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Abstract
Theoretical and applied cancer studies that use individual-based models (IBMs) have
been limited by the lack of a mathematical formulation that enables rigorous analy-
sis of these models. However, spatial cumulant models (SCMs), which have arisen
from theoretical ecology, describe population dynamics generated by a specific fam-
ily of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially
resolved population models formulated by a system of differential equations that
approximate the dynamics of two STPP-generated summary statistics: first-order spa-
tial cumulants (densities), and second-order spatial cumulants (spatial covariances).
We exemplify how SCMs can be used in mathematical oncology by modelling the-
oretical cancer cell populations comprising interacting growth factor-producing and
non-producing cells. To formulate model equations, we use computational tools that
enable the generation of STPPs, SCMs and mean-field population models (MFPMs)
from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019).
To calculate and compare STPP, SCM and MFPM-generated summary statistics, we
develop an application-agnostic computational pipeline. Our results demonstrate that
SCMs can capture STPP-generated population density dynamics, even when MFPMs
fail to do so. From both MFPM and SCM equations, we derive treatment-induced
death rates required to achieve non-growing cell populations. When testing these
treatment strategies in STPP-generated cell populations, our results demonstrate that
SCM-informed strategies outperform MFPM-informed strategies in terms of inhibit-
ing population growths. We thus demonstrate that SCMs provide a new framework in
which to study cell-cell interactions, and can be used to describe and perturb STPP-
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generated cell population dynamics. We, therefore, argue that SCMs can be used to
increase IBMs’ applicability in cancer research.

Keywords Individual-based models · Spatio-temporal point processes · Spatial
moments · Cancer eco-evolution · Mathematical oncology

Mathematics Subject Classification 92Cxx: Biology and other natural sciences—
Physiological, cellular and medical topics · 92Dxx: Biology and other natural
sciences—Genetics and population dynamics

1 Introduction

All biological systems are composed of interacting parts. In cancer systems, cells
can interact with each other by, for example, exchanging signalling molecules and
competing for resources such as space and nutrients. Such cell-cell interactions have
been identified as factors that drive eco-evolutionary dynamics of cancer cell popula-
tions (Merlo et al. 2006; Reynolds et al. 2020). Consequently, these interactions have
been proposed as cancer treatment targets, where the general premise is that treat-
ments can perturb cell-cell interactions and, by extension, disease trajectories. Such
perturbations can lead to reduced tumour growths and disease burdens (Dominiak
et al. 2020; Brücher and Jamall 2014; West and Newton 2019). Cell-cell interactions,
and the impact that they have on cancer system dynamics, have been mathematically
studied by researchers using a variety of mathematical models including evolutionary
game theory (EGT) models (Kaznatcheev et al. 2019; Archetti et al. 2015; Farrokhian
et al. 2022), other ordinary differential equation (ODE) models (Hillen et al. 2013;
Poleszczuk and Enderling 2018; Jenner et al. 2018), partial differential equation (PDE)
models (Haridas et al. 2017; Lorenzi et al. 2017; Hinow et al. 2009), and individual-
based models (IMBs) (Stichel et al. 2017; Campenni et al. 2020; Hamis et al. 2021).

In IBMs, cells can be modelled as individuals that evolve on a spatial domain and
partake in interactions with other cells in their neighbourhood (Metzcar et al. 2019;
Chamseddine and Rejniak 2020). IBMs are naturally able to incorporate local cell-cell
interactions, spatial population structures and stochastic variations between cells and
biological events. However, theoretical and experimental studies that use IBMs have
been limited by the lack of a mathematical formulation that enables rigorous analyses
of these models. On the other hand, in mean-field population models (MFPMs), such
as ODE and EGT models, the density dynamics of cancer cell subpopulations can be
described by a set ofmathematically tractableODEs after imposing a set of simplifying
modelling assumptions. In such models, cells are not considered as individuals but,
instead, they are collectively viewed as part of a population or subpopulation. With
their analytical and mathematically tractable formulation, MFPMs have been used to
quantify cell-cell interactions in in vitro experiments (Kaznatcheev et al. 2019), and are
currently being used to inform personalised treatment strategies in a clinical prostate
cancer trial (Zhang et al. 2017) (see also matters arising in response to the reporting of
this study (Mistry 2021)). However, MFPMs notably assume that the modelled system
is “well-mixed” so that each cell interacts with all other cells in the system with equal
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probability. Therefore, MFPMs can not faithfully capture the dynamics of spatially
structured systems with localised cell-cell interactions, such as solid tumours (Waclaw
et al. 2015). In fact, previous mathematical modelling work has shown that imposing
spatial constraints on interactions between individuals, via IBMs, often results in
system dynamics that vastly contradict that simulated by MFPMs (Durrett and Levin
1994).

Due to the pre-clinical and clinical applications of mathematical oncology models
(Rockne et al. 2019), there exists a need to formulatemodels that capture localised cell-
cell interactions, maintain cell discreteness, and are both spatio-temporally resolved
andmathematically tractable. In this article, we describe an approach to achieve this by
using spatial cumulant models (SCMs) which, to our knowledge, have not previously
been applied to study cancer cell systems. SCMsare spatially resolvedpopulationmod-
els that are translated from a specific family of IBMs, namely spatio-temporal point
processes (STPPs). Following a mathematical manipulation that involves a perturba-
tion expansion around mean-field equations in the limit of long-ranged interactions
(as explained in Sect. 2), SCMs approximate two STPP-generated summary statistics:
first-order spatial cumulants (densities) and second-order spatial cumulants (spatial
covariances). If we let u(1)

i (t) denote the density of subpopulation i , and u(2)
i j (t, r)

denote the spatial covariance of individuals (here cells) from subpopulations i and j ,
then SCMs dictate that

u(1)
i (t)

︸ ︷︷ ︸

densi ty

= qi (t)
︸︷︷︸

mean−field
density

+ εd pi (t)
︸︷︷︸

correction
density

+ o(εd), (1a)

u(2)
i j (t, r)

︸ ︷︷ ︸

spatial covariance

= εd gi j (t, εr)
︸ ︷︷ ︸

leading term of the
spatial covariance

+ o(εd), (1b)

where t is the independent time variable and r denotes pair-wise distances between
individuals. In Eq.1a, qi (t) is the density as computed by MFPMs and pi (t) is a
correction term that depends on (1) the MFPM densities qi (t), (2) the leading spatial
covariance terms gi j (t, εr), and (3) all corrections pi (t), where i, j = 1, .., S, and
S denotes the number of subpopulations in the modelled system. Thus the correction
terms account for the spatial structure of the population via their dependence on
gi j (t, εr). The modelled individuals inhabit a d-dimensional spatial domain, and the
scaling factor ε = 1/�, � > 0, results from the perturbation expansion, in which �

is an interaction length scale. Thus, SCM densities reduce to MFPM densities when
� → ∞. The terms o(εd) can be omitted in practical applications as they go to zero
faster than does εd .

Since Eqs. 1a, b are formulated in the limit of long-ranged interactions it follows
that, in the context of cancer research, SCMs are appropriate to use when studying
cell-cell interactions that extend beyond only immediately neighbouring cells. Such
interactions include communication via diffusible substrates and resource competition.
Formulating the right-hand sides of Eqs. 1a, b for a specific biological problem can
be a mathematically cumbersome task. However, Cornell et al. (2019) developed a
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mathematical framework and a computational software that enables the generation
of rate equations for the quantities qi (t), pi (t) and gi j (t, εr) for a large family of
biological processes. More specifically, the software enables the generation of (1)
STPPs and (2) MFPM and SCM rate equations for any user-defined biological system
that can be described by one or more reactant-catalyst-product (RCP) processes. An
RCP-processes is formulated by a set of reactants (points that are consumed in the
process), catalysts (points that catalyse the process without being consumed in it), and
products (points that are produced in the process). In this study, these points represent
the center of mass of cells. Cornell et al.’s framework thus unifies a class of IBMs,
i.e., STPPs, with a class of analytical and spatially structured population models, i.e.,
SCMs. Accordingly, we refer to their software as the Unified Framework (UF)
Software throughout this article.

SCMs were first presented as a rigorous mathematical framework by Ovaskainen
et al. (2014). The models build upon earlier studies of spatial moment equations in
theoretical ecology (Ovaskainen and Cornell 2006; Bolker and Pacala 1997; Law et al.
2003) and probability theory (Finkelshtein et al. 2009; Kondratiev et al. 2008), and
on probability theorists’ work on STPPs, also known as “Markov evolutions in the
space of locally finite configurations”, (Kondratiev and Skorokhod 2011; Finkelshtein
et al. 2011). Spatial cumulants are closely related to spatial moments (Sect. 2.4), and
we remark that spatial moment techniques have been used to derive analytical, deter-
ministic approximations for cell population dynamics generated by different types of
IBMs. These include on-lattice models in which cells are restricted to inhabit pre-
defined lattice points, that can be occupied by one or zero cells (Baker and Simpson
2010; Markham et al. 2015) and STPPs (Binny et al. 2016; Surendran et al. 2018). On-
lattice IBMs explicitly account for volume exclusion, as opposed to STPPs which do
not. STPPs instead generate points that can represent the center of mass of deformable
cells that can move in continuous space and interact with their environment via prob-
abilistic kernels. This brief discussion exemplifies that all IBMs are associated with
different caveats and benefits. Therefore, a bio-mathematicalmodeller’s choice of IBM
and, by extension, options for describing IBMdynamics analytically, should be consid-
ered on an application-specific basis. The aforementioned cell population studies that
used spatial moment techniques all challenged the view that there exists a dichotomy
between individual-based and analytical models.We conjecture that one of the reasons
that such techniques are not more widely used in cell biology research is that the rel-
evant model equations have only been derived for specific cell processes, as opposed
to general processes. Accordingly, a modeller wanting to use spatial moment tech-
niques for describing the dynamics of cell populations, in which specific cell actions
and interactions occur, might face a mathematically technical and time-consuming
task of deriving spatial moment (or cumulant) equations with appropriate closure and
approximation methods. The UF-Software tackles this issue of lack-of-generality
by allowing a modeller to formulate spatial cumulant equations for any RCP-process.
Moreover, the pipeline codes developed in this study enable a modeller to easily
implement and numerically solve SCM equations. These pipeline codes also enable
straightforward comparisons between STPP, SCM and MFPM-generated population
dynamics.
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The remainder of this article is structured as follows: In Sect. 2, we provide
an introductory description of the mathematical theory that underlies SCMs and
the UF-Software. In Sect. 3.1, we propose a practical step-by-step pipeline for
using the UF-Software to implement STPPs, MFMPs and SCMs. Thereafter, as
proof-of-concept, we exemplify how SCMs and the UF-Software can be used in
mathematical cancer research by modelling dynamic, spatially structured cancer cell
populations in which cells interact via diffusible substrates and are subjected to drugs
(Sects. 3.2–4.2). We demonstrate that SCMs can be used to both describe and perturb
density dynamics of simulated cell populations generated by STPPs.

2 Mathematical theory of spatial cumulant models

Sections 2.1–2.10 are intended to comprise an introductory and conceptually self-
contained background to SCMs. Formore rigorous details of this mathematical theory,
we refer readers to previous works (Ovaskainen and Cornell 2006; Ovaskainen et al.
2014; Cornell et al. 2019). For ease of presentationwe, throughout this article, consider
spatial domains that are two-dimensional and have periodic boundary conditions.
Moreover, we consider systems that are translationally invariant, meaning that pair-
wise distances between cells influence system dynamics, whereas absolute positions
of cells do not. This is equivalent to modelling a space-homogeneous system that
lacks background variations, such as a typical in vitro system. Note, however, that the
UF-Software can be modified to handle one, two, and three-dimensional spatial
domains, as well as space-heterogeneous systems (Cornell et al. 2019).

2.1 Spatio-temporal point patterns and spatio-temporal point processes

Consider a cell population that evolves in time and space. A snapshot of the population
can be represented by a point pattern in which the center of mass of the nth cell is
represented by a point xn ∈ D, where D ⊂ R

d denotes the spatial domain that
the population inhabits. In this article, we set D to be a plane spanning two spatial
dimensions, so that d = 2 and xn = (x1n , x

2
n ). A point pattern comprising Nt points at

time t can thus be described by a set of points ηt in continuous space such that

ηt = {

x1, x2, . . . , xNt

}

. (2)

In order to categorise the individuals in the population, each point in ηt can further be
coupled with a descriptive mark. Here, we let the markmn denote the subpopulation to
which the individual in position xn belongs so that mn can take the value 1, 2, . . . , S,
where S denotes the number of subpopulations in the modelled system. When marks
are included, a point pattern describing a population snapshot can thus be described
by a set of marked points

η̂t = {

(x1,m1), (x2,m2), . . . , (xNt ,mNt )
}

. (3)
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Two summary statistics that can be used to describe point patterns are densities
and spatial covariances. Instructions on how to calculate these quantities from static
point patterns are provided in Sect. 2.9. A point pattern that evolves in time and space
is called a spatio-temporal point pattern, and an STPP is a mathematical model that
can generate spatio-temporal point patterns in continuous time and continuous space.
In this article, we will denote spatio-temporal point patterns by η, whether they are
marked or not. Intuitively, an STPP can be thought of as a collection of stochastic
processes that makes points appear or disappear from η. In the context of cell biology,
such processes can, for example, describe cell division, cell movement, and cell death.

2.2 A verbal description of the relationship between spatio-temporal point
processes and spatial cumulant models

The STPP rules that govern the evolution of spatio-temporal point patterns are of a
stochastic nature. Therefore, a general STPP can generate an ensemble of different
realisations, i.e., spatio-temporal point patterns, from a given initial cell configuration.
It is, in general, impossible to predict how one specific realisation will evolve in time
and space. However, if we generatemultiple STPP realisations, then SCMs can be used
to deterministically approximate how densities and spatial covariances are expected
to evolve on average for the realisations.

2.3 Reactant-catalyst-product processes and interaction kernels

The UF-Software can be used to generate STPPs, MFPMs and SCMs for any
biological system that can be described by one or more of RCP-processes. One-
point RCP-processes include density-independent cell death, as the death of a cell
in location xv with mark m can be described by a single reactant, i.e., point, (xv,m).
Such one-point RCP-processes are associated with a scalar model parameter that
describes the rate (probability per time unit) at which the process occurs. Multiple-
point RCP-processes include density-independent cell division and cell movement.
More precisely, density-independent cell division can be described as an RCP-process
in which a cell of markm in location xv produces a daughter cell with the samemark in
location xw, so that point (xv ,m) is a catalyst and point (xw,m) is a product. Similarly,
if a cell in location xv withmarkm moves to location xu , then point (xv ,m) is a reactant
and point (xu ,m) is a product. The rate at which such multiple-point RCP-processes
occur are described by interaction kernels that depend on pair-wise distances between
points.

The UF-Software includes two pre-defined, radially symmetric, interaction
kernels, being the Gaussian kernel aG and the Top-Hat kernel aTH such that, on a
two-dimensional spatial domain,

aG[I , σ ](r) = I

2πσ 2 e
−r2

2σ2 (4)
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and

aTH[I , r0](r) = I

πr20
if r ≤ r0, (5a)

aTH[I , r0](r) = 0 if r > r0. (5b)

Here I denotes the total integral of the interaction kernel, σ is one kernel standard
deviation, r0 is a kernel interaction radius, and r is the distance between two interacting
points, i.e., reactants, catalysts or products. Note that the UF-Software can be
modified to include any user-defined, non-negative and integrable interaction kernels.
These kernels need not be maximised for zero cell-pair separations.

2.4 The relationship between spatial moments and spatial cumulants

The spatial cumulants are closely related to the spatial moments, which are also called
correlation functions. The first spatial moment, k(1)(x), measures the expected density
of individuals at location x . It follows that the expected number of individuals in an
area � at a time point t can be calculated by

E(|γt ∩ �|) =
∫

�

k(1)
t (x)dx, (6)

where γt is a point configuration. The second spatial moment, k(2)(x1, x2), can sim-
ilarly be used to calculate the product of ‘the number of individuals in area �1’ and
‘the number of individuals in area �2’, such that

E(|γt ∩ �1||γt ∩ �2|) =
∫

�1

∫

�2

k(2)
t (x1, x2)dx1dx2 +

∫

�1∩�2

k(1)
t (x)dx, (7)

where the last term has been included in order to handle self-pairs (Ovaskainen et al.
2020). The first and second-order spatial cumulants are respectively denoted by u(1)

i (x)

and u(2)
i j (x1, x2), where

u(1)
i (x) = k(1)

i (x), (8a)

u(2)
i j (x1, x2) = k(2)

i j (x1, x2) − k(1)
i (x1)k

(1)
j (x2). (8b)

Here, the subscripts i and j have been included to denote different subpopulations
in the modelled system, so that i, j = 1, .., S, where S is the number of modelled
subpopulations.

From Eqs. 8a, b we can see that the first and second-order spatial moments and
cumulants carry the same information. To then understand why the spatial cumulants
have been introduced, note first that spatial moments can be defined up to any order,
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and that dynamical systems of spatial moments generally are unclosed. For example,
in systems in which pair-wise interactions occur, the dynamics of the νth-order spa-
tial moment depends on the ν + 1st-order spatial moment. Therefore, equations that
describe spatial moment dynamics are generally impossible to solve without enforcing
some sort of truncation or approximation closure scheme. The same closure problem
arises for equations that describe the dynamics of spatial cumulants. However, in
the limit of long-ranged interactions (Sects. 2.6, 2.7), the spatial cumulant formula-
tion enables the derivation of exact equations in closed form that describe first and
second-order spatial cumulant dynamics of STPP-generated populations governed by
RCP-processes (Sect. 2.8).

2.5 The relationship betweenMarkov operators and operators for spatial
cumulant rate equations

If we let F denote a real-valued function that describes some quantity of an STPP-
generated realisation γ , and μ denotes a probability measure on 
, then

〈F, μ〉 :=
∫




F(γ )dμ(γ ) (9)

describes the value of F averaged over all realisations γ ∈ 
. The rate of change of
the pairing 〈F, μ〉 can be obtained by

d

dt
〈F, μ(t)〉 := 〈LF, μ(t)〉, (10)

where L is Markov operator, that acts on F and describes a process that causes points
to appear on, or disappear from, a set of points η (Eq. 2). In order to describe a cell
population that is governed by B biological processes (here, RCP-processes), the
system’s total Markov operator can be written as a linear combination of Markov
operators Lb such that

L =
B

∑

b=1

Lb. (11)

For any such Markov operator L , there exists a corresponding operator L� that
describes the time evolution of spatial moments of any order such that

∂

∂t
k(t, η) = (L�k)(t, η), (12)

where L� is a linear operator that depends on interaction kernels of the form a(x)
(Sect. 2.3). Similarly, aMarkov operator L bemapped to an operator Q� that describes
the time evolution of spatial cumulants of any order such that
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∂

∂t
u(t, η) = (Q�u)(t, η), (13)

where Q� is a sum of the linear term L� and a non-linear term M�,

Q� = L� + M�. (14)

Deriving the operators L� and Q� from a Markov operator L can be a mathemati-
cally challenging and laborious task. However, for any system of RCP-processes, the
UF-Software can handle the formulation of L , L� and Q� “under-the-hood”.

2.6 The perturbation expansion

As a first step towards circumventing the problem of moment closure in population-
dynamics problems,Ovaskainen andCornell (2006) initially proposedusing aheuristic
perturbation expansion in which interactions between points (individuals) were con-
sidered to be long-ranged, but not global. Note that Markov operators L (Eq.11)
generally can be described using interaction kernels a(x) (Sect. 2.3). However, in the
limit of long-ranged interactions, Ovaskainen et al. (2006) introduced scaled Markov
operators Lε that are described by scaled interaction kernels aε(x), such that

aε(x) := εda(εx). (15)

The integrals of a(x) and aε(x) over Rd have the same value, but when ε → 0,
the scaled interaction kernels become increasingly long-ranged and flat so that each
individual interacts with an increasing number of other individuals. In the perturbation
expansion proposed by Ovaskainen and Cornell (2006), population densities k(1)(t)
were expressed as

k(1)(t) = q(t) + εd p(t) + ε2ds(t) + ... , (16)

where ε = 1/� and � is a characteristic interaction length-scale. In Eq.16, the term q(t)
denotes the density as calculated by MFPMs, and the higher-order terms p(t), s(t), ...
are correction terms that account for the spatial structure of the modelled population.
The perturbation expansion in Eq.16 has two notable practical advantages: (1) the
calculated density k(1)(t) tends to the MFPM density when ε → 0, and (2) if we cal-
culate k(1)(t) with correction terms up to the nth order, then we know beforehand that
the error will behave as o(εnd). The correction terms p, s, ... in Eq.16 can in principle
be derived up to arbitrarily high orders, but truncating the perturbation expansion after
one correction terms yields

k(1)(t) = q(t) + εd p(t) + o(εd). (17)

Ovaskainen and Cornell 2006 derived the expressions for q(t) and p(t) for a specific
biological system and, based on their mathematical results, they argued that including
only one correction term in the density calculation (Eq. 17) is expected to suffice to
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capture STPPdynamics formany practical applications. Building on the heuristicwork
presented in 2006, Ovaskainen et al. later (2014) developed a rigorous mathematical
framework for deriving spatial moment and cumulant rate equations from Markov
operators, where the authors expected that spatial cumulants (of any orders) could be
expressed as

u(t, η) = v(t, η) + εdw(t, η) + o(εd), (18)

where v(t, η) is a mean-field term and w(t, η) is a first-order correction term. The
authors showed that, for a specific model system (the spatial and stochastic logistic
model) higher-order correction terms in Eq.18 can be omitted in the limit of long-
ranged interactions. Making this result more generalisable, in 2019, Cornell et al.
presented the UF-Software which enables the automatic generation of v(t, η) and
w(t, η) for the first and second-order spatial cumulants in the limit of long-ranged
interactions for any system that is formulated in terms of RCP-processes. Note that,
in this study, only the number of points (or densities) and pair-wise distances between
points in η are used in calculations, whereas other information regarding η is omitted.
Therefore, dropping the explicit η-dependency in Eq.18, we may write the first and
second-order spatial cumulants as u(1)(t) and u(2)(t, r) respectively (Eq.1a,b).

2.7 Themodel rescaling

Recall that the spatial moment dynamics generated by a Markov operator L can be
described by an operator L� (Eq. 12). Such a Markov operator L generally depends
on interaction kernels of the form a(x) (Sect. 2.3). If we, instead, consider a Markov
operator Lε that is described by the same (RCP) processes as L , but uses scaled
interaction kernels of the form aε(x) (Eq.15), wemust introduce a new, scaled operator
L�

ε to describe the spatial moment dynamics generated by Lε . Thus, if we let k̂ε,t

denote spatial moments that are generated by an STPP with scaled interaction kernels
aε(x), then

∂

∂t
k̂ε(t, η) = (L�

ε k̂ε)(t, η). (19)

Note that Eq.19 is unclosed for general Markov operators Lε . In order to describe
STPP-generated population dynamics by a system of closed equations, Ovaskainen et
al. (2014) used a model-rescaling approach. To choose an appropriate rescaling, the
authors remarked that the model should satisfy two important properties in order to
be practical and relevant for biological applications: (1) when the interaction length
� goes to infinity, the model dynamics should tend to MFPM dynamics, as each indi-
vidual would interact with an increasing number of other individuals. (2) The spatial
clustering of the individuals should scale with �, i.e., the model should scale with
respect to space. The authors therefore introduced a scaling operator Sc that rescales
a point configuration η such that

(Sck)(t, η) := k(t, cη), (20)
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where

cη := {cx |x ∈ η}. (21)

A renormalised version of the operator L�
ε can then be defined as

L�
ε,ren := Sε−1L�

ε Sε . (22)

If we let kε(t, η) denote the solution to the spatial moment equation that corresponds
to this renormalised operator L�

ε,ren , then

∂

∂t
kε(t, η) = (L�

ε,renkε)(t, η) = (Sε−1L�
ε Sεkε)(t, η) = (Sε−1L�

ε kε)(t, εη) 
⇒


⇒ Sε

∂

∂t
kε(t, η) = (L�

ε kε)(t, εη)

and thus,

∂

∂t
kε(t, εη) = (L�

ε kε)(t, εη). (23)

Note that the spatial moments are scaled in different ways in Eqs. 19 and 23. Together,
these two equations enable the comparison of simulation-based results and analytical
solutions. In other words, k̂ε(t, η) (which is a simulation-generated estimate of the
spatialmoment) and kε(t, εη) (which is an analytical expression of the spatialmoment)
should agree. Therefore,

k̂ε(t, η) = kε(t, εη). (24)

Analogously to Eq.23, rate equations for scaled spatial cumulants take the form

∂

∂t
uε(t, εη) = (Q�

ε uε)(t, εη). (25)

The assumed form of the spatial cumulants in the limit of long-ranged interactions
(Eq.18) can be substituted into Eq.25. After such a substitution, the dynamical sys-
tem is still unclosed so that the dynamics of the n-th order spatial cumulant u(n)

ε (t, εη)

depends on higher-order spatial cumulants. However, when solving for v(t, η) and
w(t, η) (Eq. 18), algebraic manipulation will show that u(n)

ε (t, εη) = o(εd) for n > 2,
and thus can be omitted. This means that the model-rescaling approach (Sect. 2.7)
together with the perturbation expansion (Sect. 2.6) enables the generation of closed,
exact equations for the dynamics of the first and second-order spatial cumulants gen-
erated by STPPs.

The UF-Software can generate analytical expressions for v(t, η) andw(t, η) for
the first and second-order spatial cumulants from any model description formulated
by one or more RCP-processes. Thus, when using the UF-Software, a user does
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not need to derive any operators, or perform any algebraic calculations to obtain
mathematical expressions for v(t, η) and w(t, η).

2.8 Spatial cumulant model equations

The UF-Software formulates v(t, η) andw(t, η) in terms of rate equations for three
auxiliary functions: qi (t), pi (t) and gi j (t, εr)which are used to formulate the first and
second-order spatial cumulants. By comparing Eqs. 1 and 18 we can see that, for the
first-order spatial cumulant, v(t, η) = qi (t) andw(t, η) = pi (t). And, for the second-
order spatial cumulant, v(t, η) = 0 and w(t, η) = gi j (t, εr). For all subpopulations
i, j = 1, 2, .., S, the UF-Software generates the right-hand sides of the differential
equations

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

∂

∂t
qi (t) = Hqi , (26a)

∂

∂t
pi (t) = Hpi , (26b)

∂

∂t
gi j (t, r) = Hgi j , (26c)

where Hqi , Hpi , Hgi j are exact expressions (Cornell et al. 2019). The expressions
Hqi generally depend on all subpopulation densities q1(t), . . . , qS(t). Similarly, the
expressions Hgi j generally depend on all densities and leading spatial covariance terms
gi j (t, εr). Lastly, the correction expressions Hpi generally depend on all densities,
leading spatial covariance terms and correction terms pi (t).

In order to calculate SCMs in practice, we first use the UF-Software to generate
the the expressions for Hqi , Hpi , Hgi j . Thereafter, we use the pipeline codes devel-
oped for this study (Sect. 3.1) to numerically calculate qi (t), gi j (t, εr) and pi (t), in
that order. By inserting these numerical results into Eqs. 1a, b, densities and spatial
covariances can be obtained. Note that, for many RCP-processes, the expressions for
Hgi j include convolution integrals, which are easier to work with in Fourier space
than in real space. Therefore, UF-Software-generated expressions for Hgi j gener-
ally include Fourier transforms of interaction Kernels and variables gi j (t, εr).

2.9 Calculating spatial moments and cumulants from point patterns

In the space-homogenous case, the static first-order spatial moment, k(1)
i,T , and cumu-

lant, u(1)
i,T , of subpopulation i at time T can be directly estimated from a point pattern

as

k(1)
i,T = u(1)

i,T = Ni,T

A
, (27)

where Ni,T denotes the number of type i individuals on domain D with area A. Static
second-order spatial moments at time T can be approximated from a point pattern by
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k(2)
i j,T (z) = 1

A

∫

D
ρi (x)ρ j (x + z)dx, (28)

where ρi denotes the density of subpopulation i , and z is a spatial displacement so
that z = (z1, z2) when D is two-dimensional (Dieckmann et al. 2000). The pair
densities k(2)

i j,T (z) are also called auto-correlations (for i = j) and cross-correlations
(for i �= j). When approximating static second-order spatial moments for space-
homogenous systems, the magnitude r = |z| of the displacement in Eq.28 is of
importance, whereas the direction of z is not. In practical applications, we can thus
construct a vector

k(2)
ij,T =

(

k(2)
i j,T (r0), k(2)

i j,T (r�h), k(2)
i j,T (r2�h), ...

)

, (29)

for some displacement step size �h, where each vector element k(2)
i j,T (rζ ) describes

the density of (type i)-(type j) cell pairs that are separated by a distance r ∈ [rζ , rζ +
�h). Following Eq.8b, static second-order spatial cumulants can be approximated
by subtracting densities (Eq.27) from pair-densities (Eq.28). Then, analogously to
Eq.29, following Eq.1, static second-order spatial cumulants can, in translationally
invariant cases, be compactly approximated by a vector

u(2)
ij,T =

(

u(2)
i j,T (r0), u(2)

i j,T (r�h), u(2)
i j,T (r2�h), ...

)

=
εdgij,T = εd

(

gi j,T (εr0), gi j,T (εr�h), gi j,T (εr2�h), ...
)

,
(30)

where the error terms o(εd) have been omitted as they are set to zero in practical
applications. In the computational pipeline codes developed for this study, we use the
Fast Fourier Transform to calculate the integral in Eq.28, and thus approximate the
spatial covariance (Eq.30). Note that the correction terms in Eq.1 generally depends
on all vector elements in gij,T.

2.10 Computer software and code

The UF-Software software is freely available to download (Cornell et al. 2019).
The software comprises two main components: the ModelSimulator and the
ModelConstructor which, respectively, can be used to generate STPPs and
SCMs from user-defined RCP-process model descriptions. Note that, as MFPMs are
a reduced form of SCMs, the ModelConstructor can also generate MFPMs. The
ModelSimulator uses the Gillespie algorithm (Gillespie 1977) and is written in
the programming language C. The ModelConstructor is written in the Wolfram
Mathematica software. Instructions on how to download the UF-Software are pro-
vided in the Supplementary Information (SI.1).
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3 Methods andmodel

3.1 Themodel implementation pipeline

For this study,we developed amodel implementation pipeline (and pipeline codes) that
systematises the use of the UF-Software in a number of steps (A1, B1-B4, C1-C7,
D1 in Fig. 1). The pipeline includes a model formulation using RCP-processes (A1),
the implementation of STPPs (B1-B4) and SCMs (C1-C7), a visual comparison of
STPP, SCM and MFPM-generated population dynamics (C7), and analysis of SCM
and MFPM equations (D1). Note that, as MFPM equations are a reduced form of
SCM equations, they are also formulated and calculated in the pipeline. Note also
that the initial cell configurations (B2, C4) can be generated in silico or be obtained
from biological data, and that spatial cumulants from point patterns from simulation
data and biological data can be calculated (B4) and visualised (C3). If suitable for
the application, analytical results from (D1) can be used in the model description.
Instructions on how to access, run and modify the code files for each step in the
pipeline are provided in the Supplementary Information (SI.1, SI.2).

3.2 Describing a biological system using RCP-processes

The first step towards creating STPPs, SCMs and MFPMs using the computational
pipeline entails translating averbalmodel formulation into anRCP-formulation (Fig. 1,
A1). In this study, as proof-of-concept, we consider a theoretical biological system
that can be verbally described as follows:

“Two types of cancer cells, s1 and s2, co-exist. Cells of type s1 produce growth
factors that are both internalised by the producer cell and secreted to the environment.
Cells of type s2 do not produce growth factors and must receive growth factors from
s1 cells in order to proliferate. Both s1 and s2 cells can internalise growth factors from
(other) s1 cells but, because s2 cells waste no energy on growth factor production,
they benefit more from growth factor uptake than do s1 cells. Consequently, s2 cells
have a higher growth factor-mediated proliferation rate than do s1 cells. Similarly, s1
cells express a higher proliferation rate when they receive growth factors from other
cells, compared to when they self-produce growth factors. If drugs are applied to the
system, s1 and s2 cells die at rates δ1 and δ2, respectively.”

The ways in which cells can interact (and self-interact via autocrine signalling)
through growth factors are pictorially shown in Fig. 2a-c, and the key conceptual differ-
ence between modelling STPP, SCM and MFPM interactions is pictorially described
in Fig. 2d, e. The modelled system can be described using the RCP-processes listed
in Table 1, and the default model parameter values are listed in Table 2.

3.3 Describing a biological system usingMarkov operators

Each RCP-process corresponds to a Markov operator (Table 1), and an STPP can be
described as a sum of such Markov operators. For our regarded model system, when
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Fig. 1 We developed a computational pipeline that streamlines the implementation, analysis and output
comparison of spatio-temporal point processes (STPPs), mean-field population models (MFPMs) and
spatial cumulant models (SCMs). The pipeline uses the UF-Software (Cornell et al. 2019) to generate
STPPs (B1-B3), MFPMs and SCMs (C1-C2) from reactant-catalyst-product (RCP) process model descrip-
tions (A1). STPP (B4) and SCM (C3-C7) generated summary statistics are thereafter calculated using the
pipeline codes developed for this study. Note that, as MFPMs are reduced forms of SCMs, they are also
handled in steps (C1-C7)

no drugs are applied, the total Markov operator becomes

L = Ls1
B + Ls1s1

BF + Ls2s1
BF , (31)

where all Gaussian birth kernels have the same standard deviations but different inte-
grals such that

b1 = 2π
∫ ∞

0
B1(r)rdr < b11 = 2π

∫ ∞

0
B11(r)rdr < b12 = 2π

∫ ∞

0
B12(r)rdr ,

(32)

for r = |x1 − x2|, and the total integral of the cell-cell interaction kernel is

c = 2π
∫ ∞

0
C(r)rdr (33)

for r = |x1 − x3|. When drugs are applied to the system, the total Markov operator
becomes

L− = Ls1
B + Ls1s1

BF + Ls2s1
BF + Ls1

DI + Ls2
DI , (34)
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Fig. 2 We consider a theoretical system in which cells interact with each other through growth factor
secretion and uptake. Panels (a–c) show the possible ways in which cells in the modelled system can
interact (and self-interact via autocrine signalling). The size of the plus (+) mark indicates the benefit (in
terms of proliferation rate) that the receiver cell gains from the interaction. a Type s1 cells (red) can produce
and internalise their own growth factors. b Type s1 cells can receive growth factors from other s1 cells. c
Type s2 cells (blue) can receive growth factors from s1 cells. Panels (d, e) highlight the difference between
modelling interactions in spatio-temporal point processes (STPPs), spatial cumulant models (SCMs) and
mean-field population models (MFPMs). These panels show how likely the s2 cells are to receive growth
factors from the focal s1 cell. In STPPs and SCMs, the probability that such a cell-cell interaction occurs
depends on the distance between the two interacting cells, so that, for Gaussian interaction kernels, cells
that are closer to each other are more likely to interact (d). In MFPMs, all cells in the system are equally
likely to interact with each other, independently of spatial cell-cell separations (e) (color figure online)

where the superscript (-) has been introduced to distinguish between the Markov
operators in Eqs. 31 and 34. In this study, we set the parameter values pertaining to
the Markov operators Ls1

B , Ls1s1
BF and Ls2s1

BF in step A1 (Fig. 1), and thus assume that
these parameter values are inherent to the modelled cell population. Conversely, we
assume that the parameters δ1 and δ2, pertaining to theMarkov operators Ls1

DI and L
s2
DI

can be modulated by drug doses. Accordingly, in Sect. 4.2, we use MFPM and SCM
equations to analytically derive death rates that result in non-growing subpopulations
at an arbitrary treatment time T (Fig. 1, D1). These death rates are then implemented
in the STPP, as implicitly modelled treatment responses.

3.4 Describing a biological system usingMFPM and SCM equations

Using the UF-Software, rate equations for the variables qi (t), pi (t) and gi j (t, εr)
in Eq.1 can be generated from RCP-formulated model descriptions. By implementing
the model described by the Markov operator L− (Eq. 34) into the UF-Software,
we obtain the following system of equations,
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Table 2 Model parameter values. The table shows the default model parameter values, in dimensionless
form, that are used to produce the results in Figs. 3, 4, 5, 6

Kernel Parameter description Parameter values Biological description

B1 Gaussian kernel with
integral b1 and standard
deviation σB

b1 = 0.001, σB = 25 Dispersal kernel of s1 daughter
cells, for cell division mediated
via autocrine signalling of
growth factors (Fig. 2a)

B11 Gaussian kernel with
integral b11 and
standard deviation σB

b11 = 0.025, σB = 25 Dispersal kernel of s1 daughter
cells, for cell division mediated
via uptake of growth factors
from other s1 cells (Fig. 2b)

B12 Gaussian kernel with
integral b12 and
standard deviation σB

b12 = 0.050, σB = 25 Dispersal kernel of s2 daughter
cells, for cell division mediated
via uptake of growth factors
from s1 cells (Fig. 2c)

C Gaussian kernel with
integral c and standard
deviation σC

c = 100, σC = 100 Interaction kernel describing
growth factor secretion (from
s1 cells) and uptake (by s1 or
s2) cells (Fig. 2b, c)

Parameter

�, ε Scaling parameters � = 1, ε = 1/� = 1 Scaling parameters that result
from the perturbation
expansion and model rescaling
(Sects. 2.6, 2.7)

∂q1(t)

∂t
= Hq1 = b1q1(t)

︸ ︷︷ ︸

from L
s1
B

+ b11cq1(t)
2

︸ ︷︷ ︸

from L
s1s1
BF

− δ1q1(t)
︸ ︷︷ ︸

from L
s1
DI

, (35a)

∂q2(t)

∂t
= Hq2 = b12cq1(t)q2(t)

︸ ︷︷ ︸

from L
s2s1
BF

− δ2q2(t)
︸ ︷︷ ︸

from L
s2
DI

, (35b)

∂ p1(t)

∂t
= Hp1 = b1 p1(t)

︸ ︷︷ ︸

from L
s1
B

+W11(t) + 2b11cq1(t)p1(t)
︸ ︷︷ ︸

from L
s1s1
BF

− δ1 p1(t)
︸ ︷︷ ︸

from L
s1
DI

, (35c)

∂ p2(t)

∂t
= Hp2 = W12(t) + b12c

(

q1(t)p2(t) + q2(t)p1(t)
)

︸ ︷︷ ︸

from L
s2s1
BF

− δ2 p2(t)
︸ ︷︷ ︸

from L
s1
DI

, (35d)

∂ g̃11(t, k)

∂t
= Hg11 = 2˜B1(k)

(

q1(t) + g̃11(t, k)
)

︸ ︷︷ ︸

from L
s1
B

+ 2˜B11(k)q1(t)
(

c + ˜C(k)
)(

q1(t) + g̃11(t, k)
)

︸ ︷︷ ︸

from L
s1s1
BF

− 2δ1 g̃11(t, k)
︸ ︷︷ ︸

from L
s1
DI

, (35e)

∂ g̃12(t, k)

∂t
= Hg12 = ˜B1(k)g̃12(t, k)

︸ ︷︷ ︸

from L
s1
B

+ ˜B11(k)q1(t)g̃12(t, k)
(

c + ˜C(k)
)

︸ ︷︷ ︸

from L
s1s1
BF
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+ ˜B12(k)
(

cq1(t)g̃12(t, k) + ˜C(k)q2(t)
(

q1(t) + g̃11(t, k)
)
)

︸ ︷︷ ︸

from L
s2s1
BF

− δ1 g̃12(t, k)
︸ ︷︷ ︸

from L
s1
DI

− δ2 g̃12(t, k)
︸ ︷︷ ︸

from L
s2
DI

,

(35f)
∂ g̃22(t, k)

∂t
= Hg22 = 2˜B12(k)

(

cq1(t)
(

q2(t) + g̃22(t, k)
) + ˜C(k)q2(t)g̃12(t, k)

)

︸ ︷︷ ︸

from L
s2s1
BF

− 2δ2 g̃22(t, k)
︸ ︷︷ ︸

from L
s2
DI

,

(35g)

where ·̃ denotes the Fourier transform of · , and k is the independent variable (the
spatial frequency) in Fourier space. The k-notations have been introduced to denote
the g̃-variables dependence on k and

W11(t) = 2πb11

∫ ∞

0
kg̃k,11(t)˜C(k)dk, (36a)

W12(t) = 2πb12

∫ ∞

0
kg̃k,12(t)˜C(k)dk. (36b)

The SCM is described byEqs. 35(a–g) andEqs. 36a, b,whereas theMFPM is described
by Eqs. 35a, b only. Note that, in the absence of drugs, the terms resulting from the
operators Ls1

DI and L
s2
DI can be omitted so that the above system of equations describes

the dynamics that corresponds to theMarkov operator L (Eq.31). Equivalently, δ1 and
δ2 can be set to zero.

3.5 Initial cell configurations and initial conditions

In this study, we consider three different initial cell configurations (ICCs). The ICCs
have the same number of s1 and s2 cells, but different spatial configurations. Therefore,
if we estimate the spatial cumulants from point patterns using the procedures outlined
in Sect. 2.9, we find that the three ICCs have the same first-order spatial cumulants,
but different second-order spatial cumulants (Fig. 3). In ICC.1, cells of type s1 and s2
are uniformly, randomly distributed across the simulated domain D. In ICC.2, cells
of type s2 are uniformly, randomly distributed across D, whereas type s1 cells are
randomly distributed within clusters. In ICC.3, both type s1 and s2 cells are clustered.
In order to set the initial conditions for the SCM and MFPM models, we calculate
densities and spatial covariances from the point patterns for all i, j = 1, 2. These
calculations are used to set qi (t = 0) and gi j (t = 0, εr). The initial values for the
SCM corrections are set to zero, so that pi (t = 0) = 0, for i = 1, 2.
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4 Results

4.1 SCMs capture STPP-generated cell population dynamics

We first set out to model the no-drug scenario with ICCs 1,2 and 3. To do this, we first
implement the STPP (Eq.31) to generate 100 spatio-temporal point patterns from each
ICC.We thereafter solve theMFPM (Eqs. 35a, b) and SCM (Eqs. 35a–g with Eqs. 36a,
b) equations numerically, using initial conditions for the spatial cumulants measured
at the respective ICCs. In this proof-of-concept study, we will qualitatively say that a
deterministic model “captures STPP dynamics”, if the model’s spatial cumulants lie
within the minimum and maximum spatial cumulant values of 100 STPP-generated
spatio-temporal point patterns.

Our results demonstrate thatMFPM and SCMdensity dynamics coincide for ICC.1
only. For the simulated time duration, the MFPM is able to capture STPP-generated
density dynamics resulting from ICC.1, where all cells are uniformly randomly dis-
tributed, but fail to do so for ICCs 2 and 3 (Fig. 3). As the cell-cell interactions via
growth factors become more regional on the simulated domain, due to cell clustering,
the MFPM performs worse in terms of describing STPP dynamics. This can be visu-
ally appreciated in Fig. 3, in which the deviation between MFPM and STPP dynamics
increases for lower rows in the figure. On the other hand, the spatially informed SCM is
able to capture STPP-generated density dynamics resulting from all considered ICCs
in the simulated time duration (Fig. 3). This is due to the fact that SCMs account for
spatio-temporal cell population structures by including equations that describe how
the spatial covariances evolve in time. Indeed, our results show that spatial covari-
ances calculated by SCMs capture those generated by STPPs (Fig. 4). In summary,
the results in Figs. 3 and 4 show that SCMs can capture STPP-generated cell population
dynamics, even when MFPMs fail to do so.

4.2 SCM-informed treatment strategies outperformMFPM-informed treatment
strategies in STPP-generated cell populations

We next set out to derive theoretical drug doses, here implicitly modelled via cell death
rates, that stop both subpopulations from growing. In other words, we want to find the
model parameters δ1 and δ2 that cause the derivatives describing population growths
to be zero at the treatment time T . We thus derive MFPM-informed drug doses by
setting

Hq1

∣

∣

∣

t=T
= 0 (37a)

Hq2

∣

∣

∣

t=T
= 0. (37b)

Solving Eqs. 37a, b for δMFPM
1 and δMFPM

2 , where the superscripts denote that these
are the MFPM-informed doses, yields
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Fig. 3 Spatial cumulant models (SCMs) capture density dynamics generated by spatio-temporal point
processes (STPPs), even when mean-field population models (MFPMs) fail to do so. The figure shows
STPP, MFPM and SCM-generated cell population dynamics, where each row corresponds to a unique
ICC (left-most column). Snapshots from one STPP-generated spatio-temporal point pattern per ICC are
shown at time points t = 0, t = 100, and t = 200. Growth factor-producing cells (type s1) are shown
in red, and non-producers (type s2) are shown in blue. The right-most column shows STPP, MFPM and
SCM-generated density dynamics. In the density plots, the shaded STPP data shows a span of minimum to
maximum (min-to-max) density values calculated from 100 spatio-temporal point patterns resulting from
the same ICC. MFPM (solid lines) and SCM (triangles) results are obtained by numerically solving the
MFPM and SCM equations with initial conditions calculated from the shown ICCs. The parameter values
used to create the plots are listed in Table 2 (color figure online)

δMFPM
1 = b1 + b11c û

(1)
1,T , (38a)

δMFPM
2 = b12c û

(1)
1,T . (38b)

Here, the hat-notation (·̂) has been introduced to denote quantities thatwill bemeasured
from point patterns, and the variables qi (t) have been substituted with û(1)

i,T , i.e., the
measured density of subpopulation i at time T . Similarly, we derive SCM-informed
drug by setting

(

Hq1 + ε2Hp1

)∣

∣

∣

t=T
= 0, (39a)

(

Hq2 + ε2Hp2

)∣

∣

∣

t=T
= 0, (39b)
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Fig. 4 Spatial cumulant models (SCMs) capture spatial covariance dynamics generated by spatio-temporal
point processes (STPPs). The figure shows STPP and SCM-generated spatial covariance dynamics resulting
from ICC.2 (as shown in Fig. 3). Each row corresponds to a unique pairing of cell types, and each column
corresponds to a time point (t = 0, t = 100, or t = 200. ). Mean and minimum-to-maximum (min-to-
max) values from 100 STPP-generated spatio-temporal point patterns are, respectively, shown with solid
black lines and shaded gray bands. SCM results (orange) in the two right-most columns are obtained by
numerically solving the SCM equations, with the spatial covariances shown in the left-most column as
initial conditions. The parameter values used to create the plots are listed in Table 2 (color figure online)

and solving for δSCM1 and δSCM2 with all correction terms pi (t) set to zero upon mea-
suring the densities and spatial covariances. Since all model parameters and variables
are positive at time T , this yields

δSCM1 = b1û
(1)
1,T + b11c · (û(1)

1,T )2 + ε2Ŵ11,T

û(1)
1,T

, (40a)

δSCM2 = b12c û
(1)
1,T û(1)

2,T + ε2Ŵ12,T

û(1)
2,T

. (40b)

To test these drug doses in the STPP, we, for each spatio-temporal point-pattern, mea-
sure the quantities û(1)

1,T , û(1)
2,T , Ŵ11,T , Ŵ12,T at the treatment time and calculate the

MFPM and SCM-informed doses. Note that the quantities Ŵ11,T and Ŵ12,T incor-
porate the spatial structure of the regarded cell population (via spatial covariances)
and local effects of growth factor cell-cell interactions (via the kernel C(r)). After
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Fig. 5 Treatment strategies informed by spatial cumulant models (SCMs) outperform treatment strategies
informed by mean-field population models (MFPMs) in terms of inhibiting population growths in cell pop-
ulations generated by spatio-temporal point processes (STPPs). The figure shows STPP-generated density
dynamics when drugs are applied at t = 200. Each row corresponds to the dynamics resulting from a
unique ICC (as shown in Fig. 3). Each panel includes two plots, one of which shows the density dynamics

of the growth factor-producing cells (u(1)
1 (t)), and one of which shows the density dynamics of the non-

producer cells (u(1)
2 (t)). All plots show density dynamics from 100 spatio-temporal point patterns. Every

spatio-temporal point pattern is assigned point pattern-specific drug doses (cell death rates) at t = 200, and
is visualised with an individual line. Dynamics resulting from MFPM-informed drug doses (indicated by
yellow areas) and SCM-informed drug doses (indicated by blue areas) are respectively shown in the left
and right panels. The parameter values used to create the plots are listed in Table 2 (color figure online)

time T , we then let each spatio-temporal point pattern progress further in time with
its individual death rates δ1 and δ2 applied to the STPP (Eq.34).

Our results show that both MFPM and SCM-informed treatment doses are able to
stop subpopulations s1 and s2 from increasing for cell populations that started at ICC.1
(Fig. 5, top row). However, for populations that started with ICC.2, the SCM-informed
doses drastically outperformMFPM-informed doses in terms of inhibiting population
growths (Fig. 5, middle row). In this case, the MFPM-informed doses underestimate
the required values of δ1 and δ2 due to the synergistic growth effects that arise from
cell type s1 − s1 proximity, and cell type s2 being close enough to s1 cells to benefit
from their secreted growth factors. In cell populations initiated with ICC.3, type s1
cells are benefiting from being close to each other, whereas type s2 cells are too far
away the from s1 cells to benefit from high s1 densities. Accordingly, the MFPM-
informed doses adequately inhibit population growths for s2 but not for s1 (Fig. 5
bottom row). However, the SCM-informed doses inhibit both s1 and s2 population
growths for ICC.3. In conclusion, SCMs enable the derivation of treatment strategies
that are informed by (1) the spatial structure of the targeted cell population, and (2) by
localised cell-cell interactions. In our theoretical study, and in terms of inhibiting sub-
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Table 3 Cell motility processes are formulated in terms of reactant-catalyst-product (RCP) processes. The
table includes theRCP-processes that are used to describe randomcellmovement of growth factor-producing
(s1) and non-producing (s2) cells

Biological process Reactants (r), catalysts (c),
products (p)

Markov
operator

Description

Jump
[

s1, M1(x1 − x2)
]

r = {x1, s1} , c = ∅ ,

p = {x2, s1}
L
s1
M A cell with mark s1 in location x1

jumps to location x2 with
kernel M1(x1 − x2)

Jump
[

s2, M2(x1 − x2)
]

r = {x1, s2} ,

c = ∅ ,p = {x2, s2}
L
s2
M A cell with mark s2 in location x1

jumps to location x2 with
kernel M2(x1 − x2)

Table 4 Model parameter values for random cell movement. The table shows the model parameter values,
in dimensionless form, that are used to produce the results in Fig. 6. Note that the value of m is set on an
example-specific basis (Fig. 6)

Kernel Parameter description Parameter values Biological description

M1 Gaussian kernel with integral m1
and standard deviation σM

m1 = m, σM = 25 Random movement kernel of
s1 cells

M2 Gaussian kernel with integral m2
and standard deviation σM

m2 = m, σM = 25 Random movement kernel of
s2 cells

population growths, SCM-informed doses match MFPM-informed doses for ICC.1,
and outperform MFPM-informed doses for ICCs 2 and 3.

4.3 Cell-cell interaction ranges and cell motility impact consistencies between
STPP, MFPM and SCM density dynamics

Recall from Eq.1 that SCM subpopulation densities are expressed as MFPM densities
plus a correction term. This correction term depends on the scaling factor ε = 1/�, the
densities and spatial covariances of the modelled population, and the RCP-processes
that describe the actions and interactions of the modelled individuals via the variables
qi (t), pi (t), gi j (t, εr). Consistencies (and deviations) betweenMFPM and SCM den-
sity dynamics thus depend both on the modeller’s choice of �, and on properties of the
modelled population. To demonstrate these dependencies, we revisit the model system
studied in Sect. 4.1 (Fig. 3), and include cell motility in the system. We then vary two
system properties, specifically the range of cell-cell interactions and the magnitude
of cell motility, to investigate how well MFPMs and SCMs capture STPP-generated
density dynamics in response to these variations. In order to include cell motility to the
model system, we first introduce two new RCP-processes in Table 3 that describe ran-
dommovement of type s1 and s2 cells. The model parameter values that are associated
with these RCP-processes are listed in Table 4.

By adding the Markov operators listed in Table 3 to the Markov operator L in
Eq.31, we formulate a new Markov operator L+ that describes a system in which
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growth factor-mediated cell division and random cell movement occur so that

L+ = Ls1
B + Ls1s1

BF + Ls2s1
BF + Ls1

M + Ls2
M . (41)

In order to generate the MFPM and SCM equations that correspond to Eq.41, note
first that cell motility does not contribute to the MFPM equations. Therefore the
corresponding MFPM model equations are Eqs. 35a, b without cell death, so that
the death rates are δ1 = 0 and δ2 = 0. Similarly, cell motility only impacts the
SCM correction equations implicitly, via their dependence on the spatial covariance
variables, but not explicitly. Therefore the SCM correction terms that correspond to
the Markov operator L+ (Eq. 41) are simply Eqs. 35c, d with δ1 = 0 and δ2 = 0.
The SCM rate equations for the spatial covariance variables do, however, need to be
explicitly updated (from 35e–g) to include cell movement. We let the plus-notation
(+) denote these updated rate equations and get

(

∂ g̃11(t, k)

∂t

)+
= Hg11

∣

∣

∣

δ1=0
+

(

2˜M1(k) − 2m1

)

g̃11(t, k)
︸ ︷︷ ︸

from L
s1
M

, (42a)

(

∂ g̃12(t, k)

∂t

)+
= Hg12

∣

∣

∣δ1=0
δ2=0

+
(

˜M1(k) − m1

)

g̃12(t, k)
︸ ︷︷ ︸

from L
s1
M

+
(

˜M2(k) − m2

)

g̃12(t, k)
︸ ︷︷ ︸

from L
s2
M

,

(42b)
(

∂ g̃22(t, k)

∂t

)+
= Hg22

∣

∣

∣

δ2=0
+

(

2˜M2(k) − 2m2

)

g̃22(t, k)
︸ ︷︷ ︸

from L
s2
M

. (42c)

The terms Hg11 , Hg12 , Hg22 depend on spatio-temporal system dynamics and are listed
in Eqs. 35e-g. The Fourier transform of · is, again, denoted by ·̃ and k is the independent
variable in Fourier space. In summary, the SCM equations that describe the population
dynamics generated by an STPP that is governed by the Markov operator L+ (Eq. 41)
are Eqs. 35a-d (with δ1 = 0 and δ2 = 0), Eqs. 36a,b, and Eqs. 42a-c.

Now that the MFPM and SCM equations that correspond to L+ (Eq. 41) have
been formulated, we are ready to compare STPP, MFPM and SCM system dynamics
for variations of the kernels C (Table 2) M1 and M2 (Table 4). In order for this
example-specific comparison to yield qualitatively distinct outcomes, we use initial
cell configuration ICC.3 in which the cells are strongly clustered (Fig. 3). Let us
first consider the model system in which the cells are sessile, so that m=0 (Table 4),
and vary σC , the standard deviation of the cell-cell interaction kernel C that governs
growth factor secretion and uptake (Table 2). In Fig. 6a, we compare STPP, MFPM
and SCM density dynamics for three different values of σC that we classify to yield
strongly localised (σC = 100), moderately localised (σC = 150) and weakly localised
(σC = 200) cell-cell interactions.
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Fig. 6 Cell-cell interaction ranges and cell motility impact consistencies between density dynamics gen-
erated by spatio-temporal point processes (STPPs), mean-field population models (MFPMs) and spatial
cumulant models (SCMs). The figure shows STPP, MFPM and SCM cell population density dynamics
resulting from the initial cell configuration ICC.3 shown in Fig. 3. a The standard deviation σC in the
Gaussian kernel that governs cell-cell interactions via growth factors (C in Table 2) is different in each
column. b The integral m of the Gaussian kernel that governs random cell movement is different in each
column. In both (a) and (b), the inserted scatter plots show one STPP-generated spatio-temopral point
pattern at the simulation end time t = 350. Growth factor-producing cells (type s1) are shown in red, and
non-producers (type s2) are shown in blue. In the density plots, the shaded STPP data shows the span of
minimum to maximum (min-to-max) density values from 100 spatio-temporal point patterns. Density mean
values plus/minus one standard deviation from these spatio-temporal point patterns are shown with dotted
lines. Deterministic MFPM (solid lines) and SCM (triangles) results are obtained by numerically solving
the MFPM and SCM equations with initial conditions calculated from ICC.3. Unfilled triangles show SCM
dynamics when � = 1 (where the scaling parameter ε = 1/�), and filled triangles show SCM dynamics
when � has been chosen according to the plots. Other parameter values used to create the plots are listed in
Tables 2 and 4 (color figure online)

We next consider the model system with a fixed σC value (σC = 100), and vary m,
the total integral of the interaction kernels M1 and M2 (Table 4) that govern random
cell movements. In Fig. 6b, we compare STPP, MFPM and SCM-generated density
dynamics for three different values of m that we classify to yield weak (m = 0.001),
moderate (m = 0.01) and strong (m = 0.1) cell motility.

In summary, Fig. 6 provides an example-driven, qualitative three-part stratification
(I-III) of MFPM and SCM performance, in terms of their ability to capture STPP-
generated density dynamics: (I) Cases where both MFPMs and SCMs underperform
due to strongly localised cell-cell interactions and no-to-weak cell motility (Fig. 6a,
b, left column). (II) Cases where MFPMs underperform whilst SCMs perform well
due to moderately localised cell-cell interactions and no cell motility, or strongly
localised cell-cell interactions and moderate cell motility (Fig. 6a, b, middle column).
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(III) Cases where both MFPMs and SCMs perform well due to weakly localised
cell-cell interactions or strong cell motility (Fig. 6a, b, right column). This strati-
fication (I-III) emphasises that a modeller’s choice of modelling method should be
influenced by the model system at hand, and that the choice of ε = 1/� in applica-
tions should be influenced by howmuch theMFPM dynamics deviates from the STPP
dynamics.

In our problem-specific examples for case (I), SCM densities lie within the
minimum-to-maximum densities of 100 STPP simulations, but not within the mean
plus/minus one standard deviation of the simulations. Although the SCMs performbet-
ter than the MFPMs, in terms of capturing STPP dynamics, they underestimate STPP
densities towards the end of the simulation time where STPP population sizes have
increasedbyup to a factor 28 (Fig. 6a, left column).Aswehavenot included any crowd-
ing or competition effects in our model system, this gives rise to strongly localised
effects in strongly clustered populations that cause the SCMs, as formulated in the
limit of long-ranged interactions, to underperform. In order to analytically describe
STPPs in such cases, a modeller might attempt to consider other limits in which
to develop SCM equations, or to use other spatial moment or cumulant techniques in
which higher-order correction terms are included or strongly localised interactions are
accounted for. Alternatively, research question permitting, a modeller might choose
to use simulation-based approaches only, without an analytical counterpart, to study
the dynamics of STPP-generated cell populations.

On the other hand, in case (III), MFPMs are sufficient to capture STPP dynamics
and thus the inclusion of SCMmodel equations provides an unnecessary complication
that can be avoided. Note that, according to the mean-field assumptions that underlie
MFPMs, each cell in the modelled system interacts with any other cell in the system
with equal probability (Fig. 2e). It is, therefore, to be expected that the appropriateness
of these assumptions, and by extension the MFPMs ability to capture STPP-generated
population dynamics, improves with increasing cell-cell interaction ranges (Fig. 6a)
and cell motility (Fig. 6b).

Between the edge cases (I) and (III), lies case (II) in which SCMs provide an
accurate and non-superfluous methodology to describe (Figs. 3, 4, 6) and manipulate
(Fig. 6) STPP-generated cell population dynamics. We argue that there exist multiple
applications in cell biology for which case (II) is relevant, and the use of STPPs
and SCMs are appropriate. For example, STPPs and SCMs can be used to study cell
systems in which cells are sessile or weakly to moderately motile, i.e., not motile
enough to warrant mean-field assumptions. SCMs can also be used to study systems
in which cell-cell interactions are localised but extend nearest neighbour interactions.
Such cell-cell interactions include localised competition for space or nutrients, and
secretion and uptake of diffusible factors that can affect cell division, cell death and
cell motility.

5 Discussion

Most current cancer treatments target genomic aberrations without consideration for
eco-evolutionary tumour aspects that change over the course of treatment, such as
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cell-cell and cell-microenvironment interactions. The lack of understanding of such
dynamical tumour aspects is one factor that may be hindering the development of effi-
cient targeted treatment protocols (Gatenby et al. 2020; Wang and Deisboeck 2019).
However, clinical trials that are informed by mathematical modelling and take dynam-
ical tumour processes into account have started to emerge (Zhang et al. 2017; Poels
et al. 2021).

Although not applied in clinical settings, IBMs are widely used in mathemati-
cal oncology to study cancer eco-evolution in response to cell-cell interactions and
treatments. The appeal of IBMs has increased with the resolution of state-of-the-art
experimental and clinical cancer data revealing information on the single-cell level.
With their spatio-temporal structure, IBMs, unlikeMFPMs, have the ability to include
both spatial information about how subpopulations are located in tumours, from spatial
transcriptomics (Hunter et al. 2021), and temporal information about howgenetic alter-
ations in tumour cell subpopulations propagate over generations to evade treatments,
from phylogenetic analysis (Schwartz and Schäffer 2017). However, without an ana-
lytical mathematical framework in which to analyse IBMs, it is difficult to describe
relationships between model variables and model parameters in a mechanistic way
that lets us perturb the modeled system and better understand its inter-component
dependencies. In the context of cancer, theoreticians, experimentalists and clinicians
may be interested in perturbing cancer systems onto evolutionary trajectories that are
favourable from treatment perspectives. Analytical mathematical models that account
for treatment effects and cell-cell interactions can provide instructions for how to do
so (Kaznatcheev et al. 2019).

In this article, we demonstrated that SCMs enable spatially informed treatment
strategies and analysis of local interactions in cancer systems. Although the theoret-
ical, biological systems that we modelled in this study were of a simple structure,
only comprising up to five RCP-processes, the model systems could be expanded to
includemore biological processes. It is straightforward to use the UF-Software and
the pipeline codes developed for this article to implement processes such as crowd-
ing effects, density-dependent cell death and cell-type conversions via cell-intrinsic or
external factors.We remark that SCMs could be further improved to includemore func-
tionalities that are relevant in cell biology. For example, in this study, we categorised
cells with discrete marks, so that each cell belonged to one of two subpopulations with
set traits. However, in many cell biology scenarios, it would be more relevant to use
continuous marks to describe e.g., growth factor production, cell motility, drug resis-
tance and gene expression in other forms.Moreover, in this study, all model parameters
were cell-intrinsic constants. To allow for non-linear effects between a cell’s proxim-
ity to other cells and its behaviour, the model parameters could be adjusted to be
functions of e.g., time, space or continuous marks. We leave these suggested improve-
ments to the SCM framework as future challenges. Another future challenge will be to
develop methods to parameterise the SCMswith experimental and, ultimately, clinical
data. We emphasise that even though the mathematical theory that underlies SCMs
may appear mathematically challenging at first sight, implementing SCMs (using the
UF-Software and the pipeline codes developed for this study) is not. In order to
make the methods discussed in this article accessible to the research community, we
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have provided clear instructions for how to access, run and modify these code files in
the Supplementary Information (SI.1, SI.2).

Multiple research groups have mathematically modelled the effect that growth
factor-mediated cell-cell interactions have on cancer progression and treatment out-
comes. Notably, Zhang et al. are using an EGT model to inform treatment strategies
in a clinical prostate cancer trial (2017). Their model aims to predict personalised
treatment outcomes in response to drug schedules and assumed interactions amongst
testosterone producing, dependent and independent cells (see also (Mistry 2021)).
Kaznatcheev et al. used an EGT model to show that both drugs and cancer-associated
fibroblasts modulate cell-cell interactions in co-cultures of drug-sensitive and resistant
non-small cell lung cancer cells (2019). Haridas et al. used a PDE model to quantify
how interactions between melanoma cells and fibroblasts affect the spreading of cells
in in vitro co-cultures, finding no conclusive evidence of any cell-cell interactions
via diffusible substrates (2017). Gerlee et al. used an IBM and an IBM-derived ODE
model to demonstrate that autocrine signaling suffices to cause strong and weak Allee
effects in cancer, in line with experimental observations from patient-derived brain
tumor cell lines (2022).

We argue that SCMs provide a framework in which to study similar cancer research
problems,with the addedbenefit of easy-to-produce duality: via theUF-Software, it
is straightforward to generate both STPP-simulations and analytical SCM expressions
describing user-defined biological systems. SCMs and can be especially helpful in
studies when the locality of cell-cell interactions, via e.g., diffusible factors or resource
competition, can not be neglected. Moreover, we remark that there exist parallels
between the SCM and EGT frameworks, which both are centered around interactions
amongst individuals, and we theorise that the SCM methodology of incorporating
space may facilitate the derivation of corrected, spatially resolved EGT replicator
equations. One important contrast between EGT models and SCMs, however, lies
in how the modelled interactions are described. In EGT models, the behaviours of
cell populations in response to cell-cell interactions are quantified in terms of gain or
loss in proliferative fitness (Farrokhian et al. 2022). On the other hand, SCMs build
upon rule-based descriptions of how the individuals (cells) in the modelled system act
and interact via RCP-processes. SCMs can therefore be used to define ensembles of
allowable biological mechanisms, i.e., candidate models, which could be evaluated
against in vitro data, in line with a bottom-up modelling approach (Hamis et al. 2019).
We also anticipate that the opportunity to analytically derive spatially informed cancer
treatment strategies, as enabled via SCMs, will inspire new theoretical and applied
research ventures.

Code access

Instructions on how to access, run and modify the code files used in this study are
available in the Supplementary Information (SI.1, SI.2).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-023-01903-x.
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