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ABSTRACT

In the continual need to improve efficiency within the aviation industry, composite
materials currently play a pivotal role in reducing aircraft structural weight. This
thesis investigates the benefit of a promising new class of composites, where fibers
are steered in curvilinear paths to enhance structural efficiency. A design study is
conducted in which performance is quantified both numerically and experimentally
for a panel representing a lower wing skin section near a circular cutout. Quasi-
isotropic, variable stiffness, and variable-angle tow laminates are compared.

The stiffness-optimal design for each design case was obtained through finite
element-based numerical optimization, representative of state-of-the-art methods
in the literature. This combined composite topology optimization with an ap-
proach for obtaining optimal fiber paths, while considering the design constraints
related to composite wing design and manufacturing. The structures were manu-
factured from a carbon/epoxy prepreg material and tested in pure tension. The
stiffness, failure loads, and failure modes of the panels were compared.

Numerical results reveal a notable improvement of 11% in specific stiffness and
27% in specific strength when utilizing curvilinear compared to linear fiber formats.
Experimental results show good correspondence with predictions for stiffness but
highlight larger discrepancies in strength. Based on an analysis of these results,
potential improvements to the structural analysis and the optimization problem
formulation are identified.

This design study signifies the potential of tow-steered composites in the con-
text of composite wing design. Meanwhile, it sheds light on limitations within
contemporary design optimization approaches, prompting further exploration and
refinement in the pursuit of variable-angle tow structures for aeronautical appli-
cations.
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SAMMENDRAG

I målet om å forbedre energieffektivitet innen luftfartindustrien spiller kompositt-
materialer en sentral rolle i å redusere strukturell vekt. Oppgaven undersøker
fordelen av en fremvoksende type komposittstuktur, der fiber «styres» i kurvi-
lineære baner for å effektivisere materialbruk. En designstudie gjennomføres der
strukturell ytelse kvantifiseres både numerisk og eksperimentellt, for et panel som
representerer nedre vingeoverflate i nærheten av et sirkulært adkomsthull. Tre
ulike laminattyper sammenlignes: ett med krumlinjede fiber, ett med lineære fiber,
og ett med uniform kvasi-isotrop fiberfordeling.

Det optimale designet for hvert tilfelle bestemmes ved bruk av elementbasert
strukturell optimalisering, representativt for «state-of-the-art» innen fagfeltet.
Topologioptimalisering kombineres med en metode for å beregne optimale fiber-
baner, samtidig som at designbegrensningene knyttet til vingestrukturer hensyn-
tas. Designene produseres deretter av et karbon/epoksy prepreg-materiale, og
karakteriseres gjennom strekktesting. Stivhet, bruddlast, bruddform, og vekt sam-
menlignes.

De numeriske resultatene viser en betydelig forbedring på 11% i spesifikk
stivhet of 27% i spesifikk styrke for kurvilinært sammenlignet med lineært fiber-
format. Eksperimentelle resultater viser godt samsvar men hensyn på stivhet,
men fremhever større avvik for styrke. I analysen av disse resultatene identi-
fiseres potensielle forbedringer i den strukturelle analysen og i formuleringen av
optimaliseringsproblemet.

Denne undersøkelsen viser tydelig potensiale for kurvilineært fiberformat in-
nen vingekonstruksjoner. Samtidig belyses begrensninger av nåværende tilnær-
minger for strukturell optimalisering, og bidrar dermed med et utgangspunkt for
videreutvikling i målet om å dra nytte av denne fordelen i fremtidige flystrukturer.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

The design of optimal lightweight structures is a fundamental research topic in
design engineering, and is a very active area within the aeronautics and aerospace
industries. In particular, it has become paramount in improving the sustainability
and energy efficiency of the commercial aviation industry, where weight is pivotal
for the fuel consumption of an aircraft.

This development is driven by a combination of factors, including the increas-
ing cost of fossil fuels, a broader commitment to sustainability, and environmental
regulations aimed at reducing the aviation industry’s emissions, which currently
comprise 2% of the global total [1]. One of the most significant regulations was
introduced by the International Civil Aviation Organization (ICAO), the global
authority for commercial aviation, setting the goal of net zero for international
flights by 2050. To achieve this scenario, technological and operational improve-
ments must account for an average annual fuel burn reduction of 2% [2], a sub-
stantial increase over the historical average of 1.3% [3]. In response to these
factors, aircraft manufacturers are actively exploring new design techniques for
the lightweight structures of their next-generation aircraft.

In this regard, one of the most significant technological breakthroughs has been
the adoption of composite materials in aircraft primary structures. Composites
now comprise more than 50% of the total weight in prevalent commercial aircraft,
such as the Airbus A350 and the Boeing 787 Dreamliner [4]. This transition can
be attributed to several compelling advantages compared with metallic materials,
such as high stiffness and strength relative to weight, as well as excellent corrosion
and fatigue resistance [5]. Another considerable advantage is that stiffness and
strength inherently depend on the local fiber direction. Engineers can customize
the orientation of reinforcing fibers to align with anticipated load paths, enabling
the tailoring of material properties to respond optimally to the local loading con-
ditions. This targeted reinforcement allows for structural efficiencies that would
otherwise be unattainable using isotropic materials.

However, engineers have yet to take full advantage of these anisotropic prop-
erties. Currently, modern aircraft structures are manufactured from an integer
number of uniaxial plies, oriented at a limited set of fiber angles (Fig. 1.1.1).
Composites are often used as a so-called "black metal," orienting fibers in an equal

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1.1: Manufacturing of a composite fuselage section (Airbus A350) with
fibers being placed on the mandrel in linear paths [7].

proportion of directions to produce a laminate with quasi-isotropic (QI) proper-
ties. Performance can be improved by optimizing the topology (i.e., local stacking
sequence) of the plies, thereby tailoring the thickness and directional properties of
the laminate. These structures are typically referred to as variable stiffness (VS)
composites [6]. Even so, the degree to which the fibers can be aligned with the
local loading direction is limited, given that most engineering structures exhibit
load paths that change direction continuously throughout. Thus, while this set
of restrictions eases the process of manufacturing and design, they simultaneously
limit the attainable performance.

Given these drawbacks of contemporary design approaches, variable-angle tow
(VAT) laminates have garnered growing attention as a promising new class of
composite structures. In VAT laminates, the fiber orientation varies continuously
over the structural domain within each ply (Fig. 1.1.2). This way, the point-wise
directional properties of the laminate can be tailored to an even greater extent.
The practical realization of such a structure is facilitated by advances in automated
fiber placement (AFP) technology, enabling the automatic placement of fiber tows
in precise curvilinear paths [8]. This process is known as composite tow steering.

Figure 1.1.2: Tow-steered wing structure manufactured by researchers at Aurora
Flight Sciences [9].

Despite presenting great potential, VAT composites have yet to be used in a ma-
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jor airframe structural component. Firstly, this is due to the limited amount of
work quantifying the benefits of the technology relative to conventional structural
design techniques, making it challenging to justify their adoption. Secondly, the
methods for their design, analysis, and certification are currently less well defined
and understood than for more conventional composites, due to the increase in
design freedom and associated complexity [9]. These two challenges are closely
linked, as studying the benefit of the technology relies on design optimization to
quantify the maximum attainable performance for a given application. Conse-
quently, demand has emerged for studies exploring the optimal design of VAT
structures and applying these methods to solve practical design problems.

1.2 Prior Work

The research field studying the design of VAT structures has witnessed rapid
growth over the past twenty years, with the number of publications increasing
tenfold within this time period. Extensive reviews of these works are provided by
Sobhani Aragh et al. [10] and Lozano et al. [11].

1.2.1 Current State of Research

The field of research consists of three main areas: analysis, optimization, and
manufacturing. The majority of studies have focused on structural analysis and
optimization, with several techniques for design having been developed. Opti-
mization techniques are typically studied by applying them to components with
basic geometries that are subjected to single load conditions. When dealing with
complex structures, researchers often simplify the geometry to enable analysis and
design using academic software tools [11].

A fundamental challenge is that the design and manufacturing of compos-
ite structures are highly interdependent. A number of papers are dedicated to
characterizing the constraints associated with the manufacture of VAT structures,
which represent crucial limiting factors for design. Several authors have noted
that an accurate analysis of the potential of tow-steering greatly depends on the
integration of these factors into the optimization framework [10]. To date, this
integration remains an area of ongoing research. Approximately half of the studies
on optimization consider some of the manufacturing constraints imposed by the
AFP process [11]. The study of manufacturing parameters (e.g., cycle time, part
quality, and cost) remains independent of structural optimization.

1.2.2 The Notched Plate Structure Problem

A recurring design problem in the literature is the optimization of plate structures
with cutouts. In aerospace engineering, cutouts are a standard design element
found on almost all structures. These vary in size and are essential for various
purposes, including loading and unloading passengers or cargo, providing access
for maintenance and inspection, or as windows and vents. The structural dis-
continuities introduced by these features result in the redistribution of stresses
(Fig. 1.2.1), remarkably deteriorating both strength and stiffness, and thus neces-
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sitating substantial additional reinforcement. Effectively mitigating these losses
in structural performance may therefore lead to significant savings in weight.

Figure 1.2.1: Stress concentrations resulting from a circular cutout in an
isotropic plate under tension [12].

Hyer and Charette [13] were the first to investigate the steering of fibers around a
circular cutout, proposing to align the fibers with the direction of principal stress.
This study demonstrated that considerable improvements in performance were
possible using this fiber format. Hyer and Lee [14] later introduced design opti-
mization as a technique for determining the optimal fiber orientations. Nagendra
et al. [15] used a similar design approach while integrating some of the manufac-
turing constraints, and demonstrated comparable increases in performance.

Building on these early studies, several combinations of objectives and bound-
ary conditions have since been investigated. One topic has been the improvement
of buckling load under compressive forces [16]. The ability of tow-steering mitigate
stress concentrations has been another area of interest [17–20]. Others have inves-
tigated the elastic response under tensile loads [21, 22], optimizing for maximal
stiffness.

1.2.3 Research Methodologies

Most papers studying the performance of VAT laminates are focused on purely
theoretical analysis. Papers validating the theoretical results through design, man-
ufacturing, and testing are scarce, accounting for less than 25% of the published
papers [11].

Of these studies, many report notable discrepancies between theoretical and
experimental results. Jegley et al. [23] conducted compression and shear tests
on tow-steered panels with central holes. Simulation was used to predict buck-
ling loads, with results that were significantly lower than experimental findings.
Khani et al. [24] experimentally studied the stiffness and strength of flat panels
with cutouts for conventional and VAT laminates under pure tension. The results
confirmed the performance advantage of the VAT laminate, but showed consider-
able differences compared to the simulated behavior. In a similar study, Matsuzaki
et al. [25] experimentally studied the tensile strength of VAT panels with cutouts
under pure tension, and discovered a correlation between simulation discrepancy
and average fiber curvature. Thus, closing this gap between simulation and real-
life behavior remains an essential obstacle in determining the actual performance
of VAT structures.
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1.3 Scope

The aim of this thesis is defined as follows:

Verify the performance benefit of VAT for aerostructures with cutouts by ex-
perimentally validating the predictions of prevalent numerical approaches in the
literature.

To accomplish this, a design study is conducted in which structural performance is
quantified both numerically and experimentally. Three design cases are compared:
VAT, VS, and QI (Table 1.3.1). To derive a realistic set of boundary conditions and
constraints, the design study is based on a lower wing skin panel near a large access
hole (Fig. 1.3.2). Modern transport-category aircraft wings use a semi-monocoque
construction, where the outer skin is integral to the load-carrying structure. The
loading conditions are dominated by bending forces caused by aerodynamic lift,
which translate into tensile forces in the lower skin. For this panel, maximizing
axial stiffness is one of the major design objectives [9]. These conditions are
represented by considering the stiffness-optimal design of a two-dimensional plate
with a circular cutout under pure tension (Fig. 1.3.1). Performance is evaluated
on the grounds of stiffness and strength relative to mass.

Figure 1.3.1: Plate geometry and boundary conditions.

Design case Description
VAT Laminate produced using tow-steering technology. Fiber ori-

entation and layup configuration may vary throughout the
structure.

VS This represents the maximum attainable performance for a
conventional composite structure. Fiber directions are linear,
while the layup configuration may vary freely throughout the
structure.

QI Laminate with uniform thickness over the entire structure and
an even distribution of fiber angles. Since this configuration
represents the most common type used in practical applica-
tions [26], it is used as a datum.

Table 1.3.1: Summary of the design optimization cases.
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Figure 1.3.2: Composite lower wing skin panel (Airbus A350) with access holes
distributed along the spanwise direction [27].

To ensure the relevance of the results, an important delimitation is that the nu-
merical solution should reflect the methods commonly used in the literature. Con-
sequently, the focus is on developing an approach based on this literature, rather
than on finding new ways to solve the optimization problem.

1.4 Objectives
The objectives of this thesis are defined as:

1. Define a realistic set of design constraints relating to composite wing design
and manufacturing.

2. Establish state-of-the-art within the analysis and optimization of tow-steered
composite structures.

3. Implement an optimization procedure capable of determining the optimal
structural layout for each design case.

4. Manufacture and experimentally characterize the performance of the optimal
designs.

5. Evaluate the design methodology and performance predictions using the
experimental results.
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1.5 Thesis Outline
The path followed to achieve the above objectives is reflected in the layout of this
thesis.

Chapter 2 defines the design problem to be solved. This involves outlining the
structural characteristics of the materials under study, how they can be modeled
for the purposes of this thesis, and how they are incorporated into a composite
wing manufacturing process. This also takes into account design standards that
exist within the aviation industry.

Chapter 3 provides the necessary resources for solving the design problem de-
fined previously. This review encompasses the mathematical parameterization of
the structures, the integration of constraints into the formulation, and the tech-
niques for solving of the optimization problem.

Chapter 4 presents the numerical solution of the design study. Informed by
the findings of the preceding chapters, an optimization problem is formulated,
and the methods for its solution are implemented. The outcome of this chapter is
an optimal layup configuration and the predicted performance for each design case.

Chapter 5 describes the methodology used in validating the numerical results.
This involves an approach for manufacturing, testing, and data acquisition. The
outcome of these tests is subsequently presented and contextualized with the nu-
merical results.

Chapter 6 discusses the implications of the results with regard to the aim of
the thesis. The focus of this discussion is on identifying the root causes of errors
in the numerical predictions, and using the available body of knowledge to propose
improvements to the analysis.

Chapter 7 presents significant conclusions drawn from the results, and outlines
possible avenues for future work.
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CHAPTER

TWO

DESIGN PROBLEM DEFINITION

2.1 Structural Analysis

The model for structural analysis plays a central role in the design study solution,
as the optimization process is built solely on the responses produced by this model.
Aligning this with the relevant literature is a crucial first step in fulfilling the thesis
objective.

2.1.1 Constituents of Advanced Composites

A composite material is defined as a combination of two or more constituent mate-
rials, typically resulting in better properties than when the individual components
are used separately. The term "advanced composites" is often used when referring
to the high-performance fiber-reinforced materials used in aerospace structures.

Figure 2.1.1: Composite laminate with unidirectional fibers [28].

The constituents of a fiber-reinforced composite are a fiber and a matrix. Fibers
are arranged in plies (or laminae), which form the basic building block of a com-
posite structure. The primary structures of commercial aircraft predominantly

9
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consist of unidirectional (UD) plies, meaning the fibers within the ply are all
aligned in a single direction. These are used to construct a laminate, which is a
bonded stack of plies with various orientations (Fig. 2.1.1).

The fibers are the principal load-carrying agent of the structure. Typical fibers
used for aerospace applications include carbon, boron, E- or S-glass, quartz, silicon,
and aramid [29]. Carbon fibers are the most prevalent type due to their extremely
high specific strength and stiffness, as well as being elastic to failure at normal
temperatures, creep resistant, chemically inert, and having excellent damping and
fatigue characteristics [30].

The primary function of the matrix is to provide a means of transmitting load
between the fibers. Polymeric matrices are classified as either thermosets or ther-
moplastics. Thermoset resins are low-viscosity monomers that are converted into
cross-linked polymers during a curing stage. This polymerization is driven by heat,
generated either by the exothermic cross-linking reaction itself or by an external
supply. In contrast, thermoplastics are not chemically cross-linked and instead use
temperature to control the material’s aggregation state. Thermoset resins remain
the more prevalent matrix material for aerospace composites. Of these, epoxies
are the predominant resins for low and moderate-temperature applications, owing
to their excellent mechanical properties [31].

Figure 2.1.2: Levels of analysis for composite structures.

Due to their heterogeneous nature, the mechanical analysis of composite mate-
rials spans multiple size scales (Fig. 2.1.2). The detailed analysis of mechanical
behavior at the fiber level is the subject of micromechanics. In this thesis, the
structure is modeled using macromechanics, where the material is presumed to
be homogeneous, with the effects of the constituents only detected as averaged
macroscopic properties of the material. This is the predominant form of analysis
where a “global” structural response is the aim of the computations [32].

2.1.2 Ply Elastic Behavior

Fiber-reinforced composite materials are normally treated as linear elastic, since
the linear elastic fibers provide the majority of the stiffness. A UD composite ply
exhibits three mutually orthogonal planes of symmetry, that define three principal
axes of material properties: the material coordinate system 1, 2, and 3 axes. These
define the fiber direction, transverse matrix direction, and the through-thickness
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direction of the ply, respectively. The fiber orientation is defined relative to the
global x-axis using the right-hand rule, and is denoted by θ (Fig. 2.1.3).

Figure 2.1.3: Planes of material symmetry for a unidirectional lamina [29].

Because of this symmetry, the ply is said to define an orthotropic material. The
generalized Hooke’s law for orthotropic materials is written as [32]:

σi = Qijεj i, j = 1, . . . , 6

Where σi are the stress components, Qij is the stiffness matrix, and εj are the
strain components. For laminates where the thickness is small compared to the
other characteristic dimensions of the structure, the plies are often assumed to be
in a state of plane stress. This assumption is generally valid, as carrying in-plane
stresses is the fundamental capability of the ply. In such a case, the out-of-plane
stress components σz, τyz, and τxz are negligible compared to the in-plane stresses:

σz ≈ τyz ≈ τxz ≈ 0 (2.1)

For orthotropic materials, imposing a state of plane stress simplifies the stress-
strain relations from a 6-by-6 to the 3-by-3 system:σ1σ2

τ12

 =

Q11 Q12 0
Q12 Q22 0
0 0 Q66

 ε1ε2
γ12

 (2.2)

Where Q is referred to as the reduced material stiffness matrix, describing the
elastic behavior along the two principal axes of the ply. This matrix can be
characterized with only four independent material constants: E1, E2, v12, and
G12.

When the principal axes of orthotropy are oriented at an angle θ relative to
the global coordinate system (an off-axis ply), the stiffness properties are obtained
from Q through standard tensor transformations. For this case, the material stiff-
ness matrix will have the characteristics of an anisotropic material, as a coupling
is introduced between extension and shear deformation. Off-axis orthotropic plies
are referred to as generally orthotropic.

2.1.3 Laminate Elastic Behavior

A laminate consisting of n plies (Fig. 2.1.4) is denoted by its stacking sequence
(or layup), where θk is the angle of the kth ply starting from the tooling-side of
the laminate:
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[θ1/θ2/θ3.../θk]

The behavior of multilayered structures can be modeled using either three-dimensional
elasticity theory or equivalent-single-layer (ESL) theories [33]. ESL theories sim-
plify the analysis by representing the laminate only in terms of its mid-surface
plane, and are derived from 3D elasticity theory by making assumptions about
the kinematics of deformation or stress state within the structure. According to
the literature survey by Sobhani Aragh et al. [10], the overwhelming majority of
papers on the design of tow-steered structures have utilized ESL theories, most
commonly classical lamination theory (CLT) and first-order shear deformation
theory (FSDT).

Figure 2.1.4: Geometry of an n-layered laminate [29].

For this work, the analysis will be based on CLT, the prevalence of which can
be attributed mainly to its simplicity. The assumptions made by CLT result in
a relatively low number of variables and equations, which reduces computational
effort compared to other laminate theories. Consequently, CLT has a limited area
of validity, which however coincides well with the characteristics of the structures
under study. This can be observed from its assumptions, which are summarized
as follows [32]:

1. Plies are homogeneous and in a state of plane stress.

2. Adjacent plies are perfectly bonded with an infinitesimally thin bond line.

3. The laminate deforms according to the Kirchoff-Love plate theory, where
the plate is inextensible in the transverse direction (εzz = 0) and transverse
shear deformations are negligible (γxz = 0, γyz = 0).

These simplifications are generally valid when considering thin plates and shells.
In this case, the laminate in-plane forces N and out-of-plane moments M can be
related to the deformation ε0 and the curvature κ of the laminate by the following
expression:


Nx

Ny

Nxy

 =

 A11 A12 A16

A22 A26

sym. A66


ε0x
ε0y
γ0xy

+

 B11 B12 B16

B22 B26

sym. B66


κx
κy
2κxy

 (2.3)
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Mx

My

Mxy

 =

 B11 B12 B16

B22 B26

sym. B66


ε0x
ε0y
γ0xy

+

 D11 D12 D16

D22 D26

sym. D66


κx
κy
2κxy

 (2.4)

Where A, B, and D are called the extensional, coupling, and bending stiffness
matrices, respectively. The components of these three stiffness matrices are cal-
culated from the material stiffness matrix Q, laminate midplane distance z, and
thickness t of the individual plies.

As can be observed from Eq. 2.3, lamination leads to a material with a total of
18 elastic constants. Due to the anisotropic behavior of a laminate (caused by the
non-aligned orthotropy of the plies), effects such as bending-extension coupling,
bend-twist coupling, and shear-extension coupling arise when stresses are applied.
Laminates are often categorized based on the presence of such effects. One of
the design cases in this thesis is the quasi-isotropic (QI) laminate, which pro-
duces an isotropic A matrix. This means that stiffness is independent of material
orientation and that extension and shear are uncoupled, making the elastic behav-
ior analogous to that of a metal. Other notable laminate types include balanced
and symmetric laminates, for which the A16 and A26 coefficients (extension-shear
coupling) and coupling matrix B (bending-extension coupling) become zero, re-
spectively.

2.1.4 Failure Prediction

As a result of their composition, composite materials display a multitude of failure
mechanisms, with an accordingly large number of failure criteria existing for their
prediction. These can be categorized based on several factors, such as whether
they are based on strength or fracture mechanics theories, predict general failure or
are targeted toward a specific failure mode, and focus on in-plane or interlaminar
failure [34]. The analysis in this thesis will be limited to the prediction of in-plane
failure using ply-based failure criteria, which is the predominant method used in
the relevant literature.

Similarly as for stiffness, the strength of unidirectional plies at the macroscopic
level is direction-dependent. The strength in the fiber direction is generally high,
whereas the matrix material controls the strength in the perpendicular direction,
meaning it is usually an order of magnitude lower. Five basic failure modes exist for
a ply under plane stress: longitudinal tensile or compressive, transverse tensile or
compressive, or shear (Fig. 2.1.5). As established previously, elastic behavior often
demonstrates coupling between shear- and normal deformations. The stresses
induced by these coupling effects often make it challenging to predict whether the
failure is controlled by fiber strength, matrix normal strength, matrix shearing
strength, or a combination of these [33].
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Figure 2.1.5: In-plane failure modes of a composite ply [35].

For ply-based failure criteria, the laminate strain tensor (such as the one obtained
in Eq. 2.3) is used to derive the strain at each ply, which in turn is used to predict
whether the ply is failed. Ply-based criteria are usually grouped into two classes:
limit criteria and interactive criteria [29].

The simplest of these, limit criteria, predict failure when the ultimate strength
along or transverse the fiber directions is exceeded, either as maximum stress
or maximum strain criteria. On the other hand, interactive criteria account for
the interactions between different stress components in failure mechanisms, which
have been observed to affect strength for fiber-reinforced materials [36]. Several
interactive failure criteria of varying complexity have been developed, their validity
often being confined to a well-defined set of stress states. This is the approach
predominantly taken in comparable studies on tow-steered laminates with cutouts,
where strength analysis has been performed primarily using Tsai-Wu [21, 24, 37],
Tsai-Hill [38, 39], or other ply-based interactive criteria [25].

Figure 2.1.6: Progressive failure of a composite laminate.

Another challenge in evaluating in-plane failure is caused by through-the-thickness
variation of stress within the laminate. Since the stiffness and strength in a par-
ticular direction may differ between layers, it’s possible for some of the plies to
reach their limiting strength before others. In some cases, failure of any layer is
unacceptable since it degrades the structural properties of the laminate. This is
referred to as the first-ply failure criterion. Alternatively, the laminate may be
considered to be unfailed as long as it sustains the applied load without unstable
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failure of the remaining plies. In such a case, as the load is increased, failure
progresses from one layer to the next, leading to what is called progressive failure
(Fig. 2.1.6).

2.1.5 Finite Element Analysis

The finite element method (FEM) is a numerical method for solving partial dif-
ferential equations, which serves as the foundation for most structural analysis
within engineering. This method is based on the principle of discretizing complex
systems as a collection of simple elements (Fig. 2.1.7). The practical application
of FEM is known as finite element analysis (FEA).

Figure 2.1.7: Wing structure subdivided into finite elements [40].

Due to the geometry and boundary conditions of the notched plate, studies in
the relevant literature tend to employ linear static analysis [10]. Linear implies
proportionality between load and deformation, which is generally valid as long as
deformations are sufficiently small. Static refers to the application of static loads
without considering time-dependent effects. The final formulation is the linear
system:

Ka = f

Where K = {Kij} is the stiffness matrix and f = {fj} is the load vector. The
solution of this linear system leads to the discrete solution a = {ai} for all i
= 1. . .n nodes inside the modeling domain. For static analysis, a represents
the displacement of the nodes (called the nodal displacement vector), from which
reaction forces, strains, and stresses are calculated.

There are several ways to model a laminated composite structure using finite
elements. In practice, it is common to employ plate or shell elements, which are
two-dimensional elements representing the laminate mid-surface plane, typically
used in conjunction with ESL theories [41]. Provided that the assumptions for
the constitutive equations are satisfied (e.g., Kirchoff or Mindlin plate theories),
these elements can be employed to accurately model three-dimensional laminated
structures. Alternatively, two-dimensional solid elements are widely used if only
the in-plane behavior is to be studied. Both of these element types can occur as
quadrilaterals or triangles.

FEA is, by nature, an approximate solution, as it does not satisfy equilibrium
over any smaller volume than an element. The displacement assumption used
in forming the stiffness matrix means that FE structures will generally be over-
stiff, an inaccuracy that is mitigated either by using a finer mesh or higher-order
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elements [41]. The order of an element refers to the complexity of the shape
functions used to approximate the behavior of the underlying physical system:
higher-order elements use more complex shape functions, often cubic or higher-
order polynomials, as opposed to the linear or quadratic functions of lower order
elements. Furthermore, a finer mesh results in a more accurate description of
stress variation within a structure, particularly when large stress gradients or
concentrations are present. Both these parameters provide an improved structural
response at the cost of reduced computational efficiency. Thus, the successful use
of FEA depends on constructing a model that delivers an acceptable accuracy
without becoming prohibitively expensive to solve.

2.2 Boundary Conditions for Design
To define the constraints that apply to the design problem, it is necessary to
consider how it relates to the larger picture of aircraft design and manufacturing.
Two key aspects are identified as having a significant impact on design:

• The first set of constraints are the restrictions imposed by manufacturing.
These result from the AFP process, which is the current key technology for
manufacturing tow-steered composites.

• The second set of constraints are the regulations and standards within the
industry regarding laminate design. This includes safety and airworthiness
standards imposed by aviation authorities such as the FAA and EASA, and
design guidelines formulated by aircraft manufacturers.

2.2.1 Automated Fiber Placement

AFP is an automated method for the layup of continuous-fiber composite tows
(Fig. 2.2.1). AFP was developed at several places independently, including Boe-
ing, Cincinnati Machine, and Hercules in the early 1980s [42]. Currently, AFP
is crucial to the manufacturing of complex aerospace components such as wings,
fuselages, and empennages, as well as engine components such as fan blades and
nacelles [29].

In AFP, narrow composite tapes, called tows, are fed into a tow-placement
head which laminates them onto the tooling surface. Here, the tows are combined
into a single continuous band of material, known as a tow course. The tow-
placement head moves in seven degrees of freedom: three positional axes, three
rotational axes, and one axis to rotate the tooling. A typical tow-placement head
can accommodate 32 tows, each with a usual width of 3.2 mm. This results in a
tow course up to 10.24 cm wide [43]. The machine can cut or restart individual
tows within a course during placement, allowing the width of the course to be
increased or decreased as needed. The rate at which each tow is dispensed is
controlled individually, allowing each of them to independently conform to the
part’s surface. This differential payout system is what enables the steering of tow
courses in curvilinear paths.
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Figure 2.2.1: Layup of a composite wing skin using AFP (Airbus A350) [44].

The prevalence of this process in modern aerospace manufacturing is attributed
to its precision, efficiency, and versatility. The complete automation of the layup
process accelerates production and reduces labor costs, especially for large parts
[42]. Furthermore, AFP enables the production of complex geometries and layups
that would be impossible to fabricate using other automated methods, such as
filament winding or automated tape laying (ATL).

2.2.2 Prepreg Manufacturing Process

Prepreg, short for "pre-impregnated" composite material, is the most prevalent
product form for producing high-quality laminates within the aerospace industry
[31].

Thermoset prepregs usually consist of a single layer of fibers embedded in
a precisely controlled amount of B-staged (partially cured) resin (Fig. 2.2.2).
Because an optimal ratio of resin to fibers is maintained, this results in superior
strength-to-weight ratios and lower variability compared to other processes. The
resin at this stage is semi-solid with negligible strength and stiffness, allowing the
ply to conform to the shape of the tool. The tackiness of the B-staged resin also
allows it to adhere to itself and tooling details during the layup operation.

Figure 2.2.2: Unidirectional carbon-epoxy prepreg tow used for AFP [45].

At the curing stage, the plies are compressed under elevated temperature to form
the final laminate. For this step, autoclave curing is the most widely used method
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[31]. The laminate is sealed within an airtight vacuum bag and placed into the
autoclave, which simultaneously heats and pressurizes the part according to a
specified curing cycle. When subjected to elevated temperatures, the resin viscos-
ity drops dramatically, allowing it to flow and distribute itself within the laminate.
The high positive pressure (typically 3-12 bar) consolidates the reinforcement lay-
ers and removes trapped air or volatiles while minimizing outgassing from the
resin as it polymerizes. The result is a laminate with minimal porosity (<1%) and
highly consistent and uniform mechanical properties.

Figure 2.2.3: Autoclave cure of a composite wing skin (Airbus 777X) [46].

An alternative processing technique that major aerospace manufacturers have in-
creasingly adopted since the mid-2000s is out-of-autoclave (OOA) prepreg. These
can be cured at atmospheric pressures and significantly lower temperatures, reduc-
ing energy consumption, cycle times, and production costs. Although excessive
porosity has historically been an inhibitor for wider adoption, modern materials
allow for porosity levels similar to that of autoclave-processed parts [29]. For prac-
tical reasons, the experimental testing in this thesis will be conducted using an
OOA prepreg material.

2.2.3 Tow Path Constraints

Due to the mechanics of placing tow courses using AFP, several constraints arise
that limit the permitted distribution of fiber angles within a ply.

When the tows are steered, the fibers experience compressive and tensile forces,
due to the inner radius of the tow being smaller than the outer radius. The
minimum turning radius rmin represents the smallest radius of fiber curvature
that can be placed without risk of defects, such as the tow twisting over itself
or wrinkling (Fig. 2.2.4). Smaller values of rmin are possible by placing courses
with narrower tows, with the drawback of increased manufacturing time and cost.
Values of 508 - 635 mm have been documented for AFP machines [10].

Furthermore, gaps and overlaps may appear whenever adjacent courses are not
laid in parallel. These areas may cause inaccuracies in the predicted properties
of the design, if not accounted for in the structural analysis. Furthermore, gaps
form resin-rich pockets within the laminate, which become initiation points for
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Figure 2.2.4: Tow deformation mechanisms for differential length absorption due
to steering [47].

damage and failure. Several studies have investigated the detrimental impact
of overlap/gap presence for various structural characteristics, including buckling
resistance, stiffness, strength, and fundamental frequency [4].

The final set of limitations relates to the cutting mechanism of the machine.
The minimum cut length (MCL) represents the distance between the cutting mech-
anism and the compaction roller, and constitutes the shortest length over which
a tow can be placed. An MCL of 80 mm was defined by Lozano et al. [48]. More-
over, since tows are cut perpendicular to the layup direction, jagged or saw-tooth
edges will appear at course boundaries if they do not align with this direction.

2.2.4 Ply Construction Methods

To construct a ply that covers the whole mandrel surface, the AFP machine must
lay a number of adjacent courses. The literature proposes three methods for this
arrangement when designing with steered tow courses: the tow-overlap, parallel,
and tow-drop methods.

• Tow-overlap - In the most straightforward technique, initially proposed by
Tatting and Gürdal [49], intersecting tows are permitted to overlap each
other, resulting in local buildups in thickness. A challenge is that the accu-
racy of the structural analysis depends on the prediction of these thickness
variations, as will be discussed in Section 3.2.3.

• Parallel courses - According to the parallel method, each fiber course is
laid parallel to the adjacent courses. This method results in a ply of uniform
thickness, free of gaps or overlaps between tows. However, the constraint of
parallel courses severely restricts design freedom, resulting in a performance
deficit compared to other methods.

• Tow-drop - By utilizing the cut-restart capability of the AFP machine, the
tow-drop method prevents overlaps by cutting the tows when they intersect
(Fig. 2.2.5). A so-called coverage parameter assesses where tows should be
cut and reinitiated, thereby constructing a constant thickness ply containing
small wedge-shape gaps or overlaps [50].
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Figure 2.2.5: Tow-steered ply using (a) tow-drop technique (b) overlap technique
[42].

2.2.5 Certification Requirements

By regulation, aircraft structures are required to undergo physical testing in order
to verify their behavior [51]. This follows a building block approach, comprising
tests at the coupon, element, detail, sub-component, and component levels (Fig.
2.2.6). The main purpose of employing the building-block approach is to meet
all technical and regulatory requirements while requiring as few of the expensive
full-scale articles as possible for testing [52].

Figure 2.2.6: Building block approach to aircraft structure certification [52].

At the lowest level, small specimens are used to characterize basic unnotched
static material properties. For a VS laminate, such coupon tests must be used to
quantify the strength allowables for each laminate family in the structure. These
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are calculated using statistical methods and are referred to as A-basis and B-basis
allowables, denoting the first and tenth percentile of measurements, respectively
[53].

Because of this empirical process, certification is typically associated with
tremendous investments by aircraft manufacturers. Thus, limiting the number of
laminate families comprising the structure becomes an important design consid-
eration. This is a major reason why, to date, laminate design within commercial
transport aircraft is restricted to the four principal orientations 0◦, ±45◦, and
90◦. It also represents an important limiting factor for the design of tow-steered
structures. Theoretically, every ply within such a structure could have its own
independent set of two courses, which, however, would lead to an unworkable
number of laminate coupons to be tested. For this reason, it is common to instead
define a single "main" orientation, and to align all plies at fixed angles relative
to this [54]. In this manner, a VAT structure is obtained that maintains a "core
laminate" whose relative orientations are constant at any given point, resulting in
a finite number of laminate families.

2.2.6 Laminate Design Rules

Laminate design rules are guidelines developed by aircraft manufacturers to mit-
igate the risk of premature component failure. This primarily regards complex
failure modes that may occur due to the inherent weaknesses of laminated com-
posites, such as their low interlaminar tensile strength. Many of these guidelines
have evolved as lessons learned from prototype development programs and indus-
trial experience, rather than being derived from first principles [55]. An in-depth
review of design rules for UD carbon fiber aircraft structures is provided by Bailie
et al. [56]. Their implications for laminate design are summarized as follows:

• Laminates should be designed to be symmetric and balanced, as was intro-
duced in Section 2.1.3.

• A minimum fraction of material should be present in each fiber direction, as
per the so-called 10% rule.

• For laminates with varying thickness, the permitted frequency and location
of ply drop-offs (i.e., the termination of a ply within the laminate) is con-
strained.

• Finally, a number of rules govern stacking sequence, such as constraints on
the contiguity of equally oriented plies and the coverage of ply drop-offs.
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THREE

OPTIMIZATION OF TOW-STEERED STRUCTURES:
STATE-OF-THE-ART

3.1 Structural Optimization
Within the set of boundary conditions outlined in the previous chapter, a multi-
tude of possible designs exist, the collection of which is referred to as the design
space. Optimization can be seen as the process of locating the extremum point in
this space with regard to some measure of performance (Fig. 3.1.1).

Figure 3.1.1: Design optimization visualized as a minimization problem [57].

Design optimization is a vastly researched topic and has emerged as an indispens-
able tool for modern engineering design. This development has been enabled by the
exponential improvement of computing over the past four decades, combined with
increasingly accurate methods for numerical simulation. Structural optimization
will likely continue to gain importance within the field of mechanical engineering,
being instrumental in confronting the increasingly complex engineering challenges
and stringent performance requirements of the future.
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3.1.1 General Optimization Problem

A structural optimization problem consists of the following features [58]:

• Design Variable (x) - The parameters of the design that can be changed
during the optimization to achieve different responses from the system.

• State variable (y) - A measurement of an output characteristic (response)
of the system. For a mechanical structure, examples of responses are dis-
placement, stress, strain, volume, mass, or stiffness.

• Objective function (f ) - A function indicating a designs achievement with
respect to the goal of the optimization. This function can be constructed
from one or several state variables.

• Constraint - A numerical limit applied to a design or state variable. Three
types of constraints are possible: (1) Behavioral constraints are constraints
on the state variable y. (2) Design constraints are similar, but involve the
design variable x. (3) For the present case, the equilibrium constraint is
the matrix equilibrium equation for the finite element solution. The subset
of the design space which satisfies all the constraints is called the feasible
region.

The structural optimization problem then takes the form:

3.1.2 Parameterization of Structures

When applying the general mathematical formulation above to a structure, x will
represent some geometrical feature. The optimization problem is typically classi-
fied based on which geometrical feature is parameterized. These basic concepts
serve as the foundation for the composite optimization techniques discussed in this
thesis.

Size optimization (Fig. 3.1.2) - In finite elements, the behavior of structural
elements, such as shells and truss members, are defined by input parameters,
such as shell thickness and cross-sectional area. In size optimization, these input
parameters are used as design variables (DVs). A typical sizing problem for a
composite structure would be determining the optimal thickness of a ply (or group
of plies).
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Figure 3.1.2: Size optimization.

Topology optimization (Fig. 3.1.3) - Topology optimization is concerned with
the material distribution over a domain Ω, i.e., which points in space should be
material and which should remain void (no material). Structures are typically
parameterized by assigning an “equivalent density” ρ to each element, where 1 and
0 are equivalent to 100% and 0% material, respectively. Penalization techniques for
intermediate densities are formulated to incentivize solutions containing discrete
density values, i.e., either 1 or 0. Topology optimization can be two- or three-
dimensional, and is currently widely used at the concept stage of structural design.

Figure 3.1.3: Topology optimization.

Free-size optimization (Fig. 3.1.4) - Whereas topology optimization aims to
generate structures with discrete properties (solid or void), free-size optimization
deals with design parameters that may vary continuously. Here, x represents the
same geometrical features as for size optimization, except that DVs are assigned to
each element separately instead of a group of elements. The resulting continuous
distribution of material makes it well-suited for the design of variable-thickness
shell structures, such as VS composite laminates.

Figure 3.1.4: Free-size optimization.

3.1.3 Mathematical Programming

When solving optimization problems, structural solvers typically utilize nonlinear
numerical optimization, formally known as mathematical programming. These
methods can be categorized into two classes: gradient-based and gradient-free
(also called direct search) [59].
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Gradient-based algorithms utilize the gradient of the objective and constraint
functions to find the direction towards the optimal solution. This approach guar-
antees rapid convergence to a constrained minimum. However, this minimum does
not guarantee global optimality if the design problem features multiple local min-
ima (the objective function is non-convex). Gradient-based methods also require
the objective and constraints to be differentiated. This is an often pain-staking
process, especially because most practical design problems do not have objectives
and constraints for which closed–form expressions exist [60].

In contrast, direct search methods do not require any gradient information.
Instead, they explore the design space by probing different points, using a set of
rules or heuristics to determine where to search next. This attribute is a signifi-
cant advantage in cases where sensitivities of structural responses are difficult to
calculate. It also enables the solution of problems where the objective function
is non-smooth or discontinuous. Direct search methods are less sensitive to the
choice of starting point and guarantee global optimality given an adequately long
solution time. On the other hand, their convergence speed tends to be slower,
requiring a much larger number of function evaluations to approach an optimum.

Computational cost is one of the most critical factors when selecting an op-
timization algorithm. For most practical design problems, gradient-free methods
scale to about O(10) DVs before becoming prohibitively expensive. On the other
hand, gradient-based methods can scale to over O(103) DVs without a significant
increase in expense [61]. For this reason, considering the inherent advantages of
direct-search methods, these are typically used when there are few DVs and many
constraints, whereas gradient-based methods are applied for the opposite case [62].

3.2 Optimization of Curvilinear Tow Paths

3.2.1 Fiber Angle Parameterization

To date, a multitude of methods has been proposed in the literature for the pa-
rameterization of tow-steered plies. These approaches can be categorized into the
functional, level-set, and element-based fiber angle definitions.

The functional method represents fiber orientations as a function of the struc-
tural domain, and was first proposed by Gürdal and Olmedo [22]. In this approach,
nonlinear functions such as NURBS, Bezier curves, or Lagrangian polynomials
have been used, where the functional coefficients are taken as DVs [25, 63, 64].
This function defines a main tow path, which is duplicated and shifted over the
domain to construct a ply. While this simple definition makes manufacturing
constraints easy to enforce, the design space is highly limited compared to other
methods. Its application is generally limited to basic plates and shells.

The level-set approach defines tow courses as the iso-contours of a level set
function (LSF), first introduced by Brampton et al. [65], and later explored by a
number of researchers [66, 67]. This parametrization inherently produces designs
that are easily manufacturable with tow-steering. Since the boundary of the LSF
is continuous, it will, in turn, define continuous fiber paths. The properties of
the LSF can also be used to guarantee that tow courses are equally spaced and
parallel. A limitation is that, to date, the incorporation of structural topology in
LSF-based VAT design has remained an open research question.
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The element-based fiber angle definition introduced by Hyer and Lee [14] is
the most common parameterization scheme in the literature. Independent fiber
angles are assigned to the laminate at each element of the FE model, i.e., at
discretized regions (Fig. 3.2.1). This parametrization does not produce defined
tow courses, but rather a scalar field, referred to as θ(x, y), describing the fiber
angle variation across the domain. As a consequence, the finite width of the course
is not considered. Instead, each course is considered to have an infinitesimal width,
resulting in areas of continuous divergence and convergence in place of discrete
overlaps or gaps.

Figure 3.2.1: VAT ply representation (a) as a continuous fiber angle distribution
(b) as discrete elements with constant fiber orientations [38].

Because of this, post-processing of the results is necessary to extract fiber paths,
and manufacturing constraints are difficult to enforce. On the other hand, this
scheme provides large design space and excellent versatility. In addition, it pro-
vides a straightforward means of combining fiber angle design with element-based
topology optimization [68–71]. Because these factors are central to the design
cases considered in this thesis, the element-based approach is selected as the pa-
rameterization scheme. This will be the focus of the remainder of the review in
this chapter.

3.2.2 Path Continuity

When defining a set of discrete tow courses from the fiber angle scalar field θ(x, y),
the typical method is to use streamlines, with each streamline representing the cen-
terline of a tow [6]. A streamline is defined as a curve that runs parallel to the field
direction, making this an intuitive approach. However, since the fiber direction
is defined independently at each element, large changes in orientation between
adjacent elements may occur, resulting in discontinuous fiber paths. Ensuring
continuity is one of the main issues related to VAT design.

One approach to address this problem has been to use lamination parameter
design [72–75]. This treats the laminated stiffness matrices as DVs instead of fiber
angles. This has been found to improve the smoothness of the ply angle distribu-
tion, while also improving the speed and smoothness of optimization convergence.
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Figure 3.2.2: B-spline surface function used to parameterize fiber angles [76].

The second approach involves using a parameterization based on non-uniform ra-
tional basis splines (NURBS or B-splines) to ensure fiber continuity [9, 61, 77].
This employs B-splines as basis functions for the spatial variation of fiber orien-
tation. A B-spline surface is defined by a set of control points (Fig. 3.2.2), which
are used as DVs for optimization. The number and position of control points,
the degree, and the knot vector of the spline functions can be altered to adjust
design flexibility [76]. Since the fiber angle distribution takes on the properties of
the B-spline surface, smoothness and high-order continuity are ensured. This also
reduces the number of DVs compared to the discretized parameterization of fiber
angles, improving the optimization’s computational efficiency.

3.2.3 Implementation of Tow Path Constraints

The main challenge in enforcing the constraints from Section 2.2.3 is caused by
the difficulty of formulating them as a constrainable state variable within the
element-based parameterization scheme. Prior studies have primarily considered
two manufacturing constraints: turning radius and gaps/overlaps.

Of these, minimum turning radius is the most commonly implemented [11].
This requires the curvature of the tows to be quantified. One approach evaluates
this at a point-wise basis, computing the curvature at each element based on the
angle at their adjacent elements [78]. Another method has been to derive the
curvature from the fiber angle field θ(x, y) using the curl operator [6, 79]. This
yields the directional derivative of the angle in the tangential direction, which is
equivalent to the definition of curvature of a parametric curve.

Similarly, overlaps have been related using vector calculus differential operators
(Fig. 3.2.3). Brooks et al. [6] introduced the quantity ψ, representing the flux per
unit area passing through the boundary of an arbitrary control volume, obtained
through the divergence operator. Using this definition, ψ can be used to predict
the formation of gaps and overlaps. Blom et al. [80] used the streamlines of a 2D
stream function, as found in fluid mechanics, to define the tow paths. This was
used to derive an expression for the distance between streamlines, which could be
constrained during optimization.
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Figure 3.2.3: Quantification of (a) curvature using curl, κ, and (b) gaps/overlaps
using divergence, ψ [6].

In addition to the development of constraints, methods for modeling the structural
impact of gaps and overlaps using FEA have been the subject of several papers [4,
81]. A prevalent approach is the "smeared" thickness formulation introduced by
Castro et al. [82], where discrete overlaps are approximated as a continuous scalar
field representing local thickness buildup. This formulation was based on the tow
width approximation by Blom et al. [83]. Tooren et al. [84] studied stiffness
corrections using this approach, with tests showing the results to be consistent
with the expected gap/overlap distributions.

3.3 Composite Topology Optimization

3.3.1 Formulation Requirements

A number of studies have considered the simultaneous optimization of tow paths
and ply topology. Due to most not having an experimental component, these
studies tend to simplify the analysis by defining ply thickness as a continuous
function, disregarding the discrete layer-wise nature of real-life laminates. For
instance, Parnas et al. [38] constructed a bi-cubic Bezier surface to define ply
thickness while optimizing a flat panel with a circular cutout. Brooks et al. [26]
used B-spline surfaces to represent the ply thicknesses of a wing structure. While
this continuous representation of ply thickness may provide an adequate approx-
imation for the purpose of simulation, it is insufficient for an experimental study
where results must also be practically manufacturable.

Instead, a formulation is required that spatially defines the ply arrangement
of the laminate at each point of the structure. This problem is generally defined
by considering a stack of plies over a domain Ω, where each ply has its own
shape Ωi ⊂ Ω (Fig. 3.3.1). The ply shapes are biphasic, consisting of either
material or void. Although this has many similarities to the conventional topology
optimization problem outlined in Section 3.1.2, formulating it as a mathematical
programming problem introduces several additional complexities. This is mainly
caused by the laminate-level constraints from Section 2.2, making the shapes of
individual plies highly interdependent.
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Figure 3.3.1: Illustration of the ply topology optimization problem.

3.3.2 Bi-Level Optimization Approach

Composite topology optimization is a research field of its own, and as such, a num-
ber of established techniques are found in the literature. An extensive overview
of these techniques is provided by Ghiasi et al. [85].

Of these options, the natural extension of the aforementioned continuous-
thickness formulations would be to use a so-called bi-level (or decomposition)
scheme (Fig. 3.3.2). This involves dividing the laminate design problem into
smaller sub-problems that correspond to different levels of analysis. At the sys-
tem level (such as a fuselage or wing), a continuous representation of the composite
material is used, often identical to those described previously. Meanwhile, at the
subsystem level (laminate layup and stacking sequence), the material is treated as
discrete. Thus, in the context of this thesis, this technique ensures that the overall
design approach is consistent with previous work on VAT design, while meeting
the manufacturing requirements of laminated composites.

Figure 3.3.2: Typical bi-level ply topology optimization procedure [36].
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NUMERICAL SOLUTION OF THE DESIGN STUDY

4.1 Solution Outline
Combining the concepts from the previous chapters to a solution of the design
study involves selecting a set of design constraints and objectives, around which
a suitable optimization framework can be constructed. The rationale behind this
selection is summarized by reiterating the thesis objective into the following re-
quirements:

1. Practical viability of the structure in the context of aircraft design, as defined
in Section 2.2, is ensured.

2. The design approach is representative of current methods in literature, as
presented in sections 3.2 and 3.3.

3. The degree of computational complexity allows for accurate solution using
the mathematical programming techniques from Section 3.1.3.

4.1.1 Optimization Problem Statement

The design objective is to maximize stiffness for a given material amount. The
elastic strain energy, known as the compliance of the structure, is used as the
objective function. This is calculated as:

fc = 1/2aTKa (4.1)

Compliance is the most common objective function for stiffness maximization
when performing structural size- and topology optimization [86]. There are a
number of reasons why this is preferred over other functions (i.e., displacement).
First, this function has favorable convergence properties, resulting in quicker and
smoother convergence towards a solution [58]. Second, it generates results that
are intuitive, tending to produce structures with a more even distribution of stress
compared to displacement minimization [85].

The available fiber angles are restricted based on the discussion on certifiability
in Section 2.2.5. For the QI and VS designs, the orientations are restricted to 0°,
±45°, and 90°. For the VAT design, a reference orientation field θ0 sets the local
tow direction for the main tow pattern. The remaining three tow patterns are
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defined by offsetting this reference field by 45°, −45°, and 90°. Furthermore, for the
VAT design, plies are constructed using the overlap method. Compared to the tow
drop method, this arrangement is more straightforward to model accurately since
all tows within a ply are continuous (do not contain cuts/restarts) and, therefore,
have uniform macroscopic properties. Because of this fiber continuity, the overlap
method also yields the highest performance compared to other methods. This
was demonstrated by Tatting and Gürdal [39], who compared the tow-drop and
overlap techniques for plate structures with cutouts.

Ensuring path continuity is fundamental to obtaining practically manufac-
turable designs; thus, a parameterization scheme that enforces this is chosen.
Minimum turning radius is another fundamental constraint, which, however, is
chosen not to be enforced during optimization. Given the results from prior stud-
ies on similar geometries, tow course curvatures are expected to stay within the
limits presented in Section 2.2.3 without the need for constraint.

In order to limit the scope of this thesis, some of the constraints in Section 2.2
are not considered in the numerical solution, and are only used for evaluation of the
results. Most notably, the topology optimization stage will not enforce laminate
design rules. Furthermore, no constraint on gap/overlap propagation is applied.
The motivation for this is the absence of established standards with regard to
these constraints for VAT structures, and the overall low number of studies that
implement these aspects in the literature.

Finally, a resource constraint is required to limit the amount of material avail-
able to the solver. This is expressed as an upper bound on global mass, with the
mass response being calculated from the sum of element contributions:

m =
∑
(e)

(ρA(e)
∑

t
(e)
k ) ≤ mmax (4.2)

Where ρ is the material density, A(e) is the area of the element, and t
(e)
k is the

thickness of the kth ply in the element.

4.1.2 Optimization Procedure

To ensure continuity and smoothness, the tow path parameterization is based
on a B-spline approach that has been implemented by several authors, including
Brooks et al. [9] and Wu et al. [76]. The method for topology optimization is an
adaptation of a bi-level scheme, as previously described, developed by Zhou et al.
[87–89]. This methodology was later integrated into Altair’s Optistruct structural
solver [90], which has been adopted by several aircraft OEMs such as Bombardier
Aerospace [88] and Airbus [91]. This choice of approach reflects the aim of basing
the design study on methods that are widely used and well-documented.

The optimization problem is solved using the method of steepest descent, which
represents one of the most common gradient-based algorithms [59]. First, the
design problem features a large number of DVs and few constraints. Second,
the cost of computing gradient data is comparatively low compared to the cost
of function evaluation, as will be demonstrated in Section 4.2.7. Both of these
factors favor the use of gradient-based methods.
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4.2 Implementation
Figure 4.2.1 illustrates the steps involved in mapping the DVs, represented by the
vector x = {xj}, to the objective and constraint functions. These responses and
sensitivities are passed back to the optimizer to inform the design modification
for the successive iteration, forming the cycle that constitutes the optimization
process.

Figure 4.2.1: Extended design structure matrix (XDSM) of the solution. The
program takes in the initial state x0, and returns the optimal solution x* and the
responses fc(x)* and m(x)*.

The implementation of these methods necessitates a significant degree of cus-
tomization, as no commercial FEA solutions come pre-equipped these capabilities.
The common approach in the literature is to obtain the structural responses using
a commercial solver, typically MSC Nastran or Abaqus, while writing the program
for the optimization procedure. For the present case, because of the relative sim-
plicity of the linear static analysis, and to allow for greater flexibility, it is chosen
to implement both these aspects using Python. This enhances the simplicity and
readability of the solution, which is available in Appendix A.

4.2.1 Laminate Stiffness

First, the laminate stiffness within a given element must be expressed in terms of
the design parameters, i.e., the thickness t and orientation θ of each ply defined in
that element. Given the material constants of a ply, the reduced material stiffness
matrix from Eq. 2.2 is written as [32]:

Q′ =
1

1− v12v21

 E11 v21E11 0
v12E22 E22 0

0 0 (1− v12v21)G12

 (4.3)

Where:

1

G12

=
1 + v21
E11

+
1 + v12
E22

(4.4)
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Next, a transformation is required for when the principal orthotropy directions
(1, 2) are rotated by the angle θ with respect to the global axes (x, y). The
stress-strain relationship in the local axes is expressed as [41]:

σ′ = Q′ε′ (4.5)

Where Q′ is given by Eq. 4.3. The strains in the local axes are expressed in terms
of the global strains as:

ε′ = Tε , ε′ =
[
ε1 ε2 γ12

]
(4.6)

Where T is the transformation matrix:

T =

 cos2θ sin2θ sin θ cos θ
sin2θ cos2θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2θ − sin2θ

 (4.7)

The corresponding expression for stresses is obtained using virtual work equivalent
in global and local axes:

σ = TTσ′ and σ = [T−1]Tσ (4.8)

Combining Eqs. 4.6, 4.8, and 4.5, the final expression for the transformation is
obtained:

Q = TTQ′T (4.9)

Where Q is the material stiffness of the ply in the global reference system. Since
the design problem is two-dimensional, out-of-plane moments M and curvatures
κ have a value of zero, allowing the CLT equations (Eq. 2.3) to be rewritten as:Nx

Ny

Nxy

 =

A11 A12 A16

A12 A22 A26

A13 A26 A66

 ε0xε0y
γ0xy

 (4.10)

With the matrix entries given by:

Aij =
N∑
k=1

(Q̄ij)ktk; i, j = 1, 2, 6 (4.11)

Where (Q̄ij)k are the coefficients of Q and tk is the thickness of the kth ply. This
is divided by the total laminate thickness, resulting in the final expression for the
laminate stiffness matrix D = {Dij}:

Dij =

∑N
k=1 (Q̄ij)ktk∑N

k=1 tk
; i, j = 1, 2, 6 (4.12)
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4.2.2 Finite Element Model

The choice of element type should align with the specific needs of the analysis,
considering the trade-off between computational efficiency and solution accuracy.
For this model, the linear triangular element is chosen. This has a low computa-
tional cost, which is a particularly beneficial characteristic for a computationally
intensive optimization problem such as the present case. Conversely, its accuracy
is limited by its linear shape functions, yielding constant strain and stress fields
within the element. This makes local mesh refinement in areas of high strain
gradients critical to the accuracy of the model.

Figure 4.2.2: Left: subdivision of structure in CAD. Right: FE-mesh generated
by pre-processor.

From the field of fracture mechanics, as well as from prior studies in the literature,
it is well-known that axially loaded structures with holes will experience stress
concentrations in the proximity of the hole boundary. Based on the anticipated
stress gradients within the plate, the CAD model is subdivided into regions where
mesh density is applied separately (Fig. 4.2.2). The CAD file is subsequently
imported into the FE pre-processor (Altair HyperMesh), and used to generate
a mesh containing a total of 2945 elements. This has an element size of 7 mm
over most of the plate, decreasing to 1 mm at the anticipated stress concentration
zones.

Figure 4.2.3: DOFs of a two-dimensional 3-noded element

The element stiffness matrix K(e), relating the load vector to the nodal displace-
ments u and v (Fig. 4.2.3), is derived for the linear 3-noded triangle in Appendix
B. This is written as:

K(e) =

∫∫
A(e)

BT
1

BT
2

BT
3

D
[
B1 B2 B3

]
tdA
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=

∫∫
A(e)

B
T
1DB1 BT

1DB2 BT
1DB3

. . . BT
2DB2 BT

2DB3

Symm.
. . . BT

3DB3

 tdA (4.13)

Where Bi are the strain-displacement matrices obtained from the shape functions
of the element, and D is the laminate stiffness from Eq. 4.12. The element stiffness
submatrix K

(e)
ij linking nodes i and j of the element is thereby expressed as:

K
(e)
ij =

∫∫
A(e)

BT
i DBjtdA (4.14)

For a homogeneous material the integrand is constant, yielding the expression [41]:

K
(e)
ij =

(
t

4A

)(e) [
bi 0 ci
0 ci bi

]D11 D12 D13

D21 D22 D23

D31 D32 D33

bj 0
0 cj
cj bj

 (4.15)

The resulting element stiffness matrix is written as:

K(e) =


K

(e)
11 K

(e)
12 K

(e)
13

. . . K
(e)
22 K

(e)
23

symm.
. . . K

(3)
33

 (4.16)

Where each submatrix has the dimension 2-by-2 (each node having two DOFs).
The equilibrium equations are obtained by establishing that the nodes are in equi-
librium, meaning the sum of all the forces at each node j balances the externally
applied point load pj =

[
Pxj

Pyj

]T , such that:∑
e

q
(e)
i = pj , j = 1, N (4.17)

Where the sum refers to the elements sharing the node j, and N is the total number
of nodes in the mesh. The local matrix equilibrium equation is obtained as:

K(e)a(e) = q(e) (4.18)

Where a(e) and q(e) represent the nodal displacements and point loads, respec-
tively. The global stiffness matrix K, as well as the global displacement and
equivalent nodal force vectors a and f are assembled from these element contribu-
tions. This procedure places each contribution belonging to a local node according
to its DOF in the global system, as represented here by i, j, and k.
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Element Node Nodal variables
Local Global Local Global

(e)

1 i u1 ui
v1 vi

2 j u2 uj
v2 vj

3 k u3 uk
v3 vk

Table 4.2.1: Correspondence between local and global DOFs.

A distributed load is applied along the right boundary of the plate. In FEA,
boundary conditions may only be applied at the nodes of the model, meaning the
distributed load must be subdivided into discrete point-loads. These are applied
by means of Neumann boundary conditions, where the forces corresponding to
the point loads are added to the entries of the load vector f associated with the
respective DOFs.

Likewise, the constraint at the left plate boundary is applied on a nodal basis.
This is done using Dirichlet boundary conditions, which prescribe a displacement,
0 in this case, to the selected nodes. This is implemented by setting the cor-
responding rows and columns of the stiffness matrix K to zero, eliminating the
DOFs associated with the constrained nodes.

Finally, the global elastic response is obtained by solving the global matrix
equilibrium equation:

Ka = f (4.19)

4.2.3 Failure Prediction

The Tsai-Hill failure criterion is used to predict the first-ply failure of the lami-
nate. This is chosen to ensure consistency with the approaches in prior studies,
as described in Section 2.1.4.

Hill extended the von Mises yield criterion to anisotropic materials, and Tsai
adapted Hill’s criterion to composite materials by relating its coefficients to the
longitudinal, transverse, and shear failure strengths, X11, X22, and S12, respec-
tively. This criterion is failure mode independent, as it does not predict the way
in which the material fails. Additionally, it does not distinguish between tensile
and compressive strength, which are often different for composite materials. This
is not an issue in the present case, as the structures under study are primarily
subjected to tensile stresses. According to this criterion, ply failure appears when
[29]: (

σ11
X11

)2

−
(
σ11σ22
X2

11

)
+

(
σ22
X22

)2

+

(
τ12
S12

)2

≥ 1 (4.20)

Where σ11, σ22, and τ12 are the stress components in the principal material direc-
tions. To obtain these stress components within an element, the element strain
tensor is first found as:
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Where B is the strain-displacement matrix from Eq. 4.13 and a(e) is derived from
the displacement vector a. The ply stresses are determined using Hooke’s law:σxσy

τxy

 = Q

 εxεy
γxy

 (4.22)

Where Q is the elastic stiffness matrix of the ply, and the stress components σx,
σy and τxy are expressed in terms of the global axes (x, y). To obtain the stresses
referred to the principal material axes (1, 2) required for the Tsai-Hill criterion,
the following transformation is applied:σ11σ22

τ12

 = T

σxσy
τxy

 (4.23)

Where T is the transformation matrix from Eq. 4.7.

4.2.4 Optimization Phase I

At this phase, the optimal material distribution is obtained through free-size op-
timization. Ply thicknesses are permitted to take any real number value, resulting
in a continuous distribution of material (Fig. 4.2.4). The design variables control
the total thicknesses of all contiguous plies of the same orientation, referred to as
a "super-ply." The laminate consists of four super-plies, one for each possible ply
orientation, both for the VS and VAT optimization cases. With each super-ply as-
signed a thickness variable at each element, the total number of free-size variables
equals 4 · ne:

t =
[
t1 t2 . . . tn

]
(4.24)

A lower bound on the design variables, a so-called box constraint, is applied to
control the ply thicknesses:

tmin ≤ ti (4.25)

Where tmin is a small non-zero value, with the purpose of preventing the assembled
stiffness matrix from becoming singular.
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Figure 4.2.4: Optimization of a super-ply using the free-size concept, resulting
in a continuous distribution of material.

At the same time, the optimal tow orientation field θ(x, y) is determined. This
field is parameterized through a B-spline surface function, with the ply angle of
each element obtained by evaluating this function at the centroid of the element.
A B-spline surface is mathematically defined as [61]:

P (u, v) =
m∑
i=1

n∑
j=1

Bi(u)Bj(v)Ci (4.26)

Where P (u, v) is the fiber angle at a parametric location (u, v), Ci are the control
point values, and Bk are the piecewise-polynomial basis functions. In this case,
the parametric coordinates (u, v) are defined to be identical to the global axes
(x, y). The control points are distributed in a circular pattern (Fig. 4.2.5) to
maintain an adequate resolution at the boundary of the cutout.

Figure 4.2.5: B-spline control point distribution.

The second design variable (main tow pattern) then consists of a set of control
point values (Ci) and takes the form:

C =
[
C1 C2 . . . Cn

]
(4.27)

The optimization variables of Phase I amount to a total of 11916, and are grouped
into the vector:

x =
[
C1 . . . Cn t1 . . . tn

]
(4.28)

4.2.5 Optimization Phase II

In Phase II, ply shapes are defined using a discrete interpretation of the free-size
results from Phase I by capturing different level-sets of the thickness field. The
discrete ply shapes resulting from this procedure, referred to as ply-bundles, are
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then subjected to size optimization to determine the optimal number of plies for
each shape (Fig. 4.2.6).

Figure 4.2.6: Discrete interpretation of the continuous material distribution
using level-sets.

The number of ply-bundles must be determined as a tradeoff between true rep-
resentation of the thickness field (better performance) and the complexity of the
ply tailoring (higher manufacturing effort). A typical number is to define four ply-
bundles per super-ply [36], in this case resulting in 16 size variables per design:

x =
[
t1 . . . t2 . . . t16

]
(4.29)

The level-set positions are determined by trial and error. These level-sets are also
used as the initial state for the size variables. After solving the size optimiza-
tion, the final designs are obtained by rounding all ply thicknesses to the nearest
manufacturable value. A drawback of this method is that small discrepancies in
terms of mass inevitably arise between the designs. For this reason, all measures of
performance are normalized for mass (specific compliance, strength, and stiffness).

Before performing this optimization stage, it is necessary to determine the
thickness variation within the plies of the VAT design resulting from tow over-
laps. A smeared thickness approach, similar to the one presented by Tooren et al.
[84] is applied, where the result is a continuous field approximating the local ply
thickness.

This is based on the fact that, when using a vector field to define infinitesimally
narrow tow paths, the degree of overlap (i.e., the relative thickness at a point in
the ply) can be defined as being proportional to the density of the streamlines of
this field. To obtain a scalar field describing streamline density, a fluid mechanics
analogy is applied, whereby streamline density for incompressible fluids is propor-
tional to fluid velocity. This quantity is computed by discretizing the domain into
0.5mm square cells. The flow velocity V is found by setting the flow direction at
each cell equal to the fiber direction θ(x, y) at that point, and applying the con-
tinuity equation ∇V = 0. This calculation requires a boundary condition, which
is provided by assigning a constant value to V at the plate boundary, meaning
tow paths are distributed equidistantly along this "starting point". Finally, local
thickness is obtained by normalizing V by the nominal thickness of the ply.

4.2.6 Steepest Descent Algorithm

In the method of steepest descent, the step size is chosen such that the maximum
decrease of the objective function is achieved at each individual step. This method
is based on the observation that the objective function f decreases fastest at a
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point x if one moves in the direction of the negative gradient of f at x, such that
[59]:

xn+1 = xn − γ∇f(xn) (4.30)

Where n denotes the iteration of the state variable x. It follows that for a small
enough step size γ, then f(xn+1) ≤ f(xn). Starting from an initial guess x0 and
considering the sequence x0, x1, x2, ..., the result is a monotonic sequence which
converges at a local minimum.

f(x0) ≥ f(x1) ≥ f(x2) ≥ · · ·

The step size γ is determined by performing a line search in the gradient direc-
tion to locate a minimizer. A typical sequence resulting from this procedure is
indicated, with each step being orthogonal to the previous iteration (Fig. 4.2.7).

Figure 4.2.7: Solution convergence for the method of steepest descent.

The gradient tends towards zero as the minimizer is approached. In order to
determine when the optimization should end, a convergence criterion in the form of
an objective tolerance ε is introduced. This evaluates the change of the objective
function (convergence) between iterations. When this change is lower than the
objective tolerance for two consecutive iterations, the model is considered to have
converged at a solution.

f(xn)− f(xn+1)

f(xn)
≤ ε (4.31)

To impose constraints on the model, one of the many techniques for constrained
optimization needs to be implemented. A simple modification typical for steepest
descent involves the introduction of a projection [92]. This method changes the
iterate to the following:

xn+1 = p(xn − γ∇f(xn)) (4.32)

Where p(x) is a function that takes the unconstrained x to the nearest point inside
the space of feasible solutions (Fig. 4.2.8). This projection is often complicated to
compute, and may in many cases have to be computed numerically, which in itself
entails solving a separate optimization algorithm. However, as the only behavioral
constraint on the system is the resource constraint m(x) ≤ mmax, the projection
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becomes straightforward. Owing to m(x) being a linear function, the shortest
path to the constraint boundary will always be in the direction of the constraint’s
derivative. This yields the expression:

p(x) = x− λ∇m(x) (4.33)

Where the step size λ is determined as a function of γ to keep x as close to the
constraint boundary as possible.

Figure 4.2.8: Constrained optimization using the projection method.

4.2.7 Sensitivity Analysis

Sensitivity analysis is the process of determining the gradient vector of the ob-
jectives and constraints. The choice of method is critical, as this is often the
most computationally demanding operation of the solution process. Since the
constraint gradient ∇m(xn) is constant with regard to x, this section focuses only
on the gradient of the objective function with respect to the DVs, expressed as:

∇fc(xn) =
[
∂fc(xn)
∂x1

∂fc(xn)
∂x2

. . . ∂fc(xn)
∂xj

]
(4.34)

The most straightforward approach is finite-differencing, wherein each DV x is
perturbed by a small distance δ from the current iteration [92]. The gradient is
approximated as the ratio of the function change to the DV perturbation:

∂fc(xn)

∂xj
=
fc(xj + δ)− fc(xj)

δ
(4.35)

This approach requires minimal changes to the code of the FE tool, making it
straightforward to implement. A disadvantage is caused by the nature of digital
computing, making the sensitivities subject to subtractive cancellation error. This
limits the minimum step size δ and, therefore, the accuracy for nonlinear problems
[61]. In addition, the computational cost is proportional to the number of DVs.
This fact renders finite-differencing prohibitively expensive for the free-size opti-
mization in Phase I, which has O(104) DVs, resulting in O(104) FEA solves per
iteration. On the other hand, its simplicity makes it well-suited for the B-spline
and size variables, which are mathematically more complex and fewer in number.
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For the free-size variables, the adjoint method is an approach that addresses
both scalability and accuracy. This method is based on the realization that the
solution to any nonlinear problem can be written as follows [59]:

R(x, y) = 0 (4.36)

Where x are the design variables and y are the state variables. R is called the
residual, a vector that equals zero when the governing equations of the physics
problem are solved. The variable ψ, called the adjoint, is obtained by solving the
linear equation:

∂RT

∂y
ψ =

∂IT

∂y
(4.37)

For each objective or constraint function I. The sensitivities with respect to x are
then obtained through:

dI

dx
=
∂I

∂x
− ψT ∂R

∂x
(4.38)

In this expression, the partial derivative terms −∂R
∂y

, ∂f
∂y

, ∂f
∂x

, and ∂R
∂x

do not re-
quire the governing FE equations to be solved, and can thus be computed cheaply
through finite-differencing. Meanwhile, the adjoint ψ is only solved once per iter-
ation for each function of interest. This means that the cost of the adjoint method
scales with the number of objectives and constraints rather than the number of
DVs [59]. When using the compliance fc as the objective function, the adjoint
variable at iteration n is found by combining Eqs. 4.37 and 4.1 as:

K(xn)ψ =

(
fc(xn, a(xn))

∂a

)T

= f(xn) (4.39)

This system of equations is identical to the equilibrium equations. Thus, it can be
concluded that ψ = a(xn). Insertion into Eq. 4.38 yields the final expression [58]:

∂fc(xn)

∂xj
=
∂f(xn)

T

∂xj
a(xn) + a(xn)

T

(
∂f(xn)

∂xj
− ∂K(xn)

∂xj
a(xn)

)

= 2a(xn)
T ∂f(xn)

∂xj
− a(xn)

T ∂K(xn)

∂xj
a(xn) (4.40)
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4.3 Optimization Results
In selecting the material for this study, it should be considered that carbon fibers
are manufactured in a wide variety of grades, with mechanical properties tai-
lored to meet specific engineering requirements. The chosen material is the 150
g XPREG XC130 UD prepreg carbon/epoxy reinforcement. This features an in-
termediate modulus, high tensile strength fiber, chosen to ensure similarity to the
materials used in primary aircraft structures, such as the T800S fiber predomi-
nantly used in the Boeing 787 [93]. The mechanical properties of a cured ply are
provided in Table 4.3.1.

Property Symbol Unit Value
Modulus, longitudinal E11 GPa 130
Modulus, transverse E22 GPa 10
Modulus, shear G12 GPa 5
Poisson’s ratio v12 - 0.3
Strength, longitudinal X11 MPa 645
Strength, transverse X22 MPa 60
Strength, shear S12 MPa 69
Density ρ g/cm3 1.587
Thickness t mm 0.15

Table 4.3.1: Mechanical properties of 150 g XPREG XC130 UD [94].

4.3.1 Phase I

Free-size optimization is carried out using the benchmark QI design as the initial
state of the DVs (x0). The mass of the QI design (11.90 g) is used as the resource
constraint. The optimization is considered to have converged when the objective
tolerance ε is below 0.5% for two consecutive iterations (Table 4.3.2).

Thickness constraint Resource constraint Objective tolerance
tmin [mm] mmax [g] ε [%]

0.001 11.90 0.5

Table 4.3.2: Phase I optimization parameters.
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The VS design converged after 13 iterations (fig. 4.3.1), achieving a compliance
of 5.708 Nmm (table 4.3.3). The optimized material distribution is shown in Fig.
4.3.2. The majority of the fibers (94.0% by weight) are aligned in the 0◦ direction,
with concentrations of material around the upper and lower hole boundaries. The
ply thickness for the 90◦ and ±45◦ fiber directions is negligible for most of the plate,
apart from a few highly concentrated regions in proximity of the hole boundary.

Mass Compliance Convergence Iteration no.
[g] [Nmm] [%] [-]

11.90 5.708 0.488 13

Table 4.3.3: Free-size optimization result (VS).

Figure 4.3.1: Iteration progress (VS). Left: compliance. Right: convergence.

Figure 4.3.2: Ply thickness distribution (VS).
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For the VAT design, convergence was reached after 12 iterations (fig. 4.3.3). The
final compliance is 5.460 Nmm (table 4.3.4), representing a 4.3% improvement
compared to VS at the free-size stage.

Mass Compliance Convergence Iteration no.
[g] [Nmm] [%] [-]

11.90 5.460 0.474 13

Table 4.3.4: Free-size optimization result (VAT).

Figure 4.3.3: Iteration progress (VAT). Left: compliance. Right: convergence.

Figure 4.3.4: Optimization result for the reference orientation field θ0.
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The optimized tow angle distribution for the main tow pattern (θ0) is depicted
in Fig. 4.3.4. Several observations can be made: firstly, the fiber orientations at
the boundary of the cutout align with the vertical axis, i.e., the primary loading
direction. Secondly, tow courses near the central axis of the plate diverge outward.
These results indicate that the loads are being transferred away from the cutout,
towards the stiffer regions along the sides of the plate. Fig. 4.3.5 shows the three
offset tow patterns.

Figure 4.3.5: Tow paths for the θ0 + 45◦, θ0 + 90◦ and θ0 − 45◦ plies.

The material distribution is shown in Fig. 4.3.6, showing similar characteristics to
the VS design case. The main tow pattern θ0 has taken on the role of the 0◦ ply,
comprising the majority of the material. Compared to the VS design, this contains
an even greater fraction of the total material (98.9%) and has a more even spatial
distribution of thickness, as observed from the lower maximum values. This could
be explained by the steered fibers in the θ0 ply partially taking over the role of
the ±45◦ plies, which are much less present in the VAT design.

Figure 4.3.6: Ply thickness distribution (VAT).
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4.3.2 Phase II

The thickness variation resulting from the varying streamline density is estimated
using the finite volume method from Section 4.2.5. The thickness distribution is
depicted in Fig. 4.3.7.

Figure 4.3.7: Thickness estimation for the θ0 ply of the VAT design.

Defining the four level-sets at 2%, 10%, 20%, and 30% of the maximum thickness
of each super-ply was found to yield ply shapes that are representative of the
free-size material distribution. Some manual post-processing is done to improve
manufacturability, such as removing disconnected patches and jagged edges re-
sulting from the FE discretization. The ply shapes for the VS and VAT designs
are shown in Fig. 4.3.9 and Fig. 4.3.10, respectively.

Due to size optimization being far less computationally intensive than the
free-size stage, a lower objective tolerance (0.10%) is used. Fig. 4.3.8 shows the
convergence for the size optimization step. The optimization results are presented
in Table 4.3.5 for the VS design, and Table 4.3.6 for the VAT design, with the
final designs in the rightmost column.

Figure 4.3.8: Phase II iteration progress. Left: convergence. Right: compliance.
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After rounding the optimized ply thicknesses to the nearest manufacturable value,
both designs experienced a small net increase in mass (8.01% for the VS design,
3.70% for VAT). Compared to the "ideal" material distributions defined in Phase I,
the final manufacturable designs have a difference in specific compliance of +4.65%
(VS) and +2.30% (VAT).

Figure 4.3.9: Ply shapes (VS).

Orientation Ply level Thickness [mm]
[%] Initial Optimized Manufac.

0◦ 2 0.10 0.120 0.15
10 0.20 0.280 0.30
20 0.25 0.303 0.30
30 0.25 0.384 0.45

45◦ 2 0.02 0.027 0
10 0.08 0.085 0.15
20 0.10 0.103 0.15
30 0.10 0.126 0.15

−45◦ 2 0.02 0.031 0
10 0.08 0.085 0.15
20 0.10 0.950 0.15
30 0.10 0.113 0.15

90◦ 2 0.01 0.006 0
10 0.04 0.036 0
20 0.05 0.062 0
30 0.05 0.111 0.15

Compliance [Nmm] 9.134 5.860 5.532
Mass [g] - 11.90 12.86

Table 4.3.5: Size optimization results (VS).
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Figure 4.3.10: Ply shapes (VAT).

Orientation Ply level Thickness [mm]
[%] Initial Optimized Manufac.

θ0 2 0.05 0.095 0.15
10 0.15 0.191 0.15
20 0.20 0.145 0.15
30 0.20 0.031 0

θ0 + 45◦ 2 0.01 0.001 0
10 0.04 0.001 0
20 0.05 0.001 0
30 0.05 0.06 0

θ0 − 45◦ 2 0.01 0.001 0
10 0.04 0.001 0
20 0.05 0.001 0
30 0.05 0.006 0

θ0 + 90◦ 2 0.01 0.001 0
10 0.04 0.103 0.15
20 0.05 0.042 0
30 0.05 0.189 0.15

Compliance [Nmm] 6.384 5.582 5.386
Mass [g] - 11.90 12.34

Table 4.3.6: Size optimization results (VAT).
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4.3.3 Final Designs

The stiffness performance of the final designs is summarized in Table 5.2.1, calcu-
lated as the average displacement of the right-hand plate boundary. This predicts
an improvement for VAT of 77.4% compared to QI and 10.9% compared to VS
with regard to specific stiffness.

Case Mass Specific
compliance

Specific
stiffness

Improvement1 Improvement2

[g] [Nm·g] [kN/mm·g]
QI 11.90 2.171 0.736 - -
VS 12.86 0.915 1.180 +60.0% -

VAT 12.34 0.820 1.307 +77.4% +10.9%

Table 4.3.7: Stiffness/weight performance of the final designs, 1: Compared to
QI laminate, 2: Compared to VS laminate.

The impact of optimization on the elastic characteristics of the plate is illustrated
in Fig. 4.3.11. The concentration of strain adjacent to the cutout has been alle-
viated for the VS and VAT designs, and replaced by a largely even distribution
across the plate. These strain distributions appear more irregular compared to
QI, caused by the discrete thickness changes (ply-drops) within the plates. The
displacement plots reveal an increased bias of stiffness towards the plate’s upper
and lower bands, with larger displacements close to the centerline.

Figure 4.3.11: Elastic response of the final designs for a load of 500 N. Left:
principal strain. Right: displacement.
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Predicted strength is presented in Table 4.3.8. Similarly to stiffness, the predicted
specific strength of the compliance-optimal VAT design is significantly higher than
the QI and VS cases, this time by 249% and 26.9%, respectively. The location at
which the allowable failure index is exceeded is shown in Fig. 4.3.12. All designs
are predicted to fail in the same area near the cutout boundary, in the fiber layer
oriented parallel to the loading direction.

Case Failure load Failure ply Specific strength
[kN] [kN/g]

QI 8.50 0◦ 0.714
VS 25.3 0◦ 1.962

VAT 30.8 θ0 2.491

Table 4.3.8: First-ply failure predictions using the Tsai-Hill criterion.

Figure 4.3.12: Tsai-Hill failure index at the maximum load of each design.
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FIVE

EXPERIMENTAL VALIDATION

5.1 Method

5.1.1 Test Specimen Design

The main consideration when designing the test specimens is to facilitate the in-
troduction of axial load through shear forces along the specimen surfaces. This re-
quires some special consideration when testing predominantly unidirectional com-
posite materials. If the load is applied unevenly, such specimens may experience
transverse or shear failure, even when these induced stresses are small relative to
the applied longitudinal stress. Furthermore, excessive clamping force can cause
matrix cracking, which degrades the mechanical properties of the material.

Figure 5.1.1: Schematic of test specimen.

To mitigate this, specimen tabs are used for load transfer. Tabs allow the use of
serrated grip surfaces and accordingly low grip pressures, thus preventing gripping-
induced damage to the specimen. This also means that the specimen ends have an
increased cross-sectional area compared to the central gage section, which serves to
prevent premature failure near the grips due to the additional stresses introduced
in this region. However, because of this thickness variation, the tabs themselves

53
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can result in stress concentrations, particularly at tab terminations. To prevent
this, the tabs are tapered at the gage section ends.

The tabbing material must have the required strength to sustain the applied
load, while being suitable for bonding to a composite surface. For these rea-
sons, tabs are manufactured from a carbon/epoxy composite, using a 210 g woven
prepreg material with the same resin system as the test specimens. Following the
FAA tabbing guide for composite specimens [95], these have a length of 50 mm,
with a taper angle of 15◦. A 4-layer quasi-isotropic layup [0/45]S is used, resulting
in a thickness of 1.0 mm. The design is illustrated in Fig. 5.1.1.

The tabs are joined by means of secondary bonding, referring to the adhesive
bonding of two or more pre-cured composite parts. A MMA (methyl methacrylate)
adhesive is selected due to its high bond strength and ease of application. In
addition, this adhesive is suitable for use with a thicker bond line, which has
been found to significantly reduce tab termination stress concentrations [95]. The
selected bond line thickness is 0.7 mm.

5.1.2 Manufacturing

Images documenting the manufacturing process are found in Appendix C. The
tooling surface for the layup is a glass plate prepared with a chemical release
agent. To provide a reference for fiber placement, the part boundary is marked
on the tool using flash tape. This leaves an indent on the part surface, serving as
a guide for trimming operations after curing.

Figure 5.1.2: Manual placement of fibers using a stencil.

To ensure precision during the layup step, cutting- and placement stencils for
each ply are created. Once cut to the correct shape, plies are positioned on a
transparent mylar sheet and subsequently transferred to the tool surface. For the
VAT design, the fiber reinforcement is divided into 5 mm strips which are manually
steered to fit the tow paths defined by the optimization.

Fig. 5.1.3 shows the layers comprising the completed layup. The laminate is
de-bulked for 20 minutes, which compacts the plies and removes trapped air by
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pulling a vacuum over a period of time. This reduces void nucleation sites, which
adversely impact the mechanical properties of the laminate. The specimens are
then placed in an oven under a vacuum pressure of 0.90 bar for curing. The cure
cycle consists of heating to 90◦ C for 8 hours, with a ramp rate of 3◦ C per minute.

Figure 5.1.3: Layup used for test specimens.

After de-moulding the cured parts, the tabs are ground to the desired taper angle
and joined to the test specimens. The surfaces are prepared through abrasion to
raise the surface-free energy of the substrates, facilitating molecular cross-linking.
Prior to bonding, impurities such as dust and residual release agent are removed
using a solvent, and spacers are placed to control bond line thickness. Once the
adhesive is cured, the specimens are trimmed to their final shape.

5.1.3 Test Setup and Data Acquisition

The static tensile tests are performed using an Instron 8854 machine. The VIC-
2D-v6 system is used to analyze the results using digital image correlation (DIC)
(Fig. 5.1.5).

Figure 5.1.4: Test specimens prepared with a speckle pattern and positioned in
the machine.
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The specimens are fastened using 100 mm wide serrated wedge grips, and tested
to an extension of 5mm at a rate of 2 mm/min. During this operation, the testing
machine measures load and displacement at a rate of 10Hz, while the 4-megapixel
DIC camera simultaneously records the test at the same frequency. The specimens
are prepared with a speckle pattern (Fig. 5.1.4) which is tracked by the VIC-2D
software. This analysis uses the "virtual extensometer" tool to provide a backup
measurement of displacement as verification of the machine data. Additionally, it
enables the characterization of the displacement and strain distribution across the
plate.

the

Figure 5.1.5: Equipment used for the test.
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5.2 Experimental Results
The load/displacement results from the tensile test (machine measurements) are
plotted together with the numerical predictions in Fig. 5.2.1. The synchronized
sampling rate of the DIC and test machine allows for direct comparison of the
displacement data points, visualized in Appendix D. This reveals the deviation
between these to be insignificant (1.03% on average). The point of first-ply failure
is discerned from the DIC footage and is indicated on each curve with a cross.

Figure 5.2.1: Comparison of experimental and numerical performance.

After testing, the specimen tabs are removed, and the test sections are weighed
with an accuracy of ±0.01g. Stiffness is obtained by interpolation of the pre-failure
region of the load/displacement curves. The results are summarized in Table 5.2.1,
showing an improvement for VAT of 120% compared to QI and 16.9% compared
to VS with regard to specific stiffness.

Case Mass Stiffness Specific
stiffness

Improvement1 Improvement2

[g] [kN/mm] [kN/mm·g]
QI 12.42 9.259 0.745 - -
VS 12.97 18.15 1.399 +87.7% -

VAT 12.01 19.65 1.636 +120% +16.9%

Table 5.2.1: Experimental stiffness/weight performance, 1: Compared to QI
laminate, 2: Compared to VS lamiante.
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The measured principal strain and displacement fields (Fig. 5.2.2) allow for a
qualitative comparison with the predicted behavior. For displacement, overall
similar features can be observed, with higher displacement towards the center of
the plate for VS and VAT compared to QI. Although the accuracy of the measured
principal engineering strain appears to be limited, some basic characteristics can be
recognized. Like the predictions, these show larger strain concentrations adjacent
to the cutout for the QI design, and a more even distribution for the VS and VAT
designs.

Figure 5.2.2: Measured elastic response at 10 kN. Left: principal engineering
strain. Right: displacement.

The measured strength is summarized in Table 5.2.2. The modes of failure are
indicated in Fig. 5.2.3, showing the specimens at the moment of first-ply failure.
This shows fiber failure of the 0◦ ply of the QI design, with fracture occurring along
an axis of 45◦. Both VS and VAT specimens experience matrix fracture along the
0◦ fiber direction, with VS simultaneously suffering delamination adjacent to the
cutout boundary. These observations provide valuable insight into the stress state
within the structures, as will be discussed in the following chapter.

Case Specific strength Failure load Failure ply
[kN/g] [kN]

QI 1.129 14.02 0◦

VS 1.271 16.49 0◦

VAT 3.206 38.50 θ0

Table 5.2.2: First-ply failure obtained from testing.
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Figure 5.2.3: First-ply failure modes of the test specimens.

5.2.1 Sources of Error

The use of these results in an assessment of the numerical predictions necessitates
a reflection on the uncertainties associated with the methodology.

The manual manufacturing process used represents the first source of errors.
Manual cutting and placement of fibers may introduce deviations from the design,
such as fiber angles and ply boundaries. This factor is likely insignificant due to
the extensive use of guides and stencils during the layup. As established in Section
2.2.2, porosity is a crucial parameter for quality assurance in composite manufac-
turing due to its detrimental impact on performance. Despite the de-bulking step,
some porosity was observed on the specimen surfaces. The severity is assessed
as being limited, with the overall number of voids being low. Furthermore, the
trimming step could impact performance if defects such as notches are introduced,
which could act as stress risers. On inspection, no such defects were observed.

In addition, the results are subject to measurement errors. First, the measure-
ment accuracy depends on the alignment of the specimen with the machine axis,
and the alignment of the DIC camera with the specimen. Second, some out-of-
plane buckling was observed along the midplane of the plates during testing, which
deteriorated measurement accuracy in these areas. Because this effect is highly
localized, it did not impact the measurement of total displacement, which is based
on reference points at opposite ends of the plate. It should also be considered
that all measurements are subject to instrumental errors. This is evident from the
signal noise in the displacement data, which however has a negligible amplitude
compared to the trends being studied.
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CHAPTER

SIX

DISCUSSION

6.1 Summary of Results
The results of the design study are summarized in Fig. 6.1.1. This discussion
addresses the aim of this thesis, namely to utilize experimental results to evaluate
the accuracy of the numerical predictions, and by extension, the validity of the
design approach itself.

Figure 6.1.1: Summary of design study results. Left: specific stiffness. Right:
specific strength.

To provide a framework for this discussion, the three main components of the nu-
merical solution are considered separately. Accordingly, the validity of the results
depends on the fulfillment of the following three assumptions:

1. The physical system is modeled accurately.

2. The optimization algorithm accurately locates the optimum design.

3. The optimization problem formulation ensures the practical feasibility of the
part.

These assumptions are evaluated in sections 6.2, 6.3, and 6.4, respectively.
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6.2 FE-Model Accuracy

6.2.1 Elastic Response

When comparing the relative specific stiffness of the design cases, the measured
behavior shows an overall good correspondence with the numerical predictions.
For the stiffness advantage of VAT compared to VS, one of the most critical
predictions with regard to the objective, the numerical value (10.9%) is close to
the experimental value (16.9%). This similarity between predicted and measured
elastic response is confirmed by the comparison of the strain and displacement
fields in Section 5.2.

The simulated results are, on average, 14.9% under-stiff compared to the mea-
surements. Since this applies to all designs, it is likely to be caused by a systematic
error which could have its origin in a number of factors. One possible cause is the
use of low-order elements to discretize the domain. Another explanation is inaccu-
racies in the material data, such as modulus or consolidated ply thickness. These
values are sensitive to processing parameters such as curing temperature, pressure,
and whether a post-curing stage is performed. According to the manufacturer, the
material was characterized using autoclave curing, representing a major difference
from the process used in this study. Finally, manufacturing and measurement in-
accuracies, as discussed in Section 5.2.1, are another plausible cause for systematic
bias.

In the context of contemporary research, these findings are within expectation.
The anisotropic elastic behavior of composite materials is well-understood, and
thus, the tools currently used are widely accepted to provide satisfactory analytical
predictions [96]. More specifically, the results confirm that the structures satisfy
the conditions for modeling elastic response using ESL theories such as CLT.
Moreover, they indicate that the prediction of gaps and overlaps (Section 4.2.5)
was successful, as errors at this stage would have greatly impacted the stiffness of
the VAT design. This is also an expected result in the context of prior studies,
such as the paper by Vertonghen and Castro [4] comparing the elastic response
of the smeared thickness approximation to the "exact" discrete thickness profile.
This showed good agreement between the two methods, provided that the tow
width is sufficiently small relative to the plate dimensions.

6.2.2 Stress Response

With regard to strength, more significant differences between prediction and mea-
surement were found, summarized in Table 6.2.1.

Case Difference [%] Failure mode
QI +58.1% Fiber failure (In-plane)
VS −35.2% Delamination (Out-of-plane)

VAT +28.7% Matrix failure (In-plane)

Table 6.2.1: Comparison of predicted and measured specific strength.
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The VS design represents an outlier, in that it fails much before the predicted load
(35.2%) by an out-of-plane failure mode. Such a failure mode is necessarily caused
by interlaminar (out-of-plane) stresses in the material [28], i.e. σz, τzx and τzy.
Given that the delamination occurred at the cutout boundary, a likely explana-
tion is the free-edge effect. This is a well-known phenomenon where out-of-plane
stresses arise near free edges due to the mismatch of elastic properties between
layers. This results in a three-dimensional stress state, even if the laminates are
only subjected to in-plane loading. For plates with holes, this effect is accentu-
ated by the stress concentrations around the edge of the cutout [97]. Another
possible explanation is ply drop-offs, several of which are present near the area
of delamination. These act as stress risers, introducing localized concentrations
of out-of-plane stresses due to the abrupt changes in laminate thickness. Hence,
they are known to become initiation points for delamination if they become too
severe, i.e., if too many plies are dropped within too short of a distance [56].

These results highlight two significant shortcomings in the method for mod-
eling stresses. Firstly, recalling Section 2.1.3, CLT assumes out-of-plane stresses
to be negligible. Consequently, it is outside the scope of this laminate theory to
capture the stress fields resulting from free-edge effects or ply drop-offs. Secondly,
in-plane analysis using CLT applies strain uniformly to all plies within the lami-
nate, making the stress response insensitive to stacking sequence. The drawback
of this can be illustrated for the QI specimen, which fractured along an axis of 45◦,
which is identical to the orientation of the subsequent ply in the laminate. This
demonstrates a clear relationship between stacking sequence and failure mode,
even when failure occurs in-plane. This relationship has previously been demon-
strated in greater detail by Daniel et al. [98], who tested boron/epoxy panels with
circular holes under tension. Numerous studies have also found failure induced by
ply drop-offs to be a function of stacking sequence [99].

The use of FEA-approaches which account for these effects is a development
already taking place within the field of VAT composite design. The limitations
of CLT and FSDT have led several researchers to adopt higher-order shear de-
formation theories (HSDT) [10], which are plate theories that assume non-linear
stress variation through the thickness. By treating each ply as an independent
plate and constraining the displacement compatibility at each interface, a so-
called layer-wise (LW) model capable of capturing interlaminar effects is obtained
[28]. Viglietti et al. [100] performed analysis of VAT structures using such an LW
approach and reported more accurate predictions, although at a higher computa-
tional cost. Alternatively, an analysis based on three-dimensional finite elements
may be employed. This has been investigated by Zhao et al. [101] and Chaudhuri
[102], who performed three-dimensional finite element analyses on laminates with
circular holes.

It must also be taken into account that this study considers a scaled-down
analogy of a larger structure. Since the linear in-plane responses considered in
the numerical investigation are either independent of- or proportionally related
to scale, a comparison between them (i.e., relative strength and stiffness) can be
generalized as being valid for any size scale. However, the apparent sensitivity of
failure to stacking sequence design does not necessarily follow this trend. These
stresses depend on the number and thickness of plies relative to the plate di-
mensions, which are not necessarily a linear function of scale. Thus, this aspect
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represents an important limitation in generalizing the experimental findings to a
full-scale structure.

6.2.3 Failure Analysis

Although the QI and VAT specimens experienced in-plane ply failure, and thus are
within the scope of the laminate theory, the measured strength was significantly
higher than predicted, on average 43.4%. This result mirrors the findings of several
other papers on tow-steered plates with cutouts, which crucially tend to define
failure on a first-ply basis, as is done in this study. For instance, Khani et al. [24]
measured an average strength increase of 72.4% compared to numerical results.

An explanation for why first-ply failure criteria lead to conservative predictions
of open-hole strength is offered by the literature on the testing and certification of
notched composite structures [96]. Returning to the Tsai-Hill failure index plot in
Fig. 4.3.12, failure is predicted to occur only in a few elements directly at the hole
boundary for all three cases, indicating a highly localized stress concentration. By
applying a first-ply failure criterion, this local failure of the material suffices to
consider the entire laminate as failed, effectively treating the fracture behavior
of the material as brittle. In reality, however, composites exhibit a quasi-brittle
behavior (Fig. 6.2.1). When approaching failure, various matrix and fiber damage
effects (such as ply splitting, weak fiber failures, and delaminations) occur at the
maximum stress locations, reducing the stiffness in these areas. This gradual
unloading after the onset of damage can enhance residual strength by effectively
reducing the severity of stress concentrations [97].

Figure 6.2.1: Idealised quasi-brittle damage behavior in composite materials
[103].

Multiple improvements to the analysis have been proposed to deal with this, albeit
beyond the literature on tow-steered composites. In the context of commercial air-
craft structures, the strength of notched laminates is commonly determined using
the point stress theory (or Whitney–Nuismer criterion) [96]. This theory proposes
to evaluate stress at a distance d0 from the edge of the hole, with failure occur-
ring when the stress at this distance surpasses the unnotched-laminate strength.
However, this analysis method is restricted to near-quasi-isotropic laminates and
is therefore not applicable to VAT structures.

Alternatively, non-linear constitutive models for progressive failure analysis
have been used to model the failure of plates with cutouts. In these methods, the
stiffness matrix of a failed element is modified according to a material degradation
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model, simulating the gradual unloading after the onset of damage. The use of
such models for analyzing tow-steered structures with cutouts has been proposed
by Lopes et al. [103], although this has thus far remained limited.

6.3 Solution Optimality

In solving for the compliance-optimal design, the optimizer considers only the
elastic responses of the structure. Therefore, based on the preceding discussion,
it can be concluded that the underlying FE model does not introduce significant
inaccuracies to the optimization procedure.

In addition to this, some uncertainties with regard to optimality can be iden-
tified based on the nature of the solution. As with any structural optimization
problem, the computational resources for solution are finite, meaning the dimen-
sionality of the problem controls a crucial trade-off: between the accuracy at which
functions and sensitivities can be evaluated, and the number of iterations that can
be performed. This design study makes a number of simplifications that reduce
this dimensionality at the cost of solution accuracy. For instance, as demonstrated
by Brooks et al. [9], the optimal tow angle distribution greatly depends on the
positioning and density of B-spline control points, as these are directly related to
design flexibility. Similarly, the topology optimization scheme depends on manual
selection of level-sets in order to define discrete ply shapes. Such simplifications
can be avoided by increasing formulation complexity, which conversely makes con-
vergence more difficult to guarantee.

Moreover, the optimization of fiber orientation using ply angles as DVs has
been shown to be non-convex. This makes the solution sensitive to the initial
fiber configuration when the problem is solved with gradient-based methods. Al-
though non-convexity could be dealt with using gradient-free methods, this has
been deemed infeasible due to the large number of DVs. Another possible im-
provement is offered by lamination parameter design, as introduced in Section
3.2.2. When using lamination parameters as DVs, the feasible region has been
proven to be convex in numerous investigations [21]. The implications of this were
demonstrated for compliance minimization problems by Setoodeh et al. [104],
showing that this method could generate superior results to fiber angle DVs.

6.4 Design Feasibility

Finally, the results of the design study must be evaluated in the context of their
compliance with the feasibility requirements introduced in Section 2.2.

First, with regard to manufacturability, the B-spline parameterization success-
fully generated tow courses which were smooth and continuous. Additionally, the
decision to not enforce a turning radius constraint proved to be correct. Based
on the streamline plots, rmin for the unconstrained design is estimated to be in
the order of 80 mm. This is well within the limit for the AFP process, when
corrected for an estimated scale of 1:20 compared to a real wing access hole, of
approximately 25mm. On the other hand, a potential manufacturability concern
is the high degree of overlap, exceeding 6 layers at the maximum point. However,
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due to the absence of concrete guidelines for this aspect in the literature, it cannot
be concluded with certainty to what extent this would inhibit manufacturing.

On the contrary, several favorable properties are observed as a consequence
of course overlaps. As the Phase I optimization results show (Fig. 4.3.2 and
4.3.6), the optimal material distribution for the VAT and VS designs are close to
identical. However, because the tow course overlaps largely coincided with the
optimal thickness distribution, the number of discrete plies needed to capture this
optimal distribution is three times lower for VAT than for VS (5 and 15 plies,
respectively). Furthermore, it can be hypothesized that the overlap method con-
tributes to increasing the delamination resistance of the VAT design. By building
up thickness through converging tow courses, the steep thickness gradient of the
optimal material distribution is achieved without the need for a large number of
tow-drops, mitigating the interlaminar stresses that would otherwise arise through
these features. This could be an explanation for why the VAT design did not fail
through delamination, despite being subjected to larger loads and having a sim-
ilar thickness profile to the VS design. This raises the question of whether this
correspondence between course overlaps and optimal thickness is a unique case for
the present design problem, or an inherent tendency of topology-optimized VAT
structures.

The second concern for feasibility regards the airworthiness requirements from
Section 2.2.5. The discussion on certifiability led to the use of a reference tow
orientation to limit the number of laminate families in the VAT structure. Al-
though this restriction inevitably inhibits performance, the results show that this
reduced design space still allows for a significant margin of improvement over VS.
On the other hand, a challenge for certifiability is that the optimized designs have
the vast majority of the fibers oriented in a single direction, making their fail-
ure matrix-dominated in both cases. For certification purposes, fiber-dominated
laminates are typically preferred for use on commercial transports [51]. Since the
variability associated with matrix-dominated failures tends to be high compared
to fiber-dominated failures, the B-basis allowables, which ultimately define the
"permitted" strength of the structure, are much higher in the latter case.

This aspect highlights the importance of complying with the laminate de-
sign rules from Section 2.2.6, which, among others, serve to prevent cases where
anisotropy becomes too biased in a single direction. Furthermore, since these
guidelines address the delamination risk caused by tow-drops, they are often used
in practice as a means of circumventing the more complicated three-dimensional
or layer-wise analysis proposed in Section 6.2.2 [56]. This conclusion reflects the
direction taken by more recent studies in the field of VAT design. Most notably,
the integration of design rules into the optimization procedure has been under-
taken in the works of Brooks [61] and Dillinger [105], who both studied the design
of wing structures.
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SEVEN

CONCLUSIONS

7.1 Conclusions

This thesis aimed to numerically quantify the performance benefit of tow-steering
for a composite wing skin section, and to validate these results through experi-
mental testing.

To ensure the relevance of the study with regard to this objective, design
constraints were defined based on the AFP manufacturing process and aviation
industry standards. The second objective in ensuring relevance was to align the
numerical solution with the contemporary literature, and an approach for struc-
tural analysis and optimization was established accordingly. However, because
some of the identified constraints were found to be underexplored in this litera-
ture, decisions were necessitated with regard to which to enforce, both to ensure
compliance with the second objective, and to confine the scope of the work.

Effectively navigating these challenges, the implemented method was success-
fully used to generate a solution to the design problem which satisfied most of the
constraints. This confirmed the hypothesis regarding the superior performance of
the VAT design, with stiffness increasing by 11% and strength by 27% compared
to VS. Yet, this investigation illuminated certain limitations inherent in current
design techniques, arising from the general non-convexity and high dimensionality
of the design problem under investigation.

In the subsequent experimental phase, manufactured designs were tested, and
their performance was characterized through DIC analysis. While acknowledg-
ing the potential limitations posed by the manufacturing process, a review of the
induced errors suggested a minor impact on the overall outcomes. Drawing con-
clusions in alignment with the thesis aim, it becomes evident that the predicted
elastic response, and therefore also the associated sensitivities used for stiffness-
optimal design, align well with experimental observations. However, limitations
in failure prediction were highlighted, attributed to the sensitivity of first-ply fail-
ure to factors outside the scope of the numerical model. These were identified as
out-of-plane stresses arising near ply-drops and free edges, and the quasi-brittle
fracture behavior of the material. To address these challenges, this thesis proposes
improvements to the structural analysis and advocates for a more stringent set of
design constraints.

As one of few works that examines simultaneous topology and tow path opti-
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mization both numerically and experimentally, this thesis contributes a distinctive
perspective to the existing body of knowledge. Among the experimental findings,
several converge with those of prior studies, reinforcing their broader implications
as a validation of contemporary methods. Importantly, it also confirms a signif-
icant enhancement of performance within the specific design cases under study,
shedding light on the transformative potential of VAT composites in the context
of wing design.

7.2 Future Work
With respect to the overarching goal of establishing the efficacy of tow-steering for
commercial aviation, the results offer a strong indication of potential. However,
the generalizability of these findings is constrained by the specific nature of the
design study and the methods employed. To advance this goal further, several key
points emerge from this study, outlining avenues for future research:

• This study has identified potential improvements to the FE model, aiming to
bridge the gap between simulation and experimental results. Future studies
should focus on implementing and validating these improvements through
further studies on design, manufacturing, and testing.

• The literature review highlights a lack of concrete guidelines for certain de-
sign constraints and an absence of information on manufacturing costs rel-
ative to other technologies. Addressing these gaps requires dedicated man-
ufacturing studies that quantify these design parameters, contributing to a
more comprehensive understanding of tow-steering’s practical feasibility.

• The issue of ensuring global optimality without prohibitive computational ef-
fort has been underscored. Future research should aim to establish a widely
accepted solution that satisfies these requirements, building upon the in-
sights gained from existing literature.

• Because studies tend to consider simple geometries, it is uncertain what
additional challenges would arise in the transfer of these methods to the
design of real-life structures. The culmination of the three above points
in the analysis of a larger system, such as a complete wing structure, will
eventually determine the true potential of tow-steering over conventional
laminate design.
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APPENDIX

A

CODE FOR NUMERICAL SOLUTION

The following are excerpts from the code written for the design study, comprising
the most important components of the numerical solution.

FEA solution

The input data for the FE solver is stored within the following variables.

import numpy as np
NODES = [] # The coordinates of each node in the model
ELEMS = [] # The connectivity between nodes
constrained_DOFs = [] # Which DOFs are constrained
load_list = [] # Which DOFs have a load and what magnitude
theta_list = [] # The orientation of each ply
thickness_list = [] # The thickness of each ply

Calculates the elastic material matrix Q′ (Eq. 4.3).

def local_Q_matrix(E1, E2, G, v12):
v21 = v12 * E2 / E1
return np.array([[E1, v21 * E1, 0],

[v12 * E2, E2, 0],
[0, 0, (1 - v12 * v21) * G]]) / (1 - v12 * v21)

Transforms Q′ by angle β (Eq. 4.9).

def transform_stiffness_matrix(Q, beta):
cos_b, sin_b = np.cos(beta), np.sin(beta)
T = np.array([[cos_b ** 2, sin_b ** 2, sin_b * cos_b],

[sin_b ** 2, cos_b ** 2, -sin_b * cos_b],
[-2 * sin_b * cos_b, 2 * sin_b * cos_b,
cos_b ** 2 - sin_b ** 2]])

return T.T @ Q @ T

Calculates laminate stiffness D as the sum of ply contributions (Eq. 4.12)

def laminate_stiffness_matrix(stiffness_matrix_list, ply_thickness_list):
D = np.sum(np.array(stiffness_matrix_list)[:, np.newaxis, np.newaxis] *

np.array(ply_thickness_list)[:, np.newaxis, np.newaxis],
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axis=0) / laminate_thickness
laminate_thickness = np.sum(ply_thickness_list)
return D , laminate_thickness

Performs cyclic permutation (0, 1, 2).

def cp3(x, i):
return (x + i) % 3

Uses D to calculate the element stiffness matrix K(e) (Eq. 4.15 and 4.16).

def element_stiffness_matrix(node_list, D, laminate_thickness):
K = np.zeros((6, 6))
x, y = zip(*node_list)
A = 0.5 * (x[0] * (y[1] - y[2]) + x[1]

* (y[2] - y[0]) + x[2] * (y[0] - y[1]))

for i in range(3):
for j in range(3):

bi = y[cp3(i, 1)] - y[cp3(i, 2)]
bj = y[cp3(j, 1)] - y[cp3(j, 2)]
ci = x[cp3(i, 2)] - x[cp3(i, 1)]
cj = x[cp3(j, 2)] - x[cp3(j, 1)]

Bi = np.array([[bi, 0, ci], [0, ci, bi]])
Bj = np.array([[bj, 0], [0, cj], [cj, bj]])

Kij = np.matmul(np.matmul(Bi, D), Bj) \
* laminate_thickness / (4 * A)

K[i * 2:i * 2 + 2, j * 2:j * 2 + 2] = Kij

return K

Assembles element matrices into the global stiffness matrix K and applies Dirichlet
boundary conditions.

def global_stiffness_matrix(theta_list, thickness_list):
DOFs = len(NODES) * 2
K = np.zeros((DOFs, DOFs))

#Iterate through all elements
for element_index, element in enumerate(ELEMS):

# Calculate laminate stiffness D
ply_stiffness_list = [transform_stiffness_matrix(

local_Q_matrix(130, 10, 5, 0.3), theta) for
theta in theta_list[:, element_index]]

ply_thickness_list = thickness_list[:, element_index]
laminate_stiffness = laminate_stiffness_matrix(ply_stiffness_list,

ply_thickness_list)

# Create local stiffness matrix K for element
element_stiffness = element_stiffness_matrix(

elementNodeCoords(element), laminate_stiffness[0],
laminate_stiffness[1])
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# Map the element stiffness to the global DOFs
for i, j in zip(*np.meshgrid(element, element)):

K[np.ix_(range(i * 2, (i + 1) * 2), range(j * 2, (j + 1) * 2))] += \
element_stiffness

# Apply Dirichlet boundary conditions
K = np.delete(K, constrained_DOFs, axis=0)
K = np.delete(K, constrained_DOFs, axis=1)

return K

Creates the load vector q.

def global_load_vector(load_list, constrained_DOFs):
q = np.zeros(len(NODES) * 2)

# Map loads to global DOFs
for load_data in load_list:

element_index, *load_values = load_data
for DOF, load_value in enumerate(load_values):

q[element_index * 2 + DOF] = load_value

# Remove constrained DOFs
q = np.delete(q, constrained_DOFs)
return q

Solves the global matrix equilibrium equation (Eq. 4.19) for the nodal displace-
ment vector a and compliance fc (Eq. 4.1)

def solve_FEA(theta_list, thickness_list, load_list, constrained_DOFs):
# Create stiffness matrix K and load vector q
K = global_stiffness_matrix(theta_list, thickness_list)
q = global_load_vector(load_list, constrained_DOFs)

# Solve linear system
matrix_solution = np.linalg.solve(K, q)
f_c = matrix_solution @ K @ matrix_solution / 2

# Put the removed DOFs back into solution
a = np.zeros(len(NODES) * 2)
DOF_list = np.arange(len(NODES) * 2)
DOF_list = np.delete(DOF_list, constrained_DOFs)
for i in range(len(DOFlist)):

a[DOF_list] = matrix_solution[i]

return a, f_c

Failure analysis

Calculates the strain tensor ε for each element using the displacement vector a
(Eq. 4.21).

def element_strain_list(a):
strain_list = []

80



for element_nodes in ELEMS:
# Get node coordinates and displacement vectors
xy = np.array([NODES[node_index][:2]

for node_index in element_nodes])
a_e = np.array([a[node_index * 2:node_index * 2 + 2]

for node_index in element_nodes]).flatten()
A = 0.5 * np.linalg.det(np.concatenate(

(xy, np.ones((3, 1))), axis=1))

# Compute element strain
B = np.array([

[(xy[cp3(i, 1), 1] - xy[cp3(i, 2), 1]) / (2 * A), 0, 0],
[0, (xy[cp3(i, 2), 0] - xy[cp3(i, 1), 0]) /
(2 * A), (xy[cp3(i, 2), 1] - xy[cp3(i, 1), 1]) / (2 * A)]

])
strain_list.append(B @ a_e)

return strain_list

Uses the strain tensor to evaluate the Tsai-Hill failure index at each ply within
the element (Eq. 4.20, 4.22 and 4.23).

def Tsai_Hill(strain_list, thetaList, stress_multiplier):
failure_index_list = []
X_11 = 645
X_22 = 60
S_12 = 69

for element_index in range(len(ELEMS)):
ply_failure = []
strain_vector = strain_list[element_index]
for ply_index in range(4):

# Determine stress state in ply
theta = thetaList[ply_index][element_index]
ply_stiffness = DmatrixTransform(Dmatrix(

matE1, matE2, matG, matv), theta)
stress_vector = np.matmul(ply_stiffness, strain_vector)

# Applies stress multiplier, used to vary the load
sigma_xx = stress_vector[0] * stress_multiplier
sigma_yy = stress_vector[1] * stress_multiplier
tau_xy = stress_vector[2] * stress_multiplier

# Transform stress to principal material axes
sigma_11 = ((sigma_xx + sigma_yy) / 2 + np.cos(2 * theta)

* (sigma_xx - sigma_yy) / 2 + tau_xy * np.sin(2 * theta))
sigma_22 = ((sigma_xx + sigma_yy) / 2 - np.cos(2 * theta)

* (sigma_xx - sigma_yy) / 2 - tau_xy * np.sin(2 * theta))
tau_12 = (-np.sin(2 * theta) * (sigma_xx - sigma_yy)

/ 2 + tau_xy * np.cos(2 * theta))

# Calculate failure index
Tsai_Hill_index = ((sigma_11 / X_11) ** 2 + (sigma_22 / X_22) ** 2

+ (tau_12 / S_12) ** 2 - (sigma_11 * sigma_22)
/ X_11 ** 2)

ply_failure.append(Tsai_Hill_index)
failure_index_list.append(ply_failure)

return failure_index_list
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Optimization algorithm

Calculates ply orientations at each element based on B-spline control point values
(Eq. 4.26).

from geomdl import BSpline
control_point_values = []
control_point_coords = []

def B_spline_interpolation(control_point_values):
control_points = control_point_coords.copy()
for i in len(control_point_values):

control_points[i].append(control_point_values)
knot_vector = [0] * len(control_point_values) + [1]

* len(control_point_values)

# Define B-spline surface from control points
B_spline = Bspline.Curve()
B_spline.degree = 3
B_spline.ctrlpts = control_points
B_spline.knotvector = knot_vector

# Evaluate function values at each element centroid
theta_list = []
for ply_index in range(plyCount):

orientation_offset = ply_index * np.pi / 4
element_theta = [

B_spline(element_centers[element_index])[0]
+ orientation_offset

for element_index in range(element_count)
]
theta_list.append(element_theta)

return theta_list

Computes the sensitivity for ply orientation variables using finite-differencing (Eq.
4.35).

def theta_0_sensitivity(control_point_values, thickness_list):
theta_list = B_spline_interpolation(control_point_values)
_, initial_compliance = solve_FEM(theta_list, thickness_list)
delta = 0.001
sensitivity_vector = []

# Compute sensitivities through finite differencing
for control_point_index in range(len(control_point_values)):

modified_control_points = control_point_values.copu()
modified_control_points[control_point_index] += delta
modified_theta = B_spline_interpolation(modified_control_points)

_, modified_compliance = solveFEM(modified_theta, thickness_list)
compliance_sensitivity = (modified_compliance

- initial_compliance)/delta
sensitivity_vector.append(compliance_sensitivity)

return sensitivity_vector

Computes the sensitivity for ply thickness using the adjoint method (Eq. 4.40).
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def ply_thickness_sensitivity(control_point_values, thickness_list):
theta_list = B_spline_interpolation(control_point_values)
sensitivity_vector = []
DOFs = len(NODES) * 2
delta = 0.001

# Compute sensitivities using adjoint method
a, _ = solve_FEA(theta_list, thickness_list)
for element_index, element in enumerate(ELEMS):

element_K_matrices = []
element_sensitivities = []
for ply_index in range(5)

K = np.zeros((DOFs, DOFs))
ply_stiffness_list = [transform_stiffness_matrix(

local_Q_matrix(130, 10, 5, 0.3), theta) for
theta in theta_list[:, element_index]]

ply_thickness_list = thickness_list[:, element_index]
if not ply_thickness_list == 0:

ply_thickness_list[ply_index-1] += delta
laminate_stiffness = laminate_stiffness_matrix(ply_stiffness_list,

ply_thickness_list)
element_stiffness = element_stiffness_matrix(

elementNodeCoords(element), laminate_stiffness[0],
laminate_stiffness[1])

for i, j in zip(*np.meshgrid(element, element)):
K[np.ix_(range(i * 2, (i + 1) * 2), range(j * 2, (j + 1) * 2))] += \
element_stiffness

element_K_matrices.append(K)
for i in range(4)

K_sensitivity = (element_K_matrices[i+1] - element_K_matrices[0])/delta
element_sensitivities.append(a.T @ K_sensitivity @ a)

sensitivity_vector.append(element_sensitivities)
return sensitivity_vector

Solves the optimization problem using steepest descent (Eq. 4.30), while enforc-
ing constraints using the projection method (Eq. 4.33). At each iteration, γ is
determined numerically using the bisection method.

def steepest_descent(initial_thickness, initial_control_points):
objective_tolerance = 0.005
mass_constraint = 11.90
constraint_vector = mass_sensitivity(element_areas)
convergence = 1

# Define initial state
thickness_list = initial_thickness
control_point_values = initial_control_points
theta_list = B_spline_interpolation(control_point_values)
_, initial_compliance = solve_FEA(theta_list, thickness_list)
previous_iteration_compliance = initial_compliance

# Repeat until converged
while convergence > objective_tolerance:

# Perform sensitivity analysis
thickness_sensitivity = ply_thickness_sensitivity(control_point_values,

thickness_list)
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theta_sensitivity = theta_0_sensitivity(control_point_values, thickness_list)

# Apply constraints & determine vector length
x = 2
for bisection_iteration in range(20):

compliance_list = []
for i in range(2):

iterated_thickness = (np.array(thickness_list)
+ (x + i*10**(-6)) * 2000 * thickness_sensitivity)

for j in range(5):
mass_difference = total_mass(iterated_thickness) \

- mass_constraint
iterated_thickness -= mass_difference * constraint_vector
iterated_thickness = np.clip(iterated_thickness,

0.001, 1000)
iterated_control_points = (control_point_valuesalues

- 2 * (x + i*10**(-6)) * theta_sensitivity)
iterated_theta = B_spline_interpolation(iterated_control_points)
a, iterated_compliance = solve_FEA(iterated_theta,

iterated_thickness)
compliance_list.append(iterated_compliance)

vector_length_sensitivity = compliance_list[1] - compliance_list[0]
x_change = 1/(2 ** bisection_iteration)
x -= x_change if vector_length_sensitivity > 0 else -x_change

# Reevaluate objective function
control_point_values = iterated_control_points
thickness_list = iterated_thickness
theta_list = B_spline_interpolation(control_point_values)
a, new_compliance = solveFEA(theta_list, thickness_list)

# Compute convergence
convergence = (abs(new_compliance-previous_iteration_compliance)

/ new_compliance)
previous_iteration_compliance = new_compliance

return control_point_values, thickness_list
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APPENDIX

B

STIFFNESS MATRIX OF THE LINEAR TRIANGULAR
ELEMENT

Shape Functions

For the triangle element above, the displacements of an arbitrary point within the
element are expressed in terms of the nodal displacements ui and vi as:

u = N1u1 +N2u2 +N3u3 (B.1)

v = N1v1 +N2v2 +N3v3 (B.2)

Where Ni is the shape function of node i. This is written in matrix form as:

u =

[
u
v

]
=

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]

u1
v1
u2
v2
u3
v3

 (B.3)

The linear displacement field defined by the three nodes is written as:

u = α1 + α2x+ α3y (B.4)

v = α4 + α5x+ α6y (B.5)

Since the interpolation is the same for u and v, it suffices to derive the shape
functions for one of the displacements. The horizontal nodal displacements are
obtained from Eq. B.4 as:
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u1 = α1 + α2x1 + α3y1 (B.6)

u2 = α1 + α2x2 + α3y2 (B.7)

u3 = α1 + α2x3 + α3y3 (B.8)

Solving for α1, α2 and α3 and substituting into Eq. B.4 yields:

u =
1

2A(e)
[(a1 + b1x+ c1y)u1 + (a2 + b2x+ c2y)u2 + (a3 + b3x+ c3y)u3] (B.9)

Where A(e) is the element area, and

ai = xjyk − xkyj , bi = yj − yk , ci = xk − xj ; i, j, k = 1, 2, 3 (B.10)

The parameters ai, bi and ci are obtained by cyclic permutation of the indexes i,
j, k. From the previous equations, the expression for the shape functions is found
as:

Ni =
1

2A(e)
(ai + bix+ ciy) , i = 1, 2, 3 (B.11)

Stress and Strain Field Discretization

The three characteristic strains can be written in matrix form as:

ε = Ba(e) (B.12)

Where B is the element strain matrix:

B =
[
B1 B2 B3

]
(B.13)

And Bi is the strain matrix of node i :

Bi =

∂Ni

∂x
0

0 ∂Ni

∂y
∂Ni

∂y
∂Ni

∂x

 (B.14)

Particularizing for the 3-noded element (using previously derived shape functions)
this is written as:

Bi =
1

2A(e)

bi 0
0 ci
ci bi

 (B.15)

The discretized expression for the stress field within the element is obtained using
Hooke’s law, substituting in Eq. B.12:

σ = Dε = DBa(e) (B.16)
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Discretized Equilibrium Equations

As usual in FEM, the equilibrium of the forces acting on the element is enforced
point-wise at the nodes only. The nodal point loads Fx and Fy are introduced,
which balance the external forces and the internal forces due to the element de-
formation along the horizontal and vertical directions, respectively. These “equili-
brating nodal forces” are obtained by applying the principle of virtual work to an
individual element as:∫∫

A(e)

δεTσtdA =
3∑

i=1

δuiFxi
+

3∑
i=1

δviFyi (B.17)

Where δui and δvi are the nodal virtual displacements. These are grouped into
the vectors:

[
δa(e)

]T
=

[
δaT

1 δaT
2 δaT

3

](e)
=

[
δu1 δv1 δu2 δv2 δu3 δv3

]
(B.18)[

q(e)
]T

=
[
qT
1 qT

2 qT
3

](e)
=

[
Fx1 Fy1 Fx2 Fy2 Fx3 Fy3

]
(B.19)

The virtual work performed by these forces is thereby obtained as:∫∫
A(e)

δεTσtdA =
[
δa(e)

]T
q(e) (B.20)

Next, the virtual displacements are interpolated in terms of the nodal values. By
substituting the relations

δu = Nδa(e) δε = Bδa(e) (B.21)

The following expression is obtained:∫∫
A(e)

BTσtdA = q(e) (B.22)

This represents the equilibrating nodal forces q(e) in terms of the nodal forces due
to element deformation. Substituting the formula for the stresses in terms of nodal
displacements (Eq. B.16) gives:∫∫

A(e)

BTDBa(e)tdA = q(e) (B.23)

Which is finally written as:
K(e)a(e) = q(e) (B.24)

Where the element stiffness matrix K(e) equals:

K(e) =

∫∫
A(e)

BTD BtdA (B.25)
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APPENDIX

C

TEST SPECIMEN MANUFACTURING

Figure C.1: Glass tooling surfaces marked with flash tape, providing a reference
for fiber placement.

Figure C.2: Completed fiber lay-up of the test specimens.
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Figure C.3: Application of vacuum and placement in oven for curing.

Figure C.4: Components after de-moulding, abraded to ensure good bond qual-
ity.
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Figure C.5: Application of adhesive and joining of specimen tabs.

Figure C.6: Trimming the bonded structure.
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APPENDIX

D

DISPLACEMENT DATA

Figure D.1: QI test specimen.
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Figure D.2: VS test specimen.

Figure D.3: VAT test specimen.
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