
ISBN 978-82-326-7728-3 (printed ver.)
ISBN 978-82-326-7727-6 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:64

Åse Lekang Sørensen

Energy profiles and electricity
flexibility potential in
Norwegian apartment buildings
with electric vehicle charging

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2024:64
Åse Lekang Sørensen

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f A
rc

hi
te

ct
ur

e 
an

d 
D

es
ig

n
D

ep
ar

tm
en

t o
f A

rc
hi

te
ct

ur
e 

an
d 

Te
ch

no
lo

gy





Åse Lekang Sørensen

Energy profiles and electricity 
flexibility potential in 
Norwegian apartment buildings 
with electric vehicle charging

Thesis for the Degree of Philosophiae Doctor

Trondheim, March 2024

Norwegian University of Science and Technology
Faculty of Architecture and Design
Department of Architecture and Technology



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Architecture and Design
Department of Architecture and Technology

© Åse Lekang Sørensen

ISBN 978-82-326-7728-3 (printed ver.)
ISBN 978-82-326-7727-6 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:64

Printed by NTNU Grafisk senter



i 

Preface 
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Karen Byskov Lindberg (NTNU/SINTEF) and Igor Sartori (SINTEF).  

 

The candidate is employed at SINTEF Community in the research group Energy and Indoor 

Environment in Oslo. The PhD is an Institute PhD financed by the Research council of 

Norway (grant 272402). The work has been carried out during the period January 2018 to 

August 2023. During this period, the candidate was partly engaged as a researcher at SINTEF.  

 

The PhD project is part of the Research Centre on Zero Emission Neighbourhoods in Smart 

Cities (FME ZEN). The thesis is article-based, consisting of four main publications, five 

supplementary publications, and one data publication. 
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“You can have data without information,  

but you cannot have information without data.” 

– Daniel Keys Moran –  
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Summary 

Renewable energy generation and energy efficiency of buildings are central strategies for 

mitigating emissions, aligned with the objectives of the Paris Agreement. With an increasing 

share of the energy supply coming from variable sources, the demand for flexible end-use of 

electricity increases. Energy flexibility in buildings has the potential to reduce grid burden of 

neighbourhoods. However, despite its potential, the practical implementation of end-user 

flexibility is challenging. Integrating flexibility solutions with existing automation systems 

while ensuring occupant satisfaction can be a complex task and remains a main challenge for 

implementation.  

 

In this context, residential electric vehicle (EV) charging within apartment buildings stands 

out as a promising solution. Shifting the timing of EV charging from high-demand afternoons 

to low-load nights can minimize grid strain with little impact on resident comfort. 

Additionally, in many apartment buildings, EV charging is already part of an energy 

management infrastructure, which may ease the practical implementation of flexibility 

solutions. Literature reviews show an increasing research focus on residential EV charging, 

however there is a need for more real-world data and knowledge on EV charging behaviour 

and energy use in apartments buildings, and the relationship between them.  

 

This thesis focuses on exploring energy profiles and the electricity flexibility potential in 

Norwegian apartment buildings with EV charging. A third of the Norwegian population 

resides in apartments, the residential sector has an increasing demand for EV charging, and a 

growing solar photovoltaic (PV) utilisation. The study includes the use of comprehensive 

datasets of energy and EV charging from Norwegian apartment buildings. The main case 

study is a large housing cooperative with more than 1000 apartments, and EV charging data is 

analysed from 35 000 EV charging sessions in 12 residential locations in Norway.  

 

Initially, the thesis examines the energy profiles for household energy use and PV generation 

for apartment buildings, and how the energy profiles are influenced by climate variables such 

as outdoor temperature and solar radiation. In the main case study, the average annual 

delivered energy to the apartments was found to be about 138 kWh/m2 for heating and 51 

kWh/m2 for electricity. Assuming one EV per apartment, the average electricity use for EV 
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charging was about 25 kWh/m2, contributing to roughly 12% of the total energy use per 

apartment.  

 

Next, the research focuses on how user habits of residential EV charging influence the 

electricity load profiles. The study identified variations in residential charging behaviour 

between users with private charge points (CPs) at their own parking spaces and those who 

utilized shared CPs. Users with private CPs had an average connection time of 12.8 hours, 

whereas those using shared CPs had an average of 6.5 hours connection time. Data from EV 

charging reports provided information on session energy and plug-in times, which was then 

used to simulate hourly charging energy at different charging power levels. The study 

presents how residential charging behaviour and energy flexibility are affected by the battery 

capacity and charging power for the EVs. Findings indicate a significant opportunity for 

shifting residential EV charging in time, particularly from late afternoon and evenings to 

nighttime. The flexibility potential of single EV users grows with increasing charging power, 

connection frequency, and duration of each connection.  

 

The thesis also explores the effects of grid-connected EV cabin preheating, which is generally 

recommended in cold climates. EV cabin preheating typically occurs during mornings with 

cold outdoor temperatures, when the grid is already under pressure. During a trial involving 

51 preheating sessions with five representative EV models, it was observed that most EVs 

used approximately 2 kWh of energy during preheating, with some sessions reaching a 

maximum of 5 kWh.  

 

Finally, the thesis explores the potential for electricity flexibility from EVs, in relation to non-

flexible apartment loads and PV generation, in the Norwegian context. The grid burden of 

optimised EV charging is affected by different energy/peak tariffs, metering locations, the 

availability of PV systems, and vehicle-to-grid (V2G) technologies. In the simulated scenarios 

with apartment electricity loads and optimised EV charging, the peak loads were reduced by 

around 45% compared to a base case with non-coordinated EV charging. The study found that 

relatively few EVs were connected to the residential CPs during the day, which limits the self-

consumption of PV generation for EV charging. For the simulated scenarios, a maximum of 

38% of the energy load in the optimised EV charging was covered by PV generation.  
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The study offers knowledge relevant for housing associations and building owners regarding 

their energy use and opportunities for end-use flexibility. Similarly, it provides insights for 

companies developing end-user flexibility solutions, such as charge point operators (CPOs), 

energy companies, and aggregators. Additionally, Distribution System Operators (DSOs), can 

benefit from the knowledge about how end-use flexibility in the residential sector can 

contribute to reduce the grid burden. Public policymakers and regulatory bodies can leverage 

this knowledge to drive progress in realizing end-use flexibility and meeting energy and 

climate objectives. 
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Sammendrag (Norwegian summary) 

Overgangen til fornybar energi og energieffektive bygninger er sentrale tiltak for å redusere 

utslipp, i tråd med målene i Parisavtalen. En økende andel av energiforsyningen er 

uregulerbar, noe som igjen øker etterspørselen etter fleksibel sluttbruk av elektrisitet. 

Energifleksibilitet i bygninger kan bidra til å redusere belastningen på strømnettet i nabolag. 

Likevel, til tross for potensialet, er det utfordrende å implementere sluttbrukerfleksibilitet i 

praksis. En av hovedutfordringene er at det kan være komplekst å integrere fleksible løsninger 

med eksisterende automasjonssystemer, samtidig som man sikrer tilfredse brukere. 

 

Elbillading er en av løsningene med stort potensial for energifleksibilitet. Elbillading kan 

gjerne flyttes i tid, for eksempel fra ettermiddagen til natten, og slik bidra til å minimere 

belastningen på strømnettet samtidig som det er til liten ulempe for beboerne. I tillegg finnes 

det allerede infrastruktur for energistyring av elbillading i en rekke leilighetsbygg, noe som 

kan gjøre den praktiske implementeringen enklere. Litteraturstudier viser at det er et økende 

forskningsfokus på elbillading tilknyttet boliger. Det er allikevel fortsatt behov for mer data 

og kunnskap rundt ladevaner og energiforbruk i leilighetsbygg, samt forholdet mellom dem. 

 

Denne PhD-avhandlingen fokuserer på energiprofiler og potensialet for 

elektrisitetsfleksibilitet i norske leilighetsbygg med elbillading. En tredjedel av den norske 

befolkningen bor i leiligheter. Boligsektoren har en økende etterspørsel etter elbillading, og 

det installeres stadig flere solcelleanlegg på bygninger. Studien inkluderer analyser av større 

datasett, inkludert energimålinger fra norske leilighetsbygg og laderapporter. Energidataene er 

i hovedsak fra et stort borettslag (Risvollan) med over 1000 leiligheter, mens ladedataene 

kommer fra 12 boligområder i Norge med totalt 35 000 ladesesjoner. 

 

I første del av avhandlingen analyseres energiprofiler for energibruk og solenergi i 

leilighetsbygg, samt hvordan energiprofilene påvirkes av klimavariabler slik som 

utetemperatur og solinnstråling. Gjennomsnittlig levert energi til Risvollan borettslag var 138 

kWh/m2 til oppvarming og 51 kWh/m2 til strømbruk i leilighetene. Dersom det antas at hver 

leilighet har én elbil, er ladebehovet i gjennomsnitt rundt 25 kWh/m2, som tilsvarer omtrent 

12% av den totale energibruken per leilighet.  
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Den andre delen av avhandlingen fokuserer på hvordan ladevaner for hjemmelading påvirker 

elektrisitetsprofilene. Studien fant en forskjell i ladevaner når beboerne har lademulighet på 

sin egen parkeringsplass, sammenlignet med når de bruker en delt lader på en felles 

parkeringsplass. For lading på egen parkeringsplass var gjennomsnittlig tilkoblingstid 12,8 

timer, mens tilkoblingstiden var 6,5 timer for lading på delt parkeringsplass. Informasjon om 

energi og tilkoblingstider per ladesesjon er tilgjengelig fra laderapporter. Denne 

informasjonen ble oversatt til energibruk per time, basert på ulike ladeeffekter for elbilene. 

Studien presenterer hvordan ladevaner og energifleksibilitet påvirkes av batteri- og 

ladekapasitet for elbilene. Resultatene viser at det er et betydelig potensial for å flytte boligers 

elbillading i tid, spesielt fra ettermiddag/kveld til nattestid. Fleksibilitetspotensialet for 

enkeltbrukere av elbiler øker med høyere ladeeffekt, hyppigere tilkoblinger og lengre 

tilkoblingstider.  

 

Avhandlingen undersøker også konsekvensene av nett-tilkoblet forvarming av elbiler, som 

generelt anbefales i kalde klima. Forvarming av elbiler skjer vanligvis om morgenen når det 

er kaldt, samtidig som strømnettet allerede har høy belastning. Under en forsøksperiode med 

51 forvarmingssesjoner for fem typiske elbilmodeller, var energiforbruket for forvarming 

opptil 2 kWh for de fleste elbiler, med en maksimal verdi på 5 kWh.  

 

I den siste delen av avhandlingen utforskes potensialet for fleksibilitet fra elbiler i norske 

leilighetsbygg, sett i forhold til ikke-fleksibel strømbruk i leilighetene og solenergi. 

Elbilladingen ble optimalisert, og belastningen på nettet ble vurdert for ulike 

energi/effekttariffer, plasseringer av AMS-målere, solcellesystemer og toveis elbillading 

(V2G). De simulerte scenarioene, med strømbruk i leiligheter og optimalisert elbillading, 

reduserte effekttoppen med rundt 45%, sammenlignet med strømbruk i leiligheter og 

elbillading direkte ved tilkobling. I studien var relativt få elbiler tilkoblet hjemmeladeren i 

løpet av formiddagen, noe som begrenser egenforbruket av solenergi til elbillading. For de 

simulerte scenarioene ble maksimalt 38% av ladingen dekket av solenergi.  

 

Avhandlingen har spesiell relevans for borettslag, sameier og byggeiere, og gir kunnskap om 

energibruk og muligheter for energifleksibilitet. Den kan også være nyttig for bedrifter som 

utvikler løsninger for energifleksibilitet hos sluttbrukere, som ladeoperatører, energiselskaper 

og aggregatorer. I tillegg kan kunnskapen om hvordan boligsektoren kan bidra til å avlaste 

strømnettet være til fordel for nettselskaper. For offentlige beslutningstakere og regulatoriske 
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myndigheter kan kunnskap om energibruk og fleksibilitetspotensial i leilighetsbygg bidra til å 

fremme løsninger hos sluttbrukere, og slik bidra til å oppfylle energi- og klimamål. 
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1. Introduction 

In this chapter, the background and research context of the thesis is presented, 

followed by the problem statement and the research questions, the publication 

overview, and the structure of the thesis. 

1.1 Background and research context 

Buildings account for approximately 40% of Europe's energy consumption [1]. The energy 

system is currently undergoing a transition driven by various factors, including increasing 

renewable energy integration, evolving technology trends, and the pursuit of sustainability 

goals. Energy efficiency and renewable energy generation within buildings stand as pivotal 

strategies for emissions reduction, in alignment with the objectives of the Paris Agreement 

[2]. The adoption of solar photovoltaic (PV) generation situated behind the building's energy 

meter is on the rise, strengthened by the European Union's solar energy strategy [3]. Electric 

vehicles (EVs) form a crucial part of the solution to attain carbon emissions reduction targets, 

and the global market share of EVs is steadily increasing [4]. On the other hand, increased PV 

generation and demand for EV charging can challenge the grid infrastructure [5].  

 

As the proportion of variable energy sources in the energy supply continues to grow, the 

demand for flexible electricity end-use becomes increasingly important [6]. IEA EBC Annex 

67 defines energy flexibility in buildings as [7]:  

"The energy flexibility of a building is the ability to manage its demand and generation 

according to local climate conditions, user needs and grid requirements." 

Technologies with energy flexibility potential in buildings include appliances and control 

strategies related to space heating, domestic hot water (DHW) tanks, washing machines, 

batteries, and EVs [8–10]. Owners and occupants of buildings may have several motivations 

for utilizing energy flexibility, such as reduced costs, mitigation of power peaks, curbing 

CO2-emissions, and increased self-consumption of locally produced energy. However, real-

life implementation of energy flexibility in buildings has not yet been fully realized. One 

reason may be that it can be quite complex to achieve energy flexibility in buildings. For 

example, as stated by [9], the integration with existing automation systems can be 

challenging, and the operation must be in line with occupant comfort and satisfaction. 
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Buildings can provide energy flexibility services to distribution system operators (DSOs) or 

district heating (DH) companies through demand response (DR) to a signal. Mechanisms to 

provide DR from buildings can be classified as ‘implicit’, i.e., with time-varying energy 

prices or network tariffs, or ‘explicit’ with consumers participating in energy markets and 

receiving payments in return for load variations [11]. In the residential sector, implicit DR 

programmes have been the most common, since they are easier to implement [11]. With a 

more mature flexibility market, customers that are participating in the implicit DR markets 

may move to explicit DR markets, e.g., through aggregators that acquire flexibility from 

several smaller customers. 

 

This thesis focuses on the energy performance and flexibility potential of apartment buildings 

with EV charging. Per 2022, about 32% of Norwegian residents lived in apartment buildings, 

either in multi-dwelling buildings or in linked houses with at least 3 dwellings [12]. Load 

profiles of Norwegian buildings are previously studied by Pedersen [13], Lindberg [14], and 

Kipping [15], where apartments were one of the considered building categories. Pedersen [13] 

provided heat and electricity load profiles for a combination of single-family houses and 

apartments. The load profiles specified by Pedersen formed the basis for residential buildings 

in the tool PROFet developed by Lindberg [14], which generates aggregated load forecasts for 

heating and electric loads in buildings. The PROFet heat load profiles for apartments were 

validated in [16], including DH data from 43 apartment blocks. Kipping and Trømborg [17] 

studied hourly electricity consumption in Norwegian households including 84 attached 

dwellings, and disaggregated the data into space heating and other electric appliances.  

 

Heating is a large share of the energy use in the Norwegian building stock. At the national 

level, it is estimated that about 78% of the total energy use in households is for space heating 

and DHW [18]. As per 2012, 31% of the apartments in multi-dwelling buildings were 

connected to a common central heating system, whereof 13% by DH [19]. Electricity 

provides about 70 to 80% of the residential heating energy use [18], and the residential 

electricity use is therefore highly temperature dependent. The daily energy profiles for 

residential buildings show a higher energy use in households during mornings and afternoons 

[13]. This coincides with high load hours in the national grid, which is typically in the 

morning and afternoon during cold winter days [20]. 
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In apartment buildings, the energy use is typically metered by a combination of private 

apartment meters and common energy meters. As stipulated by regulations (§ 13-1 i in [21]), 

electricity use within apartments is metered separately using hourly Advanced Metering 

System (AMS) measurements. Common energy use includes energy use in common areas 

such as corridors, basements, outdoors, central heating if relevant, and EV-charging. Cho et 

al. [22] highlighted that the energy management systems for apartment buildings are not fully 

understood, noting the distinct structural differences between energy systems in apartment 

buildings and detached houses, where apartment buildings have energy demands in both 

apartments and in common facilities. A complex ownership structure can be a barrier for 

developing smart energy communities [23]. For example, the Norwegian regulations did not 

allow sharing of PV generated electricity across AMS meters until October 2023 [24]. At the 

same time, the flexibility available in the common energy use tends to be more accessible 

than the energy consumption within individual apartments, particularly because the common 

energy is often equipped with an energy management system (EMS).  

 

Among potential flexibility solutions in Norwegian apartment buildings, EV charging stands 

out. Norway is a frontrunner within EV adoption, and EVs contributed to almost 80% of the 

passenger car sales in 2022 [25]. Residents in apartment buildings have, under certain 

conditions, a statutory right to charge at home [26], which can challenge the local grid 

infrastructure to the buildings. Therefore, a common infrastructure for EV charging is often 

installed in Norwegian apartment buildings, along with an energy management system that 

limits the maximum power for simultaneous EVs charging. A high share of the EV charging 

occurs in the afternoons and evenings, and coincides with other residential electricity use. 

Since the EVs are normally connected to the charge point (CP) for a longer time period than 

the actual charging time, there is a potential to shift the EV charging load in time. For 

example, residential charging loads can be shifted from high load hours in the afternoon to 

low load hours in the night. This can be done with minimal consequences to comfort and 

without active involvement of residents.  

 

Residential EV charging flexibility is gaining attention in the research world. Nevertheless, 

there are research gaps that have been identified by various research groups. Fachrizal et al. 

[27] did a review of smart charging strategies with PV generation and electricity 

consumption, and concluded that more studies should evaluate EV smart charging schemes in 

different latitudes, for different climates, and for different occupancy patterns. A majority of 
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flexibility case studies in literature are based on simulations [9]. According to [28], flexibility 

studies focussing on EV charging should incorporate realistic driving and plug-in behaviour. 

Amayri et al. [29] emphasized the necessity for additional publicly available datasets with EV 

charging in residential buildings to enhance load forecasting and flexibility predictions. 

Additionally, Calearo et al. [30] noted that data concerning EVs for studies related to smart 

grids, are limited. Vermeulen et al. [31] acknowledged the scarcity of research on the impact 

of battery capacity on EV charging behaviour. Shahriar et al. [32] performed a review of 

machine learning approaches for EV charging behaviour, and stated that the key challenges 

included lack of public charging datasets and lack of high dimensional data. 

For the practical realization of end-user flexibility in apartment buildings, an increased 

understanding of the energy use is needed, including how EV charging loads can be shifted in 

time. Ideally, this understanding should be rooted in real-world data.  
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1.2 Problem statement and research questions 

The main objective of this thesis is to investigate how residential EV charging in apartment 

buildings can contribute to energy flexibility. To achieve this, it is essential to understand the 

energy use in apartment buildings in relation to the user habits of residential EV charging. 

Analysis of real-world energy demand and EV charging data forms the basis for this 

understanding.  

Based on these objectives, the research questions (RQs) of this thesis are: 

Main research question: 

What are the energy profiles and electricity flexibility potential in Norwegian 

apartment buildings with electric vehicle charging? 

Sub-questions: 

1. What are the energy profiles for household energy use and PV generation for 

apartment buildings, and how are the energy profiles influenced by climate 

variables? 

2. How does the user habits influence the electricity load profiles of residential EV 

charging, and how is the electricity load affected by EV cabin preheating? 

3. What is the potential for electricity flexibility from EVs, in relation to non-flexible 

apartment building loads and PV generation, in the Norwegian context? 
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1.3 Publications overview 

1.3.1 Main topics of publications 

Table 1 illustrates the relationship between the research questions and the publications in this 

thesis. The publications are listed in Section 1.3.2. 

Table 1 Main topics of publications. 

 
Supplementary 
articles 

Main 
article I 

Main 
article II 

Main 
article III 

Main 
article IV 

Data articles 
(D* denotes planned 
articles) 

RQ1: What are the energy 
profiles for household energy use 
and PV generation for apartment 
buildings, and how are the 
energy profiles influenced by 
climate variables? 

S I. Electricity 

S II. Heat-DHW 

S III. DHW 

S IV. PV 

   Main IV. 
Energy 
profiles 

D* IV. Data Main IV 

RQ2: How does the user habits 
influence the electricity load 
profiles of residential EV 
charging, and how is the el. load 
affected by EV cabin preheating? 

S V. Stochastic 
EV charging 

Main I. 
EV 
charging 

Main II. 
EV 
charging 

Main III. 
EV cabin 
preheating 

 D I. Data Main I 

D* II. Data Main II 

D* III. Data Main III 

RQ3: What is the potential for 
electricity flexibility from EVs, 
in relation to non-flexible 
apartment building loads and PV 
generation, in the Norwegian 
context? 

    Main IV. 
Flexibility 

 

 

1.3.2 List of papers  

Main publications 

I. Å.L. Sørensen, K.B. Lindberg, I. Sartori, I. Andresen, Analysis of residential EV 

energy flexibility potential based on real-world charging reports and smart meter data, 

Energy Build. 241 (2021) 110923. https://doi.org/10.1016/j.enbuild.2021.110923.  

II. Å.L. Sørensen, I. Sartori, K.B. Lindberg, I. Andresen, A method for generating 

complete EV charging datasets and analysis of residential charging behaviour in a 

large Norwegian case study, Sustain. Energy, Grids Networks. 36 (2023). 101195. 

https://doi.org/10.1016/j.segan.2023.101195.  

III. Å.L. Sørensen, B. Ludvigsen, I. Andresen, Grid-connected cabin preheating of 

Electric Vehicles in cold climates – A non-flexible share of the EV energy use, Appl. 

Energy. 341 (2023). 121054. https://doi.org/10.1016/j.apenergy.2023.121054. 

IV. Å.L. Sørensen, B.B. Morsund, I. Andresen, I. Sartori, K.B. Lindberg, Energy profiles 

and electricity flexibility potential in apartment buildings with electric vehicles – A 

https://doi.org/10.1016/j.enbuild.2021.110923
https://doi.org/10.1016/j.segan.2023.101195
https://doi.org/10.1016/j.apenergy.2023.121054
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Norwegian case study, Energy Build. 305 (2024), 113878. 

https://doi.org/10.1016/j.enbuild.2023.113878.  

Supplementary publications 

S I. Å.L. Sørensen, I. Sartori, K.B. Lindberg, I. Andresen, Electricity analysis for energy 

management in neighbourhoods: Case study of a large housing cooperative in 

Norway, in: J. Phys. Conf. Ser., IOP Publishing, EPFL Lausanne, Switzerland, 2019: 

p. 012057. https://doi.org/10.1088/1742-6596/1343/1/012057. 

S II. Å.L. Sørensen, K.B. Lindberg, H.T. Walnum, I. Sartori, U.R. Aakenes, I. Andresen, 

Heat analysis for energy management in neighbourhoods: Case study of a large 

housing cooperative in Norway, in: IOP Conf. Ser. Mater. Sci. Eng., 2019. 

https://doi.org/10.1088/1757-899X/609/5/052009. 

S III. Å.L. Sørensen, H.T. Walnum, I. Sartori, I. Andresen, Energy flexibility potential of 

domestic hot water systems in apartment buildings, in: E3S Web Conf. Vol. 246, Cold 

Clim. HVAC Energy 2021, 2021. https://doi.org/10.1051/e3sconf/202124611005.  

S IV. Å.L. Sørensen, I. Sartori, K.B. Lindberg, I. Andresen, Analysing electricity demand 

in neighbourhoods with electricity generation from solar power systems: A case study 

of a large housing cooperative in Norway, in: IOP Conf. Ser. Earth Environ. Sci., IOP 

Conference Series, 2019. https://doi.org/10.1088/1755-1315/352/1/012008. 

S V. Å.L. Sørensen, M.C. Westad, B.M. Delgado, K. Byskov, Stochastic load profile 

generator for residential EV charging, E3S Web Conf. 362 (2022) 1–8. 

https://doi.org/10.1051/e3sconf/202236203005. 

Data publications 

D I. Å.L. Sørensen, K.B. Lindberg, I. Sartori, I. Andresen, Residential electric vehicle 

charging datasets from apartment buildings, Data Br. 36 (2021). 

https://doi.org/10.1016/j.dib.2021.107105. 

The published data article is connected to Main I. Additionally, there are three related data 

articles planned for submission. The planned data articles are indicated with a star, as they are 

not included in the thesis: 

D* II. Å.L. Sørensen, et. al. Complete EV datasets, related to Main II. 

https://doi.org/10.1016/j.enbuild.2023.113878
https://doi.org/10.1088/1742-6596/1343/1/012057
https://doi.org/10.1088/1757-899X/609/5/052009
https://doi.org/10.1051/e3sconf/202124611005
https://doi.org/10.1088/1755-1315/352/1/012008
https://doi.org/10.1051/e3sconf/202236203005
https://doi.org/10.1016/j.dib.2021.107105
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D* III. Å.L. Sørensen, et. al, Preheating and EV charging data, related to Main III. 

D* IV. Å.L. Sørensen, et. al, Data from the main case study (2019-2022), related to 

Supplementary I, Supplementary II, and Main IV. 

Additional publications 

The following articles were published during the doctoral research but is not included in the 

thesis: 

Work related to the Research Centre on Zero Emission Neighbourhoods in Smart Cities: 

• Å.L. Sørensen, I. Sartori, I. Andresen, Smart EV Charging Systems to Improve 

Energy Flexibility of Zero Emission Neighbourhoods, in: Cold Clim. HVAC 2018, 

Springer International Publishing, Cham, 2019: pp. 467–477. 

https://doi.org/10.1007/978-3-030-00662-4_39. 

• S. Backe, Å.L. Sørensen, D. Pinel, J. Clauß, C. Lausselet, Opportunities for Local 

Energy Supply in Norway: A Case Study of a University Campus Site, in: Nord. ZEB 

Conf., 2019. https://doi.org/10.1088/1755-1315/352/1/012039.  

• H.T. Walnum, M. Bagle, Å.L. Sørensen, S.M. Fufa, Cost optimal investment in 

energy efficiency measures and energy supply system in a neighbourhood in Norway, 

in: E3S Web Conf. Vol. 246, Cold Clim. HVAC Energy 2021, 2021. 

https://doi.org/10.1051/e3sconf/202124605005.  

Work related to the research project "Energy for domestic hot water in the Norwegian low 

emission society" (VarmtVann2030): 

• H.T. Walnum, Å.L. Sørensen, B. Ludvigsen, D. Ivanko, Energy consumption for 

domestic hot water use in Norwegian hotels and nursing homes, IOP Conf. Ser. Mater. 

Sci. Eng. 609 (2019). https://doi.org/10.1088/1757-899X/609/5/052020. 

• D. Ivanko, N. Nord, Å.L. Sørensen, I. Sartori, T.S.W. Plesser, H.T. Walnum, 

Prediction of DHW energy use in a hotel in Norway, in: IOP Conf. Ser. Mater. Sci. 

Eng., 2019. https://doi.org/10.1088/1757-899X/609/5/052018. 

• D. Ivanko, N. Nord, Å.L. Sørensen, T.S.W. Plesser, H.T. Walnum, I. Sartori, 

Identifying typical hourly DHW energy use profiles in a hotel in Norway by using 

https://doi.org/10.1007/978-3-030-00662-4_39
https://doi.org/10.1088/1755-1315/352/1/012039
https://doi.org/10.1051/e3sconf/202124605005
https://doi.org/10.1088/1757-899X/609/5/052020
https://doi.org/10.1088/1757-899X/609/5/052018
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statistical methods, in: E3S Web Conf., 2019. 

https://doi.org/10.1051/e3sconf/201911104015. 

• K. Stråby, H.T. Walnum, Å.L. Sørensen, Pipe sizing based on domestic hot water 

consumption in Norwegian hotels, nursing homes, and apartment buildings, in: IOP 

Conf. Ser. Mater. Sci. Eng., 2019. https://doi.org/10.1088/1757-899X/609/5/052016. 

• D. Ivanko, Å.L. Sørensen, N. Nord, Selecting the model and influencing variables for 

DHW heat use prediction in hotels in Norway, Energy Build. 228 (2020) 110441. 

https://doi.org/10.1016/j.enbuild.2020.110441. 

• D. Ivanko, H.T. Walnum, Å. L. Sørensen, N. Nord, Analysis of monthly and daily 

profiles of DHW use in apartment blocks in Norway, E3S Web Conf. 172 (2020) 1–7. 

https://doi.org/10.1051/e3sconf/202017212002. 

• D. Ivanko, Å.L. Sørensen, N. Nord, Splitting measurements of the total heat demand 

in a hotel into domestic hot water and space heating heat use, Energy. 219 (2021) 

119685. https://doi.org/10.1016/j.energy.2020.119685. 

• H.T. Walnum, K. Stråby, Å.L. Sørensen, Measurement of domestic hot water 

consumption in hotel rooms with different basin and shower mixing taps, in: E3S Web 

Conf. Vol. 246, Cold Clim. HVAC Energy 2021, 2021. 

https://doi.org/10.1051/e3sconf/202124604002. 

• H.T. Walnum, Å.L. Sørensen, K. Stråby, Measurement data on domestic hot water 

consumption and related energy use in hotels, nursing homes and apartment buildings 

in Norway, Data Br. 37 (2021). https://doi.org/10.1016/j.dib.2021.107228. 

  

https://doi.org/10.1051/e3sconf/201911104015
https://doi.org/10.1088/1757-899X/609/5/052016
https://doi.org/10.1016/j.enbuild.2020.110441
https://doi.org/10.1051/e3sconf/202017212002
https://doi.org/10.1016/j.energy.2020.119685
https://doi.org/10.1051/e3sconf/202124604002
https://doi.org/10.1016/j.dib.2021.107228


12 

1.3.3 Author contributions 

My contributions to the publications are listed in Table 2. I am the main author of all the 

publications included in the PhD thesis. I have been the initiator of the publications, have 

collected the data needed (except Supplementary III), and have had the main role in writing 

and publishing the manuscripts.  

My main supervisor Inger Andresen (I.A.) and co-supervisors Karen Byskov Lindberg 

(K.B.L) and Igor Sartori (I.S.) have provided beneficial support and comments to the 

publications. They have been involved in early discussions about concepts and 

methodologies, as well as given valuable input to the manuscripts. 

For the publication with practical experiments (Main III), I planned the experiments, secured 

funding for equipment from FME ZEN (charger and metering equipment), was responsible 

for purchasing the equipment, recruited EV owners, and had the main responsibility for the 

trials. Bjørn Ludvigsen (B.L.) provided valuable support regarding the equipment and 

laboratory work. 

The two MSc students, Maria Claire Westad (M.C.W., Supplementary V) and Balder Bryn 

Morsund (B.B.M., Main IV), were both supervised by Karen Byskov Lindberg and co-

supervised by me. Maria Claire Westad developed the stochastic load profile generator in her 

MSc thesis, while Balder Bryn Morsund developed the optimization model for smart EV 

charging. Their models were important contributions for the two articles. Both MSc-theses 

were based on background information and data from the PhD work. I had the main 

responsibility for writing the publications, including the introduction, analyses, discussions, 

and conclusions. 
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Table 2 Author’s (ÅLS) and co-authors’ contributions to articles. 

Publication ÅLS contribution Co-author contribution 
Main I ÅLS: Conceptualization, 

Methodology, Investigation, Data 
curation, Writing - original draft, 
Writing - review & editing. 

K.B.L., I.S., I.A.:  
Conceptualization, Writing - review & 
editing, Supervision. 

II ÅLS: Conceptualization, 
Methodology, Investigation, Data 
curation, Writing - original draft, 
Writing - review & editing. 

I.S., K.B.L., I.A.:  
Conceptualization, Methodology, Writing - 
review & editing, Supervision. 

III ÅLS: Conceptualization, 
Methodology, Investigation, Data 
curation, Writing - original draft, 
Writing - review & editing. 

B.L.: Conceptualization, Investigation, 
Writing - review & editing. 
I.A.: Writing - review & editing, 
Supervision. 

IV ÅLS: Conceptualization, 
Methodology, Data curation, 
Validation, Formal analysis, 
Visualization, Writing - original draft, 
Writing - review & editing. 

B.B.M.: Methodology, Software.  
K.B.L.:  
Conceptualization, Methodology, Writing - 
review & editing, Supervision. 
I.A., I.S.:  
Writing - review & editing, Supervision. 

Suppl. S I ÅLS: Conceptualization, 
Methodology, Data curation, Formal 
analysis, Visualization, Writing - 
original draft, Writing - review & 
editing. 

I.S., K.B.L., I.A.:  
Conceptualization, Methodology, Writing - 
review & editing, Supervision. 

S II ÅLS: Conceptualization, 
Methodology, Data curation, Formal 
analysis, Visualization, Writing - 
original draft, Writing - review & 
editing. 

K.B.L., I.S., I.A.:  
Conceptualization, Methodology, Writing - 
review & editing, Supervision. U.R.A.: 
Data curation. H.T.W.: Methodology, 
Writing - review & editing. 

S III ÅLS: Conceptualization, 
Methodology, Data curation, Formal 
analysis, Visualization, Writing - 
original draft, Writing - review & 
editing. 

H.T.W.: Methodology, Data curation, 
Writing - review & editing. I.S., I.A.:  
Writing - review & editing, Supervision.  

S IV ÅLS: Conceptualization, 
Methodology, Data curation, 
Software, Formal analysis, 
Visualization, Writing - original draft, 
Writing - review & editing. 

I.S., K.B.L., I.A.:  
Conceptualization, Methodology, Writing - 
review & editing, Supervision. 

S V ÅLS: Conceptualization, 
Methodology, Data curation, Formal 
analysis, Visualization, Writing - 
original draft, Writing - review & 
editing. 

M.C.W.: Conceptualization, Methodology, 
Software, Data curation, Formal analysis, 
Visualization, Writing - original draft. 
B.M.D.: Software.  
K.B.L.: Conceptualization, Methodology, 
Writing - review & editing, Supervision. 

Data D I ÅLS: Conceptualization, 
Methodology, Investigation, Data 
curation, Writing - original draft. 

K.B.L., I.S., I.A.:  
Conceptualization, Writing - review & 
editing, Supervision. 
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1.4 Structure of the thesis 

The structure of the remaining thesis is:  

In Chapter 2, the methods are introduced, including the research process, the apartment 

building cases, and the data collection, cleaning, analyses, and modelling.  

Chapter 3 presents and discusses the results of the publications in the thesis, and how they are 

linked to the research questions. The chapter also includes limitation of the study and further 

work.  

Finally, Chapter 4 provides the conclusions and future perspectives.  

The publications of the thesis are included after Chapter 4, including the four main 

publications, the five supplementary publications, and one data publication. 
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2. Methods 

This chapter introduces the methods of the thesis, i.e., the research process (2.1), the apartment 

building cases (2.2), the data collection, cleaning, and sharing (2.3), and the data analysis and 

modelling (2.4). Further details of the methods used can be found in the publications. 

2.1 The research process 

Figure 1 illustrates the main steps in the research process for my PhD thesis. The process 

involved conducting a literature review, treating data, and performing analysis and modelling 

to address the research questions. 

 
Figure 1 The research process of the PhD thesis. Numbers in circles denote the year (period) when 
the research was conducted, starting from 2018 to the left in the figure, and ending in 2023 to the 
right. The small boxes below the circles include the publication numbers, as described in section 1.3.2. 
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2.2 Apartment building cases 

2.2.1 Main case study 

The case study selected for this work is Risvollan housing association, which is a large 

housing association constructed in the 1970th, located in Trondheim. It includes in total 1058 

apartments in 121 low-rise apartment buildings. Photos of some of the buildings are shown in 

Figure 2. The floor area of the apartments varies from 53 to 107 m2 (1 to 4 bedrooms), 

whereof 78% of the apartments have 2 or 3 bedrooms. The total floor area for the entire stock 

of apartments is 93,713 m2. In 2018, the housing association had 2,321 residents. 

District heating (DH) provides space heating and DHW to the apartments. There are 20 

heating substations (SUBs) in the housing association area, metering delivered heat hourly. 

Each SUB serves between 25 and 74 apartments with space heating and DHW. Electricity is 

provided to common areas/garages and apartments. In total, 114 AMS meters measure 

common electricity use in garages (25 meters) and other common areas (89 meters). Common 

infrastructure is installed for charging EVs. In total it is possible to activate up to 764 CPs on 

the parking spaces which are used by residents from 1113 apartments. EV charging reports 

describe energy and time information for the EV charging sessions per EV user. Figure 3 

shows a map with the 20 SUB areas of the case study, with metering locations for common 

electricity and heating meters. The metering structure is illustrated based on information from 

Risvollan housing association and the EMS-provider Enoco. In addition, AMS meters in each 

apartment measure electricity use in apartments. 

  
Figure 2 Photos of apartment buildings in the case study. 
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Figure 3 Case study area, with metering structure for common electricity and heating meters (Map: 
google maps). 

Data from the main case study has formed the basis for the energy analyses within the thesis. 

This includes analysis and modelling of electricity use, heating, PV generation simulations, 

EV charging, and energy flexibility. The primary data period is from 2018 and therefore 

predates the COVID-19 pandemic. 

2.2.2 Representativeness of the main case study 

In the PhD thesis, we aimed to select a case study which was representative for a major share 

of Norwegian apartments. This section presents information about apartments in the 

Norwegian building stock, together with information about the selected case study. Energy 

data from a range of housing associations are compared to the data of the case study, 

including heat data from 29 other locations and electricity data from 4 other locations, based 

on measurements collected in the research centre FME ZEN [35], and the project 

COFACTOR [36]. Lastly, in this section, the representativeness of the EV charging and PV 

generation data is discussed.  

Apartments in the Norwegian building stock 

Per 2022, about 32% of Norwegian residents (1.7 million) live in apartments, defined as 

either multi-dwelling buildings or linked houses with at least 3 dwellings [12]. Such 
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apartments represent 37% of the dwellings in the Norwegian residential building stock [37]. 

The remaining residents mainly live in detached houses or houses with two dwellings. A 

comparison between apartments in the Norwegian building stock and the selected case study 

can be found in Table 3. 

Table 3. The Norwegian building stock and the selected case study. 

 Apartments in the Norwegian building 
stock  

Selected case study 

Building 
category 

Multi-dwelling buildings or linked houses 
with at least 3 dwellings: 37% [37] 

Low-rise apartment buildings with an 
average of 8.7 dwellings per building 

Construction 
year 

Before 1970: 35%, between 1971 and 2000: 
31%, after 2001: 33% [37] 

1970-1973. Renovations 1993-1998 
(insulation and windows) [38] 

Floor space 
area 

70% have floor space between 50 and 120 m2 
[39] 

In average 88.6 m2 per apartment 

Number of 
residents 

In average 1.8 residents per household [12] In average 2.2 residents per 
household 

 

Residents 

In 2018, the housing association had 2,321 residents, 

with 53% being female and 47% male. Of the 

residents, 24% were under 20 years old, 40% were 

aged between 20 and 50, and 36% were 50 years old 

and above [33]. Figure 4 illustrates the gender and 

age distribution of the residents, alongside with the 

corresponding distribution for Norway [34]. The age 

and gender distribution of the residents is similar to 

the wider Norwegian population.    

 

 
Figure 4 Gender and age distribution of 
the residents in the main case study and 
for the Norwegian population. 

Space heating and domestic hot water 

In the case study, space heating and DHW constitute approximately 72% of the total delivered 

energy, when not including EV charging. The heating share is close to the national average 

estimation for households of about 78% [18]. 

The energy use for space heating and DHW in the case study is compared with 29 other 

Norwegian apartment housing associations with central heating systems, whereof 25 with 

DH, 2 with electric boilers (EBs), and 2 with ground source heat pumps (GSHP). The 

delivered energy for space heating and DHW is based on meter readings, as defined by EN 
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15378-3:2017 [40]. The specific delivered energy is calculated as the total delivered energy 

for the housing associations, divided by the floor area in the apartments. The specific 

delivered energy therefore includes delivered energy for heating common areas, such as 

staircases or basements, and is not directly comparable with energy use in apartments with 

individual heat technologies such as electric panel heaters or air-to-air heat pumps. For such 

apartments, the energy for heating of common areas is typically metered by common AMS 

meters. 

 
Figure 5 Specific delivered energy for space heating and DHW in 28 housing associations with 
common central heating systems (DH and EB), divided into construction year before or after 2007. 
The numbers below the bars show ID no, number of units (apartments) in the housing associations, 
and type of heating system (DH or EB). Heated floor area is between 50 and 120 m2 per apartment. 
The case study (Risvollan) has ID no 4.   

Figure 5 shows the annual delivered energy for space heating and DHW in the 28 housing 

associations with DH (25+case Risvollan) and EBs (2). The data presented in the figure is not 

corrected for climate or use, but for comparison, the annual average outdoor temperatures for 

the building locations are also shown in Figure 5. The measurement period is three years for 

housing associations 1 and 2, and one year for housing associations 3 to 28. The apartments 

have floor areas between 50 and 120 m2. The number of apartments in the housing 

associations vary from 4 to 462 units, as shown in Figure 5. The construction year of the 

apartment buildings span from 1957 to 2016. It is expected that the energy performance 

improves with construction year, since newer apartment buildings have stricter energy 

requirements. This is e.g. shown in simulations presented by the projects Tabula and Episcope 

[41,42], where the energy performance for apartment archetypes of different construction 

years were simulated. In Norway, energy requirements for new buildings were introduced in 

the building codes of 1997, 2007, 2010 and 2017 [43]. In Figure 5, the apartments are 
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separated by construction year before and after 2007, since the 2007-revision of the building 

code introduced the most significant step in the requirements for energy use in buildings. For 

the apartment buildings in Figure 5, the buildings with construction year before 2007 have a 

higher specific delivered energy for space heating and DHW (in average 117 kWh/m2), 

compared to the buildings constructed after 2007 (in average 81 kWh/m2). For the 8 buildings 

constructed before 2007, we did not find a clear relationship between construction year and 

the annual delivered energy for heating. Delivered DH to the case study apartments 

(Risvollan) was 138 kWh/m2 in 2018. 

Energy use for heating is affected by e.g. building and energy system efficiencies, user 

behaviour, and climate [44]. Figure 6 illustrates the relationship between daily delivered heat 

and outdoor temperatures for 10 housing associations constructed before 2007. The 

construction year of the buildings vary from 1953 to 2006. All the buildings have central 

heating systems, whereof 2 have EBs, 6 have DH (including the case study), and 2 have 

GSHPs. The comparison shows that the delivered heat to housing associations with EBs and 

DH are in the same range, with Apt ID 3 as an exception. As expected, the delivered heat is 

lower for the two housing associations with GSHPs, due to the Coefficient of Performance 

(COP) of the heat pump systems being higher than 1.  

 

 

Model evaluation metrics 

 MAE MSE RMSE 

Training 0.054 0.005 0.071 

Case  0.052 0.004 0.063 
 

Figure 6 Specific delivered energy for space heating and DHW in 10 housing associations, as a 
function of outdoor temperature. 

A linear regression model was employed to assess whether the energy use for heating in the 

case study (Risvollan) can be considered representative of apartment buildings with DH or 

EB constructed before 2007. The model described the linear relationship between daily 

energy use for heating and outdoor temperatures. The training data for the model were from 

the apartment buildings with EBs (Apt. ID 1 and 2) and DH (Apt. ID 3, 5, 6, 7, 8). The same 
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model was then tested on the case data (Apt. ID 4). Evaluation metrics, including MAE 

(Mean Absolute Error), MSE (Mean Squared Error), and RMSE (Root Mean Squared Error), 

are presented in Figure 6. These metrics indicate that the model's predictions on the case study 

data have slightly lower errors, both in terms of magnitude and dispersion, compared to the 

training data. This suggests a similar or slightly improved fit.  

To sum up, we conclude that the delivered heat to the case study can be considered 

representative for apartment buildings with DH or EB, constructed before 2007.  

Electricity in apartments 

Apartments in Norway generally have their own meter for delivered electricity, metering 

hourly values [45]. Figure 7 compares daily specific delivered electricity to apartments in five 

housing associations, where Apt. ID 4 is the selected case study (Risvollan), together with the 

average daily outdoor temperatures. The daily delivered electricity values are average values 

for the apartments in each housing association. All the apartments are connected to a central 

heating system, supplying heat to both space and DHW. Still, the figure shows a seasonal 

difference in electricity use, with higher energy use with cold temperatures. Thus, we may 

assume that the difference is partly caused by electric floor heating, which is typical in 

Norwegian bathrooms, and partly caused by higher electricity use for lighting during the 

winter.   

 

 

Model evaluation metrics 

 MAE MSE RMSE 

Training 0.017 0.0005 0.022 

Case  0.011 0.0002 0.014 
 

Figure 7 Electricity use in apartments in 5 housing associations, as a function of outdoor 
temperature.  
 
Figure 7 shows that the electricity uses in the five housing associations are in the same range. 

For Apt. ID 1, 2, 29, and 30, the average electricity use in the apartments varied from 37 to 53 

kWh/m2/year from 2019 to 2022, corresponding to 2868- 4551 kWh per apartment. For the 

apartments in our selected case study (Risvollan), the specific delivered energy for electricity 
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was 51 kWh/m2 in 2018, or 4527 kWh per apartment (average values, 505 units). This is in 

line with results in [46], which assumed an average electric load of 4500 kWh for all 

apartments in Norway, independent of their construction year.  

A linear regression model was employed for the daily electricity use and outdoor 

temperatures, to assess the representativeness for the case study (Risvollan). The model was 

created based on training data (Apt. ID 1, 2, 29, 30), and the same model was then tested on 

the case data (Apt. ID 4). Figure 7 shows the evaluation metrics, which suggests a similar or 

slightly improved fit for the case data compared to the training data.  

To sum up, the evaluation suggests that the apartment electricity use in the case study can be 

considered representative for apartment buildings.  

Residential EV charging 

The share of EVs in the Norwegian car park is increasing, and by July 2023 there was about 

30% EVs, including both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles 

(PHEVs) [47].  

In the main case study, an EV charging infrastructure was installed in December 2018. This 

infrastructure allows for the installation and activation of CPs on demand, and up to 764 CPs 

can be activated in the 24 garages. These CPs are either shared among all residents or 

designated for use on individual residents' private parking spaces. Between December 2018 

and January 2020, the number of CPs increased from zero to 70, with 12 CPs designated for 

shared use and 58 for private use. The charging infrastructure is designed to balance the EV 

charging loads in each garage, ensuring that the aggregated charging power remains below a 

specified limit.   

In Norway, residential customers are typically connected to a 230 Volt IT system [48]. When 

it comes to residential EV charging, the available charging power is commonly 2.3 kW when 

utilizing a household power plug (10 A) and 3.6 kW or 7.4 kW when using a Type 2 

connector (16 A or 32 A). Certain charging systems offer the capacity to enable 3-phase 

charging on a 230V IT system, which results in increased charging power for specific EV 

models. In the context of the case study, all customers have access to 7.4 kW charging power, 

and this can be increased to 11 kW by activating 3-phase charging. The actual charging power 

for an EV is also dependent on the onboard charger capacity for the EV.  
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In addition to the EV charging data collected from the main case study, an extended database 

was utilized for EV charging analysis within this thesis, as detailed in section 2.2.3. Figure 8 

displays plug-in times, plug-out times, connection durations, and energy charged for 12 

residential EV data locations. The main case study location is denoted as "TRO_R" in the 

figure, and the EV charging patterns observed in the main case study align with those in the 

other locations. For more details of the EV charging habits in the 12 locations, please refer to 

article Main II. 

 
Figure 8 Plug-in times, plug-out times, connection times, and energy charged in the 12 residential EV 
data locations (from article Main II). 
 
PV generation 

PV generation in apartment buildings vary with PV size, location, and weather conditions. As 

there are no PV systems connected to the buildings in our case study, we have simulated the 

generated PV electricity for various installed capacities. The PV generation is simulated for 

roof and façade mounted PV systems in Trondheim. Hourly measurements for global 

horizontal irradiation (GHI) in Trondheim from 2018 [49] are utilized for the simulation. GHI 

represents the total solar radiation on a horizontal surface. Annual GHI measured by weather 

stations in Trondheim and Oslo for the years 2016 to 2022 is shown in Figure 9. The GHI in 

Trondheim in 2018 (870 kWh/m2) is higher than the Trondheim average from 2016-2022 

(827 kWh/m2), but lower than the Oslo average (953 kWh/m2) [49]. Dobler et al. [50] 

conducted a solar resource assessment in Norway, finding that the highest GHI values 

occurred in high mountain areas (about 1000-1100 kWh/m2) and southern coastal sites (1000 
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kWh/m2). In contrast, lower GHI values were observed on the west coast (700-800 kWh/m2) 

and in northern Norway (600-700 kWh/m2). The annual GHI value used in our simulation 

(870 kWh/m2) falls within the mid-range of values typical for Norway. In general, there are 

few examples of PV systems on Norwegian apartment buildings, since the regulations did not 

allow for sharing of electricity across AMS meters until 2023. The residential PV systems 

currently installed in Norway are therefore mainly installed on detached houses. A histogram 

with installed capacities for residential PV systems in Norway is shown in Figure 10, as 

registered in the national database elHub by December 2022 [51]. The data is registered by 

the DSOs, and represent a mix of installed inverter capacity (kW AC) and installed PV 

capacity (kWp DC). It can be seen that the systems mainly range between 3 and 12 kW 

installed capacity. 

 
Figure 9 Global GHI in Trondheim and Oslo 
2016-2022. 

 
Figure 10 Installed power for residential PV 
systems in Norway [51]. 

 
Representativeness of the main case study  
To conclude, we have evaluated the main case study to be representative for a major share of 

Norwegian apartment buildings with EV charging. The apartment buildings include 

apartments of diverse floor sizes, accommodating households of varying sizes, as well as a 

range of gender and age demographics. The average floor area and resident count per 

household align with typical Norwegian apartment statistics. In terms of energy use, the 

delivered heat to the case study can be considered representative for apartment buildings with 

DH or EB, constructed before 2007. The electricity use in the case study can be considered 

representative for apartment buildings in general. The EV charging data from the main case 

study corresponds with data from 11 other residential locations included in this thesis. For PV 

generation simulations, the GHI values utilized falls within the mid-range of values typical for 

Norway.  
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2.2.3 Other case studies 

Besides using data from the Risvollan housing cooperative, the articles in the thesis also 

include analyses of data from other locations. For the DHW analysis in Supplementary article 

III, an apartment building in Oslo is the case study.  The apartment building has 56 

apartments and a shared DHW system. Detailed DHW data was available from the research 

project VarmtVann2030 [52].  

For the EV charging analyses in Main articles II and IV, EV charging data from 12 residential 

locations in Norway was used (including the location of the main case study). The EV 

charging data was based on EV charging reports with energy and time information for 35.000 

EV charging sessions and 271 EV users. Various CPOs and housing associations provided 

access to the data. The EV charging data is described with further details in article Main II. 

2.3 Data collection, cleaning, and sharing 

To address the research questions of this thesis, it was crucial to obtain access to 

comprehensive data describing energy use in apartment buildings, EV charging data, climate 

data, and relevant metadata. This section describes the data collection and data cleaning 

procedures.  

Access to real-world energy data provides the basis for research within a number of fields, 

such as energy use analysis, modelling, and simulations. Still, it can be challenging for 

researchers to access suitable data. Data sharing has therefore been an important part of this 

thesis, aiming to share findable, accessible, interoperable, and reusable data according to the 

FAIR principles [53].   

2.3.1 Data collection 

A number of stakeholders have been contacted during the time period of this thesis, and have 

been invited to contribute with data. The major data collection steps are listed in Table 4.  

Before processing personal data, notification forms were sent to the NSD – Norwegian Centre 

for Research Data (since 2022: Sikt – Norwegian Agency for Shared Services in Education 

and Research). Information letters were sent to the participants, providing information about 

the project and their rights. When only collecting anonymous data, such notifications were not 

needed. 
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Table 4. Data collection in the thesis. 

 Stakeholders/owners of data Type of data Source 
Apartment 
building 
energy 
use 

Risvollan housing cooperative, NTE Marked 
(energy company), Enoco (EMS-provider), 
Fosen Innovasjon (partner), and Statkraft 
varme (DH company) 

Meta data and energy 
system information 

Dialog 

Enoco (EMS-provider) Heating and DHW 
data (hourly) 

EMS of the 
housing 
cooperative  

DSO TrønderEnergi Nett Electricity data from 
cooperative meters 
(hourly). Coupled 
with meta-data 

Data files 

DSO TrønderEnergi Nett Electricity data from 
apartments (hourly). 
Anonymous data 

Data files 

National registry in Norway Resident information 
(number, age and 
gender) 

Data on 
request [54] 

Other research projects, especially 
VarmtVann2030 [52] and COFACTOR [36] 

Energy data Data files 

EV 
charging 
data 

Risvollan housing cooperative, NTE Marked 
(energy company) 

EV charging reports. 
Coupled with 
electricity data 

Data files 

Housing cooperatives in Bærum and Tveita, 
Current Eco AS, Kople AS, and Mer Norway 
AS 

EV charging reports Data files 

Residents in housing cooperatives in Risvollan 
and Bærum 

Data about EVs and 
charging habits 

Questionnaire 

The Norwegian EV Association Charging habits in 
Norway 

Questionnaire 
"Elbilisten 
2022" [55] 

EV cabin 
preheating 

Experimental study. Data was collected in two 
sites, where volunteering EV owners charged 
and preheated their EVs 

Power loads for grid-
connected preheating 
of EV cabins 

Trial meters 
and charging 
reports 

PV 
capacity 
data 

NVE and Statnett/ Elhub Data on grid-
connected PV 
systems in Norway 
[51] 

National 
database 
Elhub 

Climate 
data 

Norwegian Centre for Climate Services Climate data from 
public weather 
stations [49] 

Data files  
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2.3.2 Data cleaning 

The data cleaning process was performed using the statistical computing environment R [56]. 

This section presents a summary of the key insights gained during the data cleaning process in 

the thesis, primarily focusing on time series with hourly resolution. Data cleaning of the time 

series is further described in the publications, especially Supplementary I and II. For a 

detailed description of data cleaning of EV charging reports, please refer to the publications 

Main I, Main II, and Data I. The thesis has limited utilization of data series involving "change 

of value" (COV) [57], with the exception of some EV sessions in Main I and Main III, which 

is not covered in this summary.  

Understanding the energy system and metering location 

When analysing energy data, it is essential to have some information about the energy system 

and metering location. For instance, meter readings for space heating and DHW usually 

represent delivered energy, including heat losses. As a result, they might not be directly 

comparable to Norwegian energy performance requirements, which generally represent 

energy use for space heating and DHW, excluding energy losses. In cases where a building 

has multiple energy meters, it is necessary to be aware of the metering structure, 

encompassing main meters, sub-meters, etc. For heating systems with multiple heat sources, 

consideration should be given to whether all relevant heat flows are metered.   

Evaluation of data quality 

Typically, data cleaning handles missing values, resolves inconsistencies, and detects and 

removes outliers [58]. To get an overview of missing data per time series, the number of 

measurements within the data period can be counted (either overall or on a monthly basis if 

required). As a quality assurance measure, this process can also be repeated after data 

treatment. Data quality can be evaluated through data analyses and visual evaluation, 

including zero-values (evaluate if values truly are zero or in fact missing data), negative 

values, too high values, and periods with unchanged values (may be average values for the 

period, due to missing data). Out-of-range checks, such as negative and too high values, are 

described by [59] based on the cleansing of a large database with energy data from 750 000 

buildings. Their data cleansing involved confirming that the data values were within 

reasonable or researched limits. In our analysis, we also found that values estimated by the 

energy companies should be critically evaluated. E.g., in article Supplementary I, we removed 

estimated values from peak load analysis, since they represented the maximum values for 
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some time series. In the same article, we included the estimates in the annual energy values, 

since only a minor share of the hourly values was estimates (99% for apartments and 98% for 

common areas).  

The measurement resolution of the data should be considered, to evaluate if the data are 

suitable for the purpose. Typically, AMS meters (electricity) have relatively high resolution 

(e.g. 1 Wh/h), while thermal (sub-)meters have low resolution (e.g. 10 or 100 kWh/h for the 

SUBs at Risvollan, as described in article Supplementary II). With low measurement 

resolution, hourly loads may be shifted to the subsequent hour. In Supplementary II, we 

therefore included only SUBs with 10 kWh/h resolution when analysing daily heat load 

profiles and peak values. All the SUBs were included when analysing annual energy values.  

Time stamps in the time series 

Diverse time series handle time stamps differently, encompassing factors such as whether 

time stamps are logged before or after the measurement period, as well as considerations 

related to time zones and daylight-saving time (DST). Additionally, there can be errors in the 

time stamps. Table 5 provides examples of the variations observed in the time stamps of some 

received data series. Norway follow Central European Time (CET) from October to March 

(UTC+1) and Central European Summer Time (CEST) from March to October (UTC+2). 

Table 5 Examples of time stamps used in time series. 

Electricity/AMS-data  
– Example from DSO TrønderEnergi 
Nett (per 2020) 

 Timestamps show the time AFTER measurement period. 
 Norwegian time-zone without DST ("normal time", UTC+1).  

Electricity/AMS-data  
– Example from Elhub user portal 
"minside" (per 2023) 

 Timestamps show start and end time. 
 Norwegian time-zone with DST (UTC+1/UTC+2).  
 DST: All values, with 23 hours in March, 25 hours in October. 

Electricity/AMS-data  
– Example from DSO Elvia user portal 
"minside" (per 2023) 

 Timestamps show the time BEFORE measurement period. 
 Norwegian time-zone with DST (UTC+1/UTC+2). 
 DST: 24 hours in March, with zero-value for DST-hour. 24 hours in 

October, with summarized value for DST-hour. 
Heating/ EMS-data  
– Example from EMS-provider Enoco 
(per 2019) 

 Timestamps show the time BEFORE measurement period. 
 Norwegian time-zone with DST (UTC+1/UTC+2). 

Heating/EMS-data  
– Example from EMS-provider Dråpe 
(per 2022) 

 Timestamps show the time AFTER measurement period. 
 Norwegian time-zone with DST (UTC+1/UTC+2).  
 DST: 24 hours in March, with NA-value for DST-hour. 24 hours in 

October, with average value for DST-hour. 
Weather-data from seklima.met.no  Timestamps show the time BEFORE measurement period. 

 Norwegian time-zone without DST ("normal time", UTC+1). 
 

To enhance confidence in the accuracy of the timestamps, the following steps may be 

considered during the data treatment. Firstly, the data provider should provide information 
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about the time stamps of their data series. During data treatment, time stamps in all the data 

series should be changed to the same format, e.g., standard time for the location when DST is 

not in use (UTC+1 in Norway). For clarity during data handling, two columns can be used for 

the time series, showing start and end time for each time step. Especially the hourly data for 

the dates with change in DST should be carefully considered (in October and March). For 

example, aggregated values for the DST-hour in October can provide peaks which are not 

real. When visually presenting data, it can be an advantage to include DST. In R [56], the 

time zone of the figures can be defined separately. Finally, to ensure the quality of the 

resulting time stamps, a comparison of average daily profiles for both summer and winter, or 

even for each month, can be conducted. Thereafter, the alterations in the peaks can be 

evaluated, for e.g., solar radiation and energy loads.  

2.4 Data analysis and modelling 

Table 6 provides an overview of the main methods used in the publications. The methods are 

briefly explained in this chapter, with data analysis in section2.4.1, key performance 

indicators (KPIs) in section 2.4.2, and main modelling methods in 2.4.3. The methods are 

further described in the publications presented in Chapter 3.  

The main tool for the analyses and modelling has been the statistical computing environment 

R [56]. In addition, the two MSc students used Python [60] for the stochastic model (Maria 

Claire Westad, Supplementary V) and optimization of EV charging (Balder Bryn Morsund, 

Main IV). 

Table 6 Overview of main methods used in the publications. 

Publications Data analysis Modelling (ref. section 2.4.3) 
RQ1   
S I  Electricity use Data analysis emphasised; no modelling included  
S II Heating  Linear regression model for heat and DHW 
S III  DHW use Rule based control of delivered DHW 
S IV  PV generation  Simulation of electricity from PV systems 
RQ2   
Main I  EV charging and flexibility potential Data analysis emphasised; no modelling included  
S V  Generalisation of EV charging Stochastic model for EV charging 
Main II  Complete EV charging datasets and 

charging behaviour 
Data analysis emphasised; no modelling included 

Main III  EV cabin preheating Linear regression model for cabin preheating 
RQ3   
Main IV  Energy profiles for apartment 

buildings with EV charging 
Optimization of EV charging in apartment buildings 
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2.4.1 Data analysis  

The case study data is analysed to increase the understanding of the energy performance in 

Norwegian apartment buildings with EV charging and is essential for addressing the research 

questions. In the articles, the energy uses (electricity, heating, and EV charging) are described 

with both absolute and specific values (per area, per apartment, or per EV). Visual 

representation of the data is important for the analysis, and includes: 

• Time series, which illustrates how the 

hourly energy loads changes during a 

period (e.g., seasonal differences in 

thermal energy, and increase of EV 

charging use over time).  

Figure 11 shows an example of the 

use of time series from Article S II 

(heating), addressing RQ1. Time 

series are also included in Article S I, 

S III, S IV, Main I, S V, and Main IV. 

 

• Daily average load profiles, which 

show how the average hourly energy 

loads change during the day. Load 

profiles can also show the difference 

between workdays and weekends, and 

can be segmented by different 

seasons. 

Figure 12 shows an example of daily 

average load profiles from Article S I 

(electricity use), addressing RQ1. 

Daily average load profiles are also 

included in Article S II, S III, S IV, 

Main I, S V, Main II, Main III, and 

Main IV. 

 

Figure 11 Examples of "Time series" and 
"Duration curves" from Article S II. Area specific 
values for delivered heat is presented on hourly 
and daily basis.  
 

 
Figure 12 Example of "Daily average load 
profiles" from Article S I, for electricity use in 
apartments (average for 1009 apartments, and for 
the 10% with less/most annual electricity use). 
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• Energy signatures (ET diagrams) 

with hourly or daily values, reflecting 

the relationship between energy use 

and different outdoor temperatures. 

Figure 13 shows an example of an ET 

diagram from Article Main III (EV 

cabin preheating), addressing RQ2. 

ET curves are also included in Article 

S I, S II, and Main IV. 

 

• Load duration curves with hourly (or 

daily) loads over a specified period, 

sorted by their magnitude. The 

duration curves illustrate the duration 

of different load conditions, which is 

valuable insights when e.g., 

dimensioning the capacity of heating 

systems and storage.  

Figure 14 shows an example of the 

use of load duration curves from 

Article S IV (PV), addressing RQ1. 

Load duration curves are also included 

in Article S I, S III, and S IV. 

 

• Histograms and boxplots, which 

visually display data distribution, 

indicating variations among users 

(apartments, EVs, etc.) in for example 

annual energy use or maximum 

power. Histograms use bins to show 

frequency of values, while boxplots 

represent quartiles and highlight 

outliers. 

 
Figure 13 Example of Energy-Temperature 
diagram from Article Main III, showing energy use 
during preheating sessions for a Nissan Leaf. 
 

 
Figure 14 Example of load duration curves from 
Article S IV. Hourly duration curves are shown, for 
net electricity load for apartment buildings with 4 
PV system scenarios (positive values: import from 
grid, and negative values: export to grid). 
 

 
Figure 15 Example of histogram from Article 
Main 1V, showing annual energy use for 505 
apartments and 271 EVs.  
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Figure 15 shows an example of a 

histogram from Article Main IV 

(flexibility), addressing RQ1 and 

RQ3. Histograms are also included in 

Articles S V, and Main II. 

Figure 16 shows an example of 

boxplots from Article Main II (EV 

charging), addressing RQ2. Boxplots 

are also included in Article S I and 

Main I. 

 

• Aggregated peak loads can for 

example be illustrated in figures 

where the aggregated peak load is 

shown per user (e.g., per EV) for an 

increasing number of users.  

Figure 17 shows an example of 

aggregated peak loads from Article S 

V (EV charging), addressing RQ2. An 

aggregated peak power figure is also 

included in Article Main I. 

 
Figure 16 Example of boxplots from Article Main 
II, showing the variation in connection times per 
EV session in 12 residential locations.  
 

 
Figure 17 Example of aggregated peak loads from 
Article S V, showing how the average peak load 
decreases for an increasing number of EVs (for 
base scenario, with EV mix similar to original 
data). 

 

2.4.2 Key performance indicators 

Different KPIs have been developed and proposed to quantify the energy flexibility of 

buildings [9,61–63]. Energy, power, and duration are commonly included in the properties of 

energy flexibility. Cost, comfort, and emission are other properties which are frequently 

considered. To activate the energy flexibility, a penalty signal is often introduced (e.g. price) 

[64]. When quantifying flexibility, there is usually a reference case for the energy use, 

representing ‘business-as-usual’ [9]. Kathirgamanathan et al. [62] concluded that different 

stakeholders such as end-users, aggregators, and grid operators require different kinds of 

flexibility indicators. While end-users often aim to reduce their total energy costs, grid 

operators need to know the aggregated flexibility potential of a building stock. Aggregators 

need knowledge of the DR technical specifications such as DR power, rebound energy, and 
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response time. Li et al. [65] emphasized that a generic energy flexibility characterization 

methodology should be simple to apply and usable by different stakeholders. Since there is a 

lack of consensus and standardization in literature when it comes to quantification of energy 

flexibility in buildings [62,65,66], [65] recommends that several methodologies should be 

tested when quantifying energy flexibility for a specific case study. 

To increase the understanding of the data and outcomes, a combination of several KPIs is 

utilized in the thesis. KPIs are featured across all the publications, with a particular emphasis 

in the article Main IV. KPIs used in the thesis include:  

• Energy 

o Annual values for delivered energy and energy use (in kWh), per apartment, per 

resident, per EV, and per area.  

o Energy use during stress hours (in kWh).  

o Flexibility factor, which is the loads (e.g. EV loads) during low load (or low price) 

hours versus high load (or high price) hours.  

• Peak power  

o Maximum hourly loads (e.g. during a year), and peak power difference between 

different scenarios (in kWh/h or kW).  

o Coincidence factors, describing the ratio between maximum load for the 

accumulated measurements studied and the aggregated maximum load. 

• EV charging  

o Battery capacity (kWh/EV user), charging power (kW/EV user), start SoC of 

battery (%), time for charging, connection to CP, and non-charging idle time 

(hours per session), energy charged (kWh/session), idle energy capacity 

(kWh/session), weekly charging sessions (per user), time between charging 

sessions (hours). 

• PV generation  

o Self-consumption: Share of the on-site generation that is used by the buildings or 

behind the billing meter. 

o Self-generation: Share of the energy use that is covered by on-site generation. 

o Generation multiple factor: Ratio between exported and imported peak powers. 

• Costs 

o Annual operational costs (in NOK), and operational cost difference.  



34 

2.4.3 Modelling 

The main modelling methods used in this thesis is explained in the following. 

Multiple linear regression analysis is a statistical technique employed to examine the 

relationships between a response variable and various independent predictor variables. This 

method proves valuable for understanding energy data and forecasting future energy loads in 

buildings. The method provides a reasonable accuracy and relatively straightforward 

application compared to alternative methods [59]. Within this thesis, multiple linear 

regression analysis is implemented for heating data in the article Supplementary II and for 

cabin preheating data in article Main III. In these two publications, multiple linear regression 

is used to investigate the relationships between energy use and multiple independent variables 

like outdoor temperature. 

PV simulations are performed in Supplementary IV, and the resulting data series serve as 

inputs for the analyses conducted in Supplementary IV and Main IV. PVsyst [67] was used to 

simulate generated electricity time series with hourly resolution, using climate data from local 

weather stations [68]. PVsyst is a widely used simulation tool for modelling and designing 

solar PV systems [69]. It offers numerous options for system configuration, including size, 

tilt, orientation, seasonal soiling losses, etc. Additionally, PVsyst can import climate data, and 

for this analysis, climate data from the main case study region was used, aligning it with the 

available energy data for the corresponding years. This approach was important for ensuring 

that parameters such as self-consumption and self-generation, which are central to the 

analyses in this thesis, were based on realistic values.   

The stochastic load profile generator, as described in Maria Claire Westad's MSc thesis 

[70] and Supplementary V, employs a methodology similar to the one presented by Fischer et 

al. in [71]. This generator produces EV charging load profiles based on probabilistic factors, 

capturing the stochastic nature of EV charging. This stochastic nature arises from the fact that 

the timing of EV charging and the charging need per EV session depend on user behaviour.  

To create this generator, we used the EV charging dataset in Main I and Data article I. 

Initially, we estimated car sizes (small or large EVs) for the EV users, which allowed us to 

categorize the dataset. Subsequently, we derived stochastic model parameters from 

probability distributions related to: 1) weekly charging frequency, 2) charging need per 

session, and 3) plug-in and 4) plug-out time of session.  
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The advantage of using the generator when addressing RQ2, in addition to analysing the EV 

charging data directly, was especially its ability to generate time series for specific user 

groups (small or large EVs). This provided insights into how user habits and car sizes 

influence the electricity load profiles of residential EV charging. Moreover, since the 

generator can provide time series for any number of EVs, it allowed us to create coincidence 

factors and aggregated peak loads for an increasing number of EVs.   

The optimization model for smart EV charging, as described in Balder Bryn Morsund's 

MSc thesis [72] and the publication Main IV, utilizes Mixed Integer Linear Programming 

(MILP) [73]. MILP is a widely employed tool for modelling optimal control of energy use in 

buildings [74]. The main objective of this optimization is the minimization of energy costs 

during the operational phase.  

The reference scenarios for the results illustrate uncontrolled EV charging in the apartment 

buildings. In the simulated scenarios, the electricity use within the apartments is static, while 

the EV charging can be shifted in time. The model handles each EV charging session 

individually, optimizing it in accordance with real-world values, including energy demand for 

charging sessions and associated plug-in and plug-out times. 

The optimization model is important in addressing RQ 3 in this thesis, when investigating and 

quantifying the potential for electricity flexibility from EVs in relation to non-flexible 

apartment building loads and PV generation. Specifically, the model allows us to investigate 

how the electricity flexibility KPIs of optimised EV charging in apartment buildings are 

affected by different energy tariffs, PV, V2G, and the location of the billing meters.   
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3. Results and discussions 

In chapters 3.1-3.3, the results of the publications are presented along with explanations of 

how they are linked to the research sub-questions. Chapter 3.4 presents how the 

contributions answer the main research question. Chapter 3.5 describes limitations of the 

study and provides suggestions for further work.  

3.1 RQ1: What are the energy profiles for household energy use and PV 

generation for apartment buildings, and how are the energy profiles 

influenced by climate variables? 

    

3.1.1 Article Supplementary I. Electricity analysis for energy management in 
neighbourhoods: Case study of a large housing cooperative in Norway  

Supplementary I investigates the energy profiles for electricity use in apartment buildings. 

The case study of the work is the housing association Risvollan, with 1,058 apartments. 

Hourly data from the year 2018 was analysed, divided into electricity use in apartments 

(1,009 AMS-meters), electricity to common areas (89 AMS-meters), and electricity use in 

garages (25 AMS-meters). The data was linked with outdoor temperatures and calendar data. 

In 2018, the average specific delivered electricity to apartments and common areas was 56.7 

kWh/m2 heated apartment area. The apartments had an average annual electricity use of 4,362 

kWh and reached an average maximum hourly load of 3.2 kW. The electricity coincidence 

factor for the 1,009 apartments was 0.316. This factor is calculated as the ratio between the 

aggregated maximum hourly load for all apartments during the year and the sum of each of 

the apartment's individual maximum hourly load. Time series and duration curves show the 

electricity use during the year, where Christmas Eve and New Year's Eve have the highest 

annual electricity peaks. The reason for this is the high coincidence for electricity use in 

apartments during these dates, together with low outside temperatures. The relationship 

between electricity use and outdoor temperatures was illustrated by ET curves, showing that 

the temperature dependency for the electricity use was rather small, since the housing 

cooperative is connected to district heating. This temperature (or seasonal) dependency is 

explained by heating (e.g. floor heating in the bathrooms), lighting, and other increased 

electricity use during the colder season. Daily electricity load profiles for apartments, garages, 

and other common areas were illustrated separately. The studies showed that both apartments 

and garages have an afternoon/evening peak in delivered electricity, i.e., from about 3 pm to 9 
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pm (in average 7.5 W/m2 for apartments), while the lowest electricity use happens during 

night (in average 4 W/m2 for apartments). 

3.1.2 Article Supplementary II. Heat analysis for energy management in 
neighbourhoods: Case study of a large housing cooperative in Norway  

Supplementary II investigates the energy profiles for heat use in apartment buildings, with 

data from the main case study Risvollan. DH provides space heating and DHW to the 

apartments, with sub-meters in 20 SUBs, covering 25 to 74 apartment units per SUB. The 

supply temperature for the space heating system is controlled according to an outdoor 

temperature compensation curve, and is turned off at 18.0°C. Average specific delivered heat 

was 139 kWh/m2 heated apartment area.  

A linear regression model was developed, modelling specific heat delivered to the apartments 

as a function of different climate variables. The model was tested with the climate variables 

outdoor temperature, wind speed, wind direction, solar radiation, and minutes of sun each 

hour. Among these, outdoor temperature and average outdoor temperature the last 18 hours 

were selected for the final model. This model, with an outdoor temperature breakpoint at 

19.0°C, demonstrated a strong fit to the training data with an adjusted R2 value of 0.8438. 

Including wind speed and solar radiation led to a slight increase in the adjusted R2 (to 0.8515), 

however, these parameters were omitted due to the unreliable nature of hourly wind and solar 

data in the Risvollan area. By focusing on outdoor temperature alone, the model was found to 

have greater robustness against missing input data and errors.  

The linear regression model was also used for separating energy for DHW from the total 

delivered heat, by setting an outdoor temperature of 19°C every hour of the year. This 

resulted in a modelled delivered heat for DHW of 25.1 kWh/m2, which was 18% of the 

delivered heat. Daily heat load profiles were presented for delivered heat during weekdays 

and weekends in the annual seasons, with holidays separated. The daily peaks were primarily 

linked to DHW use, and appeared in the morning hours. 

3.1.3 Article Supplementary III. Energy flexibility potential of domestic hot water 
systems in apartment buildings  

Supplementary III provides energy profiles for DHW use in apartment buildings. The case 

study for the work is 56 apartments in Oslo with a shared DHW system. Energy 

measurements, with minute or hourly resolution during 23 to 50 days (January to March 
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2019), included data on consumed hot water, hot water circulation, and energy supplied to the 

DHW tanks. During this measurement period, daily DHW heat use averaged approximately 

96 Wh/m2, while the daily delivered heat for DHW was around 148 Wh/m2. The total heat 

losses were about 35% of the supplied energy. Assuming these daily DHW values are 

representative for the entire year, the estimated annual heat use and delivered heat for DHW 

would be 35 and 54 kWh/m2, respectively (2,360 and 3617 kWh/apartment).  

The daily profiles in Supplementary III display hourly average values for consumed hot 

water, hot water circulation, heat losses, and energy supplied, with their individual 90% 

confidence interval. Morning and afternoon peaks were evident in the hot water consumption, 

with average hourly values peaking at up to 8.4 W/m2 in the morning and 6.1 W/m2 in the 

afternoon. Additionally, DHW usage remained relatively high during other daytime hours, 

typically falling within the range of 3.5 to 4.3 W/m2. The study also investigates the impact of 

different rule-based control options on DHW energy profiles. These options include "power 

limitation," "spot price savings," "flexibility sale," and "solar energy.". 

To evaluate the DHW values presented in Supplementary III, the daily energy profiles and 

annual values are compared with data from other case studies that became available after 

publication. The energy data from the Oslo case described above were sourced from the 

VarmtVann2030 project [52]. In [75,76], the data from this apartment building in Oslo 

(referred to as "AB3") was presented alongside data from three other apartment buildings. 

The daily energy profiles and energy use in AB3 was similar to another housing cooperative 

presented ("AB4"), but had a lower daytime DHW use compared to the two examples with 

social housing ("AB1" and "AB2"). AB1 and AB2 were smaller (average 40 m2) than AB3 

and AB4 (average 60-70 m2), and one of the conclusions from VarmtVann2030 was that 

DHW use depends on number of residents not apartment area [76]. It is therefore advisable to 

compare DHW use per apartment instead of area.  

In 2022, delivered heat for DHW was also accessible for 74 apartments in the main case 

study, Risvollan. For these apartments, annual delivered heat for DHW was 35 kWh/m2 

(2,900 kWh/apartment), which is 35% lower than delivered heat for DHW in the Oslo case 

(20% lower per apartment). This variation underscores the need for additional DHW data 

from various apartment buildings before drawing conclusions on typical values. Moreover, 

delivered energy for DHW is likely influenced by outdoor temperatures, as colder input water 

temperatures are common during the winter. In [76], monthly data from the Oslo case is 
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presented, indicating how delivered energy to DHW has a seasonal dependency. While this 

aspect hasn't been a primary focus of this thesis, it presents an opportunity for further 

investigation in future studies.  

3.1.4 Article Supplementary IV. Analysing electricity demand in neighbourhoods with 
electricity generation from solar power systems: A case study of a large housing 
cooperative in Norway  

In Supplementary IV, electricity generation from PV systems were simulated for the main 

case study Risvollan. The electricity generation from PV systems with different orientations 

and capacities were analysed in combination with data on electricity loads from 

Supplementary I. It was found that the PV systems mounted on the south-facing building 

facade generated approximately 5-6% more electricity annually compared to east-west 

oriented rooftop PV systems. The reason for this difference was that the façade mounted PV 

systems generated more electricity in the spring and autumn. Various KPIs, such as self-

generation, self-consumption, and self-generation multiple, were calculated based on hourly 

values. Considering Norway's national tariff structure, the self-consumption factor is 

considered to be the most important KPI for the housing cooperative. A PV capacity of about 

1 kWp per apartment gave a self-consumption factor of 97% for a rooftop system, based on 

2018 electricity and climate data.  

The article also investigated the impact of billing meter location on various energy and 

economic KPIs. From the housing cooperative's standpoint, aggregating electricity loads for 

common areas and individual apartments was found to be financially advantageous since it 

enabled a greater portion of the generated electricity to be utilized by the cooperative. Prior to 

October 2023, Norwegian regulations allowed PV electricity generated behind a billing meter 

to be used directly behind the same meter or be exported. However, with new regulations 

[24], PV electricity behind a billing meter can now also cover electricity use behind other 

meters on the same property. This is an advantage for housing associations, since PV 

electricity can be used in both common areas and apartments.     

The article's results demonstrate how the capacity and orientation of a PV system can 

influence the daily and annual energy profile for PV generation, which, in turn, affects self-

consumption in the apartment building. This information is valuable when planning PV 

systems; for example, an east-west oriented system can be considered to maximize electricity 
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generation during morning or afternoon hours, when there is also a high demand for 

electricity in the apartments.  

3.1.5 Article Main IV. Energy profiles and electricity flexibility potential in apartment 
buildings with electric vehicles – A Norwegian case study  

Article Main IV provides energy profiles for household energy use, residential EV charging, 

and PV generation for Norwegian apartment buildings. This study analyses hourly 

measurements for electricity and heat consumption in approximately 500 apartments (from 

the main case study Risvollan). The household energy data is combined with a substantial 

dataset of residential EV charging (involving 271 EV users) and simulated PV electricity 

generation. Daily average energy profiles and energy KPIs for the case study were presented. 

While the articles in section 3.1.1 to 3.1.4 provide detailed discussions of electricity, heating, 

DHW, and PV generation, article Main IV offers a complete overview of energy usage in 

apartment buildings. Additionally, the article highlights the significant role of EV charging in 

relation to the total power and energy consumption within these buildings. Further details on 

this are provided in section 3.4.   

3.2 RQ2: How does the user habits influence the electricity load profiles of 

residential EV charging, and how is the electricity load affected by EV cabin 

preheating? 

  

3.2.1 Article Main I. Analysis of residential EV energy flexibility potential based on 
real-world charging reports and smart meter data 

Article Main I focuses on charging habits, electricity load profiles, and flexibility potentials of 

EV charging in apartment buildings. Data from the main case study Risvollan was used as 

input to the work: EV charging reports with 6878 individual charging sessions and AMS data 

for the garages. These data sources are generally accessible for apartment buildings in 

Norway, making it feasible to widely implement this methodology.  

 

The study involved an analysis of EV charging habits, which included an examination of the 

daily distribution of EV plug-in and plug-out times on weekdays and weekends, as well as the 

creation of histograms illustrating connection times and energy charged. Furthermore, the 

study compared charging behaviours in residences with private CPs at individual parking 

spaces to those using shared CPs accessible to all residents. Notably, a distinction emerged in 
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residential charging patterns based on CP ownership. For those with private CPs, the average 

connection time averaged 12.8 hours, whereas it was 6.5 hours for those using shared CPs. 

Information about energy and plug-in times from the EV charging reports were translated into 

hourly charging energy, assuming two different levels of charging power (3.6 kW and 7.2 

kW). In real life, the charging power is limited by the onboard charger capacity for the EVs, 

up to the CP capacity limitation (7.4 kW in our study). Comparing the calculated hourly loads 

to AMS measurements per garage, the AMS data fell within the range of the two calculated 

load profiles.  

The article illustrates how user habits, particularly regarding CP plug-in times and charging 

needs, impact the electricity load profiles of residential EV charging. Most EVs are typically 

connected to the CPs in the afternoon and evenings, with, for private CPs during weekdays, 

roughly 80% of connections occurring between 15:00 and 23:00. Consequently, with 

immediate EV charging, the charging loads are concentrated in the evenings. For private CPs 

in the case study, approximately 82% of the weekday charging occurred between 15:00 and 

01:00, assuming 7.2 kW charging power. However, a large share of the EVs remain 

connected to the CP overnight, offering a potential for shifting the EV charging load to 

nighttime hours.   

3.2.2 Article Main II. A method for generating complete EV charging datasets and 
analysis of residential charging behaviour in a large Norwegian case study  

Article Main II introduces a methodological framework designed to offer what is defined as 

"complete EV charging data" by [30]. This framework incorporates realistic estimations of 

battery capacities, charging power, and plug-in battery state of charge (SoC) for individual 

EVs and their respective charging sessions. These estimations were integrated into datasets 

containing plug-in/plug-out times and energy charged. The development of these methods 

involved a combination and further enhancement of existing methodologies found in the 

literature, utilizing data from a case study with more than 35,000 charging sessions from 

residential buildings in Norway.  

The generated EV charging dataset enabled a detailed analysis of how residential charging 

behaviour, electricity load profiles, and energy flexibility were influenced by EV battery 

capacity and charging power. Behaviour data, including energy charged, start SoC values, idle 

energy capacity, and charging frequency, were provided separately for users with "small" 

(small to medium-sized batteries and lower charging power) and "large" (larger batteries and 
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higher charging power) EVs. On average, users charged approximately 6.2 kWh per day. 

Users with large EVs where charging about 1.6 times more than those with small EVs. The 

average charging time was less than 3 hours, while, on average, EVs remained connected to 

the CPs for 12 hours. This confirms the potential for shifting residential EV charging in time, 

especially from the afternoon and evening to nighttime.  

3.2.3 Article Supplementary V. Stochastic load profile generator for residential EV 
charging  

Supplementary V describes a stochastic bottom-up model for residential EV charging, taking 

outdoor temperatures into account. The model was based on charging data from the main case 

study (articles Main I and Data I). The load profile generator is described in more detail in 

section 2.4.3. The generator provides hourly charging loads for EVs, assuming immediate 

charging after CP connection. Hourly load profiles were simulated for 1000 EVs in three EV 

mix scenarios: BASE (a mix of "small" and "large" EV types and charging power), LOW 

("small" EVs with 3.6 kW charging power), or HIGH ("large" EVs with 7.2 kW charging 

power).  

Coincidence factors and peak loads per EV were calculated for the three EV mix scenarios. 

This analysis was conducted for an increasing number of EVs, from 1 to 50, by randomly 

drawing single load profiles from a fleet of 100 load profiles. The procedure was repeated 50 

times to understand how the mean, minimum, and maximum values changed per EV. Our 

findings indicate that the average peak load per EV descended to approximately 1.4 kW for 

BASE, 1.3 kW for "small" EVs, and 1.9 kW for "large" EVs.  

3.2.4 Article Main III. Grid-connected cabin preheating of Electric Vehicles in cold 
climates – A non-flexible share of the EV energy use  

Article Main III focuses on grid-connected preheating of EV cabins. In cold climates, it is 

generally recommended to utilize grid electricity for preheating the EV cabin before using the 

car, to extend driving ranges, ensure passenger comfort, and for safety. The energy required 

for this purpose is typically non-flexible regarding timing, as it is typically directly delivered 

from the grid, not from the vehicle's battery. A significant portion of these preheating sessions 

occurs during the winter's morning hours, when there is also a high demand for other energy 

use. Consequently, it becomes important to understand the power loads associated with grid-

connected EV cabin preheating.  
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The work presented an experimental study involving 51 preheating sessions of five 

representative EV models, conducted under various outdoor temperature conditions. The 

study reported the energy and power consumption associated with these preheating sessions. 

It also involved the development of multiple linear regression models, to investigate the 

relationship between various variables and the energy use during preheating. Lastly, the study 

compared the hourly energy loads for EV cabin preheating with other energy loads within 

apartment buildings, using data sourced from the main case study.  

The study showed that various factors influenced the power and energy loads for preheating 

EV cabins, including the specific EV, the charge point, the preheating duration, the 

temperature conditions, and user habits. In our trial, we observed preheating energy use of up 

to 2 kWh for most EVs, with occasional examples reaching 5 kWh. While this can result in a 

significant energy and power demand at the apartment level, our study found that preheating 

had a relatively minor impact when aggregated for a residential neighbourhood. In our study, 

the average morning load during winter increased by 0.5-2% due to cabin preheating, 

accounting for all apartment energy and EV charging loads. To mitigate the strain on the grid 

caused by EV cabin preheating, EV batteries can provide energy for preheating on days where 

extended driving ranges are not required.  

3.2.5 Data article I. Residential electric vehicle charging datasets from apartment 
buildings 

Data article I presents residential EV charging datasets from apartment buildings in the main 

case study. The data article refers to the article Main I. Several datasets are provided, such as: 

1) The initial EV charging reports (6,878 charging sessions), 2) Calculated charging loads 

with hourly resolution, 3) AMS data for a main garage with 33% of the charging sessions, 4) 

Local hourly traffic density in 5 nearby traffic locations. The open data serves to enhance the 

understanding of residential EV charging and can prove valuable for tasks such as forecasting 

energy loads, assessing flexibility, and aiding in planning and modelling activities. 
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3.3 RQ3: What is the potential for electricity flexibility from EVs, in relation to 

non-flexible apartment building loads and PV generation, in the Norwegian 

context? 

  

3.3.1 Article Main I and II. Flexible and non-flexible EV charging loads 

Articles Main I and Main II also target RQ3 of the thesis, in addition to RQ2 as described in 

section 3.2.1 and 3.2.2. Article Main I focuses on the potential for electricity flexibility from 

EVs in apartment buildings. The hours that the EVs are connected to a CP without charging 

(non-charging idle times) were translated into energy flexibility potential, or idle energy 

capacity. The study uncovers considerable potential for flexibility in residential EV charging, 

particularly in cases where private parking spaces are equipped with CPs. While the average 

charging load for the private CPs was 5.7 kWh per user during weekdays, the hourly charging 

capacity for connected EVs during night hours (23:00 to 07:00) was in average about 2.5 kW 

per user (assuming 7.2 kW charging power). In principle, most of the daily charging load may 

therefore be covered by night charging.  

In Article Main II, the flexibility of EV charging was further investigated. It was analysed 

how the idle energy capacity were affected by EV battery capacity and charging power. The 

charging sessions were divided into flexible or non-flexible sessions, where the non-flexible 

sessions had idle times of less than 1 hour. The majority of non-flexible charging took place 

in the afternoon and evening. Nevertheless, the findings demonstrate a considerable potential 

for shifting the timing of residential EV charging, particularly from afternoon/evenings to 

night-time. On workdays, the daily averaged connected energy capacity was over four times 

higher than the energy charged during the day. The ability of single EV users to shift EV 

charging in time increases with greater EV charging power, more frequent connections, and 

longer connection durations. Comparing users with larger batteries and higher charging power 

(L_High) with users with small to medium-sized batteries and lower charging power 

(SM_Low), the EV charging power of L_High was 2.4 times higher than for SM_Low. At the 

same time, SM_Low had 1.8 times more frequent connections, compared with L_High. Since 

the connection times were quite similar for the two groups, the average daily idle energy 

capacity for L_High was 1.3 times higher than for SM_Low. In the future, the flexibility 

potential may change with advancements in technologies, such as higher charging power or 

V2G capabilities, and changing charging habits, like longer connection times and more 

frequent connections, possibly due to end-user payment for energy flexibility. 
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3.3.2 Article Main IV. Energy profiles and electricity flexibility potential in apartment 
buildings with electric vehicles – A Norwegian case study  

Article Main IV focuses on how the electricity flexibility KPIs of optimised EV charging in 

apartment buildings are affected by different energy tariffs, PV-generation, V2G-technology, 

and the location of the billing meters. The case study included electricity use in 117 

apartments, EV charging from 82 EV users (0.7 EVs per apartment), and energy generation 

from a 117 kWp rooftop PV system (1 kWp per apartment). An optimization model was used 

to simulate all the individual EV charging sessions separately, taking the real-world values for 

energy demand into account, as well as plug-in and plug-out times for the charging sessions. 

The optimization model is further described in section 2.4.3. The main objective of the 

optimization was to minimize the energy costs in the operational phase. Optimised scenarios 

used in the case study is shown in Figure 18, including two tariff options (energy tariff and 

peak per month), two billing meter locations (everything under one meter, or apartments 

measured separately), and energy options (with or without PV-generation and V2G-

technology).  

Finally, the article discusses how coordinated EV charging in apartment buildings can affect 

the aggregated grid load and the self-consumption of PV electricity in residential 

neighbourhoods. In the case study, the annual peak load for apartment buildings with EV 

charging (baseline) was 219 kW, whereof uncontrolled EV charging accounted for 48%. 

Implementing optimal charging according to energy tariffs increased the annual peak by up to 

37%, but shifted the peak to nighttime when there is typically less pressure on the grid. With 

peak per month tariffs, the grid peak was reduced by up to 39% compared with the baseline. 

Investigating the potential for EV flexibility in relation to PV generation, about 18% of the 

uncontrolled EV charging was covered by PV electricity, increasing up to 38% with 

optimized EV charging. EV charging was mainly shifted to periods with PV-generation in the 

scenarios where the shared energy systems (PV, EV, V2G) were metered separately from the 

apartments. When also apartment energy loads were behind the billing meter, the self-

consumption of PV-generated electricity was nearly 100%, thus eliminating the need to shift 

the EV charging. 
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Figure 18 Overview of the options in the optimization scenarios considered in Article Main IV. 
Further details are provided in the article.   

3.4 Main RQ: What are the energy profiles and electricity flexibility potential in 

Norwegian apartment buildings with electric vehicle charging? 

This thesis examined the energy profiles for household energy use and PV generation for 

apartment buildings in Norway. For an average apartment with one associated EV in the case 

study, we found that 63% of the delivered energy was for space heating and DHW, 24% for 

electricity use in apartments, 12% for EV charging, and 1% for other common electricity use. 

The daily average energy profiles are illustrated in Figure 19, displayed for the summer 

period (June to August) and the winter period (December to February), and segmented by 

workdays and weekends. There are average daily peaks in the household energy use during 

mornings and afternoons, and these periods coincide with high load hours in the national grid, 

especially during wintertime. For heating, the energy use is spread quite evenly during the day 

(in average 2.1 kW from December to February), but with a DHW-related morning peak at 

around 08:00 during weekdays (in average 2.9 kW). Electricity use in apartments is highest in 

the afternoon and evenings (from 15:00 to 19:00, the average daily values are 0.8 kW from 

December to February). Table 7 summarizes energy KPIs for the apartments (from Main IV), 

which are described further in the following.  

Grid tariff options
• Energy
• Peak

Technology options
Always included
• EVs
• Apartments

Options
• PV
• V2G

El meter

Apartments EV chargingPV V2G

El meter

Grid

• Separate = 0 • Total = 1

Apartments EV chargingPV V2G

El meter

Grid

Billing meter locations
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Figure 19 Daily average energy profiles for Norwegian apartment buildings, with 1 EV per apartment 
(from Main IV).  

Table 7. Energy KPIs for the apartment building of the case study (from Main IV). 

 Delivered energy  
(kWh/apt/year) 

Delivered energy  
(kWh/m2/year) 

Energy share 

Space heating and DHW 12 200 138 63% 
Electricity use in apartments 4 527  51 24% 
EV charging (1 EV/apartment) 2 314  25.5 12% 
Other common electricity use 250 2.8 1% 
 Energy generation 

(kWh/apt/year) 
Self-consumption  
(Self-sufficiency):  
PV to Apt and EV 

Self-consumption  
(Self-sufficiency): 
PV to EV only 

PV roof 1 kWp /apartment 
2.5 kWp 
/apartment 

754 
1 885 

98% (11%) 
75% (21%) 

51% (17%) 
29% (24%) 

PV 
façade 

1 kWp /apartment 
2.5 kWp 
/apartment 

799 
1 998 

96% (11%) 
65% (19%) 

43% (15%) 
23% (21%) 

 

The presented heating and electricity use in apartments are based on data from the main case 

study Risvollan. The average delivered energy in 2018 was about 138 kWh/m2 for heating 

and 51 kWh/m2 for electricity use in apartments. The delivered heating is considered to be 

representative for Norwegian apartment buildings constructed before 2007 with heat supply 

from EBs or DH. The electricity use is considered to be representative for Norwegian 

apartments in general.  
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For residential EV charging, the energy profiles and KPIs are based on an extended dataset 

for EV charging, including residential EV charging data from 12 residential locations in 

Norway (ref. Main I and Main II). The EV charging profile presented in Figure 19 is based on 

uncontrolled charging, and divided into flexible and non-flexible EV charging. The flexible 

EV charging has in average 9.3 hours idle time, and the charging load may therefore be 

shifted to other hours within the connection period, without necessitating changes in user 

behaviour. About 25% of the EV charging sessions have idle times of less than 1 hour and 

may consequently be considered as non-flexible EV charging. In addition, electricity for grid 

connected preheating of EV cabins is part of the non-flexible electricity demand for EVs (not 

included in Figure 19), as described in section 3.2.4.  

 

An essential aspect of our analysis is the interplay between electricity consumption in 

apartments and energy use for EV charging. By examining various combinations of these 

factors, we gain insights into how they influence total energy consumption. When we added 

the average EV charging to the average electricity use in apartments, we observed that energy 

consumption increased by a factor of 1.5, excluding heating. In Figure 15, we present a 

histogram illustrating variations in annual energy use for 505 apartments and 271 EVs. For 

example, adding the 75th percentile EV charging to the 25th percentile electricity use in 

apartments resulted in an increase of 2.1 times in electricity use, while the reverse situation, 

adding 25th percentile EV charging to 75th percentile electricity use in apartments, led to an 

increase of 1.2 times. If we include heating in the calculations of average values, total energy 

use increased by a factor of 1.1. In more energy efficient apartment buildings, assuming 66 

kWh/m2 energy use for heating1 and maintaining the same levels of electricity use and EV 

charging as in the case study, we found that the total energy use would increase by a factor of 

1.2.  

 

The average maximum power for apartments without EV charging was 1.4 kW. If adding EVs 

with charging powers of 3.5 kW to 11 kW to the apartment loads, the maximum power 

increased to 3.5 to 8.6 times the original. In the case study described in Main IV, we found 

 

1 Calculation is based on the energy requirements for new apartment buildings (95 kWh/m2 energy demand) 
[77], subtracted standard values for equipment and lighting electricity (30 kWh/m2) [78]. 
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that uncontrolled EV charging accounted for 48% of the annual peak load in apartment 

buildings with EVs (heating excluded). 

 

For apartments with PV generation, the self-consumption and self-sufficiency values shown 

in Table 7 were calculated based on hourly values for PV-generation, electricity use in 

apartments, and EV charging. For a roof-mounted PV system with 1 kWp capacity per 

apartment, the self-consumption is nearly 100% and the self-sufficiency 11%, given that the 

electricity can be used to cover electricity demand in the apartments and for EV charging. If 

the PV electricity is used for uncontrolled EV charging only, the self-consumption is reduced 

to 51%, meaning that half of the generated electricity is exported to the grid. Still the self-

sufficiency of PV generation for EV charging is only 17%, since a relatively small number of 

EVs are charging during the day.  

 

To avoid significant power increases during peak hours and enhance self-consumption of PV 

generation, flexible EV charging should be shifted in time. In Main IV, flexible EV charging 

is analysed together with static electricity use in apartments combined with PV generation. 

The EV charging is optimised according to different energy/peak tariffs, metering locations, 

PV systems, and V2G technologies, and the resulting grid burden is analysed. Our simulations 

indicate that combining optimized EV charging with peak tariffs, V2G technology, and PV 

generation, led to peak load reductions of up to 45% compared to a base case of non-

coordinated EV charging and apartment electricity loads. By implementing quite simple 

management strategies for EV charging based on energy tariffs, the energy consumption 

during peak hours may be reduced by 20% compared to non-coordinated EV charging and 

apartment electricity loads. This is due to a shifting of the EV charging to nighttime hours. 

The nighttime peak can be avoided by aligning EV charging with peak tariffs. In the scenarios 

in Main IV, a maximum of 38% of the EV charging was covered by PV generation. The PV-

to-EV self-consumption is limited by the number of EVs which are connected to the CP 

during daytime. In the case study, most of the PV-to-EV therefore happens during the 

weekends when the EVs are more frequently connected during the day.   
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3.5 Limitations of the study and further work 

This thesis investigates the energy profiles and electricity flexibility potential in Norwegian 

apartment buildings with electric vehicle charging. The analysis is grounded in real-world 

energy and EV charging data, aiming at understanding the energy use in apartment buildings 

and the relation to user habits of residential EV charging. Given the breadth of this subject, 

there are many aspects which can be studied further, and some identified possibilities are 

highlighted below. Moreover, specific topics for further research are pinpointed in the 

individual articles.  

 

When collecting energy data, data cleaning is an important and often time-consuming task. In 

this thesis, the data cleaning leaned towards manual methods, yet more automatic data 

cleaning techniques can be utilized to analyse and identify errors or outliers. Such data 

cleaning techniques should encompass error detection in the time stamps, e.g., related to DST 

or unsynchronized time series.  

 

The analyses can be extended to cover more apartment buildings with different energy 

systems and building standards, and also to other building categories. Preferable, data series 

should be available for different types of energy use and generation, such as electricity use, 

EV charging, space heating, DHW use, and PV generation. If such data are made available, 

additional aspects can be analysed, such as seasonal / temperature dependency of DHW and 

energy flexibility potentials of other energy uses besides EV charging. 

 

Analysis of EV charging and the use of V2G technology can be extended to cover different 

types of commercial and public buildings, and specific user groups. CPO reports are 

becoming more and more frequently accessible for energy management and billing. An 

increased availability of such studies will enable the analysis of variations in EV charging 

behaviour based on building categories and user demographics. For example, in an office 

building with PV generation, the EV charging behaviour, grid impact, and PV self-

consumption, will be different from EV charging in the residential sector. It is also relevant to 

study the interaction between different building categories, where for example EV users can 

charge PV electricity in an office building during the day, before discharging energy to their 

home using V2G technology in the evenings. 
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Also, for residential EV charging, it would be relevant to collect more detailed data. For 

example, real-world values for charging power, battery capacity, and session start SoC can be 

used to validate and improve the method for generating complete EV charging datasets 

suggested in Main II.  

 

For EV cabin preheating in cold climates, further research is needed. This research should, 

e.g., include real-world testing of different EVs under various conditions, an examination of 

user behaviours, and analyses of how both EV cabin and battery preheating can influence the 

power use in buildings, along with their aggregated impact on the grid loads. Further, it would 

be interesting to investigate how the EV batteries can be used to preheat the EV cabin and 

battery, and the advantages / disadvantages of using the battery for preheating compared to 

using electricity from the grid. 

 

The energy profiles and flexibility potential of apartment buildings with EV charging can be 

further investigated in various modelling and simulation activities, based on the open data 

available from the thesis. Datasets for energy use in apartment buildings from the main case 

study (from 2019-2022) will be published, providing the basis for in depth analysis and 

modelling activities. Datasets for EV charging is partly published already, and can e.g. be 

used for evaluating current and prospective EV charging patterns, developing data-driven 

assessments of energy flexibility, and modelling EV charging loads alongside the integration 

of EVs into power grids. Furthermore, the stochastic load profile generator for EV charging 

can be improved, to make the model more robust and reflect more general conditions. This 

includes creating new probability distributions based on a larger dataset, in addition to other 

improvements suggested in article supplementary V.  

 

Finally, the knowledge and data from the thesis can form basis for real life testing, 

implementation and upscaling of smart and robust energy and EV charging solutions in 

apartments buildings.  
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4. Conclusions and future perspectives 

The significance of energy use, generation, and flexibility within buildings is on the rise, 

driven by changes in the energy system and global climate objectives. The end-users can play 

a more important role by shifting their electricity use to periods of low grid demand or when 

unregulated renewable energy is abundant. To realize the potential for end-user flexibility, 

knowledge about the actual energy use and flexibility potential is needed. This thesis 

investigates energy use in apartment buildings, with a special focus on the flexibility potential 

of residential EV charging.  

 

Flexible EV charging has the potential to significantly reduce energy use during peak grid 

load hours with minimal disruption to user routines. This holds particularly true for residential 

EV charging conducted at private parking spaces. Improving the tariff structure is essential to 

encourage end users to adjust their charging habits according to grid demands. At present, the 

practical application of smart EV charging often revolves around shifting charging loads to 

periods of low spot prices or to mitigate peaks behind the garage energy meters. However, 

this approach might not always align with local grid capacity or the availability of PV 

generation. 

 

Although individual EV charging sessions are stochastic in nature, their aggregated behaviour 

is predictable. Aggregators can strategically shift charging loads across a large EV fleet, 

guided by e.g., price signals and knowledge of charging behaviour. The end-user flexibility 

potential can be realised with minimal investments and may be integrated into existing energy 

management systems. Promoting V2G-technologies is also important, as this will increase the 

flexibility potential for EV charging. V2G-technologies also provide the opportunity for 

energy exchange between locations, where energy charged in one location (e.g. from PV 

generation) can be discharged in another location (e.g. to reduce energy use during peak 

hours). In regions with weak grids, integrating stationary batteries alongside EV charging and 

PV generation might be necessary. However, given the current environmental and economic 

challenges of batteries, the top priority should ideally be to realize end-user flexibility without 

stationary batteries.  

 

In the current situation where the building sector is experiencing escalating energy costs, a 

growing demand for residential EV charging, and increasing PV adoption, there is a golden 
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opportunity to implement scalable end-user flexibility solutions. The thesis confirms that 

residential EV charging may be a frontrunner in implementing end-user flexibility. This opens 

new possibilities for residents and building owners to engage in flexibility markets, for energy 

and grid enterprises to experiment with and implement end-user flexibility solutions, and for 

regulatory bodies to advance their progress toward achieving energy and climate goals. 
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1. Introduction
The increase in the number of electric vehicles leads to an increased demand for residential charging.
While EV electric loads can have a negative impact on the power grid, they also represent a large poten-
tial for energy flexibility. This study proposes a methodology to describe charging habits, electricity load
profiles, and flexibility potentials of EV charging in apartment buildings. The input data used for the
method are generally available for buildings with multiple EV charge points: EV charging reports with
individual charging sessions and aggregated smart meter data. The case study is a large housing cooper-
ative in Norway, with a combination of private and shared charge points for the residents. The study com-
pares two charging power assumptions of 3.6 kW and 7.2 kW. The flexibility potential increases with
higher charging power. The study reveals a significant potential for residential EV charging flexibility
when private parking spaces have EV charge points.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

end-use of energy in a number of ways, by reducing (peak shaving),
Electric mobility is growing rapidly, with China being the lead-
adjustment maintained from a particular moment for a certain
duration at a specific location, characterised by the direction, the
ing electric vehicle (EV) market, followed by Europe and the United
States [1]. In terms of EV shares, Norway was the global leader in
2019, with 13% EVs of the total stock and 56% market share [1].
The growth in the number of EVs has led to an increased demand
for residential charge points (CPs). Access to CPs has therefore
become a topic of discussion in many Norwegian apartment build-
ings. In a survey from 2019, 94% of the EV owners living in single
houses state that they charge at home weekly or more frequently,
while 67% of the residents in apartment buildings state the same
[2]. The Norwegian government has proposed to give apartment
owners in housing cooperatives a statutory right to charge at
home, under certain conditions [3]. However, local power grid
capacity can be a limiting factor for new charging infrastructure.
Facilitating for charging in housing cooperatives has become a grid
capacity challenge, but also an opportunity for charge point oper-
ators (CPOs) with electricity load sharing possibilities [4].

EV electric loads represent a large potential for energy flexibil-
ity [5,6] and EVs are frequently considered in demand side man-
agement (DSM) systems [7]. With DSM, it is possible to affect the
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power capacity, the starting time, and the duration of the charging.
If the EV is not vehicle to grid (V2G) capable, the flexibility direc-
tion is always the same. For residential DSM, it is essential that
the comfort of the users is maintained [10]. Load shifting of EV-
charging should therefore preferably not reduce the access to the
cars, when needed by the residents.

EV charging infrastructure for residents in apartment blocks is
often situated at common parking facilities. Typically, the residents
share the general responsibility for the infrastructure. Even if the
operating costs are eventually paid for by the residents using the
CPs, the energy use is part of the common energy use in the hous-
ing cooperative, unlike energy use in apartments which usually are
metered and paid for individually. EV charging in housing cooper-
atives is therefore more easily available for energy flexibility since
it can be controlled by a single operator, compared to the energy
loads in apartments.

Current knowledge of the characteristics of residential EV load
profiles is limited [11,12]. More knowledge on charging habits,
energy charged, and charging power, will make buildings owners
more capable of utilizing the flexibility potential of EV charging,
e.g. to reduce power peaks. This knowledge is also useful for distri-
bution system operators (DSOs) and transmission system opera-
tors (TSOs), when evaluating the need for and alternatives to
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Nomenclature

AMS Advanced Metering System, Smart meters
BEV Battery Electric Vehicle
CCF Cross-Correlation Function
CP Charge point
CPO Charge point operator
DSM Demand side management
DSO Distribution System Operator

EV Electric Vehicle
IT230V 230 Volt IT system (distribution grid)
PHEV Plug-in Hybrid Electric Vehicle
SoC State of Charge of the battery
V2G Vehicle to Grid
# Number of
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future grid capacity expansions [13]. This paper proposes a
methodology for analysis of residential EV energy flexibility poten-
tial that can use input data that are generally available for building
owners with multiple EV CPs. CPOs are often involved when there
is a pool of public or private CPs from one or more manufacturers.
EV charging reports are typically made available for the charging
infrastructure owner, for the purposes of invoicing and data man-
agement. The reports include information such as plug-in time,
plug-out time, and energy charged, all linked to a user and a CP.
It is less common that the Norwegian charging reports contain
information on actual charging time or charging power. Smart
meter data is another available data source. In Norway, all DSOs
have been obliged to install advanced metering system (AMS) for
all customers by the Norwegian regulator (NVE) by 1.1.2019 [14].
This makes hourly electricity meter readings easily available.

The main research question of this work is: How can EV charg-
ing reports and smart meter data describe charging habits, electric-
ity load profiles, and flexibility potential of EV charging in
apartment buildings? The paper is structured as follows. Section 1.2
provides a brief literature review of real-world EV charging data
analyses, while Section 1.3 describes the contribution of this work.
Section 2 introduces the case study, and describes EV charging
power and charge characteristics of EV batteries. The methodology
is described in Section 3, while Section 4 presents the results and a
discussion of the findings with respect to EV charging habits, EV
energy loads and EV charging flexibility. Finally, the conclusion
of the paper is drawn in Section 5.

1.2. Literature review

A number of studies have analysed real world EV charging data
basedonEVchargingreports fromCPOs.Otherdata sourcesalso form
the basis for charging data analyses, includingmobility datasets (e.g.
[15–18]) or Global Positioning System (GPS) data from the EVs (e.g.
[19,20]). In addition, some articles have based theirwork on charging
assumptions or expected values for EV charging habits (e.g. [21]), or
EV information available from questionnaires (e.g. [22,23]).

The studies [24–26,12] analyse EV charging and flexibility based
on EV charging reports from public charging stations in the Nether-
lands. The research in these studies are based on charging session-
information with plug-in and plug-out times, charging times, con-
nection times, idle times with no charging, as well as energy or
power information. Sadeghianpourhamami et al. [24] have clus-
tered the arrival and departure time combinations for nearly
400,000 charging sessions, with the three clusters ‘‘Park to charge”,
‘‘Charge near home” and ‘‘Charge near work”. The cluster ‘‘Charge
near home” has arrivals in the afternoon/evening with departures
mostly in themorning the next day. This cluster was therefore iden-
tified as the best candidate for moving charging demand to night-
time. Gerritsma et al. [25] have categorized anonymous EV IDs for
8223 charging sessions according to local or visiting EVs, where
the local users charge more frequently and with longer connection
times. Analysing flexibility, the researchers found that 59% of the
aggregated EV demand could be delayed for more than 8 h. Further-
more, they found that local EVs charge longer and have a larger
potential for flexibility, compared to visiting EVs, especially when
it comes to moving the evening peak to the night. Flammini et al.
[26] analysed 400,000 charging sessions in publicly accessible
charging stations. 1213 of the 1744 charging stations were found
to be localized next to roads categorized as residential, while the
remaining charging stations were located by four other road classi-
ficationswith higher vehicle capacity. The study found that connec-
tion and non-charging idle times were higher for EV charging in
residential areas, where the average connection time was about
7 h, compared to the other road classifications. They also found that
chargers in residential areas had a higher utilisation rate, which
suggests that drivers prefer charging close to their home. Both
[24,25] point out that there are few examples from literature where
EV flexibility has been analysed or quantified, e.g. by finding the dif-
ference between connection times and charging times.

Research groups in other countries have also analysed EV charg-
ing reports. Xydas et al. [27] (UK) describe an EV study, providing a
cluster analysis of 22,000 charging sessions from 255 public charg-
ing stations. The study investigates the charging impact on the dis-
tribution network. They conclude that DSM of EV charging can be
designed for charging habits in specific areas, e.g. dependent on if
the EV charging load is high during peak times or more randomly
distributed. The research by Quirós-Tortós et al. [28] is not based
on typical charging reports, since the available data are from a
research trial with onboard monitoring in EVs, but still with similar
type of data available, such as plug-in and plug-out times, as well as
initial and final state of charge (SoC). The research presents moni-
toring of 221 EVs and reports data from 68,000 residential charging
sessions, together with other residential electricity use. Neaimeh
et al. [29] combine charging data from onboard monitoring in 44
EVs with data from nearly 9000 residential smart meters, to study
the impact of EVs on electricity distribution networks. Khoo et al.
[30] describe charging reports from a trial in Australia, involving
121 households and 57 corporate participants. The study found that
each charging session in the households lasted in average 2.5 h and
consumed 6 kWh. The researchers in [31] present data from 2000
non-residential EVs in California, US, with plug-in/plug-out times
corresponding with typical working hours. The study compares
the benefits of smart charging from an EV charging service provi-
der’s perspective to the benefits from a DSO’s perspective.

Several researchers have analysed EV charging based on energy
measurements. Studies such as [32] (US), [33] (US) and [34] (Nor-
way/US) quantify EV charging and flexibility using a top-down
approach, analysing electricity metering data for many households
with or without EVs. However, few bottom-up analyses are identi-
fied, where hourly meter values are combined with other data
sources available for the building owner. Apartment buildings typ-
ically have several AMS-meters measuring electricity use in com-
mon areas [6], where it is not unusual that a meter measure
aggregated EV charging mainly.

1.3. Contribution of this work

Even though several articles recognize the flexibility potential of
residential EV charging, few studies analyse real data from residen-
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tial EV charging in apartment buildings. This paper aims to fill this
gap, by proposing a methodology that combines information which
is commonly available for building owners: EV charging reports
from the CPO and hourly smartmeter data from the DSO. These data
sources are generally available for apartment buildings in Norway,
which makes wide scale use of this methodology possible. Specifi-
cally, the methodology introduced in this work provide:

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al.
Fig. 1. Example of apartment blocks in case study.

Table 1
Key information on the case study.
� Flexibility potential of residential charging:
The bottom-up analysis of EV charging and flexibility uses
commonly available data sources. Daily profiles for charging
load and flexibility are provided per user, which is useful e.g.
when estimating future charging loads with an increasing
number of EVs or charging loads in other locations.
# Apartments
in 121 building blocks
in 1 tall building block

1113
1058
55

# Residents in 121 building blocks 2321
Total heated apartment area (m2) 96,254
Specific electricity use (kWh/m2)
Share, el use in common areas/apartments

56.7
13%/87%

Specific heat delivery (kWh/m2) 139
� Distinctions of ownership of chargers:
EV charging is analysed for users with their own CPs at indi-
vidual parking spaces or shared CPs available for all the res-
idents. How charging habits depend on CP location and
ownership has not been studied in the literature identified
in the review.

� Correlation between plug-in/plug-out times and local hourly
traffic data:

A link between plug-in/plug-out times and local hourly traf-
3
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fic data is analysed, and thus provides new possibilities for
planning and simulations of residential charging. The review
of the literature has not identified other bottom-up studies
focussing on this link.

2. Introduction to case study, EV charging power and charge
characteristics of EV batteries

2.1. Introduction to case study: Risvollan housing cooperative

Norway has a high share of EVs, compared to the EV share in
other countries [1]. EV charging experiences and data from Norway
can therefore be useful also for other countries in Europe and
worldwide. This is especially relevant for apartment buildings,
where there is a lack of data on aggregated residential charging
in the literature, even though the flexibility potential is recognized.
Besides serving as s a case study for the developing a new method-
ology, the numeric findings from the case study may also be useful
in a wider context. The case study chosen represents apartment
buildings with newly installed EV charging infrastructure, and an
increasing number of EV users. With an increasing share of EVs
worldwide, lessons learned from this case study may be relevant
for many other building estates in a similar situation.

The case study is located in Trondheim, Norway, in a suburb
that is located 6 km from the city centre. Risvollan housing coop-
erative has about 2400 residents living in 1113 apartments, where
95% of the apartments are located in 121 similar apartment blocks
(Fig. 1). Space heating and domestic hot water (DHW) are provided
by district heating. Table 1 summarizes building data and informa-
tion about energy use in Risvollan housing cooperative, based on
an energy analyses of 95% of the apartments in 2018 [6,35].

During the first 11 months of 2018, it was possible to charge
approximately 55 EVs in the garages of the housing cooperative.
A new infrastructure for EV charging was installed in December
2018, making it possible to activate up to 764 CPs in the garages.
The charging infrastructure balances the EV loads in each garage,
to make sure the aggregated charging power is below the power
limit. The CPO registers all charging sessions including plug-in
times, plug-out times, and charged energy. From December 2018
to January 2020, 6878 charging sessions were registered by 97 dif-
ferent user IDs; 82 of these IDs appeared to be still active at the end
of the period. The EVs were parked in 24 different parking loca-
tions, each with an AMS-meter measuring the aggregated EV-
charging at that location. Table 2 summarises charging information
available from Risvollan. Fig. 2 shows hourly energy use aggre-
gated in 22 of the 24 garages. The number of EV users is increasing
from zero to 82 during the period, with in average 53 users. The
number of EV users shown is EV users registered per day, with
new EV users added and inactive users deactivated (see Sec-
tion 3.1). For January 2020, the figure shows the total number of
EV users active during the last month, which is 82.

The price structure for charging in the case study is not
expected to influence charging habits or timing. The users pay
for the electricity charged, using the same spot-market-based elec-
tricity tariffs as for the electricity use in the housing cooperative
(this varies typically between 1 and 1.5 NOK/kWh). The energy
cost for charging at shared and private CPs is the same, but resi-
dents using shared CPs are encouraged to park for <3 h. Typically,
home charging has a lower price, compared to paid non-residential
charging. However, workplace charging can be free of charge, but is
often limited.

2.2. EV charging power and energy

For residential charging of EVs, both the onboard charger in the
EV and the available AC power can be limiting factors for the EV
charging power. Fig. 3 shows nominal onboard charger capacity
(kW AC) for battery electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs) on the market, based on an overview of
EVs from [36,37]. The plot includes new models of BEVs and PHEVs
as well as earlier models for the most typical BEVs on the Norwe-
gian market. There are five typical levels for the onboard charger
capacities: 3 to 3.7 kW, 6.6 to 7.4 kW, 11 kW, 16.5 kW and
22 kW. Charging capacity for most BEVs is between 3.3 and
11 kW. For PHEV, the onboard charger capacity is typically
between 3.3 and 3.7 kW.

In Norway, residential customers are normally connected to a
type 230 Volt IT system. Power use during residential EV charging
is typically 2.3 kW when using a household power plug (10 A) and
3.6 kW or 7.4 kW when using a Type 2 connector (16 or 32 A). For
some charging systems, it is possible to activate 3-phase charging
on IT230V, increasing the charging power. In the case study,
7.4 kW is available for all customers and 11 kW is available if acti-
vating 3-phase charging.

Fig. 3 also shows typical gross battery capacities for BEVs and
PHEVs. For BEVs on the market from 2018 to 2020, most batteries



have nominal capacities between 40 and 100 kWh. Due to charging
efficiency, energy use for charging is higher than the charged

Table 2
Data sources for EV charging information.

AMS-meters Hourly electricity measurements in 22 locations (kWh/h)
EV charging report from CPO Per address/charger ID/user ID:

Plug-in time, Plug-out time, Charged energy (kWh)
Data collection period From December 21, 2018 to January 31, 2020
# addresses/garages 24
Ownership of the CPs Private Shared Total

Dec18 Jan20 average Dec18 Jan20 average Dec18 Jan20 average
# CPs 0 58 25 0 12 8 0 70 33
# User IDs 0 58 35 0 24 18 0 82 53
# Charging sessions 5466 1

Fig. 2. Hourly energy use in 22 of the 24 garages (aggregated) and the increasing
number of EV users during the period.
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energy. The efficiency vary, and [38,39] have found energy losses
between 12% and 40%.

2.3. Charge characteristics of EV batteries
Later in this study, it is assumed that the energy charged each

The suggested methodology in this article is developed to

hour is constant, independent of type of EV, battery SoC, etc. How-
ever, this is a simplification, and this section gives an introduction
to charge characteristics of EV batteries.

Lithium-ion (Li-ion) batteries are the market leader for use in
EVs, mainly because of their high specific energy cycle life and high
efficiency [40]. The Li-ion battery pack in an EV consists of a large
number of single battery cells, arranged in serial, parallel or hybrid
forms [41]. Typical charging characteristics for a single battery cell
is shown in Fig. A1 in the Appendix, described as constant current –
constant voltage (CC-CV). The charging capacity is gradually
increasing with a constant current, until the battery reaches the
maximum charging voltage. The current then drops to maintain
Fig. 3. Nominal onboard charger capacity and gross ba
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this charging voltage while preventing overcharging the cells
[43]. A battery management system is needed to monitor, manage
and protect the Li-ion battery charging [44]. Charging and dis-
charging within the ideal operating range of the SoC, i.e. 20%-
90%, is a topic within such management [42].

Fig. A2 in the Appendix shows charging characteristics of two
example charging sessions by two EVs in the case study. The car
types for the two EVs are marked in Fig. 3, as example EV mid-
range and long-range. The nominal onboard charger capacity of
the cars is 7.2 kW for the mid-range EV and 11 kW for the long-
range EV. However, since 3-phase charging is not activated for
the cars, the long-range EV is limited to 1-phase charging power
of 7.4 kW. The nominal battery capacity is 36 kWh for the mid-
range EV and 75 kWh for the long-range EV. The charging sessions
last for about three hours, where both of the EVs charge around
20 kWh. The current for both cars is reduced by about 8% during
the charging sessions, while the voltage is constant. The reduction
in current is less than presented as typical charging characteristics
in Fig. A1. However, the current reduction is EV and SoC depen-
dent. For the long-range EV, the constant current could be
explained by the owner’s statement that the charging is normally
discontinued automatically at 80% battery capacity. For the
middle-range EV, [22] found that for this type of EVs, the charging
ends instantly when the battery has reached its full charged level.

3. Methodology

412 6878
describe charging habits, electricity load profiles and flexibility
potential of EV charging in apartment buildings. The main data
sources are: EV charging reports with 6878 individual charging
sessions, hourly AMS data from 22 garages, and local hourly traffic
data. The data was collected from 21 Dec 2018 to 31 Jan 2020.

A flow chart of the methodology is shown in Fig. 4. First, EV
charging reports are used for analysing charging habits. Secondly,
EV charging and flexibility potential are estimated. The results
are validated using hourly AMS data. The data are analysed using
the statistical computing environment R [45].
ttery capacity for BEVs and PHEVs on the market.



3.1. Data preparation

The EV charging reports include plug-in times, plug-out times,
and charged energy per charging session. Each charging session
is connected to a user ID, a charger ID, and an address. The charger
IDs are either private or shared, since the CPs are either located on
the residents’ private parking spaces or on shared parking areas
available for all residents. The original charging reports have
7245 charging sessions. The main steps of initial data cleaning
include removing unrealistic charging sessions (1 charger with
29 charging sessions removed) and charging sessions with no
energy charged (338 charging sessions removed). If the plug-out
time is too early when compared to energy charged and maximum
11 kW charging power available, the plug-out time is removed (set
to NA), since this indicates that the value is incorrect (relevant for
34 charging sessions). Further, there is quality assurance to assure
correct data time zones/daylight saving time (DST), before calendar
data is added, such as weekdays and months.

Hourly electricity data from 22 of the 24 AMS-meters in the gar-
ages are provided by the DSO. The two missing AMS-meters are
connected to four EV users only, with in total 4500 kWh charging
energy from 353 charging sessions (5% of all charging sessions).
Each of the AMS-meters measures the aggregated EV-charging on
that location. Hourly energy estimates provided by the DSO are
removed from the data (4% of the hourly values), since inaccurate
hourly values may influence the results.

Hourly traffic data from five nearby locations are provided by
[46]. Hourly counts are available for vehicles with different sizes.
The hourly count of small cars (<5.6 m) is used in the analysis, as
an average of the trafficmeasured by the five nearest traffic stations.

3.2. Analysing EV charging habits

EV charging habits are analysed showing the daily distribution
of EV plug-in and plug-out times during weekdays and weekends,
and histograms for connection times (related to plug-in time) and
energy charged (related to plug-in time and connection time). EV
charging habits are analysed separately for private and shared CPs.

The daily distribution of plug-in and plug-out times is com-
pared to hourly traffic data from nearby locations. The correlation
between plug-in/plug-out times and local hourly traffic data is
explored by using the cross-correlation function (CCF), which is a
function used to evaluate the correlation between time series.
CCF is a ‘‘wrapper” function calling the autocorrelation function
(ACF), as described by [47], page 390–392]. To find the correlation,
the function ccf() is used in R [48]. CCF examines the cross-
correlation between the number of plug-ins or plug-outs each hour
and the hourly number of cars, where the maximum value for cor-
relation is 1. Before calculating the CCF, the dataset is split into
charging sessions using private and public CPs, respectively.
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Fig. 4. Flow chart outlining the methodology. Green boxes show data sources, red boxes s
colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Estimating EV energy load and flexibility potential

The energy loads and flexibility potential of EV charging are esti-
mated as follows. The differences between the plug-in and plug-out
times of the charging sessions provides the duration of the EV con-
nection time (Eq. (1)). The actual charging times and charging power
are not known. In the method, two alternative charging powers
(Pcharging) are assumed: 3.6 or 7.2 kWh/h, representing typical levels
for the onboard charger capacities as described in Section 2.2. The
assumed charging power is the average charging power during an
hour.When estimatinghourly EV energy loads for a specific charging
session, the synthetic charging time is first calculated, bydividing the
actual charged energy (Echarged from the EV charging report), on the
assumed charging power (Eq. (2)). The hourly charging loads equal
the assumed charging powermultiplied by time (Eq. (3)). For the first
hour, the maximum charging time is calculated as the number of
minutes after the plug-in time. For full hours after the initial hour,
the hourly charging load equals the assumed charging power. For
the last hour, the charging load equals the remaining energy
difference, so total energy chargedduring the charging sessionequals
the actual charged energy, known from the EV charging report. The
method provides a synthetic charging time and energy load, given
immediate charging after plug-in. Average daily charging load pro-
files are shown for different weekdays and holiday periods.

EV connection time: tconnection = tplug�out � tplug�in ð1Þ

EV charging time: tcharging = Echarged/Pcharging ð2Þ

EV load hour i: Eloadð iÞ = tð iÞ�P charging where
P

(Eloadð iÞ) = Echarged ð3Þ

EV idle time: tidle = tconnection � t charging ð4Þ

EV idle capacity hour i: EidleðiÞ = tidleð iÞ�Pcharging ð5Þ
The difference (non-charging idle time) between the EV connec-

tion time and the synthetic charging time reflects the flexibility
potential for the charging session (Eq. (4)). The idle capacity is the
energy which could potentially have been charged during the non-
charging idle times. The idle capacity is analysed for the assumed
charging power of 3.6 and 7.2 kWh/h. To calculate the hourly idle
capacities for hours with non-charging idle time, the hourly idle
times are multiplied by the assumed charging power (Eq. (5)).

Initially, the database includes synthetic estimates for all charg-
ing sessions separately. Only hours with charging loads or idle
capacities are included. An hourly aggregated database is created
by grouping the data per hour. Hours with no charging or idle
capacities are added to the aggregated database, to assure a full
hourly timeseries for the period, from mid-December 2018 to
end-January 2020.
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how processes, and blue boxes show results. (For interpretation of the references to
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Since the number of EV users is increasing during the measure-
ment period, energy and power results are also presented normal-
ized per user. The users are classified as active from the date of
their first charging session (user has value NA before and 1 after
first connection). In addition, some users become inactive, if they
for example move or if a user with shared CP becomes a user with
private CP. Users with NA values towards the end of the measure-
ment period are classified as inactive and not included in the num-
ber of EV users. The change of classification takes place after their
last charging session, from their first inactive date. However, dur-
ing the last month (January 2020), only users not charging at all
during the month were classified as inactive, to avoid wrong clas-
sification of users that are travelling, etc.

The classification of active users makes it possible to divide the
hourly aggregated values for charging loads and idle capacities on
the current number of users, to get e.g. typical average load profiles
per user. When analysing selections of the dataset, such as users
with private/shared CPs, hours with no charging are added to the
data to assure full hourly time series. Before their first charging
session (and after their last charging session, if becoming inactive),
energy values are set to NA during hours with no charging, while
energy values are zero after the first charging session. This is done
to assure correct average values.

3.4. Validation of the methodology

The synthetic hourly EV energy loads are compared to AMS data
per garage. AMS data are available from 22 of the 24 garages (95%
of the charging sessions). Some differences between the total AMS
data and the total charging energy from the charging reports can
be expected, since there may also be other electricity use metered
in the garages. For 20 of the garages in the case study, the total
energy charged is <10% different from the AMS data in the specific
garage, while the AMS data is 20% higher in one garage. For the last
garage, the AMS data is 50% higher, but this garage includes the
user which was removed in the initial data cleaning. It can there-
fore be concluded that in the case study garages, there is little elec-
tricity use measured by the AMS-meters other than EV charging.

The charging infrastructure in the case study has the possibility
to balance the EV loads in each garage, when the aggregated EV load
is high. However, a similar load balance is not included in the syn-
thetic loads. Some differences may therefore be expected in the
hourly aggregated loads per garage, especially when the loads are
high.

Fig. 5 shows an example from a garage (Bl2) for four days,
where synthetic hourly EV energy loads are compared to AMS data.
For the garage shown, the total AMS data is 28.2 MWh during the
measurement period, which is only 4% higher than the total charg-
ing energy reported for the same garage. The figure highlights
examples of individual charging sessions, marked with a square.
When there is one charging session only, the highlighted charging
sessions in the figure show an agreement between the hourly mea-
sured charging power and the hourly estimates, with a charging
power close to 7.2 kW (November 2nd) and 3.6 kW (November
5th). When there are several charging sessions aggregated, the
measured charging power is often between the two estimates.

4. Results and discussion

4.1. EV charging habits

This section aims to answer how EV charging reports can
describe EV charging habits for residents. Figs. 6 and 7 show how
the plug-in and plug-out times are distributed during weekdays
and weekends, for private and shared CPs, as well as the daily dis-

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al.
tribution of cars in near-by traffic. The plug-in time for the charg-
ing (Fig. 6) is mainly in the afternoons during workdays, both for
the private and the shared CPs. There is a peak around 16:00, with
around 15% of the plug-ins during the day, which corresponds to
when the workdays typically end in Norway. An afternoon peak
is also present in the near-by traffic density. During the weekends,
the plug-ins are more evenly distributed during the day, corre-
sponding to the nearby traffic. For plug-out times (Fig. 7), private
CPs have a peak in the morning, between 07:00 and 08:00, corre-
sponding to the start of a typical workday. This peak is also present
in the traffic density. For shared CPs, the morning peak is less sub-
stantial, indicating that the users move their car sooner after fin-
ishing the charging. The residents using the shared CPs are
encouraged to charge for <3 h.

The case study results indicate that the hourly plug-in/plug-out
times correspond well to local traffic data. Fig. 8 describes the CCF
values between thenumberof plug-in (left) or plug-out (right) times
each hour and the hourly number of cars. Each lag is equivalent to
1 h. In the figure, a seasonality of h = 24 is observed, with a strong
dependence between the plug-in/plug-out times and the local traf-
fic. The CCF correlation coefficients at lag 0 and1 are 0.296 and 0.363
respectively for plug-in/local traffic and 0.345 and 0.278 for plug-
out/local traffic. Such correlations provide possibilities for develop-
ing newmodels to estimate EV charging loads at different locations,
where local hourly traffic data can be used as input.

The histograms in Fig. 9 show connection times for charging ses-
sions. The histograms confirm that residents using shared CPs often
have shorter connection times than residents with private CPs. For
private CPs, the average connection time is 12.8 h, while 90% are
connected for <22.6 h. For shared CPs, the equivalent connection
times are 6.5 h on average, and 14.3 h for 90% of the charging ses-
sions. The histograms show a twin peak in the connection times,
which can be explained by the plug-in time for the charging ses-
sions. The first peak occurs for charging sessions with <5 h of con-
nection time, where typically the plug-in time is in the daytime,
afternoon, or early evening. The second peak is for charging sessions
with connection time between 8 and 15 h (longer for private CPs),
with plug-in time typically in the evening and connection through
the night. The average connection time differs according to the
weekday when the charging started, where especially Sundays
stand out for residents with private CPs. When plugged in during
weekdays, 73% of the charging sessions are longer than three hours.
The corresponding share for plug-in during Sundays, is 84%.

Figs. 10 and 11 show histograms for energy charged per charg-
ing session, divided according to private and shared CPs. The his-
tograms are the same, but the colours in Fig. 10 are related to
plug-in time, while the colours in Fig. 11 are related to connection
time. The average energy charged per session is 11.2 kWh for users
using private CPs and 14.7 kWh for shared CPs. For 90% of the
charging sessions, energy charged is below 22.0 kWh per session
for the private CPs and 39.5 kWh per session for the shared CPs.
The explanation for why users with shared CPs charge more
energy, may be that these users wait to charge until the battery
has a lower SoC compared to users with private CPs at their own
parking space, and the shared CP users therefore charge less fre-
quently. This is confirmed by the average number of daily charging
sessions per user: The users with private CPs have an average of 4.4
charging sessions per week, which is a factor of about 3.5 higher
than the users with shared CPs, where the average is 1.2 charging
sessions per week. Fig. 11 shows that there is no direct relationship
between energy charged and connection time. Private CPs often
have a longer connection time than shared CPs, for the same
amount of energy charged. The outcome of this is a longer non-
charging idle time for private charging sessions, which results in
a higher potential for flexibility.

Energy & Buildings 241 (2021) 110923



4.2. EV energy load

This section aims to answer how information in EV charging
reports can be translated into synthetic hourly EV energy loads.
To answer this question, information about plug-in times and
energy charged from the charging reports is combined with charg-
ing power assumptions.

monthly distribution, a charging power of 3.6 kW is assumed. The
charging power assumption is especially relevant for charging ses-
sions with a plug-in time late in a month and a plug-out time in
the following month. Since monthly energy charged vary between
the users, the results are shown in boxplots. In the boxplots, 50%
of themonthly values are in the boxeswithin the first (Q1) and third
(Q3) quartile, with the median monthly value in the middle. The

Fig. 5. Validating the methodology for four days in garage Bl2. Synthetic hourly EV energy loads are compared to smart meter data. Three individual charging sessions are
highlighted with grey squares.

Fig. 6. Plug-in times: Average daily distribution of EV plug-in times during weekdays (left) and weekends (right), for private and shared CPs, as well as average daily
distribution of cars in near-by traffic.

Fig. 7. Plug-out times: Average daily distribution of EV plug-out times during weekdays (left) and weekends (right), for private and shared CPs, as well as average daily
distribution of near-by traffic.

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al. Energy & Buildings 241 (2021) 110923
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The monthly energy charged per user is estimated from January
2019 to January 2020, as shown in Fig. A3 in the Appendix. For the
vertical lines represent the least and greatestmonthly value exclud-
ing outliers. Black dots show outliers, which are defined as values



extending 1.5 times the interquartile range (IQR = Q3-Q1) out from
the box. The red dots represent the average values. The data are
divided into users with private or shared CPs. For users with private
CPs, the monthly values during the first two months are lower than
the average. The reason for thismay be that a large share of the users
is registered in the middle of the month, resulting in less monthly

The estimated annual driving distances confirm an expectation
that users with shared CPs charge less at home, compared to users
with private CPs at their parking space.

The synthetic hourly aggregated peak power values each month
are shown in Fig. 12, assuming a charging power of 3.6 kW and
7.2 kW, respectively. The figure shows the hourly aggregated

Fig. 8. CCF between the number of plug-ins and number of cars in nearby traffic (left) or plug-outs and number of cars (right) each hour.

Fig. 9. Histogram for connection time related to plug-in time, for private (left) and shared (right) CPs. Binwidth is 1 h, showing the first 48 h only.

Fig. 10. Histogram for energy charged related to plug-in time, for private (left) and shared (right) CPs. Binwidth is 1 kWh.

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al. Energy & Buildings 241 (2021) 110923
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days available for charging. There are also values that are lower than
average in July, which is the main holiday month in Norway.

For users with private CPs, the average monthly energy use dur-
ing the period is 179 kWh per user, or about 2150 kWh per year.
For users with shared CPs, the average monthly energy use is
125 kWh per user, or about 1500 kWh per year. Assuming an aver-
age driving efficiency of 5 km/kWh, this corresponds to, on aver-
age, 10,700 km for users with private CPs or, on average,
7500 km for users with shared CPs. As a comparison, the average
yearly driving distance for EVs in Norway was 12,631 km in
2019 [49]. However, as stated in the introduction, it is expected
that the EVs are not being charged at their home address only.
max peak loads per month, as well as the 99th and 90th percentiles
of the hourly load values. The total aggregated power is increasing
during the period (left figure), since also the number of users is
increasing. However, the peak power per user is reduced with
increasing number of users (right figure), due to a lower coinci-
dence factor. The coincidence factor is defined as the ratio between
maximum load for the aggregated data studied and the sum of
each users’ maximum load [50]. For example, for the 20 users in
March 2020, the coincidence factor was 0.43, decreasing to 0.25
for the 82 users in January 2020, assuming charging power 3.6 kW.

For the aggregated load (left figure), the monthly max. peak for
the charging power of 7.2 kW is a factor 1.1 to 1.5 higher than the



This section aims to answer how non-charging idle times can be

Fig. 11. Histogram for energy charged related to connection time, for private (left) and shared (right) CPs. Binwidth is 1 kWh.
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max. peak for the charging power of 3.6 kW. The max. power peaks
are not so frequent, shown by the difference between the peak
loads, 99th and 90th percentiles. For the charging power of
7.2 kW, themax. peak power eachmonth is a factor 1.6 to 3.3 higher
than the 90th percentile. Equivalent, for the 3.6 kW charging power,
the max. peak power each month is a factor 1.6 to 2.2 higher than
the 90th percentile. When utilizing the potential EV charging flex-
ibility, the operator often wishes to reduce the highest aggregated
EV power peaks, getting values closer to the 99th percentile, the
90th percentile, or even lower, towards the average power.

The average load profile forweekdays shows an increased energy
use in the afternoons and evenings, with the highest load occurring
from about 16:00 to midnight. The weekend profile is quite similar,
but without the afternoon peak. For the average values, the hourly
load for the 7.2 kW charging power is up to a factor 1.3 higher than
for 3.6 kW charging power. This happens during afternoons/eve-
nings when many users have recently plugged in their EVs, with
the largest difference occurring from 15:00 to 17:00 on weekdays,
and from 13:00 to 20:00 on weekends. During the night/morning,
from 23:00 to 12:00, the hourly load for the 3.6 kW charging power
is higher than for the 7.2 kW charging power, since the cars with
higher charging power finish charging earlier.

The average values shown in Fig. 13 do not illustrate how EV
charging typically varies during the year. For example, holiday
periods tend to deviate from the average values. Assuming a charg-
ing power of 3.6 kW, Fig. 14 shows the average daily charging load
profiles for an average weekday, Saturday and Sunday. The average
charging need during the week is 37.5 kWh per user. Most week-
days have similar charging needs, with Tuesdays somewhat lower
(�7%) and Thursdays (+4%) and Fridays (+5%) somewhat higher
than the weekly mean values. Saturdays have�13% lower and Sun-
days +8% higher values, compared to the weekly mean values.
Fig. 14 also illustrates the daily load profiles during holiday peri-
Fig. 12. Estimated hourly aggregated peak power (left) and power per user (right), w
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ods. During July, the energy demand is lower than for the average
profile (ref. Fig. A3), but otherwise quite similar to the average. For
the holiday week in October, the charging need at Sunday evenings
increase when residents come home from travelling. For Christ-
mas, there is an increased charging need during the day before
Christmas (Monday 23 December), while the residents charge ear-
lier on Christmas Eve (Tuesday 24 December) than on an average
Tuesday. The charging power is shown per number of users during
the different periods: 57 users in average, 33 in July, 59 in October
and 75 during Christmas 2019.

In addition to charging the battery, EVs can use energy to pre-
heat the battery and cabin. This is not taken into account in the
methodology, but it is not expected to significantly affect the daily
charging load profiles in the case study, since most EVs are parked
in garages.

4.3. EV charging flexibility
translated into energy flexibility potential. From the charging
reports, the EV connection times (the difference between plug-in
and plug-out times) and charged energy are known per charging
session. Two alternative EV charging times are calculated, assum-
ing different levels of charging power (3.6 or 7.2 kW). The non-
charging idle time between the EV connection time and the charg-
ing time reflects the flexibility potential for a charging session.
Fig. 15 shows an example of a single charging session, with charg-
ing power 3.6 or 7.2 kW. Energy charged and connection time is
the same in both figures (11.3 kWh and 13.5 h connection time),
and has quite typical values as shown in Figs. 9 and 10. The flexi-
bility potential in the figures, termed idle capacity, is the energy
which could potentially have been charged during the non-
charging idle times. However, since the actual energy charged dur-
ith increasing number of users, assuming charging power 3.6 kW and 7.2 kW.



ing a charging session is the same, the idle capacity is higher with
higher charging power. For the example session in Fig. 15, the idle
capacity is a factor 2.3 higher when the charging power is 7.2 kW,
than when it is 3.6 kW.

Fig. 16 shows an example of charging load and idle capacity for
aggregated EV charging in a garage (Bl2) during a week, with
assumed charging power 3.6 or 7.2 kW. During the week, there
are 78 charging sessions in the garage, charged by 17 users. Energy
charged is the same in both figures (around 930 kWh), while the
idle capacity is 1200 kWh for the charging power of 3.6 kW and
3100 kWh for the charging power of 7.2 kW. Comparing the two
charging levels during the week, the hourly aggregated charging
peaks increase with a factor 1.2, going from 3.6 to 7.2 kW charging
power, assuming immediate charging after plug-in. During the
same week, the idle capacity for charging power 7.2 kW is a factor
2.6 higher than for charging power 3.6 kW. However, for idle capac-
ity, the periods after the charging peaks are normally of most inter-
est, since charging loads can be delayed in time. Also, idle capacity
during other periods can be relevant, such as times with locally
available RES. For the example week in Fig. 16, there is high idle
capacity during night-time and a potential for moving afternoon-
and evening charging loads to night-time, for both charging powers
of 3.6 and 7.2 kW, respectively. If charging loads are moved to the
daytime, for example to utilize photovoltaic (PV) solar energy, the
idle capacity during the day is higher during the weekend than on
weekdays. Comparing the two charging power levels in the selected

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al.
Fig. 13. Synthetic daily average charging load profiles per user, during weekdays and wee

Fig. 14. Synthetic daily charging load profiles per user, for the aggregated EV charging dur
(black/grey/orange lines), assuming a charging power of 3.6 kW. (For interpretation of the
this article.)
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week, the 7.2 charging power has a higher potential for daytime
charging than does the 3.6 kW charging power.

Synthetic average daily charging load profiles and idle capacity
profiles per user are shown in Fig. 17, for the aggregated EV charg-
ing during weekdays, assuming immediate charging after plug-in.
The figures show the profiles with the 3.6 kW charging capacity
(top) and the 7.2 kW charging capacity (bottom). The boxplot illus-
trates the distribution of hourly load values. As in Fig. 13, the aver-
age aggregated charging load is similar for the two charging
capacities. The average daily idle capacity differs, with higher val-
ues when the charging capacity is 7.2 kW, than when it is 3.6 kW.
For example, the daily idle capacity for private CPs during week-
days is 2.3 times higher with the 7.2 kW charging capacity than
it is with the 3.6 kW charging capacity. Also in Fig. 17, the daily
charging load profiles are based on the period with 30 to 82 users,
with the number of users using private CPs is increasing from 18 to
58, and users using shared CPs are increasing from 12 to 24. In the
Appendix, Figs. A4–A7 shows the same figures also for Saturdays
and Sundays. The weekend data show that the charging demand
is higher on Sundays than on Saturdays. This is as expected in Nor-
way, since there is a culture for travelling during the weekends. For
private CPs, the average idle capacity is nearly double from 09:00
to 16:00 during the weekends, compared to during the week, since
more cars are parked then.

Average profiles give a quick overview of the flexibility potential,
but since idle capacity is connected to the individual cars, the poten-
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kends. (Based on data with 57 users on average, using both private and shared CPs).

ing weekdays and weekends, showing annual average (red line) and holiday periods
references to colour in this figure legend, the reader is referred to the web version of



tial for moving charging loads in time depends on the length of the
individual charging sessions. Average aggregated loads and idle
capacity do not contain such information. Table A1 in the Appendix
provides additional insights into the charging habits and non-
charging idle times for private CPs during weekdays. The table is
based on 3278 charging sessions during a data period with an aver-
age of 45 users (increase from 18 to 58 users). The orange column

8 h). If desired, also the charging load in the hour before can be
delayed and charged during this hour (0.09 kWh/user), as well as
other energy loads marked green from previous hours (total
3.9 kWh/user), limited by the maximum charging load during the
hour in the blue column (2.65 kWh/user). The capacities and loads
are presented per user, and should therefore be multiplied by the
number of registered EV users in an apartment building or garage.

Fig. 15. Single charging session. Charging load and idle capacity, assuming charging power 3.6 (left) or 7.2 kW (right).

Fig. 16. EV charging in garage Bl2 during a week. Aggregated charging load and idle capacity, assuming charging power 3.6 (left) or 7.2 kW (right).
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with hourly charging loads, is especially useful e.g. when estimating
charging needs in building estates. The share with idle times can be
read as following: e.g. during daily hour 03:00–04:00, all of the
charging load can be charged (0.06 kWh/user), but none of charging
has to happen immediately (50% can be delayed 1 to 2 h and 50% 7 to
Also in the Appendix, Table A2 provides a table with correspond-
ing data for weekends, based on 1096 charging sessions and on
average 44 users. Table A3 and Table A4 contain information
from the shared CPs, based on 905 charging sessions during
the weekdays, 407 charging sessions during the weekends, and



on average 18 users. In practice, to fully utilize the flexibility
potential, it is necessary to know the expected connection times
of the residents, as well as the required energy to be charged.

CPs at their own parking space, compared to when they use a
shared CP. For private CPs, the average connection time is 12.8 h,
while it is 6.5 h for shared CPs. The average connection time for

Fig. 17. Synthetic daily average charging load profiles and idle capacity profiles per user, showing private CPs (left) and shared CPs (right), with estimated charging power
3.6 kW (top) or 7.2 kW (bottom).
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This requires information from the users themselves (expected
connection times) and energy or battery status information,
preferably from the car to the charger.

5. Conclusions and future work

To prevent EV charging from having a negative impact on the
power grid, it is essential to understand EV charging behaviour in
different situations and premises. The literature review has
identified a gap, with few studies analysing real data from residen-
tial EV charging in apartment buildings. This study proposes a
methodology for using EV charging reports to describe charging
habits, electricity load profiles, and flexibility potential of EV
charging. The required input data are generally available for apart-
ment buildings in Norway, which makes wide scale use of the
methodology possible. Moreover, there is no need for new logging
equipment or personal information about the residents. It is also
possible to use the methodology for building categories other than
apartment buildings. Data and hourly predictions from this study
are available for other research groups.

The EV charging reports are used as a basis to describe EV
charging habits for residents. Field data from a large housing coop-
erative in Norway are analysed in the case study, with 6878 EV
charging sessions registered by 97 user IDs. The study finds a dif-
ference in residential charging habits when users have private
charged CPs is similar to the value for publicly accessible CPs found
by [26], where the average was 7 h. The users with private CPs
have on average 4.4 charging sessions per week, which is about
3.5 times more frequently than the users with shared CPs. There
is a longer non-charging idle time for private charging sessions,
which results in a higher potential for flexibility.

A correlation is found between plug-in/plug-out times and local
hourly traffic data, thus providing possibilities for improved plan-
ning and simulation of residential charging. The authors aim to
study this correlationmore explicitly in futurework, with EV charg-
ing reports and traffic data frommore locations. The correlation can
be part of a new model for EV charging loads and flexibility.

Information about energy and plug-in times from the EV charg-
ing reports are translated into hourly energy charging, assuming
two different levels of charging power. The study compares the
two charging power assumptions of 3.6 kW and 7.2 kW, respec-
tively. In real life, EVs in a garage typically have a mix of charging
power levels. By combining a lower and a higher charging power
assumption when calculating the synthetic charging load, the true
load can be expected to lie between the two synthetic levels.

Non-charging idle times are translated into energy flexibility
potential, or idle capacity. While the daily average charging load
profiles are similar for the two charging capacities, the average idle
capacity differs, with higher values when the charging capacity is
7.2 kW, than when charging capacity is 3.6 kW. For example, the
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average idle capacity for private CPs during weekdays is 2.3 times
higher with the 7.2 kW charging capacity than with the 3.6 kW
charging capacity. The study provides tabulated values for addi-
tional insights into charging habits and non-charging idle times
for private and shared CPs, for weekdays and weekends.

The study finds a significant potential for residential EV charg-
ing flexibility when private parking spaces have a CP. Also, the
results support the theory that EV charging is a main source of flex-
ible electricity use in apartment buildings. This is an important
take-away for policy and decision makers, which can provide
incentives for CPs at private parking spaces, as well as for charging
energy management systems.
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Appendix

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al.
Fig. A1. Typical characteristics of the lithium-ion battery charging, from [42].

Fig. A2. Examples of charging characteristics of EV batteries from two charging
sessions in the case study. Nominal charging power of the mid-range EV is 7.2 kW
(session 943, user Bl2-4), while the long-range EV is limited by the available AC
power of 7.4 kW (session 1158, user Bl2-3).
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Fig. A3. Boxplots for monthly energy charged per user, divided according to users with private or shared CPs.

Fig. A4. Private CPs with estimated charging power 3.6 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 18 to 58 users).

Fig. A5. Private CPs with estimated charging power 7.2 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 18 to 58 users).

Å.L. Sørensen, K.B. Lindberg, I. Sartori et al. Energy & Buildings 241 (2021) 110923
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Fig. A6. Shared CPs with estimated charging power 3.6 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 12 to 24 users).

Fig. A7. Shared CPs with estimated charging power 7.2 kW: Synthetic daily average charging load profiles and idle capacity profiles per user (data with 12 to 24 users).

Table A1
Private CPs during weekdays: Average hourly charging load and idle capacity per user and share of plug-in, plug-out and non-charging idle times. Estimated
charging power is 7.2 kW.
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A B S T R A C T   

Electric vehicles (EVs) are part of the solution to achieve global carbon emissions reduction targets, and the 
number of EVs is increasing worldwide. Increased demand for EV charging can challenge the grid capacity of 
power distribution systems. Smart charging is therefore becoming an increasingly important topic, and avail
ability of high-grade EV charging data is needed for analysing and modelling of EV charging and related energy 
flexibility. This study provides a set of methodologies for transforming real-world and commonly available EV 
charging data into easy-to-use EV charging datasets necessary for conducting a range of different EV studies. 
More than 35,000 residential charging sessions are analysed. The datasets include realistic predictions of battery 
capacities, charging power, and plug-in State-of-Charge (SoC) for each of the EVs, along with plug-in/plug-out 
times, and energy charged. Finally, we analyse how residential charging behaviour is affected by EV battery 
capacity and charging power. The results show a considerable potential for shifting residential EV charging in 
time, especially from afternoon/evenings to night-time. Such shifting of charging loads can reduce the grid 
burden resulting from residential EV charging. The potential for a single EV user to shift EV charging in time 
increases with higher EV charging power, more frequent connections, and longer connection times. The proposed 
methods provide the basis for assessing current and future EV charging behaviour, data-driven energy flexibility 
characterization, analysis, and modelling of EV charging loads and EV integration into power grids.   

1. Introduction 

1.1. Background 

1.1.1. Electric Vehicles as important players to providing flexibility in the 
future energy market 

Electric vehicles (EVs) are part of the solution to achieve carbon 
emissions reduction targets set under the Paris Climate Change Agree
ment [1]. This has led to policy support for EVs in several countries and 
substantial increase in EV sales in e.g., China, Europe, and the United 
States. In 2022, the number of different types of EV models available on 
the market had increased to around 500 [2]. On a global level, the 
market share of EVs was 14% in 2022, with Norway being the leading 
country with an 88% market share [2]. The EV market in Norway has 
passed the early adopter stage, and EVs are becoming the dominant car 
choice of the population. EV charging at home and at the workplace are 
dominating, with charge points (CPs) generally being below 22 kW [2]. 

Even though EVs are expected to account for a minor share of global 
electricity consumption also in the future, the EV fleet can challenge the 
grid capacity of power distribution systems [2,3]. Furthermore, EV 
charging is expected to have a high impact on residential and com
mercial energy load curves [3]. Smart charging is therefore becoming an 
increasingly important topic [4], and because EV charging loads can be 
shifted in time, smart charging can provide energy flexibility [5]. The 
energy flexibility of a building can be defined as "the ability to manage 
its demand and generation according to local climate conditions, user 
needs and grid requirements" [6]. Flexible energy use is becoming 
increasingly important in the energy system, since a growing share of 
the energy supply is variable and non-flexible renewable energy 
generation. 

Fischer et al. [7] analysed electric load profiles for household ap
pliances, electric heating systems, and EVs in the residential sector, and 
found that EVs have the highest flexibility potential among all the en
ergy uses. For large scale utilization of energy flexibility in buildings, 
new solutions need to be developed, addressing technological, social, 
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commercial, and regulatory aspects [8]. Li et al. [8] emphasized the 
advantages of utilizing flexibility sources from a cluster of buildings to 
increase the impact and role of energy flexibility. For EV charging, 
Charge Point Operators (CPOs) can have a role as aggregators of energy 
flexibility by facilitating the shifting of charging loads. In Norway, for 
example, several CPOs (such as the companies Tibber, Current, Kople, 
and ZapTec) provide CP management services for EV fleets, where e.g., 
aggregated charging loads in parking facilities are kept below the 
available distribution capacity, or charging loads are shifted to hours 
during the day when the energy spot prices are the lowest. In the future, 
such CP management systems may provide opportunities for residential 
and commercial users to engage in the flexibility market. However, more 
knowledge about charging habits is necessary to optimally utilize the EV 
charging flexibility, such as the number of cars that are connected to the 
CPs, daily charging demand, plug-in state of charge (SoC) of the EV 
batteries, and CP plug-out times. 

The objective of this study is to provide realistic and high-grade EV 
charging data, and analyses of related EV charging behaviour, based on 
real-world data from more than 35,000 charging sessions in Norway. 
The results are useful as input for a range of energy studies, e.g., for load 
forecasting, for assessment of energy flexibility potentials in neigh
bourhoods, and for sizing of grid connection capacities. 

1.1.2. The need and availability of high-quality datasets for optimizing the 
flexibility potential of EVs 

For analysing energy flexibility in terms of load shifting and load 
shaving, data with hourly resolution is usually used [9]. If there is need 
for a faster response to flexibility requests, such as in frequency regu
lation, sub-hourly resolution is normally needed. Salim et al. [10] 
emphasized the importance of publicly available input data for model
ling of occupant behaviour and energy in buildings at urban scale. 
Amayri et al. [11] concluded that there is a need for more publicly 
available datasets on EV charging in residential buildings to improve 
load forecasting and flexibility forecasting. Calearo et al. [12] stated that 
published EV data is limited, and describes how five parameters ideally 
should be available for EV studies in the smart grid context: 1) Battery 
capacity, 2) charging power, 3) plug-in SoC, 4) plug-in/plug-out time, 
and 5) charged energy. They refer to such data as ideal, "because it is the 
highest level of data availability one can have when conducting EV 
studies in the power system context". To sum up, there is a lack of 
complete datasets related to charging sessions and CPs. 

Due to the fact that Norway has been a frontrunner in EV use, EV 
charging reports from CPOs are becoming commonly available, 
including CPs in private residential and commercial parking spaces. 
Such CPO reports include data for the parameters 4) and 5) mentioned 

above, i.e. plug-in/plug-out times and charged energy for the charging 
sessions [13,14]. However, the CPO reports do not include the param
eters for 1), 2), and 3, i.e. battery capacity and charging power for each 
EV, or plug-in SoC for charging sessions. Our work provides a set of 
methodologies which complements the data in the CPO reports, 
providing a complete ideal dataset for EV charging based on an empirical 
residential case study in Norway. 

1.2. State of the art: Prediction of EV charging power, battery capacity, 
and plug-in SoC, and their impact on residential charging behaviour 

To complement the data in the CPO reports, values are needed for the 
parameters 1) charging power, 2) battery capacity, and 3) plug-in SoC. 
Sections 1.2.1 and 1.2.2 introduce these parameters, the availability of 
real-world data, and how the parameters typically are predicted in 
literature. Section 1.2.3 describes literature focussing on how EV 
charging behaviour is related to battery capacity and SoC values. 

1.2.1. EV charging parameters 
The energy demand during a charging session depends on the battery 

SoC at plug-in time, the final SoC, the battery capacity, and the charging 
efficiency. The time needed for charging depends on the charging 
power, which can be limited by the CP or the EV characteristics. The 
actual charging power is the lowest value of the AC power available at 
the location (Fig. 1, marked A) and the onboard charger capacity in the 
EV (Fig. 1, marked B). 

When the connection time is longer than the charging time, there is a 
period of non-charging idle time which reflects the flexibility potential 
for the charging session. The energy which could potentially have been 
charged during the idle time, is called idle energy capacity. The idle 
energy capacity depends on the battery’s SoC, the maximal charging 
power, and the availability of connected EVs [15]. When energy loads 

Nomenclature 

BEV Battery Electric Vehicle. 
CP Charge Point. 
CPO Charge Point Operator. 
CPO reports EV charging reports from CPOs. 
DST Daylight Saving Time. 
EV Electric Vehicle. 
IT230V 230 Volt IT system (distribution grid). 
LV Low Voltage. 
PHEV Plug-in Hybrid Electric Vehicle. 
SoC State of Charge of the EV battery. 
V2G Vehicle to grid. 
# Number of. 

Subscript 
Ebattery Energy stored in the EV battery. 

Ebattery-size EV battery capacity prediction per user ID. 
Echarged Energy charged per charging session. 
Econnected(i) Connected energy capacity in hour i. 
Eidle(i) Idle energy capacity in hour i. 
Eload (i) Energy charging load in hour i. 
ɳ Charging efficiency. 
Pcharging Average charging power. 
Ppreliminary Preliminary EV charging power prediction per user ID. 
Puser Charging power prediction per user ID. 
SoCdiff(i) SoC difference for hour i. 
SoCrange Range from a minimum SoC-level to a maximum SoC-level. 
tcharging Charging time for an EV session. 
tconnection CP connection time for an EV session. 
tidle Non-charging idle time for an EV session. 
tplug-in CP plug-in time. 
tplug-out CP plug-out time.  

Fig. 1. Charging power is limited by available AC power in the CP (A) and EV 
onboard charger capacity (B). 
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for several EVs are aggregated, several studies have found that both the 
charging power peaks and the flexibility potential increases with higher 
charging power [13,15]. 

1.2.2. Prediction of EV charging power, battery capacity, and plug-in SoC 
Fig. 2 shows an illustration of charging characteristics for EVs on the 

market, with onboard charger capacities on the horizontal axis and net 
battery capacities on the vertical axis, based on [13,16,17]. In a garage, 
different EVs typically have a mix of different charging power levels and 
battery capacities. Due to lack of data availability, EV characteristics 
such as charging power and battery capacity for each EV are often 
determined based on assumptions. Table 1 shows examples of AC 
charging power assumptions from literature. In references [13,15, 
18–23] different scenarios with ‘low’ or ‘high’ charging powers were 
presented, where all the EVs have the same charging power level. In 
[24–26] a mix of charging power capacities were assumed for EV fleets 
in Germany, New Zealand and Norway, based on onboard charger ca
pacities of typical EV models. As shown in Table 1, most studies either 
assume charging power levels based on typical power levels available at 
CPs (A in Fig. 1), or based on typical onboard charger capacities (B in 
Fig. 1). In [27], EV charging measurements from a shopping centre were 
analysed, and both the CP power and a mix of onboard charger capac
ities were addressed. The studied CPs had a power level of 22 kW, which 
means that most of the EVs were limited by their onboard charger ca
pacities. The study found that most charging sessions had a peak 
charging power of around 4 kW, while some clusters had 7.5 kW and 
11 kW. Simolin et al. [27] stated that there is a need for more studies 
taking into account the combination of the two CP power levels and the 
onboard charger capacity, including various power levels and charging 
sites, such as homes and workplaces. In our study, realistic databased 
charging power predictions are provided per EV user, taking both the CP 
power and the onboard charger capacity into account. 

In general, real-world data that describe EV battery capacity and 
charging session SoC values are seldom available for AC charging, 
except in EV trials such as [29,30], where trial participants contribute 
with data. However EV trial data are often limited in size, geography and 
time, and, as stated by [20], usually represent a particular set of tech
nologies and/or individuals. Accordingly, there is a need for more EV 
data from everyday users of CPs. 

1.2.3. EV charging behaviour related to battery capacity and SoC values 
Vermeulen et al. [31] acknowledged that there is limited research on 

the influence of battery capacity on EV charging behaviour. In [31], the 
research group predicted the battery capacities for EVs using public CPs 
in the Netherlands, based on information about energy charged from 
CPO reports. They assumed that all users would have at least one 
charging session where they charged their battery from 0% to 100%. 
Since several EVs could use the same user ID, for example if the user had 
a hired car or guests were using the chargers, the 98 percentile of the 
charging sessions was used. The EVs were split into plug-in hybrid EVs 

(PHEVs), and two groups of battery EVs (BEVs): low BEVs (up to 33 kWh 
battery capacity) and high BEVs (above 33 kWh). Due to the fact that 
only a few charging sessions involves charging the battery from 0% to 
100%, the method underestimated the battery capacities, especially for 
BEVs with large batteries. Another research [32] also used CPO reports 
from public CPs in the Netherlands to predict battery capacities and start 
SoC of EVs. The researchers divided the users into 9 clusters and 
retrieved mean predicted battery capacities between 12.7 and 24.6 kWh. 
The study found a weak relationship between user types and battery 
capacities, and recommended further research to explore behavioural 
changes over time, with various EV types. Wolbertus et al. [33,34] 
presented charging data from a public dataset as well as private CPs in 
the Netherlands. The study predicted the users’ battery sizes according 
to the maximum energy charged per user. The charging power was 
predicted to 3.7 kW (if single phase CP) or 11 kW (if three phase CP). In 
[33], the researchers found that users with battery sizes above 70 kWh 
charged 2.8 times a week, with about 25 kWh energy per charging 
session. Users with smaller battery capacities between 16 and 30 kWh 
charged 4 times a week, with about 10 kWh energy per charging session. 

The optimal SoC range for operating EV batteries is commonly sug
gested to be 20–80% [35]. SoC values from AC charging are not usually 
available for CPOs, since most EVs do not yet support communication 
standards such as ISO15118 [36]. In a 6-month field trial with 40 EVs, 
[29,37] found that most EV users were comfortable with utilizing 

Fig. 2.. Onboard charger capacities and net battery capacities for EVs, based on market data from [16] and [17] (updated from [13]).  

Table 1 
Examples of AC charging power assumptions found in literature.  

Ref. Charging power (kW) Basis for power 
levels 

Zade et al.[15] 3.7 / 11 / 22 (three scenarios) CP 
Sørensen et al. 

[13] 3.6 / 7.2 (two scenarios) Onboard charger 

Fischer et al. 
[18] 3.7 / 11 / 22 (three scenarios) CP 

Marra et al.[19] 3.7 CP 
Dixon et al.[20] 3.7 / 7.4 (two scenarios) CP 
Shepero et al. 

[21] 
3.7 / 6.9 / 22 kW (three scenarios) CP 

Calearo et al. 
[22] 3.7 / 11 (two scenarios) CP 

Bollerslev et al. 
[23] 3.7 / 11 / 22 kW (three scenarios + mix) CP 

Welzel et al. 
[24] 

3.3 / 7.2 / 22 (mix of three levels) Onboard charger 

Su et al.[25] 6.6 / 11 (mix of two levels) Onboard charger 
Degefa et al. 

[26] 3.7 – 17 (mix of ten levels) Onboard charger 

Mobarak et al. 
[28] 6.6 Onboard charger 

Simolin et al. 
[27] 

3.7 / 7.4 / 11 / 22.1 (mix), CP 22 kW 
Onboard charger 
or CP 

Our study Databased charging power predictions for 
all EV users individually 

Onboard charger 
or CP  
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approximately 80% of their available battery capacity. SoC values at 
plug-in and plug-out times were presented by [38], which analysed SoC 
data from trials with in total 29,262 charging sessions. Most of the EVs 
were part of company car fleets. Schäuble et al. [38] found that most of 
the charging sessions had a high start-SoC (median value of nearly 70%) 
and an end-SoC of more than 90%, which resulted in small SoC differ
ences (less than 10% for 37% of the charging operations). Siddique et al. 
[39] calculated start SoC for 117,339 EV charging sessions in the US, 
based on information about energy charged per session and battery 
capacities. They found that the location category "single family resi
dential" (about 17.7% of the sessions), which represented households 
with a dedicated CP, had a higher start SOC compared to other locations. 
This indicated that users with access to dedicated CPs typically will 
charge their EVs more regularly than users using public or shared CPs. 
Our findings in [13] supported this assumption, comparing charging 
behaviour of residential users with shared and private CPs. Residents 
with CPs on their private parking space had on average about 4.4 
charging sessions per week, while residents using shared CPs charged 
about 1.2 times per week. The study also found that residents with a 
private CP had longer average connection times (12.8 h), than users 
with a shared CP (6.5 h). 

1.3. Novelty and scientific contribution 

The literature review showed that there is a general lack of EV 
charging data needed for data-driven analyses and modelling of EV 
charging and flexibility. Due to lack of data availability, EV character
istics are often based on rough assumptions. This paper presents a 
methodological framework that can be used to provide complete EV 
charging data. The methodological framework fulfils the requirements 
for an ‘ideal’ dataset for EV studies as specified by Calearo et al. [12]. 
The simple and practical set of methodologies that are proposed, were 
developed by combining and further developing existing methodologies 
from literature, and was based on a large empirical dataset obtained 
from a Norwegian case study with more than 35,000 charging sessions. 
Realistic predictions of battery capacities, charging power, and plug-in 
SoC for each EV and charging session were added to datasets with 
plug-in/plug-out times and energy charged, to provide complete EV 
datasets. Table 2 shows an overview of all the input and output data 
presented in this article. The needed input data are commonly available 
in CPO reports, which lays the ground for a wide-scale use of the 
methodology, covering different user groups, building categories, and 
geographic locations. The CPO reports represent data from everyday 
users of CPs. 

Charging habits are related to EV characteristics such as battery 
capacity and charging power, which again will affect the load profiles 
and flexibility potential of EV charging. Table 3 includes a comparison of 
our study with the literature described in Section 1.2, focussing on EV 
charging behaviour related to EV charging power, battery capacity, and 
SoC values. The added value of our study is that the charging behaviour 
analyses were based on a large number of residential charging sessions 

in a mature EV market, where most of the EV users have private CPs. 
Charging behaviour was analysed for users with different battery sizes 
and charging power. Since the EV charging dataset was comprehensive, 
the analyses covered a wide range of EV charging behaviour, such as the 
energy charged, the idle times and related idle energy capacities, start 
SoC of the charging sessions, frequency and timing of EV charging ses
sions, etc. Such information can be employed as valuable inputs in 
various energy-related research studies, such as load forecasting, or 
when evaluating energy flexibility potentials within neighbourhoods. 

The main contributions of our study are:  

1. A set of methodologies for transforming readily available real-world 
EV charging data into high-quality and user-friendly EV charging 
datasets. These datasets are essential for conducting a range of 
different EV studies, including load forecasting and energy flexibility 
assessments. The methodologies are developed by combining and 
further developing existing approaches found in the literature, and 

Table 2 
Overview of input data and predicted output data in the article.  

Input data from 
35,000 
CPO reports 
(residential) 

Predicted output data 

Per user Per session Hourly values  

• User ID  
• Session ID  
• Plug-in time  
• Plug-out time  
• Connection 

time [h]  
• Energy 

charged [kWh]  

• Charging 
power [kW]  

• Battery 
capacity 
[kWh]  

• Charging time 
[h]  

• Idle time [h]  
• SoC difference  
• Idle energy 

capacity [kWh]  

• Energy charged 
[kWh]  

• Idle energy 
capacity [kWh]  

• Connected energy 
capacity [kWh]  

• SoC difference  
• SoC from  
• SoC to  

Table 3 
Summary of literature describing EV charging behaviour related to battery ca
pacity and SoC values.  

Ref. Description 

CP ownership / 
Sector 
/ Geographic 
location 

EV share 
2022 
[40] 

Vermeulen 
et al. 
[31] 

Charging behaviour for users 
with different battery sizes. 
Battery capacity prediction was 
based on charging session data. 

Public / 
Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Helmus et al. 
[32] 

Charging behaviour for user 
clusters with daytime and 
overnight sessions. Battery 
capacity and start SoC 
predictions were based on 
charging session data. 

Public / 
Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Wolbertus 
et al. 
[33] 

Charging behaviour for users 
with different EV technologies, 
and the impact of access to 
home charging. Battery 
capacity and charging power 
predictions were based on 
charging session data. 

Public and private 
/ Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Schäuble 
et al. 
[38] 

SoC analysis, based on trial 
data. Start SoC and end SoC 
values were either available 
from the trial, or SoC difference 
was calculated based on 
available EV battery size. 

Company cars / 
Germany (trials) 

Sales 
share: 
31% 
Stoch 
share: 
4% 

Siddique 
et al. 
[39] 

Charging behaviour for users 
with different charger type, EV 
type and location category. 
Start SoC predictions were 
based on energy charged per 
session and battery capacities. 
Dataset contained station-, 
session- and vehicle- 
characteristics. 

CP network (home, 
workplace, public) 
/ USA 

Sales 
share: 
8% 
Stoch 
share: 
1% 

Sørensen 
et al.[13] 

Charging behaviour for 
residents using private or 
shared CPs. Analyses were 
based on charging session data. 

Private / 
Residential / 
Norway 

Sales 
share: 
88% 
Stoch 
share: 
27% 

Our study 

Charging behaviour and start 
SoC values for users with 
different battery sizes and 
charging power. Predictions 
were based on charging session 
data. Residential users (mainly 
with private CPs), in a mature 
EV market. 

Private / 
Residential / 
Norway 

Sales 
share: 
88% 
Stoch 
share: 
27%  
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on data from a case study that includes more than 35,000 charging 
sessions from residential buildings in Norway.  

2. A statistical analysis of the EV charging dataset that presents how 
residential charging behaviour and load shifting potential are 
affected by EV battery capacity and charging power. Behaviour data, 
such as energy charged, start SoC values, idle energy capacity, and 
frequency of charging, are presented for users with small and large 
EVs. The analysis is based on the large case study dataset from point 
1, where CPs are mainly located on private residential parking 
spaces. 

1.4. Structure of the article 

The remainder of this paper is structured as follows: Section 2 in
troduces the input data used in the analysis, while Section 3 describes 
the methodology. Section 4 presents the results and a discussion of the 
findings including predictions of EV charging powers, battery capacities, 
hourly charging loads and SoC, and idle energy capacities. Section 4.3 
provides an analysis of how EV battery and charging power capacities 
may affect charging habits. Finally, the conclusion of the paper is drawn 
in Section 5. 

2. Input data for the analysis 

The main data source for our analysis was CPO reports from apart
ment buildings in 12 locations in Norway. In total, 267 user IDs and 
more than 35,000 charging sessions were analysed (after cleaning). The 
CPO reports include information on plug-in time, plug-out time, and 
energy charged for each charging session, in addition to identifiers for 
user ID and location. Data availability for each location is listed in  
Table 4, including the number of user IDs and charging sessions before 
and after cleaning the data. Most of the CPs were located at private 
parking spaces for the residents and some locations also have shared CPs 
available for all residents. The CP ownership was not separated in this 
work, since it is not known for all the locations. The data and analysis for 

location TRO_R are further described in [13,14]. 
Most of the locations had an increasing number of user IDs during the 

period of data collection. The collection period for the locations varied, 
spanning from February 2018 to August 2021. During this period, 
Norway was affected by COVID-19, mainly from March 2020. COVID-19 
rules and recommendations that were introduced from this time, might 
have affected the charging habits for the locations with data also from 
this period (BAR_2, KRO and OSL_T), e.g., due to increased use of home 
office and changes in travel activities. Consequently, only the period 
before March 2020 was included for prediction of hourly energy, idle 
energy capacity, and SoC (Sections 3.4 and 4.2), as well as for the 
comparison of charging habits (Sections 3.5 and 4.3). However, the 
whole data period was included for the prediction of EV charging power 
and net battery capacity (Sections 3.1, 3.2, and 4.1), since these are 
technical parameters related to the EV, i.e. not affected by user behav
iour. Most of the input data were from before the COVID-19 period, and 
more than 80% of all the charging sessions were completed before 
March 2020. 

The LV distribution system in most of the locations is of type 230 Volt 
IT system, which is typically the case for residential customers in Nor
way. For most EV users, the CP charging power (A in Fig. 1) is limited to 
a maximum of 7.4 kW (32 A). The users have the possibility to manually 
activate IT 3-phase charging on their CP, which provides up to 11 kW, 
but only some EV models support this. For the location OSL_T, a 
charging power of 7.4 kW is available at private parking spaces, while 
22 kW is available at 16 shared CPs. Since 11 kW charging power is the 
limitation in most of our locations, this is the focus of the study. 

Data cleaning removed 76 User IDs (22%) and about 3000 charging 
sessions (7.6%) from the original dataset, including the following:  

• Sessions with no energy charged (≤0.5 kWh) (n = 2289) (assumed 
faulty sessions).  

• Sessions with too high energy charged (>150 kWh) (n = 2) (assumed 
faulty sessions, since the maximum battery capacity for EVs on the 
market is 100 kWh). 

Table 4 
Residential locations with EV data analysed.  

Location 
Data collection 
period Months 

Before cleaning Used in analysis 

# User 
IDs 

# Charg. 
sessions 

# User 
IDs 

# Charg. 
sessions 

ASK 
Asker Sub-urban 

2018–11–15 to 
2020–02–03  14.5  23 6780  21 6372 

BAR 
Bærum Sub-urban 

2018–09–07 to 
2020–02–03  17  10 2108  8 1969 

BAR_2 
Bærum 

Sub-urban 2020–02–04 to 
2021–08–06  

18  7 1116  6 1028 

BER 
Bergen sør-vest 

Urban 2019–10–31 to 
2020–02–03  

3  10 395  8 308 

BOD 
Bodø 

Urban 
2018–10–24 to 
2020–02–02  15  8 548  6 508 

KRO 
Krokkleiva 

Rural 
2021–01–15 to 
2021–05–06  

3.5  18 598  9 492 

OSL_1 
Oslo 

Urban 2019–10–08 to 
2020–02–02  

4  25 534  15 464 

OSL_2 
Oslo 

Urban 2019–11–25 to 
2020–02–02  

2  8 167  4 127 

OSL_S 
Oslo sør-øst Urban 

2018–02–06 to 
2020–02–03  24  29 10,570  28 9757 

OSL_T 
Oslo Tveita 

Urban 
2019–11–15 to 
2021–03–29  

16.5  80 6147  62 5478 

TRO 
Trondheim 

Urban 2019–03–08 to 
2020–02–03  

11  31 2379  23 2168 

TRO_R 
Trondheim Risvollan Urban 

2018–12–21 to 
2020–01–31  13  97 7245  77 6706 

Total for the 
12 locations  

2018–02–06 to 
2021–08–06    346 38,587  267 35,377 

Total 
pre-COVID-19  

2018–02–06 to 
2020–02–28       

224 28,639  
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• Sessions with connection time of less than 2 min (n = 131) (assumed 
faulty sessions). 

• Sessions with connection time of more than 5 days (n = 155) (ses
sions affect average connection and idle time).  

• A preliminary value for average power was calculated based on the 
energy charged divided by the connection time. For sessions with an 
average power higher than the available charging power 
(≥11.5 kW), plug-out times were removed (set to NA), since this 
indicated that the value was incorrect (n = 40). With removed plug- 
out times, the sessions were excluded for most of the analysis in this 
work.  

• Plug-out times were also removed for OSL_T for average power 
≥ 11.5 kW (n sessions= 22), even though 22 kW is available at their 
shared CPs. Two user IDs were removed (including all their 338 
sessions), since they had more than one session (n = 12 + 6) with 
average power higher than 11.5 kW. It was therefore assumed that 
they normally used the shared CPs, charging with higher charging 
power, and that removing plug-out times for some sessions could 
provide misleading results.  

• User IDs with less than 10 charging sessions were removed (n = 268 
sessions, 72 user IDs). 

Finally, corrections for time zones/daylight saving time (DST) were 
performed, before adding calendar data such as weekdays. 

Fig. 3 shows plug-in times, plug-out times, connection times, and 
energy charged in the EV data locations. For all locations, the share of 
plug-in times increases in the evenings, with a peak in the afternoon (for 
most locations 16:00–17:00) when the working day typically ends in 
Norway. For the plug-out times, there is a peak in the morning (for most 
locations 7:00–8:00), corresponding to the start of a typical working 
day. OSL_1 stands out with an additional plug-in peak at 09:00 and plug- 
out peak at 14:00, but most of these charging sessions (plug-in: 91%, 
plug-out: 70%) are related to a single user. Both the morning and af
ternoon peaks are higher for some of the locations (BAR and KRO), 
which may be explained by a higher share of commuters in these areas. 
For the whole data period (n sessions = 35,377), the connection time is 

in average 12.7 h for the sessions, and 90% of the charging sessions last 
for less than 22.1 h. Average energy charged per charging session is 12.7 
kWh. On average, each user starts 3.9 charging sessions per week. 

3. Methodology 

Based on the data available in the CPO reports, a set of simple-to-use 
methodologies are proposed for assessing complete and ideal EV data
sets. The methodologies can be used for locations such as residential 
buildings and workplaces, where user IDs are unique. Flow charts for the 
methodologies are shown in Fig. 4, where values for EV charging power, 
EV battery capacity, and hourly battery SoC for charging sessions are 
assessed for each user ID individually. Firstly, charging power and 
battery capacity are predicted for each user ID, as described in Sections 
3.1 and 3.2. The charging power and battery capacity predictions are 
then used to develop hourly SoC predictions, as described in Section 3.4. 
Section 3.5 describes a methodology for analysing how residential 
charging behaviour is affected by EV battery capacity and charging 
power. To do this, the 224 residential EV users were divided into four 
user groups, according to their battery capacity and charging power, and 
their charging habits were compared. All data analyses and predictions 
have been performed using the statistical computing environment R 
[41]. 

3.1. The EV charging power prediction method 

The aim of the charging power prediction method is to provide 
predictions for the EV charging power per user ID. The EV charging 
power can be limited by the onboard charger in the EV or by the 
available AC power at the location. For each user ID, the predicted 
charging power value will be the lowest value of the two limitations. 

When predicting the EV charging power, it is assumed that all user 
IDs have at least one charging session where they plug-out the charger 
while the battery is still charging. If this is the case, the available 
connection time (tconnection) equals the charging time (tcharging), and it is 
possible to calculate the average charging power (Pcharging) using Eqs. 1 

Fig. 3. Plug-in times, plug-out times, connection times, and energy charged in the EV data locations.  
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to 3. The values for plug-out time (tplug-out), plug-in time (tplug-in), and 
energy charged (Echarged) are available from the CPO reports. 

CP connection time for an EV session : tconnection = tplug−out − tplug−in (1)  

When plugout during charging : tcharging = tconnection (2)  

Average EV charging power : Pcharging = Echarged

/
tcharging (3) 

To identify the interrupted charging sessions with plug-out during 
charging, the highest charging power values are of interest. For each 
user ID, the maximum value for Pcharging is therefore selected as the 
preliminary EV charging power prediction (Ppreliminary). Our method is 
similar to the method proposed by [42], but while [42] used the pre
dicted values to sort the users into two charging power levels, our 
method predicts all the charging power levels individually, reflecting 
the fact that actual charging power varies with the EV. When predicting 
realistic charging power values per user, also the results for hourly 
charging loads and idle energy capacities will become closer to reality. 
In addition, a second step is included to filter out errors and outliers, as 
explained in the following. Since charging power is predicted per user 
ID, the values are not necessarily connected to a specific EV. Some users 
may drive several EVs, or they may invite others/guests to use their user 
IDs. To improve the predictions, the Ppreliminary value for each user ID is 
therefore compared to typical levels for onboard charger capacities for 
EVs on the market (ref. Fig. 2). The charger capacities are grouped into 
three levels: Level 1 (mainly PHEVs and earlier models of BEVs): 
< 4 kW, Level 2 (mainly BEVs with onboard charger capacities around 
7 kW): 4 < 8 kW, Level 3 (mainly larger / newer BEVs with onboard 
charger capacity from 11 kW and above): 8–11.5 kW. For each user ID, 
the Ppreliminary value is categorised into one of the three charger capacity 
categories. If the same user has at least two charging sessions with 
Pcharging in the same charger capacity category, the Ppreliminary value is 
considered to be the final charging power prediction (Puser). Otherwise, 
the charging session with the preliminary prediction is filtered as an 
outlier, and a new Ppreliminary value is calculated. The recalculation is 
repeated, until all user IDs have a final charging power prediction. For 
the 267 user IDs that we analysed, Puser was predicted directly for 93% 
(249) of the user IDs (Puser = Ppreliminary, no filtering needed). Puser was 
predicted for 6% (17) of the user IDs after filtering one outlier, and 1 

user ID after filtering two outliers. Finally, user IDs with Puser values of 
less than 2 kW were removed (6 user IDs), since no EVs with less than 
3 kW charging power were identified on the market, thus it was assumed 
that the predictions were too low. Due to the assumption that all user IDs 
have at least one interrupted charging session, Puser prediction for user 
IDs with no interrupted charging sessions will be too low. The as
sumptions and justifications applied in the method are summarized in  
Table 5. 

Assump�on: 
All user IDs have at 

least one interrupted 
charging session with 

plug-out during 
charging

Assump�on: 
All user IDs charge 

from min-SoC to max-
SoC for at least one 

charging session

Filtering outliers: 
Charger capacity for EVs 

on the market are 
grouped in 3 levels. 

Values for P charging are 
categorized (level 1-3). 
For each user ID, the 

session with  Ppreliminary is 
filtered if it is the only 
session within a level

For each user ID: 
P charging calculated for all 

sessions (eq. 1-3). 
Values are sorted by size.
max (P charging) = Ppreliminary

For each user, max. 
energy charged is 

mul�plied with efficiency, 
to get max. energy to 

ba�ery (E ba�ery) (eq. 4).

Ba�ery capacity 
predic�on for each 

user ID (eq. 5):
E ba�ery-size

Input to 
hourly SoC

Input to hourly 
SoC

Charging power

Ba�ery capacity

Hourly charging loads 
Eload (i) calculated for all 

charging sessions (eq. 6)

Charging power 
predic�on for 
each user ID: 

Puser = Ppreliminary

Hourly SoC

max E ba�ery < 28 kWh: 
SoC 10-100%

max E ba�ery > 28 kWh: 
SoC 20-100%

Idle �me >1h:
End SoC 

80, 95 or 100%

Hourly SoC diff .  SoC diff (i)
predicted for each session 

(eq. 7)

Idle �me <1h: 
No final SoC

Charging power Puser
for each user ID

Ba�ery capacity E ba�ery-size
for each user ID

Hourly SoC 
values predicted 
for each session

If outlier filtered: Recalcula�on

User ID
Connec�on �me [h]
Energy charged [kWh]

CPO reports 
User ID
Session ID
Plug-in �me
Plug-out �me
Connec�on �me [h]
Energy charged [kWh]

User ID
Energy charged [kWh]

User ID
Session ID
Plug-in �me
Plug-out �me
Energy charged [kWh]

User ID
Charging power
Ba�ery capacity

Fig. 4. Flow charts for predicting charging power, battery capacities, and hourly SoC, based on CPO reports.  

Table 5 
EV charging power prediction method: Assumptions and justifications.  

Assumptions Justifications 

The average charging power for each EV 
user is constant 

Actual charging power varies with EV, 
CP, SoC, temperatures etc. Charging 
power for single charging sessions is 
presented by e.g.[13,43–45]. For a large 
dataset it is necessary to apply a constant 
charging power, since the actual charging 
power is not known. The assumption of a 
constant charging power is generally used 
in literature (ref. examples in Table 1). 

All user IDs have at least one 
interrupted charging session with 
plug-out during charging 

The method provides charging power 
values per user, while studies in the 
literature generally assume the same 
charging power values for the complete 
EV fleet (ref. Table 1). The assumption 
may result in too low charging power 
values if no charging sessions are 
interrupted. To reduce this risk, user IDs 
with charging power values of less than 
2 kW were removed (no such EVs on the 
market). The assumption may result in 
too high values if several EVs are 
connected to one user ID. The step of 
filtering outliers is therefore included, but 
with the risk of filtering real charging 
power values. Despite the risks, this is a 
transparent simplification, which is 
assumed to give satisfactory charging 
power levels when aggregated. The 
method is validated with EV data, as 
described in Sections 3.3 and 4.1.  
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3.2. The net EV battery capacity prediction method 

The aim of the net EV battery capacity prediction method is to pro
vide predictions for the net EV battery capacity per user ID. When doing 
this, it is assumed that all user IDs have at least one charging session 
where they charge their EV battery a certain SoC range; from a defined 
minimum SoC-level to a defined maximum SoC-level. Initially, the 
charging session with the highest value for energy charged for each user 
is selected. No large values or outliers are filtered in this process, since it 
is expected that some users seldom charge the full SoC range of their EV 
batteries [29,37]. A filtering process may therefore remove valuable 
data. The selected maximum values are multiplied by an efficiency for 
one-way AC/DC conversion to calculate the approximate amount of 
energy stored in the battery (Ebattery), as shown in Eq. 4. For EV charging, 
[46] and [47] have found energy losses between 12% and 40%. Marra 
et al. [19] considered 88% charging efficiency, based on empirical 
studies. Thus, in our work, a charging efficiency (ɳ) of 88% is assumed. 

Maximum energy stored in battery : max(Ebattery) = max
(
Echarged

)
× ɳ (4)  

Battery capacity prediction : Ebattery−size = max
(
Echarged

)/
SoCrange (5) 

The calculated values for maximum energy stored in the batteries 
(Eq. 4) are divided by an assumed SoC range for the charging session 
(Eq. 5) to get a prediction of the battery capacities. Two different SoC 
ranges are assumed for the EV users, dependent on the EV battery 
classification, i.e., small/medium (EV-SM) or large (EV-L). This is based 
on the hypothesis that users with large batteries are less likely to charge 
their EVs from nearly empty to completely full. As found by [29,37], 
most EV users prefer charging their EV batteries before reaching about 
20% SoC. EV users with smaller batteries are expected to more 
frequently charge for a larger SoC range, based on the occasionally need 
for longer driving ranges. The findings by [31] support this theory, as 
they found few EVs with large batteries when assuming that all users 
charged their battery from 0% to 100%. Two different levels are 
therefore set for the minimum SoC-level: 10% for EV-SM and 20% for 
EV-L. The defined maximum SoC-level is set to 100% for all EV users. 
This gives a SoC range of 90% for EV-SM and 80% for EV-L. 

The threshold value that is used to categorize the EVs into two bat
tery capacity groups are based on Eq. 4, which represent the net battery 
capacity within the defined SoC-range only. When using different SoC 
ranges to predict the battery capacities (Eq. 5), a gap between the net 
battery capacity groups appears. The EV-SM group has battery capac
ities up to 31.1 kWh and the EV-SM group has battery capacities above 
35 kWh. The threshold value is chosen based on the net battery capacity 
of typical EVs on the marked (ref. Fig. 2), and is comparable to the 33 
kWh value used by [31]. There is no distinction between the BEV and the 
PHEV in our study, and PHEV is included in the EV-SM group. Table 6 
shows a summary of the assumptions and justifications for prediction of 

EV battery capacity. 

3.3. Method for validation of the EV charging power and battery capacity 
predictions 

To validate the suggested methods, the EV charging power and 
battery capacity predictions in Section 4.1 were compared to informa
tion from 15 users in location TRO_R and BAR_2, including data on their 
nominal onboard charger capacities (kW AC) and net battery capacities 
(kWh). For the remaining locations, the CPO reports were anonymized, 
with no information about the users and their EVs. In addition, the re
sults were compared to typical charging characteristic for models of EVs 
on the market [13,16,17], as shown in Fig. 2. The market data includes 
102 models of BEVs and PHEVs described by [16] and [17]. Since some 
car manufacturers publish gross battery capacities only, the presented 
net battery capacity for these manufacturers is set equal to the capacity 
predicted by [16,17]. 

3.4. Hourly battery SoC prediction method 

As a basis for predicting the hourly SoC values, energy charged 
during charging sessions were distributed hourly on the timeline, using 
the methodology presented in [13]. For calculating the hourly charging 
loads (Eload (i)), the EV charging power predictions per user ID (Puser) are 
multiplied with the hourly charging time (Eq. 6). It is assumed that the 
charging starts immediately after plug-in, and that the charging power is 
fixed over the whole charging time. 

Charging load for hour i : Eload(i) = Puser × tcharging(i) where
∑

Eload(i)

= Echarged (6) 

For every charging session hour, the SoC difference for each EV is 
calculated as the hourly energy stored in the battery (energy load 
multiplied with efficiency) divided by the battery capacity prediction for 
each user (Euser-battery) (Eq. 7). Assuming a final SoC value, the SoC value 
every hour can be calculated, starting with the last hour of every session 
and then proceed reverse in time, hour-by-hour until the first session 
hour. We assumed that all uninterrupted charging sessions continued 
charging until the battery was nearly full, i.e., with final SoCs of 80%, 
95% or 100%. This assumption is justified by [38], which found median 
values above 95% for final SoCs. No final SoC values were assumed for 
charging sessions where the predicted non-charging idle time was less 
than an hour, since these charging sessions may have been stopped by 
the user. 

SoC difference for hour i : SoCdiff (i) = Eload(i) × ɳ
/

Euser−battery (7)  

Table 6 
EV battery capacity prediction method: Assumptions and justifications.  

Assumptions Justifications 

All user IDs have at least one charging 
session where they charge their EV 
battery at a certain SoC range 

For a large dataset it is necessary to apply this simplification, since the actual battery capacity is not known. A similar assumption is 
made by [31]. The assumption may result in too low or too high EV battery capacity predictions if the maximum SoC range is smaller or 
larger than assumed. The method is validated with EV data, as described in Sections 3.3 and 4.1 

Some users seldom charge the full SoC 
range of their EV batteries 

Based on findings in [28,33]. No large values or outliers are therefore filtered in this process. The method may result in too high values if 
several EVs are connected to one user ID.  

EV-SM EV-L  
ɳ 0.88 0.88 Based on [19], supported by [46,47]. 

SoCrange 
0.9 
(10–100%) 

0.8 
(20–100%) 

Most EV users prefer charging their EV batteries before reaching about 20% SoC [29,37]. EV users with smaller batteries are expected to 
more frequently charge a larger SoC range. This is strengthened by the findings of [31]. To improve the results, two different SoC-ranges 
are therefore assumed for EV-SM and EV-L. 

max 
(Ebattery) 

< 28 kWh > 28 kWh Calculated using Eq. 4. 

Ebattery-size 
< 31.1 
kWh 

> 35 kWh 
Calculated using Eq. 5. 
The threshold value for EV-SM and EV-L is chosen based on the net battery capacity of typical EVs on the marked (ref. Fig. 2), and is in 
the range of the value used by [31] of 33 kWh.  
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3.5. Comparing charging habits for EV users with different battery and 
charging power capacities 

In this work, we investigate how residential charging behaviour is 
affected by the EV battery capacity and charging power. To do this, 
energy charged, SoC-values, idle energy capacities, and time related 
data are compared for EV users with different battery and charging 
power capacities. Hourly values for idle energy capacities are predicted 
by using the methodology presented in [13], where hourly idle times for 
a session are multiplied by the assumed charging power for the user ID. 
The session idle time is calculated according to Eq. 8. The sum of the 
charging loads and idle energy capacities is referred to as the connected 
energy capacity (Eq. 9). The hourly time series include all hours, also 
hours with no connected EVs. 

Idle time per session : tidle = tconnection − tcharging (8)  

Connected energy capacity for houri : Econnected(i) = Eload(i) + Eidle(i) (9) 

The hourly energy loads and idle energy capacities in Section 4.3 are 
presented normalized per user. Each user ID is classified as ‘active’ after 
their first charging session and ‘inactive’ after their last charging session. 
For the first and last 30 days in the measurement period of a given 
location, users are classified as ‘active’ if having at least one charging 
session during the 30-days period. This is done to prevent faulty clas
sification of active users that are not charging frequently. 

The hypothesis that EV battery and charging power capacity influ
ence the charging behaviour is tested by organising the user IDs into four 
user groups according to their predicted net battery capacity (below/ 
above 33 kWh) and AC charging power (below/above 4 kW). Then, 
charging habits for the four user groups are presented and compared, 
with particular focus on the two main user groups SM_Low and L_High, 
which represent the largest differences in EV technology. For example, 
we want to compare if energy charged per session for SM_Low is 
significantly different than for L_High. The comparison is done by using 
a two-sample Mann-Whitney U Test [48,49], performed with the wilcox. 
test function in R [50]. The Mann-Whitney test is rank-based, and does 
not rely on distribution assumptions, such as the two-sample t-test does. 
It tests the null hypothesis (H0): That the two independent groups have 
the same distribution, against the alternative hypothesis (H1): That the 
distribution of the first group differs from the second group. The result is 
evaluated as significant if the calculated p-value is less or equal to 0.05. 
This suggests that the values for the two groups are different, and it is 
likely that an observation in one group is greater (or smaller) than the 
observation in the other group. Mean charging habit values are calcu
lated for the two groups, such as average load profiles, charging energy 
and frequencies, charging duration, and start SoC values. Distributions 
are shown in graphs, with data for SM_Low, L_High, and all users. The 
case study values are compared with values from relevant studies in the 
literature. 

4. Results and discussion 

4.1. EV charging power and net battery capacity prediction 

Fig. 5 shows the EV charging powers predicted for all the EV users. 
The grey lines in the figure represent onboard charging capacity levels 
for EVs on the market (ref Fig. 2). Black stars represent charging power 
for 15 of the EVs for which information was received about the onboard 
charger capacities (manufacturer data from [16,17]) as well as the 
available AC power at the location. For these 15 EVs, the predicted 
charging power values are close to the real values (difference of up to 
0.5 kW). 

The user IDs are grouped into three charging power levels, where 
46% of the user IDs are predicted to be within charging power level 1 
(<4 kW), 38% are within level 2 (4 <8 kW), and 16% are within level 3 
(8–11.5 kW). The charging power levels per location are further 

described in Table 7. For most locations there are users within all the 
three charging power levels. As stated above, the charging power is 
limited by the onboard charging capacity of the EV or the power 
available from the CP (typically 7.4 or 11.0 kW in Norway). For users 
with onboard charging capacities below 7.4 kW, the power is most likely 
limited by the onboard charging capacity of the EV. For two of the lo
cations (BER, and OSL_S), all the user IDs were predicted to be within 
power level 1. This is most probably due to local power limitations for 
the charging power, which for example can be caused by limited grid 
connection power capacity of the building. For users with onboard 
charging capacities above 7.4 kW, the charging power is mostly limited 
by the CP. The exception is EVs that have activated three-phase 
charging, where the charging power may be up to 11.0 kW for some 
EV models. 

Fig. 6 shows net EV battery capacity predictions for all the EV users. 
55% of the user IDs are predicted with EV-SM (below 33 kWh) and 45% 
with EV-L (above 33 kWh). Comparing the predicted battery capacities 
with known net battery capacities for the 15 EVs, it was found that the 
predicted values are close to the real values for the five users with EV- 
SM. The differences are up to 3.5 kWh, and all the predictions are 
lower than the real values. For the ten users with EV-L, the differences 
between the predictions and the real values are larger. One user was 
found to have charged 78.6 kWh, even though the net battery capacity 
was 52 kWh. Assuming that the values are correct, the charging losses 
must be larger than predicted (the EV in question used an external 
transformer during charging). For the remaining nine EVs, the differ
ences were up to 15 kWh, some higher and some lower than the real 
values. These differences may be explained by a variance between the 
real values and the assumptions for charging efficiencies or SoC ranges 
in Table 6. However, even though there are some differences between 
the predictions and the real data, the methods provide a fairly accurate 
indication of the net battery capacities. 

All the predictions of EV charging power and EV battery capacities 
are combined in Fig. 7, together with charging characteristics for EVs on 
the market (ref. Fig. 2). Four user groups are marked in the figure 
(SM_Low, SM_High, L_Low, L_High), forming a basis for the analysis in 
Section 4.3. Fig. 7 shows that the predictions provided by the methods in 
this paper are in the range of typical EVs on the market. Since the 
charging power method also takes the local power capacity into account, 
and not only the onboard charger capacity, EVs with onboard charger 
capacities above 11.0 kW are not represented in the results. 

32 users are grouped as L_Low, even though there are no such EVs 
identified on the market. This may be explained by local power 

Fig. 5. EV charging power predictions for all EV users. Grey lines: Nominal 
onboard charger capacity for EVs on the market. Black stars: Validation of 
charging power for 15 EVs. 
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limitations. Such possible power limitations were discussed earlier in 
Section 4.1 for two of the locations (BER, OSL_S). The possible power 
limitation is supported by Fig. 7, where 23 user predictions for the two 
locations are grouped as L_Low (red tringles in the figure). Local power 
limitations may also be the case for the remaining 9 users, or these users 
may not have disconnected their EVs during charging. There are also EV 
models which does not charge optimally on the IT grid (e.g. the Zoe 
transformer provides 3.6 kW [51]), which may explain some differences 
between the predicted low charging power and the actual onboard 
charging power of the EVs. 

4.2. Hourly battery SoC predictions 

Hourly battery SoC values are predicted for all the charging sessions.  
Table 8 shows an example of input data and predictions for one of the 
charging sessions (TRO_20989). In the example, an end SoC of 95% is 
assumed. 

The distribution of start SoC values are shown in Fig. 8. The figure 
illustrates situations with assumed end SoCs of 80%, 95% and 100%. In 
our study, 59% of the residential EVs are plugged-in when SoC is above 
50%, assuming an end-SoC of 95%. The values are in the range of the 
findings by [52], which discovered that a high share (65%) of the EV 
drivers plug in their company cars when the SoC is above 50%. The 
distribution of start SoC values can also be compared with results pre
sented by [39], which analysed SoC values for EV drivers with a dedi
cated home charger available. They found that the start SoC values for 
these drivers were distributed between approximately 20% and 90%, 
and with a rise towards the higher start SoC values. A high start SoC 
provides opportunities for Vehicle to grid (V2G) in the future, since the 
EVs can deliver energy to the building or grid during peak periods. 

Fig. 9 shows median values for the predicted start SoCs and how the 
SoC values differ in the course of a day. Assuming an end SoC of 
80–100%, the median start SoC values of the dataset are 42–62%, close 
to the mean values of 40–60%. The predictions can be compared to 
hourly median values from [38], where start SoC values were available 
from 9566 charging sessions. Due to the low number of observed ses
sions at night in [38], the values were aggregated from 11 pm to 6 am 
(n = 321). The study also found that the start SoC values differed over 
the day. This can also be found from the data in our study, but to a 
smaller degree than in [38]. This may have several explanations; The 
users may behave differently (private EVs in our study compared to 
mainly company EVs in [38]), or the predicted values may not be fully 
accurate. Still, the predicted start SoC values are in the same range as the 
measured values found in [38]. 

Daily average SoC values for connected EVs are shown in Fig. 10, 
along with the number of connected EVs and new connections each 
hour. The figure shows how the average SoC-values for all the connected 
EVs are at the lowest in the afternoon, when most new EVs are being 
connected. During the night-time, the average SoC-values are getting 
close to the end SoC-values since most of the EVs have finished charging 
and there are few new connections. 

4.3. Comparing charging habits for EV users with different battery and 
charging power capacities 

This section analyses how residential charging behaviour is affected 
by EV battery capacity and charging power. For the aggregated EV 

Table 7 
Charging power levels in the 12 case locations: Share of users within each level.  

Location (n) 
Level 

ASK 
(21) 

BAR 
(8) 

BAR_2 
(6) 

BER 
(8) 

BOD 
(6) 

KRO 
(8) 

OSL_1 
(14) 

OSL_2 
(4) 

OSL_S 
(27) 

OSL_T 
(60) 

TRO 
(23) 

TRO_R 
(76) 

All 
(261) 

1 (<4 kW)  0.52  0.88  0.17  1.00  0.17  0.13  0.36  0.25  1.00  0.23  0.33  0.47  0.46 
2 (4 <8 kW)  0.29  0.12  0.66    0.33  0.50  0.07      0.54  0.42  0.53  0.38 
3 (8–11.5 kW)  0.19    0.17    0.50  0.37  0.57  0.75    0.23  0.25    0.16  

Fig. 6. Net EV battery capacity predictions for all EV users. Grey lines: Max/ 
min battery capacities for EV-SM and EV-L. Black stars: Validation of net bat
tery capacity for 15 EVs. 

Fig. 7. User predictions: EV charging power and battery capacities (n users = 261). EV market information: Nominal onboard charger capacity and net battery 
capacity. Four user groups are defined: SM_Low, SM_High, L_Low, and L_High. 
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charging, Fig. 11 shows how the average load profiles have an increased 
energy use in the afternoons and evenings, with the highest load 
occurring between 16:00 and midnight. The average load is at the lowest 
during night/early morning and during daytime. The average load 
profiles for the 12 locations in our study are similar to the profiles found 
in a previous analysis of the location TRO_R in [13], which were verified 
with hourly smart meter data. For charging sessions with idle times less 
than 1 h, the charging loads are marked as non-flexible. Most of this 
non-flexible charging occurs during the afternoon/evening. Fig. 11 also 
shows average connected energy capacities, where the difference be
tween energy charged and connected energy capacity is the average idle 
energy capacity. The connected energy capacities illustrate how the EVs 
typically stay plugged-in during night-time. During workdays, the daily 
connected energy capacity is on average more than four times as high as 
the energy charged during the day. Even though this is based on average 
values, it reflects a considerable potential for shifting the EV charging in 
time, especially from afternoon/evenings to night-time. Other 
data-based EV studies confirm this flexibility potential in the residential 
sector, e.g. [13,53–56]. 

When analysing grid-capacity, the maximum load profile may be 
more important than the average load profile. Load profiles per user is 
shown in Fig. 12, including the maximum energy charged, the 99th 
percentile, the 90th percentile, and the average and 25th percentiles of 
hourly energy charged. The maximum load profiles have two afternoon/ 

evening peaks during workdays, around 17:00 and 21:00, and one af
ternoon peak on Saturdays. In Fig. 12, only periods with 30 or more 
users are included, since the aggregated peak power per user is reduced 
with increasing number of users [13]. 

In the future, charging habits may change due to increasing battery 
capacities and available charging power, which again will affect the load 
profiles and flexibility potential of EV charging. In Fig. 13, daily average 
load profiles are shown for four user groups (SM_Low, SM_High, L_Low, 
L_High), based on net battery capacity (below/above 33 kWh) and 
charging power capacity (below/above 4 kW). In Table 9, the charging 
habits of the two user groups SM_Low and L_High are further described 
and compared. Mann-Whitney p-values are included in the table, to test 
if SM_Low and L_High are significantly different. SM_Low and L_High 
were chosen, since these are main user groups which also represent the 

Table 8 
Data for example session (TRO_20989).  

User and session data 

CPO report data Predicted user data Predicted session data 

Session 
ID tplug-in tplug-out 

tconnection 

[h] 
Echarged 

[kWh] 
Pcharging 

[kW] 
Ebattery-size 

[kWh] 
tcharging 

[h] 
tidle 

[h] SoCdiff 
Eidle 

[kWh] 

TRO_ 
20989 

2020–01–16 
19:12:00 

2020–01–17 
08:08:00  12.9  12.5  7.1  55.6  1.8  11.2  19.8%  79.4  

Hourly data 

Date from E load [kWh] E idle [kWh] E connected [kWh] SoC diff SoC from SoC to 
2020–01–16 19:00 5.7 0 5.7 9.0% 75.2% 84.2% 
2020–01–16 20:00 6.8 0.3 7.1 10.8% 84.2% 95.0% 
2020–01–16 21:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–16 22:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–16 23:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 00:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 01:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 02:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 03:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 04:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 05:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 06:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 07:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 08:00 0 0.9 0.9 0 95.0% 95.0%  

Fig. 8. Distribution of start SoC for the charging sessions, with assumed end 
SoCs of 80%, 95% og 100%. 

Fig. 9. Hourly distribution of predicted start SoC (median line) (n = 28,681). 
Median predictions are compared with measured values in [38]. Lower fig.: 
Number of charging sessions starting each hour. 
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largest differences in EV technology. The market data found in [16] and 
[17], including technical data from 102 models of EVs, show that 78% of 
the EVs have net battery capacities and onboard charger capacities 
within the SM_Low (25 EVs) or L_High (55 EVs) groups, while the 
remaining models are SM_High (22 EVs). 

Fig. 13 shows that the average energy charged every day is about 1.5 
times higher for the users with EV-L than for the users with EV-SM. The 
energy consumption of an EV is influenced by vehicle-, environment-, 
and driver-related factors [57], and in general, EVs with large batteries 
are heavier than EVs with small/ medium sized batteries. Still, the re
sults indicate that users with larger battery capacities also drive more 
than the users with smaller batteries. This corresponds to interview re
sults found by [58], where drivers with a battery capacity of more than 
55 kWh used their car more frequently for long trips, compared to 

drivers with smaller battery capacities. It is also in line with a ques
tionnaire amongst Dutch EV drivers [59], where only 23% of the Tesla 
Model S drivers (L_High) answered that they regularly or often used 
other transportation than the EV due to long distances, while 95% of 
Nissan Leaf drivers (SM_Low) indicated the same. Another reason for the 
difference may be due to the charging location, since [39] found that 
owners of EVs with large battery capacities were more likely to charge at 
home. Fig. 13 shows that it is especially in the afternoons/evenings that 
the users with EV-L have a higher hourly energy demand than the users 
with EV-SM, while the day-time charging is low and more similar for all 
the four user groups. For the two user groups with low charging power, 
SM_Low is finished charging around midnight, while L_Low requires 
more night-hours to finalize the charging. 

A histogram of energy charged per charging session is included in 

Fig. 10. Upper figure: Daily average SoC values for connected EVs. Lower figure: Number of connected EVs (n connected hours = 373,989) and new connections 
each hour (n sessions = 28,681). 

Fig. 11. Daily load profiles per user: Energy charged, non-flexible energy charged (idle time < 1 h), and connected energy capacity. (n users = 224, n sessions 
= 28,682). 

Fig. 12. Daily load profiles per user: Maximum, 99th percentile, 90th percentile, average, and 25th percentile energy charged (n users = 30 < 224).  
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Table 9-C, where the vertical line represents the max/min battery ca
pacity for EV-SM and EV-L. The mean value for all charging sessions is 
12.4 kWh (SD 11.2 kWh), where L_High charges nearly three times as 
much energy during each session compared to SM_Low. The results are 
in line with results from the Netherlands reported in [33], where session 
energy was 25 kWh for EVs with battery capacities > 70 kWh, and 10 
kWh for EVs with battery capacities of 16–30 kWh. The results indicate 
that most EV users with larger batteries seldom utilize the full battery 
capacity. Only 16% of all EV-L sessions (n = 2291) charge more than 33 
kWh. This is confirmed by the histogram of predicted SoC values per 
charging session, illustrated in Table 9-D. Looking at all users together, 
charged energy is less than half of the net battery capacity for 65% of the 
charging sessions. For SM_Low, the average SoC difference is 42% while 
it is 34% for L_High. It should be noted that these average SoC difference 
values are affected by the choice of using different SoC ranges when 
predicting battery capacities for SM_Low and L_High. If battery capac
ities for L_High were predicted with the same SoC range as for SM_Low 
(90%), the average SoC difference becomes more similar: 41% for 
SM_Low and 37% for L_High. However, also [39] found a relationship 
between battery capacity and start SoC, where EVs with larger batteries 
are charged at higher start SoC. 

Idle energy capacities represent the flexibility potential of EV 
charging, since the EV charging can be shifted in time. Comparing idle 
energy capacities for SM_Low and L_High in Table 9-E, the average daily 
idle energy capacity is 1.3 times higher for L_High. As shown in Fig. 13, 
the idle energy capacity is higher for SM_Low than for L_Low, which can 
be explained by the fact that the L_Low group has less idle time due to 
less average connection time (SM_Low: 8.1 h, L_Low: 6.2 h), and that the 

L-Low need more time for charging a larger energy amount. A similar 
relationship can be found between SM_High and L_High. 

Users with small and large weekly charging demands are compared, 
corresponding to 25th and 75th percentiles of the demands. For users 
with lower weekly charging demand (25th percentile), the average 
values are 25 kWh of energy charged per week and 24 kWh of idle en
ergy capacity per week. For users with higher weekly charging demand 
(75th percentile), the average values are 61 kWh of energy charged per 
week and 42 kWh of idle energy capacity per week. The data indicates 
that users with lower weekly charging demand have a longer idle time 
per charging session (average 14.3 h of idle time per session) compared 
to users with a higher weekly charging demand (average 7.9 h of idle 
time per session). 

The charging sessions are distributed fairly evenly throughout the 
week, as shown in Table 9-K. Users with larger batteries charge less 
frequently than users with smaller batteries: 2.6 times per week for 
L_High, compared to 4.7 times per week for SM_Low. The results are 
supported by [58], where about 40% of the interviewed Norwegian 
Tesla drivers (L_High) charged their EVs less than 3 times per week, 
while 30% of other EV drivers stated the same. Similar results were 
found amongst Dutch EV drivers [59], where 62% of the Tesla Model S 
drivers (L_High) stated that they charged their EVs 3 times a week or 
less, while 80% of Nissan Leaf drivers (SM_Low) stated that they charged 
their EVs more than 3 times per week. Also the charging frequencies 
reported in [33] were similar, where EV drivers with large battery ca
pacities (>70 kWh) in the Netherlands charged their EVs 2.8 times per 
week, and small battery capacities owners (16–30 kWh) charged 4 times 
per week. 

Fig. 13. Daily load profiles per user during workdays, for four different EV categories. The figure shows energy charged, non-flexible energy charged (idle time <
1 h), and connected energy capacity. 
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The connection times are not significantly different for the user 
groups SM_High and L_High, and there is a twin peak in the density 
distribution, where users either charge for a few hours during daytime or 
for a longer overnight period. Similar charging durations were found by 
[34], for EV drivers in the Netherlands. For both groups in our dataset, 
about 23% of the sessions last for less than 3 h, while about 45% of the 
sessions last for more than 12 h. This confirms that the main rationale 
behind the connection times is the daily habits of people and not their 
type of EV. The predicted charging times and idle times are quite similar 
for the two user groups. Even though energy charged per charging ses
sion is higher for L_High, this is compensated by the higher charging 
power. The average time between charging sessions is about 23 h for 
SM_Low and 51 h for L_High (after removing situations with more than 1 
month between charging sessions). 

The magnitude of the available charging power has impacts for the 
car users, and for the electricity loads and flexibility potential. For the 
users, a higher charging power provides the possibility of charging the 
EV faster. However, this may come with a cost, e.g., related to higher 
power tariffs or a need to upgrade the electricity distribution and fuse 
sizes for the building. For many users, however, the charging time is 
normally not an issue even with lower charging powers, since their daily 
driving distances are limited. In this study, the energy charged was 
below 19 kWh for 80% of the EV sessions, which can be charged in about 
5.5 h even with a low charging power of 3.6 kW. When the charging 
power is high, there is a risk that also the peak power will be higher, i.e. 
if the EV charging coincides with the peak domestic demand [20]. When 
comparing two charging power levels for apartment buildings in [13], 
the hourly aggregated charging peaks increased with a factor of 1.2, 
going from 3.6 to 7.2 kW charging power, assuming immediate charging 
after plug-in. Bollerslev et al. [23] found that the peak power demand 
was reduced by about 40% and 60%, respectively, when going from a 
charging power of 3.7 kW to 11 or 22 kW. However, a high charging 
power also provides a better opportunity for smart charging. In [13], the 
average idle energy capacity during weekdays was 2.3 times higher with 
a charging power of 7.2 kW compared to a charging power of 3.6 kW. 
Such smart charging strategies can save costs for the users and provide 
benefits for the electricity grid. 

5. Conclusions 

With an increasing number of EVs worldwide, there is a need for 
more data and research on EV characteristics and related EV charging 
behaviour. This paper proposes a set of methodologies for generating 
complete EV charging datasets, from data commonly available in CPO 
reports. The case study includes more than 35,000 charging sessions 
from 267 users in 12 residential locations in Norway. Residential 
charging behaviour is analysed, and it is described how these are 
affected by EV battery capacity and charging power.  

• A set of simple methods are proposed for more accurate predictions 
of battery capacities, charging power, and plug-in SoC for all EVs and 
charging sessions. In our study, 46% of the users were found to have 
a charging power below 4 kW, while the remainder had a charging 
power between 4 and 11 kW. Also, we found that 55% of the users 
could be assumed to have battery capacities below 33 kWh, while 
45% of the users had battery capacities between 33 and 100 kWh.  

• Our work presents a statistical analysis on how residential charging 
behaviour is affected by EV battery capacity and charging power. On 
average, users in the residential case study charged around 6.2 kWh 
per day, having an average of 3.7 weekly charging sessions. The 
average energy charged every day was found to be 1.6 times higher 
for users with large batteries and high charging power (L_High) 
compared to users with small/medium batteries and low charging 
power (SM_Low). 

• The results indicate that most EV users seldom utilize their full bat
tery capacity, and especially EV users with larger batteries. For 65% 

of the charging sessions, the charged energy was found to be less than 
half of the predicted net battery capacity.  

• The daily load profiles suggest that there is a considerable potential 
for shifting residential EV charging in time, especially from after
noon/evenings to night-time. Such utilization of energy flexibility 
can reduce the grid burden of residential EV charging. While the 
average charging time was less than 3 h, the EVs were in average 
connected to the CPs for 12 h. Comparing SM_Low and L_High, the 
average daily idle energy capacity was 1.3 times higher for L_High. 

For high idle energy capacities, it is advantageous with high charging 
power, frequent connections, and long connection times. If users start 
charging less frequently in the future, this will affect the idle times and 
most likely reduce the flexibility potential. Other publicly available 
charging infrastructure and end-user costs may also impact the resi
dential charging behaviour. For example, the use of public fast charging 
or EV charging in workplaces may reduce the need for home charging. In 
a future perspective, the use of V2G may increase the flexibility potential 
of EV charging, since the EV batteries can deliver electricity to the 
building or grid during the idle periods. 

To generate the EV charging dataset in this work, it was necessary to 
make some assumptions, e.g., for charging efficiency and for maximum 
SoC range charged per EV user. However, the results were compared to 
results from the literature, which reinforced the validity of our findings. 
Further studies could be extended with larger datasets, and include also 
commercial buildings. In 2022, there were about 600.000 million EVs in 
Norway (8 million in Europe), and CPO reports are often available for 
energy management and invoice purposes. Having more such studies 
will make it possible to analyse how EV charging behaviour differs 
depending on building categories and user groups. EV charging related 
to office buildings will, for example, have different load profiles and 
flexibility potential compared to EV charging for company fleets such as 
healthcare services. If more real-world values for charging power, bat
tery capacity, and session start SoC are made available, the validity of 
our results may be further increased. 

The proposed set of methodologies aims to provide a complete EV 
dataset with EVs and charging sessions, where realistic predictions for 
battery capacities, charging power, and plug-in SoC are added to data
sets with plug-in/plug-out times, and energy charged. Such datasets 
provide the basis for assessing current and future EV charging behav
iour, data-driven energy flexibility characterization, and modelling of 
EV charging loads and EV integration with power grids. 
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Grid-connected cabin preheating of Electric Vehicles in cold climates – A 
non-flexible share of the EV energy use 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Grid-connected EV cabin preheating is 
used to extend driving ranges in cold 
climate. 

• Experimental study with 51 preheating 
sessions of five typical EV models. 

• Multiple linear regression models for 
energy use for EV cabin preheating. 

• EV preheating energy loads are analysed 
with apartments loads during the 
winter. 

• EV cabin preheating data are available 
for load simulations and forecasting.  

A R T I C L E  I N F O   

Keywords: 
Electric vehicles 
Low temperature 
Cabin preheating 
Power monitoring 
Multiple linear regression 
Non-flexible energy load 

A B S T R A C T   

The number of EVs is increasing globally. In cold climates, it is generally recommended to use electricity from the 
grid to preheat the EV cabin before using the car, to extend driving ranges, to ensure comfort, and for safety. A 
majority of such preheating sessions are happening in the morning hours during the winter, when there is also a 
high demand for other energy use. It is thus important to understand the power loads for grid-connected pre
heating of EV cabins. This work presents an experimental study, with 51 preheating sessions of five typical EV 
models during different outdoor temperatures. The results of the study showed that during the preheating ses
sions, most of the EVs had a power use of between 3 and 8 kW initially, which was reduced to about 2 to 4 kW 
after a 10 to 20 min initial period. For most of the sessions, the preheating lasted between 15 and 45 min. The 
preheating energy use was found to be up to 2 kWh for most EVs, with a maximum of 5 kWh. Multiple linear 
regression models were developed, to investigate the relationship between various variables and the energy use 
for preheating. Finally, hourly energy loads for EV cabin preheating were compared to other energy loads in 
apartment buildings. The power and energy loads for preheating EV cabins are affected by a number of pa
rameters, such as the specific EV, charge point, preheating duration, temperature levels, and user habits.   

1. Introduction 

1.1. Background and context 

Greenhouse gas (GHG) emissions from the transportation sector 

contributed to 23 % of the energy-related GHG emissions worldwide in 
2019, of which 70 % came from road vehicles [1]. Electric vehicles (EV) 
are part of the solution to reduce GHG emissions from land-based 
transport. The number of EVs is increasing globally, and reached 1 % 
stock share in 2020 [2]. As the density of EVs is increasing, it is 
important to understand the electricity use of the EVs. EV charging loads 
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have an impact on the power grid, and [3] found that in 28 European 
countries, uncontrolled EV charging would increase peak demand in the 
range of 35–51 %. The situation can be improved using smart charging 
solutions and smart grid technology [4,5], e.g. by shifting EV charging 
loads to hours with capacity in the grid. However, not all of the EV 
charging loads are flexible in time. The flexibility potential of EV 
charging is related both to charging habits of the users, and to charac
teristics of the EV and the charge point (CP) [6]. 

The driving ranges of EVs are significantly reduced when the 
ambient temperature decreases, as documented in laboratory and field 
tests by [7–11]. The reduction is largely related to the energy use of the 
heating, ventilation, and air conditioning (HVAC) systems of EVs. The 
HVAC or climate systems in the cars aim to ensure comfort for the driver 
and passengers, and provide safety functions such as defogging of win
dows [12]. Conventional Internal Combustion Engines (ICE) use waste 
heat (>5 kW) from their gasoline engines for cabin heating and window 
de-icing [13]. However, there is little waste heat available in EVs due to 
their high efficiency, and the EVs therefore use energy from the battery 
for heating. The heating equipment can be driven by a positive tem
perature coefficient resistance heater (PTC heater), from an air source 
heat pump (HP), or from a combination of the two solutions [14]. PTC 
materials have a self-regulating characteristics, since PTC materials 
change their resistivity with the material temperature [15]. With higher 
temperatures, the resistivity rise, and the heat power decreases. 
Maximum capacity of PTC heaters studied in literature is usually in the 
range of 5 to 6 kW [16]. It has been found that the use of PTC heating 
equipment may decrease the driving range of EVs>50 % in cold climates 
[17]. Systems with HPs are more efficient than PTC heaters, and can 
provide both cooling and heating [13]. Several researchers found that 
the efficiency of a HP is reduced during cold weather conditions 
[13,14,17,18]. PTC heaters therefore often supplement HPs when the 
temperature is low, as for example in the VW eGolf, where the HP is not 
operated below −10 ◦C [19]. The thermal management system in the EV 
determines the preheating method. 

Norway is a frontrunner market for EVs, with 16 % battery EVs 
(BEVs) and 6 % plug-in hybrid EVs (PHEVs) of the total car stock in 2021 
[20]. Most EV owners charge their EVs at home (88 %) or at work (6 %) 
[21], usually connected to a 230 V IT distribution grid. About 70 % of 
home-CPs [21,22] are of the type “level 2′′ [23], with typically 3.6 to 7.4 
kW charging power (16–32 A) [24]. The climate in Norway is cold 
during winter, with average temperatures of −5 to −7 ◦C from 
December to February [25], and with local differences e.g. between 
coastal and inland areas. To extend the driving range of EVs during cold 
winter days, EV owners are generally recommended to use electricity 
from the grid to preheat the EV cabin and battery before using the car, by 
e.g. drivers’ associations [26,27], and car manufacturers [28,29]. 

Preconditioning includes both precooling and preheating of the EV 

cabin, but this work focuses on preheating. Cabin preheating is 
becoming common practice for BEV and PHEV owners in cold climate 
[12]. This share of the EV energy demand is typically not flexible in 
time, since the energy is often delivered from the grid directly, and not 
taken from the battery. Normally during cabin preconditioning, AC 
electricity from the grid is converted to DC electricity in the EV, using 
the onboard charger of the car [30]. The HVAC system is then powered 
by DC in the EV, to cool or heat the EV cabin. 

In addition to cabin preheating, many EVs can also preheat the 
battery of the car, either before charging or during the preheating 
period. Li-ion batteries have a poor performance during sub-zero tem
peratures, which reduces the driving range of the EVs and even creates 
potential safety hazards [31,32]. The batteries can therefore be pre
heated, typically by either applying an external heat source, or by 
generating internal heat in the battery. Air preheating is often adopted 
in EVs due to simple structures and low costs, and has a rate of tem
perature rise (RTR) of about 0.5–3 ◦C/min [32]. Liquid preheating 
systems are more efficient but are more complex, with RTR of about 0.67 
℃/min, which is e.g. used by Tesla [32]. PTC preheating has been used 
in early model EVs, such as the Nissan Leaf, and requires a longer pre
heating period [32]. 

Preheating of EVs usually occurs shortly before departure, during 
days with low outdoor temperature. Charging habits of residential EV 
users are described in [33], showing how a majority of the cabin pre
heating sessions during workdays will happen in the morning hours, 
corresponding to the start of a typical workday. During such hours there 
is also a high demand for other energy use in the building sector, and 
some locations experience grid capacity challenges. In Norway, morning 
hours during cold winter days are the time of the year with the highest 
peak loads [34]. The cost of electricity is therefore usually higher in the 
early morning hours [35]. 

1.2. Literature review: Power loads for EV preheating and their impact on 
the grid 

A number of articles presents possible solutions for more efficient EV 
HVAC systems in cold climates [13,14,17,18,36–40]. [41] studied how 
HVAC loads during driving increases the frequency of EV charging, and 
concluded that regional electric utilities must include also the HVAC 
loads of EVs in their load growth scenarios. The improvement in EV 
driving range due to cabin preconditioning has been studied by e.g. 
[30,42–45]. Our literature review has identified only a few studies that 
describes the power and energy demand of EV preheating, and how this 
may impact the grid. The main findings of the literature review are 
summarized in the following, and listed in Table 1. 

Experimental studies with power data for EV HVAC loads are pre
sented by [37,39,40,46,47]. [37] did lab tests in an environmental 

Nomenclature 

AC Alternating current 
AMS Advanced metering system, smart meters 
BEV Battery electric vehicle 
COP Coefficient of performance 
CP Charge point 
CPO Charge point operator 
DC Direct current 
DHW Domestic hot water 
EV Electric vehicle 
GHG Greenhouse gas 
HP Heat pump 
HVAC Heating, ventilation, and air conditioning 
ICE Internal Combustion Engine 

Li-ion Lithium-ion 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MLR Multiple linear regression 
MSE Mean square error 
MY Model year 
NA Not available 
PHEV Plug-in hybrid electric vehicle 
PTC Positive temperature coefficient resistance 
RH Relative humidity 
RTR Rate of temperature rise 
SoC State of charge of the EV battery 
V2G Vehicle-to-grid 
RMSE Root mean square deviation  
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chamber on a PTC heater and a HP system for a compact EV. The 
nominal power of the PTC heater was 1.5 kW, while the actual power 
reached a maximum of 2.3 kW initially, before stabilizing on about 1.7 
kW. For the HP systems, the power was in the range of 1 kW to 1.3 kW, 
affected by ambient temperatures (-10 ◦C and −15 ◦C) and system so
lutions. [39] tested a 4 kW PTC heater, a HP and a fuel-operated heater 
in a model year (MY) 2013 Nissan Leaf. They found that the PTC heater 
consumed 1.41 kWh electricity over 30 min, while the HP consumed 65 
% of this. During the tests, the outside temperature was 3 to 4 ◦C, the 
initial cabin temperature was approx. 6 ◦C and the requested cabin 
temperature was 26 ◦C. [40] analysed the performance of a MY2017 
Nissan Leaf with HP, and proposed a heating system which reduced the 
amount of needed incoming fresh air. They simulated interior-air and 
fresh-air modes for HP operation with different fresh-air ratios, and 
found that the cabin heat load varied from 1.2 kW with interior-air mode 
to 4.0 kW with fresh air mode. [46] tested a BEV with PTC heater in a 
climatic wind tunnel in a laboratory. Their results show how the PTC 
heater has a high input power initially, to quickly achieve the required 
thermal comfort level in the EV cabin. After a couple of minutes, the 
heating loads were found to stabilize on a lower power load. Comparing 
the heating load for air supplies of 100 % fresh air, 20 % recirculation 
air, and 30 % recirculation air, the stable heating loads were 4.32 kW, 
3.63 kW and 3.29 kW, respectively, for a start-up cabin temperature of 
−10 ◦C. The energy used by the PTC was 2.52 kWh, 1.80 kWh and 1.60 
kWh for the three air modes. With 100 % fresh air, it took 25 min to rise 
the temperature to 24 ◦C. The heating load was temperature dependent, 
and with 100 % fresh air the heating load varied from 2.96 W with 0 ◦C 
ambient temperature to 5.77 kW with −20 ◦C. [47] did experimental 
studies on the heating performance of a 5 kW PTC and a HP. The re
searchers demonstrated how the PTC heater was required to supplement 
the HP, to provide sufficient cabin heat during a cold start. This was 
found to be due to slow warm up speeds of the HP. While it took 13 min 
for the PTC alone to reach a target temperature of 25 ◦C from 0 ◦C, it 

took the HP 40 min, and a combined system reached the target value in 
8 min. The heating power for the solutions were 4.5 kW for the PTC, 1.1 
kW for the HP and 5.3 kW for the combined system. 

Only a few works in literature investigate EV preheating loads and 
their grid impact. In [48,49], the impact of large-scale EV preheating on 
the residential distribution grid has been simulated. In the model pre
sented in these articles, each preheating session was assigned a certain 
hour in the morning (from 05:00 to 10:00), a time duration (normal 
distribution, on average 20 to 30 min), and a power rate. The assigned 
power rates in the study match the level 2 charger rates (7.2 kW in [49]), 
and the power was assumed to be constant during the duration. The 
studies conclude that EV preheating can have a negative impact on the 
voltage level and power losses in the residential grids, and that the 
added load can be handled by combining network reconfigurations with 
vehicle-to-grid (V2G) energy transmissions. 

Another relevant work is [50], which simulated how outdoor tem
peratures affect battery charging and performance of EVs. Their model 
included 212 EVs with maximum 3.6 kW charging power, maximum 4.0 
kW cabin heater power (COP 2.5), and 0.3 kW battery heater power 
(COP 1). The vehicle data and the thermal model used in the simulation 
were based on [43] (Nissan Leaf, 4 kW PTC, modelled HP). EV driving 
behaviour was based on travel diaries available from the Finnish na
tional travel survey. Preheating of the EV cabins started 10 min prior to 
the trip, while battery heating was constant during parking. The study 
found that at − 10 ◦C, preheating and battery heating during parking 
introduced a constant grid load of around 30 kW over the whole day, or 
140 W per EV. The authors state that most of this energy is used for 
constant battery heating, not for preheating the cabin. They also 
conclude that cabin preheating seems more helpful than standby battery 
heating in lowering the energy consumption during driving. 

1.3. Research gap and our contribution 

As the number of EVs are increasing, it is important to understand 
how cabin preheating of EVs may impact the power loads and energy use 
in buildings, and how the aggregated loads will have an impact on the 
electricity grid. Our literature review identified a need for more exper
imental knowledge within this topic. There exist some experimental 
studies with power data for EV heating sessions [37,39,40,46,47], but 
these studies focused on improving the HVAC systems in EVs and were 
not seen in relation with energy loads in buildings or the grid. The few 
studies analysing how EV preheating loads may impact the distribution 
grid [48–50], were based on simulations. To validate and improve 
models and simulations, access to real-world data is a significant factor 
[51]. This article presents data from an experimental study with 51 
preheating sessions of five typical EV models, during different outdoor 
temperatures conditions. Multiple linear regression models are devel
oped, to investigate the relationship between the cabin preheating en
ergy use and various variables, such as outdoor air temperature, cabin 
temperature difference, preheating duration, EV size, and heating sys
tem. The performance of the models was evaluated, using a dataset for 
validation with 17 additional preheating sessions. Further, the pre
heating loads are compared with typical electricity and heating loads in 
Norwegian apartment buildings during winter. Finally, aggregated grid 
loads for preheating EVs are assessed, by combining the trial results with 
datasets describing residential EV charging behaviour. Our main 
research questions are: What are the power load and energy consump
tion for grid-connected preheating of EV cabins in cold climates? And 
how will the preheating loads impact the daily energy loads for apart
ment buildings during the winter, for individual apartments and on an 
aggregated level? The new insight will be useful when e.g. simulating 
and forecasting EV energy loads on the grid in cold climates. It can also 
prepare the ground for development of new cabin preheating solutions, 
where the grid burdens are reduced while still maintaining the demand 
for extended driving ranges, comfort, and safety. 

The paper is organized as follows: Section 2 describes the methods 

Table 1 
Literature review: Comparison between related research and own study.  

Topic Authors Reviews Experiments Simulations 

HVAC loads 
during driving 

Qi et al. [13], 
Zhang et al. [14], 
Zhang et al. [36] 

✓   

Zhang et al. [17], 
Seo et al. [18], 
Wang et al. [37], 
Meyer et al. [38], 
Mimuro et al.  
[39], 
Yu et al. [46], 
Kim et al. [47]  

✓  

Zhang et al. [40], 
Kambly et al.  
[41]   

✓ 

Increased EV 
driving range 
due to 
preheating 

Kambly et al.  
[30], 
Barnitt et al.  
[42], 
Neubauer et al.  
[43], 
Nerling et al.  
[44], 
Ramsey et al.  
[45]   

✓ 

Preheating 
power/energy. 
Grid impact 

Antoun et al.  
[48], 
Antoun et al.  
[49], 
Lindgren et al.  
[50]   

✓ 

Own study  ✓   
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used in the work. Section 3 presents the results and a discussion of the 
findings. In section 4, the conclusions from the work are drawn. 

2. Methods 

Sections 2.1 and 2.2 describe the CPs and logging equipment used in 
the experimental study, and section 2.3 describes the EVs which are 
tested. Section 2.4 describes the linear regression analysis which was 
applied on the trial data. Section 2.5 and 2.6 describe the methods used 
when comparing the preheating loads with other energy loads in 
apartment buildings, and when assessing the aggregated grid loads for 
preheating EVs. 

The preheating of the EVs happened during two trials, both located 
outside. At site 1 in Oslo (lat 59.94455, long 10.71369) the tests were 
performed during the winter 2021/2022. The EVs in the test included 
the models BMW i3, Jaguar I-PACE, Nissan Leaf, Tesla Model 3, and VW 
eGolf, with logging of power (second/minute resolution) and cabin 
temperatures. The five EV models tested are typical in the Norwegian 
market, and the models cover 38 % of the EVs in the national EV stock 
(ref. Table 3 [52]). At site 2 in Bærum (lat 59.94292, long 10.61269) the 
tests happened during winter periods in 2020–2022. At this site, three 
different Nissan Leaf cars were tested, including one of the cars tested at 
site 1. At site 2, the power was logged through the CP monitoring system 
(15-minute resolution), and there were no logging of the cabin 
temperatures. 

2.1. Preheating of EVs at site 1 

2.1.1. CP specifications 
The EVs were connected to a level 2 CP with 7.4 kW power available 

(EVlink [53], AC 230 V power supply, 32 A, Type 2 charging cable). The 
CP monitoring system provided information about plug-in and plug-out 
times, and energy use for each session [54]. 

2.1.2. Energy metering and energy losses 
Power consumption was logged every second with a power and en

ergy analyser (ELIT PQ5 [55]). For the analyses, the power data was 
averaged per minute. The primary power meter was installed inside the 
electricity distribution board located in the nearest building (about 45 m 
from the CP). The measurement data included the energy losses from the 
primary power meter to the EV. To analyse the energy losses, the pri
mary power meter data was compared with two other data sources: 1) A 
second power meter installed on the EV-side of the CP, 2) Energy use for 
each session, available from the CP monitoring system. The average 
difference between the primary power meter and the two meters by the 
CP was in the range of 7 %, as described in Table 2. This difference is due 
to both energy losses (such as in the 45 m cable, where power losses are 
calculated to be 1.4%) and measurement uncertainty (the power meter 
accuracy was IEC62053-22 class 0.5, with > 1% error in current and 
0.2% error in voltage measurements). The results presented in section 3 
are based on the primary power meter (not adjusted), since the building 
distribution board was considered to be the most natural boundary for 
the building and grid analysis. Fig. 2 illustrates one example session (ID 
73) with EV charging and preheating of Nissan Leaf (MY2018) at site 1, 
metered at two locations. For the example session, the EV is fully 
charged (100%) at about 12:40 and the cabin preheating starts at 13:00. 
The three pulses in the charging power (~1 kW) towards the end of the 
charging, are part of the battery control system for the Nissan Leaf 
MY2018. 

2.1.3. Temperature logging 
A trial temperature logger was placed in the EVs during charging 

sessions, measuring the cabin temperature every minute with a 0.5 ◦C 
resolution (EasyLog RH/temp data logger [56], accuracy 0.55 ◦C). The 
temperature logger was typically placed in the cup holder between the 
seats in the cabin. Hourly outdoor air temperatures were downloaded 

for the weather station Blindern (SN18700) located nearby (500 m) 
[57]. 

2.2. Preheating of EVs at site 2 

2.2.1. CP specifications 
The EVs were connected to a level 2 CP, with 7.4 kW power available 

(Zaptec pro [58], AC 230 V power supply, outdoor parking solution 
where 10 CPs share 63 A, Type 2 charging cable). For the trial sessions, 
the power available for the trial EVs was not limited by other ongoing EV 
sessions in the CP infrastructure. 

2.2.2. Energy metering and energy losses 
Power consumption was logged every 15 min by the CP monitoring 

system [59]. The electricity distribution board with AMS meter was 
located beside the CP (1 m). The energy losses between the CP moni
toring and AMS meter are minimal (up to 1 %, as described in Table 2). 
The energy losses are not included in the results. 

2.2.3. Temperature logging 
Hourly outdoor air temperatures were downloaded for the weather 

station Blindern (SN18700) located about 6 km away [57]. 

2.3. EVs tested in the trials 

EV owners were invited to take part in the trials, charging and pre
heating their private EVs on the CPs. Seven EVs were selected from the 

Table 2 
Calculated differences between the power meters.  

Site Meter 1 Meter 2 Description Differences 

Site 
1 

Primary 
power 
meter 

Secondary 
power meter 

For 6 charging sessions, a 
second power meter was 
installed on the EV-side of 
the CP. The difference 
between the primary and 
secondary power meter was 
calculated for all minute- 
values. 
When calculating average 
energy differences, periods 
were chosen where both 
meters measure steady 
power rates (in total 13 h 
selected among the 24 
measured hours). This was 
done to avoid periods with 
measurement errors or time 
differences between the 
meters. 
Fig. 2 shows one example 
session (ID 73) with power 
data from the two power 
meters. For the example 
session, the period from 
09:18 to 10:33 was included 
in the power loss 
calculation. 

7.3 % 

Site 
1 

Primary 
power 
meter 

CP 
monitoring 

The energy differences were 
calculated as the difference 
between the session energy 
use metered in the CP 
monitoring system and the 
session energy use metered 
by the primary meter. 38 
sessions were included in 
the calculation. 

6.7 % 

Site 
2 

AMS- 
meter 

CP 
monitoring 

The differences between the 
AMS-meter and CP 
monitoring system were 
calculated for 8 preheating 
sessions (hourly values). 

<1 %  
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volunteers, representing five EV models, as listed in Table 3. The EV 
owners at site 1 filled in a form for every charging session, noting the 
timing of the preheating, requested preheating temperature, and battery 
state of charge (SoC)-values. The EV owners decided themselves to 
either start the preheating from the dashboard in the EV, or externally 
from an EV app. For the users starting the preheating from the dash
board (Nissan Leaf), a time for the finished preheating was set. The 
starting time is then calculated by the EV, based on expected duration 

necessary for reaching the requested temperature. For the users starting 
the preheating externally from an EV app (BMW i3, Jaguar I-PACE, Tesla 
Model 3, VW eGolf), a time for the starting point of the preheating was 
set. For some sessions, preheating started close to the plug-out time, 
being interrupted by the EV departure. This was accepted, since it was 
assumed that this is how the preheating function is often used in real life. 
The requested preheating temperatures varied in the EVs, and were 
either preselected by the EV or set by the users. At site 1, 46 sessions 
were metered. 24 of the sessions were selected for further analysis, since 
their preheating time was clearly separated from their charging time. At 
site 2, 27 preheating sessions were analysed. All the EVs were preheated 
from the CP, not from their battery. For some EV models, the users can 
choose to use the energy from the battery to preheat the EV, but this 
function was not activated during the trials. 

2.4. Multiple linear regression models for cabin preheating energy use 

A linear regression analysis was applied on the trial data, to inves
tigate the relationships between the cabin preheating energy use, and 
multiple well-known and independent variables. The analysis was per
formed using the statistical computing environment R [66]. The equa
tion for a multiple linear regression (MLR) model is described with Eq. 
(1), where yiis the outcome for unit no. i, α is the constant intercept term, 
x1i, x2i, ⋯, xmi are the explanatory variables for unit no. i, β1,β2,⋯,βmare 
the fixed regression coefficients, and εi are the random errors. The 
variables can be numerical or categorical, where the categorical vari
ables are used to compare groups. 

yi = α + β1x1i + β2x2i + ⋯ + βmxmi + εi (1) 

If the effect of x1 depends on the level of x2 there is an interaction 

Table 3 
EV characteristics for EVs in the trial.  

Location EV-model Share 
EV 
stock a 

Model 
year 

Onboard 
charger 
capacity (kW) b 

Net battery 
capacity (kWh) 
b 

Heating system 

Site 1 BMW i3 5.8 % 2016 7.4 27.2 5.5 kW PTC and 3 kW HP [60]. The HP operates between −10 ◦C and 22 ◦C [60].  

Jaguar I- 
PACE 

1.4 % 2019 7.4 84.7 7.0 kW PTC and HP d. 

Nissan Leaf c 14.1 % 2018 6.6 36 PTC and HP. 5.35 kW heating power, according to [61]. 
Seat heater and steering heater also activates under preheating [62]. 

Tesla Model 
3 

7.2 % 2019 11 e 72.5 8 kW heating power [63], whereof 6 kW PTC (no HP for MY2019, but this is standard 
from 2020). 

VW eGolf 9.3 % 2017 7.2f 31.5 5 kW PTC g (no HP). 
Site 2 Nissan Leaf 14.1 % 2013 6.6 21.6 PTC (no HP). 

Nissan Leaf 14.1 % 2015 3.3 27.2 PTC and HP. 
Nissan Leaf c 14.1 % 2018 6.6 36 PTC and HP. 

a. Share of the national EV stock in Norway per March 2022 [52]. 
b. EV manufacturer data from [64] and [65]. 
c. Nissan Leaf MY2018 is the same for both locations. 
d. Customer service Jaguar Land Rover Limited, personal communication May 2022. 
e. Maximum charger capacity is limited by CP (7.4 kW). 
f. Actual measured charger capacity for the EV is approximately 5 kW. 
g. Customer service Harald A. Møller AS, personal communication May 2022. 

Fig. 1. System overview of test site 1 (left) and test site 2 (right), with metering locations.  

Fig. 2. Example session (ID 73) with EV charging and preheating of Nissan Leaf 
(MY2018) at site 1, metered at two locations. 
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[67]. When there is an interaction between x1 and x2, the model is 
described with Eq. (2). 

yi = α + β1x1i + β2x2i + β3x1ix2i + εi (2) 

When selecting the explanatory variables for the regression model, 
the aim was to create a simple model with good empirical fit, and with 
generally available input data. A forward selection approach was used 
for selecting variables; Single linear regression models were first ana
lysed, with one variable only, and the most significant variables (lowest 
P-values) were selected. A number of MLR models were created, adding 
one extra variable for each step, before comparing the adjusted R2 values 
for the models. The adjusted R2 is a modified version of R2, which is 
adjusted for the number of variables. Variables and interactions were 
tested and added to the selected model until there was no improvement 
in the adjusted R2 value. Before including variables in the models, also 
practical aspects were taken into account, for expected data availability 
and other practical considerations. The dependency between the vari
ables was analysed by calculating the Pearson correlation (r12) between 
the variables, to prevent that dependent variables were used in the same 
model. Pearson correlation has values −1 < r12 < 1, and the correlation 
increases with higher negative or positive values. Two models were 
finally selected and presented along with related statistical parameters 
for R2, adjusted R2, mean absolute error (MAE), mean square error 
(MSE), root mean square deviation (RMSE), and mean absolute per
centage error (MAPE) [68]. The high value for the adjusted R2 and the 
low values for MAE and RMSE are considered to be favourable, and 
show that the models can be used for describing the cabin preheating 
energy use. 

The regression models were created with data from the 51 preheat
ing sessions in the trial. To validate the models, an additional inde
pendent dataset was used to assess how the models performed. The 
dataset used for validation consisted of 17 preheating sessions, which 
were not earlier included when training the models. Compared to the 
trial dataset that was originally used for creating the models, the addi
tional dataset used for validation included some differences in the EVs 
and CPs used. The aim of introducing these differences was to evaluate if 
the developed models were well generalized, or if they fitted too closely 
to the trial dataset. Three EVs were used in the preheating sessions in the 
dataset for validation: Nissan Leaf MY2018 (same EV as used in the trial, 
10 sessions), Kia Soul MY2015 (not used in the trial, 1 session), and 
Tesla Model S MY2019 (not used in the trial, 6 sessions). Three 7.4 kW 
CPs were used for the validation: One in site 1 (new CP, not used in the 
trial), and 2 in site 2 (1 used in the trial, one new). To evaluate the 
performance of the models, statistical parameters for R2, MAE and RMSE 
were presented, and compared with the parameters for the trial dataset. 

2.5. Comparing energy loads for EV cabin preheating with other energy 
loads in an apartment 

Based on the cabin preheating trials and modelling results, two levels 
of cabin preheating were selected for comparison with other residential 
energy loads. Hourly resolution was used in the comparison, since this is 
the current resolution for AMS metering of electricity use in Norway 
[69]. It was assumed that the preheating happened within one clock 
hour during the morning, between 07:00 to 08:00. Hourly energy use 
was recorded and presented for an apartment during an example day, 
with real energy measurements for electricity use, space heating and 
domestic hot water (DHW). The electricity use for a range of Norwegian 
apartments were obtained from measurements of hourly data, available 
from 505 apartments located at Risvollan in the city of Trondheim [70]. 
The example apartment was randomly selected (apartment ID 10), and 
its daily electricity use during the example day corresponds to the 
average electricity use for all the apartments during the same date. The 
electricity use did not include space heating and domestic hot water, 
since this was provided by district heating. Thus, the data for space 
heating and DHW were obtained from another apartment building 

located in Bærum close to Oslo, including 24 apartments heated by an 
electric boiler and with electric DHW tanks. The hourly energy profiles 
shown for the example day is the total heat load divided on the 24 
apartments. The average heated apartment area for the case in Bærum/ 
Oslo (86 m2) is similar to the average area in Trondheim (88 m2). The 
example date was selected due to its low outdoor temperature in both 
locations (January 9th 2018, with in average −9 ◦C in Risvollan and 
−7 ◦C in Oslo [57]). For the EV charging load, two alternative load 
profiles are shown (3.6 kW or 7.4 kW charging power), both started 
charging at midnight, and with a session energy use of 15 kWh, which is 
typical for home charging [33]. 

2.6. Aggregated grid loads for EV cabin preheating 

To assess expected aggregated power demand for cabin preheating, 
four preheating scenarios were combined with an EV charging dataset 
from a range of apartment buildings. The EV charging dataset is 
described in [6], and contains information on plug-out times for 34,499 
charging sessions from 261 EV users in apartment buildings in 12 lo
cations in Norway. To preheat the EV cabin with electricity from the 
grid, the EV must be connected to a CP. It is assumed that the EV user 
habits for preheating the EVs are in line with the user habits for EV 
charging, which is normally the main reason for CP connections. [33] 
found a correlation between plug-out times and local hourly traffic data, 
which indicates that most residential EV users travel after disconnecting 
their EVs. In the preheating scenarios it was assumed that all the EVs are 
preheated before plug-out times. The results are therefore relevant for 
cold days only. Estimated energy use for preheating was 2 kWh in sce
nario 1 and 2, or 4 kWh in scenario 3 and 4, as shown in Table 4. Sce
narios 1 and 3 were based on plug-out distribution data from all the 261 
EV users, with in average 0.5 CP connected sessions per day (named CP 
sessions). Scenarios 2 and 4 were based on plug-out distribution data 
from the 25 % EV users with most frequent charging, with in average 1 
CP session per day. Hourly data is illustrated in a daily profile. If the 
plug-out time for a certain CP session was in the beginning of the hour 
(first 30 min), then the preheating time was set to the preceding hour. If 
the plug-out time was in the end of the hour (last 30 min), then the 
preheating time was set to the same hour as the plug-out time. The 
average daily profiles are presented per EV user. 

Finally, the aggregated daily profiles for EV cabin preheating were 
compared to daily load profiles for other energy loads in the apartment 
buildings. For this analysis, it was assumed that every apartment has 0.7 
EVs and that 50 % of the EVs use cabin preheating. The current density 
of personal cars in Norway was 1.4 car per households in 2020 [71] 
(including cars using fossil fuels), but apartments typically have lower 
access to parking spaces than freestanding houses. Parking requirements 
vary with the location /municipality, and is e.g. min. 0.4 to 1.2 car per 
apartment [72]. The chosen EV density of 0.7 car per apartment corre
sponds to the available parking spaces for the apartments located at 
Risvollan. Scenario 1 was used as a basis for the aggregated profiles, 
with 2 kWh preheating 0.5 times per day. Preheating was added to the 
daily profile of other residential energy loads during the winter 
(December, January, February): apartment electricity use, apartment 
space heating and DHW, and residential EV charging. The average daily 
profiles for apartment energy use were based on the same data sources as 
described in section 2.4. The profiles for residential EV charging were 

Table 4 
Cabin preheating scenarios for aggregated loads.  

Scenario Preheating energy 
(kWh/preheating session) 

Average connection frequency 
(CP sessions/day) 

1 2  0.5 
2 2  1.0 
3 4  0.5 
4 4  1.0  
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based on the EV charging dataset in [6], assuming immediate charging 
after plug-in. 

3. Results and discussion 

3.1. Power and energy for cabin preheating 

In this section, the experimental results for EV cabin preheating are 
presented and discussed. In total 51 preheating sessions are analysed, 
whereof 24 sessions at site 1 (5 EVs, BMW i3, Jaguar I-PACE, Nissan 
Leaf, Tesla Model 3, and VW eGolf), and 27 sessions at site 2 (3 EVs, all 
Nissan Leaf). Sessions where the charging and the preheating happened 
simultaneously were not included, since in these sessions the preheating 
power and energy could not be separated from the charging. 

3.1.1. Experimental data and analysis for each EV model 
Table 5 lists details for the preheating sessions at site 1, such as initial 

temperature in the EV cabin before preheating, outdoor temperature, 
preheating duration, preheating energy, and SoC-values. Before starting 
the preheating of the EV cabins, the EV batteries were charged to about 
100 % SoC (for Tesla 80–95 % SoC). This was done to prevent simul
taneous charging and preheating. After the preheating session it was 
controlled that the SoC was still 100%, to make sure that the preheating 
energy was not supplied by the battery. Fig. 3 shows the relationship 
between preheating energy and outdoor temperatures for the sessions at 
site 1, marking if the sessions were ended by the EV thermal manage
ment system or stopped by disconnecting the EV from the CP. Fig. 4 
shows the relationship between preheating energy and cabin tempera
tures for the sessions. Fig. 5 shows a charging and preheating example 
for each of the five EV models at site 1, while Fig. 6 shows all the pre
heating sessions for the EV models at the same site. 

For BMW i3, the charging power was close to the onboard charger 
capacity of 7.4 kW. The cabin preheating power was initially on the 
same level as the onboard charger capacity, being reduced to between 2 
and 5 kW after approx. 10 min. The preheating duration and power were 
found to be related to the outdoor temperature, where the coldest ses
sion (ID 4, −6.6 ◦C) used 2.1 kWh energy during a 30-minute preheating 
period, before being automatically stopped by the EV thermal 

Table 5 
Preheating energy and temperatures for sessions at site 1.  

ID EV model Management 
system used 

Preheating 
request 
(◦C) 

Temp 
outdoor 
(◦C) 

EV temp, 
initial 
(◦C) 

EV temp, 
end 
(◦C) 

Duration 
(min) 

Ended 
by 

Energy 
(kWh) 

SoC 
initial 
(%) 

SoC 
end 
(%) 

4 BMW i3 App NA  −6.6 NA NA 31 EV  2.1 100 100 
70 * BMW i3 App NA  2.0 4.5 9.0 9 Plug-out  0.7 100 100 
76 BMW i3 App NA  10.0 22.0 24.0 14 EV  0.5 100 100 
29 * Jaguar I-PACE App 21  0.8 0.5 12.5 23 Plug-out  1.8 100 100 
71 Jaguar I-PACE App 21  10.4 18.0 19.0 18 Plug-out  0.8 100 100 
3 Nissan Leaf EV dashboard 26  −4.4 NA NA 46 EV  1.8 98 96 
1 Nissan Leaf EV dashboard 26  1.4 NA NA 36 EV  1.6 100 100 
7 Nissan Leaf EV dashboard 26  −4.4 −1.5 14.5 46 EV  1.5 100 100 
27 Nissan Leaf EV dashboard 26  2.7 5.0 13.5 36 EV  1.5 100 100 
50 * Nissan Leaf EV dashboard 22  0.2 6.5 18.5 36 EV  1.4 100 100 
28 Nissan Leaf EV dashboard 26  4.8 9.5 15.5 31 EV  1.4 100 100 
73 Nissan Leaf App 22  7.5 15.5 21.0 46 Stopped  1.1 100 100 
74 Nissan Leaf EV dashboard 22  8.7 19.5 21.5 30 EV  0.7 100 100 
15 Tesla Model 3 App 21–22  −2.5 2.5 17.5 67 Plug-out  5.0 NA NA 
16 * Tesla Model 3 App 21.5  −1.6 1.5 8.5 16 Plug-out  1.9 95 94 
24 Tesla Model 3 App 21  2.2 3.0 9.0 20 Plug-out  1.9 80 79 
62 VW eGolf App 24  2.2 NA NA 20 Plug-out  1.3 100 100 
30A * VW eGolf App 22  1.4 5.0 9.5 16 EV  1.1 100 100 
30B VW eGolf App 22  1.7 8.5 11.5 16 EV  1.1 100 100 
61 VW eGolf App 22  2.7 NA NA 15 EV  0.9 100 100 
25A VW eGolf App 24  4.2 5.5 7.5 16 EV  0.6 100 100 
25B VW eGolf App 24  3.8 8.0 10.0 16 EV  0.5 100 100 
26 VW eGolf App 24  −1.9 6.5 7.5 6 Plug-out  0.3 100 100 
77 VW eGolf App 22  3.2 13.0 14.0 15 EV  0.2 100 100 

* Example session IDs in Fig. 5. 

Fig. 3. Energy-Temperature diagram for preheating sessions at site 1. The 
circled sessions are ended by the EV thermal management system, while det 
remaining sessions were stopped by disconnecting the EV from the CP. 

Fig. 4. Energy-Temperature diagram for preheating sessions with difference in 
cabin temperatures (site 1). 
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management system. 
For Jaguar I-PACE, the charging power was close to the onboard 

charger capacity of 7.4 kW. Also for this EV, the initial cabin preheating 
power was close to the onboard charger capacity, but the power was 
reduced after approx. 5 min. The initial power demand was most likely 

Fig. 5. Site 1 example trial sessions for each EV model, showing charging and 
preheating power for the EVs. 

Fig. 6. Site 1 sessions for each EV model, showing preheating power. Example 
sessions from Fig. 5 are emphasized in black. Dotted lines: onboard charger 
capacity for the EVs. 
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related to initial PTC-use, which is often necessary before the HP can 
start (Customer service Jaguar Land Rover Limited, personal commu
nication May 2022). For the coldest session (ID 29, 0.8 ◦C), the energy 
use was 1.8 kWh during a 25-minute session, increasing the cabin 
temperature by about 12 ◦C (from 0.5 to 12.5 ◦C). The preheating power 
during this session decreased from about 7.5 to 4 kW, and the session 
ended when the EV was plugged out from the CP. 

For Nissan Leaf, three cars were tested with different model years: 
MY2018 was tested at site 1 and site 2, while MY2013 and MY2015 were 
tested at site 2 only. The charging power of MY2018 was close to the 
onboard charger capacity of 6.6 kW, as shown in Fig. 5 and Fig. 6. The 
cabin preheating power was lower, between 2 and 3 kW, and was found 
to be fairly stable during the preheating session. Fig. 7 describes pre
heating power for all the three cars. MY2013 has the highest preheating 
power, of about 4 to 5 kW, and is also the only Nissan Leaf EV in the trial 
without HP. The preheating duration and resulting energy use is related 
to the outdoor temperature, as shown in Fig. 8. For the Nissan Leaf- 
sessions, preheating was requested for a certain departure time. Ac
cording to [62], the necessary operation time for preheating is calcu
lated two hours before the set preheating time, dependent on the 
ambient temperature. When the ambient temperature is low, the pre
heating duration is longer, with a maximum of 2 h. The longest pre
heating session at site 2 lasted for nearly 2 h, with an outdoor 
temperature of −10 ◦C. The needed preheating energy during this ses
sion was about 3 kWh. At site 1, the two coldest sessions (ID 3 and 7, 
−4.4 ◦C) used about 1.5–1.8 kWh energy and lasted for 45 min. For one 
of these sessions (ID 7), the cabin temperature increased about 16 ◦C 
during the preheating (from −1.5 to 14.5 ◦C). 

For Tesla Model 3, the charging power was limited by the CP ca
pacity of 7.4 kW. The cabin preheating power was initially on the same 
level as this maximum, before being reduced to about 3 kW after approx. 
20 min. Preheating during the coldest trial session (ID 15, −2.5 ◦C) 
lasted for 67 min, before being ended by plugging out the EV from the 
CP. The cabin temperature increased about 15 ◦C during the preheating 
session (from −1.5 to 14.5 ◦C), with an energy use of about 5 kWh. For 
comparison, [73] found that the preheating energy consumption for 
Tesla Model S was in the range of 7.5 kWh at –22 ◦C. The energy use for 
the other two Tesla sessions was about 1.9 kWh, and both of these ses
sions were ended by plug-out of the EV after about 20 min. Tesla rec
ommends activating preheating at least 30–45 min before departure 
[28]. Tesla owner’s manual [74] states that the preheating automati
cally turns off after four hours, or if the charge level drops to 20 %, if 
using the mobile app to turn on the climate control system. 

For the VW eGolf used in the trial, the charging power was about 4 
kW, which is lower than the listed onboard charger capacity of 7.2 kW. 
For most sessions, the preheating power was initially on the same level 
as the charging power. The reason for the higher initial power level is 
that also the battery is preheated in the beginning (Customer service 
Harald A. Møller AS, personal communication May 2022), and it takes a 

few (>5) minutes before the cabin temperature starts to increase. After 
about 10 min battery preheating the power was reduced, with pre
heating of the cabin only. The preheating sessions lasted for about 20 
min in total, before being ended by the EV thermal management system. 
Both the energy use (0.2–1.3kWh) and the cabin temperature differences 
(1–4.5 ◦C) were quite small for the VW eGolf used in the trial. There 
seemed to be a temperature dependence between the energy use and 
outdoor temperature, as shown in Fig. 3 (session 26 at −1.9 ◦C can be 
excluded, since it is plugged out during preheating). 

3.1.2. Summary of the cabin preheating trial: Power, cabin temperatures, 
and duration 

In summary, the EV cabin preheating power and energy loads were 
found to be affected by a number of parameters, such as the specific EV 
(EV model, HVAC system, fresh air rates), CP (available charging 
power), user (preheating duration, EV settings), initial cabin and battery 
temperatures, and weather conditions (ambient temperature, solar ra
diation). In this trial, preheating sessions for five EV models were 
explored, with 24 sessions at site 1 and 27 sessions at site 2. Most of the 
EVs had a power use between 3 and 8 kW initially. After a 10 to 20 min 
initial period, the cabin preheating power was reduced to about 2 to 4 
kW. The explanation for the higher power use initially is dependent on 
the characteristics of the cars. A main reason is that the PTC power use is 
higher in the beginning, to quickly achieve a thermal comfort level 
[46,47], and that the PTC provides start-up heat before a HP takes over 
(Customer service Jaguar Land Rover Limited, personal communication 
May 2022). In addition, the PTC-elements themselves have a higher 
power requirement in the beginning, due to their characteristic with a 
higher heat power when the material temperature is lower [15]. [47] 
shows how a 5 kW PTC has a heating capacity of approx. 4.8 kW at 0 ◦C, 
decreasing to 4.2 kW with 25 ◦C. Another explanation for the higher 
initial power use is that, for some EV models such as VW eGolf 
(Customer service Harald A. Møller AS, personal communication May 
2022) and Tesla [75], also the battery is preheated in the start of the 
preheating session. 

The increase in cabin temperatures ranged from 1 to 16 ◦C, as shown 
in Fig. 4. Some sessions had a high start temperature in the EV cabin. 
There is an uncertainty in the recorded cabin temperatures, since the 
temperatures were logged in only one location in the cabin (normally in 
the cup holder between the seats). Still, there seems to be a difference 
between the EV models in how fast the cabins are heated, and if the 
temperature levels requested for the preheating sessions can be reached. 
The small temperature differences for the tested VW eGolf may indicate 
that the energy was mainly used for preheating of the battery, and not 
the EV cabin. New experimental studies on this topic should consider 
measuring temperatures both in the EV cabin (preferable at a number of 
places), and by the battery. Since only one EV is tested for most of the 
models, the results may not be general for the EV models but depend on 
the specific EV and its settings. An extended number of EV models need 

Fig. 7. Preheating power for Nissan Leaf models in the trial.  

Fig. 8. Energy-Temperature diagram for Nissan Leaf models in the trial.  
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to be investigated in future experimental work, with more vehicles of the 
same brands. 

In the trial, most of the preheating sessions lasted for 20 to 40 min, 
before they were either stopped by the user /plug-out of EV, or auto
matically stopped by the EV thermal management system. During the 
trial, the outdoor temperatures varied between −10 ◦C and + 10 ◦C. The 
presented results have an emphasis on the lower ambient temperatures, 
since the winters in Norway are cold, especially during the morning 
hours. For the lower temperatures, the preheating energy use was 
around 2 kWh for the EVs in the trial, with the exception of Tesla Model 
3, where about 5 kWh of energy use were observed. The maximum 
preheating duration was found to be dependent on the type of EV model, 
and can last for up to two hours for Nissan Leaf (temperature dependent) 
[62] or up to 4 h for Tesla Model S (user dependent) [74]. For some of 
the EV models, a longer preheating duration would more than double 
the cabin preheating energy observed in this trial. 

3.1.3. Cabin preheating using energy from the battery 
The focus of this work has been on energy use for preheating, using 

energy from the grid. However, it should be noted that several EV 
models alternatively can preheat the EV using energy from the battery. 
This could fulfil comfort and safety goals of the driver, but to a less 
degree the goal of extending the driving range of the EV, since the 
battery SoC will be reduced. For EVs with large battery capacities, a 
limited reduction in SoC may be acceptable in many cases, since it is 
found that a high share of EV sessions has a start SoC above 50% [6,76]. 
When preheating the EV cabin, the energy use may differ when using 
energy from the battery, compared to using energy from the grid. The 
reason for this is that some EV models reduce the maximum preheating 
duration or the preheating power when the EV is not connected to a CP. 
This means that the comfort goals are not necessarily achieved. When 
comparing energy use, it should be noted that energy measurements of 
grid-connected preheating include energy losses in the charging process, 
when AC electricity from the grid is converted to DC electricity in the 
battery. Such energy losses are not necessarily included when analysing 
SoC reductions related to cabin preheating using energy from the 
battery. 

In this work, cabin preheating using energy from the battery was 
tested in a limited “battery trial”. The battery trial consisted of 11 pre
heating sessions, using the Nissan Leaf MY2018. The EV was not con
nected to the CP during the battery trial, and the option “Battery 
Operation OK” was turned on. The outdoor temperatures during the 
sessions varied from 2 to −11 ◦C. During the battery trial, the battery 
SoC was reduced by about 3 % in the sessions with outdoor temperatures 
from −8 to −11 ◦C (3 sessions 3 %, 1 session 4 %). For the sessions with 
outdoor temperatures from 2 to 9 ◦C, the battery SoC was reduced by 
about 2 % (2 sessions 1 %, 4 sessions 2 %, 1 session 3 %). A reduction of 
3 % corresponds to about 1 kWh energy, given a net battery capacity of 
36 kWh, not including energy losses in the charging process. The tem
perature difference in the EV cabin was in average about 4 ◦C, and the 
requested cabin temperature (22 ◦C) was not reached. This can be 
explained by the preheating duration, which is maximum 15 min for 
Nissan Leaf when using energy from the battery [77]. For the grid- 
connected preheating sessions for the same EV, the preheating dura
tions were longer and the EV cabin temperature differences larger (ref. 
Table 5). 

When preheating the EV using energy from the battery, the grid 
energy use for preheating may become flexible in time, similar to other 
EV charging loads. Preheating of EVs using energy from the battery 
should be investigated further, to increase the knowledge of advantages 
and disadvantages with this solution. This includes for example exper
imental analyses of different EVs, achievement of comfort, safety, and 
driving range goals, SoC and energy analysis, and analyses of user habits 
related to preheating and charging. 

3.2. Multiple linear regression models for cabin preheating energy use 

To investigate the relationship between the cabin preheating energy 
use (E) and various variables, a MLR analysis was applied. As a first step 
towards the MLR models, the relationship between E and each of the 
identified explanatory variables were analysed. The explanatory vari
ables are listed in Table 6, showing their p-values, description of data 
availability, and an evaluation of practical considerations. The variables 
used in a MLR model should be independent to each other. To evaluate 
this independence, Table 7 shows the correlation between the numerical 
variables. The table shows that some variables are dependent on each 
other, for example cabin temperature difference and preheating dura
tion, and should not be used in the same model. 

The variables with the lowest p-values are considered to be the most 
significant. Still, this is not the only evaluation criterion to be consid
ered, since also some practical considerations need to be taken into 
account. The practical considerations were: 

Numerical variables:  

• T, Tc and D are the numerical variables with the lowest p-values. 
Among these, T is easily available from public weather stations. Tc 
and D are generally not available, but model input assumptions can 
be made. D is a valuable variable, since it can be used to calculate the 
average preheating power P (P = E / D ⋅ 60). D was therefore 
included in further testing together with T, even though there was a 
correlation between T and D (r12 = -0.42). 

• Sun was evaluated to be a non-reliable variable, since solar condi
tions are depending on the local context such as shading from 
surroundings.  

• Cc and Cb are not necessarily related to the preheating system in the 
EV, and were excluded due to their medium/high p-values. 

Categorical variables:  

• It is an advantage that the models are dependent on EV specifications 
such as S and H instead of the specific M, since this makes the models 
more general.  

• For B, there was a small dataset, with only two EVs, and limited data 
for drawing general conclusions. The parameter was excluded due to 
the high p-value.  

• End and L are related to local conditions such as user habits and EV 
fleet, and were not evaluated to be relevant for the model. 

Combinations of the variables were tested in the MLR models, and 
Table 9 shows the MLR models with the highest adjusted R2 values. The 
model formula first:second specifies the interaction between the two 
variables [78]. mod_TDSH* and mod_CSH* were selected for further 
analysis, as they are general models (not dependent on M), and with 
high values for adjusted R2 (0.83–0.84). Coefficients and model error 
statistics for the two selected models are shown in Table 10. 

The models were evaluated using an additional dataset for valida
tion, consisting of 17 preheating sessions, as listed in Table 8. Three 
different EVs and three different CPs are represented in the dataset. It 
can be noted that both for the trial dataset (Table 5) and validation 
dataset (Table 8), there are uncertainties related to the measured cabin 
temperatures, as described in section 3.1.2. All the 17 sessions were used 
for validating mod_TDSH*, with EV info, outdoor temperatures, pre
heating durations, and energy charged. Ten of the sessions included 
cabin temperatures, and were used to validate mod_CSH*, with EV info, 
cabin temperature differences, and energy charged. Model error statis
tics for the validation data is shown in Table 10. The mod_TDSH* and 
mod_CSH* predict energy charged from the validation data with R2 

0.895 and R2 0.752, respectively. The MAE and RMSE error values for 
the validation data are slightly higher than for the trial data, which in
dicates that the models have a high generalization performance. 

To evaluate how the location and the CP affect the results, all the 
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preheating sessions for Nissan Leaf MY2018 are presented in Fig. 9. The 
charging power is 7.4 kW for all the three CPs used, and the CP is 
therefore not a limiting factor for the EV (onboard charger capacity is 
6.6 kW). Thus, the differences in CPs does not affect the results for the 

sessions. In further studies, we would recommend to investigate how the 
charging power of CPs affect the results for EVs with different onboard 
charger capacities. 

The two selected models can be used in parallel, since they have 
different input values, and therefore different advantages when applying 
them in analysis. Model TDSH* uses outdoor temperature data as input, 
combined with assumptions for duration and the EV fleet (Small/me
dium or large EVs heated by HP og PTC only). Fig. 10 and Fig. 11 show 
how predictions for E changes with T and D for four different EV fleets. 
The figures are based on predictions for the T-values [-10, 0, 10 ◦C] and 
the D-values [15, 30, 45, 60, 75, 90 min]. Calculated values for average 
preheating power P were 2.3 kW for SSMHHP (2.3 kW in trial), increasing 
to 3.7 kW for SSMHPTC (3.3 kW in trial), 3.9 kW for SLHHP (3.7 kW in 
trial), and 4.8 kW for SLHPTC (5.7 kW in trial). The second model, 

Table 6 
Explanatory variables tested for MLR models for cabin preheating energy use (kWh).   

Variables Abb. Unit p-value Description data availability Practical 
evaluation 

Numerical Outdoor air 
temperature 

T ◦C 0.00283 Public weather station. +++

Cabin temperature 
diff. 

Tc ◦C 1.43e- 
05 

Site 1: Measured (19 of 24 sessions). 
Site 2: Difference between T and 18 ◦C. 

++

Preheating 
duration 

D min 2.84e- 
07 

Preheating duration. Site 1: 1 min time resolution. Site 2: 15 min time resolution. For site 
2, duration time for the initial 15 min (Di) was estimated for sessions when average power 
during the first 15 min (Pi) is below the average power during the next 15 min (Pi+1), using 
the following equation: 
Di = Pi/Pi+1 × 15. Di was rounded up to next integer. 

+++

Sunminutes Sun min 0.667 Public weather station. –  
Onboard charger 
capacity 

Cc kW 0.0692 
(* 
0.825) 

EV characteristics, ref. Table 3. 
* Max. 7.4 kW as available in CP. 

–  

Net battery 
capacity 

Cb kWh 0.924 EV characteristics, ref. Table 3. – 

Categorical EV model MBMW- 

MY16 

[…] 
MLeaf- 

MY18  

8.02e- 
05 

EV characteristics, ref. Table 3. +

EV size SSM 

SL  

0.125 Classification related to Cc and Cb. 
Small/Medium: Nissan Leaf eGolf, BMW i3. Large: Jaguar I-PACE, Tesla model 3. 

+++

Heat pump or PTC 
only 

HHP 

HPTC  

0.00475 EV characteristics, ref. Table 3. +++

Battery preheating BTRUE 

BFALSE  

0.792 TRUE for eGolf and Tesla. –  

Ended by EndUser 

EndEV  

0.768 Classification of sessions ended by users. –  

Location LSite1 

LSite2  

0.0394 Trial location. –  

Table 7 
Correlation between the numerical variables (Pearson method).   

T Tc D Sun Cc Cb 

T 1.00 -0.59 -0.42 0.55 -0.26 -0.30 
Tc -0.59 1.00 0.78 -0.23 -0.22 -0.16 
D -0.42 0.78 1.00 -0.03 -0.13 -0.13 
Sun 0.55 -0.23 -0.03 1.00 -0.23 -0.28 
Cc -0.26 -0.22 -0.13 -0.23 1.00 0.68 
Cb -0.30 -0.16 -0.13 -0.28 0.68 1.00  

Table 8 
Dataset with preheating sessions used for validation.   

Site EV model EV info Temp outdoor 
T (◦C) 

EV temp, 
Initial (◦C) 

EV temp, 
end (◦C) 

Temp diff 
Tc (◦C) 

Duration, 
D (min) 

Energy 
(kWh) 

1 Site 1 CP* Nissan Leaf (2018) SSM HHP  −1.5 10.0 20.0 10.0 38  1.3 
2 Site 1 CP* Nissan Leaf (2018) SSM HHP  −0.9 8.0 19.5 11.5 40  1.4 
3 Site 1 CP* Nissan Leaf (2018) SSM HHP  −1.8 2.5 17.0 14.5 41  1.6 
4 Site 2 Nissan Leaf (2018) SSM HHP  −0.4 4.0 11.5 7.5 35  1.3 
5 Site 2 Nissan Leaf (2018) SSM HHP  3.3 3.0 11.5 8.5 35  1.3 
6 Site 2 Nissan Leaf (2018) SSM HHP  8.2 3.0 11.5 8.5 35  1.3 
7 Site 2 Nissan Leaf (2018) SSM HHP  0.2 2.0 16.5 14.5 35  1.4 
8 Site 2 Nissan Leaf (2018) SSM HHP  −2.5 −1.5 9.0 10.5 50  1.5 
9 Site 2 Nissan Leaf (2018) SSM HHP  0.4 2.0 11.5 9.5 40  1.5 
10 Site 2 Nissan Leaf (2018) SSM HHP  −10.0 −10.5 11.0 21.5 75  2.6 
11 Site 2 Kia Soul (2015) SSM HHP  2.1 NA NA NA 30  1.8 
12 Site 2 CP* Tesla Model S (2019) SL HPTC  0.8 NA NA NA 18  1.8 
13 Site 2 CP* Tesla Model S (2019) SL HPTC  −0.3 NA NA NA 30  2.3 
14 Site 2 CP* Tesla Model S (2019) SL HPTC  −1.0 NA NA NA 24  2.5 
15 Site 2 CP* Tesla Model S (2019) SL HPTC  −5.7 NA NA NA 29  2.8 
16 Site 2 CP* Tesla Model S (2019) SL HPTC  −1.0 NA NA NA 25  3.0 
17 Site 2 CP* Tesla Model S (2019) SL HPTC  3.7 NA NA NA 69  5.7 

CP*: Other CPs at the sites were used during the validation. 
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mod_CSH*, used assumptions for TC and the EV fleet as an input. Fig. 12 
shows how the energy use for the four EV fleets increases with an 
increasing TC. For the same temperature difference, the predicted E for 
EVs with PTC is 2 times higher than for EVs with HP. Comparing pre
dicted E for EVs with different sizes, E for SL is 1.9 times higher than for 
SSM. A larger dataset would improve the models, since there are few 
sessions especially for SLHHP and SLHPTC. Still, the models show inter
esting relations between the parameters, as described above. 

3.3. Comparing energy loads for EV cabin preheating with other energy 
loads in an apartment 

Cabin preheating of EVs typically happens during cold winter days, 
for example during morning hours. During such periods, the Norwegian 
electricity grid is already experiencing high peak loads [34]. It is 
therefore relevant to compare the energy loads for EV cabin preheating 
with other energy loads in buildings, and to analyse scenarios for 
aggregated power loads for cabin preheating of residential EVs. Apart
ment buildings have been chosen as the focus of this work, since this is a 
building type with an expected high density of EV charging and cabin 
preheating use. 

For the comparison with other residential energy loads, two levels of 
cabin preheating were selected: 2 kWh or 4 kWh. The selected levels 
represent typical values, based on the cabin preheating trials and 
modelling results. Fig. 13 illustrates the cabin preheating together with 
other residential energy loads during an example day with low outdoor 
temperature (in average −9 ◦C for Fig. 13 a, and −7 ◦C for Fig. 13 b). The 
figures have an hourly resolution, and it is assumed that all the pre
heating happens between 07:00 to 08:00 in the morning. Apartment 
electricity use, space heating and DHW, and EV charging are shown in 
the figures. For the example day, energy for EV cabin heating increases 
the hourly energy peak in the morning from 4.2 kWh/h to 6.2 kWh (48 
%), or from 4.2 kWh/h to 8.2 kWh (95 %), including all the energy loads 
(Fig. 13 d). Two alternative charging power levels are shown in Fig. 13 
c) and 9 d), where the energy distribution depends on the EV charging 
strategy. The EV charging happens during the night, with a constant 
charging load. The daily peak load of the apartment is caused by either 
the EV charging or the EV cabin preheating. While the EV charging is 
often recognized as flexible, this is normally not the case for the cabin 
preheating. For apartment buildings with flexible EV charging, the en
ergy loads from EV cabin heating can become the largest daily energy 

peak. 

3.4. Aggregated grid loads for EV cabin preheating 

The aggregated power demand for EV cabin preheating depends on 
the habits of the EV owners. Not all EV owners are connected to an EV 
charger at the same time, nor are they plugging out their cars simulta
neously. To assess expected aggregated power demand for preheating, 
the trial results are therefore combined with an EV charging dataset 
from a series of residential buildings in Norway. It is assumed that the 
preheating habits during cold days are in accordance with the average 
charging habits of today, without adding any extra CP connections for 
preheating of the EVs. Fig. 14 illustrates average daily profiles for the 
four EV cabin preheating scenarios described in Section 2.6. During 
workdays there is a morning peak in the preheating loads, closely before 
the morning peak in CP plug-outs, corresponding to the start of a typical 
workday. For the four scenarios, the workday morning peak varies be
tween 0.15 kW and 0.67 kW per user. During the rest of the day, and 
during the weekends, the preheating load is more evenly distributed, 
and the average daily load varies from 0.04 kW in Scenario 1 to 0.2 kW 
per user in Scenario 4. There is a difference in user habits in scenarios 1 
and 3 (with all users) compared with 2 and 4 (with most frequent users). 
The reason for this is most likely that the most frequent users have 
smaller battery capacities than the average users, and that they therefore 
more frequently charge their EVs during the day, before disconnecting 
from the CP in the afternoon. 

The average daily profiles in Fig. 14 show the preheating load per EV 
user. When comparing the profiles with energy use in buildings, the 
share of EVs per apartment is relevant, as well as the share of EV owners 
actually using cabin preheating. Cabin preheating is probably most 
relevant for EV owners parking outside or in cold garages. In Fig. 15, the 
aggregated cabin preheating loads are compared to other residential 
energy loads, assuming that every apartment has 0.7 EVs and that 50 % 

Table 9 
MLR models and respectively adjusted R2 values.  

MLR model adjusted R2 

mod_TM E = α + β1⋅T + β2⋅M  0.6553 
mod_TDM* E = α + β1⋅T + β2⋅(D : M) 0.838 
mod_CM* E = α + β1⋅(C : M) 0.8423 
mod_DSH* E = α + β1⋅(D : S : M) 0.7755 
mod_TDSH* E = α + β1⋅T + β2⋅(D : S : H) 0.8303 
mod_CSH* E = α + β1⋅(C : S : H) 0.8453  

Table 10 
MLR correlations in selected models and model error statistics for trial data and validation data.    

Trial data used for training the model Validation data  

Coefficient R2 adjusted R2 MAE MSE RMSE MAPE R2 MAE RMSE 

mod_TDSH* E = 0.550588–0.045338 ⋅ T 
+ 0.049860 ⋅ (D: SL: HHP) 
+ 0.023514 ⋅ (D: SSM: HHP) 
+ 0.065395 ⋅ (D: SL: HPTC) 
+ 0.046261 ⋅ (D: SSM: HPTC)  

0.848  0.830  0.25  0.11  0.33 28%  0.895  0.29  0.37 

mod_CSH* E = 0.41914 
+ 0.11391 ⋅ (C: SL: HHP) 
+ 0.06961 ⋅ (C: SSM: HHP) 
+ 0.28108 ⋅ (C: SL: HPTC) 
+ 0.12975 ⋅ (C: SSM: HPTC)  

0.860  0.845  0.27  0.11  0.33 23%  0.752  0.30  0.35  

Fig. 9. Energy-Temperature diagram for preheating sessions with Nissan Leaf 
MY2018, using three different CPs. The figure includes trial sessions used for 
model training (black circles) and validation sessions. 
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of the EVs uses cabin preheating according to scenario 1, with 2 kWh 
preheating 0.5 times per day. The daily profiles illustrate the seasonal 
difference between aggregated hourly loads during summer (June, July, 
August) and winter (December, January, February). For this study, 

winter loads during workdays are most relevant, since this is the 
dimensioning period for the grid. The average apartment electricity load 
during winter is between 0.5 and 0.8 kW/apartment, with the highest 
energy loads in the afternoons/evenings. For space heating and DHW, 
the apartments have an average daily heat load between 1.5 and 2.5 
kW/apartment during the winter, with a morning and evening peak. The 
EV charging load during winter is in the range of 0.1 kWh per EV user 
during morning/daytime, and 0.5 kW per EV user during evenings/early 
night hours. 

Fig. 15 illustrates that EV cabin preheating has a rather small effect 
on an aggregated level, given the assumptions in this study. During 
workdays, the preheating scenarios increase the average morning load 
during the winter with 0.5–2 %, including all the apartment energy 
loads and EV charging. Compared to apartment electricity only, the 
average morning peak increases with about 10 % on workdays. The 
actual aggregated load will depend on a number of parameters, such as 
the EV density, the number of preheating sessions per day, the pre
heating power and duration, outdoor temperatures, and user habits. 

4. Conclusion 

The number of EVs is increasing globally, and in Norway the share of 
BEVs and PHEVs was 22 % of the total car stock in 2021 [20]. In cold 
climates, it is generally recommended to use electricity from the grid to 

Fig. 11. The relationship between E and D, with different Ts, EV sizes (SM or L) and heating systems (HP or PTC only). Model TDSH* predictions (lines), trial data 
(dots), and validation data (crosses). 

Fig. 12. Model CSH* predictions (lines), trial data (dots), and validation data 
(crosses) for E as a function of TC. The EVs have different sizes (SM and L) and 
heating systems (HP or PTC only). 

Fig. 10. The relationship between E and T, with different Ds, EV sizes (SM or L) and heating systems (HP or PTC only). Model TDSH* predictions (lines), trial data 
(dots), and validation data (crosses). 
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preheat the EV cabin before using the car. During workdays, a majority 
of EV cabin preheating sessions happen in the morning hours, when 
there is also a high demand for other energy use. Morning hours during 
cold winter days are the time of the year with the highest peak loads in 
Norway. It is thus important to understand the power load and energy 
consumption for grid-connected preheating of EV cabins. Our literature 
review identified a need for more experimental knowledge within this 
topic. This work presented data from preheating sessions of various EVs, 
during different outdoor temperatures. The models BMW i3, Jaguar I- 
PACE, Nissan Leaf, Tesla Model 3, and VW eGolf were tested, repre
senting 38 % of the EVs in the Norwegian EV stock. Based on the trial 

data, linear regression models were developed. Further, preheating 
loads were compared to typical electricity and heating loads in apart
ment buildings, and aggregated grid loads for preheating EVs were 
assessed. 

The preheating of EVs happened at two sites, both with a 7.4 kW CP. 
The outdoor temperatures varied between −10 ◦C and + 10 ◦C. During 
the preheating, most of the EVs had a power use between 3 and 8 kW 
initially. After a 10 to 20 min initial period, the cabin preheating power 
was reduced to about 2 to 4 kW. Maximum duration for preheating is car 
dependent, and for example Nissan starts the preheating up do 2 h 
before departure, depending on the outdoor temperature, while Tesla 

Fig. 14. Average daily profiles for cold days: Aggregated EV cabin preheating loads per EV user.  

Fig. 15. Average daily profiles summer/winter: EV charging, apartment electricity use, and apartment space heating and DHW.  

Fig. 13. Example day January 9th 2018, for an apartment with one EV, showing energy for space heating and DHW, energy for EV charging (3.6 og 7.4 kW) and 
cabin preheating (2 or 4 kWh), and other electricity use in the apartment. 

L. Sørensen et al.                                                                                                                                                                                                                                

124



Applied Energy 341 (2023) 121054

15

allows up to 4 h preheating after starting time, dependent on user 
preferences. The preheating duration for most of the trial sessions were 
between 15 and 45 min. In the trial, the preheating energy use was found 
to be up to 2 kWh for most EVs, while the Tesla used up to 5 kWh. Since 
some of the preheating sessions were interrupted by disconnecting the 
EVs, it is expected that the energy use can be higher. 

Multiple linear regression models were developed to investigate the 
relationship between various variables and the energy use for preheat
ing. Two models were selected to show the relationship between the 
cabin preheating energy use, outdoor temperature, and EV size/heating 
system (model TDSH*, R2 0.848 for training data and 0.895 for vali
dation data), and between the cabin preheating energy use, cabin tem
perature difference, preheating duration, and EV size / heating system 
(model CSH*, R2 0.860 for training data and 0.752 for validation data). 
The two selected models can be used in parallel, since they have 
different input values, and therefore different advantages when applying 
them in analysis. For the same cabin temperature difference, the pre
dicted preheating energy use for EVs with PTC was 2 times higher than 
for EVs with HP. Comparing predicted energy use for EVs with different 
sizes, preheating energy use for large EVs was 1.9 times higher than for 
small/medium EVs. Although this work has taken the first step to predict 
the energy consumption for grid-connected preheating of EV cabins, 
there are still some limitations. A larger dataset would improve the 
models, with an extended number of EV models, and EVs. 

Hourly energy loads for EV cabin preheating were compared with 
other energy loads in Norwegian apartment buildings. For an example 
day with cold outdoor temperatures, energy for EV cabin heating 
increased the hourly energy peak in the morning with 48 % or 95 %, 
assuming 2 or 4 kWh preheating. On an aggregated level, daily energy 
loads for preheating were assessed for four preheating scenarios. For the 
four scenarios, the workday morning peak varied between 0.15 kW and 
0.67 kW per EV user. This increase happens during hours where the grid 
is already under pressure. When comparing the daily profile for pre
heating with energy use in buildings on an aggregated level, it was 
assumed that every apartment had 0.7 EVs and that 50 % of the EVs used 
cabin preheating. During workdays, cabin preheating increases the 
average morning load during the winter with 0.5 to 2 %, including all 
the apartment energy loads and EV charging. Even though hourly pre
heating loads can be a high share of the energy use on an apartment 
level, the effect seems to be rather small on an aggregated level, given 
the assumptions in this study. Technological solutions can reduce the 
grid burden of EV cabin preheating. For example, the EV battery can 
provide energy for preheating on days where extended driving ranges 
are not needed. Further, even more EV models can have HPs installed, or 
the preheating power can be managed according to a local power limit. 

The work gives insight into the power and energy use related to 
preheating of EVs. Such knowledge is lacking in literature, and is useful 
when e.g. simulating and forecasting EV energy loads on the grid in cold 
climates. The EV cabin preheating power and energy loads are affected 
by a number of parameters, such as the type of EV, the CP, the pre
heating duration, and the temperature levels. More research on this area 
is needed, including real-world testing of different EVs under various 
conditions, knowledge on user habits, and analyses of how preheating of 
EV cabins and batteries may affect the power use in buildings, and their 
aggregated impact on the grid loads. The research can be applied when 
developing new EV preheating solutions, to assure that grid re
quirements are met, while still maintaining the demand for extended 
driving ranges, comfort, and safety. 
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A B S T R A C T   

Energy flexibility in buildings has the potential to reduce the grid burden of neighbourhoods, yet its practical 
implementation remains limited. This paper presents a data-based case study from Norway, examining the 
electricity flexibility potential of electric vehicles, within the context of apartment building loads and PV gen
eration. The results highlight the significant electricity flexibility potential in apartment buildings with EVs, 
where EV charging can be shifted in time by means of a shared energy management system. Energy profiles are 
presented, showing how EV charging can increase the average electricity use in apartments by a factor of 1.5 and 
the power use by a factor of 3.5 to 8.6. Furthermore, the study demonstrates how electricity flexibility KPIs of 
optimised EV charging in apartment buildings are affected by different energy tariffs, PV generation, V2G 
technology, and the location of the billing meters. The simulated scenarios showed a maximum reduction of peak 
loads of 45 %, while a maximum of 38 % of the EV charging was covered by PV generation. The study confirms 
that residential EV charging emerges as a viable frontrunner in the practical realization of end-user flexibility, 
paving the way for effective solutions in real-life applications.   

1. Introduction 

1.1. Motivation 

Renewable energy generation and energy efficiency of buildings are 
key mitigation measures, to reduce emissions under the Paris Agreement 
[1]. An increasing share of the energy supply is variable, which chal
lenges the security of supply in the energy system. This challenge can be 
alleviated by making the energy use more flexible. The European Union 
has projected that the demand for flexibility in the electricity system will 
rise to 24 % of the total electrical demand in the EU by 2030, increasing 
further to 30 % by 2050 [2]. Energy use in buildings represent about 
30–40 % of the total domestic energy use in many countries [3,4]. Thus, 
shifting the energy and power use in buildings represent a large po
tential for flexibility. 

Several definitions of building energy flexibility can be found in 
literature [5,6]. IEA EBC Annex 67 defined energy flexibility of a 
building as [5] “the ability to manage its demand and generation ac
cording to local climate conditions, user needs and grid requirements.” 
Different flexibility types include fast and medium regulation (within 

seconds or minutes, e.g. to provide frequency regulation in response to 
power grids), load shedding (within minutes/hours, with load curtail
ment during a limited period), load shifting (within hours, with loads 
shifted to other hours), and energy generation (where loads are covered 
by local generation) [7]. 

To increase the flexibility of energy use, demand response (DR) can 
play an important role. With DR, the energy consumers adjust their 
energy use in response to signals or incentives, for example from the grid 
operator or energy provider. Flexibility markets for DR are promoted by 
e.g. the European Commission [8]. However, the implementation of DR 
has not yet been fully realized in practice, due to barriers related to e.g. 
the regulatory framework, the market, and the lack of a proper quan
tification methodology [9]. Also, several other challenges remain, such 
as the integration of new DR systems with existing automation systems 
and the consideration of occupant comfort and satisfaction, as stated by 
[6]. 

When introducing DR in the residential sector, it is important to 
ensure it does not compromise user comfort or equipment functionality 
[10]. Smart applications described in literature often relate to space 
heating, domestic hot water (DHW) tanks, washing machines, batteries, 
and electric vehicles (EVs) [6,10,11]. In apartment buildings, the energy 
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use of such applications is either part of the energy use in the apart
ments, or a part of the common energy use for the building association. 
In Norway, electricity use in apartments is metered hourly, with billing 
meters in each apartment [12]. Common electricity use includes energy 
use in common areas such as corridors, basements, and outdoors, elec
tricity for running the central heating if relevant, and EV-charging. To 
realize DR in practice, it could be advantageous to start with the simplest 
and most accessible measures. The flexibility available in the common 
energy use tends to be more accessible than the energy consumption 
within individual apartments. Moreover, the common energy use might 
already be equipped with energy management systems. 

Among the common energy use, smart EV charging emerges as a 
particularly promising solution for effective DR management. With the 
continued rise in EV adoption, projected to reach a 35 % sales share 
globally by 2030 [13], the demand for smart EV charging grows, usually 
as a means to reduce strain on the grid. Real-life applications of smart 
residential EV charging have been demonstrated in trials and in com
mercial offers [14–17]. Hildermeier et al. [14] analysed available tariffs 
and services for smart EV charging across Europe, and found that 
commercial services were mostly available in regions with general time- 
of-use tariffs, like the hourly spot prices seen in the Nordic countries. 
Norway, a frontrunner in EV adoption with an 88 % sales share in 2023 
[13], has legally granted residents in apartment buildings the right to 
charge EVs at home under specific conditions [18]. However, this pro
vision can pose challenges to local grid infrastructure. Consequently, a 
common charging infrastructure is often incorporated in Norwegian 
apartment buildings, complemented by an energy management system 
that limits the maximum power for simultaneous EVs charging. Since the 

EVs are normally connected to the charge point (CP) for a longer period 
than the actual charging time, there is a potential to shift the EV 
charging load in time. For example, residential charging loads can be 
shifted from high load hours in the afternoon to low load hours in the 
night [19]. This can be done with minimal comfort issues and involve
ment of residents. Using vehicle-to-grid (V2G) or vehicle-to-everything 
(V2X) technology allows for discharge of energy from EV batteries to 
the energy system.1 Bidirectional chargers are not yet commercially 
available for residential users in Norway, but it is expected that they will 
become accessible in the near future [20]. Such DR can be a response to 
grid needs, or to achieve cost, energy, or climate goals for the end-users. 

1.2. Literature review 

EV charging and its flexibility potential have become an increasingly 
important topic. Numerous research articles focus on various aspects of 
EV charging within building infrastructures, as highlighted in recent 
review papers [14,21–27]. Our literature review specifically concen
trates on energy use and EV charging within the residential sector. 
Table 1 provides an overview of the literature review, and the review 
findings are further elaborated in the section below. 

The main data sources for EV charging studies are transportation 
surveys and data, data collected from vehicles, and CP data [24]. In 
studies that focus on residential EV charging, transportation data such as 

Nomenclature 

Abbreviations 
Apt Apartment 
CHP Combined heat and power 
CP Charge point 
CPO Charge point operator 
DH District heating 
DHW Domestic hot water 
DR Demand response 
DSO Distribution System Operator 
EV Electric Vehicle 
FF Flexibility factor 
FI Flexibility index 
IT230V 230 Volt IT system (distribution grid) 
KPI Key performance indicator 
MILP Mixed Integer Linear Programming 
PV Photovoltaic 
SD Standard deviation 
SoC State of charge 
V2G Vehicle-to-grid 
V2X Vehicle-to-everything 
VAT Value added tax 

Sets in the optimisation model 
V Set of all electrical vehicles 
E Set of all charging events 
T Set of all time steps in the model 
Te Set of all time steps per charging event e 
M Set of all months in the model 
Tm Set of all time steps per month in M 

Variables in the optimisation model 
yapt

t Electricity to the apartments (kWh/h) 

ych
v,t Electricity charged per EV (kWh/h) 

ycmn
t Common electricity use (kWh/h) 

ydch
v,t Electricity discharged per EV (kWh/h) 

yexp
t Electricity exported to grid (kWh/h) 

yimp
t Imported electricity (kWh/h) 

ymax imp
m Max imported electricity per month m (kW) 

zsoc
t SoC of the battery (%) 

Parameters in the optimisation model 
DEL

t Apartment electricity demand (kWh/h) 
YPV

t Generated PV electricity (kWh/h) 
DEV

v,t Uncontrolled charging demands per EV per timestep t 
(kWh/h) 

DEV
v,e Energy demand per charging event e (kWh/h) 

Ccomp Prosumer compensation (NOK/kWh) 
Ccons Energy consumption fee (NOK/kWh) 
Ceno Enova fee (NOK/kWh) 
cexp Export income (NOK/y) 
Cfxd Fixed costs (NOK/y) 
cimp Import cost (NOK/y) 
Cpty

m Peak load tariff per month m (NOK/kW) 
Ctot Total electricity costs (NOK/y) 
Ctrans Energy transport fee (NOK/kWh) 
CVAT Value added tax (25 %) 
EVlim

v Charging power per EV (kW) 
EVbat

v Battery capacity per EV (kWh) 
Pspot

t Spot price at hour t (NOK/kWh) 
t Timestep (h) 
ηch Battery charging efficiency 
ηdch Battery discharging efficiency 
ΛEL

v,t EV is connected to the CP (Boolean)  

1 In this study, the bidirectional utilization of EV batteries is specifically 
referred to as V2G. 
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arrival/departure time and travel distances frequently form the basis for 
modelling of loads and flexibility [35,36,45–51,37–44]. An example is 
[38], where German survey data on mobility behaviour is used for 
modelling individual mobility behaviour, using probability distributions 
and a Markov-chain. In [41], EV data are simulated based on travel 
distances applying a gamma distribution approach. In [37], a regional 
transport model from Norway is combined with data from a survey 
among EV owners. In other studies on EV charging in residential 
buildings, the needed EV charging input is simply estimated, where for 
example plug-in/plug-out times are based on fixed schedules 
[53–57,59], or modelled based on probability distributions such as the 
truncated Gaussian [52] or Poisson [58]. 

In other articles, data collected from vehicles and CP data are used to 
generate the residential charging load profiles [19,28–35]. According to 
[26], flexibility studies focussing on EV charging should incorporate 
realistic driving and plug-in behaviours. Also, the authors in [33] argue 
that it is more valuable to study the flexibility of EVs based on real-world 
EV charging records than simulation-based research. For example, many 
studies assume a standard daily EV charging session and that the EVs are 
continuously connected to the CP when they are parked at the resi
dential location. This often leads to an overestimation of the actual 
flexibility potential from EV fleets. Therefore, it is advantageous to 
utilize real-world charging data as a basis for analysis, as in our study. 
From studies such as [19,30], actual charging demand and connection 
times for EV charging sessions are available. In [31], charging data and 
residential loads are used to study the impact of EVs on the distribution 
networks, but without utilizing flexibility. In [32], EV charging flexi
bility is studied, but without the consideration of other residential loads. 
In [34], aggregated load data from 4 CPs is used, but not data for each 
EV charging session individually. Our literature review shows that few 

articles combine real-world charging data with residential building 
loads and flexible EV charging. 

Uncontrolled EV charging increases the electricity load during peak 
hours [27]. For the synthetic load profiles in [38], it was found that the 
peak loads from residential buildings increased by a factor of 1.1 to 3.6 
when uncontrolled EV charging was included. At the same time, EV 
charging ranks among the residential energy uses with the greatest po
tential for flexibility [45]. Several studies have addressed flexible EV 
charging in residential buildings, frequently also integrating PV gener
ation and V2G technology, as detailed in Table 1. Huang et al. [40,63] 
describe how minimizing the grid peak power and maximizing the self- 
utilization of PV electricity are important objectives for smart control of 
EV charging. Their case study was a building community in Sweden, 
including apartments, EV charging, and PV generation. Another 
example, [49] simulated EV charging coordination for a case study in 
South Korea, where charging of 1000 EVs was shifted in time to reduce 
the peak load of an apartment complex with 1500 apartments. The re
searchers concluded that EV charging coordination could reduce the 
peak EV charging load below a power capacity of 5 MW and reduce costs 
for the residents. Ramsebner et al. [35] did a field test in Austria, that 
included the application of controlled EV charging in a residential 
complex. When controlling EV charging in 27 CPs, they found that an 
average charging power capacity of 1.3 kW/CP was sufficient to fulfil 
the charging needs. They identified a potential to reduce the average 
charging power even further, given that more user information was 
combined with demand forecasts and machine learning. Studies exam
ining household energy use, uncontrolled EV charging, and PV genera
tion in diverse locations, such as the UK [64] and Sweden [39], have 
identified a mismatch between PV generation and EV charging. The 
review [22] encourages further research to assess how smart EV 

Table 1 
Literature review comparison.  

Ref. Residential EV charging Residential 
loads 

Flexible 
charging 

V2G PV Tariff 
comparison 

Meter location 
comparison 

Estimation Transport. 
data 

CP data Vehicle data 

[28] – – – ✓ – – – – – – 
[29] – – – ✓ – – – – – – 
[19,30] – – ✓ – – – – – – – 
[31] – – ✓ – ✓ – – – – – 
[32] – – ✓ – – ✓ – – – – 
[33] – – ✓ – ✓ ✓ – – – – 
[34] – – ✓ – ✓ ✓ – ✓ ✓ – 
[35] – ✓ ✓ – ✓ ✓ – – – – 
[36] – ✓ – – – – – – – – 
[37] – ✓ – – – – – – – – 
[38] – ✓ – – ✓ – – – – – 
[39] – ✓ – – ✓ – – ✓ – – 
[40] – ✓ – – ✓ ✓ – ✓ – – 
[41] – ✓ – – ✓ ✓ – ✓ – – 
[42,43] – ✓ – – ✓ ✓ – ✓ – – 
[44] – ✓ – – ✓ ✓ ✓ ✓ – – 
[45] – ✓ – – ✓ ✓ ✓ ✓ – – 
[46] – ✓ – – ✓ ✓ ✓ ✓ – – 
[47] – ✓ – – ✓ ✓ – – ✓ – 
[48] – ✓ – – ✓ ✓ – – ✓ – 
[49] – ✓ – – ✓ ✓ – – ✓ – 
[50] – ✓ – – ✓ ✓ – – – – 
[51] – ✓ – – ✓ ✓ ✓ – – – 
[52] ✓ – – – ✓ ✓ ✓ ✓ – – 
[53] ✓ – – – ✓ ✓ ✓ ✓ – – 
[54] ✓ – – – ✓ ✓ ✓ ✓ – – 
[55] ✓ – – – ✓ ✓ ✓ ✓ ✓ – 
[56] ✓ – – – ✓ ✓ – ✓ – – 
[57] ✓ – – – ✓ ✓ – ✓ – – 
[58] ✓ – – – ✓ ✓ – ✓ ✓ – 
[59] ✓ – – – ✓ ✓ ✓ ✓ – ✓ 
[60] – – – – ✓ – – ✓ – ✓ 
[61] – – – – ✓ – – – – ✓ 
[62] – – – – ✓ – – – – ✓ 
This paper – – ✓ – ✓ ✓ ✓ ✓ ✓ ✓  
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charging can improve the match with PV generation across varying lo
cations and occupancy patterns. 

Some of the studies in Table 1 also include the comparison of 
different end-user tariffs. Verzijlbergh [47] found that energy tariffs 
such as Day-Night or Time of Use resulted in peak loads that were about 
25 % higher than the loads from uncoordinated EV charging. Thus, 
when shifting the charging loads for an EV fleet, the grid peak loads are 
not necessarily reduced. However, in [47], the loads were shifted to low- 
load hours during the night. Muñoz et al. [48] analysed the issue of 
overloading of distribution transformers due to EV charging, and found 
that the share of transformers subject to overload increased from 32 % 
with uncontrolled charging to 100 % with Time of Use charging. Aske
land et al. [34] investigated how grid tariff optimisation with local ca
pacity trading can facilitate an increasing amount of EV charging. Their 
case study was a housing cooperative in Norway with 246 apartments. 
The study proposed a trading mechanism to incentivize that end-users 
with flexible EV charging would contribute to flattening the aggre
gated grid load. 

Apartment buildings often have a billing meter structure with 
separate billing meters for common energy use and individual apart
ments. However, there is a lack of studies addressing how this billing 
meter structure impacts the aggregated grid load and the self- 
consumption of PV electricity. In [60–62], energy use in apartment 
buildings is divided on common energy use in shared spaces, and energy 
use in apartments, but without including EV charging. To our knowl
edge, only [59] focuses on this division, also taking EV charging into 
account. In their study, they analysed household energy use and energy 
use for common facilities in two apartments buildings. Further, they 
described how the cooperative systems, such as EV charging, V2G, PV, 
and batteries, can be integrated into the energy management system of 
the apartment buildings. The researchers highlighted that the energy 
management systems for apartment buildings are not fully understood in 
literature. 

The literature review shows that, while several studies focus on en
ergy use and EV charging in residential settings, there remains a need for 
data-based case studies utilizing real-world data on energy and EV 
charging, studying load profiles and flexibility potentials in apartment 
buildings with EVs. We did not find any studies that also considers the 
billing meter location, under different end-user tariff options. Given the 
relevance of this scenario to numerous apartment buildings, there is a 
need for such studies to offer practical insights and provide input to 
policies. 

1.3. Contributions 

Our hypothesis is that apartment buildings with EVs have a partic
ular potential for electricity flexibility, where coordination of EV 
charging can contribute to reducing the grid burden of the residential 
sector and increasing the self-consumption of PV electricity. This hy
pothesis is tested in a data-based case study in Norway, where the res
idential sector has an increasing demand for EV charging, and a growing 
PV utilisation. The selected case study is considered to be representative 
for a large share of Norwegian apartment buildings. The main research 
question is: How are the electricity flexibility KPIs of optimised EV charging 
in apartment buildings affected by different energy tariffs, PV, V2G, and the 
location of the billing meters? The contributions of this paper are as 
follows:  

1) Utilization of real-world data: Energy data from an apartment 
building with 1058 apartments and EV charging data from 35,000 
residential charging sessions are utilized in the case study.  

2) Optimised EV charging: Data for each individual charging session 
(such as energy demand, plug-in, and plug-out times) and for each 
EV (charging power and battery capacity) are employed to generate 
realistic outcomes aligned with current charging patterns.  

3) Billing meter structure consideration: The optimisation of EV 
charging considers the billing meter structure in apartment build
ings. In the simulation scenarios, the common electricity use (EV, PV, 
V2G) is measured separately or together with the electricity use in 
apartments. Additionally, energy and peak load tariffs are compared 
in the simulation scenarios.  

4) Insights and policy implications: Various scenarios involving load 
shifting of flexible EV charging provide insights into how these can 
impact the aggregated grid load and the self-consumption of PV 
electricity in residential neighbourhoods. 

The rest of the paper is structured as follows. Section 2 presents the 
selected case study and its energy system. Section 3 describes the 
methodology, including the scenarios for optimisation, the optimisation 
model, and the electricity flexibility KPIs. The results are summarized in 
section 4, followed by discussion and policy implications in Section 5. 
Section 6 provides recommendations and future work, before the 
conclusion in Section 7. 

2. The selected case study 

2.1. Introduction to the case study 

In this work, we aimed to select a case study which was represen
tative for a major share of Norwegian apartments. Per 2022, about 32 % 
of Norwegian residents (1.7 million) live in apartments, defined as either 
multi-dwelling buildings or linked houses with at least 3 dwellings [65]. 
The remaining residents mainly live in detached houses or houses with 
two dwellings. The selected case study is a large housing association 
located in the city of Trondheim. It includes in total 1058 apartments in 
121 low-rise apartment buildings, constructed in the 1970-ties, but has 
later been upgraded. Photos of the buildings are shown in Fig. 1. The 
floor area of the apartments varies from 53 to 107 m2 (1 to 4 bedrooms), 
and the total floor area for the entire stock of apartments is 93,713 m2. In 
2018, the housing association consisted of 2321 residents, with a diverse 
mix of genders and ages [66]. A comparison between apartments in the 
Norwegian building stock and the selected case study can be found in 
Table 2. 

2.2. Energy system and data 

An overview of the overall energy performance of the case study is 
presented in Fig. 2 and Fig. 3. These figures showcase energy mea
surements for electricity and heating within the case study apartments, 
alongside data for residential EV charging. Additionally, Fig. 3 includes 
simulated PV generation. The purpose of these figures is to effectively 
illustrate the impact of EV charging on each individual apartment within 
the scenario involving one EV per apartment. No energy management 
system is currently in place. 

Fig. 2 illustrates a year-long timeline featuring hourly outdoor tem
peratures, as well as the heating, electricity use in apartments, and EV 
charging. The energy loads are further described in the following sec
tions, including space heating and DHW (section 2.2.1), electricity use in 
apartments (section 2.2.2), flexible and non-flexible EV charging and 
other common electricity use (section 2.2.3). In Fig. 3, daily average 
energy profiles for the same energy loads are depicted, along with 
simulated energy generation for four alternative PV systems (further 
described in section 2.4). The energy profiles in Fig. 3 are displayed for 
the summer (June to August) and winter (December to February), 
segmented by workdays and weekends. A summary of energy KPIs for 
the case study is presented in Table 3, and are further described in the 
upcoming sections. The primary data period is from 2018 and therefore 
predates the COVID-19 pandemic. 

2.2.1. Space heating and DHW 
Heating is a large share of building energy use in Norway. At the 
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national level, it is estimated that about 78 % of the total energy use in 
households is for space heating and domestic hot water (DHW) [70]. In 
the case study, space heating and DHW constitute 72 % of the total 
delivered energy, when not including EV charging. For the case study 
apartments, heating is provided by district heating (DH), and the heat
ing system is described in [71]. Delivered DH to the apartments was 138 
kWh/m2 in 2018. Heating is dominating in the wintertime, with an 
average daily delivered energy of 51.1 kWh/apartment. The heat use is 
spread quite evenly during the day (in average 2.1 kWh/h), but with a 
morning peak at around 08:00 during weekdays (in average 2.9 kWh/h), 
as shown in Fig. 3. During the summer months, the average daily 
delivered energy is reduced to 13.1 kWh/apartment, and with an 
average morning peak of 0.9 kWh/h at around 08:00. The morning 
peaks and the heat use during summer are mainly related to DHW use. 
DHW was metered in one of the sub-districts (74 apartments) in the case 
study in 2021 and 2022, and we found in average 8.3 kWh/apartment/ 
day of delivered heat for DHW. 

2.2.2. Electricity use in apartments 
Electricity use in the apartments is metered behind billing meters in 

each apartment. Analysing electricity data from 505 of the apartments, 
the average daily energy use was found to be 14.3 kWh/apartment 
(standard deviation (SD) 8.5 kWh/apartment) during winter and 10.4 
kWh/apartment during summer (SD 6.4 kWh/apartment). For hourly 
peak values, this is in average 1.4 kW during winter (SD 0.8 kW) and 1.1 
kW during summer (SD 0.7 kW). During afternoons and evenings, 
electricity use increased by around 50 % compared to mid-day and 
roughly doubled compared to nighttime. 

In 2018, the average electricity use in the apartments in our case 
study was 51 kWh/m2, or 4527 kWh per apartment (505 units). In Fig. 4, 
we have compared this to the electricity use in 4 other cases studies of 
Norwegian apartment buildings where hourly electricity data was 
available from the research project COFACTOR [72]. Fig. 4 shows the 
daily electricity use as a function of outdoor temperature. For the 
apartment buildings with Apt. ID 1 to 4, the average electricity use in the 
apartments varied from 37 to 53 kWh/m2/year, corresponding to 
2868–4551 kWh per apartment. There is a significant seasonal differ
ence in the electricity use, showing higher use with cold temperatures, 
even though all of the buildings use thermal energy for heating. We may 
assume that the difference is partly caused by electric floor heating in 
the bathrooms, and partly caused by higher electricity use for lighting 
and indoor activities during the winter. 

2.2.3. EV charging and other common electricity use 
Common electricity use in the case study includes EV charging in the 

garages and other electricity use in common areas (both indoor and 
outdoor). Excluding the electricity use in garages, we found that other 
common electricity uses accounts for a relatively small share of the total 
energy use in the case study (1 %). 

In our study, we use an extended dataset for EV charging, including 
residential EV charging data from 12 residential locations in Norway 
(including the case location). The EV charging data is described in [30], 

Fig. 1. Photos of apartment buildings in the case study.  

Table 2 
The Norwegian building stock and the selected case study.   

Apartments in the Norwegian 
building stock 

Selected case study 

Building 
category 

Multi-dwelling buildings or 
linked houses with at least 3 
dwellings: 37 % of dwellings  
[67]. 

Low-rise apartment buildings 
with in average 8.7 dwellings 
per building. 

Construction 
year 

Before 1970: 35 %, between 
1971 and 2000: 31 %, after 
2001: 33 % [67]. 

1970–1973. Renovations 
1993–1998 (insulation and 
windows) [68]. 

Floor space 
area 

70 % have floor space between 
50 and 120 m2 [69]. 

In average 88.6 m2 per 
apartment. 

Residents, 
average 

1.8 residents per household  
[65]. 

2.2 residents per household.  

Fig. 2. Hourly energy loads in Norwegian apartment buildings during a year, with 1 EV per apartment.  
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and is based on EV charging reports with energy and time information 
for 35,000 EV charging sessions and 271 EV users. In [30], a charging 
power for each individual EV user is predicted, and the session energy is 
distributed hourly for each EV charging session. In the case of uncon
trolled EV charging, the session energy is distributed hourly starting 

from the plug-in time. 
The electricity use for EV charging shown in Fig. 2 and Fig. 3 is 

divided into flexible and non-flexible EV charging. About 25 % of the EV 
charging sessions have idle times less than 1 h (35 % less than 3 h) and 
may consequently be considered as non-flexible EV charging (in average 
1.2 kWh/day). The flexible EV charging (in average 4.6 kWh/day) has in 
average 9.3 h idle time, and may therefore be shifted to other hours 
within the connection period, without necessitating changes in user 
behaviour. 

2.3. Comparison of power and energy use for apartments and EVs 

Fig. 5 shows histograms for annual and maximum hourly electricity 
use for each of the apartments and EVs, not including heating and other 
common energy use. The histograms are based on hourly measurements 
for electricity and heat use in about 500 apartments, together with the 
large dataset of residential EV charging (271 EV users). The energy 
histogram illustrates how the average annual electricity use in the 
apartments is about twice as large as the electricity use for EV charging. 
Adding average EV charging to average electricity use in apartments, the 
total energy use is increased by a factor 1.5 compared to electricity use 
in apartments alone. The power histogram in Fig. 5 shows how the 

Fig. 3. Daily average energy profiles for Norwegian apartment buildings, with 1 EV per apartment.  

Table 3 
Energy KPIs for the apartment building of the case study.   

Delivered energy (kWh/apt/year) Delivered energy (kWh/m2/year) Energy share 

Space heating and DHW 12 200 138 63 % 
Electricity use in apartments 4 527 (SD 2 283) 51 24 % 
EV charging (1 EV/ 

apartment) 
2 314 (SD 1 445) 25.5 12 % 

Other common electricity use 250 2.8 1 %  
Energy generation (kWh/apt/year) Self-consumption (Self-sufficiency): PV to Apt and EV Self-consumption (Self-sufficiency): PV to EV only 

PV roof 1 kWp: 
2.5 kWp: 

754 
1 885 

98 % (11 %) 
75 % (21 %) 

51 % (17 %) 
29 % (24 %) 

PV façade 1 kWp: 
2.5 kWp: 

799 
1 998 

96 % (11 %) 
65 % (19 %) 

43 % (15 %) 
23 % (21 %)  

Fig. 4. Daily electricity use in 5 apartment associations, as a function of out
door temperature. 
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maximum hourly electricity use for EV charging often is higher than the 
hourly electricity use in the apartments. The three peaks for EV charging 
in the power histogram illustrates the typical charging power levels for 
home charging in Norway, i.e. approximately 3.5 kW, 7 kW, and 11 kW 
[30]. In our case study, we found that approximately 46 % of the EVs 
used a charging power of 3.5 kW, 38 % used a charging power of 7 kW, 
and 16 % used a charging power 11 kW. The charging power of these 
EVs is typically limited by the onboard charging power. New EVs nor
mally have a higher onboard charging power, and the charging power is 
more frequently limited by the CP [30]. Adding a charging power 7 kW 
to the average maximum power of 1.4 kW per apartment, results in a 
maximum power increase by a factor 6. 

2.4. Simulated PV generation and self-consumption 

PV generation in apartment buildings vary with PV size, location, 
and weather conditions. As there are no PV systems connected to the 
buildings in our case study, we have simulated the PV electricity that 
could be generated by PV systems on the buildings. In general, there are 
few examples of PV systems in Norwegian apartment buildings, since the 
regulations did not allow sharing of electricity across billing meters until 
2023. The residential PV systems currently installed in Norway are 
therefore mainly installed on detached houses. For the buildings in our 
case study, the available PV area on the roofs is estimated to be in the 
range of 4 kWp per apartment (estimated for 12 of the buildings/117 
apartments, using the commercial solar map [73]). Since the economic 
potential for PV normally is smaller than the technical potential [74], we 
have chosen to focus on PV sizes of 1 kWp and 2.5 kWp per apartment. 
Two alternative PV system are simulated: A rooftop system with 15◦ tilt 
orientated east and west, and a façade system with 90◦ tilt orientated 
south. The PV generation is simulated in [60], using the software PVsyst 
[75] and with climate data from 2018. The global radiation in Trond
heim in 2018 (870 kWh/m2) is higher than the Trondheim average from 
2016 to 2022 (827 kWh/m2), but lower than the Oslo average (953 
kWh/m2) [76]. 

For the simulated PV generation, we found some significant varia
tions between the roof-mounted and façade-mounted PV systems with 
respect to the annual and daily energy profiles. In summer, the roof- 
mounted east–west system outperformed the south-facing façade- 
mounted system, generating an average of 4.0 kWh/kWp/day compared 
to 2.9 kWh/kWp/day, respectively. Conversely, in winter, the façade- 
mounted system delivered an average of 1.0 kWh/kWp/day compared to 
0.3 kWh/kWp/day for the roof-mounted system. 

The KPIs for self-consumption in Table 3 are based on hourly values, 
showing how PV generated electricity is utilised directly by electricity 
loads in apartments and for EV charging. The self-consumption of PV 
from the roof-mounted systems are slightly higher than those from the 

façade-mounted systems. This is mainly due to the fact that the roof 
mounted PV generates more electricity than the façade system during 
morning and afternoons, when there is high energy need in the apart
ments, as shown in Fig. 3. By increasing the size of the roof-mounted PV 
system from 1 to 2.5 kWp per apartment, the self-consumption is 
reduced from 98 % to 75 %. By using generated PV electricity for EV 
charging only, the self-consumption is reduced from 51 % to 29 %, 
accordingly. Since a minority of the uncontrolled EVs are charging 
during daytime, the self-sufficiency of the generated electricity reaches a 
maximum of 24 % for the PV systems illustrated in Fig. 3 (roof-mounted 
system with capacity 2.5 kWp/apartment). 

2.5. Data selection for optimisation of residential EV charging. 

Table 4 gives an overview of the data used in the optimisation. Since 
the main focus of the work is electricity flexibility, energy for space 
heating and DHW were not included in the data selection. EV charging 
data from 82 EV users were used in the analysis, with a full year of EV 
data. Electricity data from 117 apartments were included in the analysis, 
assuming that 70 % of the apartments were equipped with an EV. The EV 
rate per apartment is based on the available parking spaces for EV 
charging in the case study, where a common infrastructure for EV 

Fig. 5. Histograms with annual energy use (left) and maximum power (right) per EV and per apartment.  

Table 4 
Input data used in the optimisation.  

Data Description Data selection 

Heating in 
apartments 

Space heating and DHW are 
provided by district heating. 

Not included. 

Electricity in 
apartments 

Electricity use in apartments in 
2018, metered behind billing 
meters in each apartment [78]. 

Hourly data for 117 
apartments. 

EV charging Dataset of residential EV 
charging from [30], with 271 
EV users and 35,000 EV 
sessions in 12 residential 
locations in Norway, 
monitored from February 2018 
to August 2021. Input data 
from EV charging reports: User 
ID, session ID, plug-in time, 
plug-out time, connection time 
(h), energy charged (kWh). 

Predicted hourly EV charging, 
based on EV data for 82 EV 
users with full year data, pre- 
covid time period, transformed 
to fit 2018. 

Other 
common 

Other common electricity uses 
in the case study in 2018 [78]. 

Not included. 

PV electricity Simulated PV electricity 
generation [60], with climate 
data [76] from 2018. Location: 
Trondheim (Latitude 63.39◦ N, 
Longitude 10.44◦ E, Altitude 
116 m). 

117 kWp roof (1 kWp/apt).  
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charging was installed in 2018. In total it is possible to activate up to 764 
CPs on the parking spaces, used by residents from 1113 apartments. The 
assumption of 70 % parking spaces for EVs is in line with the parking 
norms in Trondheim city (min. 0 to 0.84 parking spaces per 100 m2 

apartment building area [77]). For PV generation, the optimisation in
cludes the roof-mounted PV system with capacity 1 kWp per apartment. 

3. Methodology 

3.1. Scenarios for the optimisation 

The research question of this study was addressed through a behind- 
the-meter optimisation of residential EV charging. The reference sce
narios illustrate uncontrolled EV charging in the apartment buildings, 
while the simulated scenarios demonstrate a time-shifted approach for 
EV charging, with static electricity use in the apartments. Such EV 
charging control can be implemented using a common energy man
agement system, designed to interfere as little as possible with the res
idents’ habits. In all the scenarios, the electricity use for EV charging and 
the electricity use in apartments are included as key components. The 
scenarios for optimisation are developed considering two grid tariffs 
options, two billing meter locations, and two technology options 
(whether PV or V2G is included), as shown in Fig. 6. This makes in total 
16 scenarios, as listed in Table 5. 

In Norway, there is an ongoing discussion regarding the most 
effective tariff structure to incentivize end-user flexibility. Presently, 
residential customers are charged based on a combination of hourly spot 
prices, a monthly peak load tariff, and fixed costs. To evaluate the effect 
of different tariff structures, all the scenarios are analysed with the 
optimisation model using either the energy or peak tariff option. The 
tariffs that were used are described in Table 6, and are based on the 
tariffs that were used in the location of the case study in 2018 [79]. With 
the energy tariff option, it is favourable to charge the EVs during hours 
with low spot prices. The peak load tariff option also takes the hourly 
spot prices into account, in addition to reducing the monthly peak load. 
The optimisation was limited to the operational phase, so investment 
costs were not included. 

Two billing meter locations are included. For the meter location 
labelled ’Separate’, the electricity use in the apartments is measured 
separately from the common electricity use (EV, PV, V2G), and is not 
considered in the optimisation. Additionally, a common billing meter 
measures the shared energy systems, including EV, PV, and V2G. This 
billing meter option is most similar to the real-world billing location 
used in Norway. The option labelled ’Total’ has a single billing meter for 
all energy options: EV, Apt, PV and V2G, meaning that the electricity use 
in the apartments is taken into account for the optimised control. 

The technology options considered are ’PV systems’ and ’V2G 
technology’. For PV generation, it is more profitable to use the generated 
electricity for energy uses behind the billing meter, compared to 

exporting the electricity to the grid. For V2G technology to be profitable, 
the cost reduction related to using V2G needs to be higher than the cost 
of charging, due to the round-trip efficiency losses [80]. It is most 
profitable to use the discharged electricity behind the billing meter, 
compared to exporting the electricity. 

In this study, our primary focus is to examine the impact of flexible 
EV charging on the KPIs in various scenarios. Given the diverse range of 
optimised scenarios, involving different energy/peak tariffs, variations 
in the location of billing meters, and the presence of PV/V2G, several 
reference scenarios are needed to isolate the effect of EV charging in the 
performance. All the reference scenarios include uncontrolled EV 

Fig. 6. Overview of the options in the optimisation scenarios.  

Table 5 
Overview of scenarios for the optimisation.  

Ref Ref Uncontrolled EV charging in apartment buildings 
RefPV Uncontrolled EV charging in apartment buildings with PV- 

systems 

EV-Apt ENsep EV charging optimised with 
energy tariffs. 

EVs are metered separately 
from apartments. 

ENtot EV charging optimised with 
energy tariffs. 

EVs + apts. are metered 
together. 

PKsep EV charging optimised with 
peak tariffs. 

EVs are metered separately 
from apartments. 

PKtot EV charging optimised with 
peak tariffs. 

EVs + apts. are metered 
together. 

EV-Apt- 
PV 

ENsep
PV EV charging optimised with 

energy tariffs. 
EVs + PV are metered 
separately from apts. 

ENtot
PV EV charging optimised with 

energy tariffs. 
EVs + PV + apts. are 
metered together. 

PKsep
PV EV charging optimised with 

peak tariffs. 
EVs + PV are metered 
separately from apts. 

PKtot
PV EV charging optimised with 

peak tariffs. 
EVs + PV + apts. are 
metered together. 

EV-Apt- 
V2G 

ENsep
V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs are metered separately 
from apts. 

ENtot
V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + apts. are metered 
together. 

PKsep
V2G EV charging + V2G 

optimised with peak tariffs. 
EVs are metered separately 
from apts. 

PKtot
V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + apts. are metered 
together. 

EV-Apt- 
PV- 
V2G 

ENsep
PV,V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + PV are metered 
separately from apts. 

ENtot
PV,V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + PV + apts. are 
metered together. 

PKsep
PV,V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + PV are metered 
separately from apts. 

PKtot
PV,V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + PV + apts. are 
metered together.  
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charging, with charging immediately after plug-in. When PV generation 
is included in a scenario, it is also included in the reference scenario. 
Since the tariff options and billing meter locations make an impact on 
the operational costs also for the reference scenarios, they are included 
in the reference scenarios as well. 

3.2. Optimisation model 

The optimisation problem is solved using Mixed Integer Linear Pro
gramming (MILP), with the optimisation model developed in [81]. 
Within the model, each EV charging session is simulated separately in an 
optimal manner, respecting the real-world values of energy demand for 
charging sessions, and related plug-in and plug-out times. The main 
objective of the optimisation is to minimize the energy costs in the 
operational phase, as described in Eq. (1), where the total operational 
electricity costs Ctot is the sum of annual fixed costs Cfxd, the import cost 
cimp (bought electricity) and the export income cexp (sold electricity). The 
import cost (Eq. (2)) varies for each month m and timestep t, and in
cludes energy fees, monthly peak load tariff (if included in the scenario), 
and hourly spot prices. The export income (Eq. (3)) includes hourly spot 
prices and a prosumer compensation. 

min Ctot = Cfxd +
(
cimp − cexp)

(1) 

where 

cimp =
∑

m∈M

∑

t∊Tm

(Ceno + Ccons

+ Ctrans)yimp
t + δpeak(

Cpty
m ymax imp

m

)
+ Pspot

t yimp
t CVAT ) (2)  

cexp = Pspot
t yexp

t (1 + Ccomp) (3) 

The optimisation is subject to constraints. The energy balance con
straints are described in Eqs. (4)–(6). Eq. (4) describes how imported 
electricity each hour yimp

t is the sum of electricity to the apartments yapt
t 

and the common electricity use ycmn
t . Eq. (5) describes how the common 

electricity use is the sum of the electricity charged and discharged for 
every EV, the generated PV electricity, and the electricity exported to 
the grid. In this work, the electricity use in the apartments is not 
considered to be flexible, and is set equal to the electricity demand of the 
apartments DEL

t , as shown in Eq. (6). Depending on the location of the 
billing meter, as described in section 3.1, the on-site PV electricity 
generation and the V2G electricity can be used for EV charging only 
(boolean δapt = 0), or for the whole building, including both EV charging 
and the apartments’ energy demand (boolean δapt = 1). 

yimp
t = (1 − δapt)yapt

t + ycmn
t , ∀ t ∈ T (4)  

ycmn
t − yexp

t =
∑

v∈V

(
ych

v,t − δV2Gydch
v,t ηdch

)
+ δaptyapt

t − δPV YPV
t , ∀ t ∈ T (5)  

yapt
t = DEL

t , ∀ t ∈ T (6) 

The charging and discharging of each EV, v, are described in Eqs (7) 
and (8), where ΛEL

v,t is the availability of the EV at time step t (boolean), 
EVlim

v is the fixed charging power per EV, and δch
t is a boolean that has a 

value of 1 when the EV is charging. Eq. (9) ensures that the energy 
charged within a charging session is greater or equal to the reference 
charging demand (UNC). Eq. (10) ensures, for each charging session e, 
that the net charging (charging minus discharging) is greater or equal to 
the total demand of the charging session. Allowing V2G activates dis
charging of the EVs. Eq. (11) restricts the energy content of the battery at 
any hour t to be within the limits of its available SoC capacity, for EVs 
connected to the CP, ΛEL

v,t . Eqs. (12) and (13) reflect the energy balance of 
the battery. Battery degradation is not included in the model. The values 
of all Λ s and δs are predefined according to real world data and/or 
scenario option, prior to running the model. 

ych
v,t ≤ ΛEL

v,t EVlim
v δch

t , ∀t ∈ Te (7)  

ydch
v,t ≤ δV2GΛEL

v,t EVlim
v (1 − δch

t ), ∀t ∈ Te (8)  

ych
v,t ≥ δUNCDEV

v,t , ∀t ∈ Te (9)  

∑

t∊Te

(ych
v,t − ydch

v,t ) ≥ DEV
v,e , ∀e ∈ E, ∀v ∈ V (10)  

zsoc
t ≤ 100% × ΛEL

v,t , ∀t ∈ Te (11)  

zsoc
t = zsoc

t−1 +
ych

v,t

EVbat
v

× 100% × ηch −
ydch

v,t

EVbat
v

× 100%, ∀e ∈ E, ∀v ∈ V (12)  

zsoc
t = zsoc

init +
ych

v,t

EVbat
v

× 100% × ηch −
ydch

v,t

EVbat
v

× 100% (13)  

3.3. Selection of energy flexibility indicators for characterizing electricity 
flexibility of aggregated EV charging in the case study 

Different stakeholders, such as end-users, aggregators and grid op
erators, require different kinds of flexibility indicators [86]. While end- 
users often aim to reduce their total energy costs, grid operators need to 
know the aggregated flexibility potential of a building stock. There is a 
lack of consensus and standardization about the quantification of energy 
flexibility in buildings [56,86,87]. The authors of [87] recommend that 
several methodologies should be tested when quantifying energy flexi
bility for a specific case study. In our case study, energy flexibility in
dicators from [6,83,84] are tested on the case study data, with equations 
and definitions as listed in Table 7. 

The Energy flexibility indicators from [6] are based on a systematic 
review of energy flexibility KPIs for residential buildings. The energy 
flexibility KPIs used in our case study are listed by [6] as the five most 
popular KPIs found in literature, and include peak power reduction, self- 
consumption and self-sufficiency of locally generated energy, flexibility 
factor (FF), and flexibility index (FI). The FF indicates a quantity of 
energy during high load versus low load hours. Often the FF is used to 
describe the flexibility of heating systems [6,82,88], but it can also be 
used to describe different aspects of flexible EV charging [89]. In our 
study, FF is used to describe the capability to shift EV charging to periods 
with low load (21:00 to 6:00), to periods with PV generations, or to low- 
cost periods (below monthly median spot price). The FF values range 
from 1 to −1, where use during only low load hours gives a quantity of 1 
(highest flexibility), and use during only high load hours gives a quantity 
of −1. The FI is the percentage of the operation cost with optimised 

Table 6 
Tariff options: Energy and Peak per month. VAT is included in all prices.     

Energy 
(EN) 

Peak (PK) 

Grid Cfxd Fixed cost, apartments [NOK/year] 1875 1875  
Cfxd Fixed cost, garage [NOK/year] 10,000 10,000  
Ceno Enova tariff [NOK /kWh] 0.0125 0.0125  
Ccons Consumer tariff [NOK /kWh] 0.20725 0.20725  
Ctrans Energy transport tariff [NOK /kWh] 0.20625 0.0625 

Peak Cpty
m Peak load tariff (Jan,Feb,Nov,Dec) 

[NOK/month/kW] 
0 75  

Cpty
m Peak load tariff (Mar-Oct) [NOK/ 

month/kW] 
0 56.25 

Energy Pspot
t Spot price at hour t [NOK/kWh] Spot 

(2018) 
Spot 
(2018) 

PV  Self-consumed PV-electricity [NOK/ 
kWh] 

0 0  

cexp Exported electricity from PV or V2G 
(Jan,Feb,Nov,Dec) [NOK/kWh] 

Spot x 
1.065 

Spot x 
1.065  

cexp Exported electricity from PV or V2G 
(Mar-Oct) [NOK/kWh] 

Spot x 
1.05 

Spot x 
1.05  

Å.L. Sørensen et al.                                                                                                                                                                                                                             

139



Energy & Buildings 305 (2024) 113878

10

control, compared to a reference case. 
The Research Centre on Zero Emission Neighbourhoods in Smart 

Cities (FME ZEN) [90] is developing a ZEN KPI assessment tool to 
monitor the performance of a neighbourhoods. Within the Power- 
category in ZEN, the KPIs refer to the energy flows between the neigh
bourhood and energy grids in the operational phase [83,84]. Four KPIs 
present the difference between a reference case and a case with flexible 
operation: Delivered energy difference, operational cost difference, en
ergy stress difference, and peak load difference. In our case study, the 
four flexibility KPIs are summarised in a graph, showing the effect of the 
KPIs together, as proposed by [83,84]. These KPI graphs include two of 
the indicators from [6] described above; peak power reduction (named 
peak power difference) and FI (named operational cost difference). In 
our study, the peak power difference and operational cost difference are 
presented with a negative sign when there is a reduction (similar to 
[83,84], opposite to [6]). 

4. Results 

This section presents the results from the optimisation scenarios. 

4.1. Uncontrolled EV-charging (Reference scenarios) 

Fig. 7 shows the average daily load profiles for the reference sce
narios. The load profiles include electricity use in the apartments, un
controlled EV-charging, and alternatives with and without PV 
generation. The lines representing the net delivered electricity in the 
figures (“Grid”) were calculated by subtracting the hourly PV generation 
from the total hourly electricity use (including electricity use in apart
ments and EV charging). Consequently, net delivered electricity repre
sents the aggregated grid load for the apartment buildings, summarizing 
all the billing meters. Table 8 presents the reference scenarios, including 
the absolute values used to calculate the KPIs for the optimised sce
narios. For the two reference scenarios with PV, the different metering 
locations result in varying quantities of imported and exported energy, 
while the net delivered electricity to the apartment buildings remains 
constant. The operational costs are influenced by the applied tariffs 
(energy tariff EN or peak tariff PK), and the placement of billing meters 
(tot or sep). These distinctions are captured in the reference scenarios, so 
the effects of optimised EV charging can be evaluated specifically, 
without simultaneously considering the other differences between the 

Table 7 
Energy flexibility indicators used in the case study analysis, calculated over a period of one year.  

Energy flexibility KPIs from [6] Equation eq. nr Ref. 
case  

Peak power (kW) Ppeak   Power demand during peak hour. 

Peak power 
reduction (%) 

ΔP% = 1 −
Ppeak flexible

Ppeak ref 

(14) Yes Percentage of reduced power demand during peak hour due to the optimised control, taking the total 
reference power into account. 

Self-consumption 
(%) 

SC =

PV generation directly consumed
total PV generation 

(15) No SC: The share of PV generation that is used behind the same billing meter (“sep”: For EV charging, 
“tot”: For apartments and EV charging). SCEV: SC for EV charging only. 

Self-sufficiency (%) SS =

PV generation directly consumed
Energy use 

(16) No SS: The share of the energy use that is covered by PV generation (behind the same billing meter). 
SSEV: SS for EV charging only. 

Flexibility factor 
FF =

(
Elow load − Ehigh load

)

(
Elow load + Ehigh load

)
(17) No FFEV-low: EV charging during low load hours versus high load hours. As in [82], the low demand 

hours were defined as between 21:00 and 6:00 the following day. 
FFEV-PV: EV charging during hours with PV generation (representing Elowload) versus EV charging with 
electricity from the grid (representing Ehighload). 
FFEV-cost: EV charging during periods with low spot prices compared to EV charging during periods 
with high spot prices. As in [82], the low and high spot price hours were defined as the hours when 
the spot price was below and above the monthly median. 

Flexibility index 
(%) FI = 1 −

(
Costflexible

)

(
Costref

)
(18) Yes The operation cost with optimised control, compared to the reference case. 

Energy flexibility KPIs from [83,84] Ref. 
case  

Peak power 
difference (%) 

−ΔP% (19) Yes The difference in peak power, compared to the reference case. Equation (19) equals (14), but (14) is 
positive when there is a reduction and (19) is negative. 

Energy stress hours 
difference (%) 

ΔEstress% =
Estressflexible

Estressref 

(20) Yes The difference in delivered energy during hours that are predefined as stressful for the energy system. 
In Norway, this is typically in the morning (7:00–11:00) and afternoon (17:00–19:00) [85]. In this 
case-study, the period 17:00–19:00 is selected, since this is a period with peaks in both apartment 
electricity use and residential EV charging. 

Delivered energy 
difference (%) 

ΔE% =
Eflexible

Eref
−1 (21) Yes The difference in delivered energy with optimised control, compared to the reference case. 

Operational cost 
difference (%) 

Δcost% =
costflexible

costref
−1 = −FI  (22) Yes The difference in operational cost due to energy use with optimised control, compared to operational 

cost due to energy use in the reference case.  

Fig. 7. Average daily profiles for uncontrolled EV-charging, without PV (left) and with PV (right).  
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scenarios. 
The average daily peak is about 125 kW for the reference scenarios, 

both with and without PV. EV charging comprises 24 % of the average 
energy load during the year. The yearly peak load is 219 kW, occurring 
in January from 17:00 to 18:00, whereof uncontrolled EV charging 
contributes to 48 % of the peak. Annual delivered energy during stress 
hours (17:00–19:00) is 90 MWh in the reference scenarios without PV, 
whereof 30 % is related to EV charging. The flexibility factor value, FFEV- 

low, is −0.08 for uncontrolled EV charging during low/high-load hours, 
as shown in Fig. 8. For the reference scenarios with PV, the delivered 
energy during stress hours is reduced from 90 to 81 MWh. The FFEV-PV 
value is −0.64, indicating that only a small proportion of the uncon
trolled EV charging is supplied by PV generation. The self-consumption 
of PV is 38 % in Refsep

PV , when the generated PV electricity is used for EV 
charging only (metering location “separate”). When PV generation, EV 
charging, and apartments electricity use are metered together (metering 
location “total”), the self-consumption increases to 98 %. The FFEV-cost 
value is −0.02, for charging during low/high-cost periods. 

For the operational costs, we found small differences between the 
reference scenarios. The operational costs for the reference scenario 

with peak tariffs, RefPK, is 2 % higher than for the reference scenario 
with energy tariffs, RefEN. For the scenarios with PV generation, the 
operational costs depend on if the generated PV electricity is used on-site 
or exported. When EV charging and PV generation are metered sepa
rately from apartment electricity use (Refsep

PV ), the operational costs are 
about 3 % higher than when also apartment electricity use is behind the 
same meter (Reftot

PV). 

4.2. Optimised EV charging and energy loads in apartments (“EV, Apt” 
scenarios) 

Fig. 9 and Fig. 10 show average daily load profiles for the scenarios 
when the EV charging is optimised according to energy and peak tariffs 
(not including PV or V2G technologies). Fig. 11 presents the KPIs for the 
scenarios, with peak power difference, energy stress hours difference, 
delivered energy difference, and operational cost difference. 

When EV charging is controlled according to energy tariffs, named 
EN, a large share of the EV charging is moved to the night-time, when the 
hourly spot prices are lower. The average daily load profile in Fig. 9 
shows how this shifting creates a new peak during the night. We found a 

Table 8 
Reference scenarios.   

Energy use 
(MWh) 

PV generation 
(MWh) 

Net delivered 
electricity (MWh) 

Imported from 
grid (MWh) 

Exported to grid 
(MWh) 

Energy, stress 
hours (MWh) 

EV charging 
(MWh) 
Low load 
High load 

EV 
charging 
(MWh) 
Low price 
High price 

Cost 
(kNOK) 
EN 
PK 

Ref 760 – 760 760 – 90 85 
99 

90 
93 

956 
976 

Refsep
PV 760 88 672 727 55 81 85 

99 
90 
93 

897 
922 

Reftot
PV 760 88 672 673 2 81 85 

99 
90 
93 

870 
902  

Fig. 8. Flexibility Factors and annual peak power for the scenarios.  
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yearly peak of 289 kW at night (02:00), which is 32 % higher than for the 
yearly peak in the reference scenarios, which occurred in the afternoon 
(17:00). Energy use during stress hours (17:00–19:00) is reduced by 20 
% compared to the reference scenarios. FFEV-low is improved from 
−0.08 to 0.41, since a larger share of the EV charging occurs during low 
demand hours (21:00 to 6:00). 

The shift in EV charging is triggered by the fact that the spot prices 
are different, not the magnitude of the difference. All flexible EV 
charging is therefore shifted to the cheapest hours, even if the profit for a 
certain day is small. In the case study period (2018), the differences in 
spot price were quite small, and the ΔCost was only −1%, compared to 
the reference scenarios with energy tariffs. As illustrated in Fig. 8, the 
FFEV-cost value increases from −0.02 to 0.54, showing how energy is 
shifted from periods with high spot prices to low spot prices. For the 
scenarios with energy tariffs, the location of the billing meters (separate 

or total) does not change the daily profile. 
When controlling EV charging according to peak-tariffs, i.e. the 

scenarios labelled PK, the EV charging is optimised to reduce the 
monthly peak. In addition, hourly spot-prices are considered in the PK 
scenarios. In Fig. 10, the average daily profiles for PKsep and PKtot are 
presented. For these scenarios, the location of the energy meter affects 
the results. When EV charging is metered separately from electricity use 
in apartments (PKsep), the EV charging is spread nearly evenly through 
the day, and the total yearly peak is 161 kW. When there is a single 
meter for both EV charging and apartment electricity use (PKtot), a larger 
share of the flexible EV charging is moved to the night-time, and the 
yearly peak is reduced to 133 kW, 39 % lower than for the reference 
scenarios. Compared to the reference scenario, we found that the sce
narios PKsep and PKtot show a reduction of the energy use during stress 
hours by 15 % and 21 % respectively. The ΔCost is −3% for PKsep and 

Fig. 9. Average daily profiles: “EV, Apt”-scenarios with energy tariffs.  

Fig. 10. Average daily profiles: “EV, Apt”-scenarios with peak tariffs.  

Fig. 11. Energy flexibility KPIs for the “EV, Apt”- scenarios.  
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−5% for PKtot, compared to the reference scenario with peak tariffs. The 
amount of shifted energy is reflected in the values for FFEV-low and FFEV- 

cost (Fig. 8), where FFEV-low is improved from −0.08 to 0.37 and FFEV-cost 
is improved from 0.17 to 0.5, going from the PKsep scenario to the PKtot 

scenario. 

4.3. Optimised EV charging, energy loads in apartments, and PV (“EV, 
Apt, PV” scenarios) 

In this section, PV technology is added to the scenarios, combining 
optimised EV charging, energy loads in apartments, and PV generation. 
The energy flexibility KPIs are summarized in Fig. 12. It is economically 
beneficial to increase the self-consumption of generated PV electricity, 
since this energy is free of charge in the operational phase. With separate 
metering, flexible EV charging is therefore moved to daytime for both 
energy and peak scenarios. Since a majority the EVs are disconnected 
during daytime, the share of the EV charging which could be moved to 
sunny hours is limited. With separate metering, the self-consumption of 
PV electricity is 72 % for both ENsep

PV and PKsep
PV , using generated PV 

electricity for EV charging only. When EV charging, PV generation and 
apartment electricity use are metered together (ENtot

PV and PKtot
PV), the self- 

consumption of PV increases to 100 %, because the PV electricity is also 
used in the apartments. However, in these scenarios, the flexible EV 
charging is not moved to daytime due to the introduction of PV, since the 
daytime electricity demand of the aggregated apartments exceeds the 
generated PV electricity. The shifting of the flexible EV charging is 
therefore similar to the scenarios without any PV, i.e. a shift of charging 
to hours with low spot prices. This is illustrated in Fig. 13, which shows 
the average daily profiles during summer for the scenarios with energy 
tariffs (ENsep

PV and ENtot
PV). The yearly peaks are the same as for the “EV, 

Apt”-scenarios, since these occur during the winter when there is little 
PV electricity generated. During summer, the average daily peaks are 
reduced from about 125 kW to 90 kW going from ENsep to ENsep

PV and from 
about 100 kW to 80 kW going from PKsep to PKsep

PV . This is reflected in the 
peak loads per month, and has a positive economic consequence for the 
peak-scenarios. 

4.4. Optimised EV charging, energy loads in apartments, and V2G (“EV, 
Apt, V2G” scenarios) 

In this section, V2G technology is included in the optimisation. The 
use of V2G technology has an operational cost due to the round-trip 
efficiency of 77 %, leading to an increased charging demand of 0.23 
kWh for every discharged kWh. The use of V2G technology therefore 
depends on the variations in energy prices during the connection time. It 

has to be economical beneficial to discharge energy from the EV batte
ries during hours with higher spot-prices, before charging a higher 
amount of energy during hours with lower spot-prices. Since 2018 was a 
year with small variations in daily spot-prices, our results show limited 
use of V2G in the energy tariff-scenarios during this period. For the 
scenario ENsep

V2G, we found that only 11 526 kWh was discharged during 
the year, while 33 191 kWh was discharged for the scenario ENtot

V2G, i.e. 
when also apartment electricity is placed behind the same meter. The 
reason for this is that there is a higher energy demand during the hours 
when V2G is profitable. For both scenarios (ENsep

V2G and ENtot
V2G), the 

discharged energy is more than doubled when using the 2021-spot pri
ces for the Oslo-region, which had more daily variations. Fig. 14 shows 
the “EV, Apt, V2G”-scenarios with energy tariffs during the winter sea
sons, which is the seasons with the largest spot price differences. Spot 
prices in 2018 are compared with spot prices in 2021, showing how the 
larger spot price variations in 2021 led to an extended use of V2G. When 
V2G technology is utilised with energy-tariffs, the daily peaks during 
night-time increased (from 289 kW with ENtot to 299 kW with ENtot

V2G), 
since the charging demand is increased by the round-trip efficiency. The 
total energy use due to the round-trip efficiency increased by 1 %, 
comparing the reference scenario with ENtot

V2G scenario. 
The results also show that there is not much difference between the 

peak-scenario with separate metering (PKsep
V2G), and the scenario without 

V2G (PKsep), since the charging demand is already more or less flat 
during the days with monthly peaks (3 700 kWh discharged). When 
apartment electricity is included (PKtot

V2G), V2G technology is used more 
(18 828 kWh discharged), to shift electricity from afternoons during the 
days with highest peaks during the month, and thereby reduce the 
monthly peaks. Fig. 15 shows the average daily profiles during winter 
for PKsep

V2G and PKtot
V2G (2018-tarrifs). The energy flexibility KPIs for the 

“EV, Apt, V2G”- scenarios are shown in Fig. 16, with FF-values in Fig. 8. 

4.5. Optimised EV charging, energy loads in apartments, PV, and V2G 
(“EV, Apt, PV, V2G” scenarios) 

In this section, both PV generation and V2G technology are included 
in the scenarios. The average daily profiles are shown in Fig. 17 and 
Fig. 18, and energy flexibility KPIs in Fig. 19. For the scenarios with 
separate metering (ENsep

PV,V2G and PKsep
PV,V2G), the combination of PV and 

V2G increases the self-consumption of PV (increased to 83 %, from 72 % 
in scenarios with PV only). V2G technology provides electricity for 
charging other EVs during nighttime, followed by charging the EVs the 
day after, utilizing PV generated electricity. For the scenarios with one 
billing meter for the total electricity use (ENtot

PV,V2G and PKtot
PV,V2G), the 

Fig. 12. Energy flexibility KPIs for the “EV, Apt, PV”-scenarios.  
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self-consumption of PV electricity is 100 %, and the self-consumption 
KPI does not benefit from the V2G-PV combination. If the PV system 
had been larger, the self-consumption would have increased also for 
these scenarios. The scenario ENtot

PV,V2G uses V2G-technology more than 
PKtot

PV,V2G, mainly to shift EV charging until hours with low spot prices 
during the night. Compared to the “EV, Apt, PV” scenarios without V2G, 
the energy use during stress hours is reduced from –23 % to –32 % going 
from ENtot

PV to ENtot
PV,V2G, and from –22 % to −28 % going from PKtot

PV to 
PKtot

PV,V2G. 

5. Discussion and policy implications 

This section discusses the potential for electricity flexibility from EVs 
under various scenarios, and how coordinated EV charging in apartment 
buildings can affect the aggregated grid load and the self-consumption 
of PV electricity in residential neighbourhoods. 

5.1. How grid tariffs may impact the grid burden of residential EV 
charging 

Uncontrolled EV charging contributed 48 % to annual peak load in 

Fig. 13. Average daily profiles (summer): “EV, Apt, PV”-scenarios with energy tariffs.  

Fig. 14. Average daily profiles (winter): “EV, Apt, V2G”-scenarios with energy tariffs from 2018 and 2021.  
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Fig. 15. Average daily profiles (winter): “EV, Apt, V2G”- scenarios with peak tariffs.  

Fig. 16. Energy flexibility KPIs for the “EV, Apt, V2G”- scenarios.  

Fig. 17. Average daily profiles: “EV, Apt, PV, V2G”-scenarios with energy tariffs.  

Fig. 18. Average daily profiles: “EV, Apt, PV, V2G”-scenarios with peak tariffs.  

Å.L. Sørensen et al.                                                                                                                                                                                                                             

145



Energy & Buildings 305 (2024) 113878

16

our case study of apartment buildings with EVs. However, through 
optimised EV charging strategies, energy use during stress hours can be 
reduced. Yet, solely shifting flexible loads based on energy tariffs could 
induce new aggregated peaks. Implementing energy tariffs increased the 
annual peak for apartment buildings with EVs by up to 37 %. The peaks 
occurred during the night when there is typically less pressure on the 
grid. With energy tariffs, the billing meter location did not affect the 
load shifting. Peak per month tariffs reduced grid peaks by up to 39 %. 
With peak-tariffs, the peak loads for the total energy use (including EV 
charging and apartment energy) were about 20 % lower when the billing 
meter also included the apartment electricity use (in addition to EV 
charging). 

Considering the practical implementation EV charging management, 
energy tariffs offer the advantage of simplicity, as spot prices are known 
the day-ahead, requiring no coordination with other EVs or building 
loads. Optimising EV charging loads according to peak tariffs is more 
challenging, as monthly peak values are not known in advance. In our 
study, the annual optimalisation of EV charging resulted in savings of up 
to 800 NOK per EV. Flexible energy loads were shifted to the most cost- 
effective hours, even when the price differences between hours (for spot) 
or between peak power levels (for peak) were small. However, building 
owners may hesitate to invest in energy management systems if the 
economic benefits are limited. 

5.2. Self-consumption of PV electricity 

Self-consumption of PV electricity is economical beneficial for 
building owners and aids to reduce high feed-in power to the grid. With 
uncontrolled EV charging, little residential EV charging will be covered 
by PV generation (18 % in our study), since few EVs are charging during 
the daytime. Most of the “PV-to-EV” therefore happens during the 
weekends, since the EVs then are more frequently connected during the 
daytime. With an appropriate control strategy, EV charging can be 
shifted to sunny hours, for EVs connected during the daytime. Our study 
observed this mainly in scenarios where shared energy systems (PV, EV, 
V2G) were metered separately, resulting in up to 38 % of EV charging 
using PV generation. Conversely, when apartment electricity was 
included behind the same billing meter, generated PV electricity was 
primarily consumed in the apartments. The EV charging was instead 
shifted to hours with low spot prices. To encourage increased use of 
generated PV-to-EV charging, it can therefore be an advantage to meter 

EV charging and PV generation separately from apartment electricity 
use. However, using PV electricity also in the apartments have an 
economical positive consequence for building owners, due to the 
increased self-consumption, and may therefore motivate PV 
investments. 

5.3. Integrating V2G in the EV charging optimisation 

Under energy tariffs, V2G is hardly used in our case due to small 
differences in daily spot prices. V2G, due to its round-trip efficiency, 
increases the night-time peaks induced by energy tariffs. However, V2G 
can reduce monthly peaks under peak tariffs. In practical scenarios 
where monthly peaks are not known in advance, this management 
approach is more complex, necessitating increased reliance on V2G- 
technology to achieve similar peak power reductions. V2G has greater 
potential when apartment energy loads are included behind the same 
energy meter, allowing discharged energy to cover apartment loads 
during expensive hours. Compared to EV charging alone, days with 
sufficient variations in daily energy prices can therefore more frequently 
take advantage of the V2G capacity. 

In our study, V2G improves the KPIs, but to a limited degree, and it 
may not justify the needed investments in V2G technology, battery 
degradation, and advanced energy management systems. However, in 
real life, the use of V2G may be more frequent than shown in our study, 
since the study has some limitations: 1) Charging can happen in several 
locations, not only in the building where the discharging happens as in 
our study, 2) EV users can facilitate for V2G by applying longer 
connection times and employing more flexibility when it comes to end- 
SoC, 3) In the future, the spot prices will most likely be higher, with 
larger differences during a day. 

When introducing V2G, the energy management system should 
consider user needs, to make sure that the SoC level is at an acceptable 
level at plug-out time. In addition, battery conditions should be taken 
into account. The battery stress during V2G operation depends on a 
number of factors, such as SoC usage range, the number of cycles, cur
rent throughput, and battery temperature [91]. Wei et al. [92] 
concluded that for V2G-operation, a SoC range of 30–70 % is most 
beneficial for the battery life. They found that discharging the battery 
from 90 to 65 % SoC may actually extend the battery life, compared to 
parking the car with 90–100 % SoC, due to calendar aging. These factors 
should therefore be considered when developing an energy management 

Fig. 19. Energy flexibility KPIs for the “EV, Apt, PV, V2G”-scenarios.  
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system for EV charging and V2G. 

6. Recommendations and future work 

Our study highlights the potential for coordinating EV charging in 
apartment buildings. Current CP management systems, commonly 
available in these buildings, could play a major role in load shifting. 
Such management systems control the charging loads of the EVs, e.g., to 
keep the loads below a specific power limit. Effective implementation of 
DR requires information about building energy loads, local energy 
generation, and price/grid signals. In addition, information from the 
users is required, i.e., regarding expected plug-out times and charging 
needs per session. In real life implementation it is not feasible to have 
complete knowledge of the building energy use, PV generation, and EV 
plug-out times and energy charged, as we have in this study. Thus, the 
real potential for EV charging coordination may be lower than our cal
culations indicate. Nonetheless, the potential for coordinating residen
tial EV charging remains significant. Achieving this in practice favours 
simple yet effective solutions, ensuring primary benefits such as cost 
reduction, grid load reduction, and increased self-consumption of PV 
electricity. As we have demonstrated in this study, several KPIs can be 
combined to address the needs of various user groups, including apart
ment building associations, CPOs/energy management companies, 
DSOs, authorities, and entities facilitating end-use flexibility. Areas for 
further research include:  

• Research on real-life implementation of smart and robust EV 
charging solutions in apartments buildings.  

• Research on energy profiles and EV charging flexibility in other 
building categories, such as office buildings, utilizing real-world data 
on energy loads and EV charging.  

• Research on the interaction between different building categories, 
with e.g. PV generation in commercial buildings and V2G technology 
in residential buildings.  

• Research on the impact of varying EV charging facilities and tariff 
structures, such as those at residences, workplaces, and public 
charging stations, on energy profiles and the flexibility of EV 
charging across different building categories. 

7. Conclusion 

In this study, we examined the energy profiles and electricity flexi
bility potential in apartment buildings with EVs. Our analysis was based 
on residential energy and EV data from an extensive case study in 
Norway. The work acknowledged how apartment buildings differ from 
detached houses, due to their more complex structure in ownership and 
energy metering. Adding EV charging to household electricity use 
(excluding heat demand), delivered electricity increased by a factor of 
1.5 for an average apartment and EV. The impact on load peaks was even 
larger, increasing the power demand by a factor of 3.5 to 8.6. For 117 
apartments with uncontrolled EV charging from 82 EVs, the aggregated 
annual peak was 219 kW, whereof 48 % were caused by uncontrolled EV 
charging. The annual peak appeared in the afternoon at wintertime, 
during high load hours in the grid. 

Our study investigated optimisation of the residential EV charging 
with the objective to minimize the energy costs. The grid burden of EV 
charging was affected by different tariffs (energy tariffs or monthly peak 
tariffs), billing metering locations, and the introduction of PV and V2G 
technologies. We found that energy tariffs shifted EV charging to low 
price hours, increasing the peaks by up to 37 % compared to uncoor
dinated charging. The shifted peaks occurred during night hours, which 
are typically low load periods for the grid. The peak tariff scenarios 
reduced the peak loads by up to 45 %. For apartment buildings with PV, 
the study confirmed how relatively few residential EVs are connected to 
a CP during daytime. In our case study, maximum 38 % of the EV 
charging was covered by PV generation. Utilisation of V2G depends on 

differences in daily spot prices, and our study showed that V2G had a 
limited effect due to small daily variations in spot price. 

This study strengthened the hypothesis that apartment buildings 
with EVs have a considerable potential for electricity flexibility. It is 
common that apartment buildings have CP management tools in place, 
to make sure that the aggregated EV charging load does not exceed a 
certain power limit. Such CP management tools can be further devel
oped, providing opportunities to shift EV charging loads in time, e.g. to 
reduce the grid burden of the neighbourhood, and/or to reduce the 
energy costs for the residents. Residential EV charging is therefore a 
viable frontrunner in the practical realization of end-user flexibility, 
paving the way for effective solutions in real-life applications. 
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Abstract. As a basis for energy management in apartment blocks, this paper characterises 
electricity use in a Norwegian housing cooperative with 1,058 apartments. In 2018, the average 
specific electricity delivery to apartments and common areas is 56.7 kWh/m2 or 2,301 kWh per 
resident, in addition to heat delivery from district heating. Average annual electricity use in the 
apartments is 4,362 kWh and average maximum hourly load is 3.2 kWh/h. The electricity 
coincidence factor is 0.323. The study suggests a potential for shifting electricity loads in time 
on a neighbourhood level, where especially EV charging can be utilized as a flexible load. 

1.  Introduction 
In zero emission neighbourhoods, thermal and electric energy should be managed in a flexible way, to 
achieve reduced power peaks, reduced energy use, reduced CO2-emissions and increased self-
consumption of locally produced energy [1], [2]. Further, smart management of building loads can 
provide energy flexibility services to distribution system operators (DSOs) and district heating 
companies. As a basis for energy management in apartment blocks, this paper characterises the 
electricity use in a large housing cooperative in Norway, built in the 1970s.  

The Risvollan housing cooperative consists of 1,058 apartments with a total of 93,713 m2 heated 
floor area, distributed on 121 similar apartment blocks. There are apartments with one bedroom (52.9 
m2), two bedrooms (83.5 m2), three bedrooms (104.8 m2) and four bedrooms (107.2 m2), where 78% are 
two- or three-bedroom apartments. In total 2,321 residents live in the apartments, 53% female and 47% 
male, where 24% are under 20 years old, 40% between 20 and 50 and 33% above 50 years old [3]. 

Space heating and domestic hot water (DHW) is provided by district heating, which is analysed in a 
parallel study [4]. A majority of the apartments have electric floor heating in the bathrooms. In 2018, it 
was possible to charge around 55 electric vehicles (EVs) in the parking houses, but within the next three 
years, up to 764 charging points will be available to residents on request. The housing cooperative is 
considering installing photovoltaic (PV) systems on some of their buildings, to be partly self-sufficient 
with electricity. PV generation is simulated in a parallel study [5]. 
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2.  Methods 
Electricity measurements from AMS meters (Advanced Metering System) installed in 2017 and 2018 
are provided by the utility company, with hourly resolution. Each measurement gives accumulated 
electricity delivery for the previous hour. Electricity measurements are available from 1,044 of the 1,058 
apartments at Risvollan (99%), but the exact address and size of each apartment is unknown. Apartments 
with a measurement period of less than 80% of the year (7000 hours) were excluded from the analysis, 
resulting in data from 1,009 apartments (95%). When summarizing electricity use for the housing 
cooperative in total, average electricity use is assumed for the 49 missing apartments. Still some missing 
measurement periods remain, mainly in January 2018, where only 72% of the apartments are measured. 
From February 2018, most AMS meters are installed. There are also measurements available from 114 
meters that provide electricity to common areas and EVs, with a known address for the meter locations. 
25 of the meters are located in garages and 89 in other common areas. 8 of the cooperative meters have 
missing measurements periods of around 7000 hours, since these AMS meters were installed late in 
2018. 33 cooperative meters have shorter missing periods from 400 to 2700 hours. When summarizing 
electricity use for the housing cooperative in total, electricity delivery is estimated for the missing 
periods, based on average hourly electricity delivery for each specific meter.  
 The electricity measurements are analysed using the statistical computing environment R [6]. From 
the utility company, the hourly values are marked as measured values (M) or estimates (E). 99% of the 
hourly values for apartments are measured as well as 98% of the values for the garages / other common 
areas. Since the share of estimates are so small, also the estimated values are included in the analysis, 
except for the analysis of max values. The data quality is evaluated as good, with few zero-values. Only 
one measurement error is corrected, which occurred in most apartments for two hours May 29th.  
 Outdoor temperatures from eKlima [7] are collected mainly from a weather station at Risvollan, 
where a few missing values is replaced with data from the weather station Voll, 2.5 km away. Holidays 
are identified as days where the primary schools are closed in Trondheim [8], including national bank 
holidays. If the schools are closed on a Friday or Monday, the weekends are marked as holiday-
weekends. The annual seasons have three months each, where spring season starts in March. 

3.  Results and discussion 
3.1.  Electricity delivery to Risvollan in 2018 
Table 1 shows electricity delivery to Risvollan in 2018. The average specific electricity delivery to 
apartments, garages and common areas is 56.7 kWh/m2 heated floor area or 2,301 kWh per resident. 
87% of the electricity is used in apartments, 8% in the garages and 5% in other common areas. To 
apartments only, the electricity delivery is 49.2 kWh/m2 or 1,997 kWh per resident. The delivered 
electricity is similar to values found by [9], where average specific electricity delivery for 40 Norwegian 
apartment buildings is 64 kWh/m2. Delivered heat to Risvollan in 2018 is 139 kWh/m2, giving a total of 
196 kWh/m2 specific delivered energy. The total delivered energy is in the range of the national average 
for households, which is 185 kWh/m2 [10]. Heating is 70% of the energy delivery at Risvollan, which 
is higher that the estimate from [9] of 60% heating share for apartments built in the period 1971–1988.  

Table 1. Electricity delivery to Risvollan housing cooperative in 2018, with in total 2,321 residents. 

 Heated 
area 

# Apt 
(# meters) 

Total el 
deliv. Division 

of use 
El pr. res Specific el. 

deliv. 
Aggregated 
average load 

Aggregated 
peak load 

 m2  MWh/yr kWh/res. kWh/m2 kWh/h kWh/h 
Apartments 93,713 1,058 (1,009) 4,614 87% 1,997 49.2 527 1028 

Garages (16,397) (25) 438 8% 189 4.7 50 104 
Common areas  (89) 266 5% 115 2.8 30 73 

Total 93,713 1,058 5,318 100% 2,301 56.7 607 1146 

Abbreviations: Apt: Apartments. Res: Residents. Deliv: Delivery. El: Electricity. 
 
Electricity delivered to apartments, garages and other common areas each hour is shown in Figure 1, 

as well as duration curves for the total electricity delivery. For simplification, hourly electricity delivery 
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(kWh/h) is described as power (kW) in the figures. The highest electricity peaks in 2018 are Christmas 
Eve and New Year's Eve, also shown in Figure 2. Figure 3 shows the electricity signatures for 
apartments, garages and common areas, reflecting the relationship between electricity use and different 
outdoor temperatures. Since the housing cooperative is connected to district heating, the temperature 
dependency is rather small. Both heating and lighting are reasons for the increased electricity use 
wintertime. 

 

 
Figure 1. Electricity delivered to Risvollan housing cooperative each hour in 2018, divided on 

apartments, garages and other common areas. Duration curves show total electricity delivered each 
hour (black line) and daily average electricity per hour (dotted line).  

 
Figure 2. Electricity delivered to Risvollan housing cooperative during the Christmas week 2018, 

divided on apartments, garages and other common areas (scale difference of 5). 

   
Figure 3. Hourly electricity signatures for electricity delivered to Risvollan in 2018, showing 

relationships between electricity use and outdoor temperature. 

3.2.  Variations of electricity delivery between apartments in Risvollan and coincident peak loads 
Figure 4 shows variations of electricity use between 1,009 apartments in Risvollan in 2018. The average 
electricity delivery per apartment is 4,362 kWh, not including electricity delivery to garages and other 
common areas. Minimum electricity use is 324 kWh, first quartile 2,713 kWh, median 4,036 kWh, third 
quartile 5,642 kWh and maximum 13,654 kWh. Removing the apartments with 5% lowest and 5% 
highest electricity delivery, the electricity delivery varies from 1,443 to 8,391 kWh per year. Since the 
exact address of each apartment meter is unknown, the variations cannot be compared with area specific 
electricity use or number of residents, as in [11], where annual electricity use is measured in 1,300 
apartments in Sweden for six years. [11] found an average increase in electricity use with increasing 
number of residents, but with large variations in the use. For example, variations in average electricity 
power for different apartments with one resident is between 80 W and 450 W, while it is between 140 
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W and 440 W for apartments with two residents. At Risvollan, the average electricity power for all 
apartments is about 500 W. There is in average 2.2 residents per apartment.  

Analyzing maximum hourly values for each apartment in 2018, the average max. value is 3.2 kWh/h, 
see Figure 4b. The distribution of max. values in the apartments has a minimum value of 0.1 kWh/h, 
first quartile is 2.5 kWh/h, median is 3.2 kWh/h, third quartile 3.8 kWh/h and maximum hourly value is 
7.3 kWh/h. Maximum capacity available for most apartments is 35 A or 8 kW. 

The electricity coincidence factor for the in total 1174 meters is 0.323, based on hourly values. This 
factor is defined as the ratio between maximum load for the aggregated measurements studied (1,146 
kWh/h) and the sum of each meters maximum load (3,552 kWh/h), and is always less or equal to unity 
[12]. The coincidence factor at Risvollan is similar to the value found by [12] for single family houses 
and apartment blocks, of 0.387. Looking at apartments, garages and other common electricity areas 
separately, the coincidence factors for Risvollan are 0.316, 0.588 and 0.624 accordingly. 

The total aggregated peak load at Risvollan in 2018 is 1,146 kWh/h. To size the distribution grids, 
Velander's formula is widely used to calculate expected peak loads in a neighbourhood [13]. When using 
the formula and typical apartment blocks coefficient values as described in [13], the calculated peak 
load for Risvollan is 1,370 kWh/h, 20% higher than the measured peak load in 2018. 

 

4 a. 

  

 4 b. 

 
Figure 4. Variations between 1,009 apartments: Annual (a) and hourly (b) electricity delivery in 2018. 

3.3.  Electricity delivery to garages 
The total electricity delivery to the garages was 438 MWh or 4.7 kWh/m2 apartment area. Assuming an 
annual driving length of 12,000km and 0.2kWh/km, charging 55 EVs would use about 30% of the 
electricity delivered to the garages. Fans and lighting are among the other electricity uses in the garages. 
Assuming the annual driving length as above, charging the facilitated max. nr of 764 EVs would demand 
19.5 kWh/m2 apartment area. In 2018, the max hourly electricity use in all the garages aggregated was 
104 kWh/h, 9% of the total aggregated peak load at Risvollan. If the number of EVs increases from 
todays 55 to 764, also the aggregated peak load use will increase. How the peak load will increase for 
the total housing cooperative, depends on the energy management and future timing of the EV charging. 

3.4.  Average daily electricity load profiles for Risvollan 
Average daily electricity load profiles are shown in Figure 5 and Figure 6, with hourly values as the 
sample mean values. Apartments and garages have a similar daily profile, but with a scale difference of 
about 10. Both apartments and garages have an afternoon/evening peak in delivered electricity, from 
about 3 pm to 9 pm. During workdays, apartments have the average minimum hourly electricity delivery 
during night, of about 4 Wh/m2/h, increasing to about 5 Wh/m2/h in the morning and to 7.5 Wh/m2/h in 
the afternoon, between 3 pm and 9 pm. During the weekends, the electricity delivery during daytime is 
higher, in average about 6.5 Wh/m2/h from around 9 am, but with a similar afternoon/evening peak as 
during weekdays. The daily electricity profiles for apartments are similar to profiles found by [12], 
analyzing 38 single family houses and apartment blocks. The garages also have a morning peak, most 
likely caused by the start-up of fans and lighting when cars are collected in the garage. Figure 6 c shows 
the average load profiles for the 101 apartments (10%) with minimum and maximum electricity use 
during the year. The hourly daily profiles for the min/max apartments are similar to the average daily 
profile for all the apartments. 
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Figure 5. Average daily electricity load profiles for the common electricity delivered to Risvollan, 

divided on electricity to garages (a) and electricity to other common areas (b).  
 

 

 

 

 

 
 

Figure 6. Average daily electricity load profiles for apartments at Risvollan in 2018, divided by 
weekdays and holidays (a), for weekdays only during different annual seasons (b) and average load 

profiles for the 101 apartments (10%) with minimum and maximum electricity use during the year (c). 

3.5.  Potential for electricity flexibility 
Flexible electricity loads can be shifted in time or regulated lower or higher. How flexible a load can be, 
without disrupting the consumer, vary between load categories [14]. For example, changes in cooking, 
lighting, and television will require changes in user behaviour, while EV charging can happen 
independently from the user. Examples of electricity loads with flexibility potential are electric heating, 
electric water boilers, EV charging, washing machines and refrigerators [14], [15], [16].  
 EV charging is a main source of flexible electricity use in Norwegian apartment buildings. Besides 
often being flexible with respect to starting time, duration and charging power [17], EV charging 
infrastructure is the responsibility of the Risvollan cooperative, already being part of the energy 
management system. Electric DHW tanks are another flexible electricity load, often available in 
apartment blocks. Since district heating provides DHW to Risvollan, this is not relevant for this site. 
However, most apartments have electric floor heating in some rooms. Also, other electricity loads in the 
apartments can become flexible, such as dishwashers, washing machines, tumble dryers or refrigerators, 
which can be shifted in time. However, such electricity loads are not always easily available for an 
energy management system on a neighbourhood level. Batteries could be used for electricity storage, 
e.g. shifting electricity from the nighttime to evening peak hours. Besides stationary batteries, batteries 
in the EVs can be used in a V2G solution, were the battery in the EV delivers power back to the source. 

6 a. Apartments 

6 b 

6 c 

5 a. Garages 5 b. Other common areas 

159



CISBAT 2019

Journal of Physics: Conference Series 1343 (2019) 012057

IOP Publishing

doi:10.1088/1742-6596/1343/1/012057

6

 
 
 
 
 
 

4.  Conclusion 
As a basis for energy management in apartment blocks, this paper characterises electricity use in 
Risvollan housing cooperative in Norway, built in the 1970s, with in total 1,058 apartments. The average 
specific electricity delivery to apartments, garages and common areas is 56.7 kWh/m2 or 2,301 kWh per 
resident. In 2018 the average annual electricity use in the apartments is 4,362 kWh, with variation from 
first quartile of 2,713 kWh to third quartile of 5,642 kWh. For maximum hourly load, the average max. 
value is 3.2 kWh/h, first quartile is 2.5 and third quartile 3.8 kWh/h. The average maximum load during 
a day is in the afternoons/evenings. The electricity coincidence factor for the in total 1174 meters is 
0.323, based on hourly values. The study suggests a potential for shifting electricity loads in time on a 
neighbourhood level, where especially the EV charging can be utilized as a flexible load. The analysis 
will be used in further work, together with analysis of heat use at Risvollan, aiming to contribute to 
answering how effective management of power and energy at neighbourhood level can be realized. 
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Abstract. As a basis for energy management in apartment blocks, this paper characterises heat use in a large 
housing cooperative in Norway, with in total 1,058 apartments. Heat measurements with hourly resolution are 
available from 20 heating substations. Average specific heat delivery is 139 kWh per heated floor area. A linear 
regression model is described, modelling specific heat delivered to the apartments. Models are also used for 
separating heat to domestic hot water (DHW) from the total heat delivery, with a modelled DHW heat delivery of 
34 kWh/m2. Daily heat load profiles are presented, for delivered heat during weekdays and holidays in the annual 
seasons. The study shows a potential for shifting heat loads in time on a neighbourhood level. 

1. Introduction 
In zero emission neighbourhoods, thermal and electric energy should be managed in a flexible way [1], 
to achieve reduced power peaks, reduced energy use, reduced CO2-emissions and increased self-
consumption of locally produced energy. As a basis for energy management in apartment blocks, this 
paper characterises heat use in a large housing cooperative in Trondheim, Norway, built in the 1970s. 
 In Risvollan housing cooperative, there are 1,058 apartments with in total 93,713 m2 heated floor 
area, distributed on 121 similar apartment blocks. 2,321 residents live in the apartments: 53% female 
and 47% male residents [2]. 24% are under 20 years old, 40% between 20 and 50 and 33% above 50 
years old. District heating (DH) provides space heating and domestic hot water (DHW) to the 
apartments, as illustrated in Figure 1. DH is distributed to 20 heating substations (SUBs) through three 
distribution lines (DL), with a supply set point temperature of 76°C all year. The 20 SUBs cover from 
25 to 74 apartment units per SUB. The DHW set point temperature is 60°C. The temperature in the 
space heating system can be changed on SUB-level, by changing the outdoor temperature compensation 
curves in the SD-system. The applied settings for these temperature curves are similar for all the SUBs, 
as shown in Figure 1. 

   
Figure 1. Heat distribution (left) and delivery of DHW and heating from the 20 SUBs (middle) to the 

1,058 apartments in Risvollan. Right: Outdoor temperature compensation curves for the 20 SUBs. 
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Residents can also adjust the valves on the waterborne radiators in the apartments. However, O&M staff 
experiences that most resident do not frequently manually regulate their heat supply. When the outdoor 
temperature exceeds 18°C, the heating circulation to radiators is automatically turned off.  

2. Data 
2.1. Data collection and quality assurance        
Heat measurements from 20 SUBs are available from an energy monitoring system, starting from 2018 
[3]. The meters measure space heating and DHW combined, where each measurement gives 
accumulated heat delivery the previous hour. In this research, the data are analysed using the statistical 
computing environment R [4]. The data quality is analysed with visual inspection and by studying peak- 
and zero-values. For 13 SUBs, the heat measurements have a resolution of 10 kWh per hour, while the 
remaining 7 SUBs have a resolution of 100 kWh per hour. Low measurement resolution may affect load 
profiles by shifting the load to the subsequent hour [5], which is the case especially for the 100 kWh-
resolution measurements. After evaluating the measurement resolution and data quality, all the 7 SUBs 
with 100 kWh and 3 SUBs with 10 kWh resolution were excluded from the detailed analysis, analysing 
daily heat load profiles and peak values. The measurements are still used when evaluating annual heat 
delivery. The 10 SUBs used in the detailed analysis, cover about half of the housing cooperative: 536 
apartment units with a heated floor area of 46,030 m2 and 1,161 residents.  
 The climate data are collected from eKlima [6]. The outdoor temperatures (code TA) are mainly from 
a weather station at Risvollan, where a few missing values are replaced with data from weather station 
Voll, 2.5 km away. The wind data (code DD and FF) are also from Voll, while the global radiation (code 
QSI) and minutes of sunshine each hour (code OT) are from the weather station Gløshaugen, 3 km away.  
 Holidays are identified as days where the primary schools are closed in Trondheim [7], including 
national bank holidays. If the schools are closed on a Friday or Monday, the weekends are marked as 
holiday-weekends. The annual seasons have three months each, where the spring season starts in March.  

Table 1. Heat delivery to the 121 apartment blocks in Risvollan housing cooperative in 2018. 
 Area Bldg Apt Res Heat 

deliv. 
Heat  

pr. res 
Specific  

heat deliv. 
If incl. 

garages  
Max  

hourly 
Max  
daily 

 m2 Nr. Nr. Nr. MWh/yr kWh/res/yr kWh/m2/yr kWh/m2/yr kWh/m2/h kWh/m2/h 
SUB-1 5,258 6 56 137 770 5,624 147 147 0.059 0.83 
SUB-2 4,758 5 56 128 483 3,775 102 102 0.048 0.61 
SUB-3 3,790 5 44 99 492 4,971 130 130 0.053 0.71 
SUB-4 4,663 5 54 122 653 5,352 140 140 0.056 0.92 
SUB-5 3,680 6 43 98 506 5,161 137 137 0.052 0.73 
SUB-6 4,887 6 62 115 650 5,654 133 133 0.053 0.71 
SUB-7 4,197 5 45 107 770 7,192 183 110 0.086 1.10 
SUB-8 * 6,139 5 74 139 830 5,974 135 115 0.052 0.72 
SUB-9 4,507 5 54 116 605 5,216 134 134 0.053 0.73 
SUB-10 4,150 4 48 100 578 5,776 139 139 0.055 0.81 
SUBs 
in analysis 

        Accumulated 
46,030 52 536 1,161 6,337 5,458 138 127 0.051 0.75 

SUBs 
remaining * 47,684 69 522 1,150 6,698 5,825 140 111   

Total 93,713 121 1,058 2,311 13,036 5,641 139 118   

* Heat delivery is estimated for 3 months for SUB-8 and 1 month for two of the remaining SUBs. However, only actual 
measurements are included in model development and for load profile analysis.  
Abbreviations: Bldg: Buildings. Apt: Apartments. Res: Residents. Deliv: Delivery. SUB: Heating substation. 

2.2. Heat delivery to the Risvollan apartments in 2018 
Table 1 shows heat delivery to Risvollan in 2018. The average specific heat delivery from the 20 SUBs 
is 139 kWh/m2. SUB2 and SUB7 stand out, with a low heat delivery of 102 kWh/m2 and a high heat 
delivery of 183 kWh/m2. Heated garage area is the main reason for these differences, as shown in the 
table. Garages are not included in the heated floor area, but heat delivered to garages is included in the 
measurements. Other explanatory variables may be differences in heat losses and occupant behaviour. 
The average heat delivery per resident is 5,641 kWh per person. The max hourly value for the 10 SUBs 
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in the analysis vary from 0.048 to 0.086 kWh/m2/h, where most of the SUBs have a max value from 
0.05 to 0.06 kWh/m2/h. Variations are also to be expected within each SUB, on apartment level [8].  
 Figure 2a) shows specific heat delivered from the 10 SUBs included in the analysis. The figure also 
shows duration curves for specific heat, delivered 1) each hour and 2) daily average energy per hour. 
The difference between the duration curves illustrate the potential for reducing peak values, if a heat 
storage was available for 24 hours heat delivery. Figure 2b) illustrates an example of daily coincidence 
curves, for March 2nd, 2018. The figure shows 10 SUBs individually, the 10 SUBs accumulated, and 
three DL heat meters accumulated. This date is chosen since it has the highest 2018-hourly peak for all 
the three DL heat meters. The curves show a morning and afternoon peak in the heat delivery. 
 The coincidence factor for the 10 SUBs is 0.90, based on hourly values. This factor is defined as the 
ratio between maximum load for the accumulated measurements studied and the sum of each SUBs 
maximum load [5], and is always less or equal to unity. As a comparison, [5] found district heating 
coincidence factor for clusters with app. 10 buildings (single family houses and apartment blocks) to be 
0.711. The coincidence factor is dependent on the number of customers served, and if the customers 
represent a homogeneous or heterogeneous group [5]. At Risvollan there is a rather large and 
homogeneous customer group and buildings per SUB, which can explain the high coincidence factor. 

 
Figure 2 (a). Specific heat delivered from 10 SUBs each hour and daily average energy per hour. 

Lines show duration curves for specific heat delivered each hour and daily average energy per hour. 
(b). Coincidence curves for March 2nd, 2018, with hourly heat and max points for 1) 10 SUBs 

(coloured), 2) total heat for 10 SUBs (black line), 3) total heat for 3 DL meters (dotted). 

3. Methods 
Linear regression models [9] are developed based on data from 2018, for predicting heat delivered to 
space heating and DHW. For the heat modelling, only the high-quality data from the 10 SUBs are 
included. Measurements from three days in April and October are removed, since the water temperature 
was raised these days to prevent legionella growth.  
 The methodology used for modelling is mainly based on methods described by [5, 10]. Quantitative 
and categorical explanatory variables are tested, to specify a linear regression model for the response 
variable "heat per area per hour". The quantitative variables tested are outdoor temperature, average 
outdoor temperature (TMA) the last 3, 6, 9, 12, 15, 18, 21 and 24 hours, wind speed, solar radiation, 
minutes of sun each hour and residents per area. The categorical variables tested are hour of the day, 
weekdays / weekends, holidays, SUBs and wind direction. Weekdays, weekends and holidays are tested 
in both separate and joined models. In the joined model, the categorical variable "hour of the day" is 
divided in weekday (wd), weekend (we), weekday holiday (wd_h), weekend holiday (we_h), with 24 
values per category, in total 96 values. Also, interaction between temperature and daily hours are tested 
in the model, giving different slope and intercept for each line [11]. Lastly, models are tested with a 
break point, with segmented relationships between the response and the explanatory variables [12, 13]. 
When comparing the models, the adjusted R2 and the significance of the terms are considered. For the 
most promising models, predictions and residuals are analysed. The chosen model is tested on data from 
January to February 2019. When estimating energy for DHW, revised models are used (Named A and 
B). The DHW models are based on heat data from 2018 until May 2019, setting the outdoor temperature 

Jan 18 Apr 18 Jun 18 Oct 18 Jan 19

Hourly values Daily average
kWh/m2

Heat delivery Grey graph Blue graph

Duration curves Black dotted line Blue thick line

He
at

 p
r h

ou
r(

kW
h/

h/
m

2 )

a) b)

165



IAQVEC

IOP Conf. Series: Materials Science and Engineering 609 (2019) 052009

IOP Publishing

doi:10.1088/1757-899X/609/5/052009

4

 
 
 
 
 
 

to the approximate break-point temperature of the model. The DHW estimation is compared with a 
DHW measurement period of one months in one of the SUBs, during May 2019.   

4. Results 
An excerpt of the linear regression models evaluated are shown in Table 2, with the chosen model 8 in 
equation 1. Model 8 is chosen instead of nr. 9, since hourly predictions for wind and solar data are not 
sufficiently reliable for Risvollan. This would affect the result if using the model for prediction. The 
chosen model has a break point for outdoor temperature of 19.0°C. Adjusted R2 is 0.8438. Model A and 
B-8 are used for DHW estimation, where model A is for Risvollan while model B-8 is for SUB-8 only.  

Table 2. An excerpt of the linear regression models evaluated for heat delivery to Risvollan. 
 Variables Interactions Sub: 

TMA18 
T:h: 
sub 

T:h:sub: 
TMA18 

Break- 
point T 

df Adjusted  
R2 Mod T h sub TMA18 W S T:h T:sub 

1             107 0.8149 
2             202 0.8196 
3             211 0.8345 
4             1066 0.8357 
5             220 0.8379 
6             1075 0.8389 
7             1067 0.8306 
8            19.01°C 222 0.8438 
9            17.96°C 224 0.8515 
A            18.77°C 212 0.7973 

B-8   SUB-8         20.60°C 194 0.7744 

y𝑡𝑡 =  β0 + β𝑇𝑇T𝑡𝑡 + βℎDℎ + β𝑠𝑠𝑠𝑠𝑠𝑠D𝑠𝑠𝑠𝑠𝑠𝑠 + β𝑇𝑇𝑇𝑇𝑇𝑇18TMA18𝑡𝑡 + 
β𝑇𝑇ℎT𝑡𝑡Dℎ + β𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇T𝑡𝑡D𝑠𝑠𝑠𝑠𝑠𝑠 + β𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠18D𝑠𝑠𝑠𝑠𝑠𝑠TMA18𝑡𝑡 + ƴ𝑡𝑡,𝑇𝑇>𝑏𝑏𝑏𝑏 + ɛ𝑡𝑡 (1) 

  

Table 3. Variables and symbols / indexes used in Table 2 and equation 1. 
Variables Description  Symbols Description 

t Any hour t throughout the year (1-8760)  β0 Fixed time independent effect 
y𝑡𝑡 Specific heat delivered in hour t (kWh/m2/h)  βℎ Effect on hour-of the day (1-96) 
D Dummy variable for categorical variables, h and sub  β𝑠𝑠𝑠𝑠𝑠𝑠 Effect on SUB (1-10) 
T𝑡𝑡 Outdoor temperature in hour t  β𝑇𝑇𝑇𝑇𝑇𝑇18 Effect on TMA18 in hour t 
h Hour-of the day (1-96, as wd, we, wd_h and we_h)  β𝑇𝑇ℎ𝑠𝑠𝑠𝑠𝑠𝑠 Effect on interaction between T, h and sub 

TMA18𝑡𝑡 18 hour moving average of T𝑡𝑡  ƴ𝑡𝑡,𝑇𝑇>𝑏𝑏𝑏𝑏 Effect when T𝑡𝑡 is above break-point temp. 
sub Heating substation  ɛ𝑡𝑡 Error term of regression 
W Wind speed in hour t  

df Degrees of Freedom: Measure in statistics 
of how many values can vary S Global radiation (QSI) in hour t   

The modelled value of specific heat delivered to the 10 SUBs is 138 kWh/m2 in 2018, which equals the 
measured value. When testing the model for January and February 2019, the specific heat modelled for 
9 SUBs these two months is 32.2 kWh/m2, while the measured value is 33.2 kWh/m2. Delivered heat to 
DHW is estimated by setting the outdoor temperature to 19°C all hours. With this method, delivered 
energy to DHW is 34 kWh/m2 or 1,360 kWh per resident in 2018, equivalent to 24% of the heat delivery. 
 The energy signature reflects the relationship between energy use and different outdoor temperatures. 
For most of the hours the slope is similar, but for hour 8, representing the time slot from 7 to 8 in the 
morning, the slope is steeper, illustrating that delivered heat is higher this hour, see Figure 3.  
 Figure 4 shows daily heat load profiles for delivered heat during weekdays and weekends in the 
summer and winter season, with holidays separated. For the daily heat load profiles, the hourly values 
are the sample mean values. The figure shows the fit between the modelled hourly means and the 2018-
measurements. The daily heat load profiles show a morning peak from 7 to 8 during working days and 
a delayed morning peak during weekends. The peaks are primarily linked to DHW use. During holiday 
periods the heat delivery is reduced. The modelling result of DHW is shown in Figure 5, together with 
available DHW measurements from SUB-8 during May 2019.  
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Figure 3. Hourly energy signatures of Risvollan, at the hour 8:00 and 20:00, divided on working days 

and holidays. The modelled data points are coloured, while the 2018-measurements are black dots. 

 
Figure 4. Average daily heat load profiles at Risvollan during summer (Jun-Aug, lower plots) and 

winter (Dec-Feb, higher plots). Modelled hourly means (lines) are based on 2018-data (dotted). 

  
Figure 5. Daily heat load profiles for Risvollan (left) and SUB-8 only (right). The two models are 

based on measurements from Jan 2018 to May 2019. For DHW estimation, heat prediction is shown 
for outdoor temperatures above break point temperature (19°C or 21°C), every hour of the year. 

5. Discussion 
This paper characterises heat use in Risvollan housing cooperative. The linear regression model 
described, represents well the specific heat delivered in 2018. The testing period of two months in 2019 
also give a modelling result close to reality, with modelled heat delivery 3% less than measured heat 
delivery. The input values of the model are easily available also for predicting heat delivery, since it 
only includes outdoor temperature as climate data. The model can be developed further, preparing for 
short-term forecasting in an energy management system, e.g. by analysing the autocorrelation function 
for the model residuals [14]. When improving the model, also measurements after 2018 are available. 
 Total delivered heat in 2018 was 138 kWh/m2 or 5,458 kWh per resident. Compared to low energy 
buildings the heat delivery per area is high, and the project EBLE measured delivered heat between 23 
to 58 kWh/m2 in 19 passive houses [15]. DHW heat delivery is modelled to 34 kWh/m2 or 1,360 kWh 
per resident, by setting outdoor temperature to 19°C all hours. There are few data points above 19°C, 
especially for non-holidays and night time. When modelling DHW, a temperature close to break-point 
temperature was therefore used, to make the results as reliable as possible. The DHW result is in the 
range of the limited DHW measurements available, in SUB-8 during May 2019. The value 34 kWh/m2 
is also comparable with the Norwegian norm value of 29.8 kWh/m2 [16]. The project EBLE measured 
energy for DHW in 29 houses or apartments, with values from 18 to 42 kWh/m2 [15]. Seasonal variations 
in delivered DHW [17] is not considered in the model, due to few DHW measurements. 

20:00 20:008:00 8:00
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 The study shows a potential for shifting heat loads in time, on a SUB or neighbourhood level. The 
following possibilities are identified: 1) Duration curves, coincidence curves and daily heat load profiles 
show that heat loads can be shifted in time. Especially the morning peak can be shifted from peak hours 
to the night-time, by installing heat accumulation tanks in the SUBs. On an average working day during 
winter (Dec-Feb, ref. figure 4), the increase to average morning peak from 7 to 8 is in the range of 0.01 
kWh/m2, which need a storage volume of app. 0.2 litre/m2. 2) The peaks are primarily linked to DHW 
use. If delivered temperature is increased before the peak hours, the need for delivered space heating 
could be reduced during DHW peak hours. This could be arranged by changing the set-points in the 
compensation curves. However, if this should be tested in practice, O&M staff needs to be sure that the 
comfort of the residents will not be reduced. A pilot test in five multifamily residential buildings in 
Sweden, indicate that buildings with a structural core of concrete can tolerate relatively large variations 
in heat deliveries while still maintaining a good indoor climate [18]. 3) It may also be possible to increase 
the temperature in the distribution line. If the temperature set-point is increased during off-peak periods, 
e.g. during the night, the distribution line can function as a heat storage, reducing the need for district 
heating delivery during peak hours. When evaluating such an approach, thermal stresses should be taken 
into account, since there will be a more frequent cycling between higher and lower temperatures [19].   

6. Conclusion 
This paper characterises heat use in a large housing cooperative in Norway, built in the 1970s, with in 
total 1,058 apartments. A linear regression model is described, modelling the specific heat delivered to 
the apartments. The model is also used for estimating the share of heat for DHW. The study shows a 
potential for shifting heat loads in time on a SUB or neighbourhood level. The analysis and model will 
be used in further work, together with analysis of electricity use at Risvollan, to address how effective 
management of power and energy in neighbourhoods can be realized.  
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Energy flexibility potential of domestic hot water systems in 
apartment buildings 

Åse Lekang Sørensen1,2*, Harald Taxt Walnum1, Igor Sartori1, and Inger Andresen2 
1SINTEF, Department of Architectural Engineering, P.O. Box 124 Blindern, 0314 Oslo, Norway 
2Norwegian University of Science and Technology (NTNU), Department of Architecture and Technology, 7491 Trondheim, Norway 

Abstract. Domestic Hot Water (DHW) storage tanks are identified as a main source of flexible energy use 
in buildings. As a basis for energy management in apartment buildings, this paper describes the aggregated 
DHW use in a case building, and analyses the potential for DHW energy flexibility by simulating different 
control options. The case study for the work is an apartment building in Oslo with 56 apartments and a 
shared DHW system. Energy measurements are available for consumed hot water, hot water circulation, and 
energy supplied to the DHW tanks. The measurements are presented with minute, hourly and daily values. 
Aggregated daily energy use for the consumed hot water is in average 362 kWh, while the energy supplied 
is 555 kWh. The potential for energy flexibility is analysed for a base case and for four different rule-based 
control options: Power limitation, Spot price savings, Flexibility sale and Solar energy. Economic 
consequences of the control options are compared. With the Norwegian tariff structure, maximum hourly 
power use has the main impact on the cost. Control systems that aim to reduce the maximum power use may 
be combined with spot price savings or to offer end-user flexibility services to the grid. 

1 Introduction 

1.1 Flexibility potential of DHW systems 

Moving towards zero emission buildings and 
neighbourhoods, thermal and electric energy loads can 
be managed in a flexible way to achieve i.e. reduced 
power peaks, reduced energy use, reduced CO2-
emissions, and increased self-consumption of locally 
produced energy. Further, smart management of 
building loads can provide energy flexibility services to 
energy companies.  

Domestic Hot Water (DHW) storage tanks are 
identified as a main source of flexible energy use in 
buildings [1]. As buildings are becoming more energy 
efficient, the share of DHW energy is increasing. 
However, so far, there has been relatively limited efforts 
in the field of energy-efficient DHW [2].  

With demand side management (DSM) it is possible 
to influence the end-use of energy in a number of ways, 
by reducing (peak shaving), increasing (valley filling) or 
rescheduling (load shifting) the energy demand [3]. For 
the DHW system, load shifting of the energy profile is 
possible, i.e. by preheating the storage tanks or delaying 
the heating of the hot water. The flexibility capacity of 
DHW systems is largely based on the volume of the 
storage tank [1]. When storing DHW there are heat 
losses; [2] found ranges from 2% to 36% heat losses in 
the storage tanks depending on the system solution. The 
VarmtVann2030 project found annual heat loss values 
in the range of 4 kWh per litre stored [4].  

DHW use in individual households has been 
analysed by e.g. [5], [6], [7] and [8]. Balint and Kazmi 
[5] analysed energy flexibility of DHW, where each 
household has a 200 litre storage tank. They found that 
the energy flexibility is influenced by ambient 
conditions, control algorithm and occupant behaviour. 
Ericson [6] analysed data from 475 households, where 
electric water heaters were automatically disconnected 
during peak periods of the day. The results show 
reductions in electricity use during the disconnections, 
but also indicate a risk for new system peaks if several 
DHW tanks are reconnected all at once. [7] analysed the 
stochastic nature of DHW demand in residential houses, 
used machine learning to predict the behaviour in 6 
individual houses, and investigated the potential for 
energy reduction by an adapting hot water system. [8] 
analysed DHW consumption profiles from 95 
residential houses and aggregated information. They 
found that the aggregate consumption profile is more 
predictable than individual consumption profiles.  

Many apartment buildings have shared electric 
DHW tanks in a heating central, where load shifting of 
the electricity use could be possible. DHW use in 
buildings is affected by user behaviour [9]. Compared to 
DHW use in individual households, aggregated DHW 
use in apartment buildings is expected to be more 
predictable, influenced by parameters such as time of 
day, day of the week, months, and holiday periods [10]. 

As a basis for energy management in Norwegian 
apartment blocks, this study analyses DHW 
measurements in a typical apartment building located in 
Oslo. The work gives general recommendations for 

https://doi.org/10.1051/e3sconf/202124611005E3S Web of Conferences , 11005 (2021)
Cold Climate HVAC & Energy 2021

 
* Corresponding author: ase.sorensen@sintef.no  

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 171



possible rule-based control (RBC) options, utilizing the 
energy flexibility potential. The research question of the 
work is: How can an apartment building reduce energy 
costs by shifting aggregated DHW energy loads in time, 
provided a limited storage volume? The analysis will 
also provide the basis for more advanced analysis 
planned, as described in section 3.2. 

1.2 The case study apartment building

The case study for the work is an apartment building 
in Oslo with 56 apartments and in total 3,752 m2 heated
floor area. Each apartment has a floor area of 67 m2 and 
has two bedrooms.

DHW is heated by a local heating network based on 
heat pumps (preheating) and electricity, see Table 1. The 
heating and storage capacities are dimensioned to fulfil 
the residents need for DHW, with temperature-based 
control of the DHW tanks, but there is otherwise no 
active DSM of the DHW system. The DHW is supplied 
to the apartments from a technical room in the basement. 
DHW is permanently circulated in pipes on the 
basement level, to keep the water hot, compensating for 
heat losses. There is no circulation system from the 
basement and up to each apartment. 

Energy measurements are available on an 
aggregated level, and include energy need for DHW
(without losses, as defined by [11]), energy losses in the 
DHW circulation, and energy supplied to the DHW 
tanks (to cover DHW energy need and all losses). In this
article, the total DHW heating and storage capacities are 
analysed, not separating between the preheating and 
electricity heating systems.  

Table 1. DHW heating and storage capacities in the case.

Source Capacity 
(kW)

Storage 
(litre)

Storage 
(kWh) *

Preheating via 
heat exchanger 60 (4 x 400)

1,600 96

Electricity (3 x 14)
42

(3 x 400)
1,200 72

Total values
(used in article) 102 2,800 168

* Storage multiplied by accumulation factor 0.06 kWh/litre.

1.3 Economic motivation for energy flexibility

This section describes existing tariff structure and 
economic conditions, which may motivate building 
owners to realize their DHW energy flexibility potential. 

1) Power limitation: In Norway, electricity 
production and transmission capacity during peak-load 
hours is a main concern for the distribution grid [6], 
especially during winter months. Therefore, larger 
customers usually pay hourly power tariffs, e.g. if they 
exceed 100,000 kWh annual electricity use behind a 
meter. For the case building, the power tariffs are 
monthly, with tariffs varying from 2.2 euros/kW (7 
summer months), 6.7 euros/kW (2 spring/autumn 
months) and 12 euros/kW (3 winter months) [12] (1 euro 
= 10 NOK). 

2) Spot price savings: Day-ahead spot prices are 
available from NordPool [13]. This is a market price of 
power, determined by supply and demand. The prices 
are normally higher during peak load hours, in the 
morning and afternoon. For most days during the year, 
the hourly price differences during a day are rather 
small. However, there are exceptions, where the spot 
prices increase substantially for a few hours during the 
day. For example, during the winter day 12 February 
2021, the hourly prices increased from about 0.05
euro/kWh during the night hours to about 0.25
euro/kWh during the morning peak. Figure 1 shows 
normalized spot prices for each day in the period 
January 2019 to February 2021, the prices during the 23-
days data period used in this article, as well as the prices 
during corresponding 23 dates in 2021. In the figure, the 
absolute price difference for each hour is shown, as the 
difference between the spot prices each hour and the 
average hourly spot price during the same day. 

Figure 1. Normalized hourly spot prices during a day, with 
line colours illustrating three time periods.

3) Energy flexibility services to energy companies: 
End-user flexibility may become valuable for the 
Distribution System Operator (DSO). A market may be 
developed, where building owners are paid for not using 
energy during peak hours. However, it is difficult to 
quantify the value of such flexibility services, since 
related tariffs are not yet existing in Norway. The project 
EMPOWER [14] presents a local energy market 
concept, with compensation in the form of a strike price 
and an activation reward. In an example, they suggest 11 
euros strike price and 4 euros activation reward for a 1.5 
kW flexible load, with given activation criteria (up to 
2.5 hours activation mornings and evenings weekdays).  
 4) Increased self-consumption of locally produced 
energy: If there are solar energy supply systems on-site, 
there is an economic advantage of using the energy in
the building, including thermal energy from solar 
collectors and electricity from photovoltaic (PV) 
systems. For thermal solar energy, unused energy has no 
value (given that it cannot be exported). For solar 
electricity, within the Norwegian tariff structure, the 
income of electricity exported to the grid is mainly the 
spot price, while the price of electricity imported from 
the grid is about the double, including also grid costs and 
taxes [15]. It is therefore beneficial to shift DHW loads 
to the daytime (direct use of solar energy) or to store hot 
water in DHW tanks. There is no solar energy 
technologies installed in the case building, but the article 
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analyses the effects of solar electricity from a theoretical 
PV-system. 

5) Energy use: Utilizing the flexibility of a DHW 
system may increase the use of the storage system, 
which would increase the heat losses of the system. The 
variable electricity price for end-use customers is in the 
range of 0.08 euro/kWh, including spot price and taxes 
[16]. If the annual heat losses related to the storage tanks 
are about 4 kWh/litre [4], the energy costs of an 
additional litre stored is around 0.32 euro/year. The 
annual heat loss for the current 2,800 litre heat storage 
in the case building may thus cost about 900 euros/year. 

6) Investment costs and technical lifetime of DHW 
systems: Use of flexibility will also change the operation 
of the energy systems, which may change their technical 
lifetime [17]. For example, more constant power 
delivered from heat pumps may increase their lifetimes
and may also reduce the capacity size needed for heat 
pumps and heat exchangers. However, such systems 
may require increased storage volume. Also, 
investments in monitoring equipment and building 
energy management systems (EMS) may be needed. 
[18] analysed practical performance of heat pump 
systems, finding universal challenges such as over-sized 
capacity design and unreasonable control strategies. To
improve the energy efficiency, they suggest 
decentralized and reasonable system design, as well as 
accurate and efficient control strategies.

In this article, the economic consequences of 1) to 
4) are included, while the consequences of 5) and 6) are 
not analysed. 

Nomenclature

CO Control option
CHW Consumed hot water
DHW Domestic hot water
DaySES Daily supplied energy setpoint
DSM Demand side management
DSO Distribution system operator
EMS Energy management system
HWC Hot water circulation
RBC Rule-based control
SoC State of charge

2 Methodology

2.1 Method for DHW measurements

DHW measurements for this study were extracted 
from the following sources: The project 
VarmtVann2030 [19] performed a measurement
campaign where energy for consumed hot water (CHW) 
and distribution losses in the hot water circulation 
(HWC) were measured. The EMS in the building
measures energy supplied to the DHW tanks. 

The measurement campaign lasted for 7 weeks, from 
16 January to 6 March 2019. Flow and temperature 
measurements were performed on the main supply pipe 
for the apartment building. Clamp-on ultrasonic flow 
meters were used for flow measurement and Type-T

thermocouples where mounted on the pipe wall. Flow 
rates and temperatures were measured with an interval 
of 1 second, and then averaged to 2 seconds before 
analysis. Measurement equipment and energy 
calculations are described in [20]. 
 Energy supplied to the DHW tanks was measured
hourly. The measurements are available for 3 full weeks 
and 4 weekends, from 9 February to 3 March. In the 
EMS, both thermal energy (preheating) and electricity 
to the DHW tanks were measured, and the total hourly 
energy supplied is used in these analysis. 

Due to the storage tanks, there is a time difference 
between CHW and energy supplied. In addition, there is 
an absolute difference between energy supplied and 
energy needed for CHW and HWC. This difference is 
calculated as the heat losses in the technical room, and 
is related to heat exchanger, storage, valves, pipes, etc. 

2.2 Method for DHW energy analysis

The following data are used in the energy analysis: 
50 days measurement-period (16.01 - 06.03.2019): 
• CHW, resampled to 1 minute and 1 hour time steps,
• HWC, resampled to 1 minute and 1 hour time steps,
23 days measurement-period (09.02 - 03.03.2019): 
• Energy supplied (sum of preheating and electricity), 1 
hour time steps,
• Heat losses in the technical room (calculated difference
as described above), 1 hour time steps.

Calendar data were added to the energy data, such as 
time of day and weekdays. DHW energy need and 
supplied energy are analysed. For CHW and HWC, the 
time steps of 1 minute and 1 hour are compared. For the 
heat losses in the technical room, the hourly analyses 
show average heat losses, not heat losses hour-by-hour, 
since the hourly values includes the time-delay between 
CHW and supplied energy.

2.3 Control options for utilizing flexibility

The potential for energy flexibility is analysed by
simulating a base case and four different control options
(COs), named control option 1 "Power limitation", 
control option 2 "Spot price savings", control option 3 
"Flexibility sale", and control option 4 "Solar energy".
The control options are rule-based with additional 
constraints [21], aiming to account for physical 
limitations of the systems, and to make sure DHW is 
always available for the users.  

Input parameters for the control options are:
• CHW (all COs): Hourly values, 23-day period.
• HWC (all COs): Hourly values, 23-day period.
• Heat loss in technical room (all COs): Hourly average 
heat loss value is used for all hours: 4.7 kW. 
• Daily supplied energy setpoint, DaySES (all COs): 
Assumed maximum energy supply during a day, set
10% above the measured value of 613 kWh: 672 kWh 
per day.
• Power limitation setpoint: Because of the existing 
hourly power tariffs, there is a power limitation in most 
of the COs (except the base case and the CO 2 case):  
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• Base case: No limitation, except by actual installed 
total capacity: 102 kWh/h.
• CO 1: Even distribution DaySES: 672/24=28 
kWh/h.
• CO 2: The spot prices are divided into three levels
each day: 1) Low-price level: 12 hours, limited by 
actual installed capacity (102 kWh/h), 2) Medium-
price level: 8 hours, limited to energy use that hour 
(no energy is supplied to the storage tanks), and 3) 
High-price level: 4 hours, no energy supply.
• CO 3: Two peak load hours with no supplied 
energy: One in the morning (from 07:00 weekdays 
and 10:00 weekends) and one in the afternoon (from 
16:00 all days). Even distribution of DaySES on the 
remaining hours: 672/22=30.5 kWh/h.
• CO 4: Solar electricity is prioritized, when 
available. A 50 kWp system is assumed, based on a 
solar map for Oslo [22]. Hourly electricity 
generation is simulated for 2019, using the tool 
renewables.ninja [23] (Dataset MERRA-2, 0.1 
system loss, 30° tilt, 135° azimuth). In addition: 
Even distribution of DaySES: 672/24=28 kWh/h. 

• State of charge (SoC) storage tank (all COs): Limited 
to the total storage volume available in the technical 
room: 168 kWh. For the first hour, the storage volume 
is full. Then, calculated for each hour (i) as:

Etank(i)=Etank(i-1)+EPV(i)+Esetpoint(i)–ECHW(i)–EHWC(i)–Elosses(i) 

Condition: If Etank(i)>Etank-cap then Etank(i)=Etank-cap  (1)

Esetpoint(i) is the hourly power limitation setpoint, while
Etank-cap is the storage tank capacity. Hourly solar energy 
(EPV(i)) is zero for all COs except CO 4. 
• Energy supply (varies with the CO): Hourly energy 
supply, calculated for each hour (i) as:

Esupply(i)=Etank(i)–Etank(i-1)–EPV(i)+ECHW(i)+EHWC(i)+Elosses(i) (2)

3 Results and discussion

3.1 DHW energy need and supplied energy  

This section describes the actual energy need and 
supplied energy to the DHW tanks in the case building. 
Figure 2 shows CHW and HWC during the 50-days 
measurement period, and supplied energy during the 23-
days measurement period. Figure 3 shows the duration 
curve for CHW and HWC separately, comparing minute 
and hourly time steps. Comparing the time steps, the 
max. power averaged during a minute is about 3 times 
higher than the max. power averaged during an hour. For 
hourly resolution of CHW, the max power is 53.3 kW, 
while the 95-percentile is 33.9 kW. For the minute 
resolution of CHW, the max power is 171.9 kW, while 
the 95-percentile is 49.6 kW. The substantial variations 
within one hour should be taken into account when 
analysing hourly averages and indeed when 
dimensioning DHW systems and preparing control 
systems. 

Table 2 shows hourly and daily values for CHW, 
HWC, supplied energy, and heat losses. The HWC-
values show that energy losses in the distribution are

fairly constant during the day. The total heat losses are 
35% of the supplied energy. Figure 4 shows CHW, 
HWC and supplied energy each day during the 50 days 
measurement period. There are not very large daily 
variations. The daily CHW values vary from 276 to 436 
kWh per day during the period, while HWC values vary 
from 68 to 94 kWh per day. There was a holiday period 
from 18 to 24 February, but it appears that there is not 
any significant change in DHW use.

Figure 2. CHW, HWC and supplied energy on a timeline 
with 1 hour time-steps (data series are stacked in columns). 

Figure 3. Duration curve for CHW and HWC separately. 
Comparing 1 minute and 1 hour time-steps.  

Table 2. Hourly and daily values for CHW, HWC, supplied 
energy and heat losses.

DHW (kWh) Average 
hourly

95-
percentile 

hourly

Max 
hourly

Average 
daily 

Max 
daily 

CHW 15.1 33.9 53.3 362 436
HWC 3.3 4.4 5.6 78 94

Supplied 23.1 54.6 72.1 555 613
Heat losses 4.7 - - 112 142

Figure 4. Daily CHW, HWC and supplied energy during 
weekdays and weekends.

Hourly average values are shown in the daily profile 
in Figure 5. CHW, HWC, heat losses, and supplied 
energy are shown separately, with their individual 90% 
confidence interval. For heat losses, an average value is 
shown. The daily values show an increased CHW during 
the morning, from about 06:00 during the weekdays and 
about during 08:00 weekends. There is a morning and 
afternoon peak, as also observed in other apartment 
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buildings [24], but also the DHW uses during other 
daytime hours are quite high. An explanation for this 
could be that residents with small children or elderly are 
overrepresented, which is reasonable given that the 
apartments have two bedrooms only. If so, a higher 
share of the residents may be home during daytime, 
compared to other buildings with more mixed or larger 
apartment sizes. For CHW, Table 3 provides more 
details, with hourly average values during weekdays and 
weekends.

In the case study, supplied energy during peak hours 
is higher than the CHW, even though DHW tanks are 
present. This is explained by the design of the preheating 
control system. Using the storage capacity actively, it 
may be possible to shift loads from peak hours to off-
peak hours. This is further investigated in the next 
section.

Figure 5. Average daily profiles for CHW, HWC, heat 
losses, and supplied energy, shown separately, with their 
individual 90% confidence interval (1 hour time-steps). 

Table 3. Average CHW for weekday/weekend hours (kWh).

Daily
hour

Week-
days

Week-
end

Daily
hour

Week-
days

Week-
end

00-01 6.7 9.8 12-13 12.3 24.7
01-02 2.3 5.5 13-14 13.1 21.1
02-03 1.1 2.6 14-15 16.2 18.8
03-04 0.8 0.6 15-16 16.2 17.0
04-05 2.6 0.4 16-17 20.9 18.6
05-06 9.0 1.9 17-18 25.0 21.4
06-07 16.8 1.0 18-19 24.5 19.6
07-08 31.8 6.6 19-20 24.2 20.3
08-09 21.6 17.4 20-21 24.0 22.7
09-10 17.2 27.2 21-22 17.2 18.4
10-11 16.4 31.0 22-23 16.3 14.4
11-12 12.7 28.3 23-24 14.8 9.8
Average daily CHW (kWh/day): 363.9 359.1

3.2 Energy flexibility potential of DHW systems  

This section analyses the potential for energy 
flexibility by simulating a base case and four control 
options. For each option, the average daily profile and 
an example day are shown in Figure 6 and Figure 7, 
while Table 4 provides some key results. The average 
day has a CHW demand of 367 kWh and a max. hourly 

CHW load of 52.5 kWh/h, based on the 23-day 
measurement period. Including losses, the daily demand 
is 554.8 kWh and the max. hourly load is 59.3 kWh/h.
The example day Sunday 3 March 2019 is chosen, since
it has the highest daily demand (606 kWh incl. losses)
and the third highest hourly load (57.3 kWh/h) during 
the 23-day period. 

For the base case, the heat production capacity of 
102 kWh/h can deliver all needed energy, hour-by-hour. 
The storage capacity therefore remains at maximum 
level on an hourly basis. The max. hourly energy supply
is 59.3 kWh/h.

CO 1 "Power limitation" aims to distribute the 
supplied energy evenly through the day, to reduce the 
power tariff costs. For both the average day and the 
example day, the supplied energy is limited by the DHW 
tank volume during night-hours. The minimum SoC for 
the storage tank during the 23-day period is 65.5 kWh 
(39%), which implies that the tank volume is sufficient. 
If it becomes necessary to increase the hourly energy 
supply, this increase should happen slowly, since large 
power jumps over a short period has higher economical 
costs than a smaller power increase during a longer 
period. Since hourly values are analysed, a safety 
margin should be considered, to make sure that the 
needed energy can be provided within the hour. This is 
illustrated in Figure 8, showing the example day with 
minute timesteps, which can be directly compared with 
CO 1 in Figure 7. A DWH tank may be emptied due to 
variations within the hour, even though the tank is large 
enough for the hourly averages. 

With CO 2 "Spot price savings", the supplied energy
is distributed according to the day-ahead spot prices. 
The spot prices vary during the day, with higher spot 
prices during energy peak periods. With CO 2, this 
results in less energy production during hours with 
DHW demand, both for the average day and the example 
day. The result is that CO 2 struggles to supply the 
needed energy, given the available DHW storage. With 
all the heat production capacity available, the minimum 
SoC for the storage tank during the period is 21.8 kWh 
(13%). This is during a day where all the four high-price 
level hours (with no energy supply) are in sequence. The 
maximum hourly load is high, since there are no 
limitations (102 kWh/h). Also for this control option, a 
maximum level could be set for the hourly energy 
supply. In addition, other conditions could be tested, e.g. 
limiting the number of high-price level hours in 
sequence, reducing the number of hours with high-price 
or medium-price level, or increasing the available 
storage volume. 

With CO 3 "Flexibility sale", there is no energy 
supply during 2 peak hours. Like for CO 1, the power 
level is limited by the DHW tank volume during night-
hours. The minimum SoC for the storage tank during the 
period is 35.8 kWh (21%), which means that it may be 
necessary to increase either the hourly energy supply or 
the tank volume in order to provide flexibility services 
every day. Another option is to only offer flexibility
services when sufficient capacity is available, if this 
becomes a possible option within the flexibility market.
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Figure 6. Average daily profiles for the control strategies.

CO 4 "Solar energy" is like CO 1, but with a PV-
system added. The solar electricity is used directly,
either to supply the DHW demand or to be stored in the 
tanks (limited by tank capacity). Solar electricity is
prioritized when available,  and the power limitation in

Figure 7. Daily profiles for example day 2019-03-03.

CO 1 is relevant for grid electricity only, not solar
electricity. In the 23-day period, the average PV 
generation is 62 kWh per day (Figure 6). The minimum 
SoC for the storage tank is 113 kWh (67%). The daily 
PV generation March 3 is 53 kWh (Figure 7). During the 
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year 2019, the average daily PV generation is 123 kWh, 
with maximum 341 kWh/day.

Table 4. Analysis of control strategies (23-days period)

Energy 
supply
(kWh)

Power 
max
(kW)

Average 
SoC storage 

(kWh)

Min. SoC 
storage 
(kWh)

CO 0 12,760 59.3 168 168
CO 1 12,676 28.0 154.8 65.5 (39%)
CO 2 12,725 102.0 146.4 21.8 (13%)
CO 3 12,652 30.5 142.2 35.8 (21%)

CO 4 11,349
+PV 1,378 28.0 160.2 113 (67%)

Figure 8. Daily profile for example day 2019-03-03, with 
minute timesteps.

Table 5. Economic consequences of the control strategies

Power tariffs
(€/month)

summer-winter  

Spot-price
(€/23 days) Other 

(€/23 days)2019 2021

CO 0 130-712 553 669

CO 1 62-336 (47%) 548 (-5) 653 (-16)

CO 2 224-1,224 (172%) 545 (-8) 601 (-68)

CO 3 67-366 (51%) 546 (-7) 644 (-25) Flex services
0.5 €/kW: 398

CO 4 62-336 (47%) 491 (-62) 592 (-77) El. savings 
0.05 €/kWh: 69

The economic consequences of the four control 
strategies are analysed, with key results in Table 5. In 
the analysis, it is assumed that a reduction in energy 
supplied to the DHW tanks also reduces electricity 
delivered from the grid (independent on the use of 
preheating or other energy use in the building). 

For customers with power tariffs, it is an advantage 
to reduce max. hourly energy supply each month. 
During a year, there is a saving potential of 2,028 euros
when moving from the base case to CO 1. 

With the conditions in this work, the daily difference 
in spot prices seem too low to justify a management 
system focusing on spot price savings. It was not 
achieved lower spot price with CO 2 than the other 
control options, using spot prices during the 23 days
measurement period in 2019. Spot prices vary, and if 
using 2021-prices for the same dates (not adjusting for 
change of weekdays, and assuming that the CHW habits 
are not directly dependent on spot prices), the savings 
increase from 8 euro to 68 euro during the periode, 
compared to base case. Spot price savings may be 
combined with other control options. In the future, also 

Norwegian grid tariffs may depend on time of day, 
which may increase the savings. 

It is challenging to estimate the potential income 
from flexibility services in CO 3, since related tariffs are 
not yet existing in Norway. If assuming an activation 
reward of 0.5 euro/kW each flexible hour, using the 
hourly energy supply in CO 1 as the reference, a 
reduction from 28 kW to 0 kW during a peak hour will 
generate 14 euro. For two peak hours each weekday 
only, the potential income during the 23 days is 398 euro 
(or 6,898 euro/year).

If solar energy is available, either thermal or electric, 
the average DHW loads in the case building fit well with 
the potential solar energy production, even if the whole 
demand cannot be covered, such as the morning loads 
during weekdays. Larger storage volume would increase 
the self-consumption potential of solar energy. 

The analysis in this article uses a simple input-
output storage tank model, with energy flows in and out 
of the tank. RBC can yield significant improvements 
with regards to demand response and flexibility [21]. 
RBC is also easy to implement, with few requirements 
for historic data and control system. However, RBC may 
lead to non-optimal  solutions, since the control rules are 
predefined [17]. In future work, more advanced analyses 
are planned. The internal state of the storage tank will 
then be included, with temperature levels in the tank. In 
addition, optimalisation options will be introduced. In 
general, Model Predictive Control (MPC) is expected to 
further improve the results [21], [25],  optimizing DHW 
operation by modelling future DHW need, technological 
constraints, and additional influencing parameters. In 
this article, we have not separated between the 
preheating and electricity heating systems, thus 
analysing the total DHW heating and storage capacity 
only. In real life, it would normally be an advantage to 
increase the preheating share of the system A deeper 
analysis of technical options, control algorithms and 
economic consequences is intended in further studies.

4 Conclusion
The research question of this work is: How can an 

apartment building reduce energy costs by shifting 
aggregated DHW energy loads in time, provided a 
limited storage volume? The case study is a building 
with 56 apartments. The potential for energy flexibility
is simulated for a base case and four RBC options, based 
on hourly timesteps. The flexibility capacity of DHW 
systems is largely based on the volume of the storage 
tank. In the analysis, the volumes of the tanks are limited 
to the actual sizes available in the case study.  

The economic analysis shows that for customers 
with power tariffs, it is an advantage to reduce the 
maximum hourly energy supply. This can be done by 
setting a maximum power level for delivered energy. 
The power level should be high enough to avoid short-
term power jumps, which would increase the tariff costs. 
When hourly values are used as a basis for setting the 
power level, a safety margin should be included, since 
there are variations within an hour. A management 
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system with maximum power level can be combined 
with other control options, such as spot price savings or 
flexibility services. With the conditions in this work, the
daily difference in spot prices is too low to justify a 
management system focusing on spot price savings 
alone. It is possible for apartment buildings to provide 
flexibility services to the DSO by avoiding to use energy 
for DHW during peak load hours in the grid. If so, the 
power tariffs for the building may increase and 
investments in larger storage volume may be needed. 
The interests in offering flexibility services will 
therefore depend on the economic conditions for the
services. 

The results of the study support the theory that 
aggregated DHW need is a significant source of flexible 
energy use in Norwegian apartment buildings. A deeper 
analysis of technical options, control algorithms and 
economic consequences is intended in further studies.
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Institute PhD grant (272402) at SINTEF, the project "Energy 
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on Zero Emission Neighbourhoods in Smart Cities (257660).
The authors gratefully acknowledge the support from the 
partners and the Research Council of Norway.
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Abstract. An energy management system can be introduced on a neighbourhood level, to 
achieve energy goals such as increased self-consumption of locally produced energy. In this 
case-study, electricity generation from photovoltaic (PV) systems is simulated at Risvollan 
housing cooperative, a large housing cooperative in Norway. The electricity generation from PV 
systems of different orientations and capacities are analysed with the electricity load. Key 
performance indicators (KPIs) such as self-generation, self-consumption and generation multiple 
are described, based on hourly values. The electricity generation from the south-oriented 
building façade PV systems are about 5-6% higher than for the east-west oriented rooftop PV 
systems on an annual basis, since the façade PV systems generate more electricity in the spring 
and autumn. The self-consumption factor is the most important KPI in Norway, due to the 
national tariff structure. For the total housing cooperative, a PV capacity of about 1,000 kWp 
seem suitable, giving a self-consumption factor of 97% for a rooftop system, based on 2018 
electricity and climate data. From the perspective of the housing cooperative, it is financial 
beneficial to aggregate electricity loads for common areas and apartments, since a higher share 
of the electricity can be used by the cooperative. For this to be possible, also housing 
cooperatives with PV must be facilitated for in the prosumer agreement. Comparing a single 
1,100 kWp PV system providing electricity to the total cooperative with 22 PV systems of 50 
kWp behind 22 garage meters, the self-consumption factor decreases from 95% to average 14%, 
resulting in a 41% lower financial value for the PV electricity. 

1.  Introduction 
In zero emission neighbourhoods, thermal and electric energy should be managed in a flexible way, to 
achieve reduced power peaks, reduced energy use, reduced CO2-emissions and increased self-
consumption of locally produced energy [1]. Further, smart energy management systems (EMS) with 
building loads can provide energy flexibility services to distribution system operators (DSOs) and 
district heating companies, both on a building and a neighbourhood level. 

A prosumer agreement exists in Norway, for locally produced electricity [2]. AMS meters (Advanced 
Metering System) at each customer measure net electricity export and import on an hourly basis. 
Financially, consumers normally receive less payment for electricity sold to the energy company than 
what they pay for buying electricity. This makes it beneficial to maximise self-consumption, i.e. 
minimising export of electricity to the grid. 
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Risvollan housing cooperative is a large housing cooperative in Trondheim, built in the 1970s. 
Risvollan cooperates with energy companies and researchers to develop a neighbourhood EMS. In 
Risvollan, there are 1,058 apartments with in total 93,713 m2 heated floor area, distributed on 121 similar 
apartment blocks, as shown in Figure 1. In total 2,321 residents live in the apartments: 53% female and 
47% male [3], as shown in Figure 2. Previously, measurements of electricity and heat loads of Risvollan 
in 2018 have been analysed in respectively [4] and [5]. The electricity loads also include around 55 
electric vehicles (EVs) in the parking houses, which is expected to increase within the next years. Space 
heating and domestic hot water (DHW) is provided by district heating.  

To be partly self-sufficient with electricity, the housing cooperative considers installing photovoltaic 
(PV) systems on some of their buildings. This article analyses the electricity demand at Risvollan 
together with possible electricity generation from the PV systems. In this article the electricity delivery 
is also referred to as electricity use, demand or load. 

 

    
Figure 1. Example of apartment blocks at Risvollan housing 

cooperative, with 121 similar building blocks. 
Figure 2. Age and gender 

distribution of the 2,321 residents. 

2.  Methods 
Future scenarios for PV systems are developed, with varying installed PV capacity. PV generation is 
simulated with hourly resolution, using the software PVsyst [6]. Input data and system information is 
shown in Table 1. The PV systems are placed in two directions: 1) rooftop PV systems on flat roofs, 
with a 15° tilt orientated east and west, and 2) building façade PV systems, south oriented with a 90° 
tilt. No shadings are defined for the systems. Snow cover is considered by increasing the albedo values 
during the winter months, as shown in the table. Two system sizes are simulated in each orientation, to 
develop a scalable 1 kWp PV system based on the average, since variations can occur between simulated 
systems in PVsyst. The area suitable for PV on the 121 building blocks varies. Analysing internet maps, 
it seems that around 600 m2 roof area may be available on the most suitable buildings, while other 
building might be evaluated as not suitable at all, due to shadings or roof conditions. In this article, it is 
roughly estimated that a 50 kWp system can be placed on one third of the buildings, giving a total of 
2,000 kWp on the roofs. For the systems placed on the façades, less suitable area is available. Assuming 
that a 12 kWp system can be placed on one third of the buildings, the total potential is about 500 kWp 
on the façades.  

Climate data for 2018 collected from eKlima [7] is imported to PVsyst. The outdoor temperatures 
are mainly from a weather station at Risvollan, where a few missing values are replaced with data from 
weather station Voll, 2.5 km away. The wind data are also from Voll, while the global radiation is from 
the weather station Gløshaugen, 3 km away. Based on the 2018-climate data, PVsyst creates hourly 
meteo-data for the simulations, where the annual horizontal global irradiation is 868.3 kWh/m2, the 
horizontal diffuse irradiation 432.96 kWh/m2 and ambient temperature 5.49°C. 

Based on analysis of electricity loads in 2018 [4], this analysis uses load data from 1,009 apartments 
(95%), 22 electricity meters in garages (88%) and 82 electricity meters in other common areas (92%), 
excluding metering points with less than 7000 hours of data. Still some missing measurement periods 
remain, mainly in January, where only 67% of garages, 76% of other common areas and 72% of the 
apartments are measured. From February, most AMS meters are installed.  
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To evaluate the results, the self-generation, self-consumption and generation multiple factors are 
calculated based on hourly values. The 'self-generation factor', is the percentage of the electrical demand 
that is covered by on-site electricity generation [8]. The 'self-consumption factor' is defined as the 
percentage of the on-site generation that is used by the buildings [8]. 'Generation multiple factor' is the 
ratio between exported and imported peak powers [8]. 

A range of PV capacities are chosen, up to the maximum of 2,000 kWp rooftop and 500 kWp façade 
PV systems, with capacity steps of 0, 50, 100, 500, 1,000 and 2,000 kWp. The aim of the chosen steps 
is to illustrate changes in the key performance indicators (KPIs) with changing PV capacities. In the 
analysis, the main focus in on the KPI self-consumption, since this is a financial important KPI with the 
Norwegian tariff structure. When comparing KPIs for several smaller PV systems to a large PV-system, 
the smallest capacity step of 50 kWp is chosen for the 22 individual systems, with an aggregated capacity 
of 1,100 kWp, which is the capacity used for the single large system. Both the electricity loads and the 
simulated PV electricity generation are analysed using the statistical computing environment R [9]. 
 
Table 1. Input data and system information for the simulated PV systems, with climate data for 2018. 

Location Latitude 63.39° N, Longitude 10.44° E, Altitude 116 m 
Horizon From GVGIS website API 
Monthly albedo values Dec, Jan, Feb, Mar, Apr: 0.4, May, Jun, Jul, Aug, Sep, Oct, Nov: 0.2 
PV module Si-poly, 285 Wp, 72 cells (generic), 14.78% efficiency at STC 
Inverter 12 kWac inverter (generic) 
Orientations, tilts/azimuths Rooftop: 15°/-90° and 15°/90°          Façade: 90°/0° 
PV capacity (kWp) 42.8  68.4  1  12.82 42.8 1 
Nb. modules 150 240 -  45 150 - 
Module area (m2) 291 466  6.8  87.3 291 6.8 
Nb. inverters 3 5 -  1 3 - 
Inverter power (kWac) 36 60  -  12 36 - 
Produced electricity (MWh/year) 32.25 51.58 0.75  10.26 34.18 0.80 
Specific prod. (kWh/kWp/year) 754 754  754  800 800 800 

3.  Results 
The total average specific electricity use in 2018 was approx. 56.7 kWh/m2, used in apartments and 
common areas [4]. Average specific use of district heating was approximately 139 kWh per heated floor 
area [5]. In this article, only the electricity use is analysed with simulated PV electricity. 

3.1.  Analysing electricity generation from PV with electricity use in the housing cooperative 
Table 2 summarizes KPIs for analysing electricity demand at Risvollan with simulated PV electricity. 
Both electricity and climate data are from 2018. The results are for the housing cooperative in total, 
where hourly electricity load from several AMS meters are aggregated.  

In the following, the results are analysed for the common areas only, followed by the total Risvollan. 
For the common areas it is simulated that a 50 kWp, 100 kWp or a 2,000 kWp PV system on the roof 
could cover about 6.5%, 12.3% or 35.3% respectively, of the electricity use on an hourly basis (self-
generation factor). For the façade systems, the self-generation factor for a 50 kWp PV system is 6% 
higher than for the rooftop system, and 30% lower for the larger 500 kWp system. For the 50 kWp rooftop 
PV system, nearly all (99.9%) of the generated electricity can be used by the common areas (self-
consumption factor). For larger rooftop systems of 500 kWp or 2,000 kWp, the self-generation factor is 
declined to 41.5% or 13.5% respectively. For the façade systems, the range of the self-consumption 
factor for the common areas is from 100% for the smallest PV system at 50 kWp, down to 27.6% for the 
largest PV system at 500 kWp. For both the roof and wall systems, the ratio between exported and 
imported peak powers is 0.1 for the 50 kWp PV system and 0.3 for the 100 kWp PV system (generation 
multiple factor). For a 500 kWp system the generation multiple factor increases to 2.4 for a rooftop 
system and to 3.1 for a building façade system. For the 2,000 kWp rooftop system the generation multiple 
factor is increased to 10.4. 
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For the total Risvollan, the three KPI factors change. It is simulated that a 500 kWp PV system would 
cover about 8% of the loads and a 2,000 kWp PV system would cover about 23.3%, on an hourly basis. 
For the façade systems, with maximum capacity of 500 kWp PV, the self-generation factor is slightly 
higher than for the rooftop system. The self-consumption factor for a 500 kWp PV system on both roof 
and the façades is about 100%. For a 2,000 kWp PV system, the self-consumption factor is around 77% 
for a rooftop system, with a ratio between exported and imported peak powers of 0.8. 

 
Table 2. KPIs for analysing electricity use with simulated PV electricity (2018- electricity/climate data). 

Type of user  
(# el meters) 

Electricity 
demand 
(MWh/y) 

Max. load 
(kWh/h) 

PV capacity 
(kWp) 

Simulated gen. 
(MWh/y) 

Self- 
gen. (%) 

Self- 
cons. (%) 

Gen. 
multiple 

  Roof Façade Roof Façade Roof Façade Roof Façade Roof Façade 
Electricity 
common areas  
 

(hourly sum of 
104 el meters) 

576 129 50 
100 
500 

1,000 
2,000 

50 
100 
500 

38 
75 

377 
754 

1,507 

40 
80 

400 

6.5 
12.3 
27.2 
31.9 
35.3 

6.9 
12.7 
19.1 

99.9 
94.0 
41.5 
24.4 
13.5 

100 
91.3 
27.6 

0.1 
0.3 
2.4 
5.0 

10.4 

0.1 
0.3 
3.1 

Total electricity, 
apartments and 
common areas 
 

(hourly sum of 
1,113 el meters) 

4,977 1,126 50 
100 
500 

1,000 
2,000 

50 
100 
500 

 

38 
75 

377 
754 

1,507 

40 
80 

400 
 

0.8 
1.5 
7.6 

14.7 
23.3 

0.8 
1.6 
8.0 

 

100 
100 
100 
96.8 
77.1 

100 
100 
100 

 

- 
- 
- 

0.2 
0.8 

- 
- 
- 
 

 
Figure 3 shows analysis of electricity demand with simulated PV generation, using electricity and 

climate data from 2018. The electricity demand shown is for the common areas (figures in column 1), 
and in total, also including apartments (figures in column 2). The sizes of the PV systems shown are 100 
or 500 kWp for the common areas and 500, 1,000 or 2,000 kWp for the total housing cooperative. The 
electricity load and PV generation on a monthly basis is shown in Figure 3 a) and b), for PV systems on 
the roof or façade. The figures show that the façade-placed south oriented systems generate more 
electricity during the swing seasons, compared to the rooftop east-west oriented systems, but have a 
lower electricity generation during the summer months. In Figure  c) and d), hourly duration curves are 
shown, for net electricity load (positive values: import from grid, and negative values: export to grid). 
The figures show how the export increases, if the PV system is large compared to the electricity demand, 
giving a high generation multiple factor. Figure e) and f) shows example of hourly load and generation 
during a week in April, showing daily variations in electricity use and PV generation. Average daily 
electricity profiles is shown in Figure 3 g) and h), for load and PV generation on roofs or façades during 
spring (Mar, Apr, May) and summer (Jun, Jul, Aug).  

3.2.  Comparing KPIs for a large PV-system to several smaller PV systems  
Table 3 summarizes KPIs for several smaller PV system, compared to one large PV system with the 
same aggregated PV capacity. AMS measurements from the garages are analysed individually, where 
hourly electricity generation from 22 rooftop PV systems, each with a capacity of 50 kWp, are located 
behind the meter of each of the 22 garages. As a comparison, a single large rooftop PV system with a 
capacity of 1,100 kWp is delivering electricity to the garages aggregated, to the common areas (including 
garages), or to the total Risvollan housing cooperative (including common areas and apartments). Figure 
4 shows hourly duration curves for net electricity from or to the grid, comparing the 22 rooftop 50 kWp 
PV systems with a single rooftop 1,200 kWp PV system. 

Due to the tariff structure in Norway, it is normally financially beneficial to maximise self-
consumption, i.e. minimising export of electricity to the grid. Table 4 compares the financial values of 
four system solutions; 1) 22 PV systems of 50 kWp, providing electricity to 22 garages only, 2) 1 PV 
system of 1,100 kWp providing electricity to 22 garages only, 3) 1 PV system of 1,100 kWp providing 
electricity to all common areas (incl. garages) and 4) 1 PV system of 1,100 kWp providing electricity to 
all of Risvollan (incl. apartments and common areas). The tariff estimations are based on [10] and [11], 
and is 1 NOK/kWh for self-consumed PV-electricity, which is the estimated end-user cost for electricity 
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from the grid, and 0.5 NOK/kWh for exported PV-electricity. Only electricity costs are considered, 
assuming that the choice of PV system solution would not change the investment costs. 
 

Common areas in Risvollan housing cooperative Total Risvollan: Apartments and common areas 
a) Monthly electricity load and PV generation 

 

b) Monthly electricity load and PV generation 

 
c) Hourly net electric load duration curves 

(positive: import from grid, negative: export to grid) 
 

 

d) Hourly net electric load duration curves 
(positive: import from grid, negative: export to grid) 

 
e) Example week April, hourly load and generation  

 

f) Example week April, hourly load and generation 

  
g) Daily average electricity profile, during Mar, Apr, 

May (lines) and Jun, Jul, Aug (dotted) 

 

h) Daily average electricity profile, during Mar, Apr, May 
(lines) and Jun, Jul, Aug (dotted) 

 
Figure 3. Analysing electricity use in Risvollan housing cooperative with simulated PV generation. 
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Table 3. KPIs for analysing electricity use with simulated PV electricity (2018- electricity/climate data). 
All the PV systems are east-west oriented rooftop systems with a total capacity of 1,100 kWp. 
KPIs for 22 individual PV systems, located behind 22 garage meters:  
 Electricity 

(MWh/y) 
Max. load 
(kWh/h) 

PV capacity 
(kWp) 

Simulated gen. 
(MWh/y) 

Self- 
gen. (%) 

Self- 
cons. (%) 

Gen. 
multiple 

El garages  
 

(22 el meters) 

Per garage: 
Max: 56 

Mean: 17  
Min: 5 

Per garage: 
Max: 34 
Mean: 7  

Min: 3 

22·50 
Tot: 

1,100 

22·38 
Tot: 
829 

Per garage:   
Max: 46.4 
Mean: 34.9 
  Min: 17.1 

  Per garage: 
Max: 31.8 
Mean: 14.3 
    Min: 3.2 

Per garage: 
Max: 11.0 
Mean: 6.0 
  Min: 1.0 

KPIs for one large PV system, with aggregated load: 
 Electricity 

 (MWh/y) 
Max. load 
(kWh/h) 

PV capacity 
(kWp) 

Simulated gen. 
(MWh/y) 

Self- 
gen. (%) 

Self- 
cons. (%) 

Gen. 
multiple 

El garages  363 91 1,100 829 35.0 15.3 8.1 
El common areas  576 129 1,100 829 32.5 22.6 5.6 
El total Risvollan 4,977 1,126 1,100 829 15.8 95.0 0.3 
 

 
Figure 4. Hourly duration curves for net electricity from/to grid, with 22 rooftop 50 kWp PV systems 
or a single rooftop 1,100 kWp PV system. PV generation from the 22 PV systems cover electricity load 
in 22 garages. PV generation from the single large PV system cover aggregated electricity loads in all 
common areas or in the total housing cooperative, including apartments and common areas.  
 
Table 4. Estimation of financial value of PV electricity, comparing four cases with different electricity 
use, each with a total capacity of 1,100 kWp rooftop PV system. 

Case Simulated gen. Self-cons. (%) Value self-use Value export Total annual value 
22 PV systems a 50 kWp, providing 
electricity to 22 garages only 

22·38, Tot: 
829 MWh/y 

Per garage: 
Mean: 14.3 

121 MWh: 
121,000 NOK  

708 MWh: 
354,000 NOK 

475,000 NOK 

1 PV system a 1,100 kWp, providing 
electricity to 22 garages aggregated 

829 MWh/y 15.3 127 MWh: 
127,000 NOK 

702 MWh: 
351,000 NOK 

478,000 NOK 

1 PV system a 1,100 kWp, providing 
electricity to all common areas 

829 MWh/y 22.6 187 MWh: 
187,000 NOK 

642 MWh: 
321,000 NOK 

508,000 NOK 

1 PV system a 1,100 kWp, providing 
electricity to all of Risvollan (incl. 
apartments and common areas) 

829 MWh/y 95.0 788 MWh: 
788,000 NOK 

41 MWh: 
20,000 NOK 

808,000 NOK 

4.  Discussion 
As a basis for energy management in apartment blocks, this article analyses the electricity demand at 
Risvollan together with simulated electricity generation from several different PV systems. The total 
electricity use included in the analysis is 4,977 MWh, where 12% is used in common areas and 88% in 
1.009 apartments. It is estimated that the total electricity delivery to Risvollan in 2018 was 5,318 MWh 
[4], meaning that 6% of the annual electricity use is excluded or missing from this analysis. If all 
measurements had been available, the KPI factors would have changed slightly. Electricity generation 
from PV is simulated based on climate data from 2018. The climate data is therefore not general, and 
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2018 was a year with higher temperatures and less rain than normally [12]. In addition, no shadings 
were assumed in the simulations, which is rather optimistic. The simulated PV generation may therefore 
be higher than can be expected in real life.  

Comparing the simulated electricity generation on roofs and walls, the façade systems generate about 
5-6% more electricity than the rooftop systems on an annual basis. The systems on the façades generate 
more electricity in the spring, autumn and winter, because of the steeper PV array angle [13]. A south-
oriented 100 kWp system on the façade generates 11% of its electricity during winter, 41% in the spring, 
31% in the summer and 17% in the autumn, while the seasonal division for the east-west oriented rooftop 
system is 4%, 40%, 45% and 11% accordingly. This is positive for the self-generation and self-
consumption factors, since PV electricity can cover electricity demand in the swing seasons. However, 
the wall-placed system is orientated towards south, which gives a higher midday peak than the rooftop 
east-west oriented systems. More PV power is available during morning or afternoon hours for east west 
oriented systems [13]. A higher electricity generation early and late in the day is positive for the 
matching with electricity use. The systems with highest self-generation factor therefore varies: For the 
smaller PV capacities it is the rooftop systems and for the larger PV capacities it is the façade systems. 
For the self-consumption factors, the rooftop systems have the highest values. More electricity is 
exported with the façade systems, giving a higher generation multiple factor. In general, the performance 
of the façade systems is somehow better than the rooftop systems. However, the area available for façade 
systems is limited, and it may be advisable with a combination of the two orientations.  

The KPIs are calculated based on hourly values. If calculating the factors based on 15 minutes, daily 
or monthly intervals, the results would differ. For example, for the 500 kWp PV system providing 
electricity to all common areas, the self-consumption factor of 27.2% based on hourly measurements, 
increases to 45% or 48% if calculated based on daily or monthly values. The self-generation factor is 
41.5% based on hourly values and increases to 69% or 74% based on daily or monthly values. The 
generation multiple factor of 2.4 based on hourly values, decreases to 1.0 or 0.6 based on daily or 
monthly values. It is expected that the self-consumption and self-generation factors would be somewhat 
lower, using 15 minutes instead of hourly measurements. For load and generation power flows, shorter 
time steps give more realistic values for how a real system works. However, when estimating financial 
values, it is usually more relevant to use time steps from the tariff structure.  

The self-consumption factor is the most important KPI in Norway, due to the Norwegian tariff 
structure. When the self-consumption factor is close to 100%, the self-generation factor is around 10% 
and the generation multiple factor is close to zero, since very little electricity is exported. From the 
perspective of the housing cooperative, it is therefore beneficial to locate the PV system and the load 
behind the same AMS meter, or to aggregate electricity loads in the common areas and the apartments. 
To aggregate electricity load from several AMS meters is currently not possible in Norway, but the 
authorities plan to facilitate also for housing cooperatives with PV in the prosumer agreement [14]. In 
principle, all electricity loads in common areas can be behind one AMS meter, but at Risvollan there are 
104 such meters, 22 in garages and 82 in other common areas. The annual financial value of the 22 
single PV systems of 50 kWp, providing electricity to 22 garages only was at 475,000 NOK, whereas a 
single 1,100 kWp PV system, providing electricity to all common areas (incl. garages), the total value 
increases with 6%. For the housing cooperative, the best financial option would be to provide PV 
electricity both to apartments and common areas, increasing the financial value with 70%, to 
approximately 808,000 NOK per year.  

Energy flexibility of Risvollan housing cooperative will be a topic in the further work. According to 
Annex 67 [15], Energy Flexible Building Clusters should demonstrate the capacity to react to forcing 
factors in order to minimize CO2 emissions and maximize the use of Renewable Energy Sources (RES). 
Electricity loads can be adapted to PV generation, by increasing use of electricity during sunny periods 
or by storing electricity in heat storages or EVs [13]. EV charging is a main source of flexible electricity 
use in Norwegian apartment buildings. Besides often being flexible in starting time, duration and 
charging power [16], EV charging infrastructure is the responsibility of the Risvollan cooperative. A 
neighbourhood battery could also increase the self-consumption of PV generated electricity.  
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5.  Conclusion 
This article analyses the electricity use at Risvollan housing cooperative together with possible 
electricity generation from PV systems. Risvollan is a large housing cooperative in Norway, built in the 
1970s, with in total 1,058 apartments. The study shows that the electricity generation from south-
oriented systems on the building façades are about 5-6% higher than for east-west oriented rooftop 
systems on an annual basis, since the façade systems generate more electricity in the spring and autumn. 
However, more PV power is available during morning and afternoon hours for the rooftop east-west 
oriented systems. A combination of PV systems on the roofs and façades seem advisable. The self-
consumption factor is the most important KPI in Norway, due to the national tariff structure. For the 
total housing cooperative, a PV capacity of about 1,000 kWp seem suitable, giving a self-consumption 
factor of 97% for a rooftop system, based on 2018 electricity and climate data. From the perspective of 
the housing cooperative, it is financial beneficial to aggregate electricity loads for common areas and 
apartments, since a higher share of the electricity can be used by the cooperative. For this to be possible, 
also housing cooperatives with PV must be facilitated for in the prosumer agreement. Comparing a 
single 1,100 kWp PV system providing electricity to the total cooperative with 22 PV systems of 50 kWp 
behind 22 garage meters, the self-consumption factor decreases from 95% to average 14%, resulting in 
a 41% lower financial value for the PV electricity. The analysis will be used in further work, together 
with analysis of electricity and heat load patterns at Risvollan, aiming to play a role answering how 
effective management of power and energy at neighbourhood level can be realized. 
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Abstract 
Electric vehicle (EV) charging loads have an impact on 
the power grid, but also represent a potential for energy 
flexibility. There is a need for EV data to evaluate effects 
on the power grid and optimal EV charging strategies. A 
stochastic bottom-up model is developed for residential 
EV charging, taking outdoor temperatures into account. 
The model input is based on real-world data from 
residential charging in Norway. The load profile 
generator provides hourly load profiles for any number 
and combination of small and large EVs, assuming 
immediate charging after plug-in. It is found that the 
model generates realistic load profiles for residential EV 
charging, reflecting today’s charging patterns. Data 
generated can be used for load and flexibility simulations 
for residential EV charging. 
Introduction 
The worldwide use of EVs is increasing rapidly (IEA, 
2021). EV charging loads may have a severe impact on 
the peak loads in the power grid, however charging of 
EVs also represent a potential for energy flexibility 
(Gonzalez Venegas et al., 2021). When evaluating effects 
on the power grid and optimal EV charging strategies, 
knowledge is needed on EV charging habits, load profiles 
and flexibility potential (Calearo et al., 2021). However, 
the availability of such real-world EV data  is scarce 
(Calearo et al., 2021). 
Norway had a 75% sales share of EVs in 2020 (IEA, 
2021), and EVs are becoming the major car choice of the 
population. The main locations for EV charging are at 
home and work, where the charging power is limited by 
the charge points (CPs) and the AC onboard charger in the 
EVs. The number of CPs is increasing in Norway, with 
3.6 to 7.4 kW as typical charging power limitations 
(Figenbaum & Amundsen, 2022). 
EV charging habits have a sporadic nature, with e.g. 
varying plug-in/plug-out time, weekly charging 
frequency, and energy charged per charging session. 
Several CP operators (CPOs) provide charging reports to 
their users, with information on the individual charging 
sessions. Such CPO reports have formed the basis for 
recent research on residential charging habits, load 
profiles and flexibility potential (Sørensen et al., 2021a). 
It is found that EV load profiles also depend on the 

characteristics of the EV, such as onboard charging power 
and battery capacity (Sørensen et al., 2022). EVs with a 
smaller charging power and battery capacity tends to be 
charged more frequently, and have a lower annual 
charging need, compared to EVs with larger capacity 
values. The flexibility potential is related to the non-
charging idle time of the charging sessions, when the EV 
is connected to the CP without charging, thus potentially 
offering smart charging or Vehicle-to-grid (V2G) 
services. High charging power, frequent connections, and 
long connection times are positive elements for reaching 
a high flexibility potential (Sørensen et al., 2022). 
It can be challenging to access quality time series with 
residential EV data and load profiles. In some situations, 
there is an advantage to use a model to generate stochastic 
load profiles, compared to analysing original EV data and 
load profiles directly. A stochastic load profile generator 
can provide load profiles for any number of EVs, and with 
EV parameters for different types of EV fleets. In 
addition, local parameters can also be taken into account, 
such as climate or traffic data.   
Several studies have been carried out to model the 
stochastic nature of EV charging, where the probability 
distributions are typically based on factors such as driving 
distances, plug-in/plug-out times, and start state of charge 
(SoC) estimations. Fischer et al. (2019) presented a 
stochastic bottom-up model to assess EVs' impact on load 
profiles at different parking locations. Influencing factors 
and probability distributions were identified, based on 
analysis of a German mobility dataset, with e.g. driven 
distances, driving and parking durations. The model 
outputs were presence at a CP and its corresponding 
electricity demand. Ayyadi et al. (2019) applied 
probability distributions for driven distances and plug-
in/plug-out times by using Monte Carlo simulations. The 
probability distributions were based on a driving 
behaviour survey with GPS data in China. Other studies 
model energy charged instead of driven distances and 
SoC. Flammini et al. (2019) analysed real-world EV data 
from public CPs in the Netherlands, based on data similar 
to the CPO reports used in our work. The researchers 
provided probability distributions for plug-in/plug-out 
times, connected, charge and idle times, and energy 
charged per charging session, by applying a Beta Mixture 
Model approach.  
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This paper presents a stochastic load-profile generator for 
residential EV charging. The methodology used is similar 
to the approach presented by Fischer et al. (2015). The 
methodology is improved by including outdoor 
temperature as an explanatory variable, since a 
dependency is identified between energy charged and 
outdoor temperature. The contributions of the paper are: 
1) The model is based on information typically 

available in CPO reports in Norway, reflecting real 
charging patterns in Norway.  

2) The generator provides hourly charging load profiles 
for individual or aggregated EVs, where the 
charging happens at private CPs, located at the 
residents own parking spaces.  

3) The hourly charging loads are generated for a full 
year, and can be used as input in EV load and 
flexibility simulations.  

4) The composition of an EV fleet can be defined in the 
generator, including  "small" EVs, "large" EVs, or a 
mix of EV types. Such distinguishment makes it 
possible to generate load data for the current EV 
fleet in a certain location, as well as future EV fleet 
composition scenarios.  

Data 
CPO reports for residential EV charging 
The load-profile generator is developed based on data 
from residential charging in Risvollan, Norway, with 
5466 charging sessions from residents using 56 private 
CPs (Sørensen et al., 2021a; Sørensen et al., 2021b). The 
number of CPs are increasing during the period, from zero 
in December 2018 to 56 in January 2020. Each charging 
session includes the following data: user ID, plug-in and 
plug-out times, connection time, and charged energy for 
each charging session. Risvollan housing cooperative (lat. 
63.39470, long. 10.43028) is located approx. 4 km from 
Trondheim city. In our paper EV charging is in focus, but 
also other energy analyses from the apartment buildings 
are available in Sørensen et al. (2019a; 2019b; 2019c).  
Outdoor temperature dependency of EV charging  
The vehicle range of EVs is reduced in cold temperatures, 
e.g. due to the heating the EVs cabin (Al-Wreikat et al., 
2022). Due to the sporadic nature of EV charging, long 
time series are advantageous for identifying whether 
charged energy per user ID may be influenced by outdoor 
temperatures. For the studied data series, only 7 of the 56 
user IDs have a full year data period. Figure 1 shows 
weekly charging need and average outdoor temperatures 
for six of these EV users (the 7th user has few sessions).  
The stochastic character of EV charging is clear in the 
figures. Still, for some users and periods, a temperature 
dependency is visible. Pearson's correlation coefficient 
(Maechler, 2022) is calculated , for weekly charging need 
and outdoor temperatures during week 10 to 52. The three 
users with highest correlation values (TRO_R_AsO2-1, 
TRO_R_Bl2-1, TRO_R_Bl2-2)", have correlation 
coefficients from -0.46 to -0.27 (with p-values from 0.002 

to 0.091), which indicate a correlation. For the three 
remaining users the correlation is weak, with p-values 
from 0.5-0.7. 

 
Figure 1: Real weekly charging need and average 

outdoor temperatures for six EV users.  
Classifying EV user types for the user IDs  
Each EV user ID in the dataset is classified as a "small" 
EV or a "large" EV depending on the maximum charged 
energy per session (which is a proxy for the battery size 
of the car).  If < 25 kWh, the user is classified as a "small 
EV", and if > 25 kWh as a "large EV" (see overview in 
Table 1). The battery threshold value of 25 kWh is 
determined based on EV market information (Sørensen et 
al., 2021a), where most EVs with smaller batteries are 
either plug-in hybrid EVs (PHEVs) or earlier models of 
battery EVs (BEVs), which often have onboard charger 
capacity of about 3.6 kW. Newer BEVs normally have 
larger battery capacity > 25 kWh, and onboard charger 
capacity of at least 7.2 kW. 
The maximum average charging power per user ID is 
evaluated, as shown in Figure 2. Based on this, an average 
charging power of either 3.6 kW or 7.2 kW is allocated to 
each of the user IDs. For the allocation it is assumed that 
at least one session per user ID is ended before the EV is 
fully charged, as described in Sørensen et al. (2022). 
Table 1: Classification of EV types for dataset user IDs. 

 3.6 kW 7.2 kW Total user IDs 
Small EV 84% (26 IDs) 16% (5 IDs) 55% (31 IDs) 
Large EV 12% (3 IDs) 88% (22 IDs) 45% (25 IDs) 

 
Figure 2: Maximum average charging power per user 

ID, and their allocation to a charging power level. 
Methods 
Overall description of the EV load profile generator  
The stochastic bottom-up model is developed in Westad 
(2021), and simulates hourly load profiles for individual 
EVs during a year, assuming immediate charging after 
plug-in. Any number of EVs can be simulated by the 
model, with a specified share of "large" or "small" EVs, 
referring to the charging power and battery sizes of the 
cars. In addition to the hourly load profiles for each EV 
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user, the plug-in and plug-out time, charged energy, and 
non-charging idle hours are provided. Based on the 
individual load profiles, aggregated load profiles are 
created. An illustration of the process for generating EV 
load profiles is shown in Figure 3, while Table 2 lists the 
probability distributions, model parameters, variables 
used, and model outputs from the load profile generator. 
The model is written in the Python programming 
language (Python Software Foundation, 2022). 

 
Figure 3: Process for generating EV load profiles. 

Table 2: Probability distributions, model parameters, 
variables, and outputs from the load profile generator. 
Probability distributions from the data 
Name Description Units 

F Weekly charging frequency - 
E Charging need per session kWh 
TS Plug-in time of session h 
TE Plug-out time of session h 

Model parameters from the generator user 
U Number of EV users - 
 Percentage EV user types (Large EV, 

Small EV). If no input: No distinction 
% 

 Share of charging power for the 
respective EV type (3.6 kW, 7.2 kW) 

% 

 Daily temperatures for the modelled 
year, starting on Monday week 1 

°C 

Model parameters from the data 
Pu Charging power for EV user u kW 
Fu Weekly charging frequency (1...7) - 

Ed,u Charging need per session at day d kWh 
Lt Duration of period t (1 year) h 

TSd,u Plug-in time of session (1...24) h 
TEd,u Plug-out time of session (1...24) h 
Cd,u Connection duration of session (1...24) h 
Γd,u EV user u plugs-in at day d 0/1 

Generator variables 
yt,d,u Load at time t, day d, for EV user u kWh/h 
zt,d,u Remaining charging need at time t, day 

d, for EV user u 
kWh 

αt,d,u EV user u is charging at time t, day d 0/1 
βt,d,u EV user u is connected at time t, day d  0/1 

Model outputs from the generator 
• EV user type (Small EV, Large EV) 
• Charging power per user (3.6 kW, 7.2 kW) 
• Plug-in time each day for a year (1...24) 
• Plug-out time each day for a year (1...24) 
• Connection time each session 
• Energy need per session 
• Connection profile per hour for a year 
• Charging profile per hour for a year 
• Aggregated charging profile for a year 

 
kW 
h:m 
h:m 
h:m 
kWh 
0/1 
kWh/h 
kWh/h 

Identifying probability distributions  
The load profile generator uses 4 stochastic parameters 
for each user ID and day: 1) weekly charging frequency, 
2) charging need per session, and 3) plug-in and 4) plug-
out time of session. The flow chart in Figure 4 shows how 
the stochastic model parameters are obtained from the 
identified probability distributions based on the dataset.  
Several probability distributions were evaluated in the 
process, and a Kolmogorov–Smirnov test was used to 
estimate the goodness of fit between the data and the 
tested distributions, to find the best-fitted distribution for 
the stochastic parameters. A selection of the chosen 
probability distributions is shown in Figure 5 - Figure 6.  

 
Figure 4: Detailed flow chart for obtaining stochastic 

model parameters in the load profile generator. 
1) and 2) Weekly charging frequency and charging 
need per session: In the profile generator, the weekly 
charging frequency is limited to maximum one plug-in 
per day, for simplification. In the dataset, 74% of the 
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charging sessions happen during weeks with maximum 7 
plug-ins, if removing possible faulty sessions (energy 
charged < 1 kWh and 1 user Bl2-5). As shown in Figure 
5a, EVs classified as "small" has higher plug-in 
frequencies than the large EVs, due to their smaller 
battery sizes. The distribution for charging needs per 
session depends on both the EV type, and the weekly 
charging frequency, as shown in Figure 5b-c. 

a) Weekly charging frequency 

 
b) Charging need, small EVs 

 
c) Charging need, large EVs 

 
Figure 5: Probability distributions used in generator for 
weekly charging frequency and session charging need. 

3) and 4) Plug-in and plug-out times of session: The 
plug-in and plug-out times are only dependent on the type 
of day (workday/Saturday/Sunday). A combination of 
different distributions was necessary to describe the plug-
in and plug-out times, since they do not fit well with a 
single distribution, as illustrated in Figure 6a-e.  
The plug-in and plug-out times are found by first 
randomly drawing which distribution to use, and then 
randomly drawing a daily hour from this distribution. The 
plug-in time is separated by type of day only, while the 
plug-out time during workdays is additionally related to 
the plug-in time. The distributions for plug-in times are 
identified for the following groups "Early and late-night 
(0-6)", "Early morning (6-9)", "Late morning (9-12)", 
"Early afternoon (12-15)", "Late afternoon (15-18"), 
"Early evening (18-21)" and "Late evening (21-23)". 
When the plug-in day is a Friday, Saturday or Sunday, the 
plug-out time is related to the day of the plug-in, not the 
hour since there is less data available for these days.  
 

a) Plug-in time workdays 

 
b) Plug-in time Saturdays 

 
c) Plug-in time Sundays 

 
d) Plug-in related plug-out time workdays 

 
e) Plug-in related plug-out time Saturdays 

 
Figure 6: Probability distributions used in generator for 

plug-in and plug-out times. 
Other parameters 
Connection time limitation: In the generator, connection 
time is limited to a maximum of 24 hours, for 
simplification. Less than 1% of the charging sessions in 
the data are connected for longer than 24 hours. Since the 
generator assumes EV charging immediately after 
connection, this simplification will normally not affect the 
charging load results. However, the simplification may 
underestimate the generated non-charging idle times. In 
addition, the connection time one day may be limited by 
the plug-in time the next day, since there are no 
requirements of minimum time between charging 
sessions. For the sessions connected long enough, 
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charging will continue until the charged energy is equal to 
the energy need. When this is not the case, charging will 
last the entire connection duration of maximum 24 hours. 
Outdoor temperature dependency is included in the 
generator. The intention was to use the real-world data to 
calculate the dependency, however since the data period 
is relatively short and knowledge on driving ranges were 
lacking, the scaling factor is based on a temperature-
dependent driving range estimation for Nissan Leaf EVs 
(Nissan, 2022), which per March 2022 is the most sold 
EV in Norway (Edvardsen, 2022). The reference 
temperature is set to 5°C, since this is the average 
temperature for the data period. Charging need per session 
is multiplied with a scaling factor, as shown in Figure 7. 

 
Figure 7: Scaling factor for temperature dependency of 

charging need, with reference temperature 5°C. 
 

  

Model 
Mathematical equations  
The mathematical equations of the generator are 
expressed in equation 1-7. The connection duration 
(equation 1) is a result of the plug-in and plug-out times. 
The hourly load profile (equation 2) depends on the 
maximum charging power level for the EV, and whether 
the EV is charging (equation 3). For the remaining 
charging need at each hour, the calculation depends on 
whether the EV is connected overnight, meaning that 
𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 ≤ 24 and  𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸 > 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆 .   
When the EV is not connected overnight (equation 4), the 
remaining charging need is expressed by the session 
charging need, and if the EV is connected (equation 5). 
When the EV is connected overnight, the charging 
session’s remaining charging need is transferred to the 
next day, expressed by the transferred charging need 
(equation 6), and if the EV is connected (equation 7). 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �
𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 − 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
 𝑆𝑆𝑆𝑆 , if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 ≥ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆

24 − 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 , if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸 < 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆  (1) 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 × 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 (2) 

𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢  > 0 and 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢  =  1
0, otherwise                                (3) 

𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 − � 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆

× 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 × 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 ,  

for 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 24 

(4) 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸

0, otherwise            
 (5) 

𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 = 𝑧𝑧𝑧𝑧24,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 − � 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸

𝑡𝑡𝑡𝑡=1

× 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 × 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 ,  

for 1 ≤ t ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸  

(6) 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 24

0, otherwise          
 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 = �1, if 1 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸

0, otherwise       
 

(7) 

Scenarios 
Generating load profiles  
To illustrate the output from the load generator, hourly 
load profiles for a whole year are simulated for 1000 EVs. 
Three scenarios are investigated, each with a different mix 
of user types:  
1. "BASE": the mix of "small" and "large" EVs types 

and charging power are identical to the original data 
(ref. Table 1),  

2. "LOW": "small" EVs only, 3.6 kW charging power,  
3. "HIGH": "large" EVs only, 7.2 kW charging power. 
The Root Mean Squared Error (RMSE) is used to evaluate 
the performance, comparing the original data with BASE. 
Coincidence factors  
Coincidence factors are used to calculate the simultaneous 
demand of several customers, while coincident peak 
demand describes the maximum demand for a group of 
customers during periods of peak system demand (Dickert 
& Schegner, 2010). To investigate the coincidence factor 
𝑐𝑐𝑐𝑐 and peak load 𝑌𝑌𝑌𝑌max per EV for an increasing number of 
EVs, a fleet of 100 single load profiles is used. By 
drawing n single load profiles from this fleet, the 
aggregated load profile is found 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

sum(𝑛𝑛𝑛𝑛) = ∑ 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢
𝑛𝑛𝑛𝑛
𝑢𝑢𝑢𝑢=1 , 

and the coincidence factor c(n) and average individual 
peak load  𝑌𝑌𝑌𝑌max,avg(𝑛𝑛𝑛𝑛) are calculated using equation 8 
and 9. This is done for n = 1, ..., 50. The procedure is 
repeated 50 times for each n, and the maximum, minimum 
and mean results are collected. 

𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛) =
max  (𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

sum(𝑛𝑛𝑛𝑛))
∑ max�𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛

𝑢𝑢𝑢𝑢=1
=

𝑌𝑌𝑌𝑌sum,max(𝑛𝑛𝑛𝑛)
∑ 𝑌𝑌𝑌𝑌𝑢𝑢𝑢𝑢

max𝑛𝑛𝑛𝑛
𝑢𝑢𝑢𝑢=1

  (8) 

𝑌𝑌𝑌𝑌max,avg(𝑛𝑛𝑛𝑛) =
𝑌𝑌𝑌𝑌sum,max(𝑛𝑛𝑛𝑛)

𝑛𝑛𝑛𝑛   (9) 

Results and discussion 
Aggregated load profiles  
Load profiles are simulated for 1000 EVs, where the EV 
mix is either BASE, LOW or HIGH. Table 3 presents the 
main results for the three EV scenarios and for the original 
data. The values for the BASE case are closest to the 
original data, which is as expected since this scenario 
reflects the original mix of EV types. The annual charging 
need is about 2500 kWh for BASE, and is 25% higher for 
HIGH compared to LOW. This can be explained by  
higher energy demand for larger EVs and/or longer 
annual driving ranges. However, the difference may also 
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be influenced by the model limitation of maximum one 
charging session per day, since "small" EVs are more 
affected by this simplification. The EVs in LOW charge 
1.7 times more frequent and about half the amount of 
energy per session, compared to HIGH.   
Table 3: Main results for dataset and three scenarios. 
PER EV USER Data BASE LOW HIGH 
Charging need  
per year (kWh) 

2380 2480 2240 2790 

Sessions per week (#) 4.1 3.9 4.7 2.8 
Charging need  
per session (kWh) 

11.2 12.6 9.3 19.4 

Charging time (h/week) 9.5 10.0 12.2 7.6 
Non-charging idle time 
(h/week) 

42.4 32.2 38.5 24.1 

Idle energy capacity 
(kWh/week) 

206 164 139 173 

Charging time and non-charging idle time are part of the 
output for each user, making it possible to analyse EV 
flexibility potentials. The BASE value for average idle 
time per week is 32.2 hours, considerably lower than in 
the original data of 42.4 hours. This can most likely be 
explained by the limitations of maximum one charging 
session per day, and maximum 24 hours connection time. 
Since HIGH has fewer weekly charging sessions 
compared with LOW, the weekly connection time is also 
shorter. HIGH needs less time to charge, but the non-

charging idle time is still shorter than for LOW and 
BASE. However, the potential to move the charging in 
time is higher for HIGH, due to the increased charging 
power: 139 kWh idle energy capacity per week for LOW 
compared to 173 kWh per week for HIGH. 
The average daily load profiles per EV user are shown in 
Figure 8. In all three scenarios, the average daily peak 
load occurs between hour 17 and 18 on workdays, 
between hour 18 and 19 on Saturdays, and between hour 
19 and 20 on Sundays. This is in line with the original data 
(Sørensen et al., 2021a) as shown in Figure 9, and also 
similar to average daily load profiles analysed for other 
residential locations (Sørensen et al., 2022). A 95% 
confidence interval is shown in the figure, where the 
original dataset, with n = 18 to 56 EV users, has a greater 
variability than the BASE scenario, with n = 1000 EV 
users. This is in line with general expectations, that larger 
samples would produce a narrower confidence interval. 
However, a dependency between charging need and type 
of day is indicated in the data. Especially Saturdays stand 
out, with about 15% lower charging need compared to the 
other days. This dependency is not included in the 
generator, resulting in a similar charging need for all type 
of days. Figure 9 also shows the RMSE for each hour of 
the day, comparing the original dataset with the BASE 
scenario. Smaller RSME values indicate higher accuracy. 
The average error is 0.18 kW/user. 

 
Figure 8: Daily average EV load profile per EV user for three scenarios of EV user types. (unstacked) 

 

           
Figure 9: Top: Daily average EV load profile per EV user for original dataset (n = 18 to 56 EV users) and the BASE 
scenario (n = 1000 EV users), with 95% conf.int. Bottom: Root-mean-square error (RMSE) for each hour of the day. 
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Effect of the outdoor temperature dependency 
Figure 10 shows aggregated hourly charging need versus 
outdoor temperatures for the BASE scenario during a full 
year. Figure 11 illustrates an example winter week 
(average temperature of about - 10°C) and an example 
summer week (average temperature of about 20°C). Due 
to the temperature dependency, the charging need 
increases with a factor of about 1.6, assuming similar user 
behaviour. 

 
Figure 10: Hourly EV load profile per EV user for BASE 

scenario versus average daily outdoor temperatures. 

 
Figure 11: Example weeks Winter (January) and 

Summer (July): EV load profile per EV user for BASE 
scenario versus average daily outdoor temperatures. 

 
Figure 12: Coincidence factor and average peak load 

per EV for an increasing number of EVs. BASE scenario. 

 
Figure 13: Mean coincidence factor and average peak 

load per EV. All three scenarios. 
Coincidence factors  
Coincidence factor and coincident peak demand are 
important factors in grid dimensioning (Dickert & 

Schegner, 2010). Figure 12 shows minimum, mean and 
maximum coincidence factors and peak load per EV for 
an increasing number of EVs in the BASE scenario. In 
Figure 13, mean coincidence factor and peak load values 
are shown for all the three scenarios. The figures show 
how the peak load per EV user is stabilizing with an 
increasing number of users. Assuming charging 
immediately after plug-in, the peak load per EV is 
descending towards 1.4 kW in BASE, 1.3 kW for "small" 
EVs (LOW), and 1.9 kW for "large" EVs (HIGH).  
Conclusion and Further work 
A stochastic bottom-up model is developed for residential 
EV charging, taking outdoor temperatures into account. 
The generator is based on data from residential charging 
in Norway, with 5466 charging sessions from 56 private 
CPs. The EV load profile generator provides hourly load 
profiles for any number and combination of "small" and 
"large" EVs, assuming immediate charging after plug-in. 
The data generated can be used for e.g. load and flexibility 
simulations for residential EV charging. 
Load profiles are simulated for 1000 EVs, where the EV 
mix is either BASE (reflecting the dataset mix), LOW 
("small" EVs only) or HIGH ("large" EVs only). For the 
BASE scenario, the charging need is about 2500 kWh per 
year, which is in the range of the original data. Comparing 
the LOW and HIGH scenarios, the EVs in LOW charge 
about 25% less energy on an annual basis. The EVs in 
LOW are charged more frequently than in HIGH (1.7 
times), but charge less energy per session (0.5 times). The 
potential to move the charging in time is higher for HIGH, 
due to the increased charging power.  
Coincident peak demand is an important factor in grid 
dimensioning, and is calculated for the three mixes of user 
types, with the number of EVs increasing from 1 to 50.  
Assuming EV charging immediately after plug-in, the 
average peak load per EV is descending towards 1.4 kW 
for BASE, 1.3 kW for "small" EVs, and 1.9 kW for 
"large" EVs. 
It is found that the model generates realistic hourly load 
profiles for residential EV charging, reflecting today’s 
charging patterns. The results illustrate how charging 
habits and load profiles depend on the EV type, and how 
this affect coincidence factors and coincident peak 
demand. 
It is our intention to further improve the EV load profile 
generator. Prospects for future works include:  
• Creating new probability distributions based on a 

larger dataset, to make the model more robust and 
reflect a more general situation. 

• Considering improvements in the EV load profile 
generator, e.g. to include a dependence between 
energy charged and type of day; to allow more than 
one charging session per day; to allow the connection 
time to be longer than 24 hours; to include a 
dependence between plug-in and plug-out time also 
for plug-ins Friday, Saturday or Sunday; to add a 
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minimum period between two charging sessions, e.g. 
based on a statistical dependence between previous 
plug-out time and the new plug-in time. 

• Improving the temperature dependency based on real 
data, possibly with a difference between "small" and 
"large" EVs. Considering how other seasonal factors 
impact the scaling factor, such as season dependent 
tyres, driving habits, cabin and battery preheating, and 
user behaviour.   

• Differentiate between holiday periods or special days. 
• Characterizing the EV charging sessions and their 

energy loads as flexible or non-flexible, depending on 
the duration of the non-charging idle times.   

• Improving the characteristics of EV types and adding 
hourly battery SoC to the output data, based on 
methods in Sørensen et al. (2022). 

• Considering if hourly local traffic density should be 
included as a possible input from the generator user, 
since correlation is found between plug-in/plug-out 
times and local hourly traffic (Sørensen et al., 2021a). 
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a b s t r a c t 

This data article refers to the paper "Analysis of residen- 

tial EV energy flexibility potential based on real-world charg- 

ing reports and smart meter data" [1] . The reported datasets 

deal with residential electric vehicle (EV) charging in apart- 

ment buildings. Several datasets are provided, with differ- 

ent levels of detail, aiming to serve various needs. The pa- 

per provides real-world EV charging reports describing 6,878 

charging sessions registered by 97 user IDs, from December 

2018 to January 2020. The charging reports include identi- 

fiers, plug-in time, plug-out time and charged energy for the 

sessions. Synthetic charging loads are provided with hourly 

resolution, assuming charging power 3.6 kW or 7.2 kW and 

immediate charging after plug-in. The non-charging idle time 

reflects the flexibility potential for the charging session, with 

synthetic idle capacity as the energy which could poten- 

tially have been charged during the idle times. Synthetic 

hourly charging loads and idle capacity are provided both 

for individual users, and aggregated for users with private 

or shared charge points. For a main garage with 33% of the 

charging sessions, smart meter data and synthetic charging 

loads are available, with aggregated values each hour. Fi- 

nally, local hourly traffic density in 5 nearby traffic locations 

is provided, for further work related to the correlation with 
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plug-in/plug-out times. Researchers, energy analysts, charge 

point operators, building owners and policy makers can ben- 

efit from the datasets and analyses, serving to increase the 

knowledge of residential EV charging. The data provides valu- 

able insight into residential charging, useful for e.g. forecast- 

ing energy loads and flexibility, planning and modelling ac- 

tivities. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

Subject Renewable Energy, Sustainability and the Environment 

Specific subject area Residential electric vehicle (EV) charging habits and energy loads 

Type of data CSV files 

Table 

Figure 

Map 

How data were acquired Obtained data, e.g. EV charging reports and Advanced Metering System (AMS) 

measurements, were processed using the statistical computing environment R 

[2] . Synthetic hourly charging loads and idle capacity were created, based on 

information in the charging reports and assumptions. 

essions, listing identifiers, 

y. 

e of the garages. 

locations. 

d hourly electricity data 

om the housing cooperative. 

5254, long 10.426319 

2rcwyj.1 

 Analysis of residential EV 

arging reports and smart 

10923 [1] . 

s. There is a lack of real- 

 flexibility potential are 

rs and policy makers can 

wledge of residential EV 

or e.g. forecasting energy 

to serve various needs. 
Data format Raw 

Analysed 

Filtered 

Parameters for data collection Data from December 2018 to January 2020: 

• EV charging reports with individual charging s

plug-in time, plug-out time and charged energ

• Hourly electricity data from AMS meters in on

• Local hourly traffic density in 5 nearby traffic 

Description of data collection EV charging reports from charge point operator an

from grid company, both available with consent fr

Local hourly traffic data is downloaded from [3] . 

Data source location Institution: Risvollan Housing Cooperative 

City/Town/Region: Trondheim 

Country: Norway 

Latitude and longitude for collected data: lat 63.39

Data accessibility Repository name: Mendeley Data [4] 

Data identification number: 10.17632/jbks2rcwyj.1 

Direct URL to data: http://dx.doi.org/10.17632/jbks

Related research article Å.L. Sørensen, K.B. Lindberg, I. Sartori, I. Andresen,

energy flexibility potential based on real-world ch

meter data , https://doi.org/10.1016/j.enbuild.2021.1

Value of the Data 

• The datasets describe residential EV charging in apartment building

world data found in the literature, even though energy needs and

recognized. 

• Researchers, energy analysts, charge point operators, building owne

benefit from the datasets and analyses, serving to increase the kno

charging. 

• The data provides valuable insight into residential charging, useful f
loads and flexibility, planning and modelling activities. 

• Several datasets are provided, with different levels of detail, aiming 
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• Local traffic data is provided for further analysis, where correlation with plug-in/plug-out 

times can be part of new models for EV charging loads and flexibility. 

1. Data Description 

Data have been collected from a large housing cooperative in Norway, with 1,113 apartments 

and 2,321 residents. A new infrastructure for EV charging was installed from December 2018. 

From December 2018 to January 2020, charging sessions were registered by 97 user IDs; 82 of 

these IDs appeared to be still active at the end of the period. In the data provided with this 

article, Central European Time (CET) zone is used, which is GMT + 1. Daylight saving time (DST) 

ns, registered by 97 user 

e plug-in time, plug-out 

 is connected to a user 

, since the charge points 

ared parking areas avail- 

 available for each of the 

 and users individually 

ing idle capacity for each 

arging loads and idle ca- 

 is assumed, with imme- 

xibility potential for the 

ld potentially have been 

 to January 2020, and in- 

 per user, but hours with 

. 

n. 
applies. 

1.1. Dataset 1: EV charging reports 

The CSV file “Dataset 1” describes 6,878 individual charging sessio

IDs from December 2018 to January 2020. The charging reports includ

time and charged energy per charging session. Each charging session

ID, charger ID and address. The charger IDs are either private or shared

(CPs) are either located on the residents private parking spaces, or on sh

able for all residents registered as users. Table 1 shows the parameters

charging sessions. 

1.2. Dataset 2: Hourly EV charging loads and idle capacity, for all sessions

The CSV file “Dataset 2” describes EV charging loads and non-charg

user and all EV charging sessions individually. The synthetic hourly ch

pacity are created as described in [1] . Charging power 3.6 kW or 7.2 kW

diate charging after plug-in. The non-charging idle time reflects the fle

charging session. Synthetic idle capacity is the energy load which cou

charged during the idle times. The time period is from December 2018

cludes all active hours for each user (not a complete hourly time series

charging loads or idle capacity). Table 2 shows the parameters available

Table 1 

Description Dataset 1: EV charging reports, describing each individual EV charging sessio

session_ID Unique ID for EV charging session (N = 6878) 

Garage_ID ID for garage address (N = 24) 

User_ID ID for user (N = 97) 

User_type CP ownership: Private or shared CPs 

Shared_ID When shared CPs used: ID for shared CP (N = 12) 
Start_plugin Plug-in date and time (format 21.12.2018 10:20) 

Start_plugin_hour Clock hour for plug-in (from 00 to 23) 

End_plugout Plug-out date and time (format 21.12.2018 10:20) 

End_charging_hour Clock hour for plug-out (from 00 to 23) 

El_kWh Charged energy (kWh) 

Duration_hours Duration of the EV connection time, per charging session (decimal hours) 

month_start Plug-in month (January-December) 

weekdays_start Plug-in weekday (Monday-Sunday) 

Plugin_ category Category for plug-in time during the day. Each category lasts three hours 

(early/late night, morning, afternoon, evening) 

Duration_category Category for plug-in durati on 

( < 3h, 3-6h, 6-9h, 9-12h, 12-15h, 15-18h, > 18h) 
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Table 2 

Description Dataset 2: Hourly EV charging loads and idle capacity, for all users individually. 

date_from Starting time (format 22.01.2019 19:00) 

date_to Ending time (format 22.01.2019 20:00) 

User_ID ID for user (N = 97) 

session_ID Unique ID for EV charging session (N = 6878) 

Synthetic_3_6kW Synthetic hourly energy load (kWh/h) assuming 3.6 kW charging power (ref. [1] ), 

for users individually 

Synthetic_7_2kW Synthetic hourly energy load (kWh/h) assuming 7.2 kW charging power (ref. [1] ), 

for users individually 

Flex_3_6kW Synthetic hourly idle capacity (kWh/h) assuming 3.6 kW charging power, 

for users individuall y 

Flex_7_2kW Synthetic hourly idle capacity (kWh/h) assuming 7.2 kW charging power, 

for users individually 

Table 3 

Description Dataset 3a and 3b: Hourly EV charging loads and idle capacity, aggregated for users with private (3a) or 

shared (3b) CPs. 

date_from Starting time (format 22.01.2019 19:00) 

daily_hour Clock hour (from 00 to 23) 

weekday Weekday (Monday-Sunday) 

month Month (January-December) 

Synthetic_3_6kW Synthetic hourly energy load (kWh/h) assuming 3.6 kW charging power, 

aggregated for users with private (2a) or shared (2b) CPs 

Synthetic_7_2kW Synthetic hourly energy load (kWh/h) assuming 7.2 kW charging power, 

aggregated for users with private (2a) or shared (2b) CPs 

Flex_3_6kW Synthetic hourly idle capacity (kWh/h) assuming 3.6 kW charging power, 

aggregated for users with private (2a) or shared (2b) CPs 

Flex_7_2kW Synthetic hourly idle capacity (kWh/h) assuming 7.2 kW charging power, 

aggregated for users with private (2a) or shared (2b) CPs 

2a: n_ private Number of registered User IDs using private CPs (increasing, 1 to 58) 

2b: n_ shared Number of registered User IDs using shared CPs (increasing, 1 to 24) 

1.3. Dataset 3: Hourly EV charging loads and idle capacity, aggregated for private or shared CPs 

The CSV files “Dataset 3a” and “Dataset 3b” describe EV charging loads and idle capacity, 

aggregated for users with private (3a) or shared (3b) CPs. Charging power 3.6 kW or 7.2 kW 

is assumed, with immediate charging after plug-in. The time period is from December 2018 to 

January 2020, with a complete hourly time series. Table 3 shows the parameters available. 

ring 

r each daily hour during 

, with immediate charg- 

d shared CPs are shown 

ith 30 to 82 users, from 

increasing from 18 to 58, 

period is chosen, to get a 

d loads. 

ve an AMS-meter mea- 

on. This article includes 
1.4. Dataset 4: Average EV charging loads per user, for each daily hour du

weekdays/Saturdays/Sundays 

Dataset 4 in Table 4 shows average EV charging loads per user, fo

weekdays, Saturdays, and Sundays. Charging power 7.2 kW is assumed

ing after plug-in. In the table, charging loads for users with private an

separately. The daily charging load profiles are based on the period w

June 2019 to January 2020, with the number of users with private CPs 

and users with shared CPs increasing from 12 to 24. The subset of the 

more representative overview of expected power per user for aggregate

1.5. Dataset 5: Hourly smart meter data from garage Bl2 

The EVs were parked in 24 locations, whereof 22 locations ha

suring aggregated EV-charging at that location, with hourly resoluti
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Table 5 

Description Dataset 5: Hourly smart meter data from garage Bl2. 

Garage_ID ID for garage address (Bl2) 

date_from Starting time (format 22.01.2019 19:00) 

date_to Ending time (format 22.01.2019 20:00) 

month Measurement starting month 

AMS_kWh Aggregated electricity use in the garage each hour, measured by AMS meter 

Synthetic_3_6kW Synthetic hourly energy load (kWh/h) assuming 3.6 kW charging power, 

aggregated for users in the garage 

Synthetic_7_2kW Synthetic hourly energy load (kWh/h) assuming 7.2 kW charging power, 

aggregated for users in the garage 

Simultaneous_if_3_6kW Number of simultaneous charging sessions, assuming that all sessions charge 

with 3.6 kW charging power. NA if no charging sessions are assumed 

Table 6 

Description Dataset 6: Local hourly traffic density. 

Date_from Starting time (format 22.01.2019 19:00) 

Date_to Ending time (format 22.01.2019 20:00) 

Location 1 to 5 Number of vehicles shorter than 5.6 meter each hour, in 5 nearby traffic locations 

AMS-measurements from a main garage, where 33% of the charging sessions took place (2,243 

charging sessions). The CSV file “Dataset 5” describes hourly smart meter data from garage 

Bl2, with aggregated electricity use each hour. The dataset also includes synthetic hourly en- 

ergy loads, aggregated for the same garage. The time period for the dataset is from January 

2019 to January 2020, with a complete hourly time series. Table 5 shows the parameters 

available. 

1.6. Dataset 6: Local traffic density 

 nearby traffic locations, 

 shorter than 5.6 meter, 

ailable. 

 [2] . 

arge point operator. Sev- 

individual charging ses- 

out) and charged energy 

er_type, Shared_ID) and 

g-out times of the charg- 

n_hours). Clock- and cal- 

our, month_start, week- 

ration (Plugin_ category, 
The CSV file “Dataset 6” describes local hourly traffic density in 5

downloaded from [3] . The data includes an hourly count of vehicles

from December 2018 to January 2020. Table 6 shows the parameters av

2. Experimental Design, Materials and Methods 

The data are analysed using the statistical computing environment R

2.1. Dataset 1: EV charging reports 

EV charging reports are received from the housing cooperative’s ch

eral subdivided reports are added together and organised. For each 

sion (session_ID), plug-in time (Start_plugin), plug-out time (End_plug

(El_kWh) are known, as well as user ID (User_ID), CP ownership (Us

garage location (Garage_ID). The difference between the plug-in and plu

ing sessions, provides the duration of the EV connection time (Duratio

endar data are added to the dataset (Start_plugin_hour, End_charging_h

days_start), as well as categorical values for plug-in time and plug-in du

Duration_category). 
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Table 7 

Method to develop synthetic hourly charging loads. 

Charged energy 

Method to develop synthetic hourly charging 

loads 

Example, Session_ID 4, assuming P charging 3.6 

kWh/h 

E first hour Number of minutes after plug-in is counted. 

Potential energy is calculated, for a given 

P charging . If E charged is larger than energy 

potential, E first hour equals energy potential. If 

not, E first hour is E charged 

Plug-in at 16:15: Up to 45 min 

charging (2.7 kWh). 

Since E charged is 15.56 kWh, 

E first hour is 2.7 kWh. 

E middle hours Remaining energy charged is calculated, as 

difference between E charged and E first hour . 

Remaining energy is divided on P charging , to get 

number of full hours charging with P charging . 

Remaining energy: 12.86 kWh. 

E middle hours : 3.6 kWh/h for 3 h. 

Remaining energy: 2.06 kWh. 

E last hour Remaining energy will be charged. E last hour : 2.06 kWh (34 min). 

Total charging time: 4 h 19 min 

The original EV charging reports have 7,245 charging sessions. The main steps of data clean- 

ing include removing unrealistic charging sessions (1 CP with 29 charging sessions removed) 

and charging sessions with no energy charged (338 charging sessions removed). If the plug-out 

time is too early, compared to energy charged and maximum 11 kW charging power available, 

the plug-out time is removed (set to NA), since this indicates that the value is incorrect (rele- 

vant for 34 charging sessions). Further, there was quality assurance to assure correct data time 

zones/DST, before calendar data was added. The final dataset includes 6,878 individual charging 

sessions (95%). 

 and users individually 

ll sessions and users in- 

 are all hours the users 

 capacity are created as 

 not known, two alterna- 

al levels for the onboard 

g power during an hour. 

arging session for all the 

method used to develop 

arging is assumed charg- 

kWh), E first hour is energy 

harged during full hours 

ble includes an example 

 EV connection time and 

arging session. The idle 

ng the non-charging idle 

dle capacity, multiplying 

uring the first clock hour 

e time, Flex last hour is idle 

udes an example session 

 can become equal to or 

rging idle time included. 
2.2. Dataset 2: Hourly EV charging loads and idle capacity, for all sessions

Dataset 2 includes hourly EV charging loads and idle capacity, for a

dividually. The dataset includes all active hours for each user, which

are connected to the CP. The synthetic hourly charging loads and idle

described in [1] . Since the actual charging time and charging power are

tive charging powers are assumed: 3.6 or 7.2 kWh/h, representing typic

charger capacities. The assumed charging power is the average chargin

Synthetic hourly charging loads and idle capacity are created per ch

users, assuming immediate charging after plug-in. Table 7 shows the 

synthetic hourly charging loads for the charged energy (El_kWh). P ch
ing power, E Charged is charged energy during the charging session (El_

charged during the first clock hour connected, E middle hours is energy c

charging, E last hour is energy charged during the last clock hour. The ta

session (Session_ID 4). 

The difference (non-charging idle time) between the duration of the

the assumed charging time, reflects the flexibility potential for the ch

capacity is the energy which could potentially have been charged duri

times. Table 8 shows the method used to develop synthetic hourly i

idle time each hour with charging power. Flex first hour is idle capacity d

with idle time, Flex middle hours is idle capacity during full hours with idl

capacity during the last clock hour with idle time. Also this table incl

(Session_ID 4). 

For the synthetic hourly charging loads, the synthetic charging time

even longer than the actual connection time. If so, there is no non-cha
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Table 8 

Method to develop synthetic hourly idle capacity. 

Flexible energy 

Method to develop synthetic hourly idle 

capacity 

Example, Session_ID 4, assuming P charging 
3.6 kWh/h 

Flex first hour Number of minutes needed to charge 

E last hour is calculated. If plug-out time is 

after needed charging time, then the 

charging session has idle time. Flex first hour 
is calculated for the available idle minutes 

the first hour, for a given P charging . 

Connection time: 24 h 25 min. 

Total charging time: 4 h 19 min. 

Since E last hour is 2.06 kWh, 

Flex first hour : 1.54 kWh (26 min). 

Flex middle hours Remaining idle time is calculated, as 

difference between session connection 

time, total charging time and idle time first 

hour. Number of full idle hours is 

multiplied with P charging . 

Remaining idle time: 19 h 40 min. 

Flex middle hours : 3.6 kWh/h for 19 h. 

Remaining idle time: 40 min. 

Flex last hour Remaining idle minutes is multiplied with 

P charging . 

Flex last hour : 2.41 kWh (40 min). 

Total idle capacity: 72.35 kWh. 

Also, when the plug-out time is removed in the initial data cleaning (set to NA), there is no 

non-charging idle time included. 

2.3. Dataset 3: Hourly EV charging loads and idle capacity, aggregated for private or shared CPs 

Dataset 3 describes EV charging loads and idle capacity, aggregated for users with private 

or shared CPs. First, Dataset 2 is divided on users classified as private or shared (User_type). 

Two hourly aggregated databases are then created by grouping the data per hour. Hours with 

ourly timeseries for the 

ed to the databases. The 

n (user has value NA be- 

tive, if they for example 

sers with NA values to- 

nactive and not included 

r their last charging ses- 

nuary 2020), only users 

id wrong classification of 

ring 

regated values in dataset 

s, Saturdays and Sundays 

 82 users only, with the 

ith shared CPs increasing 

presentative overview of 

ly peak values per user, 

ating the average hourly 

reduced with increasing 
no charging are added to the aggregated databases, to assure a full h

period, from mid-December 2018 to end-January 2020. 

Information about the number of registered users each day is add

users are classified as active from the date of their first charging sessio

fore and 1 after first connection). In addition, some users become inac

move or if a user using shared CPs becomes a user with private CP. U

wards the end of the measurement period are therefore classified as i

in the number of EV users. The change of classification takes place afte

sion, from their first inactive date. However, during the last month (Ja

not charging at all during the month were classified as inactive, to avo

users travelling etc. 

2.4. Dataset 4: Average EV charging loads per user, for each daily hour du

weekdays/Saturdays/Sundays 

To create average hourly EV charging loads per user in Dataset 4, agg

3 are divided on the number of users each hour. Averages for weekday

are calculated for each daily hour. 

The daily charging load profiles are based on the period with 30 to

number of users with private CPs increasing from 18 to 58, and users w

from 12 to 24. The subset of the period is chosen, to get a more re

expected power per user for aggregated loads. Fig. 1 shows the month

where the period June 2019 to January 2020 is included when calcul

EV charging loads. The figure shows how the peak power per user is 

number of users, due to a lower coincidence factor. 
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Fig. 2. Position of the 5 locations with hourly traffic data from [2] (yellow stars) and the housing cooperative (red 

marker). Map: © Kartverket/norgeskart.no. 

2.5. Dataset 5: Hourly smart meter data from garage Bl2 

Dataset 5 describes hourly AMS meter data for garage Bl2, measuring aggregated charging in 

the garage each hour. Hourly energy estimates provided by the DSO are removed from the data 

(8 values changed to NA), since inaccurate hourly values may influence the results. The time 

period for the dataset is from January 2019 to January 2020, with a complete hourly time series. 

Synthetic hourly charging loads are also added to the dataset, aggregated for the garage. Fi- 

nally, the dataset includes a count of the number of simultaneous charging sessions. The count 

is done when grouping the charging sessions each hour. For the count, it is assumed that all 

n are NA if there are no 

ocations: KROPPAN BRU, 

Steinanvegen. The traffic 

 with different sizes. The 

 as an hourly average of 

ns of the traffic stations 

arge point operator NTE 
sessions charge with 3.6 kW charging power. The values in the colum

counted charging sessions. 

2.6. Dataset 6: Local traffic density 

Dataset 6 describes local hourly traffic density in 5 nearby traffic l

MOHOLTLIA, SELSBAKK, MOHOLT RAMPE 2, Jonsvannsveien vest for 

data is downloaded from [3] , where traffic data is counted for vehicles

hourly number of small cars (less than 5.6 m) is used in the analysis,

the traffic measured by the five traffic stations. The geographic locatio

and the housing cooperative are shown in the map in Fig. 2 . 

Ethics Statement 

Data are provided with consent from the housing cooperative and ch

Marked. EV charging reports are anonymized. 
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