
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håkon Harnes

Deceptive bytes: An in-depth
evaluation of WebAssembly
obfuscation for evading
crypto mining detection

Master’s thesis in Computer Science
Supervisor: Donn Morrison
June 2023

Håkon Harnes

Deceptive bytes: An in-depth
evaluation of WebAssembly
obfuscation for evading
crypto mining detection

Master’s thesis in Computer Science
Supervisor: Donn Morrison
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface
The motivation for this thesis originates from the literature review conducted last semester as part
of the TDT4501 – Specialization Project course. The literature review has since been formalised into
a paper. A preliminary version is included in Appendix C for reference. Some of the background
sections of this thesis are derived from the literature review.

i

Acknowledgements
I would like to acknowledge those who have helped me while writing this thesis. Their guidance,
support, and encouragement have been invaluable.

First and foremost, mydeepest gratitude goes tomy supervisor, Associate ProfessorDonnMorrison.
From the very beginning, he has believed inmy capabilities, grantingme the liberty to freely explore
my ideas and interests. His guidance and support have been invaluable, and I am grateful for the
opportunity to work with him. Thank you, Donn, for placing your trust in me and for your patience
and encouragement throughout the process.

I also extend my gratitude to all the researchers and academics who generously responded to my
numerous emails and inquiries. My sincere thanks goes to Christian Collberg, the author of Tigress,
for the countless email exchanges helping me debug Tigress. Likewise, I am thankful to Javier
Cabrera Arteaga, a PhD candidate at KTH, for his valuable insights and for helping me re-train
MINOS. Further, I am grateful to Alano Romano for his assistance with MinerRay, Daniel Lehmann
for his insights on the V8 engine, and Robert Aboukhalil for introducing me to Biowasm, which
helped extend the dataset.

Moreover, I would like to thank my friends who have inspired and supported me. A special thanks
goes to Vetle Harnes for the many hours spent at school working together, discussing ideas, and,
of course, for consistently outplaying me in our many chess matches. I would also like to sincerely
thank Tor Henrik for his dedication in proofreading this thesis.

I am deeply grateful to my significant other, Kristine Saxe Grødal, for her valuable feedback and
encouragement throughout the process. Thank you for your patience, for always being there for
me, and, of course, for those perfectly timed and much-needed cups of coffee.

Lastly, I would like to thank my friends and family for their love and support throughout my stud-
ies. Their continuous encouragement and belief in my abilities have been a tremendous source of
motivation.

ii

Abstract
WebAssembly is a low-level bytecode language that allows high-level languages like C, C++, and
Rust to be executed in the browser at near-native performance. It has already seen extensive adop-
tion and is now natively supported in all modern browsers. However, its adoption also presents
new challenges in security. One of the most notable is drive-by mining attacks, where websites use
the computing resources of their visitors to mine cryptocurrency without their knowledge or con-
sent. A plethora of approaches have been proposed to detect drive-by mining, yet there is a lack of
research on how these detection methods can be sidestepped.

This thesis provides an in-depth evaluation of code obfuscation for WebAssembly, a largely unex-
plored topic. The objective is to evaluate how well code obfuscation can disguise the underlying
nature of the code and evade drive-by mining detection. We perform the most comprehensive eval-
uation of WebAssembly obfuscation to date, applying obfuscation at multiple abstraction levels –
including source code, LLVM bitcode, and WebAssembly binaries. In this evaluation, we leverage
existing obfuscation methods as well as develop novel ones. We not only evaluate the impact of
obfuscation on the WebAssembly binaries but also how the resulting native code produced after
compilation in the browser is affected. Moreover, we, for the first time in the literature, investi-
gate to what extent obfuscation applied to WebAssembly can be reversed through automatic de-
obfuscation and how this affects the detection capabilities. Lastly, we evaluate the overhead intro-
duced by obfuscation, measuring the space and time overhead.

The results suggest that obfuscation can successfully evade state-of-the-art drive-by mining detec-
tors. However, the effectiveness largely depends on the specific obfuscation transformation, detec-
tion method, and crypto mining algorithm. Moreover, we find that obfuscation can be partially
reversed through automatic de-obfuscation, but the degree of success varies depending on the spe-
cific transformation. The native code generated from the obfuscated WebAssembly binaries tends
to increase in size and, as a result, decrease in performance. Despite the significant performance
overhead for some transformations, we show how obfuscation can be used for evading detection
with minimal overhead in real-world scenarios.

These results offer insights into how researchers can develop obfuscation-resilient detection meth-
ods, thereby addressing the limitations of current methods. Moreover, we provide novel obfusca-
tion and de-obfuscation methods, as well as an extensive dataset of nearly 50 000 obfuscated Web-
Assembly binaries for researchers to extend and explore.

iii

Sammendrag
WebAssembly er et lavnivå bytekode-språk som lar høyere nivå språk som C, C++ og Rust kjøre
i nettleserenmed høy ytelse. Det brukes allerede i stor grad og støttes i allemoderne nettlesere. Men
WebAssembly introduserer også nyeutfordringer innen sikkerhet. En avdemest bemerkelsesverdige
er såkalte “drive-by mining” angrep, hvor nettsider utnytter brukernes maskinvare for å utvinne
kryptovaluta uten deres kjennskap eller samtykke. Det er utviklet en rekke metoder for å oppdage
drive-by mining, men det er foreløpig lite forskning på hvordan disse metodene kan omgås.

Denne oppgaven utfører en grundig evaluering av kodeobfuskasjon for WebAssembly, et lite ut-
forsket område i forskningslitteraturen. Målet er å undersøke til hvilken grad kodeobfuskasjon
kan skjule den underliggende hensikten til koden og dermed omgå drive-by mining deteksjon. Vi
gjennomfører den mest omfattende studien av kodeobfuskasjon for WebAssembly til nå, og an-
vender obfuskasjon på flere abstraksjonsnivåer – inkludert C kildekode, LLVM bitkode, og Web-
Assembly binærfiler. I denne prosessen tar vi i bruk en rekke eksisterende verktøy og utvikler også
nye. Vi evaluerer effekten av obfuskasjon påWebAssembly binærfiler og hvordan den resulterende
maskinkoden påvirkes etter kompilering i nettleseren. Videre undersøker vi, for første gang i lit-
teraturen, i hvilken grad obfuskasjon som anvendes på WebAssembly kan reverseres gjennom au-
tomatisk de-obfuskasjon og hvordan deteksjonsevnen påvirkes av dette. Avslutningsvis ser vi på i
hvilken grad obfuskasjon reduserer ytelsen, både når det gjelder plass- og tidskompleksitet.

Resultatene viser at obfuskasjon kan omgå state-of-the-art drive-by mining detektorer. Imidler-
tid er effektiviteten i stor grad avhengig av den spesifikke obfuskasjonstransformasjonen, detek-
sjonsmetoden og kryptovaluta-utvinningsalgoritmen. Videre finner vi at obfuskasjon kan delvis
reverseres gjennom automatisk de-obfuskasjon, men graden av suksess er avhengig av den spesi-
fikke obfuskasjonstransformasjonen. Maskinkoden somproduseres av de obfuskerteWebAssembly
binærfilene har en tendens til å øke i størrelse og oppnår også dårligere ytelse. Selv om reduksjonen
i ytelse er betydelig for enkelte transformasjoner, viser vi hvordan obfuskasjon kan brukes i praksis
for å omgå drive-by mining deteksjon med minimal ytelsesreduksjon.

Disse resultatene gir innsikt i hvordan forskere kan utvikle deteksjonsmetoder som er resistente
mot obfuskasjon, og dermed adressere begrensningene ved eksisterende metoder. I tillegg har vi
utviklet nye metoder for obfuskasjon og de-obfuskasjon, samt et omfattende datasett med nesten
50 000 obfuskerte WebAssembly binærfiler som kan anvendes i videre forskning.

iv

Contents

Preface . i
Acknowledgements . ii
Abstract . iii
Sammendrag . iv

1 Introduction 1
1.1 Motivation and background . 1
1.2 Objectives and research questions . 3
1.3 Contributions . 4
1.4 Scope and limitations . 4
1.5 Thesis structure . 5

2 Background 7
2.1 The Internet . 7
2.2 Attempts at low-level code on the Web . 8
2.3 WebAssembly . 9

2.3.1 Language concepts . 10
2.3.2 Security . 12
2.3.3 Ecosystem . 13

2.4 Drive-by mining . 14
2.5 Analysis techniques . 15

2.5.1 Detecting drive-by mining . 16
2.6 Obfuscation . 19

2.6.1 Diversification . 20
2.6.2 Obfuscation tools . 20
2.6.3 Obfuscation for WebAssembly . 21

2.7 Code similarity . 21
2.7.1 Sequence alignment . 22

3 Methodology 24
3.1 Experimental setup . 24

v

3.1.1 System configuration . 24
3.1.2 Dataset . 25

3.2 Implementation . 26
3.2.1 Obfuscation . 26
3.2.2 De-obfuscation . 30
3.2.3 Drive-by mining detection . 30
3.2.4 Extracting the native code . 30
3.2.5 Measuring the hash rate . 31
3.2.6 Dynamic time warping . 31

3.3 Evaluation metrics . 31
3.3.1 RQ1 – Effectiveness . 31
3.3.2 RQ2 – Detectability . 32
3.3.3 RQ3 – Reversibility . 33
3.3.4 RQ4 – Overhead . 33

4 Results 35
4.1 Effectiveness . 35

4.1.1 Distances after obfuscation . 35
4.1.2 Native code size increase . 37

4.2 Detectability . 39
4.2.1 Detection results . 39
4.2.2 WASim classifiers . 42

4.3 Reversibility . 44
4.3.1 Distances after de-obfuscation . 45
4.3.2 Detection results after de-obfuscation . 46

4.4 Overhead . 47
4.4.1 File size overhead . 47
4.4.2 Hash rate overhead . 48

5 Discussion 51
5.1 Effectiveness . 51
5.2 Detectability . 53
5.3 Reversibility . 55
5.4 Overhead . 57
5.5 Interpreting the findings . 58
5.6 Limitations . 59

6 Conclusion 61
6.1 Future research . 61
6.2 Concluding remarks . 62

Bibliography 62

vi

Appendices 77

A Repository: wasm-obf 78

B Repository: emcc-obf 81

C SoK: Analysis Techniques for WebAssembly 84

vii

List of Figures

2.1 WebAssembly serves as the intermediate bytecode bridging the gap between mul-
tiple source languages and host environments. The host environments compile the
WebAssembly binaries into native code for the specific hardware architecture. 10

2.2 Example of a function compiled to WebAssembly. The source code, the equivalent
human-readable format (wat), and the binary format (wasm) are shown. 12

2.3 Drive-by mining process: The mining script is fetched from the web server, which in-
stantiates the web workers and connects to theWebSocket proxy server, which relays
the communication back to the mining pool. 14

2.4 Overview of MINOS: The WebAssembly binary is converted to a grayscale image
and fed to the MINOS network. The network predicts whether the binary is benign
or malicious. 16

2.5 Overview ofWASim: Features are extracted from theWebAssembly binaries and fed
into a classifier. The classifier model is either: (a) Neural, (b) SVM, (c) Random for-
est, or (d)Naive Bayes. The classifier outputs a usage report containing the predictions. 17

2.6 Overview of MinerRay: The WebAssembly binary is converted into a custom inter-
mediate language, from which an interprocedural CFG is constructed. The control
flow is then analysed to detect drive-by mining, as well as for checking user consent. 17

2.7 Comparison of the Euclidean distance and DTW for sequence alignment. The Eu-
clidean distance is calculated as the sum of the absolute differences between the cor-
responding elements of the two sequences. The DTW distance is calculated as the
sum of the absolute differences between the corresponding elements of the two se-
quences, where the elements are aligned in such a way that the sum is minimised.
The figure is a modified version from Tavenard et al. [161]. 22

3.1 Overview of the research strategy: Each program is obfuscated using either (a) Ti-
gress, (b) emcc-obf, or (c) wasm-mutate at the corresponding abstraction level, and
finally compiled to WebAssembly. The WebAssembly binaries are then run through
the drive-by mining detectors, instantiated in the browser to extract the native code,
and compared with their non-obfuscated counterparts. 26

3.2 Precision is howmany retrieved items are relevant, while recall is howmany relevant
items are retrieved. The figure shown is a modified version fromWikipedia [52]. . . 32

viii

4.1 Distances for each obfuscation method, transformation, and iteration sorted in de-
scending order. The error bars shown are indicative of a 95% confidence interval. . . 36

4.2 Distances for each obfuscation method and transformation grouped by program cat-
egory, sorted by the average distances in descending order. The error bars shown are
indicative of a 95% confidence interval. 37

4.3 Native code size increase for each obfuscation method and transformation after lazy
compilation (Liftoff) and optimisation (TurboFan) in the V8 engine, sorted by the
average native code size increase in descending order. The error bars shown are in-
dicative of a 95% confidence interval. 38

4.4 Native code size increase for each iteration appliedwithwasm-mutate after lazy com-
pilation (Liftoff) and after optimisation (TurboFan) in the V8 engine. The error bars
shown are indicative of a 95% confidence interval. 39

4.5 F1 scores for each detection and obfuscationmethod. Darker colours indicate a higher
F1 score, while lighter colours indicate a lower F1 score. 40

4.6 The four different WASim classifiers and their respective prediction likelihoods for
identifying a WebAssembly binary as a crypto miner as the binaries undergo iter-
ative transformations using wasm-mutate. For each iteration, a randomly selected
transformation is applied. 43

4.7 Figure (a) shows themost effectivewasm-mutate transformations for evadingWASim
(neural) detection. Figure (b) shows the predictions of WASim (neural) for Web-
Assembly binaries that have been iteratively obfuscatedusing themost effective trans-
formations; namely code motion and peephole. 44

4.8 Distances for each obfuscationmethod and transformation before and after de-obfuscation,
sorted by the relative decrease in the distance after de-obfuscation in descending or-
der. The percentages show the relative decrease in the distance after de-obfuscation
for each transformation. Transformations marked with + indicate an increase in dis-
tance after de-obfuscation. 45

4.9 Distances for each iteration appliedwithwasm-mutate before and after de-obfuscation.
The percentages show the relative decrease in the distance after de-obfuscation for
each transformation. 46

4.10 F1 scores for eachdetection andobfuscationmethod after de-obfuscation. Dark colours
indicate a higher F1 score, while lighter colours indicate a lower F1 score. The num-
bers in the parenthesis signify the difference from Figure 4.5. 47

4.11 File size increase for each obfuscation method, transformation, and iteration sorted
in descending order. The error bars shown are indicative of a 95% confidence interval. 48

4.12 Relative hash rates for each obfuscation method, transformation, and iteration sorted
in descending order. The error bars shown are indicative of a 95% confidence interval. 49

4.13 Relative hash rates for each obfuscation method, transformation, and CryptoNight
variant sorted in descending order. 49

5.1 Grayscale images ofWebAssembly binaries before and after obfuscation. The images
serve as input to the convolutional neural network (CNN) used by MINOS. 53

ix

List of Tables

2.1 Sections of a WebAssembly module. 11
2.2 Features extracted by WASim that are subsequently used for classification. 18

3.1 System specification. 24
3.2 Dataset used in this study, spanning a wide range of categories, including utilities,

games, and crypto miners. 25
3.3 Number of WebAssembly binaries in the original and obfuscated case. 27

4.1 Precision, recall, and F1 scores for MINOS and WASim (neural) after applying ob-
fuscation with Tigress, emcc-obf, and wasm-mutate. 41

x

Listings

2.1 Source code. 12
2.2 wat format. 12
2.3 wasm format. 12

xi

Acronyms

ARPANET Advanced Research Projects Agency Network

ASIC Application-specific integrated circuit

AST Abstract syntax tree

CFG Control flow graph

CIL C intermediate language

CNN Convolutional neural network

COM Component object model

DFG Data flow graph

DOM Document object model

DTW Dynamic time warping

FN False negative

FP False positive

IoT Internet of Things

ISA Instruction set architecture

JIT Just in time

MBA Mixed boolean-arithmetic

NaCl Native Client

NTNU Norwegian University of Science and Technology

OLLVM Obfuscator-LLVM

xii

PE Portable executable

pNaCl Portable Native Client

RF Random forest

SOP Same-origin policy

SVM Support vector machine

TN True negative

TP True positive

VM Virtual machine

WABT WebAssembly binary toolkit

WASI WebAssembly system interface

xiii

Chapter 1

Introduction

1.1 Motivation and background
The Internet is continually growing more powerful and complex. Today, it hosts a variety of sophis-
ticated web applications ranging from social media platforms to games, streaming services, and
photo editors. The advantage of these web applications over native software lies in their availabil-
ity; they require no installation, are always up-to-date, and can be conveniently accessed and shared
via hyperlinks. Moreover, they offer portability, operating seamlessly across different devices, op-
erating systems, and hardware architectures. This development marks a significant departure from
the Internet’s initial use as a tool primarily for academics and researchers to share information and
collaborate on projects.

The technological capabilities enabling the performance feats of web applications primarily hinge
on browsers’ ability to not only displaywebsite content but to also execute application code, providing
interactive web experiences. JavaScript has been pivotal in this regard, enabling the development
of dynamic web applications. Although JavaScript was developed in a mere ten days, its adop-
tion has been extensive, spanning not only client-side web development but also server-side via
Node.js [127] and desktop applications through the Electron framework [61]. Indeed, JavaScript is
one of the most used programming languages, with 98% of all websites using it [163].

JavaScript, initially positioned as a minor counterpart to languages like Java, has exceeded initial
expectations and, arguably, what its initial design intended. The ever-increasing demands of web
applications have revealed the inherent limitations of JavaScript, predominantly due to its dynamic
language features. Its performance is largely dependent on complex just in time (JIT) compilers,
meaning maintaining consistent performance proves complex [153] and raises potential security
concerns [79]. While the human-readable text format is convenient for developers, it proves to be
less efficient as a code distribution format. With the mean website today containing nearly 500kB
of JavaScript code [75], the time invested in parsing and compiling this code significantly increases

1

Chapter 1. Introduction

the load times of websites [36]. An increasing trend sees JavaScript code being generated from other
languages rather than being written directly.1 As Atwood’s Law states, ”Any application that can be
written in JavaScript, will eventually be written in JavaScript” [50]. Inadvertently, JavaScript has become
the primary code format for the Web — not by design, but by circumstance.

Over the years, several technologies have been developed to address the inherent limitations of
JavaScript. This includes early attempts like Java [46], Flash [45], and ActiveX [44], to more recent
attempts such asGoogle’sNative Client (NaCl) [77] andMicrosoft’s asm.js [117]. Despite their nov-
elty, they fell short of achieving extensive adoption due to security, compatibility, and performance
issues. Consequently, their usage has dwindled over the years, further solidifying JavaScript’s po-
sition as the predominant language of the Web.

In 2015, a consortium of leading technology companies – including Mozilla, Microsoft, Google,
and Apple – announced they were working on a novel low-level bytecode language for the Web.
WebAssembly, a response to the limitations that have plagued preceding technologies, is designed
to be efficient, fast, and secure [80]. It allows high-level languages, like C, C++, and Rust, to be
executed in the browser at near-native performance. Already, it has seen extensive adoption, with
all major browsers supporting it in 2017, and as of May 2023, it is supported by 96% of all browser
installations [168]. Notably, it earned formal approval as a web standard in 2019 [173]. As such,
for the first time in over two decades, a new language has been introduced to the Web, standing
shoulder-to-shoulder with JavaScript as a natively supported language.

WebAssembly was initially designed to complement JavaScript, specifically for the computation-
ally intensive components of web applications. To that end, it has already been successful. Estab-
lished corporations like Figma, eBay, and Google have adopted WebAssembly to improve perfor-
mance [67, 60, 59]. WebAssembly serving as a compilation target for other languages has also been a
significant factor in its adoption, allowing applications that were once desktop-only, such as Google
Earth, Unity, and Photoshop, to be ported to the Web [59, 167, 22]. Beyond that, it has also been ex-
tended outside theWeb; to desktop applications [112], mobile devices [137], cloud computing [66],
blockchain virtual machines (VMs) [181, 63, 123], Internet of Things (IoT) [101, 109], embedded
devices [151], and even stand-alone runtimes [178, 179].

Nonetheless, WebAssembly has also been exploited for malicious purposes. The most prominent
example of this is drive-by mining, an attack strategy that exploits a website visitor’s hardware
resources to mine cryptocurrencies without their knowledge or consent. Such an approach has be-
come feasible with the advent of cryptocurrencies like Monero [114] and VerusCoin [169], which
can be mined using standard consumer-grade CPUs [113]. Although drive-by mining was initially
implemented using JavaScript, WebAssembly has been the preferred method in recent years due
to its superior performance. The release of WebAssembly in 2017 was followed by a 459% increase
in drive-by mining incidents in 2018 [2]. By 2019, more than half of all websites containing Web-
Assembly used it for drive-by mining [120]. Reports from the first three quarters of 2022 confirm
the steady growth of drive-by mining [94], indicating that it remains a pervasive problem.

1Such as TypeScript, or even asm.js for compiling C/C++ to JavaScript.

2

Chapter 1. Introduction

In response to the escalating threat of drive-by mining, a plethora of detection methods have been
proposed. Some methods rely entirely on static analysis of the WebAssembly code [122, 146, 95,
145], leveraging techniques such as signature matching, control flow graph (CFG) analysis, and
neural networks. Conversely, other methods use dynamic analysis [176, 143, 93, 92, 18], concentrat-
ing on behavioural characteristics like processor and memory usage, network traffic, and JavaScript
events. Evidently, the literature is not lacking in approaches for identifying drive-bymining attacks.

Surprisingly, there is limited research on how the aforementioned detection methods can be side-
stepped. Obfuscation, the process of making a program harder to analyse through applying various
code transformations, has proven to be an effective evasion strategy formalware detection [115, 133,
107]. Although obfuscatedWebAssembly binaries are a common occurrence on theWeb, the subject
of WebAssembly obfuscation has been scarcely explored. A short paper from 2021 merely touched
upon this [17], and while conducting my research, two impending papers surfaced with a similarly
limited focus [25, 103], only considering a select few obfuscation and detectionmethods. This recent
burst of interest underscores the timeliness and relevance of the issue and the apparent gap in the
literature.

1.2 Objectives and research questions
The primary objective of this thesis is to investigate and understand the application, effectiveness,
and implications of code obfuscation for WebAssembly. Specifically, we evaluate howwell obfusca-
tion can disguise the underlying nature of the code and evade drive-bymining detection. Moreover,
we delve into the extent of reversibility of obfuscation through automatic de-obfuscation and the
resulting impact on detection accuracy. We also quantify the overhead introduced by obfuscation,
both in terms of code size and hash rate, and evaluate whether the overhead is justifiable given the
obfuscation advantages.

Guided by these objectives, the following research questions are investigated in this thesis:

• RQ1 – Effectiveness Howeffective are the transformations at obfuscatingWebAssembly, and
how is the resulting native code affected?

• RQ2 –Detectability How effective is obfuscation at evading state-of-the-art drive-bymining
detectors, and which transformations are the most effective?

• RQ3 – Reversibility How resilient are the transformations to automatic de-obfuscation, and
how does de-obfuscation affect the detection accuracy?

• RQ4 – Overhead To what extent do the transformations contribute to overhead in terms of
code size and hash rate?

3

Chapter 1. Introduction

1.3 Contributions
We extend the current body of literature with the following contributions:

• We perform an exhaustive evaluation of code obfuscation for WebAssembly across a diverse
dataset, including both malicious and benign applications. Our evaluation includes multiple
obfuscation methods applied at several abstraction levels, a first in the literature. The insights
derived from this assessment serve as a valuable resource to further advance detection meth-
ods.

• We investigate how obfuscation can be used to disguise the underlying nature of the code and
evade state-of-the-art drive-by mining detectors.

• We build and release a novel obfuscation method for WebAssembly, emcc-obf,2 by leveraging
existing obfuscation tools. Moreover, we compare this method to existing obfuscation meth-
ods employed in the literature.

• We conduct an empirical study on WebAssembly obfuscation reversibility and resilience to
automatic de-obfuscation, a perspective not previously explored in the literature.

• We quantify the overhead introduced by obfuscation, covering factors like code size and hash
rate, differentiating between the CryptoNight variants. This granular exploration is a novelty
in the existing body of literature.

• We compile a comprehensive dataset of nearly 50 000 obfuscatedWebAssembly binaries span-
ning a diverse range of use cases.3 This includes all the prominent CryptoNight variants,
making it a significant asset for subsequent studies.

1.4 Scope and limitations
This research focuses primarily on obfuscation forWebAssembly, specifically in the context of drive-
bymining. We investigate a variety of obfuscationmethods and assess their effectiveness, reversibil-
ity, and the overhead they introduce.

However, there are several boundaries and limitations to the scope of this thesis:

• The focus of this thesis is on the obfuscation of WebAssembly with an emphasis on drive-by
mining. While some of the findings could potentially be relevant to reverse engineering, we
do not investigate this extensively. The highly subjective nature of reverse engineering studies,
which often require many participants, is beyond the scope of this thesis.

2https://github.com/HakonHarnes/emcc-obf
3https://github.com/HakonHarnes/wasm-obf/releases/tag/v1.0

4

https://github.com/HakonHarnes/emcc-obf
https://github.com/HakonHarnes/wasm-obf/releases/tag/v1.0

Chapter 1. Introduction

• The evaluation is limited to individual obfuscation transformations. While combinations of
transformations could potentially provide additional insights, the vast number of possible per-
mutations would significantly increase the size of the dataset, rendering the study infeasible
in practice.

• The performance overhead assessment is restricted to the crypto mining binaries within our
dataset. Implementing a common benchmark to evaluate the overhead across all application
categories is beyond the scope and focus of this thesis.

• Our research employs current, state-of-the-art static detection methods. As the field is rapidly
evolving, new techniquesmay emerge that could alter the findings of this thesis. Additionally,
we do not consider dynamic detection methods, which are not widely adopted due to the
runtime overhead they introduce.

• To our knowledge, there are no WebAssembly de-obfuscation tools. As such, we resort to
compiler optimisations as a substitute to remove the obfuscation. This approach may not per-
fectly capture the effectiveness of true de-obfuscation techniques that might be developed in
the future.

These limitations should be taken into account when interpreting the findings of our thesis. They
also highlight areas for potential future research in the field of WebAssembly obfuscation.

1.5 Thesis structure
This thesis is structured as follows:

• Chapter 2 – Background This chapter provides an overview of theoretical concepts relevant
to this thesis. It traces the historical development leading to the creation of WebAssembly, of-
fers an introduction to WebAssembly and its ecosystem, and delves into the issue of drive-by
mining. It also presents a variety of detection methods and describes the concept of obfusca-
tion, concluding with an exploration of code similarity.

• Chapter 3 – Methodology This chapter describes the experimental framework and imple-
mentation specifics of the thesis, including aspects such as system configuration, the dataset,
and the methods used for obfuscation and detection. Lastly, it presents the metrics used to
assess the research questions.

• Chapter 4 – Results This chapter presents the results of the experiments. The results are
presented in line with the research questions, focusing on the effectiveness, detectability, re-
versibility, and overhead of the obfuscation methods.

• Chapter 5 – Discussion This chapter reflects on the main findings, aligning them with ex-
isting literature and offering potential explanations and implications. Moreover, we highlight
the limitations of the thesis.

5

Chapter 1. Introduction

• Chapter 6 – Conclusion The final chapter provides a summary of the findings, discusses the
implications of the research, suggest areas for future research, and concludes the thesis.

The appendices are structured as follows:

• Appendix A – wasm-obf This appendix contains the source code of the experiments con-
ducted in this thesis and the associated experimental data.

• Appendix B – emcc-obf This appendix contains the source code and build scripts for the
novel obfuscation tool developed in this thesis, emcc-obf.

• Appendix C – Analysis Techniques for WebAssembly This appendix contains the prelimi-
nary version of the paper derived from the literature review conducted last semester.

6

Chapter 2

Background

This chapter presents the theoretical knowledge required to understand the thesis.1 Starting with
Section 2.1, it offers an overviewof the Internet’s history and JavaScript’s significance inweb applica-
tions, as well as its limitations. Then, Section 2.2 presents prior attempts at implementing low-level
code on the Web and their inherent limitations. Section 2.3 introduces WebAssembly, its security
mechanisms, and its surrounding ecosystem. The concept of drive-bymining is explained in Section
2.4, followed by a presentation of the corresponding detection methods in Section 2.5. Section 2.6
details the theory and tools of obfuscation, alongside a review of existing attempts in obfuscating
WebAssembly. Lastly, Section 2.7 presents the concept of code similarity, complexity metrics, and
dynamic time warping.

2.1 The Internet
The origins of the Internet trace back to the 1960s, with the establishment of the Advanced Research
Projects Agency Network (ARPANET), a project funded by the U.S. Department of Defense [19].
This ambitious initiative aimed to facilitate communication between universities and research insti-
tutions, utilising a then-novel concept called packet-switching [51]. Few would have thought back
then that this project would eventually evolve into the Internet as we know it today. It was not un-
til the 1990s, with the advent of the World Wide Web and Internet browsers such as Netscape and
Internet Explorer, that the Internet became widely accessible to the general public [49]. Suddenly,
the Internet was no longer confined to academia and research, and static, text-based web pages no
longer sufficed. The Internet was in dire need of a catalyst, something that could breathe life and
dynamic responsiveness into it.

That catalyst emerged in the form of JavaScript, a programming language enabling developers to
create interactive web pages. In the spring of 1995, while at Netscape, Brendan Eich was given the

1Some sections are derived from the literature review conducted last semester.

7

Chapter 2. Background

formidable task of creating a language that would complement Java, enhance user interactivity, and
change the face ofweb development [43]. In just ten days, Eichmanaged to design JavaScript – a feat
that forever altered the course of the Internet. Following its release, the Internet transformed from a
novelty into a necessity, enabling information sharing, connectivity, and entertainment, among nu-
merous other aspects of everyday life. Two decades after those ten days in 1995, 98% of all websites
on the Web use JavaScript [163], and it has even been extended to the server-side via Node.js [127]
and desktop applications through the Electron framework [61].

Despite JavaScript’s widespread adoption, it has some inherent limitations that have become appar-
ent as web applications become more resource-demanding. Being a high-level language, JavaScript
abstracts away details of the underlying hardware, and its dynamic typing means that the type of
variables is determined at runtime. Therefore, optimal performance is dependent on intricate just
in time (JIT) compilers, such as SpiderMonkey in Firefox or V8 in Google Chrome [153]. However,
the complexity of these JIT compilers also presents potential security vulnerabilities [79]. Since
JavaScript is an interpreted language, it must be parsed and interpreted every time it is executed.
Given that the median website today contains nearly 500kB of JavaScript code [75], parsing and
compiling this code contributes significantly to website loading times [36].

Moreover, an increasing trend sees JavaScript code being generated from other languages rather than
written directly. Although an impressive feat of engineering, this can only be seen as a workaround
to the limitations of JavaScript rather than a solution. Undoubtedly, JavaScript has transcended its
original design and, arguably, its intended purpose. It has been positioned as the primary coding
format for the Web, but not because it was designed for it.

2.2 Attempts at low-level code on the Web
Shortly after JavaScript’s release, Microsoft developed the ActiveX framework in 1996 [44]. It al-
lowed developers to embed signed x86 binaries through ActiveX controls. These controls were built
using the component object model (COM) specification, which was intended to make the controls
platform-independent. However, ActiveX controls contained compiled x86 machine code and calls
to the standard Win32 API, restricting them to x86-based Windows machines [44]. Additionally,
they were not run in a sandboxed environment, consequently allowing them to access and modify
system resources. In terms of security, ActiveX relied entirely on code signing and thus did not
achieve safety through technical construction, but rather through a trust model.2

Aimed to address the security issues of preceding approaches, Native Client (NaCl)was introduced
byGoogle in 2011 [77]. It allows native code to be executed on theWeb in a sandboxed environment.
This sandboxing model enables the coexistence of NaCl code with sensitive data within the same
process. However, NaCl is specifically designed for the x86 architecture, limiting its portability.
To address this limitation, Google introduced Portable Native Client (pNaCl) in 2013 [33]. pNaCl
builds upon NaCl’s sandboxing techniques but uses a stable subset of LLVM bitcode as an inter-

2Developers had to register with Verisign and sign a contract promising not to develop malware.

8

Chapter 2. Background

changeable format, enabling the portability of applications across different architectures. However,
pNaCl does not significantly improve compactness and still exposes details specific to compilers
and architectures, such as the layout of the call stack. NaCl and pNaCl are exclusively available in
Google Chrome, thus limiting the portability of the applications that use them.

Asm.js, which was introduced by Mozilla in 2013 [117], is a strict subset of JavaScript that can be
used as an efficient compilation target for high-level languages like C and C++. Through the Em-
scripten toolchain [62], these languages can be compiled to asm.js and subsequently executed in
modern JavaScript execution engines. As such, it benefits from sophisticated JIT compilers, en-
abling near-native performance. However, the strict subset nature of asm.js means that extending
the languagewith new features, such as int64, requires first extending JavaScript and then ensuring
compatibility with the asm.js subset. Even then, it can be challenging to implement these features
efficiently.

It is also worth noting that Java and Flash were among the first technologies to be used on the Web,
being released in 1995 and 1996, respectively [46, 45]. They offeredmanaged runtime plugins; how-
ever, neither was capable of supporting high-performance, low-level code. Moreover, their usage
has declined due to security vulnerabilities and performance issues.

2.3 WebAssembly
In 2015, a consortium of leading technology companies – including Mozilla, Microsoft, Google,
and Apple – announced they were working on WebAssembly,3 a low-level bytecode language for
the Web [14]. It was designed to address the compatibility and security issues that have plagued
preceding technologies while providing near-native performance [80]. By 2017, it was natively sup-
ported by all major browsers [80], and in 2019, it was formally standardised [173]. As of May 2023,
WebAssembly showcases an impressive 96% support across all browser installations [168]. Today,
WebAssembly stands alongside JavaScript as a natively supported language on the Web.

Initially, WebAssembly was intended to complement JavaScript, specifically for the computation-
ally intensive components of web applications. In that, it has already been successful. Estab-
lished corporations like Figma, eBay, and Google have adopted WebAssembly to improve perfor-
mance [67, 60, 59]. Applications that were once desktop-only, such as Google Earth, Unity, and
Photoshop, have been ported to the Web using WebAssembly [59, 167, 22]. Even AutoCAD, with
its three-decade-long codebase, has been made available in the browser [30].

Despite its name, WebAssembly is not just limited to the Web. Its usage is expanding to desk-
top applications [112], mobile devices [137], cloud computing [66], blockchain Virtual Machines
(VMs) [181, 63, 123], Internet of Things (IoT) [101, 109], embedded devices [151], and even stand-
alone runtimes [178, 179].

3Sometimes abbreviated to Wasm

9

Chapter 2. Background

Without a doubt, WebAssembly, although still evolving, has already gained considerable momen-
tum. It is set to become a crucial platform for computing, not only for theWeb but for a broad range
of applications in the years to come. Solomon Hykes, the founder of Docker, encapsulated its im-
portance by stating: ”If WASM+WASI existed in 2008, we would not have needed to create Docker. That’s
how important it is. Webassembly on the server is the future of computing” [88].

2.3.1 Language concepts

C/C++

Rust

Python

Go

Server-side

Client-side

Standalone VMs

Source languages WebAssembly binaries Host environments Hardware architectures

x86

ARM

Figure 2.1: WebAssembly serves as the intermediate bytecode bridging the gap between multiple
source languages and host environments. The host environments compile the WebAssembly bina-
ries into native code for the specific hardware architecture.

Overview WebAssembly is commonly referred to as a compilation target, a format into which
source codewritten in various languages can be compiled. As illustrated in Figure 2.1,WebAssembly
acts as an intermediate step that enables interoperability between source languages and hardware
architectures. As a bytecode, it provides a universal language into which different types of source
code can be compiled, which can then be executed in different host environments. For instance, pro-
grams written in Rust (a source language) can be compiled to WebAssembly and run in a browser
using the V8 engine (a host environment), which then compiles it into native code for the specific
hardware architecture.

Modules WebAssembly programs are organised into modules which serve as the fundamental
units of deployment, loading, and compilation. These modules contain definitions for types, func-
tions, tables, memories, and globals, which can be defined within the module or imported from
the host environment. Similarly, they can be exported from the module under potentially multiple
names and then imported by the host environment. Functions defined within the module have a
corresponding function body located in the code section, whereas locally defined globals have an
initialisation expression. Figure 2.1 contains an overview of the sections commonly found within a
WebAssembly module.

10

Chapter 2. Background

ID Section Description
0 Custom Debugging information or third-party extensions
1 Type Function signatures of the functions defined within the module
2 Import Functions, tables, memory, and global variables imported by the module

3 Function Functions defined in the module. The local variables and the body of the
functions are encoded in the code section

4 Table Tables defined in the module. Contains the function table, which is used for
indirect function calls

5 Memory Linear memories used within the module
6 Global Global variables used within the module
7 Export Functions, tables, memory, and global variables that can be accessed by JavaScript

8 Start The function index of the start function that is automatically invoked when the
module is instantiated after tables and memories have been initialised

9 Element List of elements used for initialising tables
10 Code Local variables and the body of functions
11 Data Data used for initialising memory

Table 2.1: Sections of a WebAssembly module.

Text and binary format Modules can be represented in two formats; the binary format (wasm)
and the human-readable text format (wat). The binary format, being a compact representation, is
designed for efficient network transmission and parsing. It is usually generated by compilers and in-
stantiated in runtimes. The corresponding human-readable text format is designed for debugging,
testing, and occasional manual editing, similar to native assembly languages. It is possible to con-
vert between these two formats using tools such as wasm2wat and wat2wasm from the WebAssembly
binary toolkit (WABT). Figure 2.2 shows the source code of a simple program, the human-readable
wat format, and the corresponding wasm format.

Types Functions, instructions, and variables are statically typed, meaning their types are deter-
mined at compile time. There exist only four primitive values types: 32-bit and 64-bit integers
(i32/i64) and single-precision and double-precision floating-point numbers (f32/f64). Aggregate
types, such as classes, objects, and arrays, are not natively supported. Instead, during compilation,
such types are transformed into primitive types and stored in memory.

Stack and variables Modules are executed on a stack-based virtual machine (VM). More specifi-
cally, instructions pop their inputs from and push their results to an implicit evaluation stack. There
are no registers in this system, but individual values can be stored in global variables that are visible
to the entire module or in local variables that are only visible to the current function. The evaluation
stack, global variables, and local variables are all managed by the VM.

11

Chapter 2. Background

1 int square(int x)

2 {

3 return x*x;

4 }

Listing 2.1: Source code.

1 (func (param i32) (result i32)

2 local.get 0

3 local.get 0

4 i32.mul

5)

Listing 2.2: wat format.

1 20 00 | local.get 0

2 20 00 | local.get 0

3 6c | i32.mul

4 0b | end

Listing 2.3: wasm format.

Figure 2.2: Example of a function compiled to WebAssembly. The source code, the equivalent
human-readable format (wat), and the binary format (wasm) are shown.

2.3.2 Security
Environment Modules execute within a sandboxed environment separated from the host environ-
ment using fault isolation techniques. This implies that modules execute independently and cannot
escape the sandbox without going through the appropriate APIs. For instance, WebAssemblymod-
ules in a web browser have no direct access to the document object model (DOM), but must use
JavaScript APIs to interact with it. Additionally, each module is subject to the security policies of
its embedding, such as the same-origin policy (SOP) enforced by web browsers [172], which re-
stricts the flow of information between web pages of different origins. In the case of standalone
WebAssembly runtimes with operating system support, the module must use the appropriate APIs
to access system resources such as files, for instance, through the WebAssembly system interface
(WASI).

Memory Unlike native binaries, which have access to all of the memory allocated to the process,
WebAssembly modules are restricted to a contiguous region of memory known as linear memory.
This memory is untyped and byte-addressable, and its size is determined by the data present in
the binary. The size of linear memory is always a multiple of a WebAssembly page, which is 64KiB.
When aWebAssemblymodule is instantiated, it uses the appropriateAPI call to create the necessary
memory objects needed for its execution. The JavaScript engine or system runtime then creates a
managed buffer, like an ArrayBuffer, to store the linearmemory. Thismeans that theWebAssembly
module accesses the physical memory indirectly through the managed buffer, which ensures that
it can only read and write data within a limited area of the memory.

Control flow integrity WebAssembly features a structured control flow, unlike other assembly-like
languages [56]. Instructions in a function are organised into well-nested blocks. Branches can only
jump to the end of surrounding blocks and only inside the current function. Multi-way branches
can only target blocks that are statically designated in a branch table. Unrestricted gotos to arbitrary
addresses are not possible. Data in memory cannot be executed as bytecode instructions, prevent-
ing attacks like shellcode injection or abuse of indirect jumps. The execution semantics guarantee
the safety of direct function calls through the use of explicit function section indexes and returns
through a protected call stack. The type signature of indirect function calls is checked at runtime.
Additionally, the LLVM compiler infrastructure includes a built-in implementation of fine-grained
control flow integrity, which has been extended to support the WebAssembly target [180].

12

Chapter 2. Background

2.3.3 Ecosystem
Compilation and source languages WebAssembly’s low-level naturemakes it an ideal compilation
target for systems languages like C, C++, and Rust. Both the Clang and the Rust compilers have
native support for WebAssembly, enabling direct generation of WebAssembly modules [35, 70].
Further enhancing this, Emscripten, a toolchain built on Clang and LLVM, is capable of porting C
and C++ code to the Web using WebAssembly [62]. In addition to compiling C and C++ code
to WebAssembly, it also produces the corresponding JavaScript “glue” code. The JavaScript code
is responsible for instantiating the WebAssembly module, as well as for providing the necessary
functionality for it to interact with the host environment. For instance, it pipes the output from
the printf function to the browser’s console. Similarly, wasm-bindgen enables high-level interac-
tions between Rust and JavaScript for use in the browser [147]. Even garbage collected languages
like C# [111], Python [141], and more recently Kotlin [83] and Dart [68], can be compiled to Web-
Assembly.

Host environment WebAssembly modules are executed in a host environment, which provides
the necessary functionality for the module to perform actions such as file or network access. In a
browser, the host environment is provided by the JavaScript engine, such as V8 or SpiderMonkey.
WebAssembly exports can be wrapped in JavaScript functions using the WebAssembly-JavaScript
API [118], allowing them to be called from JavaScript code. Similarly, WebAssembly code can im-
port and call JavaScript functions. Other host environments for WebAssembly include server-side
environments like Node.js [127] and stand-alone VMs like Wasmer [178], which provide their own
APIs for WebAssembly modules to use. For instance, modules running on stand-alone VMs may
interact with the local file system through WASI [177].

V8 compilation The V8 engine, which is used in Google Chrome, employs a two-tiered Web-
Assembly compilation pipeline [78]. Initially, the baseline Liftoff compiler lazily compiles functions
when they are first called. That is to say, if a function is never called, it is never compiled to native
code. Liftoff iterates over the WebAssembly code just once and immediately emits native code,
which allows for fast code generation, albeit with a limited set of optimisations. Once Liftoff compi-
lation is done, the native code is registeredwith theWebAssemblymodule for immediate future use.
For functions that are frequently invoked, termed “hot” functions, the V8 engine uses its optimis-
ing TurboFan compiler. Unlike Liftoff, TurboFan is a multi-pass compiler that constructs multiple
internal representations of the code during compilation, enabling advanced optimisations. When a
function is deemed hot, TurboFan is triggered to recompile and optimise it in the background. The
resulting optimised native code then replaces the existing Liftoff-generated code, ensuring increased
performance for all subsequent calls to that function.

13

Chapter 2. Background

2
Instantiate

web workers
Fetch mining scrip

t

Mining pool

communication

Relay communication
(Stratum protocol)

Client

WebSocket
proxy server

Mining pool

Web server

Cryptomine

1

4

5

3

Figure 2.3: Drive-bymining process: Themining script is fetched from theweb server, which instan-
tiates thewebworkers and connects to theWebSocket proxy server, which relays the communication
back to the mining pool.

2.4 Drive-by mining

Drive-by mining4 is a type of attack that involves using the hardware resources of a website visi-
tor to mine cryptocurrencies without their knowledge or consent. Such an approach has become
feasible with the advent of cryptocurrencies like Monero [114] and VerusCoin [169], which can be
mined using standard consumer-grade CPUs [113]. Drive-by mining can be executed through self-
hosted mining or by compromising web servers through software vulnerabilities [9, 97, 134, 166] or
misconfigurations [130], and then subsequently installing the mining scripts on the compromised
web servers. Alternatively, mining scripts can be distributed through advertising platforms [74, 28],
compromised third-party libraries integrated within various websites [182], or through adversarial
Docker images [31]. Interestingly, browser-based crypto mining has been used as an alternative
income stream by organisations like UNICEF [98], although with user approval, differentiating it
from adversarial drive-by mining.

Drive-by mining was initially implemented with JavaScript only and popularised with the launch
of CoinHive in 2017 [26]. However, WebAssembly has been the preferred method in recent years
due to its superior performance. The release of WebAssembly in 2017 was followed by a 459%
increase in drive-by mining incidents in 2018 [2]. By 2019, more than half of all websites containing
WebAssembly used it for drive-by mining [120]. Although CoinHive shut down in 2019 [138],

4Also referred to as cryptojacking.

14

Chapter 2. Background

reports from the first three quarters of 2022 confirm the steady growth of drive-by mining [94],
indicating that it remains a pervasive problem.

Drive-by mining is usually implemented with a combination of JavaScript and WebAssembly. The
JavaScript code is responsible for coordinating the mining process by communicating with the min-
ing pool, while WebAssembly is used to calculate the hashes. The process is depicted in Figure 2.3.
First, (1) when a user visits a website, the JavaScript and WebAssembly code is fetched from the
web server. Then, (2) the JavaScript code checks howmany CPU cores are available on the host ma-
chine and spawns web workers, one for each thread, depending on how many cores are available.
Each web worker instantiates the WebAssembly module and (3) connects to the WebSocket proxy
server. The WebSocket proxy server (4) connects to the mining pool and retrieves the mining job.
Lastly, the communication is relayed back to the web workers, which (5) calculate the hashes and
send the results back to the mining pool through the proxy server. The communication between the
web workers and the mining pool is usually implemented using the Stratum protocol [157].

2.5 Analysis techniques
Analysis techniques can be used in a variety of ways, not only for detecting malware but also for
vulnerability identification [156, 104], performance optimisation [164], and for understanding and
debugging code [125]. Although different in their objective, these techniques often follow similar
methodologies. As such, these analysis techniques, including those evaluated in this thesis, can be
classified over the following dimensions:

Static and dynamic Static analysis evaluates the programwithout executing it, enabling fast, real-
time detection. Its precision, however, often falls short of dynamic analysis due to its reliance on
approximating the actual runtime behaviour [55]. Obfuscation has also been found to be effec-
tive against static analysis [116, 21]. Conversely, dynamic analysis observes the behaviour of the
program during execution, typically providing higher accuracy than static analysis [55]. Although
advantageous, it can be resource-intensive and time-consuming, and it can struggle to explore all
possible program behaviours due to a large or potentially infinite search space [183]. While gener-
ally more resilient to obfuscation, the presence of obfuscation can increase time consumption and
lead to a considerable false positive rate [15, 100].

Rule-based and machine learning Rule-based methods evaluate programs according to a set of
predefined rules or patterns, offering transparent and comprehensible decision-making. These
methods can provide high accuracy, provided that the rules are precisely formulated. However,
their capability can be undermined by novel threats or obfuscation techniques that sidestep estab-
lished rules [115, 34]. On the other end of the spectrum, machine learning models are trained on
large datasets, where each entry is annotated with the expected output. Following this training, the
models apply the learned patterns to predict outcomes on previously unobserved instances. Al-
though machine learning methods generally handle obfuscation better than rule-based methods,
they are still susceptible to adversarial attacks. Adversarial attacks involve making subtle modifica-
tions to input data with the intent to deceive the model, thereby reducing its accuracy [160, 76, 87].

15

Chapter 2. Background

2.5.1 Detecting drive-by mining
To address the ever-increasing threat of drive-by mining, a number of analysis techniques have
been proposed. The literature presents methods based on both static [122, 146, 95, 145] and dy-
namic analysis [176, 143, 93, 92, 18], using both rule-based [146, 95, 176, 18] and machine learning-
based [122, 145, 143, 93, 92] approaches. Static methods use a wide range of techniques, including
signature matching [95], control flow graph (CFG) analysis [146], and neural networks [122, 145].
Dynamic methods rely on behavioral characteristics such as processor [143, 18] and memory [143]
usage, network traffic [143, 93, 92], and JavaScript events [143, 93, 92].

In this thesis, we focus on static analysis techniques for several reasons. Primarily, dynamic analysis
proves impractical due to its substantial overhead, ranging from 40% to 100% [143, 176]. This would
likely degrade the user experience and, therefore, it is not a viable option for real-world applications.
Although dynamic analysis can be used for offline analysis, it is not a feasible solution either, as the
blacklists need to be updated frequently and can be circumvented through diversification [7, 25].
Moreover, several dynamic methods depend on platform or browser-centric features, such as the
MessageLoop event [93], or Chrome debugging features [143], rendering it difficult to implement
in real-world applications. Lastly, empirical evidence demonstrates that static methods are just as
effective as dynamic methods in combating drive-bymining, with F1 scores ranging from 0.95 [122]
to 1.00 [146], compared to dynamic methods scoring between 0.96 [92] and 0.99 [18].

MINOS

10 b4 01 10 8b 01 0b
01 7f 41 00 21 00 20

00 0f 0b e1 08 7f 2
00 21 a0 01 21 03

100x100x1

Convolution Max pooling Convolution

Convolution

Max pooling

Max pooling

98x98x16
49x49x16

47x47x32
23x23x32

21x21x64 10x10x64
6400

2

Flatten

Dense

WebAssembly binary

Benign

Malicious

Figure 2.4: Overview of MINOS: The WebAssembly binary is converted to a grayscale image and
fed to the MINOS network. The network predicts whether the binary is benign or malicious.

MINOS is a machine learning-based method that uses an image-based classification deep learning
approach to identify drive-by mining [122]. As illustrated in Figure 2.4, theWebAssembly binary is
first converted into a 100x100 grayscale image. This image is then used as input to a convolutional
neural network (CNN), which has been trained on a dataset of malicious and benignWebAssembly
binaries. The CNN attempts to determine whether the WebAssembly binary performs drive-by
mining based on the patterns it observes in the grayscale image. The model was able to achieve an
F1 score of 0.95 with an average detection time of just 25.9 milliseconds.

16

Chapter 2. Background

WASim

10 b4 01 10 8b 01 0b
01 7f 41 00 21 00 20

00 0f 0b e1 08 7f 2
00 21 a0 01 21 03

WebAssembly binary
binary_file_size=424
text_file_size=4334

expansion_factor=10.2
...

Features

Classifier

Predictions

cryptominer=0.70
game=0.22

other=0.05
...

Feature
extractor

Feature extractor

(b) SVM

(a) Neural

(d) Naive Bayes

(c) Random forest

Extract features Analyse

Figure 2.5: Overview of WASim: Features are extracted from the WebAssembly binaries and fed
into a classifier. The classifier model is either: (a) Neural, (b) SVM, (c) Random forest, or (d)
Naive Bayes. The classifier outputs a usage report containing the predictions.

WASim is amachine learning-basedmethod that extracts and analyses a set of features for detecting
drive-by mining [145]. The procedure is depicted in Figure 2.5. First, the WebAssembly binary is
converted from the binary format (wasm) to the text format (wat), which is then parsed to extract
the features listed in Table 2.2. Then, these features are used by the classifier models to predict the
use case of the WebAssembly module, for example, classifying it as a crypto miner, game, or other
application. The authors implemented several classifier models, including neural, support vector
machine (SVM), random forest (RF), and naive Bayes, achieving accuracies of 91.6%, 87%, 82%,
and 64%, respectively.

MinerRay

Intraprocedural
CFG10 b4 01 10 8b 01 0b

01 7f 41 00 21 00 20

00 0f 0b e1 08 7f 2

00 21 a0 01 21 03

WebAssembly binary

Binary converter

Program
abstraction

Programming
language lifting

Interprocedural
CFG

Control flow graph
construction

Hash function
inference

User consent
call graph

Drive-by mining
detection

Benign

Malicious

Intraprocedural
CFG

Figure 2.6: Overview of MinerRay: TheWebAssembly binary is converted into a custom intermedi-
ate language, from which an interprocedural CFG is constructed. The control flow is then analysed
to detect drive-by mining, as well as for checking user consent.

MinerRay is a rule-based method that analyses the control flow of the WebAssembly module to
detect drive-by mining [146]. As illustrated in Figure 2.6, the process is divided into three parts:

17

Chapter 2. Background

Category Feature
File related Binary file size

Text file size
Expansion factor

Program complexity Total lines of code
Minimum lines of code in functions
Maximum lines of code in functions
Average lines of code in functions
Number of functions

WebAssembly specific Is an asm.js module
Number of types
Number of data sections
Number of import functions
Number of export functions

Function signature Names of import functions
Names of export functions

Table 2.2: Features extracted by WASim that are subsequently used for classification.

Programming language lifting, CFG construction, and drive-by mining detection. For program-
ming language lifting, it uses a set of abstraction rules to translate the WebAssembly opcodes to
a custom intermediate representation. Given the intermediate representation, an intraprocedural
CFG is constructed for each function. These intraprocedural CFGs are then linked together to cre-
ate an interprocedural CFG that represents the entire program. MinerRay uses this interprocedural
CFG to identify potential hashing algorithms by analysing the control flow of the program and
looking for patterns that match the semantics of hashing functions. To determine whether the user
is informed about crypto mining, MinerRay employs a dynamic approach that explores onclick
events of HTML objects. It checks if the onlick events can trigger WebAssembly APIs, such as
WebAssembly.instantiate. MinerRay achieved an F1 score of 0.99 with an average detection time
of 1.9 seconds.

VirusTotal

VirusTotal uses an extensive set of antivirus scanners to detect malware [170]. Of the 70 antivirus
scanners, 59 are able to scan WebAssembly binaries, including prominent ones such as AVG, Avast,
and McAfee. Each antivirus scanner integrated within the system incorporates distinct heuristic
methods tailored for the detection of specific types of malware. In the literature, it has been used to
detect drive-by mining [84, 176, 25].

18

Chapter 2. Background

2.6 Obfuscation
Obfuscation involves the process of transforming a given program into one that is syntactically dif-
ferent but semantically equivalent [121]. It has been used for a variety of purposes, including pre-
vention of reverse engineering [32, 154, 20], prevention of software modification [10, 72], hiding
static data [96, 91], and for malware evasion [115, 133, 107]. The obfuscation process involves the
application of a set of code transformations, which can be formally defined as follows:

Definition 1 (Transformation). Let P T−→ P ′ be a transformation of a program P to a program P ′.
The transformation is an obfuscating transformation ifP andP ′ have the same observable behaviour
but are different syntactically [41].

The transformations applied in this thesis, aligned with the taxonomy proposed by Collberg et
al. [41], are categorised as follows:

Control obfuscation Control obfuscation manipulates the control flow of the program. Transfor-
mations can affect control aggregation by splitting or merging computations [86, 82], control ordering
by randomising computation sequences [3, 89], and control computations by inserting redundant or
dead code [39, 174], or by incorporating opaque predicates [42, 148]. Such techniques can include
false or irrelevant conditional statements, embedding loops within loops, altering loop conditions,
flattening the control flow, or replacing control structures with complicated equivalents. These
transformations can significantly impede both static and dynamic analysis efforts, making the de-
ciphering of the actual execution flow of the program a challenging task [108, 42]. However, for
transformations that alter the control flow, a certain amount of computational overhead is usually
unavoidable [41].

Data obfuscation Data obfuscation is a technique that transforms the representation of data struc-
tures and values within the code while preserving their semantic meaning. Such techniques can
include splitting of data structures [58, 155], using complex encodings or encryption [165, 71], or
renaming variables and functions with obscure names [57].

Preventive transformations Preventive transformations are designed to thwart certain types of
code analysis or reverse engineering techniques. They typically target specific characteristics or be-
haviours of known analysis tools, creating code that is resistant to those particular methods. Such
transformations can include techniques like anti-debugging (preventing the code from being run
in a debugger) [29], anti-tampering (making it hard to modify the code) [139], or encoding mech-
anisms that resist automatic de-obfuscation.

Layout obfuscation Layout obfuscation involves modifying the arrangement of code elements.
Transformations may include removal of source code formatting [32, 5], reordering instruction se-
quences [39], or modifying the arrangement of functions and variables [27, 148]. The objective is to
disrupt the readability and traceability of the code, thus deterring reverse engineering attempts.

19

Chapter 2. Background

2.6.1 Diversification
Diversification is a technique used to generate multiple distinct yet semantically equivalent versions
of a program. Unlike obfuscation, which is primarily concerned with making a program difficult
to understand or analyse, diversification focuses on creating a multitude of program versions to
improve resilience against attacks [39, 69]. This strategy proves particularly beneficial when a group
of software systems are under attack; different variants ensure that not every instance is vulnerable
to the same exploit [85].

Although both diversification and obfuscation produce different variants of programs, their objec-
tives andmethods differ significantly. Obfuscationmakes the code harder to understand or analyse,
typically without regard to howmany variants are produced. Diversification, on the other hand, de-
liberately creates multiple variants to enhance security without necessarily aiming to obfuscate the
code. Nevertheless, it is important to note that diversification can inadvertently obfuscate the code,
thereby evading malware detection [24, 135]. Given this, while mutations is a term often used by
diversifiers, within this discussion, a transformationwill serve as an interchangeable term to denote
either an obfuscating transformation or a diversifying mutation.

2.6.2 Obfuscation tools
Throughout the years, a multitude of obfuscation tools have been developed for a variety of pro-
gramming languages and architectures. For instance, Microsoft’s portable executable (PE) format
can be obfuscated using tools like Themida [132], VMProtect [171], ExeCryptor [64], Code Virtu-
alizer [162], and Enigma Protector [140]. Similarly, x86 binaries can be obfuscated using tools such
as objobf [129], xObf [54], and x86-Code-Virtualizer [126].

Options forWebAssembly obfuscation are comparatively limited. The only known tool that operates
at the WebAssembly level is the wasm-mutate diversifier [23]. Nevertheless, a viable alternative is
to obfuscate code at a higher abstraction level, such as source code or LLVM bitcode, and then
subsequently compile the obfuscated code to WebAssembly. A variety of tools are available for C
code, including Tigress [40], Stunnix [158], CodeMorph [38], CShroud [53], and COBF [37]. Only
Tigress and Stunnix are actively maintained; however, Stunnix requires a license. LLVM bitcode can
be obfuscated using tools such as obfuscator-LLVM (OLLVM) [90].

In this thesis, the following obfuscation tools are used:

Tigress Tigress [40] is a source-to-source obfuscatorwritten inOCaml. It transforms aC99 standard-
compliant C source file into an obfuscated equivalent. It provides awide range of features, including
virtualisation with a randomly generated instruction set architecture (ISA), control flow flattening,
function splitting andmerging, data encoding, and preventive transformations like anti-taint analy-
sis and anti-alias analysis. Tigress has been thoroughly evaluated in the literature [17, 12, 152], and
has been found to be successful in evading drive-by mining detection [17].

20

Chapter 2. Background

OLLVM OLLVM [90] is implemented asmiddle-end passes in the LLVM compilation suite. Trans-
formations include control flow flattening, bogus control flow, basic block splitting, string encryp-
tion, and instruction substitution, to name a few. It is almost completely language and platform-
independent, working with all programming languages that are supported by LLVM, notably C,
C++, and Objective C. It has been used for preventing reverse engineering [12, 99], as well as for
evading malware detection [136].

wasm-mutate wasm-mutate [23] is a wasm-to-wasm diversifier written in Rust. It takes a Web-
Assembly module as input and returns a mutated variant of it. It offers 135 mutations, categorised
into peephole, control flow, and module structure mutations. Wasm-mutate has been used for
fuzzing [6] and has been found to be successful in evading drive-by mining detection [25].

2.6.3 Obfuscation for WebAssembly
WebAssembly obfuscation, a relatively underexplored field, has seen some intriguing investigations
lately. In their WiSec ’22 contribution, Bhansali et al. [17] used Tigress to obfuscate C source code
before compiling it to WebAssembly. Although they successfully evaded MINOS detection, they
did not ensure the WebAssembly binaries were functional after obfuscation, nor did they measure
the overhead caused by obfuscation. Further, an impending study in Computers & Security ’23 by
Cabrera Arteaga et al. [25] shows how wasm-mutate can be used to diversify WebAssembly bina-
ries, effectively evading both MINOS and VirusTotal, with minimal performance overhead. Loose
et al. [103] have proposed a forthcoming novel technique in DIMVA ’23, employing binary manip-
ulation through instrumentation to incorporate adversarial examples into code sections within the
module, successfully evading MINOS. However, they measured the performance overhead using a
generic SHA256-hashing library instead of crypto mining binaries, which threatens the validity of
their results.

In a similar vein, studies have turned to WebAssembly as a means of obfuscating JavaScript. Ro-
mano et al. [144] proposed Wobfuscator, a technique based on a set of code transformations that
opportunistically translates specific parts of JavaScript code into WebAssembly. Similarly, Wang et
al. [175] introduced JSPro, a tool that also converts JavaScript into WebAssembly for obfuscation
purposes. It is important to clarify that their objective diverges from ours; they seek to obfuscate
JavaScript code by using WebAssembly, while we concentrate on obfuscating the WebAssembly
code itself.

2.7 Code similarity
Traditional approaches for evaluating code similarity have typically relied on complexity metrics
such as cyclomatic complexity [110], Halstead complexity measures [81], and lines of code. These
metrics focus on the structural complexity of the code in terms of the control flow with cyclomatic
complexity, the usage of operators and operands with Halstead complexity, and the overall size of
the code with the lines of code metric.

21

Chapter 2. Background

Although these metrics have been widely used, they have several limitations [128, 131]. Their pri-
mary shortcoming is their high-level operation, which fails to identify the detailed semantics of the
code. For instance, code segments with the same structure but different functionality would be
considered similar under these metrics. Moreover, they are sensitive to minor transformations, like
code reordering, renaming, or refactoring, that maintain functionality while modifying the surface
structure of the code.

More importantly, these conventional complexity metrics fall short when it comes to assessing the
similarity between WebAssembly binaries. Since WebAssembly is a stack-based language, each
operation is executed by pushing to andpopping values from the stack. The sequence inwhich these
operations are carried out affects the semantics of the program. For instance, a simple inversion
of the push and pop operations sequence can either drastically change the functionality of a code
segment or render it entirely non-functional. Traditional complexity measures do not account for
the order of instructions and are therefore not suitable for WebAssembly.

2.7.1 Sequence alignment
Sequence alignment methods take into account the order of instructions and have therefore been
employed in this thesis. Several distance-based sequence alignment methods have been proposed
in the literature, such as the Euclidean distance [48], longest common sub-sequence [4], and dy-
namic time warping (DTW) [47]. Each of these methods offers unique strengths and is capable of
providing more granular control over complexity metrics. However, DTW has proven to be more
accurate than other sequence alignment algorithms [1, 13], like the Euclidean distance, which can
be visually seen in Figure 2.7.

(a) Euclidean distance. (b) Dynamic time warping.

Figure 2.7: Comparison of the Euclidean distance and DTW for sequence alignment. The Euclidean
distance is calculated as the sum of the absolute differences between the corresponding elements of
the two sequences. The DTW distance is calculated as the sum of the absolute differences between
the corresponding elements of the two sequences, where the elements are aligned in such a way
that the sum is minimised. The figure is a modified version from Tavenard et al. [161].

22

Chapter 2. Background

Dynamic time warping

DTW is a method used to measure similarity between two temporal sequences, which may vary
in time or speed [119]. Initially designed to address problems in speech recognition [149], it was
subsequently introduced to the field of time series by Berndt et al. [16]. DTW has demonstrated its
versatility by effectively addressing a myriad of challenges across a wide range of domains, such as
robotics, biometrics, andmeteorology [119]. Notably, it has also been successfully used for aligning
and comparing stack traces [106, 8] and WebAssembly binaries [7].

The fundamental concept of DTW, as shown in Figure 2.7b, is to identify the optimal alignment
between two sequences. The process aims to minimise the sum of absolute differences, commonly
referred to as the distance, between corresponding elements within the sequences. DTW computes
a cost matrix representing the pairwise distances between all possible pairs of points in the two
sequences. The goal is to find a path through this cost matrix, the so-called warping path, which
minimises the total cumulative distance. Notably, DTW can effectively compare sequences of vary-
ing lengths, negating the need for normalisation [142].

A particularly useful feature of DTW is that it can process any data that can be represented as a
sequence. Leveraging this, we can represent WebAssembly binaries as sequences of instructions
and compare them using DTW. DTW finds the distance between the two WebAssembly binaries
by aligning one sequence of instructions with the other by “warping” the time dimension of one
or both sequences. This distance serves as a dissimilarity metric between the binaries, with larger
distances indicating substantial dissimilarity.

However, traditional DTW algorithms can cause substantial computational overheads, particularly
for lengthy sequences. This is due to the necessity of calculating and storing the entire cost matrix,
which incurs a time complexity of O(N2). To avoid this, FastDTW was introduced as an approxi-
mation of DTW that operates in near-linear time complexity with comparable accuracy [150].

23

Chapter 3

Methodology

This chapter presents the methodology used in this thesis. The experimental setup, including the
system configuration and dataset used, is described in Section 3.1. Then, Section 3.2 provides an in-
depth overview of the implementation of obfuscation, de-obfuscation, drive-by mining detection,
how we extracted the native code, measuring the hash rate, and DTW. Lastly, Section 3.3 presents
the metrics used to evaluate the data collected.

In the interest of transparency and reproducibility, the code used to conduct the experiments is
publicly available on GitHub.1

3.1 Experimental setup

3.1.1 System configuration

Component Specification
Operating system Debian 10
Kernel 4.19.0-22
Processor AMD EPYC 7742
Processor frequency 2.24 GHz
Processor cores 64 cores
L1 cache 32K
L2 cache 512K
L3 cache 16384K
Physical memory 64 GB

Table 3.1: System specification.

The experiments were performed on a VM pro-
vided by the Norwegian University of Science and
Technology (NTNU). Note that although the VM
has 64 processor cores available, the experiments
relating to drive-by mining were performed us-
ing only 4 cores, making the results comparable
with consumer-grade hardware andmobile devices.
Moreover, the code has been containerised using
Docker to ensure that the experiments are repro-
ducible across several system configurations. Table
3.1 presents a detailed specification of the system.

1https://github.com/HakonHarnes/wasm-obf

24

https://github.com/HakonHarnes/wasm-obf

Chapter 3. Methodology

3.1.2 Dataset

Category Name Description
Utilities lcs Calculates the longest common subsequence of two strings

tree Lists folder contents in a tree format
wgsim Whole-genome simulation tool for generating sequencing reads
seqtk Toolkit for processing sequences in FASTA/Q formats
smith-waterman Algorithm for local sequence alignment of protein and DNA
needleman-wunsch Algorithm for global sequence alignment of protein and DNA

Games pong Arcade game simulating table tennis
snake Arcade game where the player controls a snake
f1-race Racing game that simulates Formula 1 car races
breakout Arcade game where you control a paddle to hit a bouncing ball
game-of-life Cellular automaton simulating the evolution of cells
wasm-asteroids Arcade game where you control a spaceship to shoot asteroids

Crypto miners cn-0 Variant 0 – Original CryptoNight algorithm
cn-1 Variant 1 – Also known as Monero v7
cn-2 Variant 2 – ASIC-resistant version
cn-r Variant 4 – Also known as CryptoNightR
cn-lite-0 Lite variant 0 – cn-0 with half the memory and iterations
cn-lite-1 Lite variant 1 – cn-1 with half the memory and iterations
cn-lite-2 Lite variant 2 – cn-2 with half the memory and iterations
cn-half Half variant – cn-2 with half the iterations
cn-rwz Reduced work variant – cn-2 with a quarter the iterations
cn-pico-trtl Pico turtle variant – cn-2 with an eighth thememory and iterations

Table 3.2: Dataset used in this study, spanning awide range of categories, including utilities, games,
and crypto miners.

Detailed in Table 3.2, the dataset used in this thesis covers a broad spectrum of categories, includ-
ing utilities, games, and crypto miners. All of these applications are open-source projects written
in C. The utilities were carefully selected to represent a wide range of functionality, featuring Linux
utilities, sequence alignment algorithms, and simulations. Meanwhile, the games are chosen to rep-
resent a wide range of complexity, ranging from classical arcade games to cellular automaton simu-
lations. Lastly, the crypto miners contain the predominant versions of the CryptoNight algorithm,
as well as their less memory and computation-intensive variants. This should provide extensive
coverage of crypto mining malware, as several studies have found that in-the-wild drive-by mining
implementations are all based on the CryptoNight algorithm [25, 84].

25

Chapter 3. Methodology

3.2 Implementation

C source code LLVM WebAssembly Native code

C source code LLVM WebAssembly

V8
(Liftoff)

Emscripten
(Binaryen)

Emscripten
(Clang)

Native code

V8 (TurboFan)

60s

Tigress

(a) Obfuscate

emcc-obf wasm-mutate

(b) Obfuscate (c) Obfuscate

Original

Obfuscated
CompareC source code

Compare and run
drive-by mining detection

Figure 3.1: Overview of the research strategy: Each program is obfuscated using either (a) Tigress,
(b) emcc-obf, or (c) wasm-mutate at the corresponding abstraction level, and finally compiled to
WebAssembly. The WebAssembly binaries are then run through the drive-by mining detectors,
instantiated in the browser to extract the native code, and compared with their non-obfuscated
counterparts.

The implementation, aligned with the research strategy depicted in Figure 3.1, is described in the
following sections. Each application in the dataset undergoes obfuscation using Tigress, emcc-obf,
and wasm-mutate, as specified in Section 3.2.1. After obfuscation, the WebAssembly binaries are
attempted de-obfuscated through compiler optimisations, described in Section 3.2.2, before passing
the original, obfuscated, and de-obfuscated binaries to the drive-by mining detectors, detailed in
Section 3.2.3. Moreover, the WebAssembly binaries are instantiated within the Chrome browser to
extract the native code, as explained in Section 3.2.4. To measure the performance overhead of the
crypto miners, we implement a drive-by-mining client, web server, and WebSocket proxy server,
described in Section 3.2.5. Lastly, we implement the DTW algorithm as a means of comparing the
WebAssembly binaries, detailed in Section 3.2.6.

3.2.1 Obfuscation
For obfuscation, we use a variety of obfuscation methods, each operating at a different abstraction
level. We obfuscate the source code using Tigress, the LLVM bitcode using emcc-obf, and the Web-
Assembly code usingwasm-mutate. In otherwords; we either apply obfuscation before compilation
using Tigress, during compilation using emcc-obf, or after compilation using wasm-mutate.

The applications in Table 3.2 are obfuscated using Tigress, emcc-obf, and wasm-mutate. The num-
ber of binaries generated for each application is shown in Table 3.3. For Tigress and emcc-obf, we ap-
ply eight transformations per application, while for wasm-mutate, we apply six transformations per

26

Chapter 3. Methodology

Category Original Tigress emcc-obf wasm-mutate stacked wasm-mutate
Utilities 6 48 48 36 6000
Games 6 48 48 36 6000
crypto miners 10 80 80 60 10 000
Sum 22 176 176 132 22 000

Table 3.3: Number of WebAssembly binaries in the original and obfuscated case.

application. Since wasm-mutate produced unsatisfactory results when applying individual trans-
formations, and in an effort to replicate results from other studies [25], we also stack the wasm-
mutate transformations. To this end, we apply 1000 random stacked transformations to each appli-
cation in the dataset. This results in 22 WebAssembly binaries in the original dataset and a total of
22 484 binaries in the obfuscated dataset.

Since Tigress expects only one source file as input, we merge all the source files for each application
into one file using the C intermediate language (CIL) [124]. In this process, we identified2 and
fixed3 a bug in CIL, enabling us to process all the applications in our dataset. Although only Tigress
requires a single source file, we use the same source file for emcc-obf and wasm-mutate to ensure
that the source code is identical for all obfuscation methods. To further ensure consistency, we com-
pile all WebAssembly binaries using the same Emscripten version. The applications were compiled
with optimisation turned off to ensure the compiler did not optimise away the obfuscation applied.

To ensure correctness, we invoke all the binaries in the browser and manually check that they are
still functioning as intended. For the stacked wasm-mutate transformations, we check every 100th
iteration. For the crypto miners, we ensure that the hashes reach the mining pool and are accepted
by it as valid hashes. We were only able to verify this for cn-r, cn-lite-0, and cn-pico-trtl, due to the
mining network difficulty, which led to the receipt of new jobs before the other variants could solve
and submit the hashes. Thus, for all CryptoNight variants, we compare the first 100 hashes of the
original and obfuscated binaries and ensure that they are identical. We found that the applications
in our dataset still functioned as intended after obfuscation.

Tigress

We use the latest version of Tigress, version 3.3.2, to obfuscate the source code of each application.
To that end, we apply the following transformations to the source code of each application:

• Flattening: Control obfuscation that transforms the control flow of an application into a flat
hierarchy, thereby eliminating structured control flow.

• Random functions: Control obfuscation that generates a unique random function. Random
function calls are also inserted into the generated code for increased complexity.

2https://github.com/goblint/cil/issues/137
3https://github.com/goblint/cil/pull/138

27

https://github.com/goblint/cil/issues/137
https://github.com/goblint/cil/pull/138

Chapter 3. Methodology

• Function splitting: Control obfuscation that splits a function into smaller sub-functions. This
technique disguises the structure of the original function, thus complicating the process of
code analysis.

• Virtualisation: Control obfuscation that transforms a function into a specialised interpreter
by constructing a unique bytecode. This technique involves the creation of a virtual ISA and
a bytecode program, with each function essentially executing as a self-contained VM.

• Encode arithmetic: Data obfuscation that replaces integer arithmetic with more complicated
but equivalent expressions using mixed boolean-arithmetic (MBA) [65].

• Encode literals: Data obfuscation that replaces constant integers and strings with code that
dynamically generates them at runtime. Specifically, it uses opaque expressions to substitute
integers and replaces strings with functions that generate them at runtime.

• Anti-alias analysis: Preventive transformation that replaces all direct function calls with in-
direct ones to disrupt static analysis techniques that make use of alias analysis.

• Ant-taint analysis: Preventive transformation that replaces the conventional data flow used
for variable copying with control flow instead, with the aim of disrupting dynamic analysis
tools that make use of taint analysis.

emcc-obf

We build and release emcc-obf,4 the first WebAssembly compiler with built-in obfuscation support.
It is a modified version of the Emscripten compiler, one of the most popular WebAssembly compil-
ers. The modifications are based on OLLVM [90], which is no longer maintained. Instead, we use
the Hikari obfuscator,5 a maintained fork of OLLVM which is compatible with LLVM 16.0.0. We
build emcc-obf using the Hikari-modified version of LLVM 16.0.0, and compatible Binaryen6 and
Emscripten7 versions. The precise commit hashes were found using the Emscripten releases page.8

We apply the following transformations to the LLVM bitcode of each application:

• Control flow flatteningControl obfuscation that flattens the control flow of the program, sim-
ilar to that of the flattening transformation of Tigress.

• Bogus control flow: Control obfuscation that modifies the function call graph by inserting a
new basic block preceding the original block. This new block includes an opaque predicate
and executes a conditional jump to the original block.

4https://github.com/HakonHarnes/emcc-obf
5https://github.com/61bcdefg/Hikari-LLVM15
6Commit hash: ecbebfbee12f2f25af648119604915fc37427f6f
7Commit hash: fab93a2bff6273c882b0c7fb7b54eccc37276e03
8https://chromium.googlesource.com/emscripten-releases/

28

https://github.com/HakonHarnes/emcc-obf
https://github.com/61bcdefg/Hikari-LLVM15
https://chromium.googlesource.com/emscripten-releases/

Chapter 3. Methodology

• Indirect branches: Control obfuscation that replaces branching instructions with indirect
branching. This technique thwarts disassemblers’ ability to accurately predict the complete
control flow through static analysis.

• Basic block splitting: Control obfuscation that splits basic blocks, thereby breaking the struc-
ture by artificially increasing the number of basic blocks in a function.

• Function wrapper: Control obfuscation that encapsulates each target function within a gen-
erated wrapper function, introducing an additional layer of indirection to hinder control flow
analysis.

• Substitute instruction: Data obfuscation that replaces arithmetic and boolean expressions
with more complicated but equivalent instruction sequences. This is similar to the encode
arithmetic transformation of Tigress.

• Constants encryption: Data obfuscation that encrypts constant integer values using the XOR
cipher. The encrypted values are decrypted at runtime to their original form. This complicates
reverse engineering as an analyst cannot directly read the constant values from the static code.

• String encryption: Data obfuscation that encrypts string values using the XOR cipher. The
encrypted values are decrypted at runtime to their original form. Similar to constants encryp-
tion, but for strings.

wasm-mutate

We use wasm-tools9 version 1.0.33, which contains the wasm-mutate tool. We use the –preserve-
semantics flag to ensure that only semantics-preserving transformations are applied. Using wasm-
mutate, we apply the following transformations to the WebAssembly binaries of each program:

• Code motion: Control obfuscation that modifies the abstract syntax tree (AST) of a Web-
Assembly module by selectively applying a defined set of mutators, modifying the control
flow or other aspects of the code while preserving its functionality.

• Peephole: Data obfuscation that applies random, localised modifications on portions of the
WebAssemblymodule. This is achieved by generating aminimal data flow graph (DFG) from
a selected operator, applying predetermined rewriting rules to this DFG, resulting in a subtly
modified version of the original segment in the module.

• Add function: Layout obfuscation that adds a function to the module.

• Add type: Layout obfuscation that adds a type to the module.

• Add custom section: Layout obfuscation that adds a custom section to the module.

• Remove item: Layout obfuscation that removes an item (e.g. function) from the module.
9https://github.com/bytecodealliance/wasm-tools

29

https://github.com/bytecodealliance/wasm-tools

Chapter 3. Methodology

In addition to applying the individual transformations, we also stack them. To this end, we apply
1000 random stacked transformations to each application. This is similar to the “Baseline evasion”
algorithm proposed by Cabrera et al. [25].

3.2.2 De-obfuscation
To our knowledge, there are no publicly available de-obfuscation tools for WebAssembly. As a
substitute, we use compiler optimisations to automatically de-obfuscate theWebAssembly binaries.
We use wasm-opt from Binaryen, which can be applied directly to the WebAssembly binaries. We
apply the highest optimisation level, -O3, with the aim of reversing as many transformations as
possible.

We optimise all of the binaries in the dataset, including the benign ones, so we have a point of
comparison. In total, we optimise 22 506 binaries, leaving us with 22 506 optimised binaries and 22
506 non-optimised binaries, for a total of 45 012 binaries evaluated in this thesis.

3.2.3 Drive-by mining detection
In order to identify drive-by mining, we implement the detection methods presented in the back-
ground chapter; namelyMINOS,WASim, MinerRay, and VirusTotal. For MINOS, we use the repro-
duction by Cabrera et al.10 We use the publicly available implementation for WASim,11 although
we encountered challenges due to out-of-date dependencies, which we then updated to their latest
versions.12 We also use the public implementation of MinerRay,13 albeit faced with issues related
to the JavaScript heap limit due to the path explosion problem, which led us to disable the function
call linking for larger files as advised by the authors.14 This action, however, may affect the detection
rate. Additionally, we implemented a two-minute timeout delay to prevent indefinite execution. For
VirusTotal, we use their API.15

The MINOS reproduction by Cabrera et al., trained on 144 benign and 49 crypto mining binaries,
resulted in a 0% detection accuracy for our dataset. To address this issue, we re-trained MINOS
using the same dataset as Cabrera et al., augmenting it with the non-obfuscated binaries from our
dataset. We did not re-train the other machine learning-based detection methods as they delivered
higher accuracies.

3.2.4 Extracting the native code
Extracting the native code compiled by the V8 engine proved to be a challenging task. After dia-
logue with the V8 developers, it was made clear that there is no convenient method to extract the
native code generated by the V8 engine. Despite this, we are able to determine the size of the native

10https://github.com/ASSERT-KTH/wasm_evasion/tree/main/malware_reproduction/rq2
11https://github.com/WASimilarity/WASim
12https://github.com/WASimilarity/WASim/pull/20
13https://github.com/miner-ray/miner-ray.github.io
14https://github.com/miner-ray/miner-ray.github.io/issues/20
15https://developers.virustotal.com/reference/overview

30

https://github.com/ASSERT-KTH/wasm_evasion/tree/main/malware_reproduction/rq2
https://github.com/WASimilarity/WASim
https://github.com/WASimilarity/WASim/pull/20
https://github.com/miner-ray/miner-ray.github.io
https://github.com/miner-ray/miner-ray.github.io/issues/20
https://developers.virustotal.com/reference/overview

Chapter 3. Methodology

code that the V8 engine generates. To do this, we instantiated the WebAssembly modules in the
browser and let them run for 60 seconds, allowing time for TurboFan optimisation. Then, we used
the –print-wasm-code flag in V8 to print the size of the native code generated by V8 for both Liftoff
and TurboFan. Although we could not directly extract the native code, its size provides insight into
how, or if, obfuscation affects the native code.

3.2.5 Measuring the hash rate
Tomeasure the hash rate, we implement a drive-bymining client, web server, andWebSocket proxy
server as described in Section 2.4. We use the public Webminerpool16 implementation as a starting
point, butwemodify the code in several ways. First, we extend the list of cryptomining pools so that
we can support all CryptoNight variants. Second, we fixed a bug in the code that caused the hash
rate to be measured incorrectly. Lastly, we containerised the client and server, as well as disabled
caching, to ensure that the environment was consistent across all experiments.

3.2.6 Dynamic time warping
We use DTW to measure the dissimilarity between theWebAssembly binaries through the distance
metric. Since the DTW algorithm expects numerical data, we preprocessed the WebAssembly bi-
naries first. We begin by converting the WebAssembly binaries from the binary format (wasm) to
the human-readable format (wat). Then, we use Python’s built-in hash method to convert each in-
struction to a unique integer. In practice, the WebAssembly binary is converted into a sequence of
instructions represented as integers. Given the considerable length of the WebAssembly binaries,
we use FastDTW. To implement this, we use the fastdtw17 python library.

3.3 Evaluation metrics
To address the research questions, we use several metrics to evaluate the effectiveness, detectability,
resilience, and overhead introduced by obfuscation. These metrics are presented in the following
sections.

3.3.1 RQ1 – Effectiveness
To evaluate obfuscation effectiveness, we use the distance between the original and obfuscatedWeb-
Assembly binaries, as derived from the DTW algorithm.

Definition 1 (Distance). The distance denotes the least cost of aligning two sequences of instruc-
tions, each representing a WebAssembly binary. The value represents the number of adjustments
needed for one or both sequences to correspond to the other. As such, large distances indicate a
substantial dissimilarity.

16https://github.com/notgiven688/webminerpool
17https://pypi.org/project/fastdtw

31

https://github.com/notgiven688/webminerpool
https://pypi.org/project/fastdtw

Chapter 3. Methodology

Moreover, we investigate how obfuscation affects the size of the native code generated by the V8
engine and whether the TurboFan compiler can effectively eliminate instructions introduced by ob-
fuscation. To this end, we extract the native code size as described in Section 3.2.4 and compute the
relative increase in native code size after obfuscation has been applied. This is performed for the
native code generated by both Liftoff and TurboFan.

Definition 2 (Native code size increase). The increase in native code size indicates the relative in-
crease in the size of the native code after obfuscation. This metric is calculated for the native code
generated by the Liftoff and TurboFan compilers separately. Specifically, ifN denotes the size of the
original native code, and N ′ is the size after obfuscation, then:

Native code size increase =
N ′ −N

N
× 100%

3.3.2 RQ2 – Detectability

Cryptominers Benign

Retrieved elements

False positives (FP)True positives (TP)

False negatives (FN) True negatives (TN)

Precision =

Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?

Abbreviations: True positive (TP), True negative (TN), False positive (FP), False negative (FN).

Figure 3.2: Precision is how many retrieved items are relevant, while recall is how many relevant
items are retrieved. The figure shown is a modified version fromWikipedia [52].

To assess how effective the obfuscation methods are in evading detection, we feed the obfuscated
binaries to the drive-by mining detectors presented in Section 3.2.3. Following this, we calculate
the resulting precision, recall, and F1 scores to assess the accuracy of the detection methods. These
measures, illustrated in Figure 3.2, are formally defined as follows:

32

Chapter 3. Methodology

Definition 3 (Precision). Precision measures how many of the retrieved items are relevant. In the
context of drive-by mining, it measures how many of the items identified as crypto miners are ac-
tually crypto miners. Precision is formally defined as:

Precision =
TP

TP+ FP

Definition 4 (Recall). Recall measures howmany of the relevant items are retrieved. In the context
of drive-by mining, it measures how many of the crypto miners are identified as crypto miners.
Recall is formally defined as:

Recall = TP
TP+ FN

Definition 5 (F1 Score). The F1 score serves as a single metric that combines precision and recall.
It is the harmonic mean of these two quantities, and hence, it gives equal weightage to both. The F1
score is calculated as:

F1 score = 2× Precision× Recall
Precision+ Recall

In this thesis, we use the F1 score as the primary metric to evaluate the overall accuracy of the
detection methods.

3.3.3 RQ3 – Reversibility
To evaluate the resilience of the applied transformations, we de-obfuscate the WebAssembly bina-
ries as described in Section 3.2.2. Then, we compute the distances (Definition 1) of the de-obfuscated
binaries, comparing themwith the distances of the obfuscated binaries. A reduction in distance fol-
lowing de-obfuscation indicates the successful removal of obfuscation and, thereby, a successful
de-obfuscation process.

3.3.4 RQ4 – Overhead
We determine the size overhead by comparing the sizes of the original and obfuscated binaries.
The file size is measured in bytes using Python’s getsize method. The relative increase in file size
is then determined.

Definition 6 (File size increase). The file size increase refers to the relative increase in file size
caused by obfuscation. If S is the original file size and S′ the size after obfuscation, then:

File size increase =
S′ − S

S
× 100%

33

Chapter 3. Methodology

For the crypto mining binaries, we measure and compare the hash rates in the original and obfus-
cated cases. To this end, we implement a drive-by mining setup as described in Section 3.2.3. We let
the binaries calculate hashes for 100 seconds before measuring the total hashes.

Definition 7 (Hash rate). The hash rate is defined as the number of hashes calculated per second.
If h is the total number of hashes calculated in time t, then:

Hash rate =
h

t

To quantify the performance overhead introduced by obfuscation, we calculate the relative hash rate
of the obfuscated binaries compared to the original binaries.

Definition 8 (Relative hash rate). The relative hash rate is a measure of the change in performance
due to obfuscation. If H is the original hash rate, and H ′ the hash rate after obfuscation, then:

Relative hash rate =
H ′

H
× 100%

34

Chapter 4

Results

This chapter presents the results of the experiments described in Chapter 3. These results are sys-
tematically structured and presented in alignment with the research questions.

In Section 4.1, we start by evaluating the effectiveness of obfuscation through the analysis of the
WebAssembly binaries and the resulting native code after compilation in the browser. Then, in
Section 4.2, we examine if obfuscation can evade the drive-bymining detectors. Moving forward, we
analyse the reversibility of the transformations by performing automatic de-obfuscation in Section
4.3. Lastly, we measure the overhead introduced by the transformations by analysing the file size
and hash rates in Section 4.4.

4.1 Effectiveness
The objective of this section is to address the following research question:

RQ1 – Effectiveness How effective are the transformations at obfuscatingWebAssembly, and how
is the resulting native code affected?

4.1.1 Distances after obfuscation
Figure 4.1 shows the distances (Definition 1) between the original and obfuscated WebAssembly
binaries for each obfuscation method, transformation, and iteration. Larger distances suggest more
dissimilar binaries, indicating more effective obfuscation.

Encode arithmetic, encode literals, and virtualisation are the most effective transformations, which
were all applied using Tigress. In fact, Tigress is themost effective obfuscationmethod, with an aver-
age distance of 209k, followed by emcc-obf and wasm-mutate, averaging 176k and 30k, respectively.
Although individual transformations are less effective for wasm-mutate, stacked transformations
yield significant distances, reaching a distance of 252k, rivalling the effectiveness of Tigress.

35

Chapter 4. Results

En
co

d
e

ar
it

hm
et

ic

En
co

d
e

lit
er

al
s

V
ir

tu
al

is
at

io
n

A
nt

i-a
lia

s
an

al
ys

is

B
o

g
us

 c
o

nt
ro

l f
lo

w

Fu
nc

ti
o

n
sp

lit
ti

ng

Fl
at

te
ni

ng

C
o

nt
ro

l f
lo

w
 f

la
tt

en
in

g

In
d

ir
ec

t
b

ra
nc

he
s

Su
b

st
it

ut
e

in
st

ru
ct

io
n

C
o

ns
ta

nt
s

en
cr

yp
ti

o
n

R
an

d
o

m
 f

un
ct

io
ns

A
nt

i-t
ai

nt
 a

na
ly

si
s

St
ri

ng
 e

nc
ry

p
ti

o
n

B
as

ic
 b

lo
ck

 s
p

lit
ti

ng

Fu
nc

ti
o

n
w

ra
p

p
er

C
o

d
e

m
o

ti
o

n

A
d

d
 t

yp
e

P
ee

p
ho

le

R
em

o
ve

 it
em

A
d

d
 f

un
ct

io
n

A
d

d
 c

us
to

m
 s

ec
ti

o
n

Transformation

0

50000

100000

150000

200000

250000

300000

350000

D
is

ta
nc

e

Method
Tigress

emcc-obf

wasm-mutate

(a) Distances for each transformation.

100 200 300 400 500 600 700 800 900 1000

Iteration

0

50000

100000

150000

200000

250000

300000

350000

D
is

ta
nc

e

Method
wasm-mutate

(b) Distances for each iteration.

Figure 4.1: Distances for each obfuscation method, transformation, and iteration sorted in descend-
ing order. The error bars shown are indicative of a 95% confidence interval.

Interestingly, there are differences in which obfuscation type is the most effective for each obfusca-
tion method. For Tigress, data obfuscations such as encode arithmetic and encode literals outper-
form control obfuscations like virtualisation and function splitting. In contrast, control obfuscations
like control flow flattening and codemotion are more effective than data obfuscations like constants
encryption and peephole for emcc-obf and wasm-mutate.

Figure 4.2 shows the distances (Definition 1) for each obfuscationmethod and transformation grouped
by application category. The noticeable variations in distances between application categories can
be attributed to the average sizes of the applicationswithin each category. Longer sequences usually
lead to larger distances, and games are typically larger than utilities due to the inclusion of external
libraries. Therefore, the distances should not be compared directly across application categories.
Instead, the focus should be on the relative effectiveness of the transformations within each specific
application category.

There are notable differences between the various application categories. For cryptominers, encode
arithmetic and substitute instructions prove to be the most efficient. In the case of games, encode
literals and constants encryption aremost effective. Conversely, virtualisation and string encryption
are most effective for utilities, although string encryption is the least effective for games and crypto
miners. These observations highlight the fact that the effectiveness of the transformations is largely
dependent on the nature of the application to be obfuscated.

36

Chapter 4. Results

E
n

co
d

e
ar

it
h

m
et

ic

E
n

co
d

e
lit

er
al

s

V
ir

tu
al

is
at

io
n

A
n

ti
-a

lia
s

an
al

ys
is

B
o

g
u

s
co

n
tr

o
lfl

o
w

Fu
n

ct
io

n
 s

p
lit

ti
n

g

Fl
at

te
n

in
g

C
o

n
tr

o
l fl

o
w

 fl
at

te
n

in
g

In
d

ir
ec

t
b

ra
n

ch
es

Su
b

st
it

u
te

 in
st

ru
ct

io
n

C
o

n
st

an
ts

 e
n

cr
yp

ti
o

n

R
an

d
o

m
 f

u
n

ct
io

n
s

A
n

ti
-t

ai
n

t
an

al
ys

is

St
ri

n
g

 e
n

cr
yp

ti
o

n

B
as

ic
 b

lo
ck

 s
p

lit
ti

n
g

Fu
n

ct
io

n
 w

ra
p

p
er

C
o

d
e

m
o

ti
o

n

A
d

d
 t

yp
e

P
ee

p
h

o
le

R
em

o
ve

 it
em

A
d

d
 f

u
n

ct
io

n

A
d

d
 c

u
st

o
m

 s
ec

ti
o

n

Transformation

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

D
is

ta
n

ce

Category
Games

Miners

Utilities

Method
Tigress

emcc-obf

wasm-mutate

Method
Tigress

emcc-obf

wasm-mutate

Figure 4.2: Distances for each obfuscation method and transformation grouped by program cate-
gory, sorted by the average distances in descending order. The error bars shown are indicative of a
95% confidence interval.

This observation is further reinforced by the observation that transformations found effective at
one abstraction level also perform well at other abstraction levels. Encode arithmetic (applied to
the source code) and the similar substitute instructions (applied to the LLVM bitcode) are the most
effective transformations for crypto miners. Similarly, encode literals (applied to the source code)
and the corresponding constants encryption (applied to the LLVM bitcode) are the most effective
transformations for games. This underscores the significant influence the content of the application
has on the effectiveness of the transformations, irrespective of the abstraction level at which they
are applied.

4.1.2 Native code size increase
Figure 4.3 presents the relative increase in native code size (Definition 2) for each obfuscation
method, transformation, and iteration after undergoing lazy compilation (Liftoff) and optimisa-
tion (TurboFan) in the V8 engine. These values are calculated relative to the initial native code sizes
before obfuscation for both Liftoff and TurboFan-produced code.

Although TurboFanmay show a larger relative increase in some instances, it still reduces the overall
native code size by about 30% on average compared to Liftoff. For instance, consider a situation
where Liftoff initially generates 100MB of native code. TurboFan optimises this to 50MB. After ob-
fuscation, Liftoff’s output increases to 200MB, and TurboFan’s optimisation reduces this to 150MB.
So, despite Liftoff showing a 100% relative increase and TurboFan a 200% relative increase after
obfuscation, TurboFan’s optimisation still results in an overall reduction of native code.

37

Chapter 4. Results

E
n

co
d

e
lit

er
al

s

V
ir

tu
al

is
at

io
n

Fu
n

ct
io

n
 s

p
lit

ti
n

g

E
n

co
d

e
ar

it
h

m
et

ic

Fl
at

te
n

in
g

A
n

ti
-t

ai
n

t
an

al
ys

is

A
n

ti
-a

lia
s

an
al

ys
is

R
an

d
o

m
 f

u
n

ct
io

n
s

B
o

g
u

s
co

n
tr

o
l fl

o
w

C
o

n
tr

o
l fl

o
w

 fl
at

te
n

in
g

St
ri

n
g

 e
n

cr
yp

ti
o

n

In
d

ir
ec

t
b

ra
n

ch
es

C
o

n
st

an
ts

 e
n

cr
yp

ti
o

n

Fu
n

ct
io

n
 w

ra
p

p
er

B
as

ic
 b

lo
ck

 s
p

lit
ti

n
g

Su
b

st
it

u
te

 in
st

ru
ct

io
n

A
d

d
 t

yp
e

A
d

d
 c

u
st

o
m

 s
ec

ti
o

n

P
ee

p
h

o
le

A
d

d
 f

u
n

ct
io

n

C
o

d
e

m
o

ti
o

n

R
em

o
ve

 it
em

Transformation

0

20

40

60

80

100

120

140

160

N
at

iv
e

co
d

e
si

ze
 in

cr
ea

se
 (%

)

TurboFan

Liftoff

Method
Tigress

emcc-obf

wasm-mutate

Method
Tigress

emcc-obf

wasm-mutate

Figure 4.3: Native code size increase for each obfuscation method and transformation after lazy
compilation (Liftoff) and optimisation (TurboFan) in the V8 engine, sorted by the average native
code size increase in descending order. The error bars shown are indicative of a 95% confidence
interval.

Our findings show that the transformations from Tigress lead to the largest increase in native code,
with an average of 87.25% and 73.25% after compilation by Liftoff and TurboFan, respectively. Com-
paratively, emcc-obf causes considerably smaller increases with an average of 20% and 22% after
Liftoff and TurboFan compilation, respectively. On the contrary, wasm-mutate demonstrates the
slightest increase of 10% for both Liftoff and TurboFan. However, when stacking the transforma-
tions, wasm-mutate substantially increases the native code size, with relative increases ranging from
16% to 140%, as can be seen in Figure 4.4.

There are differences in which types of transformation induce the largest native code for each ob-
fuscation method. For Tigress, data obfuscation, such as encode literals, causes a more substantial
increase in native code size than control obfuscations like virtualisation. However, for emcc-obf,
control obfuscations such as bogus control flow and control flow flattening impose a larger increase
in native code compared to data obfuscations like constants encryption and string encryption. For
wasm-mutate, there are no discernible differences between control and data obfuscation.

An intriguing observation is that, for Tigress, the relative increase in native code is larger for Liftoff
than for TurboFan. The opposite is true for emcc-obf and wasm-mutate; the relative increase in
native code is larger for TurboFan than they are for Liftoff. In either case, Turbofan always decreases
the size of the native code, but it is unable to entirely optimise away the extra instructions introduced
by obfuscation.

38

Chapter 4. Results

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

Iteration

0

50

100

150

200

250

300

N
at

iv
e

c
o

d
e

si
ze

 in
cr

ea
se

 (%
)

Liftoff

TurboFan

Method
wasm-mutate

Method
wasm-mutate

Figure 4.4: Native code size increase for each iteration applied with wasm-mutate after lazy com-
pilation (Liftoff) and after optimisation (TurboFan) in the V8 engine. The error bars shown are
indicative of a 95% confidence interval.

Summary The effectiveness of obfuscation depends on the obfuscation method, transformation,
and application to be obfuscated. Tigress was slightly more effective than emcc-obf, with wasm-
mutate achieving comparable results when stacking the transformations. The most effective trans-
formations included encode arithmetic, encode literals, and virtualisation. While data obfuscation
was most effective for Tigress, control obfuscation was most effective for emcc-obf and wasm-
mutate. The effectiveness of the transformations depends on the application to be obfuscated,
with crypto miners benefitting from arithmetic encoding. Obfuscation consistently increased the
native code, with Tigress increasing it the most. Although TurboFan reduced the native code size
by 30% on average, it was unable to completely remove the instructions caused by obfuscation.

4.2 Detectability
The objective of this section is to address the following research question:

RQ2 – Detectability How effective is obfuscation at evading state-of-the-art drive-by mining de-
tectors, and which transformations are the most effective?

4.2.1 Detection results
Figure 4.5 shows the F1 scores (Definition 5) for each detection and obfuscationmethod. The results
are nuanced, with obfuscation sometimes decreasing the accuracy of detection methods, while in
other cases increasing it.

39

Chapter 4. Results

Original Tigress emcc-obf wasm-mutate

Obfuscation method

MINOS

WASim
(neural)

WASim
(naive)

WASim
(RF)

WASim
(SVM)

MinerRay

1.00 0.67 0.77 0.81

0.33 0.66 0.37 0.65

0.18 0.09 0.25 0.19

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

D
et

ec
ti

o
n

 m
et

h
o

d

VirusTotal

Figure 4.5: F1 scores for each detection and obfuscation method. Darker colours indicate a higher
F1 score, while lighter colours indicate a lower F1 score.

We find that detectionmethods with higher accuracy tend to decrease in accuracy after obfuscation.
For instance, MINOS, having been re-trained for better accuracy, exhibits decreased accuracy after
obfuscation. Here, Tigress proves the most effective, reducing the F1 score from 1.0 to 0.67, with
emcc-obf and wasm-mutate decreasing the F1 score to 0.77 and 0.81, respectively.

Conversely, less accurate detection methods generally improve in accuracy after obfuscation. Both
WASim (neural) and WASim (naive) see an increase in accuracy after obfuscation. Tigress, which
was the most effective in decreasing the accuracy of MINOS, is the least effective for WASim (neu-
ral), increasing the F1 score from 0.33 to 0.66. Similarly, emcc-obf and wasm-mutate also increase
WASim accuracy (neural), albeit to a lesser extent, increasing the F1 scores to 0.37 and 0.65, respec-
tively.

Table 4.1 presents the precision (Definition 3), recall (Definition 4), and F1 scores (Definition 5) of
MINOS andWASim (neural) after obfuscation. We excludeWASim (naive) and the other detection
methods from the table due to their low accuracy.

Anti-alias analysis emerges as the most effective transformation, resulting in an F1 score of 0 for
both MINOS and WASim. Several control obfuscations, such as flattening, control flow flattening,
virtualisation, and indirect branches, prove highly effective, resulting in F1 scores of 0 for WASim.
However, not all control obfuscations achieve such results; function splitting and random functions
increase the F1 score of WASim to 0.95. Despite data obfuscations like encode arithmetic and string
encryption showing some effectiveness in evading detection, control obfuscation tends to be more
effective overall.

40

Chapter 4. Results

MINOS WASim (neural)
Obfuscation Transformation P R F1 P R F1

Original None 1.00 1.00 1.00 1.00 0.20 0.33
Tigress Flattening 0.67 1.00 0.80 0.00 0.00 0.00

Random functions 0.71 1.00 0.83 0.91 1.00 0.95
Function splitting 0.40 0.20 0.27 0.91 1.00 0.95
Virtualisation 0.75 0.90 0.82 0.00 0.00 0.00
Encode arithmetic 0.58 0.70 0.63 0.78 0.70 0.74
Encode literals 0.56 1.00 0.72 0.83 1.00 0.91
Anti-alias analysis 0.00 0.00 0.00 0.00 0.00 0.00
Anti-taint analysis 0.77 1.00 0.87 0.89 0.80 0.84

emcc-obf Control flow flattening 0.67 1.00 0.80 0.00 0.00 0.00
Bogus control flow 0.55 0.60 0.57 0.60 0.30 0.40
Indirect branches 0.64 0.90 0.75 0.00 0.00 0.00
Basic block splitting 0.77 1.00 0.87 1.00 0.20 0.33
Function wrapper 0.91 1.00 0.95 1.00 0.60 0.75
Substitute instruction 0.73 0.80 0.76 1.00 0.50 0.67
Constants encryption 0.62 0.80 0.70 0.67 0.20 0.31
String encryption 0.62 1.00 0.77 0.40 0.20 0.27

wasm-mutate Code motion 0.83 1.00 0.91 1.00 0.20 0.33
Peephole 0.91 1.00 0.95 1.00 0.20 0.33
Add function 0.91 1.00 0.95 1.00 0.20 0.33
Add Type 0.91 1.00 0.95 1.00 0.20 0.33
Add custom section 0.83 1.00 0.91 1.00 0.20 0.33
Remove item 0.91 1.00 0.95 1.00 0.20 0.33

wasm-mutate Iteration 100 0.75 0.90 0.82 0.75 0.30 0.43
Iteration 200 0.75 0.90 0.82 0.82 0.90 0.86
Iteration 300 0.69 0.90 0.78 0.88 0.70 0.78
Iteration 400 0.69 0.90 0.78 0.82 0.90 0.86
Iteration 500 0.69 0.90 0.78 0.90 0.90 0.90
Iteration 600 0.67 0.80 0.73 1.00 0.80 0.89
Iteration 700 0.69 0.90 0.78 0.89 0.80 0.84
Iteration 800 0.67 0.80 0.73 0.88 0.70 0.78
Iteration 900 0.64 0.70 0.67 1.00 0.40 0.57
Iteration 1000 0.64 0.70 0.67 1.00 0.20 0.33

Abbreviations: Precision (P) and Recall (R).

Table 4.1: Precision, recall, and F1 scores for MINOS and WASim (neural) after applying obfusca-
tion with Tigress, emcc-obf, and wasm-mutate.

41

Chapter 4. Results

Moreover, we find that the effectiveness of the transformations varies significantly depending on
the specific detection method. While flattening is effective forWASim (F1 score of 0), it is not nearly
as effective for MINOS (F1 score of 0.80). Similarly, function splitting is effective for MINOS (F1
score of 0.27) but not WASim (F1 score of 0.95).

Even after obfuscation, the recall often exceeds the precision for both MINOS andWASim, which is
an interesting observation. This suggests that obfuscation is not always effective for evading drive-
by mining detection. Instead, the drop in accuracy is primarily due to benign applications being
mistakenly identified as crypto miners. There are certainly exceptions to the rule; function splitting
and bogus control flow effectively reduce recall for MINOS, and most control obfuscations do the
same for WASim.

Again, individual transformations are not effective for wasm-mutate. However, stacking the trans-
formations yields promising results. As more transformations are applied, the F1 score for MINOS
consistently decreases. For WASim, however, the F1 score inconsistently increases from 0.43 to 0.90
after 500 iterations, before decreasing back down to 0.33 after 1000 iterations.

4.2.2 WASim classifiers
Figure 4.6 shows the predictions of the different WASim classifiers in response to stacked wasm-
mutate transformations. Predictions for the naive Bayes, RF, and SVM classifiers remain relatively
constant as more transformations are applied. This shows that they are not affected by the trans-
formations, indicating that they are resilient to obfuscation. On the other hand, the neural classifier
exhibits variance in its predictions asmore transformations are applied, signifying that it is sensitive
to the transformations. This indicates that the neural classifier is not nearly as obfuscation-resilient
as the other classifiers, which is an interesting finding, as the authors of WASim recommend the
neural classifier.

This observation encouraged us to investigate which wasm-mutate transformations are the most
effective for evading detection. That is, which transformations decrease the crypto mining predic-
tions of WASim (neural) the most? As can be seen in Figure 4.7a, the code motion and peephole
transformations decrease the crypto miner predictions the most and are deemed the most effective
for evading drive-by mining detection.

Intrigued by these results, we investigate if we can strategically apply transformations to evade
WASim (neural) detection. First, we apply random mutations to the crypto mining binaries and
select the resulting crypto mining binaries that have the highest crypto miner predictions. Then, we
iteratively apply the code motion and peephole transformations to those binaries and observed the
predictions of theWASim (neural) classifier. The results are shown in Figure 4.7b. The cryptominer
binaries are initially labeled as crypto miners with 100% probability. Then, after 550 iterations, the
crypto miner binaries are labeled as benign with 100% probability, completely evading detection
and demonstrating howWASim (neural) can be strategically evaded.

42

Chapter 4. Results

0 200 400 600 800 1000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

(%
)

Category
Games

Miners

Utilities

(a) Neural.

0 200 400 600 800 1000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

(%
)

Category
Games

Miners

Utilities

(b) Naive Bayes.

0 200 400 600 800 1000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

(%
)

Category
Games

Miners

Utilities

(c) RF.

0 200 400 600 800 1000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

(%
)

Category
Games

Miners

Utilities

(d) SVM.

Figure 4.6: The four differentWASim classifiers and their respective prediction likelihoods for iden-
tifying a WebAssembly binary as a crypto miner as the binaries undergo iterative transformations
using wasm-mutate. For each iteration, a randomly selected transformation is applied.

43

Chapter 4. Results

A
d

d
 f

un
ct

io
n

C
us

to
m

 s
ec

ti
o

n

A
d

d
 t

yp
e

R
em

o
ve

 s
ec

ti
o

n

R
eo

rd
er

 c
us

to
m

 s
ec

ti
o

n

A
d

d
 c

us
to

m
 s

ec
ti

o
n

R
em

o
ve

 it
em

P
ee

p
ho

le

C
o

d
e

m
o

ti
o

n

Transformation

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

d
if

fe
re

nc
e

Category
Games

Miners

(a) Most effective wasm-mutate transformations
for altering the crypto miner predictions of the
WASim (neural) classifier.

0 200 400 600 800 1000

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
ry

p
to

 m
in

er
 p

re
d

ic
ti

o
n

(%
)

Category
Games

Miners

Utilities

(b)WASim (neural) predictions for WebAssembly
binaries that have been iteratively obfuscated with
the code motion and peephole transformations.

Figure 4.7: Figure (a) shows the most effective wasm-mutate transformations for evading WASim
(neural) detection. Figure (b) shows the predictions of WASim (neural) for WebAssembly binaries
that have been iteratively obfuscated using the most effective transformations; namely code motion
and peephole.

Summary Obfuscation can be effective at evading state-of-the-art drive-by mining detectors, but
it is highly dependent on the specific detection and obfuscation methods, as well as the specific
transformation. Tigress proved to be most effective in evading MINOS, while emcc-obf was more
effective in evadingWASim. Anti-alias analysis was the only transformation that could completely
evade detection from both MINOS and WASim. However, for WASim, we found that several con-
trol obfuscation transformations were also able to achieve this, and, in general, control obfuscation
was more effective than data obfuscation. The decrease in accuracy was often the result of benign
applications beingmistakenly identified as cryptominers rather than cryptominers evading detec-
tion. We also found that wasm-mutate could evade WASim detection completely, but only when
strategically applying the most effective transformations; namely code motion and peephole.

4.3 Reversibility
The objective of this section is to address the following research question:

RQ3 – Reversibility How resilient are the transformations to automatic de-obfuscation, and how
does de-obfuscation affect the detection accuracy?

44

Chapter 4. Results

4.3.1 Distances after de-obfuscation
E

n
co

d
e

ar
it

h
m

et
ic

E
n

co
d

e
lit

er
al

s

V
ir

tu
al

is
at

io
n

B
o

g
u

s
co

n
tr

o
l fl

o
w

A
n

ti
-a

lia
s

an
al

ys
is

Fu
n

ct
io

n
 s

p
lit

ti
n

g

Fl
at

te
n

in
g

C
o

n
tr

o
l fl

o
w

 fl
at

te
n

in
g

In
d

ir
ec

t
b

ra
n

ch
es

A
n

ti
-t

ai
n

t
an

al
ys

is

R
an

d
o

m
 f

u
n

ct
io

n
s

St
ri

n
g

 e
n

cr
yp

ti
o

n

C
o

n
st

an
ts

 e
n

cr
yp

ti
o

n

Su
b

st
it

u
te

 in
st

ru
ct

io
n

B
as

ic
 b

lo
ck

 s
p

lit
ti

n
g

Fu
n

ct
io

n
 w

ra
p

p
er

C
o

d
e

m
o

ti
o

n

A
d

d
 t

yp
e

P
ee

p
h

o
le

A
d

d
 f

u
n

ct
io

n

A
d

d
 c

u
st

o
m

 s
ec

ti
o

n

R
em

o
ve

 it
em

Transformation

0

50000

100000

150000

200000

250000

300000

350000

D
is

ta
n

ce

-50.8%

-40.9%

-31.3%
-34.4% -36.0% -35.8%

-31.5%
-28.1% -29.5%

-30.4% -32.0% -29.5%
-40.2% -50.3%

-34.4% -59.2%

-4.6%

Original

Optimized

Method
Tigress

emcc-obf

wasm-mutate

Method
Tigress

emcc-obf

wasm-mutate

Figure 4.8: Distances for each obfuscation method and transformation before and after de-
obfuscation, sorted by the relative decrease in the distance after de-obfuscation in descending order.
The percentages show the relative decrease in the distance after de-obfuscation for each transfor-
mation. Transformations marked with + indicate an increase in distance after de-obfuscation.

Figure 4.8 shows the distances (Definition 1) for each obfuscation method and transformation be-
fore and after automatic de-obfuscation. De-obfuscation was performed using Binaryen’s wasm-opt
optimiser, which averaged an execution time of 1.74 seconds.

Our findings reveal an average reduction in distance of 35.2% after de-obfuscation. The average de-
crease in distance is 35.9% and 37.3% for Tigress and emcc-obf, respectively, indicating that Tigress
is slightly more resilient to de-obfuscation than emcc-obf. Data obfuscation was easier to reverse
than control obfuscation, decreasing by 42.3% and 32% on average, respectively. Preventive trans-
formations showed an average decrease around the mean at 34%. We also observed that encryption
was more resilient to de-obfuscation than encoding, decreasing 34.8% and 45.8% on average, re-
spectively.

For wasm-mutate, code motion decreased in distance by 4.6%, while the other transformations in-
creased in distance after de-obfuscation. As depicted in Figure 4.9, the stacked transformations
lead to progressively larger decreases in distances after de-obfuscation. This indicates that as more
transformations are applied, de-obfuscation is more effective.

45

Chapter 4. Results

100 200 300 400 500 600 700 800 900 1000

Iteration

0

50000

100000

150000

200000

250000

300000

350000

D
is
ta
n
ce -30.2%

-28.2%
-30.5%

-31.0%
-31.7%

-32.6%
-33.3%

-33.9%
-34.6%

-35.3%

Obfuscated

De-obfuscated

Method
wasm-mutate

Method
wasm-mutate

Figure 4.9: Distances for each iteration applied with wasm-mutate before and after de-obfuscation.
The percentages show the relative decrease in the distance after de-obfuscation for each transfor-
mation.

4.3.2 Detection results after de-obfuscation
Figure 4.10 shows the F1 scores (Definition 1) for each detection and obfuscation method after de-
obfuscation. The results are nuanced, as de-obfuscation can sometimes increase detection accu-
racy while, in other cases, decreasing it. For MINOS, the accuracy consistently increases after de-
obfuscation. The accuracy generally decreases after de-obfuscation forWASim (neural) andWASim
(naive).

However, forWASim (RF), accuracy improves significantly, increasing the F1 score from 0 to 0.80 on
average. Another interesting observation is that de-obfuscation tends to be successful for binaries
obfuscated with Tigress but not for binaries obfuscated with emcc-obf or wasm-mutate.

Summary De-obfuscation is partially able to reverse the transformations, averaging a 35.2% de-
crease in distance after de-obfuscation. Binaries obfuscated with Tigress are marginally more re-
silient than those obfuscated with emcc-obf. Moreover, data obfuscation is easier to reverse than
control obfuscation, and encryption is more resilient than encoding. In the case of wasm-mutate,
de-obfuscation becomes more effective as more transformations are applied. The impact on de-
tection accuracy is varied; for MINOS, it generally improves and for WASim, it tends to decrease
except for the RF classifier, which significantly improves. Interestingly, de-obfuscation can be ef-
fective for increasing the detection accuracy, but only for binaries obfuscated with Tigress.

46

Chapter 4. Results

Original Tigress emcc-obf wasm-mutate

Obfuscation method

MINOS

WASim
(neural)

WASim
(naive)

WASim
(RF)

WASim
(SVM)

MinerRay

0.84
(-0.16)

0.70
(+0.03)

0.81
(+0.04)

0.82
(+0.01)

0.00
(-0.33)

0.76
(+0.10)

0.21
(-0.16)

0.21
(-0.44)

0.00
(-0.18)

0.09
0.09

(-0.16)
0.02

(-0.17)

0.80
(+0.80)

0.75
(+0.75)

0.83
(+0.83)

0.81
(+0.81)

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00VirusTotal

D
et

ec
ti

o
n

 m
et

h
o

d

Figure 4.10: F1 scores for each detection and obfuscationmethod after de-obfuscation. Dark colours
indicate a higher F1 score, while lighter colours indicate a lower F1 score. The numbers in the paren-
thesis signify the difference from Figure 4.5.

4.4 Overhead
The objective of this section is to address the following research question:

RQ4 – Overhead To what extent do the transformations contribute to overhead in terms of code
size and hash rate?

4.4.1 File size overhead
Figure 4.11 shows the relative increase in file size (Definition 6) after obfuscation for each obfusca-
tion method, transformation, and iteration. Tigress increased the file size the most, averaging 53%,
followed by emcc-obf andwasm-mutate at 19% and 0.2%, respectively. Despitewasm-mutate’smin-
imal file size overhead when applying individual transformations, the overhead increases linearly
when stacked transformations are applied, averaging a 59% increase, ranging from 12% to 121%.
The transformations that contribute most significantly to file size increase are virtualisation, encode
arithmetic, and encode literals, which lead to increases of 91.6%, 89.8%, and 74.6%, respectively.
No significant differences were observed between control and data obfuscation in terms of file size
overhead.

47

Chapter 4. Results

V
ir

tu
al

is
at

io
n

E
n

co
d

e
ar

it
h

m
et

ic

E
n

co
d

e
lit

er
al

s

A
n

ti
-a

lia
s

an
al

ys
is

B
o

g
u

s
co

n
tr

o
l f

lo
w

Fu
n

ct
io

n
 s

p
lit

ti
n

g

St
ri

n
g

 e
n

cr
yp

ti
o

n

Fl
at

te
n

in
g

A
n

ti
-t

ai
n

t
an

al
ys

is

R
an

d
o

m
 f

u
n

ct
io

n
s

Su
b

st
it

u
te

 in
st

ru
ct

io
n

C
o

n
tr

o
l f

lo
w

 f
la

tt
en

in
g

In
d

ir
ec

t
b

ra
n

ch
es

C
o

n
st

an
ts

 e
n

cr
yp

ti
o

n

B
as

ic
 b

lo
ck

 s
p

lit
ti

n
g

Fu
n

ct
io

n
 w

ra
p

p
er

C
o

d
e

m
o

ti
o

n

A
d

d
 c

u
st

o
m

 s
ec

ti
o

n

A
d

d
 t

yp
e

P
ee

p
h

o
le

A
d

d
 f

u
n

ct
io

n

R
em

o
ve

 it
em

Transformation

0

50

100

150

200

250

Fi
le

 s
iz

e
in

cr
ea

se
 (%

)

Method
Tigress

emcc-obf

wasm-mutate

(a) File sizes for each transformation.

100 200 300 400 500 600 700 800 900 1000

Iteration

0

50

100

150

200

250

Fi
le

 s
iz

e
in

cr
ea

se
 (%

)

Method
wasm-mutate

(b) File sizes for each iteration.

Figure 4.11: File size increase for each obfuscation method, transformation, and iteration sorted in
descending order. The error bars shown are indicative of a 95% confidence interval.

4.4.2 Hash rate overhead
Figure 4.12 shows the relative hash rate (Definition 8) for each obfuscationmethod, transformation,
and iteration. Tigress, emcc-obf, and wasm-mutate average 63.1%, 95.2%, and 99.8% of the origi-
nal hash rate, respectively. Two-thirds of the transformations do not significantly impact the hash
rate. Constant encryption and basic block splitting increase the hash rate by 110.7% and 104.8%,
respectively. Moderate overheads are seen in transformations like flattening, control flow flatten-
ing, indirect branches, and anti-alias analysis, delivering 70.2% to 88.1% of the original hash rate.
Significant overhead is introduced by Tigress’ virtualisation, encode arithmetic, and encode literals
transformations, achieving 1% to 21.1% of the original hash rate. Wasm-mutate imposes negligible
hash rate overhead, which persists even with stacked transformations. However, the hash rate fluc-
tuates between iterations, ranging from 93.6% to 100.8% of the original hash rate, averaging 99.8%.

Figure 4.13 shows the relative hash rate (Definition 8) after obfuscation for each obfuscationmethod,
transformation, and CryptoNight variant. There are noticeable differences between the variants.
Generally, cn-0 retains a higher hash rate compared to the other variants, indicating that it is less
impacted by obfuscation. There are also distinct differences between cn-r and the other variants.
Transformations like flattening, control flow flattening, and indirect branches bring about consider-
able overhead for cn-r but less so for the other variants. Contrastingly, function splitting and encode
arithmetic impose less overhead on cn-r but significantly impact the other variants. This suggests
that the transformation overhead is largely dependent on the specific CryptoNight variant.

48

Chapter 4. Results

C
o

ns
ta

nt
s

en
cr

yp
ti

o
n

B
as

ic
 b

lo
ck

 s
p

lit
ti

ng

A
nt

i-t
ai

nt
 a

na
ly

si
s

R
an

d
o

m
 f

un
ct

io
ns

A
d

d
 f

un
ct

io
n

R
eo

rd
er

 c
us

to
m

 s
ec

ti
o

n

En
co

d
e

lit
er

al
s

St
ri

ng
 e

nc
ry

p
ti

o
n

B
o

g
us

 c
o

nt
ro

l f
lo

w

P
ee

p
ho

le

R
em

o
ve

 s
ec

ti
o

n

C
us

to
m

 s
ec

ti
o

n

A
d

d
 c

us
to

m
 s

ec
ti

o
n

C
o

d
e

m
o

ti
o

n

A
d

d
 t

yp
e

Fu
nc

ti
o

n
w

ra
p

p
er

Su
b

st
it

ut
e

in
st

ru
ct

io
n

Fl
at

te
ni

ng

In
d

ir
ec

t
b

ra
nc

he
s

A
nt

i-a
lia

s
an

al
ys

is

C
o

nt
ro

l f
lo

w
 f

la
tt

en
in

g

Fu
nc

ti
o

n
sp

lit
ti

ng

En
co

d
e

ar
it

hm
et

ic

V
ir

tu
al

is
at

io
n

Transformation

0

20

40

60

80

100

120

R
el

at
iv

e
ha

sh
 r

at
e

(%
)

Method
Tigress

emcc-obf

wasm-mutate

(a) Hash rates for each transformation.

100 200 300 400 500 600 700 800 900 1000

Iteration

0

20

40

60

80

100

120

R
el

at
iv

e
ha

sh
 r

at
e

(%
)

Method
wasm-mutate

(b) Hash rates for each iteration.

Figure 4.12: Relative hash rates for each obfuscation method, transformation, and iteration sorted
in descending order. The error bars shown are indicative of a 95% confidence interval.

C
o

n
st

an
ts

 e
n

cr
yp

ti
o

n

B
as

ic
 b

lo
ck

 s
p

lit
ti

n
g

A
n

ti
-t

ai
n

t
an

al
ys

is

R
an

d
o

m
 f

u
n

ct
io

n
s

A
d

d
 f

u
n

ct
io

n

E
n

co
d

e
lit

er
al

s

St
ri

n
g

 e
n

cr
yp

ti
o

n

B
o

g
u

s
co

n
tr

o
l fl

o
w

P
ee

p
h

o
le

A
d

d
 c

u
st

o
m

 s
ec

ti
o

n

C
o

d
e

m
o

ti
o

n

A
d

d
 t

yp
e

Fu
n

ct
io

n
 w

ra
p

p
er

Su
b

st
it

u
te

 in
st

ru
ct

io
n

Fl
at

te
n

in
g

In
d

ir
ec

t
b

ra
n

ch
es

A
n

ti
-a

lia
s

an
al

ys
is

C
o

n
tr

o
l fl

o
w

 fl
at

te
n

in
g

Fu
n

ct
io

n
 s

p
lit

ti
n

g

E
n

co
d

e
ar

it
h

m
et

ic

V
ir

tu
al

is
at

io
n

Transformation

0

20

40

60

80

100

120

R
el

at
iv

e
h

as
h

 r
at

e
(%

)

Variant
cn-0

cn-1

cn-2

cn-r

Method
Tigress

emcc-obf

wasm-mutate

Method
Tigress

emcc-obf

wasm-mutate

Figure 4.13: Relative hash rates for each obfuscation method, transformation, and CryptoNight
variant sorted in descending order.

49

Chapter 4. Results

Summary Tigress consistently introduces the largest overheads, reflected in both the file size, av-
eraging a 53% increase, and the hash rate, averaging a reduction to 63.1% of the original hash rate.
Moreover, Tigress’ virtualisation and encode arithmetic transformations consistently introduce the
largest overheads for both file size and hash rate. On the contrary, emcc-obf exhibits considerably
less overhead, with a 19% increase in file size and retention of 95.2% of the original hash rate.
Remarkably, emcc-obf’s constants encryption and basic block splitting transformations even in-
crease the hash rate. Although wasm-mutate introduces large file size overheads when stacking
the transformations, ranging from 12% to 121%, it demonstrates minimal hash rate overhead, re-
taining 99.8% of the original hash rate on average. Additionally, variations between CryptoNight
variants are observed, with cn-0 generally retaining a higher hash rate than other variants, while
significant differences in hash rate are evident between cn-r and other variants.

50

Chapter 5

Discussion

This chapter reflects on the main findings, aligning them with existing literature and offering po-
tential explanations and implications. Moreover, we highlight the limitations of the thesis. The
structure remains the same as in the preceding chapter, with each section addressing a research
question.

5.1 Effectiveness
Upon analysing the WebAssembly binaries and resulting native code after obfuscation, we find
that Tigress is generally the most effective obfuscation method, followed by emcc-obf and wasm-
mutate. We hypothesise that this is due to Tigress implementing more advanced transformations,
as evidenced by the larger distances, the increased binary size, and the larger native code produced
after compilation in the browser. These observations align with the research conducted by Suresh
et al. [159], which concluded that Tigress generally applies more advanced transformations than
OLLVM, which emcc-obf is based on.

Expanding on this, we do not attribute the effectiveness of obfuscation methods to the abstraction
level at which it is applied – be it source code, LLVM, or WebAssembly – but rather the implemen-
tation of the transformations themselves. Importantly, implementing advanced transformations is
simpler at higher abstraction levels. For instance, implementing virtualisation would likely be sim-
pler at the source code level, leveraging the powerful abstractions of the programming language,
compared to implementing it in the low-level WebAssembly language. On the contrary, lower ab-
straction levels allow the transformations to target the specific architecture. This is the case for
wasm-mutate, enabling direct manipulation of the WebAssembly module, which is not possible at
higher abstraction levels such as source code or LLVM bitcode. However, these targeted transfor-
mations are not advanced enough to be effective for obfuscation purposes, at least not when applied
individually.

51

Chapter 5. Discussion

The ineffectiveness of individual transformations is primarily due to wasm-mutate being designed
as a diversifier rather than an obfuscator. By design, wasm-mutate makes subtle modifications to
the WebAssembly module, allowing it to produce many diversified variants. This is in contrast to
Tigress and emcc-obf, which are obfuscators that implement advanced transformations, and thus
make significant modifications to the program. However, we find that stacking the wasm-mutate
transformations can be an effective approach. This is in line with Cabrera et al.’s study [25], which
suggests that a minimum of 120 wasm-mutate iterations are required for successful malware eva-
sion.

Our findings indicate that the most effective transformations are encode arithmetic, encode liter-
als, and virtualisation. On the contrary, Bhansali et al. [17] found anti-alias analysis to be the most
effective, followed by virtualisation and flattening. We both find that the application’s content sig-
nificantly impacts transformation effectiveness. In our findings, cryptominers benefit themost from
the encode arithmetic transformation due to the large number of arithmetic operations required for
calculating the hashes. Games benefit most from encode literals due to the large number of integer
values used for scores, health points, and colours, to name a few. Lastly, utilities benefit most from
string encryption due to the large number of strings used for printing to the console and interacting
with the user. Contrastingly, Bhansali et al. identified anti-alias analysis as the most effective for all
application types, except crypto miners, where virtualisation was deemedmost effective. These dif-
ferences likely stem from our divergent comparison methods; Bhansali et al. used cosine similarity,
while we used a distance-based metric more suitable for WebAssembly.

The error bars in the plots further underline the crucial influence of the application content on the
effectiveness of the transformations. For instance, Figure 4.2 has a significant error bar for string en-
cryption within the games category, implying that the effectiveness of this transformation depends
on the amount of text used in each game. As text content in games can significantly vary, the impact
of string encryption will differ accordingly.

It is also imperative to highlight that the significant error bars, such as those observed in Figure
4.4, stem from the heterogeneity of the dataset and the consequent variation in application sizes.
Games, for instance, tend to be larger than utilities due to the incorporation of external libraries.
Longer sequences tend to produce larger distances, accounting for the substantial error bars in these
plots.

We would also like to emphasise that the significant error bars, such as those seen in Figure 4.4, are
due to the diverse dataset used and resulting different sizes of applications. For instance, games are
typically larger than utilities due to the inclusion of external libraries. As longer sequences tend to
produce larger distances, this explains why the error bars are large in these plots.

When considering the impact on native code, Tigress consistently produced more native code than
emcc-obf andwasm-mutate. However, this increase in native code size is not directly reflected in the
WebAssembly binary size. For example, emcc-obf’s bogus control flow transformation led to nearly
double the WebAssembly binary size increase compared to Tigress’ random function transforma-
tion, as shown in Figure 4.11. Still, Tigress’ random function transformation led to larger native

52

Chapter 5. Discussion

code, as evident in Figure 4.3. We believe that this discrepancy is due to Liftoff’s lazy compilation
strategy, which only compiles functions only if they are invoked. Emcc-obf likely generates code
that is never executed and thus never compiled to native code, resulting in large WebAssembly bi-
naries but smaller native code. In contrast, Tigress generates code that is actually executed and thus
compiled to native code, resulting in a smaller WebAssembly binary but larger native code.

An intriguing observation is that TurboFan is more efficient at optimising native code that has been
obfuscated using Tigress than with emcc-obf or wasm-mutate. Notice in Figure 4.3 that the relative
size of the TurboFan code tends to be smaller than the Liftoff code for Tigress but larger for emcc-obf
and wasm-mutate. This is likely due to the fact that the native code compiled from Tigress contains
more “junk” code that is easier to optimise away with TurboFan, while the opposite is true for the
native code compiled from emcc-obf and wasm-mutate. This hypothesis is supported by the fact
that Tigress produces more native code than emcc-obf and wasm-mutate, indeed suggesting that it
contains “junk” code to potentially optimise away.

Although TurboFan managed to decrease the native code size by an average of 30%, it is doubtful
that it entirely eliminated the instructions introduced by obfuscation. Even for individual wasm-
mutate transformations, TurboFan was unable to completely remove the extraneous instructions,
leaving around a 10% increase in native code size after optimisation. Still, we are uncertain of the
specific transformations that were removed since we only have access to the native code’s size and
not the native code itself, making it impossible to definitively say that obfuscation was not removed.
However, considering the significant increase in native code even after optimisation, it is likely that
at least some obfuscation remained. These findings contrast studies on LLVM diversification for
WebAssembly, where the native code was found to be identical after TurboFan optimisation [7].

5.2 Detectability

cn-r

pong

seqtk

None Virtualize
Encode
Literals

Constants
Encryption

Indirect
Branches

Iteration
100

Iteration
1000

Original Tigress emcc-obf wasm-mutate

Figure 5.1: Grayscale images of WebAssembly binaries before and after obfuscation. The images
serve as input to the CNN used by MINOS.

53

Chapter 5. Discussion

The experiments indicate that obfuscation can evade state-of-the-art drive-by-miningdetectors. This
is not surprising and can even be visually seen in Figure 5.1. It shows how the grayscale images of
WebAssembly binaries change after obfuscation, which are subsequently used as input to the MI-
NOS classifier. In layman’s terms, obfuscation changes the input of the neural network, thereby
leading to a different output.

However, it is difficult to precisely identify why and how neural networks are influenced by obfus-
cation. Nonetheless, we can attempt to reason about why. For instance, MINOS evaluates the entire
program by converting it into a grayscale image and then analysing it. As we apply more advanced
transformations, the resulting image after obfuscation deviates significantly from the images used
in training, leading to the misclassification of the obfuscated program. This hypothesis aligns with
the findings of Loose et al. [103], who found that modifying the grayscale image input of MINOS
could result in misclassification.

On the other hand,WASimemploys a different strategy, examining features such as theWebAssembly
binary size. As shown in Table 4.1, the crypto miner probability gradually increases as more trans-
formations are applied up to iteration 500 for WASim. The classifier might learn that crypto miners
typically have larger binary sizes than other applications, hence the increase in probability as more
transformations are applied since the binary size also increases. EvenWASim’s authors state that ”a
0.6KB binary module is unlikely to be a Game or crypto miner as those require more functionality than can fit
into 0.6KB” [145]. However, as the binary size continues to increase beyond iteration 500, the crypto
miner probability decreases, potentially because the program is deemed too complex and large to
be a crypto miner.

As evident in Figure 4.6, we observe that WASim’s neural classifier is particularly vulnerable to ob-
fuscation. This is consistent with existing research on adversarial samples [76, 87, 103], demonstrat-
ing the sensitivity of neural networks to such adversarial inputs. This also explains why obfuscation
is effective for MINOS, since it is also based on neural networks.

The decreased detection rates were often the result of benign applications being mistakenly identi-
fied as crypto miners rather than crypto miners evading detection. This is likely attributed to obfus-
cation increasing program complexity, leading to an over-classification of benign programs labeled
as malicious. Similar findings were reported by Bhansali et al. [17], who found that obfuscation
increased the false positive rate to 70%. It is important to stress that in real-world scenarios, false
positives are detrimental, as they could result in harmless programs being unnecessarily blocked,
degrading the user experience. Since obfuscation can have legitimate uses, like safeguarding intel-
lectual property, it is crucial to minimise its potential for inducing false positives.

In terms of transformations that were effective in evading detection, we generally observed that
control obfuscation was more effective than data obfuscation. This can be attributed to the fact that
control obfuscation generally impacts the entire program, while data obfuscation targets specific
parts, that is, only the data of the program. As such, control obfuscation often results in more
significant changes to the program, which is more likely to evade detection. Intriguingly, anti-alias
analysis, a preventive transformation, was themost effective formalware evasion. Although neither

54

Chapter 5. Discussion

MINOS nor WASim directly performs alias analysis, it was the only effective transformation for
both detection methods. Evidently, anti-alias analysis significantly impacts the features that the
neural networks rely on, leading to misclassification. On the contrary, Bhansali et al. found every
Tigress transformations to be effective in evading MINOS [17]. However, they used the original
MINOS implementation, while we used a reproduction by Cabrera et al. [25], which could explain
the difference in results. In addition, they used a small dataset of only two crypto miners, which
threatens the validity of their results.

As for wasm-mutate, it was found to be ineffective in evading detection when applying individual
transformations. However, when the transformations were stacked, the accuracy of the detection
methods was significantly reduced. We found that code motion and peephole were the most ef-
fective transformations. Similarly, Cabrera et al. [25] found that peephole, add function, and code
motion were the most effective transformations for evading detection. They also found that it took
between 120 and 635 iterations to evade detection, akin to our average of 550 iterations. However,
Cabrera et al. could completely evade MINOS detection using random transformations in under
1000 iterations. We were unable to reproduce this, as we were only able to reduce the F1 score to
0.67 after 1000 iterations. This difference, we believe, arises from using different datasets, again
highlighting that obfuscation effectiveness is heavily dependent on the specific application being
obfuscated.

5.3 Reversibility
When comparing the reversibility of obfuscation methods, emcc-obf appeared to be slightly more
reversible than Tigress. This is in contrast to the results of Banescu et al. [12], who found no sig-
nificant differences between Tigress and OLLVM when it came to symbolic-execution-based de-
obfuscation. Despite Tigress exhibiting greater resilience to automatic de-obfuscation based on our
distancemeasures, it was the only obfuscationmethod that consistently improved in detection accu-
racy after de-obfuscation. Thus, we do not find a direct correlation between howmuch obfuscation
is reversed and how much the detection accuracy improves.

In the case of wasm-mutate, code motion was the only transformation that decreased in distance af-
ter de-obfuscation. For the other transformations, the distances increased after de-obfuscation. We
theorise that this occurs because wasm-mutate performs subtle modifications to the WebAssembly
binaries, which causes a snowball effect that translates to significant differences after optimisation.
When the transformations are stacked, de-obfuscation becomes more effective, likely because there
is more “junk” code to eliminate.

Consistent with the findings of Banescu et al. [12], we found data obfuscation to be more reversible
than control obfuscation. This is because data obfuscation only affects individual pieces of data,
while control obfuscation affects the entire program,making it more difficult to reverse. In addition,
compilers often tread carefully around control flowoptimisations as they often impact the semantics
of the program. Thus, using optimisers, such as Binaryens wasm-opt, for de-obfuscation purposes
may be ineffective for effectively reversing control obfuscation.

55

Chapter 5. Discussion

It is also worth noting that there are differences within the reversibility of the various control ob-
fuscation transformations. For instance, bogus control flow introduces dead paths that are never
executed, which the compiler is able to identify as useless code and eliminate. On the other hand,
reversing control flow flattening back to its original form presents a more substantial challenge, as
the original control flow is lost, and the compiler must attempt to reconstruct it.

Moreover, we find data encoding to be more reversible than data encryption. Encoding can be
reversed by the compiler because the data is replaced with mathematically equivalent expressions,
and compilers are designed for simplifying such expressions. Conversely, encryption transforms
the data, making it hard to reverse without knowing the specific algorithm or key used. Even if the
decryption code is present in the code and could theoretically be executed by the optimiser, doing
so would typically go beyond the scope of what optimisers are designed to do, which is to improve
the performance of the code without changing its behaviour.

We found that de-obfuscation could both increase and decrease the accuracy of the detection meth-
ods, acting as a double-edged sword. For MINOS, the detection rate improved, likely because after
de-obfuscation the resulting grayscale images more closely resembled the images it was trained on,
thus increasing the accuracy. The detection accuracies for WASim (neural) and WASim (naive),
conversely, decreased, with a significant decline in recall. That is, the number of false negatives
increased, indicating that more crypto miners were misclassified as benign programs. This might
be due to the de-obfuscated binaries not being complex enough to be classified as crypto miners by
WASim.

Interestingly, detection methods that decreased in accuracy after obfuscation, like MINOS, increased
in accuracy after de-obfuscation. We also observed that detectionmethods that increased in accuracy
after obfuscation, like WASim, decreased in accuracy after de-obfuscation. This implies that the de-
obfuscation was effective in removing obfuscation, reverting the effects it had initially caused.

For WASim (RF), we observed a notable increase in the detection F1 score, from 0 to 0.80 on av-
erage, indicating an improvement in the detection of all obfuscation methods. While we can only
hypothesise why this is the case, it is plausible that the optimisation removed some noise from the
WebAssembly binaries, leaving distinguishable, relevant features in the data that enable effective
decision-making at each node of the trees in the forest.

The process of de-obfuscation, on average, took 1.74 seconds to execute. Given the potential im-
provement in detection accuracy, we believe that this additional time is justifiable. Of course, not
all detection methods will benefit from de-obfuscation, as we saw with the WASim (neural) and
WASim(naive) detectors. However, the results forMINOSandWASim(RF) show that de-obfuscation
can be a useful tool for improving detection accuracy.

56

Chapter 5. Discussion

5.4 Overhead
We found that Tigress and emcc-obf, on average, increased the WebAssembly binary size by 53%
and 19%, respectively. These observations align with Suresh et al.’s research [159], wherein the
code generated by Tigress was 5% to 78% larger compared to the code generated by OLLVM. It is
interesting to see that even for similar transformations, such as Tigress’ flatten and emcc-obf control
flow flattening, Tigress produces 11.3% larger binaries. We attribute this to Tigress likely using a
more complex control flow flattening algorithm.

Cabrera et al. [24] did not measure the size of theWebAssembly binaries that were obfuscated with
wasm-mutate. However, we found that stacking transformations can induce considerable overhead,
ranging from 12% to 121%, averaging 59%. Still, this is not an issue if the transformations are strate-
gically selected to minimise the overhead or fewer transformations are applied. Such approaches
have proven viable in other domains, such as in the diversification of the Rosette language [105].

In terms of performance overhead, Tigress performed the worst, averaging 63.1% of the original
hash rate, followed by emcc-obf and wasm-mutate at 95.2% and 99.8%, respectively. These observa-
tions echo the findings of Suresh et al. [159], who noted a performance overhead ranging from 4%
to 55.4% for code generated by Tigress compared to that generated by OLLVM. Notice in Figure 4.12
that function splitting, encode arithmetic, and virtualisation induce the largest hash rate overheads.
Looking at the increase in native code size in Figure 4.3, we find that the same transformations also
cause the largest increase in native code size. The correlation here is not surprising, as the more
native code that is generated, the more instructions the CPU has to execute, which in turn results
in worse performance and a lower hash rate. As such, Tigress applies advanced transformations,
which significantly increases how much native code is generated, resulting in a lower hash rate.

Indeed, this reasoning is generally sound, however, an interesting deviation can be seen when ex-
amining the native code generated by the stacked wasm-mutate transformations. As Figure 4.4
shows, the native code produced after 1000 stacked wasm-mutate transformations is considerable.
However, this is not reflected in Figure 4.13, where the performance overhead is negligible.

We attribute this to hardware optimisations applied to the native code, a process that can diminish
the number of instructions executed by the CPU and thusmaintain a high hash rate despite a signif-
icant increase in native code. Such hardware optimisations can range from pipelining and instruc-
tion reordering to branch prediction and cache optimisation, all of which streamline code execution.
As for Tigress, we hypothesise that its advanced transformations generate code of such complex-
ity that it prevents the hardware from applying the same degree of optimisation. This results in a
larger performance overhead, even when the native code increase is similar to that observed with
wasm-mutate.

Another interesting observation is that constants encryption and basic block splitting increase the
hash rate to 110.7% and 104.8% of the original hash rate, respectively. This may be due to emcc-obf’s
clean-up passes designed to remove the intermediate values used for obfuscation. We hypothesise
that these clean-up procedures inadvertently optimise the code, leading to increased performance.

57

Chapter 5. Discussion

TheWebAssembly binaries that were obfuscated with wasm-mutate fluctuated around the original
hash rate, ranging from 93.6% to 100.8% of the original hash rate. We attribute this to wasm-mutate
performing transformations in the executable code of the module, which effectively work as opti-
misations. For instance, we found that loop unrolling transformations and code replacements that
lead to smaller binaries could increase the hash rate. However, wasm-mutate can also apply trans-
formations that may reduce performance, explaining why the hash rate can also be reduced. This
is in line with the findings of Cabrera et al. [24], who found that the performance overhead caused
by wasm-mutate fluctuates greatly, ranging from 20% to 147% of the original hash rate.

We have discovered that there are differences between the CryptoNight variants when it comes to
the performance overhead. CryptoNightR (cn-r) is architectured to bemore resistant to application-
specific integrated circuits (ASICs) than its counterparts. This is accomplished by embedding a
random component into the algorithm, requiring miners to perform different operations for each
block. As a result, CryptoNightR uses a combination of arithmetic and branching operations, with
the sequence randomised for each block. Some of these arithmetic operations are generated at run-
time, meaning these operations cannot be statically encoded, which explains why encode arithmetic
is ineffective for CryptoNightR. Additionally, we find that CryptoNightR has 1.7 times more branch
instructions than the other variants, justifying why transformations like flattening, control flow flat-
tening, and indirect branches have a larger impact on it compared to the other variants.

The evolution of the CryptoNight algorithm has led to an increasing complexity to ensure ASIC-
resistance. This has a knock-on effect on the performance overhead introduced by obfuscation. As
Figure 4.13 depicts, cn-0 is usually the least affected by obfuscation in terms of hash rate, succeeded
by cn-1, cn-2, and cn-r. There is a noticeable correlation between the algorithm’s complexity and the
performance overhead; the more complex algorithms tend to see greater performance overheads.
This is because more complex algorithms, with more operations and more intricate control flows,
provide more “surface area” for obfuscation to take effect and potentially slow down the program.

5.5 Interpreting the findings
The results derived from this thesis are intricate, and they are influenced by many factors. Al-
though several transformations can evade drive-by mining detection, they often introduce consid-
erable overhead. This raises the question; can obfuscation be used for evading drive-by mining
detection in real-world scenarios with justifiable overhead?

Our assessment suggests that it is feasible, but it depends on the obfuscation and detectionmethods,
as well as the specific crypto miner algorithm. For instance, anti-alias analysis can evade detection
for bothMINOS andWASimwith every CryptoNight variant, though with 78% of the original hash
rate and a 51% file size increase. More desirable results can be achieved by adapting the obfuscation
strategy to the specific use case. For instance, the original CryptoNight algorithm can be obfuscated
using indirect branches, effectively evading detection by WASim, improving the hash rate to 102%
of its initial value while merely increasing the file size by 19%. This demonstrates that obfuscation
can be viable in real-world scenarios, but it requires careful consideration of the specific use case.

58

Chapter 5. Discussion

Additionally, wasm-mutate presents potential as a tool for evading detection. Intriguingly, in many
cases, the performance overhead is negligible, and in some cases, wasm-mutate can even improve
the hash rate. Although the file size overhead can be considerable, it can be mitigated by selectively
applying transformations that do not substantially increase the file size.

This thesis focuses on crypto mining WebAssembly binaries, but we have also included benign ap-
plications in our dataset. We find that benign applications can also be effectively obfuscated, and
we have highlighted the differences between the different application categories. Althoughwe have
not extensively evaluated reverse engineering, the insights gained from this thesis can likely be ex-
tended to benefit this domain as well.

5.6 Limitations
The dataset used in this thesis covers a wide range of applications, but it is not exhaustive and only
contains 22 applications. This is primarily due to the constraints imposed by Tigress, which neces-
sitates the use of open-source C projects compatible with the C99 standard. In addition to this, they
must be compatible with CIL so they can be parsed and merged into a single source file. Construct-
ing the dataset has been amassive undertaking, andwe have spent significant time on it, addressing
bugs in Tigress and CIL along the way. Notably, the dataset contains all the prominent CryptoNight
variants. This should provide extensive coverage of crypto mining malware, as several studies have
found that in-the-wild drive-by mining implementations are all based on the CryptoNight algo-
rithm [25, 84]. Moreover, with its diverse set of use cases, the dataset stands comparable to, and in
some cases exceeds, the datasets of other obfuscation studies for WebAssembly [17, 25, 103].

The obfuscation methods have been tested on static detection methods and, despite their effective-
ness in evading them, are unlikely to be equally effective for dynamic detection methods. Although
the transformations sometimes alter the observable behaviour of the program, as evidenced by the
increase in native code, dynamic methods based on API calls or similar will observe the same be-
haviour with or without obfuscation. However, as discussed in Section 2.5.1, dynamic methods are
complex to set up, can impose a significant performance overhead, and are not widely used in prac-
tice. Therefore, we believe that the static detection methods that we evaluated are the most relevant
for the purposes of this thesis.

To our knowledge, there are no de-obfuscation tools forWebAssembly binaries. We, therefore, used
a novel approach, using Binaryen’s optimiser to de-obfuscate the binaries. However, one should
bear in mind that this likely is not the most effective strategy. Developing a de-obfuscation tool
specifically for WebAssembly would probably yield even better results. However, we believe this
approach is sufficient for this thesis, especially considering the novelty of the field, as it demonstrates
that certain transformations are more reversible than others and that the detection accuracy can be
improved in certain cases.

59

Chapter 5. Discussion

We could not extract the native code compiled by the browser, even after conversations with the
V8 developers. This is unfortunate, as exploring the semantic differences in the native code after
obfuscation would have provided valuable insights. Still, we were able to extract the size of the
native code, which indicates how obfuscation potentially affects the resulting native code and if it
is optimised away or not. While we find this useful, we acknowledge that this is a limitation of our
research.

60

Chapter 6

Conclusion

In this thesis, we have conducted an in-depth evaluation of code obfuscation forWebAssembly. The
obfuscation methods evaluated operate on multiple abstraction levels, providing the most compre-
hensive evaluation of WebAssembly obfuscation to date. We have shown how effective obfuscation
is at producing dissimilar WebAssembly binaries and how the resulting native code is affected. The
results show that obfuscation can, indeed, successfully evade state-of-the-art drive-bymining detec-
tors. However, effectiveness largely depends on the specific obfuscation transformation, detection
method, and crypto mining algorithm. In addition to proposing a novel obfuscation method for
WebAssembly, we also introduce and evaluate a novel de-obfuscation method based on compiler
optimisations. Lastly, we have evaluated the space and time overhead caused by obfuscation and
shown how obfuscation can be used in real-world scenarios for drive-by mining evasion with min-
imal overhead.

These findings are significant for researchers and academics. Notably, we offer insights into which
transformations are most effective in evading detection, which can help in developing more ad-
vanced detection methods. We also provide an extensive dataset of nearly 50 000 obfuscated Web-
Assembly binaries for researchers to use, consisting of all the predominant CryptoNight variants,
as well as benign applications spanning a diverse set of use cases. Moreover, we have developed
novel obfuscation and de-obfuscation methods that can be used in future research.

6.1 Future research
Although this thesis has made significant contributions towards understanding WebAssembly ob-
fuscation, there are still avenues for future research. One crucial direction is the development of
more robust detection methods that can effectively contend with the obfuscation methods explored
in this thesis. A promising solution, as seen in this thesis, is to preprocess the WebAssembly bina-
ries by de-obfuscating them. Moreover, the need for improved detection methods, irrespective of

61

Chapter 6. Conclusion

their obfuscation resistance, cannot be overstated. In this thesis, we discovered that more than half
(four out of seven) of the detection methods implemented were unable to detect the crypto miners,
even before obfuscation.

Another avenue for future research is investigatingmore advanced obfuscation techniques and pos-
sibly developing novel ones designed specifically for WebAssembly. Obfuscation methods tailored
toWebAssembly, leveraging its unique features such as the stackmachine architecture, would likely
be even more effective than the methods explored in this thesis. In practice, this could be imple-
mented as optimisation passes for Binaryen, similar to what was done for OLLVM. Moreover, com-
bining several obfuscation transformations, possibly at multiple abstractions levels, merits further
investigation.

Finally, there is extensive research on drive-by mining but not on other malicious use cases forWeb-
Assembly. WebAssembly can also be used for other malicious purposes, like tech support scams,
browser exploits, and script-based keyloggers [102], and it has been used for hacking games [73, 11].
The full potential of WebAssembly for malicious purposes has not been extensively explored yet,
and we believe that this is an exciting direction for future research. Besides malicious use cases,
obfuscating benign programs in the context of preventing reverse engineering is also an interesting
direction for future research.

6.2 Concluding remarks
As we edge towards a future where WebAssembly will take an even more prominent role in web
applications, the importance of understanding and countering obfuscation techniques cannot be
overstated. This thesis is a step in that direction, providing a stepping stone for academics and
researchers to develop advanced detection methods that can withstand obfuscation. We have iden-
tified the most effective obfuscation methods and evaluated their feasibility in real-world scenarios
by measuring the performance overhead, constituting a significant contribution to the body of liter-
ature. Moreover, we provide an extensive dataset of obfuscated WebAssembly binaries, as well as
novel obfuscation and de-obfuscation methods for researchers to explore and extend. Despite con-
siderable progress, we are only scratching the surface. We expect the landscape of WebAssembly
obfuscation to continue to evolve, and we are confident that our efforts will inspire and instigate
further research.

62

Bibliography

[1] John Aach and George M Church. Aligning gene expression time series with time warping
algorithms. Bioinformatics, 17(6):495–508, 2001.

[2] Cyber Threat Alliance. The Illicit Cryptocurrency Mining Threat. https:

//cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-

Whitepaper.pdf, 2018. [Accessed 25th Nov. 2022].

[3] BertrandAnckaert, Mariusz Jakubowski, RamarathnamVenkatesan, andKoenDe Bosschere.
Run-time randomization to mitigate tampering. In Advances in Information and Computer Se-
curity, pages 153–168. Springer Berlin Heidelberg, 2007.

[4] Alberto Apostolico and Concettina Guerra. The longest common subsequence problem re-
visited. Algorithmica, 2:315–336, 1987.

[5] Sandhya Armoogum and Asvin Caully. Obfuscation techniques for mobile agent code confi-
dentiality. Journal of E-Technology, 1(2):83–94, 2010.

[6] Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit Baudry. Wasm-
mutate: Fuzzing webassembly compilers with e-graphs. In E-Graph Research, Applications,
Practices, and Human-factors Symposium, 2022.

[7] Javier Cabrera Arteaga, OrestisMalivitsis, Oscar Vera Perez, Benoit Baudry, andMartinMon-
perrus. Crow: Code diversification for webassembly. arXiv preprint arXiv:2008.07185, 2020.

[8] Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry. Scalable comparison of
JavaScript v8 bytecode traces. In Proceedings of the 11th ACM SIGPLAN International Work-
shop on Virtual Machines and Intermediate Languages. ACM, oct 2019.

[9] Nadav Avital. Crypto Me0wing Attacks: Kitty Cashes in on Monero | Imperva.
https://www.imperva.com/blog/crypto-me0wing-attacks-kitty-cashes-in-on-

monero/?redirect=Incapsula, October 2019. [Accessed 16. May 2023].

[10] Lee Badger, Larry D’Anna, Doug Kilpatrick, Brian Matt, Andrew Reisse, and Tom Van Vleck.
Self-protecting mobile agents obfuscation techniques evaluation report. Network Associates

63

https://cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://www.imperva.com/blog/crypto-me0wing-attacks-kitty-cashes-in-on-monero/?redirect=Incapsula
https://www.imperva.com/blog/crypto-me0wing-attacks-kitty-cashes-in-on-monero/?redirect=Incapsula

Bibliography

Laboratories, Report, pages 01–036, 2002.

[11] Jack Baker. HackingWebAssemblyGameswith Binary Instrumentation. https://av.tib.eu/
media/48379, June 2023. [Accessed 13. Jun. 2023].

[12] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander
Pretschner. Code obfuscation against symbolic execution attacks. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, dec 2016.

[13] Ziv Bar-Joseph, Georg Gerber, David K Gifford, Tommi S Jaakkola, and Itamar Simon. A
new approach to analyzing gene expression time series data. In Proceedings of the sixth annual
international conference on Computational biology, pages 39–48, 2002.

[14] JF Bastien. Going public launch bug. https://github.com/WebAssembly/design/issues/

150, June 2015. [Accessed 14. May 2023].

[15] Zahra Bazrafshan, HashemHashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh. A survey
on heuristic malware detection techniques. In The 5th Conference on Information and Knowledge
Technology. IEEE, may 2013.

[16] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time
series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, USA:, 1994.

[17] Shrenik Bhansali, Ahmet Aris, Abbas Acar, HarunOz, andA. Selcuk Uluagac. A First Look at
Code Obfuscation forWebAssembly. In Proceedings of the 15th ACMConference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’22, page 140–145, New York, NY, USA, 2022.
Association for Computing Machinery.

[18] Weikang Bian, Wei Meng, and Mingxue Zhang. MineThrottle: Defending against Wasm In-
Browser Cryptojacking. In Proceedings of TheWeb Conference 2020, WWW ’20, page 3112–3118,
New York, NY, USA, 2020. Association for Computing Machinery.

[19] Bidragsytere til Wikimedia-prosjektene. ARPANET – Wikipedia. https://

no.wikipedia.org/w/index.php?title=ARPANET&oldid=23111496, November 2022. [Ac-
cessed 30. May 2023].

[20] Sandrine Blazy, Stephanie Riaud, and Thomas Sirvent. Data tainting and obfuscation: Im-
proving plausibility of incorrect taint. In 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, sep 2015.

[21] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for metamorphic viruses.
Journal in Computer Virology, 4(3):211–220, feb 2008.

[22] Bramus. Adobe Photoshop in the browser thanks to WASM/Emscripten, Web Components,
and Project Fugu. https://www.bram.us/2021/10/27/adobe-photoshop-in-the-browser-

thanks-to-emscripten-web-components-and-project-fugu, October 2021. [Accessed 16.

64

https://av.tib.eu/media/48379
https://av.tib.eu/media/48379
https://github.com/WebAssembly/design/issues/150
https://github.com/WebAssembly/design/issues/150
https://no.wikipedia.org/w/index.php?title=ARPANET&oldid=23111496
https://no.wikipedia.org/w/index.php?title=ARPANET&oldid=23111496
https://www.bram.us/2021/10/27/adobe-photoshop-in-the-browser-thanks-to-emscripten-web-components-and-project-fugu
https://www.bram.us/2021/10/27/adobe-photoshop-in-the-browser-thanks-to-emscripten-web-components-and-project-fugu

Bibliography

May 2023].

[23] bytecodealliance. wasm-tools, May 2023. [Accessed 25. May 2023].

[24] Javier Cabrera Arteaga. Artificial Software Diversification for WebAssembly, 2022. Doctor
thesis (CROW +MEWE).

[25] Javier Cabrera-Arteaga, Martin Monperrus, Tim Toady, and Benoit Baudry. Webassembly
diversification for malware evasion. Computers and Security, December 2022.

[26] cazala. coin-hive. https://github.com/cazala/coin-hive, March 2018. [Accessed 16. May
2023].

[27] Jien-Tsai Chan and Wuu Yang. Advanced obfuscation techniques for java bytecode. Journal
of Systems and Software, 71(1-2):1–10, apr 2004.

[28] Joseph C Chen. Cryptocurrency Miner Script Found on AOL Ad Platform.
https://www.trendmicro.com/en_us/research/18/d/cryptocurrency-web-miner-script-

injected-into-aol-advertising-platform.html, April 2018. [Accessed 16. May 2023].

[29] Xu Chen, Jon Andersen, Z. Morley Mao, Michael Bailey, and Jose Nazario. Towards an un-
derstanding of anti-virtualization and anti-debugging behavior in modern malware. In 2008
IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN).
IEEE, 2008.

[30] Kevin Cheung. AutoCAD & WebAssembly: Moving a 30 Year Code Base to the Web. InfoQ,
September 2018.

[31] Ericka Chickowski. Container Supply Chain Attacks Cash In on Cryptojacking. Dark Reading,
September 2022.

[32] Seongje Cho, Hyeyoung Chang, and Yookun Cho. Implementation of an obfuscation tool for
c/c++ source code protection on the XScale architecture. In Software Technologies for Embedded
and Ubiquitous Systems, pages 406–416. Springer Berlin Heidelberg, 2008.

[33] Chromium. Introduction to Portable Native Client. https://www.chromium.org/

nativeclient/pnacl/introduction-to-portable-native-client, December 2022. [Ac-
cessed 2 Dec. 2022].

[34] Melissa Chua and Vivek Balachandran. Effectiveness of android obfuscation on evading anti-
malware. In Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy. ACM, mar 2018.

[35] Clang. clang: lib/Basic/Targets/WebAssembly.h Source File. https://clang.llvm.org/

doxygen/Basic_2Targets_2WebAssembly_8h_source.html, May 2023. [Accessed 16. May
2023].

65

https://github.com/cazala/coin-hive
https://www.trendmicro.com/en_us/research/18/d/cryptocurrency-web-miner-script-injected-into-aol-advertising-platform.html
https://www.trendmicro.com/en_us/research/18/d/cryptocurrency-web-miner-script-injected-into-aol-advertising-platform.html
https://www.chromium.org/nativeclient/pnacl/introduction-to-portable-native-client
https://www.chromium.org/nativeclient/pnacl/introduction-to-portable-native-client
https://clang.llvm.org/doxygen/Basic_2Targets_2WebAssembly_8h_source.html
https://clang.llvm.org/doxygen/Basic_2Targets_2WebAssembly_8h_source.html

Bibliography

[36] Lin Clark. WhatmakesWebAssembly fast? –MozillaHacks - theWeb developer blog. https:
//hacks.mozilla.org/2017/02/what-makes-webassembly-fast, February 2017. [Accessed
13. May 2023].

[37] COBF. COBF - Plexaure. https://www.plexaure.de/cms/index.php?id=cobf, May 2023. [Ac-
cessed 24. May 2023].

[38] CodeMorph. CodeMorph Code Obfuscator Features. http://www.sourceformat.com/code-
morph.htm, February 2014. [Accessed 24. May 2023].

[39] Frederick B. Cohen. Operating system protection through program evolution. Computers and
Security, 12(6):565–584, oct 1993.

[40] Christian Collberg. Home. https://tigress.wtf, May 2023. [Accessed 24. May 2023].

[41] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating trans-
formations. http://www.cs.auckland.ac.nz/staff-cgi-bin/mjd/csTRcgi.pl?serial, 01 1997.

[42] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages - POPL '98. ACM Press, 1998.

[43] Contributors to Wikimedia projects. JavaScript - Wikipedia. https://en.wikipedia.org/w/
index.php?title=JavaScript&oldid=1126827786, November 2001. [Accessed 3 Dec. 2022].

[44] Contributors to Wikimedia projects. ActiveX - Wikipedia. https://en.wikipedia.org/w/

index.php?title=ActiveX&oldid=1102963222, August 2022. [Accessed 4 Nov. 2022].

[45] Contributors toWikimedia projects. Adobe Flash -Wikipedia. https://en.wikipedia.org/w/
index.php?title=Adobe_Flash&oldid=1126708043, December 2022. [Accessed 2 Dec. 2022].

[46] Contributors to Wikimedia projects. Java (programming language) - Wikipedia.
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=

1126888277, December 2022. [Accessed 2 Dec. 2022].

[47] Contributors to Wikimedia projects. Dynamic time warping - Wikipedia. https:

//en.wikipedia.org/w/index.php?title=Dynamic_time_warping&oldid=1150247571, April
2023. [Accessed 26. May 2023].

[48] Contributors to Wikimedia projects. Euclidean distance - Wikipedia. https://

en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=1153733276, May 2023.
[Accessed 26. May 2023].

[49] Contributors to Wikimedia projects. History of the Internet - Wikipedia. https://

en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=1153054494, May
2023. [Accessed 13. May 2023].

66

https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast
https://www.plexaure.de/cms/index.php?id=cobf
http://www.sourceformat.com/code-morph.htm
http://www.sourceformat.com/code-morph.htm
https://tigress.wtf
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1126827786
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1126827786
https://en.wikipedia.org/w/index.php?title=ActiveX&oldid=1102963222
https://en.wikipedia.org/w/index.php?title=ActiveX&oldid=1102963222
https://en.wikipedia.org/w/index.php?title=Adobe_Flash&oldid=1126708043
https://en.wikipedia.org/w/index.php?title=Adobe_Flash&oldid=1126708043
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=1126888277
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=1126888277
https://en.wikipedia.org/w/index.php?title=Dynamic_time_warping&oldid=1150247571
https://en.wikipedia.org/w/index.php?title=Dynamic_time_warping&oldid=1150247571
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=1153733276
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=1153733276
https://en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=1153054494
https://en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=1153054494

Bibliography

[50] Contributors to Wikimedia projects. Jeff Atwood - Wikipedia. https://en.wikipedia.org/

w/index.php?title=Jeff_Atwood&oldid=1151929413, April 2023. [Accessed 26. May 2023].

[51] Contributors to Wikimedia projects. Packet switching - Wikipedia. https://

en.wikipedia.org/w/index.php?title=Packet_switching&oldid=1159621019, June 2023.
[Accessed 13. Jun. 2023].

[52] Contributors to Wikimedia projects. Precision and recall - Wikipedia. https:

//en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1157370599, May
2023. [Accessed 29. May 2023].

[53] CShroud. SourceForge. https://sourceforge.net/projects/cshroud, January 2013. [Ac-
cessed 24. May 2023].

[54] d35ha. xObf. https://github.com/d35ha/xObf, May 2023. [Accessed 24. May 2023].

[55] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark
Stamp. A comparison of static, dynamic, and hybrid analysis for malware detection. Journal
of Computer Virology and Hacking Techniques, 13(1):1–12, dec 2015.

[56] WebAssembly docs. Security - WebAssembly. https://webassembly.org/docs/security,
May 2023. [Accessed 14. Jun. 2023].

[57] S. Drape, O. De Moor, and G. Sittampalam. Transforming the .net intermediate language
using path logic programming. In Proceedings of the ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP’02), pages 133–144, 2002. Cited By :19.

[58] Stephen Drape. Generalising the array split obfuscation. Information Sciences, 177(1):202–219,
jan 2007.

[59] Google Earth. Google Earth comes to more browsers, thanks to WebAssembly. Google Earth and
Earth Engine, December 2021.

[60] EBay. WebAssembly at eBay: A Real-World Use Case. https://tech.ebayinc.com/

engineering/webassembly-at-ebay-a-real-world-use-case, May 2019. [Accessed 16.
May 2023].

[61] Electron.js. Build cross-platform desktop apps with JavaScript, HTML, and CSS | Electron.
https://www.electronjs.org, May 2023. [Accessed 16. May 2023].

[62] Emscripten. Main — Emscripten 3.1.26-git (dev) documentation. https://emscripten.org,
November 2022. [Accessed 1 Dec. 2022].

[63] EOSIO. EOS Virtual Machine: A High-Performance Blockchain WebAssembly Interpreter
– EOSIO. https://eos.io/news/eos-virtual-machine-a-high-performance-blockchain-
webassembly-interpreter, January 2021. [Accessed 9. Nov. 2022].

67

https://en.wikipedia.org/w/index.php?title=Jeff_Atwood&oldid=1151929413
https://en.wikipedia.org/w/index.php?title=Jeff_Atwood&oldid=1151929413
https://en.wikipedia.org/w/index.php?title=Packet_switching&oldid=1159621019
https://en.wikipedia.org/w/index.php?title=Packet_switching&oldid=1159621019
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1157370599
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1157370599
https://sourceforge.net/projects/cshroud
https://github.com/d35ha/xObf
https://webassembly.org/docs/security
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case
https://tech.ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case
https://www.electronjs.org
https://emscripten.org
https://eos.io/news/eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter
https://eos.io/news/eos-virtual-machine-a-high-performance-blockchain-webassembly-interpreter

Bibliography

[64] EXECryptor. EXECryptor. https://execryptor.en.softonic.com, May 2023. [Accessed 24.
May 2023].

[65] Ninon Eyrolles. Obfuscation with Mixed Boolean-Arithmetic Expressions: reconstruction, analysis
and simplification tools. PhD thesis, Université Paris-Saclay, 2017.

[66] Fastly. Fastly Docs. https://docs.fastly.com/products/compute-at-edge, May 2022. [Ac-
cessed 23. Nov. 2022].

[67] Figma. Figma is powered by WebAssembly. https://www.figma.com/blog/webassembly-

cut-figmas-load-time-by-3x, June 2017. [Accessed 16. May 2023].

[68] Flutter. Support for WebAssembly (Wasm). https://docs.flutter.dev/platform-

integration/web/wasm, May 2023. [Accessed 16. May 2023].

[69] S. Forrest, A. Somayaji, and D.H. Ackley. Building diverse computer systems. In Proceedings.
The Sixth Workshop on Hot Topics in Operating Systems (Cat. No.97TB100133). IEEE Comput.
Soc. Press, 2022.

[70] The Rust Foundation. WebAssembly. https://www.rust-lang.org/what/wasm, May 2023.
[Accessed 16. May 2023].

[71] Kazuhide Fukushima, Shinsaku Kiyomoto, and Toshiaki Tanaka. An obfuscation scheme
using affine transformation and its implementation. IPSJ Digital Courier, 2:498–512, 2006.

[72] Sudeep Ghosh, Jason D. Hiser, and Jack W. Davidson. Matryoshka: Strengthening software
protection via nested virtual machines. In 2015 IEEE/ACM 1st International Workshop on Soft-
ware Protection. IEEE, may 2015.

[73] GitHub. (wasm2c) Re-compiling to WASM. https://github.com/WebAssembly/wabt/

issues/1950#issuecomment-1455110508, June 2023. [Accessed 13. Jun. 2023].

[74] Dan Goddin. Now even YouTube serves ads with CPU-draining cryptocurrency min-
ers. https://arstechnica.com/information-technology/2018/01/now-even-youtube-

serves-ads-with-cpu-draining-cryptocurrency-miners, May 2023. [Accessed 16. May
2023].

[75] Nishu Goel. JavaScript | 2021 | TheWeb Almanac by HTTP Archive. 2021 Web Almanac, 3(2),
December 2022.

[76] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-
versarial examples. arXiv preprint arXiv:1412.6572, December 2014.

[77] Google. Native Client - Chrome Developers. https://developer.chrome.com/docs/native-
client, January 1980. [Accessed 4 Nov. 2022].

[78] Google. WebAssembly compilation pipeline ·V8. https://v8.dev/docs/wasm-compilation-

68

https://execryptor.en.softonic.com
https://docs.fastly.com/products/compute-at-edge
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x
https://docs.flutter.dev/platform-integration/web/wasm
https://docs.flutter.dev/platform-integration/web/wasm
https://www.rust-lang.org/what/wasm
https://github.com/WebAssembly/wabt/issues/1950#issuecomment-1455110508
https://github.com/WebAssembly/wabt/issues/1950#issuecomment-1455110508
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners
https://developer.chrome.com/docs/native-client
https://developer.chrome.com/docs/native-client
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline

Bibliography

pipeline, May 2023. [Accessed 16. May 2023].

[79] Samuel Gross. Samuel Groß and Amy Burnett. 2022. Attacking
JavaScriptEngines in 2022. https://saelo.github.io/presentations/

offensivecon_22_attacking_javascript_engines.pdf, 2022. [Accessed 13. May 2023].

[80] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 185–200, 2017.

[81] Maurice H Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Inc., 1977.

[82] Muhammad Hataba, Reem Elkhouly, and Ahmed El-Mahdy. Diversified remote code exe-
cution using dynamic obfuscation of conditional branches. In 2015 IEEE 35th International
Conference on Distributed Computing Systems Workshops. IEEE, jun 2015.

[83] Kotlin Help. Get started with Kotlin/Wasm in IntelliJ IDEA | Kotlin. https://

kotlinlang.org/docs/wasm-get-started.html, May 2023. [Accessed 16. May 2023].

[84] AaronHilbig, Daniel Lehmann, andMichael Pradel. An Empirical Study of Real-WorldWeb-
Assembly Binaries: Security, Languages, Use Cases. In Proceedings of the Web Conference 2021,
WWW’21, page 2696–2708, NewYork, NY,USA, 2021. Association for ComputingMachinery.

[85] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Johannes Holvitie,
Sami Hyrynsalmi, and Ville Leppänen. Diversification and obfuscation techniques for soft-
ware security: A systematic literature review. Information and Software Technology, 104:72–93,
dec 2018.

[86] T.W. Hou, H.Y. Chen, and M.H. Tsai. Three control flow obfuscation methods for java soft-
ware. IEE Proceedings - Software, 153(2):80, 2006.

[87] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, February 2017.

[88] Solomon Hykes. Solomon Hykes / @shykes@hachyderm.io on Twitter. https://

twitter.com/solomonstre/status/1111004913222324225, March 2019. [Accessed 16. May
2023].

[89] Matthias Jacob, Mariusz H. Jakubowski, Prasad Naldurg, Chit Wei Saw, and Ramarathnam
Venkatesan. The superdiversifier: Peephole individualization for software protection. In Ad-
vances in Information and Computer Security, pages 100–120. Springer Berlin Heidelberg, 2008.

[90] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-llvm–software
protection for the masses. In 2015 ieee/acm 1st international workshop on software protection,

69

https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://saelo.github.io/presentations/offensivecon_22_attacking_javascript_engines.pdf
https://kotlinlang.org/docs/wasm-get-started.html
https://kotlinlang.org/docs/wasm-get-started.html
https://twitter.com/solomonstre/status/1111004913222324225
https://twitter.com/solomonstre/status/1111004913222324225

Bibliography

pages 3–9. IEEE, 2015.

[91] Yuichiro Kanzaki, Clark Thomborson, Akito Monden, and Christian Collberg. Pinpointing
and hiding surprising fragments in an obfuscated program. In Proceedings of the 5th Program
Protection and Reverse Engineering Workshop. ACM, dec 2015.

[92] Conor Kelton, Aruna Balasubramanian, Ramya Raghavendra, and Mudhakar Srivatsa.
Browser-BasedDeepBehavioral Detection ofWebCryptominingwithCoinSpy. InProceedings
2020 Workshop on Measurements, Attacks, and Defenses for the Web. Internet Society, 2020.

[93] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller, Nikita
Borisov, Manos Antonakakis, and Michael Bailey. Outguard: Detecting In-Browser Covert
Cryptocurrency Mining in the Wild. In The World Wide Web Conference on - WWW '19. ACM
Press, 2019.

[94] Dmitry Kondratyev. The state of cryptojacking in the first three quarters of 2022. Kaspersky,
November 2022.

[95] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lindorfer,
Christopher Kruegel, Herbert Bos, and Giovanni Vigna. Minesweeper: An in-depth look
into drive-by cryptocurrency mining and its defense. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 1714–1730, 2018.

[96] Aniket Kulkarni and Ravindra Metta. A new code obfuscation scheme for software protec-
tion. In 2014 IEEE 8th International Symposium on Service Oriented System Engineering. IEEE,
apr 2014.

[97] Shannon Liao. Showtime websites secretly mined user CPU for cryptocurrency. Verge,
September 2017.

[98] Shannon Liao. UNICEF wants you to mine cryptocurrency for charity. Verge, April 2018.

[99] Kyeonghwan Lim, Jaemin Jeong, Seong je Cho, Jongmoo Choi, Minkyu Park, Sangchul Han,
and Seongtae Jhang. An anti-reverse engineering technique using native code and obfuscator-
LLVM for android applications. In Proceedings of the International Conference on Research in
Adaptive and Convergent Systems. ACM, sep 2017.

[100] C.-T Lin, N.-J Wang, Han Xiao, and Claudia Eckert. Feature selection and extraction for mal-
ware classification. Journal of Information Science and Engineering, 31:965–992, 05 2015.

[101] Renju Liu, Luis Garcia, and Mani Srivastava. Aerogel: Lightweight Access Control Frame-
work forWebAssembly-Based Bare-Metal IoTDevices. In 2021 IEEE/ACMSymposium on Edge
Computing (SEC), pages 94–105. IEEE, 2021.

[102] Aishwarya Lonkar and Siddhesh Chandrayan. The dark side ofWebAssembly. Virus Bulletin,
2018.

70

Bibliography

[103] Nils Loose, Felix Mächtle, Claudius Pott, Volodymyr Bezsmertnyi, and Thomas Eisenbarth.
Madvex: Instrumentation-based adversarial attacks on machine learning malware detection.
Detection of Intrusions and Malware & Vulnerability Assessment, May 2023.

[104] Pedro Daniel Rogeiro Lopes. Discovering vulnerabilities in webassembly with code property
graphs. Técnico Lisboa, 2021. WASMATI (Master thesis/Specialization project).

[105] Gilmore R Lundquist, VishwathMohan, and KevinWHamlen. Searching for software diver-
sity: attaining artificial diversity through program synthesis. In Proceedings of the 2016 New
Security Paradigms Workshop, pages 80–91, 2016.

[106] MarceloDeAMaia, Victor Sobreira, Klérisson R Paixão, SAAmo, and Ilmério R Silva. Using a
sequence alignment algorithm to identify specific and common code from execution traces. In
Proceedings of the 4th InternationalWorkshop on ProgramComprehension throughDynamic Analysis
(PCODA, pages 6–10, 2008.

[107] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. Stealth
attacks: An extended insight into the obfuscation effects on android malware. Computers
Security, 51:16–31, jun 2015.

[108] A. Majumdar and C. Thomborson. Manufacturing opaque predicates in distributed systems
for code obfuscation. In Conferences in Research and Practice in Information Technology Series,
volume 48, pages 187–196, 2006. Cited By :30.

[109] Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Victor Bankowski, Paulius Daubaris,
RistoMikkola, andOleg Beletski. WebAssemblymodules as lightweight containers for liquid
IoT applications. In International Conference onWeb Engineering, pages 328–336. Springer, 2021.

[110] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–
320, 1976.

[111] Microsoft. Blazor | Build client web apps with C# | .NET. https://dotnet.microsoft.com/
en-us/apps/aspnet/web-apps/blazor, May 2023. [Accessed 16. May 2023].

[112] Anders Møller. Technical perspective: WebAssembly: A quiet revolution of the Web. Com-
munications of the ACM, 61(12):106–106, 2018.

[113] Monero. Mining Monero. https://www.getmonero.org/get-started/mining, May 2023.
[Accessed 16. May 2023].

[114] Monero. The Monero Project. https://www.getmonero.org, May 2023. [Accessed 16. May
2023].

[115] Jonathon Giffin Monirul Sharif, Andrea Lanzi and Wenke Lee. Impeding malware analysis
using conditional code obfuscation. Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), 2008.

71

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://www.getmonero.org/get-started/mining
https://www.getmonero.org

Bibliography

[116] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware
detection. In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007).
IEEE, dec 2007.

[117] Mozilla. asm.js - Game development |MDN. https://developer.mozilla.org/en-US/docs/
Games/Tools/asm.js?source=post_page, November 2022. [Accessed 4 Nov. 2022].

[118] Mozilla. Using the WebAssembly JavaScript API - WebAssembly | MDN. https://

developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API, November
2022. [Accessed 29 Nov. 2022].

[119] Abdullah Mueen and Eamonn Keogh. Extracting optimal performance from dynamic time
warping. In Proceedings of the 22nd ACMSIGKDD international conference on knowledge discovery
and data mining, pages 2129–2130, 2016.

[120] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. New Kid on the
Web: A Study on the Prevalence of WebAssembly in the Wild. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 23–42. Springer, 2019.

[121] Jasvir Nagra and Christian Collberg. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tamperproofing for Soft-
ware Protection. Pearson Education, 2009.

[122] Faraz Naseem Naseem, Ahmet Aris, Leonardo Babun, Ege Tekiner, and A Selcuk Uluagac.
MINOS: A Lightweight Real-Time Cryptojacking Detection System. In NDSS, 2021.

[123] NEAR. What is a Smart Contract? | NEAR Documentation. https://docs.near.org/

develop/contracts/whatisacontract, November 2022. [Accessed 11 Nov. 2022].

[124] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. Cil: Intermediate lan-
guage and tools for analysis and transformation of c programs. In Compiler Construction: 11th
International Conference, CC 2002 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002 Grenoble, France, April 8–12, 2002 Proceedings, pages 213–228.
Springer, 2002.

[125] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[126] Nikjoo. x86-Code-Virtualizer. https://github.com/NIKJOO/x86-Code-Virtualizer, May
2023. [Accessed 24. May 2023].

[127] Node.js. Node.js. https://nodejs.org/en, November 2022. [Accessed 27 Nov. 2022].

[128] Matija Novak, Mike Joy, and Dragutin Kermek. Source-code similarity detection and detec-
tion tools used in academia. ACM Transactions on Computing Education, 19(3):1–37, may 2019.

[129] objobf. objobf-0.5.0.tar.bz2 ≈ Packet Storm. https://packetstormsecurity.com/files/

72

https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js?source=post_page
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js?source=post_page
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://docs.near.org/develop/contracts/whatisacontract
https://docs.near.org/develop/contracts/whatisacontract
https://github.com/NIKJOO/x86-Code-Virtualizer
https://nodejs.org/en
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html

Bibliography

31524/objobf-0.5.0.tar.bz2.html, May 2023. [Accessed 24. May 2023].

[130] Lindsey O’Donnell. Cryptojacking Attack Found on Los Angeles Times Website. Threatpost,
February 2018.

[131] Ahmet Okutan. Use of source code similarity metrics in software defect prediction. arXiv
preprint arXiv:1808.10033, 2018.

[132] Oreans. Oreans Technologies : Software Security Defined. https://www.oreans.com/

Themida.php, May 2023. [Accessed 24. May 2023].

[133] Daniel Park, Haidar Khan, and Bulent Yener. Generation: Evaluation of adversarial examples
for malware obfuscation. In 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA). IEEE, dec 2019.

[134] Helen Partz. Cybersecurity Firm Detects Cryptojacking Malware on Make-A-Wish Founda-
tion Website. Cointelegraph, November 2018.

[135] Mathias Payer. Embracing the new threat: Towards automatically self-diversifying malware.
In The Symposium on Security for Asia Network, pages 1–5, 2014.

[136] politoinc. Automated Obfuscation of Windows Malware and Exploits Using O-LLVM.
https://www.politoinc.com/post/2020/03/02/automated-obfuscation-of-windows-

malwareexploits-using-o-llvm, March 2020. [Accessed 25. May 2023].

[137] Vasile Adrian Bogdan Pop, Seppo Virtanen, Petri Sainio, andArtoNiemi. Securemigration of
WebAssembly-based mobile agents between secure enclaves. Master of Science in Technology
Thesis, University of Turku, 2021.

[138] Jon Porter. Popular ‘cryptojacking’ service Coinhive will shut down next week. Verge, Febru-
ary 2019.

[139] Hardware-Based Protections. A survey of anti-tamper technologies. CrossTalk: The J. Defense
Softw. Engin, 2004.

[140] Enigma Protector. Software Protection, Software Licensing, Software Virtualization. https:
//enigmaprotector.com, April 2023. [Accessed 24. May 2023].

[141] Pythondev. Compile Python to WebAssembly (WASM) — Unofficial Python Development
(Victor’s notes) documentation. https://pythondev.readthedocs.io/wasm.html, April 2023.
[Accessed 16. May 2023].

[142] Chotirat Ann Ratanamahatana and Eamonn Keogh. Everything you know about dynamic
time warping is wrong. In Third workshop on mining temporal and sequential data, volume 32.
Citeseer, 2004.

[143] Juan D. Parra Rodriguez and Joachim Posegga. RAPID: Resource and API-Based Detection

73

https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://packetstormsecurity.com/files/31524/objobf-0.5.0.tar.bz2.html
https://www.oreans.com/Themida.php
https://www.oreans.com/Themida.php
https://www.politoinc.com/post/2020/03/02/automated-obfuscation-of-windows-malwareexploits-using-o-llvm
https://www.politoinc.com/post/2020/03/02/automated-obfuscation-of-windows-malwareexploits-using-o-llvm
https://enigmaprotector.com
https://enigmaprotector.com
https://pythondev.readthedocs.io/wasm.html

Bibliography

Against In-Browser Miners. In Proceedings of the 34th Annual Computer Security Applications
Conference. ACM, dec 2018.

[144] Alan Romano, Daniel Lehmann, Michael Pradel, and Weihang Wang. Wobfuscator: Ob-
fuscating JavaScript Malware via Opportunistic Translation to WebAssembly. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1574–1589, 2022.

[145] Alan Romano andWeihangWang. WASim. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ACM, dec 2020.

[146] Alan Romano, Yunhui Zheng, and Weihang Wang. MinerRay: Semantics-aware analysis-
for ever-evolving cryptojacking detection. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ACM, dec 2020.

[147] rustwasm. wasm-bindgen. https://github.com/rustwasm/wasm-bindgen, November 2022.
[Accessed 23 Nov. 2022].

[148] Dănuţ Rusu. Protectionmethods of java bytecode. In Proceedings of the Networking in Education
and Research International Conference, pages 214–220, 2003.

[149] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

[150] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis, 11(5):561–580, 2007.

[151] Fabian Scheidl. Valent-Blocks: Scalable high-performance compilation ofWebAssembly byte-
code for embedded systems. In 2020 International Conference on Computing, Electronics & Com-
munications Engineering (iCCECE), pages 119–124. IEEE, 2020.

[152] Federico Scrinzi. Behavioral analysis of obfuscated code. Master’s thesis, University of
Twente, 2015.

[153] Marija Selakovic andMichael Pradel. Performance issues and optimizations in javascript: An
empirical study. In Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, page 61–72, New York, NY, USA, 2016. Association for Computing Machinery.

[154] Liang Shan and Sabu Emmanuel. Mobile agent protection with self-modifying code. Journal
of Signal Processing Systems, 65(1):105–116, nov 2010.

[155] Praveen Sivadasan, P SojanLal, and Naveen Sivadasan. Jdatatrans for array obfuscation in
java source codes to defeat reverse engineering from decompiled codes. In Proceedings of the
2nd Bangalore Annual Compute Conference, pages 1–4, 2009.

[156] Quentin Stiévenart and Coen De Roover. Compositional information flow analysis for web-
assembly programs. In 2020 IEEE 20th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 13–24. IEEE, 2020. WASSAIL.

74

https://github.com/rustwasm/wasm-bindgen

Bibliography

[157] Stratum. StratumV2. https://stratumprotocol.org, May 2023. [Accessed 18. May 2023].

[158] Stunnix. C/C++Obfuscator. http://stunnix.com/prod/cxxo, May 2023. [Accessed 24. May
2023].

[159] Anjali J Suresh and Sriram Sankaran. Power profiling and analysis of code obfuscation for
embedded devices. In 2020 IEEE 17th India Council International Conference (INDICON). IEEE,
dec 2020.

[160] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, December 2013.

[161] Romain Tavenard. An introduction to dynamic timewarping. https://rtavenar.github.io/
blog/dtw.html, 2021.

[162] Oreans Technologies. Oreans Technologies : Software Security Defined. https://

www.oreans.com/CodeVirtualizer.php, May 2023. [Accessed 24. May 2023].

[163] W3 Techs. Usage Statistics of JavaScript as Client-side Programming Language on Websites,
December 2022. https://w3techs.com/technologies/details/cp-javascript, November
2022. [Accessed 4 Nov. 2022].

[164] Justin Thiel. An Overview of Software Performance Analysis Tools and Techniques:
From GProf to DTrace. https://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/

index.html, May 2023. [Accessed 30. May 2023].

[165] W. Thompson, A. Yasinsac, and T. McDonald. Semantic encryption transformation scheme.
In 17th ISCA International Conference on Parallel and Distributed Computing Systems 2004, PDCS
2004, pages 516–521, 2004. Cited By :9.

[166] Iain Thomson. Pulitzer-winning website Politifact hacked to mine crypto-coins in browsers.
The Register, January 2018.

[167] Marco Trivellato. WebAssembly is here! |Unity Blog. https://blog.unity.com/technology/
webassembly-is-here, August 2018. [Accessed 16. May 2023].

[168] Can I Use? WebAssembly | Can I use... Support tables for HTML5, CSS3, etc. https://

caniuse.com/wasm, November 2022. [Accessed 12 Nov. 2022].

[169] Verus. Verus - Truth and Privacy for All. https://verus.io, May 2023. [Accessed 16. May
2023].

[170] VirusTotal. VirusTotal - Home. https://www.virustotal.com/gui/home/upload, December
2022. [Accessed 2 Dec. 2022].

[171] VMProtect. VMProtect | F-Secure Labs. https://www.f-secure.com/v-descs/

75

https://stratumprotocol.org
http://stunnix.com/prod/cxxo
https://rtavenar.github.io/blog/dtw.html
https://rtavenar.github.io/blog/dtw.html
https://www.oreans.com/CodeVirtualizer.php
https://www.oreans.com/CodeVirtualizer.php
https://w3techs.com/technologies/details/cp-javascript
https://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html
https://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html
https://blog.unity.com/technology/webassembly-is-here
https://blog.unity.com/technology/webassembly-is-here
https://caniuse.com/wasm
https://caniuse.com/wasm
https://verus.io
https://www.virustotal.com/gui/home/upload
https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.f-secure.com/v-descs/vmprotect.shtml

Bibliography

vmprotect.shtml, May 2023. [Accessed 24. May 2023].

[172] W3. Same Origin Policy - Web Security. https://www.w3.org/Security/wiki/

Same_Origin_Policy, November 2022. [Accessed 26 Nov. 2022].

[173] WorldWideWebConsortium (W3C). WorldWideWebConsortium (W3C) brings a new lan-
guage to the Web as WebAssembly becomes a W3C Recommendation. https://www.w3.org/
2019/12/pressrelease-wasm-rec.html.en, November 2019. [Accessed 16 Nov. 2022].

[174] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper resistance:
Obstructing static analysis of programs. Technical report, Technical Report CS-2000-12, Uni-
versity of Virginia, 12 2000, 2000.

[175] Shuai Wang, Guixin Ye, Meng Li, Lu Yuan, Zhanyong Tang, Huanting Wang, Wei Wang,
FuweiWang, Jie Ren, Dingyi Fang, andZhengWang. LeveragingWebAssembly for numerical
JavaScript code virtualization. IEEE Access, 7:182711–182724, 2019.

[176] WenhaoWang, Benjamin Ferrell, XiaoyangXu, KevinW.Hamlen, and ShuangHao. SEISMIC:
SEcure in-lined script monitors for interrupting cryptojacks. In Computer Security, pages 122–
142. Springer International Publishing, 2018.

[177] WASI. WASI |. https://wasi.dev, June 2022. [Accessed 25 Nov. 2022].

[178] Wasmer. Wasmer - The Universal WebAssembly Runtime. https://wasmer.io, May 2023.
[Accessed 16. May 2023].

[179] Wavm. WAVM. https://github.com/WAVM/WAVM, May 2023. [Accessed 16. May 2023].

[180] WebAssembly. Security -WebAssembly. https://webassembly.org/docs/security/#users,
November 2022. [Accessed 3 Nov. 2022].

[181] Ethereum WebAssembly. Ethereum WebAssembly (ewasm) - Ethereum WebAssembly.
https://ewasm.readthedocs.io/en/mkdocs, January 2021. [Accessed 7. Nov. 2022].

[182] Chris Williams. UK ICO, USCourts.gov... Thousands of websites hijacked by hidden crypto-
mining code after popular plugin pwned. The Register, February 2018.

[183] Yanfang Ye, Tao Li, Donald Adjeroh, and S. Sitharama Iyengar. A survey on malware detec-
tion using data mining techniques. ACM Computing Surveys, 50(3):1–40, jun 2017.

76

https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.f-secure.com/v-descs/vmprotect.shtml
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en
https://wasi.dev
https://wasmer.io
https://github.com/WAVM/WAVM
https://webassembly.org/docs/security/#users
https://ewasm.readthedocs.io/en/mkdocs

Appendices

77

Appendix A

Repository: wasm-obf

This appendix contains the source code and experimental data derived from this thesis. The source
code is publicly available on GitHub,1 and the data can be found under the releases page.2

README
This repository contains the source code and experimental data derived from research on Web-
Assembly obfuscation. It has been developed as a part of myMaster’s thesis in Computer Science at
the Norwegian University of Science and Technology (NTNU). The experimental data, containing
close to 50,000 WebAssembly binaries, can be found under the releases.

Structure
• Analysis contains the data and code to create the plots used in the thesis.
• Dataset contains the source code and build files for the applications in the dataset.
• Detection contains the source code of the cryptomining detection methods.
• Metrics contains code for measuring the file size, hash rate, and similarity between Web-

Assembly binaries.
• Miner contains code for the web-based cryptominer.
• Mongodb contains code relating to the mongodb database.
• Obfuscation contains code for obfuscating the WebAssembly binaries.
• Optimization contains code for optimizing the WebAssembly binaries.
• Verify hashes contains code for verifying the hashes of the cryptomining WebAssembly bina-

ries.
1https://github.com/HakonHarnes/wasm-obf
2https://github.com/HakonHarnes/wasm-obf/releases/tag/v1.0

78

https://github.com/HakonHarnes/wasm-obf/releases/tag/v1.0
https://github.com/HakonHarnes/wasm-obf/tree/main/analysis
https://github.com/HakonHarnes/wasm-obf/tree/main/dataset
https://github.com/HakonHarnes/wasm-obf/tree/main/detection
https://github.com/HakonHarnes/wasm-obf/tree/main/metrics
https://github.com/HakonHarnes/wasm-obf/tree/main/miner
https://github.com/HakonHarnes/wasm-obf/tree/main/mongodb
https://github.com/HakonHarnes/wasm-obf/tree/main/obfuscation
https://github.com/HakonHarnes/wasm-obf/tree/main/optimization
https://github.com/HakonHarnes/wasm-obf/tree/main/verify-hashes
https://github.com/HakonHarnes/wasm-obf
https://github.com/HakonHarnes/wasm-obf/releases/tag/v1.0

Appendix A. Repository: wasm-obf

Requirements
• Python 3
• Docker

Setup
Some of the docker containers require specific networks to be setup. Specifically, a database, miner,
and WASim network will need to be created:

docker create network db_network

docker create network mn_network

docker create network wasim_network

Usage

Starting the database

Navigate to the mongodb folder and start the docker container:

docker compose run mongodb

Building the dataset

Navigate to the dataset folder and build the dataset:

docker compose run build-dataset

This will build the applications in the dataset folder using Emscripten and move the WebAssembly
binaries, as well as the accompanying JavaScript glue code and HTML file to the binaries folder.

Obfuscating the WebAssembly binaries

Navigate to the obfuscation folder and run:

docker compose run <method>

where <method> is either tigress, llvm, or wasm-mutate.

Running cryptomining detection

Navigate to the detection folder and run

79

Appendix A. Repository: wasm-obf

docker compose run <method>

where <method> is either minos, miner-ray, virustotal, or wasim.

Measuring file size and distance

Navigate to metrics and run:

docker compose run file-size

docker compose run dtw

Measure the hash rate

Navigate to miner and start it:

docker compose up

Then, navigate back to metrics and run:

docker compose run hash-rate

Verifying the hashes

Navigate to verify-hashes and run:

docker compose run verify-hashes

Extracting V8 bytecode

Navigate to optimization and run:

docker compose run v8-stats

Optimizing the WebAssembly binaries

Navigate to optimization and run:

docker compose run opt

The database will then need to be reset before re-running the experiment with the optimized Web-
Assembly binaries.

80

Appendix B

Repository: emcc-obf

This appendix contains the source code and build scripts for the novel obfuscation method devel-
oped in this thesis, emcc-obf. These resources are publicly available on GitHub.1

README
This repository contains a modified version of the Emscripten compiler that includes an LLVM-
based obfuscator. Specifically, it uses the Hikari obfuscator which is based on the obfuscator-llvm
project.

Disclaimer: Some of the documentation is translated from chinese to the best of my ability, sorry!

Table of Contents
• Usage

– Flags
– Environment Variables

• Building
– Building with Docker
– Building from Source

∗ Dependencies
∗ Building LLVM
∗ Building Binaryen
∗ Configure Emscripten

• License
1https://github.com/HakonHarnes/emcc-obf

81

https://github.com/61bcdefg/Hikari-LLVM15
https://github.com/obfuscator-llvm/obfuscator
https://github.com/HakonHarnes/emcc-obf

Appendix B. Repository: emcc-obf

Usage
The flags operate at the LLVM-level and have to be passed to Emscripten through the -mllvm flag.
For instance, if you want to add bogus control flow and set the probability to 100% for each basic
block, you would have to do:

emcc -mllvm -enable-bcfobf -mllvm -bcf_prob 100 <file>.c

To only obfuscate certain functions, see Function Annotations.

Note: You may need to turn off optimization so that the obfuscation is not optimized away by the
compiler.

Building

Building with Docker

docker build -t emcc-obf .

docker run -it emcc-obf

Building from source

Emscripten does not require compilation as it uses Python. However, the LLVM (which provides
Clang and wasm-ld) and Binaryen components need to be compiled. Once compiled, you can simply
modify the .emscripten file to specify the correct paths for these tools using the LLVM_ROOT and
BINARYEN_ROOT variables. These variables may already be correct depending on the output of emcc
--generate-config. Also, for convenience the Emscripten folder should be added to your path.

Note that ninja install installs the compiled binaries in the appropriate directories (usually
/usr/local/bin), which may conflict with existing installations. If you’ve already installed LLVM
and Binaryen, omit the ninja install command and edit the .emscripten file accordingly.

Dependencies

Building locally requires the following dependencies:

• gcc
• cmake
• ninja
• nodejs
• python3

82

https://github.com/HikariObfuscator/Hikari/wiki/Functions-Annotations

Appendix B. Repository: emcc-obf

Building LLVM

git clone --recursive -b llvm-16.0.0rel https://github.com/61bcdefg/Hikari-LLVM15

.git hikari

cd hikari

git submodule update --remote --recursive

mkdir build && cd build

cmake -G "Ninja" -DCMAKE_BUILD_TYPE=MinSizeRel -DLLVM_APPEND_VC_REV=on

-DLLVM_ENABLE_PROJECTS='lld;clang' -DLLVM_TARGETS_TO_BUILD="host;WebAssembly"

-DLLVM_INCLUDE_EXAMPLES=OFF -DLLVM_INCLUDE_TESTS=OFF -DENABLE_LLVM_SHARED=1

../llvm

ninja && ninja install

Building Binaryen

git clone https://github.com/WebAssembly/binaryen.git binaryen

cd binaryen

git checkout ecbebfbee12f2f25af648119604915fc37427f6f

git submodule init

git submodule update

mkdir build && cd build

cmake -G "Ninja" ..

ninja && ninja install

Configure emscripten

git clone https://github.com/emscripten-core/emscripten.git emscripten

git checkout fab93a2bff6273c882b0c7fb7b54eccc37276e03

emcc --generate-config

npm i

License
See Hikari/License.

83

https://github.com/HikariObfuscator/Hikari/wiki/License

Appendix C

SoK: Analysis Techniques for
WebAssembly

This appendix contains the preliminary version of the paper SoK:Analysis Techniques forWebAssembly.
The paper originates from the literature review conducted last semester as part of the TDT4501 –
Specialization Project course.

84

SoK: Analysis Techniques for WebAssembly

Håkon Harnes
NTNU

Donn Morrison
NTNU

Abstract
WebAssembly is a low-level bytecode language that allows

high-level languages like C, C++, and Rust to be executed in
the browser at near-native performance. In recent years, Web-
Assembly has gained widespread adoption is now natively
supported by all modern browsers. However, vulnerabilities
in memory-unsafe languages, like C and C++, can translate
into vulnerabilities in WebAssembly binaries. Unfortunately,
most WebAssembly binaries are compiled from such memory-
unsafe languages, and these vulnerabilities have been shown
to be practical in real-world scenarios. WebAssembly smart
contracts have also been found to be vulnerable, causing sig-
nificant financial loss. Additionally, WebAssembly has been
used for malicious purposes like cryptojacking. To address
these issues, several analysis techniques for WebAssembly
binaries have been proposed. In this paper, we conduct a
comprehensive literature review of these techniques and cate-
gorize them based on their analysis strategy and objectives.
Furthermore, we compare and evaluate the techniques using
quantitative data, highlighting their strengths and weaknesses.
In addition, one of the main contributions of this paper is
the identification of future research directions based on the
thorough literature review conducted.

1 Introduction

The Internet has come a long way since its inception and
one of the key technologies that have enabled its growth and
evolution is JavaScript. JavaScript, which was developed in
the mid-1990s, is a programming language that is widely used
to create interactive and dynamic websites. It was initially
designed to enable basic interactivity on web pages, such
as form validation and image slideshows. However, it has
evolved into a versatile language that is used to build complex
web applications. Today, JavaScript is one of the most popular
programming languages in the world, currently being used by
98% of all websites [17].

Despite its popularity and versatility, JavaScript has some
inherent limitations that have become apparent as web appli-

cations have grown more complex and resource-demanding.
Specifically, JavaScript is a high-level, interpreted, dynami-
cally typed language, which fundamentally limits its perfor-
mance. Consequently, it is not suited for developing resource-
demanding web applications. To address the shortcomings of
JavaScript, several technologies, like ActiveX [30], NaCl [1],
and asm.js [8], have been developed. However, these technolo-
gies have faced compatibility issues, security vulnerabilities,
and performance limitations.

WebAssembly was developed by a consortium including
Mozilla, Microsoft, Apple, and Google, as a solution to the
limitations of existing technologies. WebAssembly is de-
signed as a safe, fast, and portable compilation target for
high-level languages like C, C++ , and Rust, allowing them to
be executed with near-native performance in the browser. It
has gained widespread adoption and is currently supported by
96% of all browser instances [22]. Moreover, WebAssembly
is also being extended to desktop applications [59], mobile
devices [64], cloud computing [12], blockchain Virtual Ma-
chines (VMs) [3, 4, 23], IoT [53, 56], and embedded devices
[70].

However, WebAssembly is not without its own set of chal-
lenges. Vulnerabilities in memory-unsafe languages, like C
and C++, can translate into vulnerabilities in WebAssembly
binaries [48]. Unfortunately, two-thirds of WebAssembly bi-
naries are compiled from memory-unsafe languages [41], and
these attacks have been found to be practical in real-world
scenarios [48]. Additionally, vulnerabilities have been uncov-
ered in WebAssembly smart contracts [42, 63], consequently
causing significant financial loss. WebAssembly has also been
used for malicious purposes such as cryptojacking [60]. To
mitigate these issues, several analysis techniques for Web-
Assembly binaries have been proposed.

In this paper, we conduct an in-depth literature review of
analysis techniques for WebAssembly binaries. To this end,
we classify the analysis techniques based on their analysis
strategy and objectives. Specifically, we find the analysis tech-
niques can be classified into three categories: detecting mali-
cious WebAssembly binaries (§4.1), detecting vulnerabilities

1

in WebAssembly binaries (§4.2), and detecting vulnerabili-
ties in WebAssembly smart contracts (§4.3). Moreover, we
compare and evaluate the techniques using quantitative data,
highlighting their strengths and weaknesses. In addition, one
of the main contributions of this paper is the identification
of future research directions based on the thorough litera-
ture review conducted. In summary, this paper contributes the
following:

• A comprehensive analysis of current analysis techniques
for WebAssembly binaries, using quantitative data to
evaluate their strengths and weaknesses.

• A taxonomical classification of current analysis tech-
niques for WebAssembly binaries.

• Key findings and limitations of current analysis tech-
niques for WebAssembly binaries, including the trade-
offs between accuracy and overhead of static and dy-
namic analysis methods.

• Identification of gaps in the literature and suggestions
for future research directions.

2 Background

The background section of this paper provides a detailed
overview of WebAssembly. The limitations of JavaScript and
prior attempts at incorporating low-level code on the web
are first discussed. Then, an in-depth description of Web-
Assembly’s security mechanisms, vulnerabilities, and use
cases are presented.

2.1 History
JavaScript Initially, the internet was primarily used by re-
searchers, scientists, and other academics for the purpose of
sharing information and collaborating on projects. At this
time, websites were mostly composed of static text and im-
ages, lacking dynamic or interactive components. The arrival
of web browsers such as Netscape Navigator and Internet
Explorer in the late 1990s made the internet accessible to the
general public and sparked the development of technology to
enhance website user experience with dynamic and interac-
tive elements. JavaScript, created by Netscape in 1995 [29],
became one of these technologies, enabling web developers
to create engaging content. Today, JavaScript is a widely used
programming language supported by all major web browsers
and used on 98% of websites [17].

Despite its popularity and versatility, JavaScript has some
inherent limitations that impact its performance. As a high-
level language, JavaScript abstracts away many of the details
of the underlying hardware, making it easier to write and
understand. However, this also means that the JavaScript en-
gine has to do more work to translate the code into machine-
readable instructions. Additionally, because JavaScript is an
interpreted language, it must be parsed and interpreted every

time it is executed, which can add overhead and decrease
performance. Lastly, JavaScript is dynamically typed, mean-
ing the type of a variable is determined at runtime. This can
make it difficult for the JavaScript engine to optimize the
code, resulting in reduced performance. These limitations can
hinder the performance of JavaScript in resource-demanding
or complex applications. There is, therefore, a need for high-
performance, low-level code on the web.

ActiveX ActiveX [30] is a deprecated framework that
was introduced by Microsoft in 1996. It allowed develop-
ers to embed signed x86 binaries through ActiveX controls.
These controls were built using the Component Object Model
(COM) specification, which was intended to make the controls
platform-independent. However, ActiveX controls contain
compiled x86 machine code and calls to the standard Win32
API, restricting them to x86-based Windows machines. Ad-
ditionally, they were not run in a sandboxed environment,
consequently allowing them to access and modify system re-
sources. In terms of security, ActiveX relied entirely on code
signing, and thus did not achieve safety through technical
construction, but through a trust model.

NaCl Native Client (NaCl) [1] is a system introduced by
Google in 2011 that allows for the execution of machine
code on the web. The sandboxing model implemented by
NaCl enables the coexistence of NaCl code with sensitive
data within the same process. However, NaCl is specifically
designed for the x86 architecture, limiting its portability. To
address this limitation, Google introduced Portable Native
Client (pNaCl) [13] in 2013. pNaCl builds upon NaCl’s sand-
boxing techniques and uses a stable subset of LLVM bitcode
as an interchangeable format, allowing for the portability of
applications across different architectures. However, pNaCl
does not significantly improve compactness and still exposes
details specific to compilers and architectures, such as the lay-
out of the call stack. NaCl and pNaCl are exclusively available
in Google Chrome, thus limiting the portability of applica-
tions that use them.

Asm.js Asm.js [8], which was introduced by Mozilla in
2013, is a strict subset of JavaScript that can be used as an
efficient compilation target for high-level languages like C
and C++. Through the Emscripten toolchain [14] , these lan-
guages can be compiled to asm.js and subsequently executed
on modern JavaScript execution engines, benefitting from
sophisticated Just In Time (JIT) compilers. This allows for
near-native performance. However, the strict subset nature of
asm.js means that extending the language with new features,
such as int64, requires first extending JavaScript and then
ensuring compatibility with the asm.js subset. Even then, it
can be challenging to implement these features efficiently.

Java and Flash It is also worth noting that Java and Flash
were among the first technologies to be used on the web, being
released in 1995 and 1996, respectively [31,32]. They offered

2

managed runtime plugins; however, neither was capable of
supporting high-performance, low-level code. Moreover, their
usage has declined due to security vulnerabilities and perfor-
mance issues.

2.2 WebAssembly
Overview WebAssembly is a technology that aims to ad-
dress performance, compatibility, and security issues that have
plagued previous approaches. It was developed by a consor-
tium of tech companies, including Mozilla, Microsoft, Apple,
and Google, and was released in 2017 [38]. Wasm has since
gained widespread adoption and is currently supported by
96% of all browser instances [22]. Additionally, it is an offi-
cial World Wide Web Consortium (W3C) standard [2], and is
natively supported on the web.

WebAssembly is a low-level bytecode language, that is ex-
ecuted on a stack-based Virtual Machine (VM). More specifi-
cally, instructions pop their inputs from and push their results
to an implicit evaluation stack. There are no registers in this
system, but individual values can be stored in global variables
that are visible to the entire module, or in local variables that
are only visible to the current function. The evaluation stack,
global variables, and local variables are all managed by the
VM.

Host Environment WebAssembly modules are executed
in a host environment, which provides the necessary func-
tionality for the module to perform actions such as I/O or
network access. In a browser, the host environment is pro-
vided by the JavaScript engine, such as V8 or SpiderMonkey.
WebAssembly exports can be wrapped in JavaScript functions
using the WebAssembly JavaScript API [18], allowing them
to be called from JavaScript code. Similarly, WebAssembly
code can import and call JavaScript functions. Other host envi-
ronments for WebAssembly include server-side environments
like Node.js [62] and stand-alone VMs, which provide their
own APIs for WebAssembly modules to use. For instance,
modules running on a stand-alone VM may interact with the
local file system through the WebAssembly System Interface
(WASI) [20].

Module WebAssembly programs are organized into mod-
ules, which are the basic unit of deployment, loading, and
compilation. Each module contains definitions for types, func-
tions, tables, memories, and globals. In addition, a module can
declare imports and exports, as well as provide initialization
through data and element segments or a start function.

Compilation High-level languages like C, C++, and Rust
can be compiled to Wasm, since it is designed as a compilation
target. Toolchains like Emscripten [14] or wasm-pack [21]
can be used to compile these languages to Wasm. The re-
sulting binary is in the wasm binary format, but can also be
represented in a human-readable text format called wat. A
module corresponds to one file. The WebAssembly Binary

Toolkit (WABT) [81] provides tools for converting between
wasm and wat representations, as well as for decompilation
and validation of Wasm binaries. Figure 1 shows an example
of code in C, its corresponding representation in wat, and its
compiled representation in the wasm format.

Use Cases WebAssembly has been adopted for various ap-
plications on the web due to its near-native execution perfor-
mance, such as data compression, game engines, and natural
language processing. However, the usage of WebAssembly is
not only limited to the web. It is being extended to desktop
applications [59], mobile devices [64], cloud computing [12],
IoT [53,56], and embedded devices [70]. In recent years, Web-
Assembly has also been adopted by blockchain platforms,
such as EOSIO [3] and NEAR [23], as their smart contract
runtime. Even Ethereum has placed WebAssembly on the
Ethereum 2.0 roadmap as a replacement to the Ethereum
Virtual Machine (EVM) [4].

2.2.1 Security

Environment WebAssembly modules execute within a
sandboxed environment separated from the host runtime using
fault isolation techniques. This implies that modules execute
independently, and can’t escape the sandbox without going
through appropriate APIs. For instance, WebAssembly mod-
ules in a web browser have no direct access to the Document
Object Model (DOM), but must use JavaScript APIs to in-
teract with it. Additionally, each module is subject to the
security policies of its embedding, such as the Same Origin
Policy (SOP) [15] enforced by web browsers, which restricts
the flow of information between web pages from different
origins. In the case of standalone WebAssembly runtimes
with operating system support, the module must use proposed
APIs to access system resources such as files.

Memory Unlike native binaries, which have access to all of
the memory allocated to the process, WebAssembly modules
are restricted to a contiguous region of memory known as lin-
ear memory. This memory is untyped and byte-addressable,
and its size is determined by the data present in the binary.
The size of linear memory is always a multiple of a Web-
Assembly page, which is 64KiB. When a WebAssembly mod-
ule is instantiated, it uses the appropriate API call to create the
necessary memory objects for its execution. The JavaScript
engine or system runtime then creates a managed buffer, such
as an ArrayBuffer, to store the linear memory. This means
that the WebAssembly module accesses the physical memory
indirectly through the managed buffer, which ensures that
it can only read and write data within a limited area of the
memory.

Control Flow Integrity Unlike other assembly-like lan-
guages, WebAssembly features structured control flow. In-
structions in a function are organized into well-nested blocks.
Branches can only jump to the end of surrounding blocks, and

3

1 int square(int x)

2 {

3 return x*x;

4 }

Listing 1: Source code.

1 (func (param i32) (result i32)

2 local.get 0

3 local.get 0

4 i32.mul

5)

Listing 2: wat format.

1 20 00 | local.get 0

2 20 00 | local.get 0

3 6c | i32.mul

4 0b | end

Listing 3: wasm format.

Figure 1: Example of a function compiled to Wasm.

only inside the current function. Multi-way branches can only
target blocks that are statically designated in a branch table.
Unrestricted gotos or jumps to arbitrary addresses are not
possible. In particular, one cannot execute data in memory as
bytecode instructions. Thus, attacks like shellcode injection
or abuse of indirect jumps are not possible.

The execution semantics guarantee the safety of direct func-
tion calls through the use of explicit function section indexes,
and returns through a protected call stack. The type signature
of indirect function calls is checked at runtime, effectively im-
plementing coarse-grained type-based control-flow integrity
for indirect calls. Additionally, the LLVM compiler infras-
tructure includes a built-in implementation of fine-grained
control flow integrity, which has been extended to support the
WebAssembly target [16].

2.2.2 Vulnerabilities

Vulnerabilities in memory-unsafe languages, like C and C++,
can translate to vulnerabilities in WebAssembly binaries [48].
Many vulnerabilities which, due to common mitigations, are
no longer exploitable in native binaries, are exploitable in
WebAssembly. Moreover, WebAssembly enables unique at-
tacks, such as overwriting constant data or manipulating the
heap using a stack overflow. Additionally, the Emscripten
API [7] allows developers to access the DOM, which can
be exploited to inject malicious input in the form of Cross
Site Scripting (XSS) attacks [58]. Unfortunately, two-thirds
of WebAssembly binaries are compiled from memory-unsafe
languages [41], and these attacks have been shown to be prac-
tical in real-world scenarios [48].

WebAssembly vulnerabilities have been known to be ex-
ploited in the wild. Fastly, a cloud platform that offers edge
computing services, experienced a 45-minute disruption on
June 8th, 2021, when a WebAssembly binary was deployed
[5]. Vulnerabilities in WebAssembly smart contracts have
also been exploited. For instance, random number generation
vulnerabilities have resulted in the loss of around 170,000
EOS tokens [63]. The fake EOS transfer vulnerability in the
EOSCast smart contract has resulted in the loss of around
60,000 EOS tokens [42]. The forged transfer notification vul-
nerability in EOSBet has resulted in the loss of 140,000 EOS
tokens [42]. Based on the average price of EOS tokens at

the time of the attacks, the total loss from these three vul-
nerabilities was around $1.9 million. Additionally, around
25% of WebAssembly smart contracts have been found to be
vulnerable [40].

2.2.3 Cryptojacking

Cryptojacking, also known as drive-by mining, involves us-
ing a website visitor’s hardware resources for mining cryp-
tocurrencies without their consent. Previously, cryptojacking
was implemented using JavaScript. However, in recent years
WebAssembly has been utilized due to its computational effi-
ciency. The year after WebAssembly was released, there was
a 459% increase in cryptojacking [24]. The following year, re-
searchers found that over 50% of all sites using WebAssembly
were using it for cryptojacking [60]. To counter this trend,
researchers developed several static and dynamic detection
methods for identifying WebAssembly-based cryptojacking.

3 Related Work

This section discusses related work. Specifically, related stud-
ies are presented and the differences between those studies
and our paper are discussed.

In a similar vein to this paper, Kim et al. [46] survey the
various techniques and methods for WebAssembly binary
security. However, their focus is on general security tech-
niques for WebAssembly, while our paper focuses specifically
on analysis techniques for WebAssembly. We both discuss
cryptojacking detection and vulnerability detection for Web-
Assembly, but we go further by also examining vulnerability
analysis for WebAssembly smart contracts. Additionally, we
use different classification systems and performance metrics.

Tekiner et al. [77] focus on surveying cryptojacking detec-
tion techniques by strictly evaluating and comparing state-
of-the-art methods. In contrast, our paper examines analysis
techniques for WebAssembly, including cryptojacking detec-
tion, vulnerability analysis for WebAssembly binaries, and
vulnerability analysis for WebAssembly smart contracts. We
also use different classification systems and performance met-
rics.

Romano et al. [67] investigate bugs in WebAssembly com-
pilers, specifically examining the Emscripten [14], Assem-

4

blyScript [9], and WebAssembly-Bindgen [69] compilers.
They discover bugs in the Emscripten compiler that could
potentially cause significant security issues. Our work, on
the other hand, focuses on security in WebAssembly binaries
using analysis techniques, rather than examining the security
of the compilers themselves.

4 Analysis Techniques for WebAssembly

This section presents the results of our literature review on
analysis techniques for WebAssembly. The techniques can be
broadly classified into three categories:

1. Detecting malicious WebAssembly binaries (§4.1)

2. Detecting vulnerabilities in WebAssembly binaries
(§4.2)

3. Detecting vulnerabilities in WebAssembly smart con-
tracts (§4.3)

The analysis techniques can be further classified as ei-
ther static, dynamic, or hybrid methods. Some techniques
are static-based, meaning they analyze the WebAssembly
bytecode or intermediate representation without executing the
binary. Other techniques are dynamic-based, meaning they
analyze the behavior of the WebAssembly binary as it is being
executed. Finally, some techniques are hybrid-based, mean-
ing they combine both static and dynamic analysis to detect
potential security issues. The classification is summarized in
Table 1.

The performance of the various analysis techniques has
been evaluated using a set of metrics that measure their effec-
tiveness and efficiency. These metrics include precision, recall,
and F1-score. Precision measures the proportion of retrieved
items that are relevant, while recall measures the proportion
of relevant items that are retrieved. A high number of false
positives will decrease the precision, while a high number of
false negatives will decrease the recall. The F1 score is the
harmonic mean of precision and recall, and provides a way to
combine these two metrics into a single value.

These metrics are used instead of accuracy because they
are better suited for evaluating the performance of analysis
techniques in the presence of imbalanced datasets, which has
been common in the literature. In addition to these metrics,
the performance of static-based methods has been evaluated
using detection time, while the performance of dynamic-based
methods has been evaluated using runtime overhead. These
metrics provide a way to compare the different analysis tech-
niques and assess their relative strengths and weaknesses.

4.1 Detecting Malicious WebAssembly
Binaries

As previously mentioned, WebAssembly has been used by ad-
versaries for malicious purposes, like cryptojacking (§2.2.3).

To protect against such attacks, several detection techniques
have been proposed. In this section, we will review these
techniques and evaluate their performance.

Techniques based on static analysis (§4.1.1) and dynamic
analysis (§4.1.2) are discussed in the following sections. Ad-
ditionally, a comparative analysis of the detection techniques
is presented (§4.1.3).

4.1.1 Static Analysis

MineSweeper MineSweeper [47] detects cryptojacking
based on the presence of cryptographic functions in Web-
Assembly binaries. MineSweeper implements two variants:
The first variant is specialized for detecting the CryptoNight
algorithm [33], which is commonly used for cryptomining,
while the second variant is more generic and can detect any
cryptographic function that may be used for cryptomining. A
cryptographic fingerprint is computed by counting the num-
ber of cryptographic operations in each function in the Web-
Assembly binary. In the case of the CryptoNight variant,
these fingerprints are then compared with the fingerprints
of the primitive components of the CryptoNight algorithm. In
the generic case, a candidate function is labeled as a crypto-
graphic function if the amount of cryptographic operations
exceeds a threshold. The authors conducted experiments to
validate the effectiveness of their method, achieving 100%
recall and precision for both variants. However, they acknowl-
edge a potential limitation of MineSweeper: It can produce
false positives, as benign programs such as games and crypto-
graphic libraries also use cryptographic functions.

MinerRay MinerRay [68] constructs and analyses an Inter-
Procedural Control Flow Graph to detect cryptojacking. Min-
erRay first converts JavasScript and asm.js code into Web-
Assembly binaries. Then, the WebAssembly binaries are trans-
lated into an intermediate representation, from which Intra-
Procedural Control Flow Graphs are constructed for each
function. These Intra-Procedural Control Flow Graphs are
then linked together to create an Inter-Procedural Control
Flow Graph that represents the entire program. MinerRay
uses the Inter-Procedural Control Flow Graph to identify po-
tential hashing algorithms by analyzing the control flow of the
program and looking for patterns that match the semantics of
hashing functions. To determine whether the user is informed
about cryptomining, MinerRay employs a dynamic approach
that explores onclick events of HTML objects, which may
instantiate WebAssembly cryptominers. It then checks if the
WebAssembly APIs, such as WebAssembly.instantiate,
can be invoked. Out of 901 websites with cryptominers, the
authors found that only 16 websites informed users of the
background cryptomining, and just three of those asked for
consent before starting the mining process.

MINOS MINOS [61] uses an image-based classification
deep learning approach to identify cryptojacking. First, MI-

5

Category Static analysis Dynamic analysis Hybrid analysis

Detecting malicious
WebAssembly binaries (§4.1)

MineSweeper [47] SEISMIC [80]

MinerRay [68] RAPID [66]

MINOS [61] OutGuard [45]

MineThrottle [26]

CoinSpy [44]

Detecting vulnerabilities in
WebAssembly binaries (§4.2)

Wassail [74] Szanto et al. [76] WASP2 [75]

Wasmati [55] TaintAssembly [35]

WASP1 [57] Wasabi [49]

Fuzzm [50]

WAFL [39]

Detecting vulnerabilities in
WebAssembly smart contracts (§4.3)

EVulHunter [65] EOSFuzzer [42]

WANA [79] WASAI [28]

EOSAFE [40]

EOSIOAnalyzer [51]

Table 1: Classification of analysis techniques for WebAssembly.

NOS converts the WebAssembly binary into a grayscale im-
age. This image is then used as input to a Convolutional
Neural Network (CNN), which has been trained on a com-
prehensive dataset of malicious and benign WebAssembly
binaries. The CNN attempts to determine whether the Web-
Assembly binary performs cryptojacking based on the pat-
terns it observes in the grayscale image. An advantage of
MINOS is that it is lightweight and can detect cryptojacking
in under a second. This makes it a useful tool for real-time
cryptojacking detection.

4.1.2 Dynamic Analysis

SEISMIC SEISMIC [80] uses signature-matching to iden-
tify cryptojacking. It adopts an In-Line Reference Monitor
(IRM) approach, which involves dynamically computing se-
mantic features of the WebAssembly binary at runtime. To
this end, an instruction counter is inserted into the global
section of the WebAssembly binary for each instruction to
be profiled. The semantic features of the WebAssembly bi-
nary are then computed using the aforementioned instruction
counters. To identify cryptojacking, the computed semantic
features of the WebAssembly binary are compared with se-
mantic signatures of known mining binaries. This approach
was found to be accurate in detecting cryptojacking, but it
imposes a significant runtime overhead, which can affect the
performance of the WebAssembly application.

RAPID RAPID [66] identifies cryptojacking by monitoring
JavaScript API calls and system resource usage. To this end,
JavaScript API usage is collected using chrome debugging
features. The system resources, that is, the memory, network

and the processor usage is collected by executing a Chromium
instance inside a docker container and collecting the data
through the docker stats API [11]. Then, a Support Vector
Machine (SVM) is employed as a classification model.

OutGuard OutGuard [45] uses features related to the
JavaScript runtime execution, event loads, networking, and
cryptojacking libraries to detect cryptojacking. Specifically,
the number of web workers and parallel tasks, the existence of
WebAssembly modules, WebSockets and hashing algorithms,
and the usage of PostMessage- and MessageLoop event loads
are used as the feature set. These seven distinct features are
used to build an SVM classification model. A limitation of
this approach is that the identification of hashing algorithms
is static and does not account for string obfuscation.

MineThrottle MineThrottle [26] uses the frequency dis-
tribution of instructions to detect cryptojacking. The idea is
that miners execute certain instructions more frequently than
benign applications, and this can be used to identify mining
activity. To implement this, MineThrottle first detects poten-
tial mining-related code blocks using block-level statistical
features, and then instruments each block using block-level
program profiling. The effective mining speed (i.e., the in-
structions per cycle) of the WebAssembly program is then
periodically calculated, and if it is similar to known mining
programs, the program is labeled as a miner.

CoinSpy CoinSpy [44] is a method for detecting crypto-
jacking by monitoring compute, memory, and network usage
from within the browser. The computational behavior is moni-
tored using the JavaScript stack profiler, and memory usage is
measured by monitoring the JavaScript heap and WebWorker

6

Dataset Performance

Scheme Feature(s) Classifier Source Samples Precision Recall F1 DT

MineSweeper
(2018)

WebAssembly code Matching or threshold Alexa 1M 748 100% 100% 100% -

MinerRay
(2020)

WebAssembly code ICFG Alexa 1.2M 3825 99% 100% 99% 1.9s

MINOS
(2021)

WebAssembly code CNN
Tranco 100K,
PublicWWW

682 93% 97% 95% 0.0259s

Abbreviations: Detection Time (DT).

Table 2: Data for static detection techniques for identifying malicious WebAssembly binaries.

threads. Network usage is tracked by summing the bytes from
all in-flight requests at each millisecond. The key observation
used for cryptojacking detection is that compute and memory
usage increase significantly when the Proof of Work (PoW)
algorithm is executing, and that network usage only increases
when the processor is in an idle state. Using these features, a
CNN classification model was constructed. The authors argue
that CoinSpy should be able to detect future cryptomining
algorithms that other dynamic detectors will miss due to their
specificity.

4.1.3 Comparative Analysis

This section presents the comparative analysis of the detection
techniques outlined in the above sections. The results of the
analysis are summarized in Table 2 and Table 3.

Dataset Most detection techniques have been evaluated
using websites collected from the wild, with the Alexa sites
being the most commonly used. Only SEISMIC evaluated
their method using a curated list of binaries. Most schemes
used a sufficient number of samples, but there were some
exceptions, such as SEISMIC, MineThrottle, and MINOS,
which had a smaller number of samples, potentially affecting
the validity of their results.

Performance The performance of the detection techniques
was evaluated using metrics such as precision, recall, F1 score,
overhead, and detection time. Among the static-based meth-
ods, MineSweeper and MinerRay had the highest F11 scores,
while MINOS had the lowest. However, MINOS also had the
fastest detection time, making it suited for real-time cryp-
tojacking detection. Among the dynamic-based methods,
MineThrottle, Outguard, and SEISMIC had the highest F1
scores. However, SEISMIC also had the highest overhead. In
contrast, MineThrottle and Outguard had negligible overhead.

4.2 Detecting Vulnerabilities in WebAssembly
Binaries

Although WebAssembly was designed with security in mind,
vulnerabilities still exist (§2.2.2). As a result, various tech-
niques for detecting vulnerabilities in WebAssembly binaries
have been proposed. This section presents these techniques
and discusses their versatility, which is determined by factors
such as compatibility with different runtimes, support for the
WASI, and whether they require high-level source code for
analysis.

Techniques based on static analysis (§4.2.1), dynamic anal-
ysis (§4.2.2), and hybrid analysis (§4.2.3) are discussed in the
following sections. Additionally, a comparative analysis of
the detection techniques is presented (§4.2.4).

4.2.1 Static analysis

Wassail Wassail [74] was the first static analysis method for
detecting vulnerabilities in WebAssembly binaries. It uses a
compositional, summary-based analysis approach that strictly
focuses on information flow. For each WebAssembly function,
it computes a summary that describes how information flows
within that function, and these summaries are then used dur-
ing the subsequent analysis of function calls. The information
flow analysis is expressed as a data flow analysis on a Control
Flow Graph (CFG), and the information flow of the entire pro-
gram is approximated by composing the function summaries.
The authors claim that similar approaches have been shown
to scale well [27, 43], but the scalability of Wassail has not
been evaluated.

Wasmati Wasmati [55] detects vulnerabilities in Web-
Assembly binaries by constructing a Code Property Graph
(CPG). Vulnerabilities are detected by searching for specific
patterns in the CPG sub-graphs, which includes the execution
order, execution path, data dependencies, and control flows.

7

Dataset Performance

Scheme Feature(s) Classifier Source Samples Precision Recall F1 Overhead

SEISMIC
(2018)

WebAssembly code,
instruction count
obtained at runtime

Matching

Asteroids, A-Star, Tanks,
Bullet(1000), CoinHive_v0,
CoinHive, Basic4GL,
HushMiner, CreaturePack
FunkyKarts, NFWebMiner,
YAZECMiner

12 96% 100% 98% 100%

RAPID
(2018)

JavaScript API calls,
memory, processor
and network usage

SVM Alexa 330K 71450 97% 96% 96% 9-40%

OutGuard
(2019)

Parallel tasks,
WebAssembly,
hashing algorithms,
WebSockets,
PostMessage event
load, MessageLoop
event load

SVM,
or RF

Alexa 1M,
Alexa 600K

29700 99% 97% 98% 2%

CoinSpy
(2020)

JavaScript stack
execution
time, JavaScript
heap, network usage

CNN
Alexa 1M,
Alexa 100K,
PublicWWW

2000 Accuracy: 97% 0%

MineThrottle
(2020)

WebAssembly code,
processor usage

Matching Alexa 1M 659 100% 98% 99% 0%

Table 3: Data for dynamic detection techniques for identifying malicious WebAssembly binaries.

An issue with this approach is that the number of nodes in the
CPG grows rapidly because the target of indirect calls cannot
be determined statically. To address this, Wasmati optimizes
the CPG generation process by adding additional annotations,
caching intermediate results, and using efficient graph traver-
sal algorithms. As a result, the authors found that constructing
the CPG only took an average of 58 seconds per binary. They
also found that Wasmati was able to effectively find vulnera-
bilities in WebAssembly binaries while providing a low false
positive rate.

WASP1 WASP1 [57] is a concolic execution engine for
WebAssembly modules that can be used for uncovering vul-
nerabilities and bugs. Concolic execution, which combines
concrete execution with symbolic execution and explores one
execution path at a time, is employed to explore all feasible
paths of the program. Specifically, symbolic execution is used
to generate concrete inputs for exploring multiple execution
paths, with the goal of maximizing code coverage. To demon-
strate the feasibility of uncovering vulnerabilities, the authors

constructed WASP-C, a symbolic execution framework for
testing C programs using WASP1. WASP-C takes a C pro-
gram as input, annotates it, compiles it to WebAssembly, and
analyzes it using WASP1. They found that WASP-C was ef-
fective at uncovering bugs and vulnerabilities. However, a
limitation of WASP-C is that it requires high-level source
code to uncover vulnerabilities, meaning it can only be used
to analyze open-source programs.

4.2.2 Dynamic Analysis

Szanto et al. Szanto et al. [76] proposed a taint-tracking
technique for detecting vulnerabilities in WebAssembly bina-
ries. They developed a VM that runs in native JavaScript and
implemented a taint tracking system that allows the user to
monitor the flow of sensitive data through the execution of
the WebAssembly binary. To this end, they allocate a tainted
label for each allocable byte in the memory section and each
variable on the stack. This method allows for taint tracking
without modifying the structure of the WebAssembly binary.

8

Type Scheme Technique Runtime Binary-only WASI support Overhead

Static
Wassail
(2020)

Compositional information flow - ✓ - -

Wasmati
(2022)

CPG - ✓ - -

WASP1
(2022)

Concolic execution - ✗ - -

Dynamic
Szanto et al.
(2018)

Taint tracking
WebAssembly VM
(Custom)

✓ ✗ 100%

TaintAssembly
(2018)

Taint tracking V8 engine (Modified) ✓ ✓ 5-12%

Wasabi
(2019)

Binary instrumentation Any runtime ✓ ✓ 2-163%

Fuzzm
(2021)

Fuzzing
Any runtime w/
WASI-support

✓ ✓ 5-6%

WAFL
(2021)

Fuzzing WAVM (Modified) ✓ ✓ -

Hybrid
WASP2
(2021)

Known vulnerabilities - ✓ ✓ -

Table 4: Data for dynamic detection techniques for identifying malicious WebAssembly binaries.

The authors found that the runtime overhead of this method
scales mostly linearly, with an overhead of up to 100%.

TaintAssembly TaintAssembly [35] is another technique
that uses taint-tracking to detect vulnerabilities in Web-
Assembly binaries. Unlike Szanto et al., who developed their
own VM, TaintAssembly implemented taint-tracking by mod-
ifying the V8 JavaScript engine used in Google Chrome and
Node.js [62]. TaintAssembly implements basic taint-tracking
functionality for variables of type i32, i64, f32, f64, as well
as tainting in linear memory and a probabilistic variant of
taint. However, unlike Szanto et al.’s approach, the structure
of the WebAssembly module must be modified before taint
labels can be set for all variables. TaintAssembly was able to
achieve a runtime overhead of only 5-10%, which is far less
than Szanto et al.’s approach.

Wasabi Wasabi [49] is a general-purpose framework for
dynamically analyzing WebAssembly binaries. To this end,
Wasabi performs binary instrumentation. Specifically, it in-
serts calls to analysis functions written in JavaScript into the

WebAssembly binary. Then, instruction counting, call graph
extraction, memory access tracing, and taint analysis can be
performed at runtime. Wasabi also allows for selective in-
structions; that is, it only instruments instructions that are
relevant for a particular analysis. The authors found the run-
time overhead to vary between 2% and 163%, depending on
the application and instructions being analyzed.

Fuzzm Fuzzm [50] is a binary-only fuzzer for Web-
Assembly that uses the popular AFL [37] framework. Native
AFL compiles applications from source code and inserts code
to track path coverage. However, since Fuzzm is a binary-only
fuzzer, it does not have access to the source code. To provide
coverage information for the AFL fuzzer, Fuzzm uses static
binary instrumentation to insert code at all branches, gen-
erating AFL-compatible coverage information. The authors
found that Fuzzm is effective and imposes a low runtime over-
head. Additionally, its implementation is not tied to a specific
runtime. Fuzzm also implements a canary-based protection
mechanism to prevent memory corruption vulnerabilities.

9

WAFL WAFL [39] is also a binary-only fuzzer for Web-
Assembly. It uses the AFL++ [34] framework, a community-
driven fork of AFL. To generate coverage for the AFL++
fuzzer, they implement a set of patches to the WAVM [6] run-
time. The WAVM runtime uses Ahead-of-time (AOT) compi-
lation, and WAFL also add lightweight VM snapshots. This
makes WAFL performant, in some cases even outperforming
native AFL x86-64 harnesses compiled from source. How-
ever, WAFL is inherently tied to the WAVM runtime, which
limits its potential use cases.

4.2.3 Hybrid Analysis

WASP2 WASP2 [75] detects vulnerabilities in Web-
Assembly binaries based on known vulnerabilities. It does this
by analyzing static and dynamic features of the WebAssembly
binary, and compares this with known vulnerabilities. Specifi-
cally, WASP2 trains a deep learning vulnerability classifica-
tion model by mapping static features of known vulnerable
binaries in x86 or ARM, to static features in the correspond-
ing WebAssembly binary representation. Then, the model is
used to statically analyze the WebAssembly binary. Finally,
the identified vulnerable subroutines are dynamically ana-
lyzed using Wasabi [49]. The authors found that WASP2 is
able to accurately find known vulnerabilities in WebAssembly
binaries.

4.2.4 Comparative Analysis

This section presents the comparative analysis of the detection
techniques outlined in the above sections. The results from
the analysis are summarized in Table 4.

Runtime Compatibility The versatility of the proposed de-
tection techniques is determined by their runtime compatibil-
ity, WASI support, and whether they require high-level source
code for their analysis. Some schemes, like TaintAssembly,
are inherently tied to a specific runtime, which limits their
usefulness. Other schemes, like Wasabi, are not tied to any
specific runtime and can be applied more generally. Addition-
ally, schemes that do not support WASI, like Szanto et al.’s
method, are fundamentally limited since they cannot analyze
most WebAssembly binaries used on servers or embedded
devices. Finally, schemes that require high-level source code
for analysis, like WASP1, are limited to the analysis of open-
source projects.

Overhead The overhead for dynamic detection methods
varies greatly. Wasabi and Szanto et al. have the highest over-
head, reaching up to 163% and 100%, respectively. Szanto et
al.’s method have a constant overhead, while Wasabi’s over-
head varies depending on the type and number of instructions
being analyzed. This means that Wasabi’s overhead can be as
low as 2% in practice. TaintAssembly and Fuzzm have the
lowest overhead, ranging from 5-12% and 5-6%, respectively.

4.3 Detecting Vulnerabilities in WebAssembly
Smart Contracts

Several vulnerabilities have been discovered in WebAssembly
smart contracts, leading to significant financial loss (§2.2.2).
As a result, several techniques for detecting such vulnerabil-
ities have been developed. This section presents these tech-
niques, their capabilities, and performance.

Techniques based on static analysis (§4.3.1) and dynamic
analysis (§4.3.2) are discussed in the following sections. Ad-
ditionally, a comparative analysis of the detection techniques
is presented (§4.3.3).

4.3.1 Static Analysis

EVulHunter EVulHunter [65] was the first static analy-
sis tool designed to detect vulnerabilities in EOSIO smart
contracts. It uses the open-source analysis framework Octo-
pus [36] to construct a CFG of the smart contract. The CFG
is then traversed to detect vulnerabilities based on predefined
patterns. Although EVulHunter is effective at detecting fake
notification vulnerabilities, it has low precision when detect-
ing fake EOS transfers. The authors believe this is due to the
limitations of using predefined patterns and suggest that more
advanced analysis techniques, such as symbolic execution, is
necessary.

WANA WANA [79] uses symbolic execution and a set of test
oracles to detect vulnerabilities in smart contracts. It is cross-
platform, meaning it can detect vulnerabilities in both EOSIO
and Ethereum smart contracts. First, Ethereum smart con-
tracts, which are written in Solidity, are converted to Ewasm
(Ethereum flavored WebAssembly) using the SOLL [71] com-
piler. Then, the symbolic execution engine traverses the paths
of the WebAssembly binary. WANA performs vulnerability
analysis based on the data collected during symbolic exe-
cution using the proposed test oracles. Unlike EVulHunter,
WANA can also detect blockinfo dependency vulnerabilities
and detect fake EOS transfer vulnerabilities effectively.

EOSAFE EOSAFE [40] also uses symbolic execution to de-
tect vulnerabilities in EOSIO smart contracts. Unlike WANA,
EOSAFE addresses the problem of path explosion, where the
number of feasible paths in a program grows exponentially
with the program size. To mitigate this issue, EOSAFE allows
users to set call depth and timeout parameters that are used
when symbolically executing the program. Additionally, dur-
ing vulnerability detection, EOSAFE first identifies valuable
functions (i.e., functions that have the ability to invoke ac-
tions or change on-chain state) and only analyzes those. This
approach allows it to accurately detect more vulnerabilities
than previous methods.

EOSIOAnalyzer EOSIOAnalyzer [51] detects vulnerabili-
ties in EOSIO smart contracts by analyzing the ICFG of the
program. The ICFG is the combination of the CFG and the

10

Vulnerability detection Performance

Type Scheme Technique FE FN BD RB MAV Precision Recall F1 DT

Static
EVulHunter
(2019)

CFG ✓ ✓ ✗ ✗ ✗ 89% 100% 93% 1-3s

WANA
(2020)

Symbolic execution ✓ ✓ ✓ ✗ ✗ 100% 100% 100% 0.21s

EOSAFE
(2021)

Symbolic execution ✓ ✓ ✗ ✓ ✓ 100% 96% 98% -

EOSIOAnalyzer
(2022)

ICFG ✓ ✓ ✓ ✗ ✗ 93% 100% 96% 7.6s

Dynamic
EOSFuzzer
(2020)

Fuzzing ✓ ✓ ✓ ✗ ✗ 88% 88% 88% -

WASAI
(2022)

Concolic fuzzing ✓ ✓ ✓ ✓ ✓ 100% 98% 99% -

Abbreviations: Fake EOS (FE), Fake Notification (FN), Blockinfo Dependency (BD), Rollback (RB),
Missing Authorization Verification (MAV), and Detection Time (DT).

Table 5: Data for detecting vulnerabilities in WebAssembly smart contracts.

Call Graph (CG) of the program, allowing EOSIOAnalyzer
to analyze data propagation relationships between functions
when they call each other. After the ICFG is constructed, the
WebAssembly code is translated into a high-level interme-
diate representation. Then, EOSIOAnalyzer applies a data
flow analysis algorithm to determine the data propagation
relationships between functions. Finally, it identifies suspi-
cious functions and further analyzes their complete execution
paths. To address the issue of path explosion, EOSIOAnalyzer
implements a call depth threshold.

4.3.2 Dynamic Analysis

EOSFuzzer EOSFuzzer [42] uses black-box fuzzing to de-
tect vulnerabilities in EOSIO smart contracts. To this end,
EOSFuzzer first performs static analysis on the WebAssembly
code and Application Binary Interface (ABI). The results
of this analysis are then used to generate fuzzing inputs,
which are applied to the smart contract through the Cleos [10]
command-line client. Finally, EOSFuzzer performs vulnera-
bility analysis based on test oracles. Although EOSFuzzer was
found to be relatively efficient, it has the lowest precision and
recall of all methods proposed. Additionally, EOSFuzzer uses
random seeds for fuzzing, resulting in low code coverage.

WASAI WASAI [28] uses concolic fuzzing to detect vul-
nerabilities in EOSIO smart contracts. To address the weak-
nesses of EOSFuzzer, it strategically generates seeds to aid
the fuzzing in exploring as many feasible paths as possible.
This is done by performing symbolic execution to feedback
the seed mutation. This results in double the code coverage
than EOSFuzzer. WASAI was able to detect the most vul-
nerabilities out of all the proposed techniques. It additionally
has high precision and recall, and was found to be resilient to
code obfuscation.

4.3.3 Comparative Analysis

This section presents the comparative analysis of the detection
techniques outlined in the above sections. The results from
the analysis are summarized in Table 5.

Vulnerability Detection The proposed detection techniques
are able to detect different types of vulnerabilities. EVul-
Hunter is only able to detect two out of five types of vulnera-
bilities, while WANA, EOSIOAnalyzer, and EOSFuzzer are
able to detect three out of five types. EOSAFE is able to detect
four out of five vulnerabilities. WASAI is the only method
that is able to detect all five vulnerabilities, making it the most
effective detection method.

11

Performance WANA and WASAI have the highest F1-score
among the proposed detection techniques, with 100% and
99%, respectively. EOSFuzzer and EVulHunter have the low-
est F1 scores, with 88% and 93%, respectively. In terms of
detection time, EOSIOAnalyzer has the slowest detection time
at 7.6 seconds. In contrast, WANA has a detection time of
only 0.21 seconds while providing high precision and recall.

5 Discussion

This section presents the results of the literature review. It
begins by summarizing the key findings, followed by a discus-
sion of the limitations of current analysis techniques. Finally,
future research directions are proposed.

5.1 Key Findings
Methods based on static analysis use techniques such as sig-
nature matching and symbolic execution which do not require
the program to be executed. This allows them to impose a low
overhead but can also result in lower accuracy. For example,
MINOS has the fastest detection time at under one second
but also has the lowest F1-score of all cryptojacking detection
methods. Methods that rely solely on signature or keyword
matching can be easily bypassed through the use of obfus-
cation techniques [25, 80]. Additionally, methods that rely
on semantic execution may be limited by the path explosion
problem.

Methods based on dynamic analysis execute the program
in a controlled environment to extract behavioral features that
can be used for further analysis. To do this, various techniques
such as taint tracking, binary instrumentation, fuzzing, and
monitoring system resources have been proposed. This typi-
cally results in higher overhead but also better performance
than static-based methods. For example, Wasabi is able to
perform heavy-weight dynamic analysis through binary in-
strumentation, but it might also incur a high overhead. Since
dynamic analysis is based on behavioral features, it is less sus-
ceptible to evasion through obfuscation techniques. However,
it can still be bypassed in some cases, such as by throttling
processor usage.

Static and dynamic techniques are not mutually exclusive,
but complementary techniques. A hybrid approach can lever-
age the low overhead of static techniques and the high ac-
curacy of dynamic techniques. In such an approach, static
techniques can be used to identify candidate functions, and
dynamic techniques can then be employed to analyze them
accurately. Currently, only WASP2 employs such a hybrid
approach.

5.2 Limitations
The evaluation strategies for each detection method differ
substantially. Some methods are evaluated using imbalanced

datasets, while others use balanced datasets. Additionally,
the sample sizes used for evaluation also differ between the
detection methods. To address these variations, we have used
precision, recall, and F1 as performance metrics instead of
accuracy. However, variations in evaluation strategies can still
impact the validity of the results. For example, EVulHunter
reported an F1-score of 93%, but other studies found its F1
score to be 17% and 23% [42, 51]. However, using the results
from these complementary studies may further threaten the
validity of the results, as they may contain implementation
bugs.

Many cryptojacking detection methods do not distinguish
between cryptomining and cryptojacking. Cryptomining
refers to the use of a user’s resources to mine cryptocur-
rency with the user’s explicit consent. This has been used
as an alternative revenue source by organizations such as
UNICEF [52]. Cryptojacking, on the other hand, refers to
the use of a user’s resources to mine cryptocurrency without
their explicit consent. Currently, only MinerRay is able to
differentiate between these two activities. This differentiation
may result in a 1-2% increase in false positives [68].

The datasets used for evaluation can impact the results of
the evaluation. Cryptojacking websites often modify or move
their scripts to different domains to avoid being blacklisted.
Additionally, the CoinHive shutdown [41, 78] resulted in a
decrease in cryptojacking activity. As a result, the accuracy
of cryptojacking detection methods may vary depending on
when the dataset was collected.

5.3 Research Directions

Generally, the proposed WebAssembly analysis techniques
are focused on the web environment. As WebAssembly is
being extended for use beyond the web, current analysis tech-
niques do not cover all possible use cases. There have been
studies on the use of WebAssembly in non-web environ-
ments [73], but few have specifically focused on its security
in these contexts. Further research addressing the security of
WebAssembly in non-web environments is needed.

The proposed detection techniques for detecting malicious
WebAssembly binaries are biased towards cryptojacking.
WebAssembly can also be used for other malicious purposes,
like tech support scams, browser exploits, and script-based
keyloggers [54]. Currently, there are no methods for detect-
ing these types of malicious uses of WebAssembly. Further
research is encouraged in this direction.

The proposed methods for detecting cryptojacking can be
circumvented through code obfuscation, which has previously
rendered static detection methods obsolete [72]. Obfusca-
tion of WebAssembly code is common on the web [41, 47].
However, only one preliminary study [25] has investigated
the feasibility of obfuscation for WebAssembly, and the re-
searchers only evaluated it using one static detection tech-
nique. The effects on dynamic detection techniques were not

12

explored. Additionally, the study used a small dataset, poten-
tially undermining the validity of the results. Some authors of
cryptojacking detection techniques argue that obfuscation is
impractical due to the added runtime overhead and the result-
ing decrease in revenue from reduced hash rates. However,
the effects of obfuscated WebAssembly code on runtime and
hash rates have not been studied. More research in this area
is needed.

The prevalence of WebAssembly-based cryptojacking on
the web is unclear. There have been two studies on this topic,
one by Musch et al. [60] in 2018 and the other by Hilbig et
al. [41] in 2021. Musch et al. found that over 50% of sites
using WebAssembly were doing so for cryptojacking, while
Hilbig et al. found that this number had been marginalized to
1%. This decrease was attributed to the shutdown of CoinHive,
which is supported by other studies [78]. However, even after
the shutdown of CoinHive, other studies have found the preva-
lence of WebAssembly-based cryptojacking to be as high as
10% [61]. Moreover, Hilbig et al. used VirusTotal [19] for
detecting cryptojacking, which has been proven to be easily
bypassed through code obfuscation [80]. Therefore, the re-
sults of this study may be inaccurate due to false negatives.
Further research in this area is needed.

6 Conclusion

In this paper, we conducted a comprehensive review of analy-
sis techniques for WebAssembly. To this end, we constructed
a taxonomical classification and applied it to analysis tech-
niques proposed in the literature. We classified the techniques
into three categories: Detecting malicious WebAssembly bina-
ries, detecting vulnerabilities in WebAssembly binaries, and
detecting vulnerabilities in WebAssembly smart contracts.
We analyzed these techniques using quantitative data and dis-
cussed their strengths and weaknesses. Then, key findings
and limitations were presented. Specifically, we found that
static methods have low overhead but lower accuracy, while
dynamic analysis has higher overhead but higher accuracy.
We also identified potential areas for future research, includ-
ing the security of WebAssembly in non-web environments,
analysis techniques for malicious WebAssembly binaries, the
feasibility of obfuscating WebAssembly code, and the preva-
lence of WebAssembly-based cryptojacking on the web. This
paper provides a valuable contribution to the field by offering
a comprehensive understanding of current analysis techniques
for WebAssembly, including their use cases and limitations,
as well as suggestions for future research.

References

[1] Native Client - Chrome Developers. https:
//developer.chrome.com/docs/native-client, Jan-
uary 1980. [Accessed 4 Nov. 2022].

[2] World Wide Web Consortium (W3C) brings a new
language to the Web as WebAssembly becomes
a W3C Recommendation. https://www.w3.org/
2019/12/pressrelease-wasm-rec.html.en, Novem-
ber 2019. [Accessed 16 Nov. 2022].

[3] EOS Virtual Machine: A High-Performance
Blockchain WebAssembly Interpreter – EOSIO.
https://eos.io/news/eos-virtual-machine-a-
high-performance-blockchain-webassembly-
interpreter, January 2021. [Accessed 9. Nov. 2022].

[4] Ethereum WebAssembly (ewasm) - Ethereum Web-
Assembly. https://ewasm.readthedocs.io/en/
mkdocs, January 2021. [Accessed 7. Nov. 2022].

[5] Summary of June 8 outage. https://www.fastly.com/
blog/summary-of-june-8-outage, June 2021. [Ac-
cessed 29 Nov. 2022].

[6] WAVM. https://wavm.github.io, October 2021. [Ac-
cessed 3 Nov. 2022].

[7] API Reference — Emscripten 3.1.26-git (dev)
documentation. https://emscripten.org/docs/
api_reference/index.html, December 2022. [Ac-
cessed 1 Dec. 2022].

[8] asm.js - Game development | MDN. https:
//developer.mozilla.org/en-US/docs/Games/
Tools/asm.js?source=post_page, November 2022.
[Accessed 4 Nov. 2022].

[9] AssemblyScript. https://www.assemblyscript.org,
November 2022. [Accessed 24 Nov. 2022].

[10] Cleos – EOSIO. https://eos.io/for-developers/
build/cleos, November 2022. [Accessed 29 Nov.
2022].

[11] Develop with Docker Engine API. https://
docs.docker.com/engine/api, November 2022. [Ac-
cessed 3. Nov. 2022].

[12] Fastly Docs. https://docs.fastly.com/products/
compute-at-edge, May 2022. [Accessed 23. Nov.
2022].

[13] Introduction to Portable Native Client. https:
//www.chromium.org/nativeclient/pnacl/
introduction-to-portable-native-client,
December 2022. [Accessed 2 Dec. 2022].

[14] Main — Emscripten 3.1.26-git (dev) documentation.
https://emscripten.org, November 2022. [Ac-
cessed 1 Dec. 2022].

13

[15] Same Origin Policy - Web Security. https://
www.w3.org/Security/wiki/Same_Origin_Policy,
November 2022. [Accessed 26 Nov. 2022].

[16] Security - WebAssembly. https://webassembly.org/
docs/security/#users, November 2022. [Accessed
3 Nov. 2022].

[17] Usage Statistics of JavaScript as Client-side Pro-
gramming Language on Websites, December 2022.
https://w3techs.com/technologies/details/cp-
javascript, November 2022. [Accessed 4 Nov. 2022].

[18] Using the WebAssembly JavaScript
API - WebAssembly | MDN. https:
//developer.mozilla.org/en-US/docs/
WebAssembly/Using_the_JavaScript_API, Novem-
ber 2022. [Accessed 29 Nov. 2022].

[19] VirusTotal - Home. https://www.virustotal.com/
gui/home/upload, December 2022. [Accessed 2 Dec.
2022].

[20] WASI |. https://wasi.dev, June 2022. [Accessed 25
Nov. 2022].

[21] wasm-pack. https://rustwasm.github.io/wasm-
pack, September 2022. [Accessed 23 Nov. 2022].

[22] WebAssembly | Can I use... Support tables for HTML5,
CSS3, etc. https://caniuse.com/wasm, November
2022. [Accessed 12 Nov. 2022].

[23] What is a Smart Contract? | NEAR Documenta-
tion. https://docs.near.org/develop/contracts/
whatisacontract, November 2022. [Accessed 11 Nov.
2022].

[24] Cyber Threat Alliance. The Illicit Cryptocurrency
Mining Threat. https://cyberthreatalliance.org/
wp-content/uploads/2018/09/CTA-Illicit-
CryptoMining-Whitepaper.pdf, 2018. [Accessed
25th Nov. 2022].

[25] Shrenik Bhansali, Ahmet Aris, Abbas Acar, Harun Oz,
and A. Selcuk Uluagac. A First Look at Code Obfusca-
tion for WebAssembly. In Proceedings of the 15th ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’22, page 140–145, New York,
NY, USA, 2022. Association for Computing Machinery.

[26] Weikang Bian, Wei Meng, and Mingxue Zhang.
MineThrottle: Defending against Wasm In-Browser
Cryptojacking. In Proceedings of The Web Confer-
ence 2020, WWW ’20, page 3112–3118, New York,
NY, USA, 2020. Association for Computing Machinery.

[27] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn,
and Ilya Sergey. RacerD: compositional static race de-
tection. Proceedings of the ACM on Programming Lan-
guages, 2(OOPSLA):1–28, 2018.

[28] Weimin Chen, Zihan Sun, Haoyu Wang, Xiapu Luo,
Haipeng Cai, and Lei Wu. WASAI: Uncovering Vul-
nerabilities in Wasm Smart Contracts. In Proceedings
of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2022, page
703–715, New York, NY, USA, 2022. Association for
Computing Machinery.

[29] Contributors to Wikimedia projects. JavaScript
- Wikipedia. https://en.wikipedia.org/w/
index.php?title=JavaScript&oldid=1126827786,
November 2001. [Accessed 3 Dec. 2022].

[30] Contributors to Wikimedia projects. ActiveX
- Wikipedia. https://en.wikipedia.org/w/
index.php?title=ActiveX&oldid=1102963222,
August 2022. [Accessed 4 Nov. 2022].

[31] Contributors to Wikimedia projects. Adobe Flash
- Wikipedia. https://en.wikipedia.org/w/
index.php?title=Adobe_Flash&oldid=1126708043,
December 2022. [Accessed 2 Dec. 2022].

[32] Contributors to Wikimedia projects. Java (pro-
gramming language) - Wikipedia. https:
//en.wikipedia.org/w/index.php?title=
Java_(programming_language)&oldid=
1126888277, December 2022. [Accessed 2 Dec.
2022].

[33] Coolstory. CryptoNight – CryptoNote Protocol – Bit-
coinWiki. BitcoinWiki, December 2018.

[34] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining Incremental Steps
of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

[35] William Fu, Raymond Lin, and Daniel Inge. Taintassem-
bly: Taint-based information flow control tracking for
webassembly. arXiv preprint arXiv:1802.01050, 2018.

[36] FuzzingLabs. octopus. https://github.com/
FuzzingLabs/octopus, November 2022. [Accessed
5 Nov. 2022].

[37] Google. AFL. https://github.com/google/AFL,
November 2022. [Accessed 3 Nov. 2022].

[38] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke Wag-
ner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with WebAssembly. In Proceedings of the 38th

14

ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 185–200, 2017.

[39] Keno Haßler and Dominik Maier. WAFL: Binary-Only
WebAssembly Fuzzing with Fast Snapshots. In Revers-
ing and Offensive-oriented Trends Symposium, pages
23–30, 2021.

[40] Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu
Luo, Yao Guo, Ting Yu, and Xuxian Jiang. EOSAFE:
Security analysis of EOSIO smart contracts. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 1271–1288. USENIX Association, August 2021.

[41] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An
Empirical Study of Real-World WebAssembly Binaries:
Security, Languages, Use Cases. In Proceedings of the
Web Conference 2021, WWW ’21, page 2696–2708,
New York, NY, USA, 2021. Association for Computing
Machinery.

[42] Yuhe Huang, Bo Jiang, and W. K. Chan. EOSFuzzer:
Fuzzing EOSIO smart contracts for vulnerability detec-
tion. In 12th Asia-Pacific Symposium on Internetware.
ACM, nov 2020.

[43] Matthieu Journault, Antoine Miné, and Abdelraouf
Ouadjaout. Modular static analysis of string manip-
ulations in C programs. In International Static Analysis
Symposium, pages 243–262. Springer, 2018.

[44] Conor Kelton, Aruna Balasubramanian, Ramya
Raghavendra, and Mudhakar Srivatsa. Browser-Based
Deep Behavioral Detection of Web Cryptomining
with CoinSpy. In Proceedings 2020 Workshop on
Measurements, Attacks, and Defenses for the Web.
Internet Society, 2020.

[45] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever,
Joshua Mason, Andrew Miller, Nikita Borisov, Manos
Antonakakis, and Michael Bailey. Outguard: Detecting
In-Browser Covert Cryptocurrency Mining in the Wild.
In The World Wide Web Conference on - WWW '19.
ACM Press, 2019.

[46] Minseo Kim, Hyerean Jang, and Youngjoo Shin.
Avengers, Assemble! Survey of WebAssembly Security
Solutions. In 2022 IEEE 15th International Conference
on Cloud Computing (CLOUD), pages 543–553. IEEE,
jul 2022.

[47] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha
Moonsamy, Martina Lindorfer, Christopher Kruegel,
Herbert Bos, and Giovanni Vigna. Minesweeper: An
in-depth look into drive-by cryptocurrency mining and
its defense. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1714–1730, 2018.

[48] Daniel Lehmann, Johannes Kinder, and Michael Pradel.
Everything Old is New Again: Binary Security of
WebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20), pages 217–234. USENIX Asso-
ciation, August 2020.

[49] Daniel Lehmann and Michael Pradel. Wasabi: A frame-
work for dynamically analyzing webassembly. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 1045–1058, 2019.

[50] Daniel Lehmann, Martin Toldam Torp, and Michael
Pradel. Fuzzm: Finding Memory Bugs through Binary-
Only Instrumentation and Fuzzing of WebAssembly.
https://arxiv.org/abs/2110.15433, 2021.

[51] Wenyuan Li, Jiahao He, Gansen Zhao, Jinji Yang,
Shuangyin Li, Ruilin Lai, Ping Li, Hua Tang, Haoyu
Luo, and Ziheng Zhou. EOSIOAnalyzer: An effec-
tive static analysis vulnerability detection framework
for EOSIO smart contracts. In 2022 IEEE 46th An-
nual Computers, Software, and Applications Conference
(COMPSAC). IEEE, jun 2022.

[52] Shannon Liao. UNICEF wants you to mine cryptocur-
rency for charity. Verge, April 2018.

[53] Renju Liu, Luis Garcia, and Mani Srivastava. Aero-
gel: Lightweight Access Control Framework for
WebAssembly-Based Bare-Metal IoT Devices. In 2021
IEEE/ACM Symposium on Edge Computing (SEC),
pages 94–105. IEEE, 2021.

[54] Aishwarya Lonkar and Siddhesh Chandrayan. The dark
side of WebAssembly. Virus Bulletin, 2018.

[55] Pedro Daniel Rogeiro Lopes. Discovering vulnerabili-
ties in webassembly with code property graphs. Técnico
Lisboa, 2021. WASMATI (Master thesis/Specialization
project).

[56] Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Vic-
tor Bankowski, Paulius Daubaris, Risto Mikkola, and
Oleg Beletski. WebAssembly modules as lightweight
containers for liquid IoT applications. In Interna-
tional Conference on Web Engineering, pages 328–336.
Springer, 2021.

[57] Filipe Marques, José Fragoso Santos, Nuno Santos, and
Pedro Adão. Concolic Execution for WebAssembly. In
Karim Ali and Jan Vitek, editors, 36th European Confer-
ence on Object-Oriented Programming (ECOOP 2022),
volume 222 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:29, Dagstuhl, Ger-
many, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. WASP.

15

[58] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and
Justin Engler. Security chasms of wasm. NCC Group
Whitepaper, 2018.

[59] Anders Møller. Technical perspective: WebAssembly:
A quiet revolution of the Web. Communications of the
ACM, 61(12):106–106, 2018.

[60] Marius Musch, Christian Wressnegger, Martin Johns,
and Konrad Rieck. New Kid on the Web: A Study
on the Prevalence of WebAssembly in the Wild. In
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 23–42.
Springer, 2019.

[61] Faraz Naseem Naseem, Ahmet Aris, Leonardo Babun,
Ege Tekiner, and A Selcuk Uluagac. MINOS: A
Lightweight Real-Time Cryptojacking Detection Sys-
tem. In NDSS, 2021.

[62] Node.js. Node.js. https://nodejs.org/en, November
2022. [Accessed 27 Nov. 2022].

[63] PeckShield. Defeating EOS Gambling Games: The Tech
Behind Random Number Loophole. Medium, November
2018. [Accessed 12 Nov 2022].

[64] Vasile Adrian Bogdan Pop, Seppo Virtanen, Petri Sainio,
and Arto Niemi. Secure migration of WebAssembly-
based mobile agents between secure enclaves. Master
of Science in Technology Thesis, University of Turku,
2021.

[65] Lijin Quan, Lei Wu, and Haoyu Wang. EVulHunter:
Detecting Fake Transfer Vulnerabilities for EOSIO’s
Smart Contracts at Webassembly-level. arXiv preprint
arXiv:1906.10362, June 2019.

[66] Juan D. Parra Rodriguez and Joachim Posegga. RAPID:
Resource and API-Based Detection Against In-Browser
Miners. In Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, dec 2018.

[67] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Wei-
hang Wang. An Empirical Study of Bugs in Web-
Assembly Compilers. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pages 42–54, 2021.

[68] Alan Romano, Yunhui Zheng, and Weihang Wang.
MinerRay: Semantics-aware analysisfor ever-evolving
cryptojacking detection. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Soft-
ware Engineering. ACM, dec 2020.

[69] rustwasm. wasm-bindgen. https://github.com/
rustwasm/wasm-bindgen, November 2022. [Accessed
23 Nov. 2022].

[70] Fabian Scheidl. Valent-Blocks: Scalable high-
performance compilation of WebAssembly bytecode for
embedded systems. In 2020 International Conference
on Computing, Electronics & Communications Engi-
neering (iCCECE), pages 119–124. IEEE, 2020.

[71] second state. SOLL. https://github.com/second-
state/soll, November 2022. [Accessed 5. Nov. 2022].

[72] Jagsir Singh and Jaswinder Singh. Challenge of malware
analysis: malware obfuscation techniques. International
Journal of Information Security Science, 7(3):100–110,
2018.

[73] Benedikt Spies and Markus Mock. An Evaluation of
WebAssembly in Non-Web Environments. In 2021
XLVII Latin American Computing Conference (CLEI),
pages 1–10, 2021.

[74] Quentin Stiévenart and Coen De Roover. Compositional
information flow analysis for webassembly programs.
In 2020 IEEE 20th International Working Conference
on Source Code Analysis and Manipulation (SCAM),
pages 13–24. IEEE, 2020. WASSAIL.

[75] Pengfei Sun, Luis Garcia, Yi Han, Saman Zonouz, and
Yao Zhao. Poster: Known Vulnerability Detection for
WebAssembly Binaries. 2021.

[76] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni.
Taint tracking for WebAssembly. arXiv preprint
arXiv:1807.08349, 2018. Dynamic or static?

[77] Ege Tekiner, Abbas Acar, A Selcuk Uluagac, Engin
Kirda, and Ali Aydin Selcuk. SoK: Cryptojacking Mal-
ware. In 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 120–139. IEEE, 2021.

[78] Said Varlioglu, Bilal Gonen, Murat Ozer, and Mehmet
Bastug. Is cryptojacking dead after coinhive shutdown?
In 2020 3rd International Conference on Information
and Computer Technologies (ICICT), pages 385–389.
IEEE, 2020.

[79] Dong Wang, Bo Jiang, and W. K. Chan. WANA: Sym-
bolic Execution of Wasm Bytecode for Cross-Platform
Smart Contract Vulnerability Detection. https://
arxiv.org/abs/2007.15510, 2020.

[80] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu,
Kevin W. Hamlen, and Shuang Hao. SEISMIC: SEcure
in-lined script monitors for interrupting cryptojacks. In
Computer Security, pages 122–142. Springer Interna-
tional Publishing, 2018.

[81] WebAssembly. wabt. https://github.com/
WebAssembly/wabt, November 2022. [Accessed 26
Nov. 2022].

16

	Preface
	Acknowledgements
	Abstract
	Sammendrag
	Introduction
	Motivation and background
	Objectives and research questions
	Contributions
	Scope and limitations
	Thesis structure

	Background
	The Internet
	Attempts at low-level code on the Web
	WebAssembly
	Language concepts
	Security
	Ecosystem

	Drive-by mining
	Analysis techniques
	Detecting drive-by mining

	Obfuscation
	Diversification
	Obfuscation tools
	Obfuscation for WebAssembly

	Code similarity
	Sequence alignment

	Methodology
	Experimental setup
	System configuration
	Dataset

	Implementation
	Obfuscation
	De-obfuscation
	Drive-by mining detection
	Extracting the native code
	Measuring the hash rate
	Dynamic time warping

	Evaluation metrics
	RQ1 – Effectiveness
	RQ2 – Detectability
	RQ3 – Reversibility
	RQ4 – Overhead

	Results
	Effectiveness
	Distances after obfuscation
	Native code size increase

	Detectability
	Detection results
	WASim classifiers

	Reversibility
	Distances after de-obfuscation
	Detection results after de-obfuscation

	Overhead
	File size overhead
	Hash rate overhead

	Discussion
	Effectiveness
	Detectability
	Reversibility
	Overhead
	Interpreting the findings
	Limitations

	Conclusion
	Future research
	Concluding remarks

	Bibliography
	Appendices
	Repository: wasm-obf
	Repository: emcc-obf
	SoK: Analysis Techniques for WebAssembly

