that transverse confinement in a
YIG thin film leads to an increase of the FMR frequency,
the band depth, as well as shifting the band minima to
higher momenta while the magnon band gap at the band
minima is also increased. It was shown that this change of
the spectrum in confined systems increases the magnon
condensate lifetime. Therefore, we expect, in a similar
way, PMA increases the magnon condensate lifetime and
assists the generation of magnon condensation.

Nonlinear magnon interactions in the presence of
PMA—. Magnons are considered quasiparticles that ex-
hibit weak interactions in the low-density regime, but
their intensity of nonlinear interactions increases as their
density increases. Repulsive interactions are essential for
thermalizing injected nonequilibrium magnons and cre-
ating a metastable magnon condensation at a steady and
quasi-equilibrium state. Since the discovery of magnon
condensation, there has been a long debate over the ori-
gin of magnon thermalization [8, 9, 26–28, 44].

The nonlinear interaction of condensate magnons at
the two degenerate minima, qz = ±Q, consists of intra-
and inter-band contributions, H4 = Hintra

4 +Hinter
4 , where

Hintra
4 = A(ĉ†Qĉ

†
QĉQĉQ + ĉ†−Qĉ

†
−Qĉ−Qĉ−Q), (5a)

Hinter
4 = 2B(ĉ†Qĉ

†
−QĉQĉ−Q) + C(ĉ†Qĉ−QĉQĉ−Q

ĉ†−Qĉ−Qĉ−QĉQ + h.c.) +D(ĉ†Qĉ
†
Qĉ

†
−Qĉ

†
−Q + h.c.). (5b)
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The interaction amplitudes are given by,

A =− γπMS

SN

[
(α1 + α3)fQ − 2α2(1− f2Q)

]
− DexQ

2

2SN
(α1 − 4α2) +

Kan

2N
(α1 + α3), (6a)

B =
γ2πMS

SN

[
(α1 − α2)(1− f2Q)− (α1 − α3)fQ)

]
+

DexQ
2

2SN
(α1 − 2α2) +

Kan

N
(α1 + α3), (6b)

C =
γπMS

2SN

[
(3α1 + 3α2 + 4α3)fQ − 8

3
α3(1− f2Q)

]
+

DexQ
2

3SN
α3 +

Kan

4N
(3α1 + 3α2 + 4α3), (6c)

D =
γπMS

2SN

[
(3α1 + 3α2 + 4α3)fQ − 2α2(1− f2Q)

]
+

DexQ
2

2SN
α2 +

Kan

2N
(3α2 + α3). (6d)

Here, N is the total number of spin sites. The dimen-
sionless parameters α1, α2, and α3 are related to the
Bogoliubov transformation coefficients, listed in the SM
[35].

An off-diagonal long-rage order characterizes the con-
densation state. The condensate state is a macroscopic
occupation of the ground state and can be represented
by a classical complex field. Therefore, to analyze the
stability of the magnon condensate state, we perform the
Madelung’s transform ĉ±Q →

√
N±Qe

iϕ±Q , in which the
macroscopic condensate magnon state is described with
a coherent phase ϕ±Q and a population number N±Q

[27, 28]. The total number of condensed magnons is
Nc = N+Q + N−Q, while the distribution difference is
δ = N+Q − N−Q. We also define the total phase as
Φ = ϕ+Q + ϕ−Q.
Finally, the macroscopic four-magnon interaction energy
of condensed magnons is expressed as ,

V4(δ,Φ) =
N2

c

2

[
A+B + 2C cosΦ

√
1− δ2

N2
c

+D cos 2Φ−
(
B −A+D cos 2Φ

) δ2

N2
c

]
. (7)

Without PMA, this expression is reduced to the one de-
rived in [45].

Now, we can look at the total interaction energy and
interaction amplitudes in more detail. Figure 2 shows
the effective interaction potential as a function of the
PMA. In a critical PMA strength, Kc1

an, the sign of the
interaction changes from repulsive to attractive. This
critical anisotropy is well below the critical magnetic
anisotropy strength Kc2

an that destabilizes the inplane
magnetic ground state.

The necessary condition to reach a steady-state quasi-
equilibrium magnon condensation is the presence of re-
pulsive interactions between magnons; thus, in the fol-
lowing, we consider a PMA strength below the critical

FIG. 2. The total nonlinear magnon interaction energy,
Eq. (7), as a function of the PMA strength. N and Nc are the
total number of spins and condensate magnons, respectively.
Kc1

an represents the critical value of the PMA at which the sign
of nonlinear interactions is changed. On the other hand, Kc2

an

corresponds to the critical value of PMA at which the in-plane
magnetic ground state becomes unstable. We set Lx = 50nm
and H0 = 1kOe. Ksim

an = 0.5µeV denotes the PMA used in
our micromagnetic simulations.

TABLE I: The material parameters used in the
micromagnetic simulations.

Parameter Symbol Value
Saturation magnetization 4πMS 1.75 kOe
Effective spin S 14.3
Exchange stiffness Dex 0.64× 10−20 eVm2

Gilbert damping parameter α 1× 10−3

anisotropy Kan < Kc1
an. I this regime, the intraband in-

teraction is attractive, and thus interband contributions
are important.
The interacting potential energy, Eq. (7), has five ex-

trema at,

δ1 = 0,Φ = 0; (8a)

δ2 = 0,Φ = π; (8b)

δ3 = 0,Φ = cos−1(−C

D
); (8c)

δ4 = Nc

[
1− (

C

B −A+D
)2
] 1

2 ,Φ = 0; (8d)

δ5 = δ4,Φ = π. (8e)

Whether these extrema represent minima of the inter-
acting potential energy relies on the system thickness Lx

and the strength of the applied magnetic field H0.
Phase diagram for magnon condensate—. Now, we ex-

plore the stability of the magnon condensate as a func-
tion of the thickness of the film Lx and the strength of
the external magnetic field H0, using the typical YIG
parameters, see Table I.
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(a)

(b)

FIG. 3. The phase diagram pf the condensate magnon in the
absence (a) and presence (b) of PMA. We plot the magnon
interaction energy V4/N

2
c , Eq. (7), as a function of the film

thickness Lx and external magnetic field strength H0. The
dashed black lines indicate the boundaries between the differ-
ent condensate phases, Eq. (8). We set Kan = 0.5µeV in (b).

First, we present the phase diagram for magnon con-
densation in YIG, in the absence of PMA, in Fig. 3a. The
thinnest films are expected to have a symmetric distri-
bution of magnon condensation between the two minima.
This phase diagram is in agreement with previous studies
[27, 45].

Next, we add a PMA, with strength Kan = 0.5µeV,
and plot the phase diagram of the magnon condensate in
Fig. 3b for different thicknesses. For the selected material
parameters, PMA tends to push the magnon condensate
towards a more asymmetric population distribution be-
tween the two magnon band minima. Since both minima
are degenerate thus there is an oscillation of magnon con-
densate between these two minima. The asymmetry of
condensate magnon populations agrees with our previous
analysis of interaction amplitudes. Within out parame-
ters for thickness and PMA strength, the intraband in-

(a) (b)

(c) (d)

FIG. 4. Magnon distribution from micromagnetic simu-
lations of a 50 nm thick YIG film at an external magnetic
field strength H0 = 1kOe. In the absence of the PMA,
Kan = 0 : (a) and (b) show magnon distributions of initial
nonequilibrium excited magnons and final quasi-equilibrium
magnon condensate steady state, respectively. In the pres-
ence of the PMA, Kan = 0.5µeV : (c) and (d) show magnon
distributions of initial nonequilibrium excited magnons and
final quasi-equilibrium magnon condensate steady state, re-
spectively. The dotted line indicates the analytical dispersion
relation of noninteracting magnons, Eq. 3b. Because of non-
linear magnon interactions, there is a spectrum shift in the
simulated magnon dispersion compared to the noninteracting
result. Although the duration of magnon pumping by spin-
transfer torque is the same in the absence or presence of the
PMA, the critical torque amplitude is lower in the presence
of PMA.

teraction A is attractive, while the interband interactions
are still repulsive.

This phase diagram shows that in the presence of a
PMA, condensate magnon can still be a metastable state.
In addition, as we discussed earlier, a PMA increases the
band depth and reduces the curvature of noninteracting
magnon dispersion, see Fig. 1, which leads to an enhance-
ment of the condensate magnon lifetime. Thus, we ex-
pect that introducing a small PMA into a thin film of
YIG facilitates the magnon condensation process.

Micromagnetic simulation of magnon condensate—.
To validate our theoretical predictions and demonstrate
the facilitation of condensate formation by including a
PMA, we conducted a series of micromagnetic simula-
tions using the LLG framework [46]. We simulate a fer-
romagnetic system where the magnons are excited by a
spin-transfer torque. We perform calculations at zero
temperature; thus, the system has no thermal magnons.
Nonequilibrium magnons in the magnetic thin film are
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excited by a spin-transfer torque mechanism through in-
jection of a spin current on the entire sample surface
[31]. The sign of the spin torque and its amplitude
should be chosen so that the injected magnon population
reaches the condensation critical density, we refer to the
SM for simulation details [35]. With the spin-transfer
torque mechanism, we expect nonequilibrium magnons
with different wavevectors and frequencies to be excited.
A fraction of these magnons will eventually be thermal-
ized via repulsive nonlinear magnon-magnon interactions
and form a steady and quasi-equilibrium state of conden-
sate magnons at the bottom of magnon band dispersion,
see Fig. 4.

The numerical simulations confirm the supportive role
of PMA in the condensation process. First, there is a
reduction in the threshold of spin transfer torque neces-
sary to inject the critical magnon density into the sys-
tem enabling the system to attain said critical magnon
density even at lower torque amplitudes. Second, final
condensate magnons in the presence of the PMA are
more localized around the band minima than in the case
where PMA is absent. Simulations also indicate that
PMA shifts the population of condensate magnons from
a symmetric distribution between two band minima to
an asymmetric distribution, Fig. 4. This is in agreement
with the analytical phase diagram in Fig. 3b.

Summary and concluding remarks—. The thermaliza-
tion of nonequilibrium-magnons and the stability of the
condensate require a repulsive sign for effective magnon-
magnon interactions. This typically requires the presence

of strong dipolar interactions. The presence of PMA is
expected to counteract dipolar interactions. We show
that even at intermediate strengths of the PMA field, the
magnon interactions are still repulsive, and the magnon
condensate can be created as a metastable state. We
note that the anisotropy increases the band depth and
curvature of the magnon dispersion. These adjustments
to the spectra shape are expected to benefit the con-
densate formation. From the calculations of effective
magnon-magnon interactions at the band minima, we
present a classification diagram predicting whether the
relative number of condensate magnons in the two de-
generate minima might be symmetric. The presence of
PMA strength, in a certain range, will tend to push the
condensate toward a more uneven population distribu-
tion between two degenerate band minima. Micromag-
netic simulations, within the LLG framework, confirms
our analytical results and analyses.
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SUPPLEMENTAL MATERIAL

1. Diagonalization of Magnon Hamiltonian

The total spin Hamiltonian of a thin film, in the y− z
plane with a small perpendicular anisotropy along the x̂
direction reads,

H = Hex +HZ +Hdip +Han. (9)

The exchange energy between neighboring spins reads

Hex = −1

2
Jex

∑
i,j

Si · Sj , (10)

where Jex > 0 is the ferromagnetic exchange constant.
The Zeeman energy due to an inplane external magnetic
field of strength H0 along the ẑ-direction reads,

HZ = −gµBH0

∑
j

Sz
j , (11)

where µB is the Bohr magneton and g is the the effective
Landé g-factor. The dipolar field is expressed as [47],

Hdip = −1

2

∑
i,j

∑
α,β

Dα,β
i,j Sα

i S
β
j , (12a)

Dα,β
i,j = (gµB)

2(1− δi,j)
∂2

∂rαij∂r
β
ij

1

|rij |
, (12b)

where α, β denote the spatial components x, y and z; and
rij is the distance vector between the spin sites i and j.
Finally, the PMA anisotropy is given by,

Han = −Kan

∑
j

(Sj · x̂)2. (13)

The Holstein-Primakoff transformation allows us to ex-
press the spin operators in terms of bosonic creation
and annihilation operators â† and â respectively. Us-
ing the large-S approximation, we have, S+ ≈ ℏ

√
2S(â−

â†ââ/(4S)) , S− ≈ ℏ
√
2S(â† − â†â†â/(4S)), and Sz =

ℏ(S − â†â) .
The corresponding noniteracting boson Hamiltonian in

the Fourier space reads,

H2 =
∑
q

Aqâ
†
qâq +

1

2
Bqâqâ−q +

1

2
B∗

q â
†
qâ

†
−q, (14)

where â†j = 1
N

∑
q e

ik·rj â†q and Aq (Bq) is presented in

Eq. (4b). We utilize the Bogoliubov transformation to
diagonalize this bosonic Hamiltonian and find the corre-
sponding noninteracting magnon Hamiltonian,

âq = uq ĉq + vq ĉ
†
−q â†q = u†

q ĉq + vq ĉ−q. Here,
uq = u−q and vq = v−q are the Bogoliubov coefficients,

uq =
(
(Aq + 2ℏωq)/(2ℏωq)

)1/2
, vq = sgn(Bq)

(
Bq −

2ℏωq)/(2ℏωq)
)1/2

TABLE II: Simulation parameters

Parameter Value
Excitation time, first interval 100 ns
Excitation time, second interval 200 ns
Excitation strength, first interval −1.2× 1010 Am−2

Excitation strength, second interval −0.35× 1010 Am−2

(Kan = 0)
Excitation strength, second interval −0.2× 1010 Am−2

(Kan = 0.5µeV)

It can be shown that the off-diagonal terms (α ̸= β)
of the dipolar interaction vanish in the uniform mode
approximation for a thin film of infinite lateral lengths
[29, 47]. In this case, the dipolar interaction contains no
three-magnon operator terms. We omit any renormal-
ization correction to the noninteracting magnon Hamil-
tonian, as they are of the order of 1/S and small. We
define the following parameters in the 4-magnon interac-
tion amplitudes, introduced in Eq. (6) [27, 28].

α1 = u4
Q + v4Q + 4u2

Qv2Q, (15a)

α2 = 2u2
Qv2Q, (15b)

α3 = 3uQvQ(u2
Q + v2Q). (15c)

2. Micromagnetic Simulations

We perform simulations of magnon creation by spin-
transfer torque with and without out-of-plane anisotropy.
We define an initial state in which the spins, on average,
point along the ẑ-direction. We introduce a random noise
in the spin direction to mimic the thermal noise as the ini-
tial condition of our simulation. Next, we excite magnons
in the ferromagnetic thin film by applying a spin torque
to the entire film surface. The film is discretized in the
lateral directions and uniform in the x̂ direction. The
lateral dimensions of the ilm are large compared to the
film thickness. In this way, the film is effectively a 2D
spin system. The LLG equation is solved for each succes-
sive time step, using the open-source software mumax3
[46]. We refer to Ref. 48 for examples that illustrate the
simulation of magnon creation via STT.
The spin accumulation determines the strength of the

spin torque, see Ref. [48]. We start the simulations
by exciting magnons with a strong spin torque (inter-
val I1), before lowering the torque strength to keep the
magnetization dynamics in a semi-stable state where the
total number of magnons does not change dramatically
over time (interval I2). In this semistable state, the two
magnon populations may interact with each other, and
the density of magnons in both minima may oscillate in
time. However, the total number of magnons remains
relatively unchanged. The current strength and time du-
ration of the two intervals are listed in Table II. The
magnetization data in Fig. 4 is from the last 50 ns of the
intervals.
The magnon density in the film is proportional to the
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longitudinal component of the average magnetization,
η = 1− ⟨mz⟩ [48].

The torque strength, or spin accumulation due to the
injected current, determines the number of magnons cre-
ated. The anisotropy lowers the spin-wave spectra, mean-
ing that one can use a weaker torque for the stronger
anisotropy. In Fig. 4 we choose the torque strength so
that η ≈ 0.01.

The deviation of spin from the ground-state direction

is proportional to the magnon density. The magnon
distribution ξ can be found by performing a Fourier
transform of the transverse magnetization components,
ξ(qy, qz) = |F [mx(y, z)]|2 + |F [my(y, z)]|2 [48].

To reduce the consequences of the finite-size effect in
our results, we analyze the magnetization data in the
middle region of the film, y, z ∈ [L/8, 7L/8], where L is
the lateral dimension of the square film.
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We analyze the stability of magnon condensation in uniaxial and biaxial antiferromagnetic insu-
lators. We implement both Hosltein-Primakoff and Dyson-Maleev bosonization methods. We show
that the interparticle interactions between two types of quasiparticles in antiferromagnetic materials
with two sublattices, i.e., α and β magnons, enable magnon condensation as a metastable state.
This is different from magnon condensation in ferromagnetic yttrium iron garnet.

I. INTRODUCTION

Bose-Einstein condensation (BEC) is a fascinating
phenomenon in quantum physics that occurs at tem-
peratures close to absolute zero, where a collection of
particles, typically bosons, undergo a phase transition
into a state of matter with unique quantum properties
[1]. When the temperature decreases, the thermal wave-
length of the particles increases, leading to a macro-
scopic occupation of the lowest quantum state. This
results in the particles behaving collectively as a single
quantum entity characterized by a coherent wave func-
tion. While BEC was initially observed in dilute atomic
gases, researchers have extended the concept to quasi-
particles, excitations, or collective modes in condensed
matter systems. Exploring BEC in quasiparticles, such
as exciton-polaritons or magnons, opens up new avenues
for studying quantum phenomena in diverse physical sys-
tems, from superfluidity to novel states of matter with
potential applications in quantum technologies.

There are some similarities and differences between the
BEC of particles and quasiparticles. BEC of magnons
was observed in Yttrium Iron Garnet (YIG) in 2006 [2]
at room temperature, where non-equilibrium magnons
were excited under microwave parallel pumping. Later
on the stabilization of magnon condensates has been un-
der scrutiny in ferromagnetic (FM) systems [3–9] under
parametric parallel pumping, as well as electrically injec-
tion of magnons via spin-transfer torque mechanism.

Although there are many studies on non-equilibrium
magnon injection and magnon BEC in FM systems,
there are very few studies on magnon pumping [10]
and magnon BEC in antiferromagnetic (AFM) systems
[11, 12]. BECs of AFM magnons have not yet been
observed experimentally. With recent advancements in
AFM spintronics [13], we deem it opportune to delve into
a more comprehensive exploration of this phenomenon.
This manuscript is dedicated to the detailed stability
analysis of magnon condensates within uniaxial and bi-
axial AFMs.

II. MODEL HAMILTONIANS AND PHASE
DIAGRAMS

A. Uniaxial AFM: HP formalism

The direct exchange interaction between spins at all
lattice sites i and all nearest neighbors at lattice sites j

are modeled by Hex = −J
∑

⟨i,j⟩ S⃗i · S⃗j , where J>0. The

total number of nearest neighbors is denoted by z. We as-
sume on-site, easy-axis anisotropy Hani = −Kz

∑
i

(Sz
i )

2.

Magnetic field along the ẑ-direction, h = hẑ contributes
by HZee = −µ

∑
i hS

z
i . The Hamiltonian for the DMI be-

tween spins S⃗i, S⃗j is HDMI =
∑

i,j Dij · (S⃗i × S⃗j), where
Dij = −Dji is the DM vector. We also assume i and j
to be the nearest neighbors for the DMI. We will assume
that the DM-vector is parallel to the ẑ-axis, Dij = Dνij ẑ.

The total Hamiltonian for the uniaxial AFM is

H = Hex +Hani +HZee +HDMI. (1)

We now introduce raising and lowering operators,
S+
i = Sx

i + iSy
i and S−

i = Sx
i − iSy

i , respectively. We
perform a Holstein-Primakoff transformation for these
operators, keeping fourth-order expansion terms. For
sublattice A, we denote these a and denote b for sublat-
tice B. The quantization axis is along the ẑ-axis, giving

Sz
i = S−a†iai and Sz

j = −S+ b†jbj . For sublattice A, the
transformation is

S+
i =

√
2S

√
1− a†iai/2S ai ≈

√
2S (1− a†iai/4S) ai,

S−
i =

√
2S a†i

√
1− a†iai/2S ≈

√
2S a†i (1− a†iai/4S).

(2)

For sublattice B, the transformation is

S+
j =

√
2S b†j

√
1− b†jbj/2S ≈

√
2S b†j (1− b†jbj/4S),

S−
j =

√
2S

√
1− b†jbj/2S bj ≈

√
2S (1− b†jbj/4S) bj .

(3)

Inserting an inverse Fourier transformation, ai =

(N/2)−1/2
∑
k

ak e−ik·ri and a†i = (N/2)−1/2
∑
k

a†k eik·ri ,
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FIG. 1: Dispersion relations for α- and β-magnons with
parameters D/J = 0.03, Kz/J = 0.05 and H/J = 0.01.
The dashed, vertical lines mark the boundaries of the

first Brillouin zone.

the total Hamiltonian of second order in the new basis is

H2 = SJ
∑
k

z[a†kak + b†kbk ] + 2SJ [akb−k + a†kb
†
−k] cos(k)

+ 2SKz

∑
k

[
a†kak + b†kbk

]
− µh

∑
k

[
b†kbk − a†kak

]
−D4S

∑
k

[
a†kb

†
−k + akb−k

]
sin(k). (4)

By writing the Hamiltonian in Eq. (4) in matrix form,
we see that the matrix elements form a 4x4 block diago-
nal matrix. The two blocks are identical when k → −k.
Performing a Bogoliubov transformation on the indepen-
dent blocks allows us to rewrite Eq. (4) as

H2,I =
∑
k

[
εαkα

†
kαk + εβkβ−kβ

†
−k

]
, (5)

where αk and βk are long-ranged right-handed and left-
handed magnons. They are defined by αk = ukak +

vkb
†
−k and βk = v−ka

†
−k + u−kbk . For simplicity, we

define ωE = 2SJ , ωD = 2DS, ωA = SKz and ωH =
1
2µh. The dispersion relations are εαk =

[
(ωE + ωA)

2 −
(ωE cos(k) − ωD sin(k))2

]1/2
+ ωH for αk magnons and

εβk =
[
(ωE + ωA)

2 − (ωE cos(k) + ωD sin(k))2
]1/2 − ωH

for βk magnons. In Figure 1 we have plotted εαk and εβk .

Define f2(k) = J cos(k) and f3(k) = D sin(k). The

interaction Hamiltonian with fourth order terms, is

H4 = −
∑

k,q,q′

f2(k)

(N/2)
[akb

†
k+q+q′bqbq′ + a†k+q+q′aqaq′bk + h.c.

+4a†q−kaqb
†
q′+kbq′ ]

− Kz

(N/2)

∑
kqq′

[
a†q−kaqa

†
q′+kaq′ + b†q−kbqb

†
q′+kbq′

]
+

∑
kqq′

f3(k)

(N/2)

[
a†kb

†
qb

†
q′bk+q+q′ + akb

†
k+q+q′bqbq′

−a†qa
†
q′aq+q′+kb

†
k − a†q+q′+kaqaq′bk

]
.

(6)

Before executing the next step, to insert the Bogoli-
ubov transformation into Eq. (6), we reduced the triple
k-sum. The only magnons that are candidates for BEC

are those around the minima, namely α
(†)
k=−Q and β

(†)
k=Q.

Therefore, we reduce the sum to consider only combina-

tions that give α
(†)
−Q and β

(†)
k=+Q.

We utilise the Bogoliubov transformation, and write
ak and bk in terms of αk and βk in Eq. (6). For sim-
plicity, we first define coefficients A = (2/N)

[
−f2(Q) −

f3(Q)
][
α1
Q + α2

Q

]
− 4J

[
α3
Q

]
− Kz

[
2α3

Q

]
, B =

(2/N)
[
−f2(Q)− f3(Q)

][
2α3

Q

]
− 4J

[
(1/2)α2

Q

]
−Kz

[
α2
Q

]
,

C = (2/N)
[
−f2(Q) − f3(Q)

][
2α3

Q

]
− 4J

[
(1/2)α2

Q

]
−

Kz

[
α1
Q−2α2

Q

]
and D = (2/N)

[
−f2(Q)−f3(Q)

][
8α3

Q

]
−

4J
[
α1
Q − α2

Q

]
−Kz

[
4α2

Q

]
. In coefficients A, B, C and D

we have defined three coefficients, which are functions of
the Bogoliubov parameters, α1

Q = u4
−Q+v4−Q+4u2

−Qv
2
−Q,

α2
Q = 2u2

−Qv
2
−Q and α3

Q = −u−Qv−Q(u
2
−Q + v2−Q). Note

the superscript, which differentiates from the notation for
R/H-handed magnons αk . The final interaction Hamil-
tonian in the diagonal basis is

HQ = H intra +Hinter,

Hinter = C
[
α−Qα−Qα†

−Qα†
−Q + β†

Qβ†
QβQβQ

]
Hintra = A

[
α−Qβ†

QβQβQ + β†
Qα−Qα†

−Qα†
−Q

+ α−Qα−QβQα†
−Q + β†

Qβ†
QβQα†

−Q

]
+B

[
α−Qα−QβQβQ + β†

Qβ†
Qα†

−Qα†
−Q

]
+Dα−Qβ†

QβQα†
−Q. (7)

In Eq. (7) we defined two Hamiltonians Hintra and
Hinter for, respectively, intravalley scattering and inter-
valley scattering between the two condensates.

We want to analyze the potential between the
magnons. Performing a Madelung transformation allows
us to do that. We substitute ⟨α−Q⟩ =

√
Nα eiϕ

α

and

⟨βQ⟩ =
√

Nβ e
iϕβ

in Eq. (7). Nα/β is the total number
of magnons in the α/β-populated condensates. The total
number of magnons in the condensates Nc = Nα + Nβ ,
the total phase Φ = ϕα+ϕβ and the difference in popula-
tion δ = Nα−Nβ . We have now obtained the interaction
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FIG. 2: The value of the interaction strength V4 and its
second derivatives, ∂2V4/∂δ

2 and ∂2V4/∂Φ
2 for a

specific value of D/J are shown in a for extremum point
ii) and b for extremum point iv). We also included

Vintra and Vinter in the figures.

potentials

V4 = Vintra + Vinter

Vintra =
N2

c

2
C
[
1 + (δ/Nc)

2
]

Vinter =
N2

c

2

[
D

2
− (

D

2
+B cos (2Φ))(δ/Nc)

2

+B cos(2Φ) + 2A
√

1− (δ/Nc)2 cos(Φ)

]
.

(8)

The total number of magnons Nc, can be held constant.
To find the minima of V4, we find the extrema with re-
spect to δ and Φ. We find four valid extrema

i) (δ/Nc)
2 = 0,Φ = 0

ii) (δ/Nc)
2 = 0,Φ = π

iii) (δ/Nc)
2 = 1−

[
A cos(Φ)

C −D/2−B cos(2Φ)

]2
,Φ = 0

iv) (δ/Nc)
2 = 1−

[
A cos(Φ)

C −D/2−B cos(2Φ)

]2
,Φ = π.

(9)

Inspecting the phase diagrams for ∂2V4/∂δ
2, ∂2V4/∂Φ

2

and (∂2V4/∂δ
2) (∂2V4/∂Φ

2) − (∂2V4/∂δ∂Φ)
2, we find

that both extremum point ii) and iv) allows for conden-
sation. We thus have degenerate condensates. In Fig.
2a, for extremum point ii) and 2b, for extremum point
iv), we have plotted the value of V4, ∂

2V4/∂δ
2, ∂2V4/∂Φ

2

as a function of Kz/J for a specific value of D/J . We
also plotted the values for Vintra and Vinter. We observe
that the value of V4 is dominated by Vinter.

B. Uniaxial AFM with DMI : Dyson-Maleev

The spin operators on sublattice A are,

S+
i = ℏ

√
2S(âi − â†i âiâi/(2S)) (10)

S−
i = ℏ

√
2Sâ†i (11)

Sz
i = ℏ(S − â†i âi) (12)

The spin operators on sublattice B are,

S+
j = ℏ

√
2S(b̂†i − b̂†i b̂ib̂i/(2S)) (13)

S−
j = ℏ

√
2Sb̂i (14)

Sz
j = −ℏ(S − b̂†i b̂i) (15)

We follow the same procedure as in the Holstein-
Primakoff framework earlier. The Dyson-Maleev trans-
formation gives the same results for the two-magnon
Hamiltonian. When analyzing the four-magnon Hamilto-
nian, we find the same prefactors for B,C, and D. How-
ever, there is some difference in the A-prefactor. We
define a new four-magnon operator for the A-terms,

HA
4 =A1,2(α̂−Qβ̂

†
Qβ̂Qβ̂Q + β̂†

Qα̂−Qα̂
†
−Qα̂

†
−Q)

+A3,4(α̂−Qα̂−Qβ̂Qα̂
†
−Q + β̂†

Qβ̂
†
Qβ̂Qα̂

†
−Q) (16)

We define the difference ∆A relative to the prefactor
A found in the Holstein-Primakoff framework so that
A1,2 = A+∆A and A3,4 = A−∆A.
After the Madelung transform, we obtain the following

interaction term,

HA
4 =

N2
c

2

√
1− (

δ

Nc
)2(2A cos(Φ) + 2i

δ

Nc
sin(Φ)∆A)

(17)
In the Holstein-Primakoff transformation, ∆A = 0 and

the interaction is fully real. However, in the Dyson
Maleev bosonization, we find that ∆A = − 2

N (3α2 −
α1)(f2(Q)+f3(Q)). We note that the real part of Eq. (17)
is similar for the Holstein-Primakoff and Dyson-Maleev
transformation.

C. Biaxial AFM without DMI: Holstein-Primakoff

We consider a similar Hamiltonian as the uniaxial sys-
tem, but this time without the DMI interaction. We add
an additional out-of-plane hard-axis anisotropy in the x-
direction,

HAx = KAx(
∑
A

(Sx
A)

2 +
∑
B

(Sx
B)

2) (18)

KAx > 0 is the anisotropy strength. The system is
similar to the one studied in Ref. [14]. For materials
suchas NiO we assume that Jex > KAx > KAz [14, 15].
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The spin wave spectra have a minimum at k = 0, and we
will only consider the magnon population in the lowest
energy state. The magnon energies in the minima from
Ref. [14] are given by,

ω2
α,β =

1

4
(ωE + ωAx + 2ωAz)

2 + ωH − 1

4
(ω2

Ax + ω2
E)

± 1

2

√
4ωH((ωE + ωAx + 2ωAz)2 − ω2

E) + ω2
Eω

2
Ax

(19)

Here, β-magnons have the lowest energy. We have de-
fined ωAx = SKAx. We see that the degeneracy is broken
even if ωH = 0, sue to the presence of the out-of-plane
hard-axis anisotropy.

We proceed to investigate the four-magnon interac-
tions. We use the following Bogoliubov transformation,

â = uαα̂− vβ β̂
† (20)

b̂† = −vαα̂+ uβ β̂
† (21)

We use the approximated Bogoliubov parameters from
Ref. [14] evaluated at k = 0

uα,β =

√
(ωE + ωAx + 2ωAz)2 + ωα,β

2ωα,β(ωH = 0)
(22)

vα,β =

√
(ωE + ωAx + 2ωAz)2 − ωα,β

2ωα,β(ωH = 0)
(23)

We are interested in analyzing the interactions of the
magnon population of lowest energy, which means that
we will only analyze the β-magnon interactions. There
are only a few four-magnon combinations involving the
β-population only,

Hβ
4 = C2(β̂β̂β̂

†β̂†)+G5,8(β̂β̂β̂β̂+h.c.)+G6,7(β̂β̂β̂β̂
†+h.c.)

(24)

We perform the Madelung transformation,

⟨β⟩ →
√

Nβe
iϕβ (25)

Here Nβ is the number of magnons of the population,
and ϕβ is their phase. We obtain the general expression
for the magnon-interaction of the β-population,

Hβ
4 /N

2
β = C2 + 2G6,7cos(2ϕβ) + 2G5,8cos(4ϕβ) (26)

We find the following prefactors,

C2N = −8J(u2
βv

2
β) + 4J(uβvβ(u

2
β + v2β))−

1

2
KAz(u

4
β + v4β)

(27)

− 16KAx(u
4
β + v4β) (28)

G6,7N = −8KAx(u
4
β + v4β) (29)

G5,8N = 0 (30)
The possible critical points of Eq. (26) are,

ϕβ
1 =

1

2
cos−1(

C2

2G6,7
) (31)

ϕβ
2 = nπ

1

2
cos−1(

C2

2G6,7
) (32)

Since we assumed that the exchange energy is much
stronger than the out-of-plane anisotropy strength,
C2

2G6,7
> 1, and the angle ϕβ is ill-defined. Then there

are no valid critical points of Eq. (26).

III. DISCUSSION AND CONCLUDING
REMARKS

We show that even in the absence of dipolar inter-
actions, which play a crucial role in the stability of FM
magnon BEC, it is possible to have a metastable magnon
BEC in AFM systems. The underlying mechanism of
stability is the interaction between two types of AFM
magnons. We showed that even though it is possible
to inject magnons into biaxial AFM systems by parallel
pumping [10], since magnon degeneracy has been broken
in these systems and thus the interaction between two
magnon modes becomes weaker then it is harder to sta-
bilize an AFM magnon BEC state. On the other hand,
in uniaxial AFM cases, since the two low-energy magnon
bands are degenerate, the intermode interactions can be
strong enough to stabilize magnon BEC. In the latter
case, it is possible to inject magnons into the system
electrically [11]. We propose by choosing a uniaxial AFM
material α−Cu2V2O7, we can test our theory. Without
an external magnetic field, this system has two magnon
bands minima with the same energy at ±Q because of
DMI [16]. By applying a magnetic field, this degeneracy
will be lifted. If we create a magnon BEC in the ab-
sence of a magnetic field electrically, we can destroy it by
applying a magnetic field.
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