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Abstract. Optimizing floating wind turbines and their mooring systems requires validated
computational models that predict wave-frequency and low-frequency hydrodynamic loads.
Low-frequency loads are crucial for determining extreme offsets and tension in mooring lines
and are generally described by a quadratic transfer function. The quadratic transfer function,
obtained with numerical tools, accurately predicts low-frequency loads in mild sea states.
However, since the existing numerical methods are based on potential and perturbation
theory, they generally fail to accurately predict low-frequency loads in moderate-to-extreme
sea states where current, viscous, and beyond-second-order potential effects become significant.
Developing a procedure for empirical transfer function estimation is, therefore, necessary to
overcome these limitations. This paper describes an existing framework for estimating any
higher-order transfer functions from experimental data. The framework employs a nonlinear
auto-regressive model based on Kriging to establish a causal input/output relationship between
the wave-elevation and hydrodynamic force histories exerted on the floater. Then, higher-
order transfer functions are extracted using harmonic probing. The procedure was validated
by estimating the linear surge transfer function of the INO WINDMOOR 12 MW floater using
synthetic data. The data-driven results showed an excellent agreement with the theoretically
computed transfer function.

1. Introduction
1.1. Background and Motivation
Accurate estimation of the wave loading on moored structures is essential for providing cost-
competitive floating wind turbine designs. The challenge with these structures lies in their
relatively soft mooring system which results in low natural frequencies in the horizontal degrees
of freedom. Consequently, moored structures are sensitive to the low-frequency loads which
contribute significantly to extreme offsets and tension in mooring lines. The low-frequency
loads are generally described by a difference quadratic transfer function (QTF) which models
the relationship between a bi-chromatic wave with frequencies f1 and f2 and the low frequency
wave loading at |f1 − f2|. Providing a reliable and computationally effective way of estimating
the transfer function that models these loads is therefore of great importance for the offshore
industry. However, as described in [1], computing an accurate estimation of the higher-
order transfer functions is a challenging and computationally expensive task. Commercially



EERA DeepWind conference 2023
Journal of Physics: Conference Series 2626 (2023) 012065

IOP Publishing
doi:10.1088/1742-6596/2626/1/012065

2

available software such as Hydrostar [2] and WAMIT [3] do compute the first and second-
order transfer functions however they are based on potential flow and perturbation theory
which inherently assume an inviscid, incompressible fluid and irrotational flow. It is important
to remark that moderate-to-extreme sea states with steep waves violate the potential flow
and perturbation theory assumptions which leads to inaccuracies in the transfer function
(TF) estimation. Therefore, Morrison’s equation with empirically calibrated coefficients is
commonly implemented to account for the viscous effects that potential flow fails to capture.
Alternatively, Computational Fluid Dynamics (CFD) models can be used to solve the wave-
structure interaction problem. However their computational cost often makes them impractical
in an industrial context where potential-flow-based solvers combined with Morrison’s equation
are still the preferred approach for solving this problem. A third alternative for TF estimation
are data-driven methods. Although less known, data-driven approaches are not new and have
been used for the purpose of transfer function estimation before. A prominent method is the
cross-spectrum analysis with the cross-bi-spectral (CBS) method as an extension for estimating
QTFs. Details about CBS are presented in [4], [5], and more recently in [1], while [6] applied
CBS to the INO WINDMOOR floater and compared the results to potential theory.

1.2. Scope
An alternative approach within the data-driven domain are the nonlinear auto-regressive models
with exogenous input (NARX). When used in tandem with harmonic probing, they allow for an
estimation of any order transfer function.

The origin of NARX models dates back to the work of Billings in the 1980s when the
ARMAX (auto-regressive moving average model with exogenous inputs) was extended to its
nonlinear form i.e. the NARMAX model [7][8]. This framework is the most generic and versatile
formulation of a nonlinear discrete-time process that incorporates a noise model and is usually
given a polynomial form. In [9] Billings showed several examples of how NARMAX naturally
comes into existence when real continuous-time systems are discretized. A simplification to the
NARMAX model is the NARX model which assumes that the noise process is white Gaussian
[10]. A neural-network-based NARX model was investigated in [11] together with harmonic
probing. The study investigated different activation functions and validated the results against
a nonlinear Duffing oscillator. Similarly, [10] used a Gaussian-process-based NARX i.e. Kriging-
NARX, to extract an analytical expression of the higher-order frequency response functions of
a Duffing oscillator. The obtained results showed a remarkable agreement.

The present paper shows the application of Kirging-NARX and harmonic probing framework
for estimating the surge linear transfer function (LTF) of the INO WINDMOOR floater as a
first step towards estimating the higher-order transfer function. The method employed here is
based on the work presented by Worden et al. in [10][12][13]. To the authors’ knowledge, this
framework has not been validated for a moored floating structure before. It is worth noting
that at present, the focus is cast solely on estimating the diffraction loading. Furthermore, it is
assumed that the data related to the diffraction loading and wave elevation profile histories are
available. Direct experimental measurements of diffraction loads in general is impractical. In
contrast, the floater responses and wave elevation profile can be directly measured. Therefore,
the diffraction loading is typically inferred via linear de-convolution of the floater response as
presented by Sauder in [1].

2. Methodology
As mentioned earlier, the algorithm for estimating the transfer functions consists of two parts.
Namely, the nonlinear auto-regressive model with exogenous input (NARX) and harmonic
probing (HP), which will both be described in the following section.
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2.1. Kriging-NARX
The main idea behind NARX (nonlinear auto-regressive model with exogenous input) is to
construct and train a model (F) such that it can provide a prediction of the current output
based on past input and output data.

fn = F

fn−1, fn−2, . . . , fn−nf︸ ︷︷ ︸
auto-regressive part

; ζn, ζn−1, ζn−2, . . . , ζn−nζ︸ ︷︷ ︸
exogenous part

 (1)

fn = F (xn) (2)

where fn ∈ R1 is the output of the model for the current time-step n. The lagged values
fn−1, fn−2, . . . , fn−nf

of the load and the lagged values ζn, ζn−1, ζn−2, . . . , ζn−nζ
of the wave

elevation profile are concatenated to form the input vector xn ∈ Rnf+nζ+1.
Kriging-NARX is a special type of NARX that employs the concept of Kriging. Kriging dates

back to the 1950s when it was first introduced for interpolating the profile of landscapes [14].
Since then, the machine learning community has re-purposed Kriging for a variety of learning
tasks. The book by Rasmussen and Williams [15] provides a good overview of this methodology,
a consolidated summary is presented hereafter.

The underlying assumption of Kirging-NARX is that the model output is a realization of a
Gaussian process (GP) [16]. From the definition of a GP it follows that the distribution for a
finite number of outputs follows a multivariate joint normal distribution.


fn
fn−1

fn−2
...


 ∼ N



0
0
0
...

 ,


k(xn,xn) + σ2

e k(xn,xn−1) k(xn,xn−2) . . .
k(xn−1,xn) k(xn−1,xn−1) + σ2

e k(xn−1,xn−2) . . .
k(xn−2,xn) k(xn−2,xn−1) k(xn−2,xn−2) + σ2

e . . .
...

...
...

. . .



(3)

Notice that the mean of the joint distribution is assumed to be zero for simplicity. The method
allows for a non-zero mean joint distribution though this adds additional model complexity and
training parameters. In the above expression, the hyperparameter σ2

e is the noise variance which
in itself incorporates a nugget for numerical stability, whereas k(·, ·) is a correlation function
selected by the user. A number of correlation functions and their applications are listed in [17].
A common choice is the squared exponential correlation function which is infinitely differentiable
leading to smooth paths. This function was the natural choice for this study since the signals
investigated here are of smooth nature. The squared exponential function was modified to
include a scaling length on both input signals leading to the following expression:

k([xf ,xζ ], [xf−m,xζ−m]) = σ2
f exp

{(
− 1

2θ2f
∥xf − xf−m∥2 − 1

2θ2ζ
∥xζ − xζ−m∥2

)}
(4)

where ∥ ∥ is the Euclidean norm of the given vector difference while xf and xζ refer to the auto-
regressive and exogenous part of the input vector, respectively. The expression above introduces
three new hyperparameters: σf and the scale lengths, θf and θζ . Assume now that the training
data is gathered as follows:

F =

 fn−1
...

fn−N

 , X =

 fn−2 . . . fn−nf
ζn−1 . . . ζn−nζ

...
. . .

...
...

. . .
...

fn−N−1 . . . fn−N−nf
ζn−N . . . ζn−N−nζ

 (5)
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with N representing the total number of data points. Then, the expression from (3) can be
represented in a matrix form:(

fn
F

)
∼ N

(
0,

[
K(xn,xn) + σ2

e K(X,xn)
K(xn,X) K(X,X) + σ2

eI

] )
(6)

The advantage of the joint Gaussian distribution is that the distribution of the unknown output
fn for an unobserved input xn pre-conditioned on a set of observation {X,F} is also Gaussian.
From (6), the corresponding mean and variance for the output fn have analytical expressions,
which read,

E[fn|F,X] = F(xn) = K(xn,X)[K(X,X) + σ2
eI]

−1F (7)

V[fn|X] = K(xn,xn)−K(xn,X)[K(X,X) + σ2
eI]

−1K(X,xn) + σ2
e (8)

Notice above that the expectation is preconditioned on the past outputs F and also the training
data X. That is, the training data become a part of the model equations and permanently
”lives” in the algorithm. This feature provides an advantage of Kriging-NARX because it reduces
the number of hyperparameters needed to capture the relationship of the modeled signals. In
addition, this means that the model can be successfully trained with a relatively small amount
of data.

The only remaining part is to close Eq. (7), i.e. train the unknown hyperparameters,
θ∗ = [σ2

f , σ
2
e , θf , θζ ]. Training is performed by using a maximum likelihood estimation

over a marginal evidence function. Put simply, since the outputs (or observations) F =
{F(x1),F(x2), . . . ,F(xN )} are assumed to have a joint normal distributed, maximizing their
likelihood means finding the zero-mean joint normal distribution that best fits the data. For a
given set of training data, (F,X), the likelihood function takes the following form:

L(θ∗,F,X) =
(det

(
K(X,X) + σ2

eI
)
)−1/2

(2π)N/2
exp

{
−1

2
(FT [K(X,X) + σ2

eI]
−1F

}
(9)

In practice, the hyperparameter values are obtained by minimizing the negative log likelihood
function, which reads,

θ∗ = argmin
θ∗

[log(L)] = argmin
θ∗

1

2
FT
[
K(X,X) + σ2

nI
]−1

F+
1

2
log
(
det
(
K(X,X) + σ2

eI
))

(10)

Note that the dependence on the optimization parameters θ∗ is not explicitly shown above, but
it is rather obvious from (4). Furthermore, the N

2 log(2π) term is left out since it does not affect
the optimization. Due to the low number of hyperparameters to be optimized, the training can
be completed with a simple gradient descent optimization algorithm. Note also from (10) that
the optimization requires a matrix inversion. The matrix K(X,X) is of N × N size, where N
is the number of observations in the training set. Since the numerical optimization algorithms
rely on repeated evaluations of the objective function, the optimization may become costly for
large data sets. Once the training is complete, the model (Eq. 7) can be readily evaluated for
a set of two new signals originating from the same underlying process for which the model was
trained for. An application of this framework is presented in Section 3.

2.2. Harmonic Probing
Section 2.1 provided an efficient way to construct a nonlinear input/output relationship for
a given system. However, in general, in vibration problems the transfer functions hold more
information about the underlying physics of the problem i.e. which frequencies produce large
outputs corresponding to resonance. Consequently, it is desirable to extract this physical
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quantity from the seemingly less informative NARX model. This is achieved with the method of
harmonic probing (HP). HP was first introduced in [18] for continuous-time models. Since then,
the method has been extended to discrete-time systems as well. A good overview is available in
Chapter 8 of [12]. A condensed description is presented hereafter.

The idea behind HP is to probe the system with simple harmonic excitations for which an
analytical response is available. The analytical formulation between a set of simple harmonics
and the corresponding response of the system is expressed through a Volterra series expansion.

f(t) = f0 + f1(t) + f2(t) + · · ·+ fn(t) (11)

where f0 is a constant and:

f1(t) =

∫ +∞

−∞
h1(τ1)ζ(t− τ1)dτ1 (12)

f2(t) =

∫ +∞

−∞

∫ +∞

−∞
h2(τ1, τ2)ζ(t− τ1)ζ(t− τ2)dτ1dτ2 (13)

...

fn(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
hn(τ1, τ2, . . . τn)ζ(t− τ1)ζ(t− τ2) . . . ζ(t− τn)dτ1dτ2 · · · dτn (14)

here f1 is the response of the system, ζ is an input excitation, and hn is the n-th order impulse
response function or also known as a Volterra kernel. The time-domain representation above
can also be expressed in the frequency domain by simply taking the Fourier transform of Eqs.
(11-14).

F (ω) = F0 + F1(ω) + F2(ω) + · · ·+ Fn(ω) (15)

F1(ω) = H1(ω)Z(ω) (16)

F2(ω) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
δ(ω − ω1 − ω2)H2(ω1, ω2)Z(ω1)Z(ω2)dω1dω2 (17)

...

Fn(ω) =
1

(2π)(n−1)

∫ +∞

−∞
. . .

∫ +∞

−∞
δ(ω−ω1−ω2−. . .−ωn)Hn(ω1, . . . , ωn)Z(ω1) . . . Z(ωn)dω1 . . . dωn

(18)
where, F and Z are the frequency domain counterparts of the response and excitation while
Hn is the n-th order transfer function. Note that the expressions for F2 . . . Fn have been made
symmetric at the expense of an additional integral, see [11]. In theory, the Volterra expansion
could capture the interactions of an infinite number of simple harmonics. In this study, the
series was truncated after the second-order effects including only the linear H1(ω) and quadratic
H2(ω1, ω2) transfer functions. To obtain the final probing-friendly expression, the integrals
in (17) can be evaluated analytically and the resulting expression transform back to the time
domain. Similarly, the inverse Fourier transform is applied to (16) and together with (17) are
substituted in (15). This gives the final time-domain response of the system which is obtained
assuming a bichromatic excitation of amplitude unity:

ζn = eiΩ1tn + eiΩ2tn (19)

leading to the expression for the system response:

fn = H0 +H1(Ω1)e
iΩ1tn +H1(Ω2)e

iΩ2tn + 2H2(Ω1,Ω2)e
i(Ω1+Ω2)tn . . . (20)



EERA DeepWind conference 2023
Journal of Physics: Conference Series 2626 (2023) 012065

IOP Publishing
doi:10.1088/1742-6596/2626/1/012065

6

where tn = n∆t. The time-step ∆t depends on the sampling of the NARX model. Determining
the correct sampling rate depends on the dynamics of the modeled dynamic system. The
equation above provides an analytical way to relate the response of the system to its transfer
functions. Equation (20) can be equated to the linearized expectation of the predictor from (7).

fn = F(xn) ≈ F(0) +
∂F
∂xn

∣∣∣∣
xn=0

xn
T +

1

2
xn

∂2F
∂xn

2

∣∣∣∣
xn=0

xn
T + . . . (21)

This equality allows for the Kriging-NARX model from Section 2.1 to be related to a physics-
based representation i.e. the Volterra series expansion. The linearization above is necessary for
converting the Kriging-NARX model into a polynomial form suitable for harmonic probing.
After substituting the Volterra expansion and a bichromatic excitation, the input vector
becomes:

xn =



fn−1

fn−2
...

fn−nf

ζn
ζn−1
...

ζn−nζ



T

=



[H0 +H1(Ω1)e
iΩ1 +H1(Ω2)e

iΩ2 + 2H2(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−∆t

[H0 +H1(Ω1)e
iΩ1 +H1(Ω2)e

iΩ2 + 2H2(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−2∆t

...

[H0 +H1(Ω1)e
iΩ1 +H1(Ω2)e

iΩ2 + 2H2(Ω1,Ω2)e
i(Ω1+Ω2) + . . .]etn−nf∆t

eiΩ1tn + eiΩ2tn

eiΩ1(tn−∆t) + eiΩ2(tn−∆t)

...

eiΩ1(tn−nζ∆t) + eiΩ2(tn−nζ∆t)



T

Note that the order of the transfer function of interest determines the minimum number of
harmonics required as well as the number of terms included in the Taylor series expansion.

Substituting the time-shifted input vector into the linearization of (21) gives a closed form
equation where the only remaining unknowns are the transfer functions which can be isolated
and solved for. The process of solving is completed in cascade starting from the lowest order
and moving forward. First, the probed equation is solved for the constant terms leading to the
calculation of the bias term H0. Then, a harmonic balance is solved for the frequency Ω1 leading
to the expression of the LTF, H1(Ω1). Lastly, a harmonic balance is solved for the frequency
Ω1 + Ω2 leading to the expression of the QTF, H2(Ω1,Ω2). This recursive solving means that
obtaining a p-th order transfer function requires the previous (p − 1) transfer functions to be
solved for first since they appear in the coefficients of the harmonic balance.

3. Numerical Case Study
The framework described in the previous section was applied to establish a model of the surge
wave loads, and limited for the time being to the surge linear transfer function (LTF), relating
the wave elevation profile ζ to the hydrodynamic surge force f on the floater. A description of the
floater under study is available in Section 3.1. The validation study used synthetic time-series
data whose generation is described in Section 3.2. Lastly, the obtained results are presented in
Section 3.4.

3.1. Floater Description
The floater used for this study was the INO WINDMOOR 12MW floater [19], a semi-submersible
structure with three columns connected by pontoons. The structure has been modelled in
Hydrostar [2] for the purposes of obtaining the transfer functions. The vessel mesh consisted of
11212 panels. Figure 1 below shows a render and scale model of the floater.
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Figure 1. Panel model (Hydrostar) of the INO WINDMOOR floater (left), and a 1:40 scaled
model tested at SINTEF Ocean [20] (right)

3.2. Data Generation
The synthetic data was obtained by first producing a random wave elevation profile from a
JONSWAP spectrum with a significant wave height of Hs = 0.5 m and a period of Tp = 13 s. A
plot of the spectrum is shown in Figure 2. The surge transfer function of the floater, computed in

0 0.5 1 1.5 2

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250 300 350 400

-0.5

0

0.5

0 50 100 150 200 250 300 350 400

-2

0

2
10

6

Figure 2. A JONSWAP spectrum used to generate the data (left). A wave elevation profile
sample with the corresponding 1st order force exerted on the floater (right)

Hydrostar, together with a wave elevation profile, were used to generate a synthetic loading time-
series data using the approach outlined in Section 1.1.2 of [21]. The Python toolbox Snoopy [22]
was used for this purpose. The first-order force was calculated as follows:

f(t) = R
M∑

m=1

|H(ωm)|
√
2S(ωm)∆ω exp[ i(ωmt+ ϵm + ϕm)] (22)
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where |H(ωm)| and ϕm are the amplitude and phase angle of the transfer function of the system,
respectively. S(ωm) is the spectral density of the JONSWAP spectrum, ∆ω is the frequency
step and ϵm is a random number between 0 and 2π.

In practice, the loading time-series is more difficult to obtain and usually cannot be directly
measured in the basin. One viable approach for obtaining the force signal from the measured
response is outlined in [1] and [23]. The main idea revolves around assimilating the measured
displacement/velocity response history to a damped single-degree-of-freedom oscillator whose
parameters have previously been estimated from a set of basin tests. The force history is then
simply reconstructed by a linear de-convolution.

3.3. NARX Setting and Results
The synthetic time-series data for the wave elevation profile, ζ(t) and force, f(t) was divided into
20 segments where each segment consisted of 300 data points with a time-step, dt = 1.2 s. Each
segment was used for training a separate Kriging-NARX model. A crucial goal of the training
process is to capture the underlying physics of the actual floater. In dynamics, modeling the
behaviour of a structure, depending on its complexity, could require several past states. The
INO WINDMOOR floater has a relatively complex wave-body interaction that requires a longer
memory. The memory effects in the Kriging-NARX model are captured in the lagged input data.
This study used nf = 20 and nζ = 20 which corresponds to 24 s of lag on both the force and
wave signals. It is worth noting that the wave loading process was assumed to be nearly causal.
In reality, the wave excitation force and the wave elevation profile have a non-causal relationship
however any effects of non-causality were not investigated in this study. The predictive capacity
of each NARX was tested with a leave-one-out cross-validation technique. This process went on
as follows, the 20 segments mentioned earlier were used as training data for the model producing
20 different NARX. Each one of the 20 NARX models was then validated against the remaining
19 segments. This ensured that each NARX was tested only on data that it has not seen before.
The results for the 20 segments are displayed in the figure below.

0 50 100 150 200 250
-2

-1

0

1

2
10

6

NARX

Reference

170.5 171 171.5 172 172.5 173

1.1

1.2

1.3

1.4

10
6

NARX

Reference

Figure 3. Comparison of the NARX predictions against the reference value (left). Magnified
region from the left graphic (right)

Figure 3 shows the output of 19 NARX models (blue) validated against a different (20th)
reference data-set (blue). All models performed exceptionally well in estimating the force time-
series. An important thing to note here is that the predictive power of the model is limited to
time-series sets corresponding to a particular sea state. For a new sea state, the model needs to
be retrained again.

3.4. Transfer Function Results
Lastly, the harmonic probing algorithm was applied to the Kriging-NARX models resulting in
a distinct transfer function for each model. The results are displayed in Figure 4.
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Figure 4. Amplitude (left) and phase (right) of the transfer functions obtained by harmonic
probing vs. the Hydrostar reference

It is interesting to note that the region between 0.3−1.3 rad/s, where most of the energy from the
JONSWAP (see Figure 2) was located, exhibited lower uncertainty. A consequent analysis with
a JONSWAP shifted towards the lower frequencies confirmed this observation. This explains
the divergence of the results in the regions below 0.3 rad/s and above 1.5 rad/s.

4. Conclusion
This study applied and validated the Kriging-NARX and harmonic probing framework for
extracting the diffraction load linear transfer function in surge of a floating structure. This
method is tailored to be used with experimental data, although, this study utilized synthetic data
generated for a given JONSWAP spectrum and a transfer function obtained with a potential-
theory-based software. For that reason, the obtained results reproduced the same transfer
function that generated the loading time series. In reality, the obtained transfer function from
experimental data is expected to differ than the one from potential-flow theory due to possible
viscous effects that are present in the basin but are not captured with potential flow. The extent
of this difference and overall validity of the model in severe sea states is yet to be further studied.

For this sea state, the Kriging-NARX surrogate model provided excellent predictive
performance for the specified training setting (i.e. number of lags and time step). Moreover, it
is robust to overfitting when wave elevation profiles are all sampled from the same JONSWAP
spectrum. The harmonic probing algorithm managed to successfully extract the linear transfer
function from the trained wave-force relationship. It was observed that the uncertainty in the
linear transfer function estimate is smaller in the region of the spectrum where the energy from
the JONSWAP spectrum is located.

The next step of this study will be the application of the methodology to estimate the
quadratic transfer function of the same INO WINDMOOR 12MW floater.
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