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1. Introduction

Recent developments in information and communication
technologies, computer science, and data science have brought
along a whole new paradigm of manufacturing. Popularly
known as smart manufacturing or industry 4.0, this evolution
of digital transformation in the manufacturing industry has
brought along many new possibilities for increased efficiency
and productivity through self-adapting and self-optimizing sys-
tems [3]. While the necessary tools and concepts were intro-
duced a long time ago, the infrastructure and computational
power have now reached a level where artificial intelligence and
self-optimizing systems are feasible in production systems [14].
Consequently, the industry is currently undergoing widespread
adoption of related technologies, at the same time as the unique-
ness of every manufacturing system and each manufacturing
process gives rise to challenges in specific implementations.

Development and application of intelligent systems in man-
ufacturing using machine learning (ML) has been ongoing for
decades [15]. Various ML techniques have been applied to

∗ Corresponding author. Tel.: +47-97736238; E-mail address: chris-
tian.d.oien@ntnu.no

problems in machining [9], forming [16], and additive manu-
facturing [1] to predict product quality and optimize process
parameters.

For extrusion blow molding (EBM), specifically, artificial
neural networks (ANN) were used to predict the dimensions
of a blow molded part already in 1993 [5]. ANNs have also
been used for predicting dimensions and material distributions
of the parison (see section 2.1) [12], which eventually also af-
fect the final dimensions of the product. Other methods applied
to the EBM process include gradient-based optimization [8] and
genetic algorithms [20] for process optimization. Other efforts
have employed neural networks to establish a foundation for
process optimization with a genetic algorithm [11, 19]. How-
ever, the total applications of ML to the EBM process are lim-
ited, and there seems to be a knowledge gap in mapping prod-
uct properties to high-dimensional production process data col-
lected over time.

Generally, in discrete manufacturing applications data min-
ing and feature extraction [21] can be used to link process data
with product characteristics. In view of ML-based approaches,
this will work as the base for applying supervised learning (SL)
on the resulting tabular data, in the form of either classifica-
tion or regression. The focus in this paper is regression, where
the trained model is a function f : Rn → R predicting the nu-
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merical value of a certain characteristic of a Work-in-Progress
(WIP) part based on n input features describing the correspond-
ing production processes. Specifically, we evaluate the time-
dependency of such a dataset acquired over time from an EBM
process and investigate how various SL algorithms tackle this
time dependency and are able to generalize the function f so
that predictions can be made on future WIP parts. In the case of
a manufacturing process chain based on EBM, it is of interest
to evaluate if feed-forward control of proceeding processes, i.e.
on-line adjustments to those processes to counteract unwanted
variations in EBM, could be implemented based on ML predic-
tions.

Manufacturing execution systems (MES) may collect data
from hundreds or thousands of sensors, along with a compara-
ble amount of varying parameter values used in process control.
The motivation for applying ML to estimate product dimen-
sions based on process data is that complex transient depen-
dencies can be learned from such training data. The governing
research question of the current work has therefore been defined
as:

In the case of EBM, to which extent can features extracted
from continuously collected process data be used to learn the
complex dependencies that affect variations in product dimen-
sions?

The remainder of the paper is structured as follows: First, a
thorough description of the methods is given in section 2 be-
fore the results are presented and briefly analyzed in section 3.
A discussion of the findings and their implications is made in
section 4 before conclusions are made and future work is out-
lined in section 5.

2. Methods

2.1. Manufacturing use case

The data was logged from an EBM process, which is used to
produce hollow plastic parts. Simply put it works by extrusion-
feeding molten plastic around a mandrel to form a so-called
parison. This loose tube of hot plastic, at a suitable length pulled
by its own weight, is then enclosed by a tool and expanded by
pressurized air towards the inner tool surface. This is illustrated
in Fig. 2.1. By water cooling of the tool, the part hardens in a
few seconds. After the tool opens, the part is cut loose and a
new parison can form the next part in a cyclic manner.

The EBM process is automated and regulated in order for
the product to have correct weight, correct vertical distribution
of material, correct dimensions, etc. In our use case the sys-
tem controlling the process and automatically regulating some
of the process parameters is digitalized and stores about 170
feature values for each product. These features, describing the
conditions and regulation of the EBM process, have been the
base for our work and consist of several temperatures, forces,
pressures, durations, positions, velocities, and flow rates. They
describe the feeding and extrusion of plastic material, parame-
ters regulated in connection with forming the parison, the state
of the plastic material at various process stages, water and air

Fig. 1. Schematic representation of the extrusion blow molding process

cooling, the air pressurization during forming and durations of
specific parts of the process.

2.2. Data collection

In the studied EBM manufacturing set-up, the manufactur-
ing execution system (MES) was programmed to store data as
features, i.e. as representative values for each produced part, as
opposed to continuous time series. The data relating to one spe-
cific product variant produced were exported from a database as
a comma separated values (CSV) file, covering the year 2021.
Additionally, time series data regarding the temperature and
pressure of the cooling water reservoir was collected from a
separate system, re-sampled, and merged time-wise with the
feature table.

The products were regularly measured in a measurement fix-
ture at a rate of about 1 per 1000, based on a defined routine.
Four outer dimensions and two wall thickness measurements
from each product were taken as labels that should be predicted
by regression. The production feature table and the table of la-
bels were merged by an inner join on the product ID to ensure
coherence.

2.3. Data preparation

Substantial work was done to go through each process fea-
ture with process engineers, building on their process knowl-
edge to exclude features whose origin is questionable either
in accuracy, variance, or relevance to the response variables.
Several of the excluded features were binary machine signals,
but also some air pressures, calculated air volumes, and sub-
process durations. Next, the dataset was methodically cleaned
by removing invalid entries and parameters of constant value.
Feature data formats were checked to ensure conformance be-
tween the different data sources. The data preparation was com-
pleted using Python 3 in a Jupyter Notebook environment and
the Pandas [13] package. Six synthetic features were also cre-
ated, based on existing process features (measurements), to as-
sist the ML algorithms. This included calculations of energy
transfer and heat dissipation during the blow molding process.
The final dataset contains 1238 rows with 100 input features
named x1, x2, ..., x100 and 6 output variables as labels named
y1, y2, ..., y6. The first four output variables are outer product
dimensions while the last two are thicknesses. A standardized
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version of this dataset, i.e. where features are shifted by their
mean and divided by their standard deviation as shown in Ta-
ble 1. This dataset, denoted D0, is the basis for the presented
research and is shared and available on GitHub [17].

Table 1. Excerpt of the D0 dataset. Numbers are rounded for brevity.

timestamp x1 · · · x100 y1 · · · y6

2021-01-10 15:52:00 -0.068 · · · 0.424 -0.172 · · · -2.110
2021-01-10 15:52:00 -0.068 · · · 0.424 -0.172 · · · -2.110
2021-01-10 15:53:00 0.015 · · · 1.483 0.432 · · · -1.117
.
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.
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.
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.

2021-12-17 06:08:00 1.602 · · · 0.754 -0.172 · · · -0.521
2021-12-17 06:08:00 1.185 · · · -0.154 0.432 · · · -1.017
2021-12-17 06:08:00 1.185 · · · -0.154 0.432 · · · -1.017

2.4. Correlations and dimensionality reduction

In this D0 dataset there are significant correlations between
certain groups of input variables. In order to deal with this ef-
fectively it was chosen to apply Principal Component Analysis
(PCA) [21]. Based on a PCA transformation of the input vari-
ables, the resulting eigenvalues of each eigenvector can be used
to define a suitable number of principal components to use, ef-
fectively reducing the dimensionality of the dataset without sig-
nificantly losing information.

Based on the 100 input variables of D0 it was chosen to
keep 50 principal components, retaining 99% of the variance
while removing correlations. See Fig. 2. The resulting PCA-
transformed dataset of total size 56 × 1238 is referred to as D1.

Fig. 2. The ratio of explained variance in the D0 dataset by a subset of (the first)
n principal components, as a function of n.

2.5. Train/test-splitting of time-dependent datasets

Splitting of data into sets for training, validation and test-
ing is paramount in any SL application. Thus, separate sub-
sets of data are used to learn the unknown function, validate
model performance during training and tune hyperparameters,
(ref. section 2.8) and evaluate final model performance, respec-
tively. If a static function is expected to map inputs to outputs,

data is often randomly shuffled before setting aside certain por-
tions for training, validation, and testing. For time-series data,
however, where the input-output dependencies are expected to
change over time, it is necessary to define these subsets without
shuffling.

During the current work, it was noted that an excellent test
set regression accuracy could be achieved on a test set of D0
resulting from a shuffled split, while the same model would
yield wildly misleading predictions on a chronologically held
out second test set. This shows that the collected data is strongly
time-dependent, and that over-fitting may occur if the test set is
directly or indirectly represented in the training set. In the fol-
lowing work, all test set splits were done sequentially, while
a subsequent shuffled split of training and validation data has
been regarded as legitimate.

2.6. Lag features

Generally, the characteristics of a given product may be as-
sumed to correlate with both prior process data (x) and the char-
acteristics of previous products (y). In order to facilitate learn-
ing of such dynamic patterns one can introduce lag features.
To facilitate this an extended dataset with lag features was con-
structed based on D1, where 5 preceding sets of input and out-
put values (both x and y) were added to each row, resulting in
330 input features. This dataset of size 336×1238 is referred to
as D2 in the following.

2.7. Random forests, Gradient Boosting and XGBoost

Random Forest (RF) is a well-known class of SL algorithms
based on the decision tree. Even though there are several vari-
ants, it is generally an ensemble learning method that works by
constructing a large number of decision trees from sub-samples
of the training dataset [10, 2]. It can be seen as a parallelization
of several decision trees that together minimize generalization
error. A decision tree that estimates a certain (set of) continuous
values at each node is sometimes called a regression tree.

Gradient Boosting [7] (GB) works by building an additive
expansion of the unknown function (that we seek in order to
map inputs to outputs) by superposing ”base learners” as func-
tions of the inputs. In the GradientBoostingRegressor class of
the Scikit-learn library [18] the base regressors are regression
trees.

Extreme Gradient Boosting (XGB) [4] is a type of Gradient
Boosting algorithm with emphasis on a specific type of regular-
ization. Simply put, in addition to minimizing a differentiable
convex loss function, it penalizes model complexity in a way
that naturally prevents over-fitting as well as being well suited
for parallelized computation.

All of the three aforementioned algorithm types can be found
in classification (predicting one or more discrete values) and
regression (predicting one or more continuous values) variants.

In the case of multidimensional production data, tree-based
algorithms are a natural starting point since they often work
well on tabular datasets, where the task is, quite explicitly, to
learn a function of several variables. In addition, they are some-
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what easier to train (and design) than deep learning approaches
with ANN that depend on more extensive hyperparameter opti-
mization.

2.8. Hyperparameter optimization

Most machine learning algorithms have a vast range of ad-
justment possibilities, such as the type of objective function
to use, the evaluation metric used during model validation, the
number of iterations or components, and several coefficients de-
pending on the algorithm type. Such hyperparameters need to
be optimized over a given parameter space, and the optimum
combination will depend on the dataset used. A complicating
factor is that the effect of the hyperparameters on the model
generalization accuracy are inter-dependent. To carry out this
optimisation an exhaustive grid search was implemented based
on the GridSearchCV class of scikit-learn, with a 3-fold cross-
validation of each hyperparameter combination. The searched
parameter spaces for each algorithm, along with the optimisa-
tion results, are presented in Tables 2, 3, and 4. As a simplifica-
tion, the combination of output variable y3 and the D2 dataset
was used for the optimisation of each model type. The resulting
optimized parameter sets were then used across output variables
and for both the D1 and D2 based analysis. Please refer to the
aforementioned GitHub repository [17] for further details and
the code used.

Table 2. Grid search set up and results for Random Forest

Hyperparameter Levels Optimum

min samples split 2, 3, 5, 10 3
max depth 5, 10, 20, 30 30
criterion squared error, friedman mse friedman mse
max samples 0.7, 0.8, 0.9 0.9

Table 3. Grid search set up and results for Gradient Boosting

Hyperparameter Levels Optimum

min samples split 2, 5, 10 5
loss squared error, absolute error, huber huber
max depth 3, 4, 5 3
max features sqrt, 30, 40 40
criterion friedman mse, squared error squared error
subsample 0.6, 0.7, 0.8 0.8

Table 4. Grid search set up and results for XGB

Hyperparameter Levels Optimum

min child weight 2, 5, 10 5
gamma 0.01, 0.02, 0.05, 0.1 0.01
subsample 0.5, 0.6, 0.7 0.7
colsample bytree 0.6, 0.7, 0.8 0.8
max depth 3, 4, 5 5
objective reg:(squarederror, pseudohubererror) reg:squarederror

2.9. Regression standard error

Standard error has been chosen as a metric suitable to com-
pare the accuracy of regression models. Given a vector of true
(observed) values yi and corresponding regression estimates ŷi

of output variable i, it is defined as S e,i = σ(yi− ŷi)/σ(yi) where
σ denotes the sample standard deviation.

3. Results

Regression accuracy has been compared between RF, GB
and XGB models that have undergone hyperparameter optimi-
sation as described in section 2.8 and trained on the D1 and D2
datasets, respectively, showing the effect of including lag fea-
tures and the algorithms’ ability to learn a generalized function
to estimate the six product dimensions y1, y2, · · · , y6. Each al-
gorithm was trained 20 times, whereas each model was used
to predict the output variables of the chronologically split hold-
out test set. To compare predicted and true values the regression
standard error were calculated for each output variable and for
each combination of algorithm and dataset. The 20 repetitions
were then used to estimate the 95% confidence interval of each
achieved accuracy. These results are shown in Table 5.

From the results we can see that four of the output vari-
ables were predicted more accurately by models trained on the
D2 dataset (with lag features), while the two other by models
trained on the D1 dataset (without lag features). Furthermore,
it can be observed that the random accuracy variation is high-
est for the GB models, lower for the XGB models, and clearly
lowest for the RF models.

To visualize the performance of the over-all best model (RF
trained on D2), the predictions of the most and least accurately
predicted output variables by that model, i.e. y4 and y1, are plot-
ted in Fig. 3. Additionally, a scatter plot of true vs. predicted
values of y4 using the same model is shown in Fig. 4.

In Fig. 3 one should note a discrepancy in the first approx.
70 data points, where y4 seems to be predicted in an opposite
manner. For the rest of the data points, the predictions are much
better. In Fig. 4 this is seen as over-predictions in the true range
of approx −3 to −1.

4. Discussion

The current work describes a case of highly time-dependent
multivariate data. Despite testing multiple algorithms for pre-
dicting physical dimensions based on process variables, the
trained models are only partially able to predict product geom-
etry. The time dependency of the data appears to outweigh the
influence of the variables captured for predictions. The follow-
ing explanations may hold merit:

1. The sampling rate (around 1/1000) is too low to capture
the data needed to properly train any of the tested ML al-
gorithms;



Christian D. Øien  et al. / Procedia CIRP 120 (2023) 1077–1082 1081

Table 5. Regression model accuracy in the form or standard error per output variable. D1 and D2 indicate datasets with and without lag features, respectively. Values
are given as a 95% confidence interval based on 20 repeated training and testing iterations. Bold face numbers indicate the highest accuracy for each variable/average.

S e,1 S e,2 S e,3 S e,4 S e,5 S e,6 average

GB (D1) 1.246±0.116 0.697±0.058 1.068±0.058 0.738±0.042 0.874±0.050 1.085±0.096 0.951±0.030
XGB (D1) 1.127±0.064 0.693±0.018 1.043±0.026 0.768±0.022 0.835±0.022 0.996±0.044 0.910±0.018
RF (D1) 1.092±0.028 0.704±0.014 1.058±0.020 0.796±0.010 0.814±0.014 0.949±0.024 0.902±0.004
GB (D2) 1.030±0.074 0.729±0.040 0.901±0.056 0.742±0.050 0.767±0.024 0.877±0.044 0.841±0.022
XGB (D2) 0.966±0.036 0.723±0.018 0.902±0.032 0.749±0.022 0.716±0.020 0.833±0.034 0.815±0.010
RF (D2) 0.926±0.018 0.760±0.012 0.889±0.020 0.745±0.010 0.747±0.016 0.785±0.016 0.809±0.008

Fig. 3. Time plot of the true values of y1 and y4 together with and their corre-
sponding Random Forest estimates trained on the D2 dataset.

2. The process is not stable, and there are unknown factors
that outweigh the significance of the recorded variables;
or

3. The dataset is too small to allow accurate predictions with-
out over-fitting

Even though the added lag features in the D2 dataset do con-
tribute, signalling that some dynamic effects are learnt, the in-
crease in prediction accuracy is marginal. Referring to the cho-
sen metric of regression standard error, a result of S e = 1 would
indicate a range of prediction error similar to the range of true
value variation. Consequently, statically predicting the average
ŷ = ȳ would give the same accuracy, so a good model would
yield a result closer to zero that what was achieved in this paper.
In summary, we can assume that the label values (part measure-
ments) are significantly affected by relations or dynamics that
can’t be trained from the gathered data. This is due to the fact
that the measurement equipment is routinely calibrated and the
uncertainty controlled, so that random error is not likely the
reason for poor performance.

Fig. 4. Scatter plot of the true vs. predicted values of y4 based on the Random
Forest model trained on the D2 dataset.

It is notable that RF yielded the highest accuracy on both
the D1 and D2 datasets, since especially XGB is regarded as an
improved algorithm over RF and GB due to its clever regular-
ization and learning setup. As noted in section 3, Fig. 3 shows
a pattern of opposite predictions on the first part of the test set,
and a possible explanation for this could be multi-modality of
the studied manufacturing process leading to learning instabil-
ities. It could seem that XGB in this case is more prone to this
complexity.

Regardless of whether any of the above is true, the time de-
pendency is believed to have a significant impact on the effi-
cacy of the ML algorithms. This is evident because the manner
in which the dataset is split into training, testing and validation
sets – chronologically or randomly shuffled – greatly affects the
performance of the trained models. While a model trained on
randomly shuffled data will yield excellent test results, the same
model performs poorly if the test set is chronologically split.

To answer the defined research question, the studied ML ap-
proach seems to be able to predict only parts of the variations
seen in product geometry based on EBM process data. Conse-
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quently, it is questionable whether such predictions may pro-
vide value in a feed-forward control system. Nevertheless, it
could be evaluated whether a classification approach would be
more suitable than estimating continuous labels with a regres-
sion approach. In a simplified feed-forward control application,
where a proceeding manufacturing process should be adjusted
according to ML-based predictions, the adjustments could in-
deed be based on a discrete scheme instead of a continuous one.

5. Conclusions and future work

This paper presented a multivariate dataset from an EBM
process that exhibits time dependent traits. The performance of
three ML algorithms – namely RF, GB, and XGB – were com-
pared in terms of prediction accuracy. The results show that RF
performed the best on this dataset, but more importantly that all
of the trained models were only partially able to predict product
geometry. Further work is therefore required in order for such
a model to be suitable for feed-forward control or subsequent
manufacturing processes.

The findings of the present study warrant further research
into the dynamics of the EBM process. For future work, de-
signed experiments may reveal patterns that are unclear due to
sampling frequency. Further on, a larger dataset may address
the same challenge, especially with a higher sampling rate.
Finally, possible directions for future work are deep learning
methods such as recurrent neural networks (RNNs) to inher-
ently learn dynamics based on preceding data points, or hybrid
machine learning methods such as pseudo-Hamiltonian neural
networks [6] to actually learn the physics and disturbances of
the EBM process.
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