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SUMMARY

In the next decades, the European energy supply will drastically increase its share of renew-
able power generation, as the future energy system will comprise renewable energy sources at its
core. Hydrogen supply chains will play a vital role in integrating renewable technologies, but will
also provide as a feedstock, fuel and energy carrier across a wide range of sectors. Meanwhile,
the European Commission is planning to upscale the wind power capacity in the North Sea and
provide the European continent with 40 GW renewables-linked electrolysis in 2030. Academia and
industry have directed research efforts and investments to realize the ambitions of creating hydro-
gen corridors from the North Sea. Several companies have announced their investments in offshore
systems, accelerating the race towards the production of hydrogen offshore. In that context, an
offshore energy system consisting of an offshore wind farm and hydrogen platform in the North Sea
has been studied. The so-called hybrid system is connected to the European mainland through a
transmission cable to the power grid and a hydrogen pipeline. Energy from the wind farm can be
utilized in hydrogen production or injected directly in to the mainland power grid. The objective
of this thesis has been to implement the operational behavior of this system into an optimization
framework that maximizes the revenue potential by participating in hydrogen and power markets.
The optimization model provides decision-support by accurately estimating the expected revenues
for a given system configuration of preference for a prospecting investor. A stochastic mixed integer
planning model is formulated to account for uncertainty in wind power generation 36 hours ahead,
by combining quantile regression with spline basis functions and a scenario generation method pro-
posed by Pinson et al. (2009). Autoregressive structures are applied to forecast electricity prices
in the day-ahead and intraday markets, and non-reversible commitments made in bidding auctions
to capture risk. A compromise between computational tractability and modeling precision is made
when modeling electrolyzer characteristics, that includes ramping constraints between operational
states. A rolling horizon framework is implemented to solve the stochastic program.

The performance of the model is significantly influenced by the uncertainty associated with exogen-
ous factors, as revealed by the results. In such scenarios, the role played by fuel cell batteries and
the intraday market is crucial in effectively mitigating any potential violations of power purchase
agreements. It is expected that a higher number of scenarios would result in more robust solutions.
However, it is important to carefully assess the penalty costs and the number of scenarios to pre-
vent the objective function from deteriorating and to avoid long solution times. This consideration
is especially important due to the random processes involved in the scenario generation process.
These aspects make it difficult to interpret the value of the stochastic solution, although the ex-
pected value problem by definition achieves a 6.8 % better solution. Furthermore, the perfect
information case achieves an 8% better solution. Although higher transmission capacities yield
greater revenues, they often require substantial grid reinforcements that may not be practically
feasible. By modeling a 1000 MW electrolyzer capacity, which corresponds to an island mode
configuration, the hydrogen break-even point is estimated to be approximately 5 EUR/kg when
considering power sales. Selling hydrogen carries lower financial risks compared to power purchase
agreements. The model proposed in this thesis could be iteratively employed with profitability
tools for the project lifetime in the optimization of energy system designs. Future estimations
of electricity and hydrogen prices, combined with equipment costs, will play a decisive role in
determining the profitability and viability of projects involving offshore hydrogen production.
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SAMMENDRAG

Fornybare energikilder utgjør kjernen av fremtidens energisystem. Verdikjeder av hydrogen vil
spille en avgjørende rolle i integreringen av fornybar kraft, men vil ogs̊a ha nytte som r̊astoff,
drivstoff og energibærer p̊a tvers av ulike sektorer. Samtidig planlegger den Europeiske kommis-
jon å øke vindkraftkapasiteten i Nordsjøen og forsyne det europeiske kontinentet med 40 GW
grønn hydrogen innen 2030. Akademia og industrisektoren har rettet stort forskningsinnsats og
allerede gjort store investeringer for å realisere ambisjonene om å skape forsyningskjeder av hy-
drogen i Nordsjøen. Med dette som bakgrunn er et offshore energisystem best̊aende av en offshore
vindfarm og en hydrogenplattform i Nordsjøen blitt studert. Det s̊akalte hybridsystemet er kob-
let til det europeiske fastlandet via en overføringskabel til kraftnettet og en undervanns hydro-
genrørledning. Energi fra vindparken kan brukes i hydrogenproduksjon eller sendes direkte inn p̊a
kraftnettet. Målet til denne oppgaven har vært å implementere systemets oppførsel inn i en op-
timaliseringmodell som maksimerer inntekt fra hydrogen- og kraftmarkeder. Optimeringsmodellen
tilbyr beslutningsstøtte ved å nøyaktig estimere forventet inng̊aende kontantstrømmer, ogs̊a for
ulike systemkonfigurasjoner dersom kapasiteter endres. Optimeringsmodellen er definert som et
lineært stokastisk blandet heltallsproblem, som tar hensyn til usikkerhet i vindkraftproduksjon 36
timer frem i tid ved å kombinere kvantilregresjon og spline basisfunksjoner, og en scenariogener-
eringsmetode inspirert av Pinson et al. (2009). Regresjonsmodeller er benyttet til å prognostisere
kraftpriser i day-ahead og intraday markedet, og straffekostnader ved underleveranser er modellert
for å fange opp risiko ved budgivning til disse markedene. Nøyaktigheten i modelleringsbeskriv-
elsen av elektrolysørenes oppførsel er vektet mot problemstørrelse og løsningstid, og modellen
h̊andterer ogs̊a begrensninger som følger av overgang mellom ulike driftstilstander. En rullende
horisont tilnærming er benyttet for å løse det stokastiske optimeringsproblemet over en bestemt
tidshorisont.

Resultatene viser at modellen p̊avirkes betydelig av graden av usikkerhet knyttet til de eksogene
faktorene. Selv om scenariobeskrivelsen fører til relativt robuste løsninger er brenselceller, batteri-
pakker og intraday markedet viktige komponenter for å h̊andtere situasjoner med underproduksjon,
selv om det er forventet at et høyere antall scenarioer fører til mer robuste løsninger. Det er viktig
å vurdere straffekostnaden for brudd p̊a avtaler av kraftsalg i sammenheng med antallet scenarioer
som modelleres. Dette hensynet er av stor betydning ettersom tilfeldige prosesser er involvert i
scenariogenereringsmetoden. Disse aspektene gjør det utfordrende å tolke den nøyaktige verdien
av den stokastiske løsningen, selv om det deterministiske problemet oppn̊ar en objektsfunksjons-
verdi som er 6.8 % bedre. Videre vil modellen med perfekt informasjon om vind gi en 8.0 % bedre
løsning. Høyere overføringskapasitet til kraftnettet kan gi betydelig inntektsøkning, men det vil
kreve store investeringer i kraftnettet, som overg̊ar det som er virker fornuftig. Ved å modellere en
elektrolysørkapasitet p̊a 1 000 MW, tilsvarende et energisystem dedikert til kun hydrogenproduk-
sjon, ansl̊as denne systemkonfigurasjonen å være konkurransedyktig med det opprinnelig studerte
systemet dersom hydrogenprisen anslagsvis overstiger 5 EUR/kg. Salg av hydrogen innebærer
lavere finansiell risiko enn avtaler av kraftsalg. Modellen som er foresl̊att i denne masteroppgaven
finner nytte som et lønnsomhetsverktøy for å optimalisere energisystemets design over prosjektets
levetid. Fremtidige estimater for kraft og hydrogenpriser spiller en avgjørende rolle for å estimere
om investeringsbeslutninger i slike prosjekter kan være lønnsomme.

iii



CONTENTS

Preface i

Summary ii

List of Figures viii

List of Tables xi

Acronyms xiii

1 Introduction 1

2 Background 4

2.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Formulation of Stochastic Problems . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Evaluating the Performance of the Stochastic Problem . . . . . . . . . . . . 6

2.2 Rolling Horizon Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Mathematical Modelling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Spline Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Problem Description 11

3.1 Optimization Model Objective and Decision-making . . . . . . . . . . . . . . . . . 11

3.2 Energy System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Literature Review 15

4.1 Short-term Optimization of Offshore Hydrogen Production with Stochastic Power
Generation Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Search Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



4.1.2 Review of Offshore Energy Systems with Hydrogen Production Literature . 16

4.1.3 Review of Short-term Optimization of Hydrogen Production Literature . . 18

4.1.4 Hydrogen Production and Stochastic Power Generation Literature . . . . . 22

4.2 Wind Power Stochasticity Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Search Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Review of Wind Power Forecasting and Stochasticity Literature . . . . . . . 23

4.3 Technologies for Offshore Hydrogen Production Literature . . . . . . . . . . . . . . 25

4.3.1 Search Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Review of Technologies for Offshore Hydrogen Production Literature . . . . 25

4.4 Power Markets and Electricity Price Forecasting Literature . . . . . . . . . . . . . 29

4.4.1 The Day Ahead Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 The Intraday Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.3 Electricity Price Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Synthesis of the Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Modelling Assumptions and Strategies 32

5.1 Technical Components of the Energy System . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Desalination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Electrolyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.3 Compression, Storage and Transportation . . . . . . . . . . . . . . . . . . . 33

5.1.4 Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.5 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.6 Power Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Hydrogen Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Power Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Day-ahead Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Intraday Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Wind Power Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Mathematical Model and Formulation 39

6.1 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Technical Components Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Electrolyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.2 Compression, Storage and Transportation . . . . . . . . . . . . . . . . . . . 46

6.2.3 Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



6.2.4 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.5 Power Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Energy Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Day-ahead Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Intraday Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Objective Function Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.7 Non-anticipativity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8 Simplified Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.9 Subproblems with First-Stage Day-ahead and Intraday Decisions . . . . . . . . . . 53

6.10 Subproblems with First-Stage Intraday Decisions . . . . . . . . . . . . . . . . . . . 54

6.11 Subproblems without First-Stage Decisions . . . . . . . . . . . . . . . . . . . . . . 54

7 Implementation and Instance Generation 55

7.1 Technical Data on System Components . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Electrolyzer Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.2 Pipeline Storage and Transportation Data . . . . . . . . . . . . . . . . . . . 56

7.1.3 Fuel Cells Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.4 Battery Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.5 Auxiliary Systems Data: Desalination and Compression . . . . . . . . . . . 58

7.1.6 Power Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Hydrogen Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Electricity Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 Day Ahead Market Data and Price Forecast . . . . . . . . . . . . . . . . . . 59

7.4.2 Intraday Market Data and Price Forecast . . . . . . . . . . . . . . . . . . . 61

7.5 Wind Forecasting and Scenario Generation . . . . . . . . . . . . . . . . . . . . . . 63

7.5.1 Wind Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5.2 Wind Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5.3 Quantile Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.5.4 Wind and Power Scenario Generation . . . . . . . . . . . . . . . . . . . . . 67

7.6 Test Instance Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.6.1 Seven Days Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.6.2 Number of Wind Power Scenarios . . . . . . . . . . . . . . . . . . . . . . . 70

7.6.3 The Role of the Intraday Market . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



7.6.4 What-If Analysis of Capacity Limits . . . . . . . . . . . . . . . . . . . . . . 71

7.6.5 Electrolyzer Modeling - Number of Electrolyzers in E and Time Periods in TE 71

7.6.6 Hydrogen Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6.7 Model Performance - Value of Perfect Information and Value of the Stochastic
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.7 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.7.1 Solver Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Computational Study 74

8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1.1 Seven Days Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1.2 Changing the Number of Wind Power Generation Scenarios . . . . . . . . . 78

8.1.3 The Role of the Intraday Market . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1.4 What-If Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.5 Size of E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.6 System Performance with Different Hydrogen Prices . . . . . . . . . . . . . 93

8.1.7 Value of Perfect Information . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.8 Value of the Stochastic Solution . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Managerial Insights and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2.1 Price-Taker Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2.2 A Complicated Intraday Bidding Process . . . . . . . . . . . . . . . . . . . 97

8.2.3 Risk Management: Non-delivery Penalties and Power Market Exclusion . . 97

8.2.4 Decoupling from Power Markets - Island Mode . . . . . . . . . . . . . . . . 101

8.2.5 Scenario Generation and Wind Power Stochasticity . . . . . . . . . . . . . . 102

8.2.6 Model Design and Energy System Design . . . . . . . . . . . . . . . . . . . 103

8.2.7 Power Market Participation - a Profitability Driver . . . . . . . . . . . . . . 108

9 Concluding Remarks 110

10 Future Research 112

Bibliography 113

Appendix 120

vii



LIST OF FIGURES

2.1 Information flow in the rolling horizon approach. . . . . . . . . . . . . . . . . . . . 7

2.2 Loss function in quantile regression models. . . . . . . . . . . . . . . . . . . . . . . 9

3.1 General description of the decision process. . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Schematic of the proposed energy system. . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Comparison of energy system design to other research articles . . . . . . . . . . . . 21

4.2 Comparison of modeling aspects and solution techniques to other research articles 21

5.1 Modeling of the electrolyzers’ operational states. . . . . . . . . . . . . . . . . . . . 33

5.2 SEC for adiabatic and isothermal compression processes . . . . . . . . . . . . . . . 34

6.1 Key modeling sets and their associated domains in each subproblem . . . . . . . . 44

7.1 Reported Day-ahead prices for the calendar year of 2022 by Nord Pool. . . . . . . 60

7.2 Predicted day-ahead prices based on historical data. . . . . . . . . . . . . . . . . . 61

7.3 Interpolated data set of intraday buying prices. . . . . . . . . . . . . . . . . . . . . 62

7.4 Interpolated data set of intraday selling prices. . . . . . . . . . . . . . . . . . . . . 62

7.5 Predicted intraday selling prices in hour 1 based on historical data. . . . . . . . . . 63

7.6 Quantile forecast for a 36-hour forecasting horizon. . . . . . . . . . . . . . . . . . . 66

7.7 Map of the process flow of the scenario generation procedure . . . . . . . . . . . . 68

7.8 Scenario generation of 20 scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1 Relationship between available energy resource, promised day-ahead deliveries and
incurred deviations under seven days of operation. . . . . . . . . . . . . . . . . . . 75

8.2 Minimizing penalty cost in one week operation scenario. . . . . . . . . . . . . . . . 76

8.3 Hydrogen storage level in pipeline during one week of operation. . . . . . . . . . . 77

8.4 Electrolysis energy balance during seven days operation. . . . . . . . . . . . . . . . 78

8.5 Energy shed with different number of scenarios. . . . . . . . . . . . . . . . . . . . . 79

8.6 Day-ahead commitments fulfillment Under Unlimited Intraday Trading Policy . . . 81

8.7 Comparison between the intraday sale commitments over the planning period for
limited and unlimited intraday trading policies. . . . . . . . . . . . . . . . . . . . . 82

viii



8.8 Comparison between the intraday purchase commitments over the planning period
for limited and unlimited intraday trading policies. . . . . . . . . . . . . . . . . . . 82

8.9 The utility of fuel cells and batteries when the energy system is decoupled from
intraday market trading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.10 Change in day-ahead commitments as the total electrolyzer capacity changes. . . . 84

8.11 Electrolysis energy requirement for different electrolyzer capacities. . . . . . . . . . 85

8.12 Hydrogen storage level with different electrolyzer capacities. . . . . . . . . . . . . . 86

8.13 Energy shedding with 1 000 MW electrolyzer capacity. . . . . . . . . . . . . . . . . 87

8.14 Comparison of the day-ahead commitments made with different transmission cable
capacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.15 The total volume purchased intraday is compared under different transmission cable
capacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.16 Income from day-ahead operations for different transmission cable capacities. . . . 91

8.17 Comparison of day-ahead commitments for day-ahead penalties of 1 000 000 EUR/MWh
and 1 000 EUR/MWh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.18 Difference between electrolyzer consumption for day-ahead penalties of 1 000 000
EUR/MWh and 1 000 EUR/MWh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.19 Comparison of energy shed for day-ahead penalties of 1 000 000 EUR/MWh and 1
000 EUR/MWh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.20 Example of potential hydrogen pipeline setup in the North-Sea. . . . . . . . . . . . 107

A.1 Efficiency of a PEM electrolyzer as a function of the operating point. . . . . . . . . 120

A.2 Energy output in hydrogen per unit of energy input in a PEM electrolyzer . . . . . 121

A.3 Efficiency of PEMFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.4 Plot of Average day-ahead prices in 2022 by weekday for all hours. . . . . . . . . . 123

A.5 Average day-ahead prices in 2022 by weekday. . . . . . . . . . . . . . . . . . . . . . 124

A.6 Original data set of intraday selling prices for 2022. . . . . . . . . . . . . . . . . . . 125

A.7 Interpolated data set of intraday selling prices for 2022. . . . . . . . . . . . . . . . 125

A.8 Original data set of intraday buying prices for 2022. . . . . . . . . . . . . . . . . . 126

A.9 Interpolated data set of intraday buying prices for 2022. . . . . . . . . . . . . . . . 126

A.10 Difference between day-ahead prices and artificial intraday selling prices in 2022. . 127

A.11 Difference between day-ahead prices and artificial intraday buying prices in 2022. . 127

A.12 Comparison of traded volume day-ahead versus intraday sales contracts in 2022. . 128

A.13 Comparison of traded volume day-ahead versus intraday purchasing contracts in 2022.128

A.14 The impact on day-ahead commitments when changing the number of scenarios. . 132

A.15 The impact on net income when changing the number of scenarios. . . . . . . . . . 132

A.16 Electrolycer energy consumption under different intraday policies. . . . . . . . . . 133

A.17 Actual day-ahead delivery under different intraday policies. . . . . . . . . . . . . . 134

A.18 Power market prices and hydrogen price in the modeled base-case. . . . . . . . . . 134

ix



A.19 Cumulative hydrogen income for different electrolyzer capacities. . . . . . . . . . . 136

A.20 Day-ahead deviations for different transmission cable capacities. . . . . . . . . . . . 139

A.21 Electrolyzer energy consumption for different transmission cable capacities. . . . . 139

A.22 Wind power generation profile when testing for fuel cell and battery activation in
island mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

x



LIST OF TABLES

7.1 Key technical parameters of the system design. . . . . . . . . . . . . . . . . . . . . 58

7.2 Regression statistics of the developed auto-regressive model developed to predict
day-ahead prices for hour 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Statistical properties of the regression parameters in the model used to predict day-
ahead prices for hour 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4 Regression statistics on the auto-regressive model developed to predict intraday
selling prices for hour 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 Statistical properties of the regression parameters in the auto-regressive model used
to predict intraday selling prices for hour 1 . . . . . . . . . . . . . . . . . . . . . . 63

7.6 Statistical properties of the developed AR(4) forecasting model. . . . . . . . . . . . 65

7.7 Technical specifications of modeling software and solver hardware . . . . . . . . . . 73

8.1 Main results from applying the rolling horizon approach to one week of operation. 75

8.2 Main results from running the optimization model with different number of wind
power generation scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3 Key model results for different intraday market policies. . . . . . . . . . . . . . . . 80

8.4 Key findings when studying the impact on system performance under different elec-
trolyzer capacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5 Key findings from testing the model with different fuel cell capacities. . . . . . . . 87

8.6 Key findings from the sensitivity analysis on transmission cable capacity. . . . . . . 89

8.7 Key findings from the sensitivity analysis on number of electrolyzers. . . . . . . . . 92

8.8 Key findings of system performance with different hydrogen prices per kilogram
hydrogen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.9 Comparing the objective function values of the perfect information solution and
stochastic solution together with key system performance metrics. . . . . . . . . . 94

8.10 Comparing the objective function values of the expected value solution and the
stochastic solution, and key system performance metrics. . . . . . . . . . . . . . . . 94

8.11 Key findings from the impact of lower penalty costs. . . . . . . . . . . . . . . . . . 98

8.12 Key findings of island mode assessment. . . . . . . . . . . . . . . . . . . . . . . . . 101

8.13 Key findings of hydrogen price test for 1 000 MW Electrolysis and 500 MW power
transmission cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



A.1 Technical parameter values in the model formulation. . . . . . . . . . . . . . . . . . 122

A.2 Average day-ahead prices in 2022 by season for all hours. . . . . . . . . . . . . . . 122

A.3 Standard deviation of day-ahead prices in 2022 by season for all hours. . . . . . . . 123

A.4 Average day-ahead prices in 2022 by weekday for all hours. . . . . . . . . . . . . . 124

A.5 Exponential alpha values for wind speed scaling . . . . . . . . . . . . . . . . . . . . 129

A.6 Modeling parameters implemented in the base case of the model. . . . . . . . . . . 129

A.7 Initial values for all test instances of the rolling horizon model. . . . . . . . . . . . 129

A.8 Model results for one week of operation. . . . . . . . . . . . . . . . . . . . . . . . . 130

A.9 Model results for different number of scenarios. . . . . . . . . . . . . . . . . . . . . 131

A.10 Model results for intraday market policies. . . . . . . . . . . . . . . . . . . . . . . . 133

A.11 Model results for different electrolyzer capacities. . . . . . . . . . . . . . . . . . . . 135

A.12 Model results for different fuel cell capacities. . . . . . . . . . . . . . . . . . . . . . 137

A.13 Model results for different transmission cable capacities. . . . . . . . . . . . . . . . 138

A.14 Model results with different electrolyzer modeling sets. . . . . . . . . . . . . . . . . 140

A.15 Model results with different hydrogen prices and 500 MW electrolyzer capacity. . . 141

A.16 Model results under perfect information. . . . . . . . . . . . . . . . . . . . . . . . . 142

A.17 Model results with different hydrogen prices and 1000 MW electrolyzer capacity. . 143

xii



ACRONYMS

AFC Alkaline Fuel Cells.

AR Autoregressive.

BESS Battery Energy Storage System.

CET Central European Time.

DPP Discounted Payback Period.

EEV Expectation of the Expected Value Problem.

EU European Union.

EVPI Expected Value of Perfect Information.

HHV Higher Heating Value.

HPA Hydrogen Purchase Agreements.

HVAC High Voltage Alternating Current.

HVDC High Voltage Direct Current.

LCOH Levelized Cost of Hydrogen.

MED Multi Effect Distillation.

MET Norway The Norwegian Meteorological Institute.

MET-F MET Norway Forecasts.

MILP Mixed Integer Linear Programming.

MPC Model Predictive Control.

MSF Multi-Stage Flash Distillation.

NPV Net Present Value.

NWP Numerical Weather Prediction.

PEM Proton Exchange Membrane.

PEMEL Proton Exchange Membrane Electrolyzers.

PEMFC Proton Exchange Membrane Fuel Cells.

PI Perfect Information.

RO Reverse Osmosis.

SEC Specific Energy Consumption.

xiii



SOEC Solid Oxide Electrolysis Cells.

SOFC Solid Oxide Fuel Cells.

SS Stochastic Solution.

VSS Value of Stochastic Solution.

xiv



CHAPTER

ONE

INTRODUCTION

Over the next two decades, there is a pressing need for a profound transformation of Europe’s en-
ergy system and its structure. The renewable share in the energy mix on the European continent
is projected to reach 55-60% in 2030, and as high as 84% in 2050 (European Commission, 2020c).
The energy supply will rely on an increasing share of geographically distributed renewable techno-
logies. However, additional variable power grid injections from scheduled development compromise
power system stability and demand substantial reinforcement investments, which in most cases are
not considered techno-economic feasible. Energy storage inevitably co-exists with variable power
generation. While direct electrification is often the most energy-efficient option for decarbonizing,
a number of end-appliances benefit from renewable or low-carbon fuels such as sustainable gas,
biofuels, methane, synthetic fuels, and low-carbon and renewable hydrogen.

To achieve emission reductions of 50 % by 2030 and net-zero by 2050, in accordance with the Paris
Agreement and the European Green Deal, the European Commission has developed a hydrogen
strategy on how hydrogen is implemented in industries by policy makers to become climate neutral
economies. The European Union (EU) prioritizes renewable electricity and renewable hydrogen as
the most sustainable solution and the future climate-neutral energy system has these two compon-
ents as its core (European Commission, 2020a). Hydrogen is a feedstock, fuel and energy carrier
applicable to a wide range of sectors. It is also a vector for storage as it offloads the grid in cases
of energy abundance, providing a buffering function and enhancing the security of supply with
daily to long-term seasonal storage. Hydrogen is currently representing only a modest proportion
of the energy mix and the hydrogen supply chains are underdeveloped and still at the infancy
level. The hydrogen ecosystem and its structure will depend on production and demand patterns,
transportation costs and grid development. Nevertheless, hydrogen remains the most compatible
and coherent option with EU climate neutrality and integrated energy system agenda. Trajectories
suggest that hydrogen becomes intrinsic to the energy system in 2025-2030 and will play a nodal
role in integrating renewable power generation. Demand-side policies will help to accelerate the
progress on hydrogen networks, and at the same time, ensure national and regional interoperabil-
ity by common quality standards and cross-border operational rules. The European Commission
also proposes a certification scheme for domestic producers of renewable hydrogen. Eventually,
hydrogen can be traded in a single market.

Although the European Commission prioritizes renewable hydrogen in the long term, the majority
of hydrogen produced today cannot be classified as renewable. Approximately 96 % of the total
production comes from steam reforming of hydrocarbons emitting 70 – 100 million tons of CO2

annually. Carbonized hydrogen is still the most cost-competitive solution, but economies of scale
for decarbonized hydrogen could be achieved with sufficient investments and public-private col-
laborations (European Commission, 2020a). One of many investment prospects emerges from the
convergence between wind power generation and hydrogen energy.
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Offshore wind energy, among other offshore technologies, has the greatest scale-up potential of
approximately 300 GW capacity in 2050 from today’s 12 GW (European Commission, 2020b).
The short-term goal is to install 60 GW offshore wind capacity by 2030, which is considered
both achievable and realistic. Approximately 77 % of total installed wind capacity in Europe is
located in the North Sea region (McKenna et al., 2021), and experts predict future wind farms
averaging 800 MW and 1100 MW for floating and fixed-bottom wind power, respectively (Beiter
et al., 2022). The North Sea region is deemed to be the cornerstone of initiating the energy
transition, and the EU has subsidized the development of hydrogen corridors from the North Sea
to continental Europe (European Commission, 2020a). The EU Hydrogen Strategy targets 40
GW of renewables linked electrolysis by 2030. Offshore hydrogen storage systems are, at least in
theory, deployable at any offshore location without relying on grid connection infrastructure (Dinh
et al., 2021). Given these parameters, Norway has an opportune position to produce large-scale
low-carbon and renewable hydrogen due to its geography and high wind speeds (Espegren et al.,
2021). The concept of producing large-scale offshore hydrogen offshore has already sparked a large
interest in the industry. Offshore hydrogen supply chains are unquestionably emerging in the near
future.

The cost competitiveness of offshore hydrogen production has been a hot topic in academic research.
The cost of fossil-based hydrogen is currently estimated at around 2 EUR/kg, while renewable hy-
drogen achieves 2.5 – 5.5 EUR/kg. However, technology for renewable hydrogen production is
rapidly maturing and will soon reach economies of scale as renewable hydrogen is predicted to
outperform fossil-based hydrogen in 2030. Preliminary academic studies on offshore hydrogen pro-
duction have been concentrated on feasibility studies of investment cycles. A particular interest
has been expressed in different offshore system layouts to compare and find the optimal configur-
ation (Dinh et al., 2021; Lucas et al., 2022). The main alternatives being evaluated in research
are if electrolyzers should be on-shore, on energy hubs/islands or tower integrated, and energy
flows in electrical networks under these circumstances. As these studies are primarily economic
assessments, system behavior tends to be aggregated and simplified in order to address system
performance over long time horizons. Despite uncertainty in future technology and market prices,
centralized production in floating structures or turbine tower integrated solutions is found to be
unmatched compared to others in economic terms (Jang et al., 2022).

In terms of operational planning, many authors have already developed optimization models for
hydrogen production with a focus on electrolyzer operation management. However, these models
are based on onshore hydrogen production of typically a single electrolyzer, without consideration
for the unmatched offshore project scale and offshore operating conditions. Different studies also
estimate performance over longer time horizons, compared to our work, with grid-integrated sys-
tems that, in principle, cannot guarantee that the produced hydrogen is emission-free. A coherent
model for operational planning of offshore hydrogen production systems is, to the extent of the
authors’ knowledge, not found in the literature, signifying this work as one of the first operational
planning models for a large-scale offshore hydrogen production system in the North Sea. To our
knowledge, few, if any, real world projects have been put into operation. There is no existing
blueprint of the actual system design and dimensions easily available besides undisclosed corporate
information. Therefore, a thorough review has been done of the core technological components
comprising the conceptualized system. With the help of technology experts and research literature,
system integrity is preserved.

Falk and Hansen (2022) studied a deterministic short-term optimization problem involving a hy-
brid offshore energy system with hydrogen production connected to an offshore wind farm, as well
as hydrogen and the day-ahead market. However, the North Sea’s challenging and volatile marine
environment gives rise to abrupt and intensified atmospheric phenomena, leading to highly volatile
wind power generation. This volatility poses significant risks when modeling realistic power pur-
chasing agreements in both the day-ahead and intraday markets. This thesis stands apart from
previous research on offshore energy systems with hydrogen production, and extends the work by
Falk and Hansen (2022) by specifically investigating the short-term operational performance under
the influence of uncertain power generation and power market prices. The primary objective of
this thesis is to analyze the behavior and performance of the system by incorporating stochastic
wind power generation in a scenario description, all while considering the fulfillment of power pur-
chasing agreements. This approach enables a more precise estimation of how exogenous factors,
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which guide power system behavior and performance, influence the economic viability of the system
and investment decisions. To achieve this objective, a stochastic Mixed Integer Linear Program-
ming (MILP) problem is proposed. The optimization model includes scenarios estimated using
quantile regression and b-spline basis functions in order to represent wind power generation scen-
arios, and auto-regressive structures to forecast uncertain power market prices. The optimization
model is implemented in a rolling horizon framework, allowing for quarter-hourly decision-making
while forecasting wind data for the upcoming 36 hours. Notably, the practical applicability of the
optimization model has been a key consideration, with execution time playing a central role.

The remainder of this thesis is structured as follows. Chapter 2 provides the reader with introduct-
ory insights on stochastic programming, the rolling horizon framework and the other mathematical
modelling techniques that have been used in this thesis. Chapter 3 presents the problem descrip-
tion. The literature review is given in Chapter 4. Chapter 5 presents the modelling assumptions
and strategies. The mathematical model for the stochastic short-term optimization problem is
formulated in Chapter 6. Model implementation and instance generation are described in Chapter
7. Chapter 8 presents the results from the computational study in addition to managerial insights
and discussion of the results. Concluding remarks are provided in Chapter 9. Finally, Chapter 10
gives a discussion of future research.
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CHAPTER

TWO

BACKGROUND

This chapter aims to introduce the reader to certain topics that could ease the understanding of
several later chapters in the thesis. Section 2.1 gives an introduction of stochastic model formulation
and methods for assessing the performance of stochastic problems. Section 2.2 presents theory on
the rolling horizon framework and how it can be used in optimization models. Section 2.3 introduces
several mathematical modelling techniques that have been used in thesis.

2.1 Stochastic Programming

The theory presented in this section is based on Kall and Wallace (2003) and Pisciella (2012). A
stochastic model aims at formulating and dealing with problem structures that involve uncertainty
about parameter data. Stochastic models capture the future consequences of the decisions we
make now, the first-stage variables. Recourse decisions, or second-stage variables are made as
uncertainty is revealed. Because the first-stage decisions are non-reversible, they should be made
with careful consideration of the uncertain future.

2.1.1 Formulation of Stochastic Problems

Stochastic models are typically defined in stages depending on how information is revealed. Many
stochastic problems are formulated as two-stage problems which involve some irreversible decisions,
some update on information about uncertain data, and recourse decisions made in response to this
new information. We are solving problems that can be very generally described as

“min” g0(x, ξ̃)

s.t. gi(x, ξ̃) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ Rn (2.1)

where ξ̃ is a random vector varying over a set Ξ ⊂ Rk. More precisely, it is assumed that a
collection F of subsets, or events, of Ξ, exists such that the probability distribution P on F is
given. For every subset A ∈ F, which can be denoted an event, the probability P(A) is a known
value. In this format, the meaning of “min” and the constraint is not precisely communicated.

So-called deterministic equivalents can be reformulated from (2.1).
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g+i (x, ξ) =

{
0 if gi(x, ξ) ≤ 0

gi(x, ξ) otherwise
(2.2)

is the i ’th constraint in (2.1) and violated conditional that g+i (x, ξ) > 0 for a first-stage decision

x and unveiling of the uncertain parameter ξ of ξ̃. After observing ξ̃, a recourse activity can be
defined as yi(ξ) that can offset any observed violation of the constraints, given that

gi(x, ξ)− yi(ξ) ≤ 0. (2.3)

the recourse activity is assumed to incur an additional cost term, or penalty, qiyi(ξ) per unit
activity. Then the additional cost is represented by a recourse function, which can be defined as,

Q(x, ξ) = min
y

{ m∑
i=1

qiyi(ξ)
∣∣yi(ξ) ≥ g+i (x, ξ), i = 1, ...,m

}
(2.4)

The total cost comprises the sum of the first-stage costs and the recourse costs, modeled in (2.4).
The decision-maker now aims to minimize

f0(x, ξ) = g0(x, ξ) +Q(x, ξ). (2.5)

If modeling the expected value of the total costs, i.e. first- and second-stage costs, is acceptable to
the decision-maker, the problem defined in (2.1) can be reformulated to a deterministic equivalent,
commonly known as (two-stage) stochastic program with recourse,

min
x∈X

Eξ̃f0(x, ξ̃) = min
x∈X

Eξ̃{g0(x, ξ̃), Q(x, ξ̃)} (2.6)

where x is the first-stage decision.

In this thesis, one particular deterministic equivalent is modeled for stochastic problems given by
(2.1) on the form,

”min” cTx

s.t. Ax = b

T (ξ̃)x = h(ξ̃)

x ≥ 0 (2.7)

The recourse variables y are in this case specifically introduced as,

Wy = h(ξ)− T (ξ)x (2.8)

where W is the known recourse matrix. The additional cost from the recourse problem is then,

Q(x, ξ) = min
y

{
qT y|Wy = h(ξ)− T (ξ)x, i = 1, . . . ,m, y ≥ 0

}
(2.9)

One deterministic equivalent of the particular stochastic instance in (2.7) is called a two-stage
stochastic problem with recourse, and can be defined in a compact form,

min cTx+ Eξ̃Q(x, ξ̃)

s.t. Ax = b

x ≥ 0, (2.10)
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or where the second-stage problem is casted from the recourse function

min cTx+ Eξ̃

[
qT y(ξ̃)

]
s.t. Ax = b

Wy(ξ̃) = h(ξ̃)− T (ξ̃)x

x ≥ 0, y(ξ̃) ≥ 0. (2.11)

If ξ is a finite and discrete stochastic variable, both stages can formulated in a single optimization
problem. We start by defining the probabilities pk, recourse variables yk, quantities qk, hk, Tk for
each realization of the uncertain parameter ξk, where k = 1, . . . , N is the discrete set of scenarios.
The final discretized version of (2.11) is then reformulated as

min
x,y1,...,yN

cTx+

N∑
k=1

pkq
T
k yk

s.t. Ax = b

Tkx+Wkyk = hk, k = 1, . . . , N

x ≥ 0, yk ≥ 0, k = 1, . . . , N (2.12)

Although this discretized structure of the linear prrogramming problem is convenient for developing
solution algorithms, it have the potential to grow very large in size depending on the number of
scenarios that are modeled (Pisciella, 2012).

2.1.2 Evaluating the Performance of the Stochastic Problem

When modeling stochastic programs, it is important to evaluate if the impact of modeling un-
certainty is significant (Leo & Engell, 2018). The value of a stochastic model generally increases
in proportion to the significance of the uncertainty. In order to quantify the benefit of integrat-
ing wind speed variability in our model and estimate the value of obtaining more information on
uncertain parameters, we determine recognized metrics such as the Value of Stochastic Solution
(VSS) and the Expected Value of Perfect Information (EVPI).

Value of the Stochastic Solution

The value of the stochastic solution is reflected in the VSS parameter. In general, when there is
significant uncertainty, the VSS can be quite significant. A high VSS value reflects a considerable
benefit of considering uncertainty in the model. In academia, it is common to report on VSS when
using a stochastic model. To determine VSS, we must also find the value of the Expectation of the
Expected Value Problem (EEV). We find EEV by fixing the first-stage variables to the solutions
found when solving the stochastic program with the expected value of the uncertain parameters
and inserting them into the recourse problems.

VSS is described by Equation (2.13),

V SS = SS − EEV, (2.13)

where Stochastic Solution (SS) denotes the objective function value of the the stochastic solution.

Value of Perfect Information

EVPI estimates the value of information and quantifies in simple terms how much one would be
willing to invest in more information about uncertain parameters. Although the “P” stands for
perfect, we can interpret EVPI as having more information and the cost to eliminate uncertainty
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in the model (Wallace et al., n.d.). If we denote the solution with perfect foresight as Perfect
Information (PI), the EVPI is mathematically defined as

EV PI = PI − SS (2.14)

PI is determined by the expected value of the objective functions when solving each scenario as a
deterministic problem.

2.2 Rolling Horizon Theory

Uncertain power generation makes it appropriate to incorporate the most recent information avail-
able to the decision-maker before any decisions on hydrogen production are taken in the next time
period. This implies that the optimization problem is solved in a perpetual manner that requires
continuous updates on information, emphasizing the need for a well-suited solution framework.
When dealing with optimization problems that involve a temporal dimension, such as those en-
countered in energy systems with wind power modeling, a rolling horizon approach is commonly
found in literature. Rolling horizon compromise between solution times and accuracy for com-
prehensive problem structures that otherwise would be hard to solve in a single iteration. The
motivation for using a rolling horizon approach is that it is adaptive and flexible to the problem
it is modeling and is appropriate for energy planning problems with indefinite time horizons and
low interdependencies between early and later decisions (Andersson & Grönkvist, 2019). A rolling
horizon framework generally solves shorter overlapping subproblems in an iterative process until
decisions are made for the entire planning horizon. The rolling horizon approach will output the
optimal policy for the planning horizon determined by the subproblems’ solutions. Figure 2.1
illustrates the structure of the rolling horizon framework, which consists of fixed, current, forecas-
ted and future decisions. The fixed decisions are implemented actions by the decision-maker, the
current decision represents the optimal policies taken in the current time period, while forecasted
decisions are decisions part of the subproblem but that are not implemented, but used for incorpor-
ation relevant information about the future for the current decisions. Future decisions are outside
of the planning horizon of the subproblems, however scheduling will be done in the corresponding
time periods when the rolling horizon approach progresses iteratively.

Subproblem

1

2

3
.
.
.

i

.

.

.

n - 4

n - 3

Time period 1 2 3 j n

Fixed decisions Current decisions

Forecasted decisions Future Decisions 

… …

Figure 2.1: Information flow in the rolling horizon approach.

The size of the set of forecasted decisions, referred to as the forecasting section, directly impacts
the amount of information available for determining the optimal scheduling policy in the current
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time period. By fine-tuning the length of the forecasting period, we can incorporate future-relevant
information for current decisions, while also adjusting the size of the set of current decisions to
accommodate the frequency of changes in forecasted data. Considering the perpetual nature of
solving interrelated subproblems, boundary conditions must be specified at the commencement
and endings of subproblems. Because of the perpetual nature of finding optimal decisions, bound-
ary conditions are specified at the beginning and the end of the subproblems. A mathematical
description of the rolling horizon algorithm is presented next.

The rolling horizon methodology comprises a sequence of interconnected optimization problems,
previously introduced as subproblems. Each subproblem, Pt, corresponds to a specific time period
t ∈ T. Here, T represents the complete set of time periods within the global planning horizon. The
global horizon is different from the subproblems’ planning horizon, and depends on how many time
periods we want to analyze, although in reality, only one subproblem is solved every 15 minutes. As
these optimization problems are interlinked, each subproblem Pt is associated with a set of initial
state-variables, denoted as Kt, defined over DK

t , a collection of interior state decision variables,

denoted as Xt, defined over DX
t , and a set of end-state variables, denoted as Jt, defined over DJ

t

(Falk and Løkka, 2022).

To establish the coupling between subproblem Pt and problem Pt+1, where t ∈ 1, . . . , |T| − 1, it is

assumed that DJ
t ∈ DK

t+1. The objective function of subproblem Pt, denoted as ft(Xt), is defined
such that the objective function value, ft : Xt → R, solely depends on the interior state variables.
The feasible region of a given subproblem is defined by gt(Kt,Xt,Jt) ≤ 0. As a result, the model
formulation of the subproblem is given in (2.15).

maximize ft(X)

subject to gt(KtXt,Jt) ≤ 0,

Kt ∈ DK
t ,

Xt ∈ DX
t ,

Jt ∈ D
J
t , (2.15)

The rolling horizon approach can then be defined with the help of a constant r indicating the
global planning horizon length that we want to solve for,

maximize

t+r∑
i=t

fi(Xi)

subject to gt(KtXt,Jt) ≤ 0,

Ki = Ji−1, i ∈ {t+ 1, . . . , t+ r}
Ki ∈ DK

i , i ∈ {t, . . . , t+ r}
Xi ∈ DX

i , i ∈ {t, . . . , t+ r}

Ji ∈ D
J
i , i ∈ {t, . . . , t+ r} (2.16)

2.3 Mathematical Modelling Techniques

Various mathematical techniques have been applied in this thesis. Some of the these are used to
produce forecasts directly, while others are a small part of a larger framework. The techniques
used in this thesis are introduced and briefly described in this section.
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2.3.1 Autoregressive Models

There are many tools and models that can be used to analyse data that evolves over time. Autore-
gressive (AR) models can be used to perform time series analysis and are used in several fields to
study time-evolving data sets. The model uses linear combinations of the p, usually referred to
as the number of lags, most recently recorded values (Cryer & Kellet, 1991). An AR(p) is given
by Equation (2.17) where Xt is the current value of the series ϕ1,ϕ2 and ϕp are the regression
parameters and et is white noise.

Xt =

p∑
i=1

ϕiXt−i + et = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + et (2.17)

AR models are relatively easy to implement and are often not computationally demanding. This
has made the method a popular tool to assess time series, but also to forecast future behaviour.
A way to simulate future behaviour is to randomly draw et from the standard normal distribution
and to create future values. Bootstrapping is a similar procedure where et is drawn from empirical
residuals instead.

2.3.2 Quantile Regression

Quantile regression is regression analysis method that is used to estimate conditional quantiles.
Regression analysis is used to establish a relationship between an outcome y and a variable x.
The study of a dataset with different quantiles, also called percentiles, allows a more complete
assessment of the entire distribution of the data (Koenker & Hallock, 2001). This can be partic-
ularly useful in situations where decision-makers must consider the entire probability distribution
of events, which is often the case for stochastic and chance constrained optimization problems.
Furthermore, quantile regression makes no assumption on the probability distribution of the data,
as it only uses empirical data to estimate quantiles. Quantile regression models can be formulated
as a minimization problem of residuals. Koenker and Hallock (2001) formulated the minimization
problem of residuals in a dataset of length n as shown in Equation (2.18), where ρθ is the loss
function for a given quantile θ and ξ (xi, β) is a parametric function dependent on x and estimator
β.

minimize
β ∈ R

n∑
t=1

ρθ (yt − ξ (xt, β)) (2.18)

The inclined absolute value function shown in Figure 2.2 is the loss function ρθ. The chosen quantile
θ acts as a weighting mechanism for the loss function. For instance, a high θ will penalize the
objective function in Equation (2.18) significantly when the residual yt − ξ (xt, β) is positive. The
quantile regression model will therefore adjust β to reduce the collective impact of positive residuals
on the objective function. Conversely, negative residual are highly penalized for low values of θ.
Finally, the optimization returns the regression estimator β for the θ-quantile. Quantile regression
and its role in this thesis is further described in Section 4.2.2.

𝜃 − 1 𝜃

𝜌!(𝑢)

Figure 2.2: Loss function in quantile regression models. Adapted from Koenker and Hallock (2001).
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2.3.3 Spline Basis Functions

Spline functions, or commonly referred to as splines, is an advanced mathematical tool used for
interpolation. (Lyche & Morken, 2008) describe splines as a set of polynomial curves used to
interpolate over a set of points. This can be useful is it is possible to a create smooth curves from
data points, in other words create continuous functions from data points. The polynomial curves
jointed to each other by knots, and both the number and position of knots can be determined
by the user. There is a variety of different types of spline functions, such as cubic splines and
natural cubic splines. Spline curves can be represented as a linear combination of basis splines,
also called B-splines (Lyche & Morken, 2008). Basis spline functions can be used in combination
with quantile regression as a way increase the accuracy of the quantile regression model. While
implementation of spline basis functions can be a complex and extensive procedure, packages with
spline tools are provided in several programming languages. Such packages have been used in this
thesis to generate the necessary spline basis functions.
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CHAPTER

THREE

PROBLEM DESCRIPTION

Large investments in offshore wind for the North Sea region are expected over the next decades.
However, Europe’s current power transmission grid is not dimensioned for the projected increase
in wind capacity. It is ambitious to believe that the future power electrical grid will be able to
withstand peak power production from the available variable renewable energy sources. Offshore
hydrogen production presents itself as both an option and potentially a prerequisite to offload the
power grid and limit curtailment. It could replace the need for a one-to-one ratio between installed
power generation capacity and transmission capacity from offshore wind farms to onshore facilities.
The designed energy system in this work is located at approximately 57°00’00.0”N 4°00’00.0”E,
which places it centrally in the North Sea.

This thesis continues the work presented by Falk and Hansen (2022) with a study of a stochastic
short-term optimization model of an offshore energy system with offshore hydrogen production.
Deterministic formulation and perfect foresight of wind and power prices limits the practical use of
the optimization problem presented by Falk and Hansen (2022). The energy system is inherently
stochastic due to uncertain power production and power prices, and the study of the energy system
under uncertainty can provide valuable insights in system behaviour. While stochastic short-
term optimization could provide short-term production plans and potentially increase operational
profitability, it could also increase the total value of similar renewable energy projects and assist
in the decision-making process of investments in the energy sector. The next two sections explain
more in detail about the objective of the optimization procedure and the technical description of the
energy system. The stochastic short-term optimization problem optimization model is described
in Section 3.1. The main components of the energy system are presented in Section 3.2.

3.1 Optimization Model Objective and Decision-making

The objective of the proposed optimization model is to maximize revenues from operating the
energy system. By engaging in power markets and selling hydrogen, the objective of maximizing
overall revenue per unit of available energy is achieved throughout the planning horizon while
fulfilling power purchasing agreements. Revenues from power sales are generated by participating
in the day-ahead and intraday market. The day-ahead market is the central scheduling mechanism
for power exchanges and the intraday market provides balancing of the market participant’s net
position up until the delivery hour. The assumed income generation from hydrogen sales is derived
from long-term Hydrogen Purchase Agreements (HPA), wherein the market participant has secured
a fixed market price per kilogram of hydrogen.

The production plan for the upcoming time periods is optimized with respect to future power
and hydrogen prices, along with the forecasted availability of wind energy. In order to optimize
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decisions-making and avoid myopic decisions it is imperative to have information about future wind
conditions. The unpredictable nature of future wind speed forecasts introduces uncertainty to the
expected electrical power generation from the wind farm, making the future realized production
exhibit a stochastic behavior. Uncertainty is therefore modelled up until the time instant of
delivery. The stochasticity of wind power production is accounted for by a scenario generation
approach. Information from the previous optimization problem is transferred to the subsequent
optimization problem to determine future optimal production decisions. The information transfer
includes pipeline storage level, operating states of the electrolyzers and battery energy storage in
the current time period, which serve as initial conditions for the next optimization problem. Figure
3.1 provides a general description of the decision process in the optimization model.

The market clearing process, which occurs several hours before delivery, combined with the uncer-
tainty of future power generation, can create situations where there is either a net energy surplus
or a net energy deficit in future time periods with power market obligations, also referred to as
power purchasing agreements. The day-ahead and intraday markets are cleared at different times,
which implies that some time periods relies on forecasted market prices. As a price taker in the day
ahead market, all offers on production are accepted to the day-ahead market at a forecasted price
through self-bidding. The day-ahead market auction results are announced to the stakeholders at
13:00 Central European Time, for which all day ahead commitments for the next day’s hours are
decided. When day ahead commitments are decided, the market participant is obliged by contract
to deliver the production volumes. If the market participant cannot meet its obligation in the day
ahead market, a penalty fee per unit of energy is incurred. Given the length of the look-ahead
horizon, certain optimization problems may involve forecasted day-ahead commitments, whereas
there are always existing day-ahead commitments for the remainder of the current day.

System response to energy surplus and deficit is affected by market regulations. Intraday commit-
ments are contracted at the time instant right before the delivery hour. Thus, the model cannot
make additional intraday market commitments in the time periods that are within the current de-
livery hour, which implies that the commitments are uncertain. This implies that intraday market
participation must be decided at a time that precedes the time period in the delivery hour. For
surplus energy cases, where more energy is available than what is committed and contracted in
the day-ahead market, it is possible to dedicate the excess electrical energy to increase hydrogen
production and charge batteries if the capacities allow it. Conversely, in cases of energy deficit the
model can reduce hydrogen production, discharge batteries, active fuel cells and curtail the surplus
power. For time periods not within the current delivery hour, the model has the opportunity to
make commitments in the intraday market for time periods in the upcoming delivery hour, and
plan intraday operations in time periods with day-ahead obligations. In cases with energy surplus,
the model can enrich the decision-making process with intraday day sale commitments in addition
to the aforementioned mechanisms to avoid energy curtailment. Likewise, power purchase agree-
ments can be made in the intraday market in cases of energy deficit in order to avoid a breach of
contract for day-ahead obligations. Similar to day-ahead commitments, the intraday commitments
are non-reversible and deviations from intraday purchasing agreements are penalized. In order to
control the potential cost of unmet production levels, the model can adjust hydrogen production
and activate system components in the manner described above to account for deviations in both
day-ahead and intraday obligations.
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Figure 3.1: General description of optimization procedure

3.2 Energy System Components

The energy system disposes power from an offshore wind farm, and optimal usage of the energy
resources is decided through the balancing of power market participation and hydrogen production.
The energy system is described in Figure 3.2. The allocation of energy dedicated to power and
hydrogen sales is determined in an electricity control center, which distributes electrical energy to
either the transmission cable or an offshore platform with the necessary components to produce
renewable hydrogen. Power grid connection via a unidirectional transmission cable between the
offshore wind farm couples the energy system to the power markets. Green hydrogen can only be
produced from renewable energy sources, thus the hydrogen can only be produced with electricity
from the offshore wind farm and not from electricity from the grid. The key processes for power-
to-hydrogen conversion in the energy system are sea water desalination, electrolysis, compression
and storage, while fuel cell allows hydrogen-to-power conversion. Hydrogen is transported to the
mainland hydrogen markets through a subsea pipeline.

Electrolysis converts water molecules into hydrogen gas, and electrolyzers are the most power con-
suming components in hydrogen production. Energy consumption per kg of hydrogen is described
by a non-constant Specific Energy Consumption (SEC). A detailed modelling of of electrolyzer
SEC can provide a more accurate description of overall system behaviour of real-time operations.
Electrolyzers can transition from an idle (no production) to a producing state, vice versa. A
transition from idle to producing halves production capacity for the time period of the transition.
When in the producing state, electrolyzers can operate between a lower and upper capacity bound.
Electrolyzers are aggregated into larger sets instead of individual description, and this set reduces
in size for a given planning length to decrease the size of the problem.

The chosen state-of-the-art electrolyzer technology can only operate on high quality water, and
not saline water in order to perform electrolysis. Desalination is the process of removing mineral
solvents from sea water, and energy is required to pretreat sea water for electrolysis in the desalina-
tion process. Furthermore, compression of the outgoing hydrogen from the electrolyzers is required
for storage. Compression, similarly to desalination, can be a complex process to model. However,
compression and desalination SEC is marginal compared to electrolysis. Therefore, compression
and desalination SEC is aggregated into a single constant parameter representing these auxiliary
processes, as highly accurate behaviour modelling would have minimal impact on the accuracy on
overall system behaviour. Furthermore, compression and desalination do not affect the bounds
of hydrogen production capacity as these two processes are expected to have capacity limits well
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above those of electrolysis in a real-life application. Compressed hydrogen is stored and transpor-
ted via a pipeline. Compression at the production site and the inlet of the pipeline is needed to
create a directional flow and overcome friction losses in the pipeline. A pipeline is considered the
most viable option as it serves both as a storage and transportation device. Pipeline leakage is
described by a loss coefficient. The pipeline also has a discharge capacity and storage capacity, in
addition to a predefined terminal value for the last time period in the planning horizon.

Batteries and fuel cells are added to the energy system to provide flexibility and higher respons-
iveness when faced with fluctuations in wind power production. Battery charge and discharge are
bounded by the installed capacity. A battery can either charge, discharge or remain unused in
a given time period. The net change in the state of charge is contributed to the overall energy
balance of the energy system. There is a loss associated with charging the batteries. Fuel cells
converts hydrogen to electricity, which means that produced hydrogen can be reconverted to elec-
tricity to fulfill power market contracts. The energy output from hydrogen combustion is given by
a constant SEC. There is an upper capacity limit on mass input to the fuel cells.

Figure 3.2: Schematic of the proposed energy system.
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CHAPTER

FOUR

LITERATURE REVIEW

This chapters presents literature on offshore wind power generation and stochastic short-term op-
timization of energy systems with offshore hydrogen production. Substantial parts of the literature
review stem from the research efforts in Falk and Hansen (2022) and have been synthesized in this
thesis. Falk and Hansen (2022) used digital libraries and search engines such as Scopus, Google
Scholar, Research Gate and Science Direct in combination with strategic strategic keywords and
search filters to ascertain relevant literature. Rapid development in both research and commercial-
ization of hydrogen technology led to the prioritization of more recent literature. The literature
review also consists of consultations with industry experts, especially during the fall of 2022, and
academic researchers. This has been an essential part of the literature review process in order
to arrive at a sensible design for the offshore energy system studied in this thesis. The consulta-
tions has given the authors access to experience and knowledge that can be arduous to attain
through publicly accessible channels. Research literature may promote an optimistic perspective
on the availability and readiness of newer technology, contrary to companies whom seek reliable
and proven solutions. In cases of contradictions, expert opinions have been given greater emphasis
than research literature. The dynamic process of matching research literature and expert opinions
made the literature review an iterative process in order to attain a more holistic and realistic
system design.

The work related to short-term optimization in energy systems with hydrogen production presented
in Falk and Hansen (2022), demonstrated that the studied problem spanned over several different
fields of research. Offshore hydrogen production is mainly studied from a techno-economic view
to evaluate profitability and investment decisions as well as technical feasibility. The operational
aspect of short-term optimization is affiliated with operations research. Section 4.1 covers general
literature related to short-term optimization of energy systems with offshore hydrogen production.
Section 4.2 presents literature on the stochasticity of wind speed and power generation. This
section aims to further investigate how wind power stochasticity can be integrated to the optimiz-
ation problem presented in Falk and Hansen (2022). The main components of the energy system
presented in Chapter 3 by Falk and Hansen (2022) are reviewed Section 4.3. Literature on power
markets and electricity markets and electricity price forecasting is presented in Section 4.4. The
literature review is presented as a synthesis in Section 4.5, followed by an overview on the research
contribution of this thesis in Section 4.6.
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4.1 Short-term Optimization of Offshore Hydrogen Produc-
tion with Stochastic Power Generation Literature

This section provides a study of relevant literature related to short-term optimization of offshore hy-
drogen production with stochastic power generation. The search procedure is described in Section
4.1.1. In Section 4.1.2, offshore and onshore hydrogen production is studied, and the reviewed art-
icles covers both both short-term optimization and techno-economic assessments of energy systems
with hydrogen production. Section 4.1.3 presents a summary of relevant literature for short-term
optimization of hydrogen production. The previous research in this field is highlighted and the
thesis is positioned in the existing literature. Section 4.1.4 gives a further description of hydrogen
production and stochastic power production.

4.1.1 Search Procedure

The strategy employed to gather and identify relevant literature on offshore energy systems with
hydrogen production was a combination of approaches. It involved conducting a structured search
in Scopus, along with a targeted keyword search in ScienceDirect and ResearchGate. The initial
search in Scopus using the keywords “offshore,” “energy,” “system,” “hydrogen,” and “produc-
tion” yielded a total of 179 papers. To refine the search, filters were applied, including limiting the
Subject Area to “Energy” (resulting in 113 papers), Document Type to “Articles” (66 papers),
and Language to “English.” This filtering process yielded 64 articles that met the search criteria.
Considering the importance of recent works, the search was further narrowed down to articles pub-
lished in 2021 and 2022, resulting in 35 articles. A preliminary evaluation of titles and abstracts
led to the selection of the papers presented in the next section for further investigation. Addi-
tionally, another search in Scopus using the keywords “offshore” and “electrolysis” generated 245
papers. Applying filters for Subject Area (“Energy”), Document Type (“Articles”), and Language
(“English”) narrowed down the results to 133, 75, and 68 papers, respectively. Finally, focusing on
articles published between 2021 and 2022, a total of 31 papers were identified. After a brief review
of titles and abstracts, 6 articles were selected for further investigation. Furthermore, our review
was supplemented by consulting papers from key institutions and other relevant libraries.

4.1.2 Review of Offshore Energy Systems with Hydrogen Production
Literature

The cost competitiveness of hydrogen production has recently drawn attention in academic re-
search. The cost of fossil-based hydrogen is currently estimated around 2 EUR/kg and renewable
hydrogen is reported to achieve 2.5 - 5.5 EUR/kg, although this finding is not consistent for all
system design configurations. However, technology for renewable hydrogen production is rapidly
maturing and will soon reach economies of scale as renewable hydrogen is predicted to outperform
fossil-based hydrogen in 2030. Several authors have made economic-assessments of investment
cycles in renewable hydrogen production systems, although not necessarily in an offshore setting.
One of the studied articles (Lucas et al., 2022) addresses the profitability of hydrogen with power
market participation for two different wind farm capacities, namely 25.2 and 150 MW. The elec-
trolyzers up-time is restricted to either daily or nightly operation, or both. When not profiting
from electricity sales, hydrogen production becomes competitive to power sale at electricity prices
below 31 EUR/MWh for the 150 MW farm under the second scenario. The authors found that
high electricity prices and low wind power capacities turns out as infeasible in most cases, and that
income from commercial sales of oxygen turns out significant.

Dinh et al. (2021) developed an analytical model for assessing the economic viability of hydrogen
production from offshore wind farms using Net Present Value (NPV) and Discounted Payback
Period (DPP). A case study of a 101.3 MW wind farm in the East Coast of Ireland is conducted,
considering Proton Exchange Membrane (PEM) electrolysers and underground hydrogen storage.
The model incorporates hourly calculations for wind power output, electrolysis plant size, and
hydrogen production based on varying wind speeds, and is integrated with potential future hy-
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drogen supply chains, in order to take advantage of economies of scale during the construction,
maintenance, and operation phases. Their findings suggest that offshore hydrogen production is
financially viable only if hydrogen prices exceed 5 EUR/kg. Moreover, the authors identified the
optimal investment level in underground storage capacity to be between 2 and 7 days.

There is a growing interest in determining the most profitable offshore hydrogen production layouts,
leading to research exploring the economic feasibility of different design proposals for power-to-
hydrogen configurations. This includes analyzing the placement of electrolyzers on-shore, on energy
hubs/islands, or integrated into towers, as well as studying energy flows in electrical networks in
these scenarios. Jang et al. (2022) evaluate the NPV and conducts sensitivity and probabilistic
analyses to evaluate the economic feasibility of three distinct arrangements for hydrogen produc-
tion; distributed production with stand-alone electrolyzers positioned next to turbine towers with
pipeline network transportation, centralized production on offshore platforms in vicinity of the
turbines, and onshore production supplied from an offshore wind farm. Based on a 12-hour daily
uptime on production, the net present value analysis demonstrates that at the lowest hydrogen
price of 13 EUR/kg none of the arrangements are profitable. It is only at a hydrogen price of 14
EUR/kg that the distributed and centralized cases begin to generate profits, whereas the onshore
case requires a higher hydrogen price than 16 EUR/kg to turn profitable. When there is no access
to power markets, the distributed, centralized, and onshore arrangements have probabilities of
80.3%, 71.5%, and 34.35%, respectively, of generating a positive net present value when selling
hydrogen at 14 EUR/kg.

In the same direction, Luo et al. (2022) conducted a techno-economic analysis of hydrogen pro-
duction with slight modifications, but still similar to that of Jang et al. (2022). In the study,
the distributed configuration involves sourcing incoming feed water from a pipeline connected to
the mainland, and the centralized design transports liquid hydrogen in vessels instead of gas in a
pipeline. In their research, the performance of alkaline electrolyzers, Proton Exchange Membrane
Electrolyzers (PEMEL), and Solid Oxide Electrolysis Cells (SOEC) was compared, and the results
highlighted the promising potential of PEMEL in offshore hydrogen production, given the recent
technological improvement in electrolyzer components. The paper further explores transportation
methods and proposes the use of submarine pipelines and vessels for liquid hydrogen transport.
Taking into consideration the commercial sale of oxygen, the economic potential increases, aligning
with the findings of Lucas et al. (2022). Their preliminary estimation does not however consider
transportation and storage costs. Moreover, the authors propose that selling hydrogen can be a
competitive choice compared to selling electricity without subsidies.

Despite the fact that the cost of transportation assets greatly affects the Levelized Cost of Hydro-
gen (LCOH) (IEA, 2019), previous studies, including those reviewed in this paper, did not explore
the costs of storage and transportation. However, Franco et al. (2021) addressed this issue in
a comprehensive techno-economic evaluation for hydrogen offloading pathways in offshore hydro-
gen production platforms. Investigated offloading paths included hydrogen gas, liquid hydrogen,
ammonia, and liquid organic hydrogen carriers, for either ship or pipeline transportation, along
with a baseline case of onshore hydrogen production. To assess the LCOH, the authors outlined
two scenarios. The first scenario considered a modest reduction in investment costs and no ma-
jor breakthroughs in technology. In contrast, the second scenario adopted an optimistic outlook
on technology progression with implemented support schemes expected from European hydrogen
strategies. Out of all the explored pathways the transportation of hydrogen through pipelines
emerges as the most favorable choice. In the baseline scenario, it yields a levelized cost of hy-
drogen amounting to 5.35 EUR/kg, but with the effective implementation of EU support and the
achievement of set targets, this cost has the potential to decrease significantly to 2.17 EUR/kg.
Unless the distances exceed 150-250 km, the transportation of hydrogen carriers by vessels does not
surpass the use of pipelines in terms of competitiveness. Among the studied vessel transportation
pathways, the process of liquefying hydrogen proves to be the most cost-effective with a cost of
2.94 EUR/kgH2 in the best-case scenario. One of the notable conclusions drawn from this study
similar to Lucas et al. (2022), is that the commercialization of oxygen can substantially enhance
the economic viability of hydrogen production, even within the lowest price range.

Bonacina et al. (2022) explored offshore liquid hydrogen production for ship refueling as a case
study on refueling stations in the Mediterranean Sea. The pre-feasibility study aims to identify the
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optimal electrolysis capacity that achieves minimum payback times, excluding transportation costs
and power market interactions. The study utilized hourly deterministic wind profiles with cut-in
and cut-off wind speeds, obtained from a meteorological database and transformed them using a
wind turbine power curve. On the platform, a PEM electrolyzer, a water demineralization unit,
and a liquefaction plant for compression and storage are incorporated. The analysis investigates
the dependencies of wind farm and hydrogen production plant capacities on the payback time and
levelized cost of hydrogen, revealing key insights into their relationships. The research findings
demonstrate a clear inverse relationship between wind capacities and the LCOH. By analyzing
various simulations across a wide range of wind capacities, the authors consistently observed that
the minimum LCOH occurred when electrolyzer capacities were set between 80-90 % of the total
installed wind capacity.

Jiang et al. (2021) conducted a study to determine the optimal PEM electrolyzer capacity for an
offshore energy system with hydrogen production. The authors considered several factors, including
expected costs from electrolyzer replacements with an advanced electrolyzer model that considers
ageing, probabilistic hydrogen prices, and wind forecasts. Notably, to avoid distortions in their
NPV-assessments and overly optimistic results, the authors accounted for electrolyzer degradation
from operations. Investment costs of submarine cables, electrolyzers, storage and transport vessels
have been accounted for, including operational and maintenance costs. Information gap decision
theory is adopted together with a chance-constraint formulation to account for irregular hydrogen
prices, and solved using particle swarm optimization. When applied to a case study of a 405 MW
wind farm, the optimal electrolyzer capacity was found to be 336 MW, which aligns with the
conclusions of Bonacina et al. (2022). The authors also observed that the NPV of offshore projects
with hydrogen production are very sensitive to fluctuations in hydrogen prices. A minor deviation
in the price could result in changes in the NPV by 10 – 40 %.

A comparison between SOEC and PEM electrolyzers is also conducted by Meier (2014), although
under different circumstances. As the North Sea is widely regarded as the focal point of offshore
hydrogen production in Europe, Meier (2014) evaluated Norway’s role to capitalize on the country’s
offshore wind resource potentials, and leverage its emission reduction targets by producing hydro-
gen for the transportation sector. The case study indicates that the current costs of large-scale
production and the comparison of hydrogen with prevailing fuel prices render offshore hydrogen
production unprofitable. Neglecting transportation costs it is still not economically feasible for the
system. The production costs of hydrogen using SOEC and PEM technologies coupled to a 100 mW
wind farm were investigated under two different scenarios depicting a worst and best case scenario
for wind power availability. In the conservative estimate, the annual wind power production is 258
GWh/year. The optimistic scenario assumes 404 GWh of production annually. This corresponds
to hydrogen production amounts of 1530 and 8020 tons/year, respectively. Profitability is strongly
influenced by several factors and design parameters should be carefully evaluated for large-scale
production. Proves as concept development assistance and further research on this topic. When
evaluating its cost-competitiveness, this study demonstrated that the current technology and mar-
ket fuel prices on hydrogen substitutes do not achieve profitability, yet. The prices of hydrogen
varied between 5.20 EUR/kg and 106.10 EUR/kg.

4.1.3 Review of Short-term Optimization of Hydrogen Production Lit-
erature

While the initial articles have extensively investigated system design parameters, which has been
critical in order to develop an integrated system and provide a comprehensive understanding of
system behavior, existing literature have primarily focused on economic assessments. Some of the
reviewed articles so far have employed simplified representations of system components and wind
power generation over the assessment period, which allows for aggregating system behavior over
long horizons, usually spanning several years and without consideration for power market com-
mitments in cases where power markets are modeled. Consequently, they do not propose specific
solutions for short-term planning. In the following paragraphs, we will explore another segment of
the literature comprising articles that have developed optimization models and commitment prob-
lems, and later developed suitable energy system planning algorithms to solve them. To provide
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an overview of this section of the literature, the subsequent paragraphs delve into studies that
specifically focus on relatively short-term models of energy systems with hydrogen production.

A Model Predictive Control (MPC) scheme was developed by Abdelghany et al. (2021) to op-
timize the switching operations of electrolyzers and fuel cells in grid-connected wind farms for
non-renewable hydrogen production. Their model minimizes switching and cyclic degradation
while meeting hydrogen demand and maximizing revenues from hydrogen and power sales. To ac-
curately capture the system dynamics, a mixed-logic dynamic framework was employed to model
electrolyzers and fuel cells, enabling different operational modes such as on, off, and standby. The
focus was on minimizing unnecessary commutation cycles and preserving the electrolyzers’ integ-
rity with a higher level of accuracy compared to alternative methods. This study was conducted
as part of the Haeolus project (Andrenacci et al., n.d.). By adopting a receding horizon strategy
to update the wind forecast, an optimal control sequence for the electrolyzers was determined.
The optimization problem was effectively solved within a 40-second time frame for each time step.
However, the model is solved deterministic with wind power production forecasts updated for every
time step, and without electricity market obligations, and a single 3 MW unit electrolyzer. Shortly
after, the authors expanded their model (Abdelghany et al., 2022) by incorporating both low-level
and high-level predictive control, utilizing shorter and longer timescales, respectively, while main-
taining the same underlying logic. This enhancement resulted in a notable reduction in operational
costs by 5%. The authors assert that their model can be applied to any hydrogen storage facility,
provided that meeting the hydrogen demand remains the utmost priority.

Carr et al. (2016) conducted an optimization study on hydrogen refueling stations for vehicles
in the UK, employing a rolling horizon approach. The switching policies of an electrolyzer with
a capacity rating of 270 kW introduced a non-linear mixed integer programming model. The
authors assumed perfect predictions for wind power generation, electricity prices, and hydrogen
demand every half hour for the next 24 hours, which constituted the look-ahead period for each
optimization routine. The overall planning horizon spanned 30 days, resulting in the solution of
1440 optimization problems using nonlinear solvers such as BONMIN and SCIP. To achieve their
objectives, a multi-criteria objective function was developed to simultaneously maximize income,
minimize costs from electricity sales and purchases, and minimize unmet hydrogen demand.

Grüger et al. (2019) developed an intelligent operating strategy of electrolyzers to optimize pro-
duction costs and wind power utilization. Non-linear formulations of electrolyzer operation, com-
pression and storage are modeled with piece-wise linear functions. Their model includes imperfect
wind forecasts and intraday market access, where energy can be traded at an average price. How-
ever, contract fulfillment is not considered. A myopic optimization-simulation model is proposed
that does not account for flexibility in hydrogen storage. Instead, their model investigates oper-
ational decisions in the current time step using heuristics. The implemented decisions are then
simulated for 24 hours with a quarterly-hour resolution. The authors report that production costs
are reduced by 9 percent with their approach and that wind energy utilization is increased by
19 percent. However, the study concluded that production was not profitable, as indicated by a
LCOH of 16.125 EUR/kg.

Flamm et al. (2021) solved a deterministic receding horizon planning problem, with a focus on
operational decisions made on a 1-minute time scale and a 4-hour look-ahead horizon. Their
approach involved a two-stage strategy for modeling the operation of a single 100 kW unit PEM
electrolyzer. In the first stage, an exact nonlinear representation was used to accurately model the
electrolyzer’s behavior, while a piece-wise linear approximation was employed for the subsequent
stages. The electrolyzer model incorporated a detailed low-level control mechanism, enabling
precise modeling of individual components. The study took into account various factors, including
energy conversion efficiencies, thermal dynamics, and overload dynamics within the electrolyzer
system. Through a high-level control formulation, the optimal power supply to the electrolyzer was
computed. Hydrogen produced by the electrolyzer was stored in tanks, and power was sourced
from both photovoltaic sources and the power grid. The problem was solved using a nonlinear
solver, with a solution time of less than 1 second. However, it is important to note that the study
did not consider the dynamics associated with startup and shutdown processes.

High wind power potentials are often located far from load centers. However, investments in grid
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infrastructure are necessary in areas with limited remaining available capacity to accommodate
additional power injections. Bødal and Korp̊as (2018) investigated the utilization of hydrogen
production from stochastic wind power generation and hydro power in constrained power grids.
They explore the role of hydrogen storage in supporting economically infeasible wind power projects
that require significant power grid investments. The study employs a MILP model to optimize
hydrogen dispatch using wind and hydro power within a defined geographical region in the north
of Norway. A rolling horizon approach is adopted, evaluating operational decisions across 120
scenarios. The model penalizes power imports required to meet hydrogen demand and assesses the
impact of uncertain wind power forecasts by comparing stochastic and deterministic solutions. The
results demonstrate a 5.6% difference between the SS and the EEV, as well as a 37.6% difference
between the PI solution and SS. The authors also investigate the effect of varying the number of
scenarios and conclude the computational complexity increases without significant benefits with
more than 27 scenarios.

The optimal control strategies for energy systems incorporating hydrogen storage and wind power
generation were investigated by Schrotenboer et al. (2022). The researchers examined different
power purchase agreement obligations in various scenarios, including unrestricted hydrogen gas
sales and fixed demand policies with contractual obligations. Using backward dynamic program-
ming, they solved a stochastic Markov decision process to determine an optimal conversion policy
that maximizes profits from electricity and hydrogen operations. Their model includes operational
decisions every day for the course of an entire year. A 4.5 MW wind turbine and 5 MW electrolyzer
is modeled in their base case and the results demonstrated potential operational revenue gains of
up to 51% through the incorporation of hydrogen storage units in renewable energy systems.
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Author Energy Source 
Water 

Purification Electrolyzis
Compression and 

Storage 
Battery Energy 

Storage Fuel Cell 
Hydrogen 

Transportation

Lucas et al. (2021) Offshore Wind Farm 
Electrolyser 
Integrated

PEM Compressed Gas Pipeline 

Dinh et al.(2020) Offshore Wind Farm Unspecified PEM Compressed Gas Vessel

Jang et al. (2022) Offshore Wind Farm PEM Compressed Gas Pipeline 

Luo et al. (2022) Offshore Wind Farm 
Alkaline, PEM, 

SOEC

Franco et al. (2021) Offshore Wind Farm Unspecified PEM Multiple Technologies 
Multiple 

Technologies 

Bonacina et al. (2021) Offshore Wind Farm RO PEM Liquid Hydrogen Vessel

Jiang et al. (2021) Offshore Wind Farm PEM Compressed Gas Vessel 

Meier (2014) Offshore Wind Farm MSF PEM, SOEC Compressed Gas Pipeline 

Abdelghany et al. (2021) Onshore Wind Farm Unspecified Compressed Gas Yes

Carr et al. (2016) Onshore Wind Farm PEM Compressed Gas

Gruger et al. (2018 Onshore Wind Farm Alkaline Compressed Gas 

Flamm et al. (2020) Photovoltaic PEM Compressed Gas

Bødal & Korpås (2018)
Offshore Wind 
Farm, Hydro

Unspecified Compressed Gas

Schrotenboer et al. (2022) Offshore Wind Farm  Unspecified Compressed Gas Yes 

This work Offshore Wind Farm MSF PEM Compressed Gas Lithium-ion Yes Pipeline 

Figure 4.1: Comparison of energy system design to other research articles

Author 
Hydrogen 
Demand Electricity Markets

Power Purchase 
Agreements 

Deterministic vs. 
Stochastic

Linear vs. Non-
Linear Modeling Planning Horizon

Time 
Granularity Planning Model Model Type Solution Approach

Lucas et al. (2021)
Unspecified, 

Certain Prices
Deterministic Years Daily Techno-economic Assessment Economic Model

Dinh et al.(2020) Years Techno-economic Assessment Economic Model

Jang et al. (2022) Years Yearly Techno-economic Assessment Economic Model

Luo et al. (2022) Unspecified Techno-economic Assessment Economic Model

Franco et al. (2021) Years Yearly Techno-economic Assessment Economic Model

Bonacina et al. (2021) Yes Deterministic Non-linear Yearly Hourly Techno-economic Assessment Economic Model

Jiang et al. (2021) Stochastic Non-linear Years 1 Hour Techno-economic Assessment 
Chance Constrained 

Programming, Information 
Gap Theory

Particle Swarm 
Optimization With 

Stochastic Simulation

Meier (2014) Deterministic Years Techno-economic Assessment Economic Model

Abdelghany et al. (2021) Yes
Unspecified, 

Certain Prices
Deterministc Linear 1 Day Hourly Operational Planning

Multi-level model 
predictive control

Receding Horizon, 
Simulation

Carr et al. (2016) Yes
Unspecified 

Certain Prices
Non-linear 

24 Hour Forecast, 
30 Days Planning

30 Min Operational Planning
Multi-Criteria 
Optimization 

Rolling Horizon

Gruger et al. (2018 Yes
Intraday, 

Uncertain Prices 
Stochastic Linear 

24 Hour Forecast, 1 
Year Simulation

15 Min Operational Planning MILP Heuristics, Simulation 

Flamm et al. (2020) Yes
Intraday,

Certain Prices
Deterministic Linear 4 Hour Forecast 1 Min Operational Planning MILP Receeding Horizon

Bødal & Korpås (2018) Yes
Unspecified, 

Certain Prices
Stochastic Linear 1 Day Hourly Operational Planning MILP

Rolling Horizion, 
Simulation

Schrotenboer et al. (2022) Yes
Intraday

Uncertain Prices
Yes Stochastic Non-linear Monthly, Yearly Hourly, Daily Tactical Planning Markov Decision Process

Backwards Dynamic 
Programming 

This work
Day-ahead, 

Intraday, Uncertain 
Prices

Yes Stochastic Linear
36h Forecast, 36 
Hours Planning

15 Min Operational Planning MILP Rolling Horizon

Figure 4.2: Comparison of modeling aspects and solution techniques to other research articles
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4.1.4 Hydrogen Production and Stochastic Power Generation Literature

From the 15 articles that were thoroughly studied in the master’s project only a few included
stochastic modelling. Jiang et al. (2021) used the Weibull distribution to account for probabilistic
wind power production. However, it appears that scenarios have not been used to account for
stochastic wind power production, but that the Weibull distribution has been used to generate
data instead of creating possible future scenarios. Schrotenboer et al. (2022) also used the Weibull
distribution, but similarly to the previous article did not use the distribution to generate forecasts
or future scenarios but rather to generate data for the optimization problem’s current periods.
Thus, their model does not take into account future development of wind speeds. Also, the time
step in the article was an entire day, not a quarter of an hour. Grüger et al. (2019) used historical
data as well as imperfect forecasts from a real wind farm for their simulation model, but have not
given a description as to how the inherent stochasticity of wind power has been accounted for in
the imperfect forecasts.

Zhang et al. (2019) studied power-to-hydrogen-to-power versus lithium batteries for reduction in
imbalance costs for grid-connected wind farms. The authors quantified wind power stochasti-
city with probability density functions of wind forecasting error. The statistical power-generation
distribution is coupled together with installed capacities as to maximize NPV for a range of un-
certain parameters described through a scenario sampling method and for statistical distributions
of electricity.

Bødal and Korp̊as (2018) generated wind scenarios with the use of meteorological weather forecasts
and historic wind power production. Future scenarios were sampled from a quantile forecast
according to the method presented by Pinson et al. (2009). The quantile forecast was found
through a local quantile regression algorithm, a method presented by Bremnes (2006). The two
last-mentioned works were closely related to optimize operations of wind power farms for profit
maximization of intermittent power production and power markets. Thus, it is natural to study
how this research field has dealt with wind power forecasting and how this can be adopted into
the model of this thesis.

4.2 Wind Power Stochasticity Literature

Stochastic wind power production is arguably the single most important contributor for the
stochasticity of the optimization problem. The path from historical wind data and wind scen-
arios often consists of several steps. This section highlights the key steps made in this thesis in
order to generate wind scenarios for the studied optimization problem. The search procedure to
find literature on wind forecasting and scenario generation is described in Section 4.2.1. Forecasting
methods for wind power production are reviewed in Section 4.2.2.

4.2.1 Search Procedure

There are mainly two types of research articles that have been reviewed. The first type is articles
that focus on stochastic short-term optimization of hydrogen production, where the stochasticity
related to variable wind power has been dealt with. Such articles are relatively close to the core of
this thesis and have been studied in Section 4.1.3. The second type of articles are those where the
main focus is on forecasting and/or scenario generation, both for wind power specifically and in
more general terms. These articles are often related to optimization of power systems with wind
power production. The search procedure has consisted of several steps. As a first step, articles
on short-term optimization of hydrogen production were reviewed in order to study the method
chosen by other authors within the field of operation research. The second step consisted of a
strategic search on Google Scholar on forecasting methods for wind.
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4.2.2 Review of Wind Power Forecasting and Stochasticity Literature

The path from historical wind data, as previously mentioned, to wind scenarios can be a process
that consists of several steps. This process naturally depends on several factors. One important
factor is to what extent the user has available data. The very least the user must have is historical
data but sometimes the user has forecasts, as seen in Section 4.1.4. A user that does not have
forecasts must either acquire it from a third-party or generate it themselves. Another important
factor is if it suffices with a single forecast, often referred to as a point forecast, or if several
forecasts depicting multiple possible values is needed for the optimization problem. For instance,
for more robust optimization problems it could be necessary with a 90 % percentile forecast in
order to get the desired robustness in the solution. The next important factor is if the user wants to
generate scenarios instead of having forecasts in order to simulate more realistic power production
outcomes. This section reviews various literature on these steps.

Deterministic Forecasting

There exists numerous methods to create deterministic forecasts, often referred to as point fore-
casts. Point forecasts only provide the user with one value for each time period and does not
necessarily provide the user with information about the associated error. Hanifi et al. (2020) per-
formed a detailed review of the state-of-the-art forecasting methods of wind power. There are three
main categories of wind forecasting methods: physical, statistical and hybrid methods. Physical
methods such as meteorological forecasts have been mostly used in the past, but in recent years
the use of time-series and nonlinear machine learning models has increased. Hanifi et al. (2020)
report that physical methods require more computational resources compared statistical methods.
Physical methods are most suitable for medium (6 to 24 hours) to long-term (24 hours to a month)
forecasting. Statistical methods such as time-series and artificial intelligence models have a better
performance on short (0.5 to 6 hours) and medium-term forecasts. Furthermore, hybrid models
are encouraged as to capitalize on the different strengths of the methods in order to achieve the
best possible forecasts.

This thesis considers a 36-hour time horizon, and Hanifi et al. (2020) recommends the use of
hybrid methods for this forecasting length. However, more complex forecasting method could
cause an increase in computational time and decrease the time budget to find optimal solutions
for optimization problems. Thus, the choice of forecasting methods could incur an overall loss
to the optimization problem as optimal solutions are potentially not found. Hanifi et al. (2020)
also emphasize the need to develop forecasting methods specifically for offshore wind prediction.
This is due to different weather and operating conditions for onshore and offshore wind farms.
Moreover, the main goal of the thesis is to short-term optimize production and not produce the
best possible wind forecasts. Time series models are generally easier to implement compared to
nonlinear machine learning models and have a lower computational burden, and can be used in
the short-term forecasting to bridge the informational voids despite ignoring nonlinear trends in
wind speed series (Yang et al., 2021).

Uncertainty Forecasting

Yang et al. (2021) studied uncertainty forecasting in their review of wind forecasting technologies.
The authors divided uncertainty forecasting into risk index forecasting, probabilistic forecasting
and scenario forecasting. Probabilistic forecasting consists of parametric and non-parametric meth-
ods. The former assumes a probability distribution for the studied variable, while the latter makes
no assumptions on distributions and therefore based on empirical observations in its entirety. Scen-
ario forecasting can convey information about forecasting uncertainty through the description of
an ensemble of possible multi-period wind power realizations. The optimization problem in this
thesis is formulated as a MILP accompanied by a scenario optimization approach in order to capture
stochasticity. Scenario forecasting presents itself as the most viable option to keep the optimization
problem linearly formulated. Yang et al. (2021) provide several examples of scenario-generation
techniques, and this thesis adopts the method developed by Pinson et al. (2009). Pinson et al.
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(2009) developed a method to produce wind power scenarios from quantile forecasts and historical
values. Historical wind power data and historical forecasts are used as in a quantile regression
model in order to arrive at an empirical distribution of prediction error related to forecasted wind
power. The prediction errors are used to create a multivariate Gaussian random variable that
is described by a covariance matrix. The covariance matrix is recursively updated with historical
realizations of wind power and is in combination with quantile forecasts used to generate scenarios.

The scenario generation method chosen in this thesis requires quantile forecasts, perhaps more
commonly known as quantile regression forecasts. Quantile regression is a nonparametric method
to study the relationship between a response variable y and one or several predictor variables x.
The relationship between response and predictor variables is described by regression parameters,
originally referred to as estimators. These parameters are determined by minimization of empirical
errors (Koenker & Bassett, 1978). Furthermore, quantile regression can be used to study forecast
error. Prediction intervals can be created by fitting empirical forecast errors to realized values
(Taylor & Bunn, 1999). Thus, historically registered data and historically forecasted values are
required in order to determine the regression parameters to be used in future quantile forecasts.
Koenker and Bassett (1978) formulated the quantile regression method as a minimization problem
of the residuals in a dataset, demonstrated by Equation (4.1) where β is the estimator and θ is the
quantile.

minimize
β ∈ R

 ∑
t∈{t:yt≥xtβ}

θ |yt − xtβ|+
∑

t∈{t:yt<xtβ}

(1− θ) |yt − xtβ|

 (4.1)

Quantile regression is often modelled with a linear relation between response and predictor vari-
ables. This could be problematic as there might be a higher order polynomial relationship between
input and output in a quantile regression model. Bremnes (2004) implemented a local quantile
regression method to create probabilistic wind power forecasts for a wind farm based on Numerical
Weather Prediction (NWP) point forecasts. The author argues that a simple polynomial could
not necessarily describe the relation between response and predictor variables. Local quantile re-
gression is a variant of quantile regression that uses weights to increase the mutual impact of data
points with similar values on each other. Bremnes (2006) followed up this work with a comparison
of the local quantile regression method to two other statistical methods, the Nadaraya-Watson
estimator and a local Gaussian model, to estimate quantiles. None of the statistical methods in
the study had a stand-out performance. He and Li (2018) constructed prediction intervals of wind
power using a quantile regression neural network model combined with Epanechnikov kernel func-
tion and Unbiased cross-validation. Furthermore, the experiments conducted in the study revealed
that the method was could construct prediction intervals and probability density curves with high
accuracy.

Nielsen et al. (2006) also used quantile forecasts to account for the uncertainty of wind power
forecasts. The forecasting horizon extended from 18 to 36 hours and meteorological forecasts from
a prediction tool called WPPT were used as data. Thus, this article does not estimate quantile
forecasts on period from 0 to 18 hours. The authors used basis spline functions instead of a
local quantile regression in order to account for nonlinearities in the quantile regression model.
Zarnani et al. (2019) found that quantile regression models outperformed clustering-based models
in the estimation of prediction intervals for NWP models. More specifically, the spline-based
quantile regression model had the highest performance compared to clustering-based models and
other quantile regression models such as local quantile regression, kernel quantile regression and
nonlinear quantile regression. The method presented by Nielsen et al. (2006) was also used by
Møller et al. (2008) and Pinson et al. (2009). Furthermore, Møller et al. (2008) developed a
time-adaptive quantile regression method based on the simplex method.
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4.3 Technologies for Offshore Hydrogen Production Liter-
ature

In order to produce hydrogen offshore, several technical components are required. Due to tech-
nological advancements in recent years, a literature review of the core components facilitating
renewable hydrogen production and their state-of-the-art technologies has been conducted. The
selection and integration of system components is based on academic articles and meetings with
industry experts conducted in the fall of 2022. The search procedure is briefly explained in Section
4.3.1, and reviews of the system components are presented in Section 4.3.2.

4.3.1 Search Procedure

The evaluation of state-of-the-art technologies integrated into a system necessitates an assessment
of their feasibility for real-world application. Prioritizing high performance and reliability is im-
perative in this regard. Several reviewed research articles investigate the performance of pertinent
component technologies in their feasibility studies. Additionally, Fragiacomo and Genovese (2020)
provided a valuable foundation for scrutinizing the efficacy and characteristics of the fundamental
components. Seeking guidance from industry experts also proved useful in identifying suitable
technologies for the system. For each component outlined in Section 3.2, a targeted search was
conducted on Google Scholar using unique keywords for the component and the process, such as
“name of the component” AND “hydrogen” AND “efficiency” OR “performance” OR “energy con-
sumption”. Given the swift advancements in the state-of-the-art technologies, attention has been
given to latest research. Furthermore, an essential avenue for relevant literature involved studying
the sources cited in the articles examined in Section 4.1.2 and 4.1.3.

4.3.2 Review of Technologies for Offshore Hydrogen Production Liter-
ature

Desalination

The objective of this section is to determine the candidate solution that can provide the required
feed water quality for PEMEL-electrolyzers. Desalination is the process of removing mineral
solvents from saline water through a chemical process. This is accomplished by splitting the
incoming streamflow into two streams: a stream of high-quality water, known as the permeate,
and a stream of highly saline water, known as the concentrate, which should be properly disposed
of to avoid harm to marine environments. The dominant technologies for commercialized desalina-
tion of large-scale sea water are Reverse Osmosis (RO) and Multi-Stage Flash Distillation (MSF),
(Mehrjerdi, 2020; Wittholz et al., 2008), with Multi Effect Distillation (MED) included by some
(Ghaffour et al., 2013; Raluy et al., 2006). RO, as the name suggests, is the reversed process
of osmosis where two fluids of different salinities would mix due to equilibrium forces. Applying
sufficient mechanical pressure, a semi-permable membrane can reversely separate the fluids of dif-
ferent salinities (Stoughton, 2018). 80 % of the global desalination capacity is based on RO and
todays commercialized RO systems achieves total dissolved solids up to 99,8% (Stoughton, 2018),
lower energy consumptions and higher efficiencies than the thermal based MSF and MED pro-
cesses (Aladwani et al., 2021; Ghaffour et al., 2013). The thermal based systems MSF and MED
instead use forced circulation to evaporate saline water in a process comprising several stages at
different temperature and pressure levels, using the energy from an electric boiler. Condensate is
then collected in every stage. According to Ghaffour et al. (2013), the advanced technology has
the potential to not only surpass MSF and RO in terms of cost but also deliver significantly higher
quality permeate.

All state-of-the-art technologies have undergone extensive research and development in efforts to
reduce costs. Only the most reliable state-of-the-art technology that produces the acceptable qual-
ity levels will suffice, as the PEMEL operates on dionized water with total dissolved solvent ratings
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below 0,5 parts per million parts of water (Ghaffour et al., 2013; NEL ASA, 2022). Commercialized
RO systems cannot in reality achieve the acceptable quality levels due to physical properties of
membranes independent on how much pressure that is applied, in addition to issues with mem-
brane degradation and refueling of chemicals (Al-Mutaz & Ghunaimi, 2001). Although MSF and
MED are more expensive in terms of capital investments and operational expenses, the thermal
processes perform significantly better with respect to water quality and is the preferred technology
for large-scale sea water desalination (Europe, 2022).

Electrolysis

The fundamental process of hydrogen production resides in electrolysis. Several production tech-
niques exist, however stringent regulations would classify any technique involving fossil-fuels as
non-renewable and thus non-applicable to the system. Electrolysis, thermolysis and photolysis,
are renewable production methods, but as neither heat nor photons but electricity is the input
energy to the process, electrolysis is the only viable option (Nikolaidis & Poullikkas, 2017). Elec-
trolysis is incomparably energy-intensive to the other processes on the platform and utilize electric
potentials to split a water molecule into hydrogen and oxygen, producing heat in the process.
When the electricity is produced by renewable energies, the hydrogen is the cleanest energy carrier
available since hydrogen-fueled combustion processes only have water vapor as exhaust (Felseghi
et al., 2019). Various electrolyzers exist, differing in size, power ratings, and thermodynamic prop-
erties, and it is important to select the appropriate technology for the energy system. Not all
electrolyzers are designed to operate on saline water; they have specific water requirements. When
evaluating water quality, the standard parameter is particles per million, and since sea water has
an average salinity of around 35,000 particles per million parts of water, desalination becomes an
indispensable step for offshore hydrogen production.

Among the state-of-the-art electrolyzer technologies available today, two noteworthy ones are al-
kaline electrolyzers and the more recent PEMEL (Chi & Yu, 2018). Alkaline electrolysis paved
the way as the first widely implemented large-scale method, while PEMEL has gained traction in
the commercial market in recent years. SOEC, a high-temperature water electrolysis technique,
presents a promising and relatively new method for hydrogen production that is still in the process
of being fully commercialized. Unfortunately, the operational temperature range of SOEC, which
typically ranges from 500 to 1000 °C, poses challenges for its suitability in offshore applications. In
an offshore setting, limited resources to manage unforeseen events that could cause production in-
terruptions imposes a stringent tolerance for operational risks as maintenance could require longer
lead times. In numerous research papers focusing on energy systems with variable power input,
PEMEL has been utilized to provide the necessary flexibility (Abdelghany et al., 2021; Durakovic
et al., 2023; Jiang et al., 2021). Additionally, Schiebahn et al. (2015) emphasizes the importance of
highly dynamic electrolyzers in power-to-gas applications with variable power. A highly dynamic
behavior can be identified by excellent performance in terms of start-up time and ramping times.
Furthermore, maintaining low energy consumption in stand-by mode requires is also of importance.
In terms of coupling with variable renewable energy sources, PEMEL demonstrates a significant
advantage over other electrolysis technologies (Andrenacci et al., n.d.). Cockerill (2020) highlights
the valuable benefits of PEMEL, including a broad dynamic operating range and rapid response
times for ramp-up and ramp-down capabilities. Apart from its operational benefits, PEMEL is
also characterized by its compact size, which makes it the preferred choice in situations where
space is limited, as is the case in the proposed system. In recent years, there has been a gradual
commercialization of PEMEL, with several electrolyzer suppliers now offering this technology. This
indicates that there is an expectation for additional commercialization in the foreseeable future.
(Andrenacci et al., n.d.) have identified a decrease in capital expenditures and improved efficiency
by 2030, surpassing the present-day standards.

Most of the research papers on hydrogen production adopt the assumption of a constant efficiency
for the electrolyzer. This assumption involves calculating the energy requirement for 1 kg of
hydrogen by dividing the higher heating value of hydrogen by the specific energy consumption
of the process. Jiang et al. (2021) have shown that the efficiency of PEMEL is influenced by
both current density and operational time. This indicates that the efficiency of the electrolyzer is
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dependent on the amount of energy supplied to it. The decline in membrane conductivity due to
aging accounts for the latter aspect, indicating that the assumption of constant efficiency is not
adequately precise for an operational model. In Figure A.1 in the Appendix, it can be observed that
as the power input increases, the efficiency decreases. Furthermore, the efficiency curve exhibits
non-linearity, and it also declines with the lifetime of the electrolyzer, as indicated by Figure A.2,
which illustrates the impact of decreasing electrolyzer efficiency on hydrogen output.

Storage, Compression and Transportation

Hydrogen gas produced by electrolyzers at low pressures needs to be compressed to achieve higher
volumetric density. One key disadvantage of hydrogen is its low energy density per unit volume.
Therefore, it is important to assess storage options, particularly high pressure, or liquid storage, as
these methods can increase the volumetric energy density. However, it is important to consider that
achieving such density may require a significant amount of energy. Thus, it is required to evaluate
compression, storage, and transport as interrelated. The compressor technology must align with
the maximum pressure ratings of the fluid state. Although several compressor technologies are
available, each designed for different requirements, research highlights stationary storage methods
or gas pipelines for offloading hydrogen (Dinh et al., 2021; Lucas et al., 2022; Meier, 2014).
Compared to above-ground storage methods, Dinh et al. (2021) advocates gaseous underground
storage for large-scale capacities and lower operational risks. Meier (2014) adopted a hydrogen
pipeline as the preferred method over 100 MW. Other solutions include storing hydrogen in a
liquid state or energy dense molecules, like ammonia, methylcyclohexane and organic hydrogen
carriers. According to (Wijayanta et al., 2019), liquefied hydrogen can become a competitive and
effective long-term solution given a strong market demand for hydrogen. However, this represents a
more expensive solution as the supply cost can increase by 50 – 150 % when transportation method
and distance are included. Concerns about the safety risks associated with offshore liquefaction
of hydrogen were also raised by industry (Moreld, personal communication, October 19, 2022).
Brändle et al. (2021) argue that pipeline transportation offers superior economic benefits and serves
as a foundation for the development of a large-scale hydrogen market. Franco et al. (2021) studied
various offloading solutions for hydrogen and their findings promote pipeline as the economic viable
option. However, other storage and transportation methods than pipelines become relevant where
pipelines are infeasible (Elberry et al., 2021). Nevertheless, the North Sea already has an extensive
natural gas pipeline network. In cases where existing pipelines can be retrofitted costs can be
significantly reduced.

According to Sheffield et al. (2014), pipelines generally operate within the range of 10-12 bar,
with the potential to reach pressures as high as 100 bar. Representatives from Moreld (personal
communication, October 19, 2022) stated that offshore transport pipelines could be designed to
operate within the pressure range of 40 to 60 bar. As a result, it is not essential for compressors
to achieve exceptionally high pressures; instead, their main role is to compress large quantities of
hydrogen at lower pressure levels. The compressor’s SEC is outlined by Fragiacomo and Genovese
(2020) in Equation (4.2), while Mart́ın and Luceño (2022) establish Equation (4.3) to calculate the
SEC based on the cumulative work required for multi-stage compression.

e =
E

m
=

RT

ηC

[(
pout
pin

)n−1
n

− 1

]
, (4.2)

etotal =
Etotal

m
= N

RT

(n− 1)ηC

[(
pout
pin

)n−1
n

1
N

− 1

]
. (4.3)

where m is the mass flow, R is the gas constant of hydrogen, C is the compressor efficiency, pout is
the compressor output pressure, pin is the compressor input pressure, n is the polytropic coefficient,
N is the number of stages and T is the compressor temperature. The SEC of compression is
evidently characterized by nonlinearity.
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An analysis conducted by Witkowski et al. (2017) recommended the integration of multi-stage
centrifugal and two-stage reciprocating compressors with large mass flow to accommodate high
mass flows for effective transportation in pipelines. One type of compressors that can achieve the
technical requirements is large-scale centrifugal compressors (Tsiklios et al., 2022). Tsiklios et al.
(2022) also discuss the relationship between pressure losses and transmission distance, which can
require re-compression at intervals of 100 to 600 km. In a study conducted by Kaiser et al. (2022),
a pipeline spanning 2800 km was modeled to facilitate the transfer of 77 TWh of energy per year.
The pipeline was designed to operate at a nominal pressure of 100 bar, with pressure losses of 0.1
bar per km and leakage losses of 0.5%. To compensate for these losses, recompression stations
were strategically placed at intervals of 500 km. In a separate case study, Khan et al. (2021)
considered a 1500 km long pipeline with an inlet pressure of 70 bar, outlet pressure of 28 bar, and
recompression stations positioned every 500 km. As centrifugal compressors are currently under
development (Khan et al., 2021), their study modeled instead 7 reciprocating compressors, each of
16 MW capacity which is able to compress 4311 tons per day, or 50 kg/s.

Battery

Intermittent power generation is a challenge for renewable hydrogen, as it can lead to a discon-
tinuation in the production. To address this issue, a Battery Energy Storage System (BESS) is
a promising technology for storing large amounts of electrical energy (Lebedeva, 2018). Recent
research by Woznicki et al. (2020) also found that linking a non-grid-connected offshore wind farm
to a BESS results in the most cost-effective production of renewable hydrogen. More specifically,
lithium-ion batteries are regarded as the most promising technology for supporting offshore hy-
drogen production (Arendals Fossekompani, personal communication, 25.10.2022). Lithium-ion
batteries are widely adopted in energy-intensive industries that take advantage of BESS, as they
offer higher energy densities and lower weights, making them suitable for responsive applications
with high cyclability. A BESS can provide power to prevent sudden interruptions in hydrogen
production during periods with significant wind power variability. In addition, at least in theory,
a BESS system would be able to support power market deliveries to avoid contract breaches. It
is worth noting that a BESS cannot replace wind as an energy source over extended time peri-
ods, which would be techno-economical infeasible. In this thesis, lithium-ion batteries can provide
delivery support to power market commitments, if necessary, and provide energy to avoid electro-
lyzer shutdowns. A BESS comprises various components, such as battery units, control and power
conditioning systems, safety mechanisms, and interfaces.

When selecting the most appropriate BESS, key properties of interest are energy capacity, charge-
and discharge capacities, state of charge, C-rating, number of charge-discharge cycles, and depth
of discharge. The state of charge of a battery is considered 100% when it is fully charged, while a
0% state of charge indicates complete discharge. The battery’s C-rating indicates how much of the
energy’s capacity that can be discharged during a specific time duration (POWER SONIC, n.d.).
A C rating of 1 means that the battery can be charged and discharged in 1 hour, while a C rating
of 4 would imply that the battery can fully charge and discharge in 15 minutes. Maintaining the
battery’s state of charge within the range of 20% to 80% is critical to prevent battery degradation
over time (Arendal Fossekompani, personal communication, October 10, 2022). The number of
charge-discharge cycles also strongly affects a battery’s state of health, with its depth of discharge
playing a crucial role in battery performance degradation over time (Bordin et al., 2017).

Fuel Cells

The integration of fuel cells within the hydrogen energy systems enables power-to-gas and gas-
to-power conversions, providing operational flexibility. This flexibility within hydrogen energy
systems proves advantageous when there is a requirement to convert the produced hydrogen back
into electricity. This need arises when the wind power producer’s power market commitments
exceed the available output from the wind farm. When power production is low, it may also be
necessary to shut down some or all of the electrolyzers, resulting in additional costs for shutdown
and startup. However, the incorporation of fuel cells can, in theory, prevent the necessity of shutting
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down production if the drop in production is only for a momentary timeframe. Multiple fuel cell
technologies have been developed, showcasing different degrees of technological advancements and
commercialization. Proton Exchange Membrane Fuel Cells (PEMFC) and Alkaline Fuel Cells
(AFC) have several similar characteristics. Unlike other fuel cell technologies, AFC and PEMFC
offer rapid start-up and ramping times. This dynamic behavior makes them particularly suitable
for energy systems that depend on variable energy availability. On the other hand, the other fuel
cell technologies have slower response times and operate at higher temperatures. Given the safety
considerations associated with offshore energy systems, it is unlikely that components with high
operating temperatures would be integrated. As a result, PEMFC and AFC are the most suitable
options in terms of dynamic behavior and operating temperature.

Just as with electrolyzers, different fuel cell technologies come with their own set of requirements
and operating conditions. Practical implementations involve the use of auxiliary systems like
pumps, ventilation, and instrumentation. It is crucial to assess the compatibility of these auxiliary
systems within the offshore production context. The efficiency of hydrogen fuel cells is calculated
by dividing the electric output energy by the energy content of the consumed hydrogen. The effi-
ciency of PEMFC is non-linear and varies based on the operating conditions. Figure A.3 illustrates
the relationship between the desired output current and the efficiency. Achieving high efficiency
and high power output in hydrogen fuel cells involves a trade-off. According to sources such as
PowerCellution (n.d.) and Ballard (n.d.), hydrogen fuel cells can reach a peak efficiency of 50% -
60%. Furthermore, the electrical output of fuel cells can be sustained indefinitely by continuously
supplying fuel. The available research literature on hydrogen fuel cells does not provide a defin-
itive verdict on whether PEMFC outperforms AFC. Nevertheless, industry experts and fuel cell
manufacturers consistently advocate for PEMFC as the more favorable option. Notably, industry
experts from Moreld (personal communication, October 19, 2022) express a distinct preference for
PEMFC over AFC. Nel ASA advises the integration of PEMFC and PEMEL due to the observed
synergies between the two technologies, as noted by Cockerill (2020). According to Ferchau (2019),
PEMFC and Solid Oxide Fuel Cells (SOFC) are the two primary fuel cell technologies available
today.

Power Transmission

There are power losses associated with the transmission of electricity from offshore to onshore,
which depend on the chosen transmission mode. The available options are High Voltage Alternating
Current (HVAC) and High Voltage Direct Current (HVDC). The total energy losses comprise
constant losses caused by elements such as transformers and collection cables (Kucuksari et al.,
2019), as well as variable losses primarily driven by line capacity and length. Research by May
et al. (2016) demonstrated significantly lower power losses with HVDC configurations compared to
HVAC over long distances. HVDC is considered the most suitable transmission mode for large-scale
offshore power transmission (Rahman et al., 2021).

4.4 Power Markets and Electricity Price Forecasting Liter-
ature

Rapid deployment of wind power is essential for energy transition progression. However, the inher-
ent volatility and unpredictable nature of high wind speeds not only introduce stability concerns
within the power system but also present challenges for power producers in fulfilling their com-
mitments within power markets (Karanfil & Li, 2017). Academic studies often adopt a simplified
approach, restricting the analysis of models to a single market as observed by Heredia et al. (2018)
and Finnah et al. (2022). While the inclusion of balancing and reserve markets is tempting, our
analysis focuses specifically on the day ahead and intraday markets in order reduce modeling com-
plexities. A wind power producer can find great benefit in the interplay between operations in
both (Kraft et al., 2023) because wind is subject to forecasting errors (Narajewski & Ziel, 2020b).
Typically, the optimization process begins with day-ahead scheduling to determine market com-
mitments. Subsequently, intraday scheduling is utilized to enhance daily operational efficiency
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and address any inaccuracies in the forecasts (Kraft et al., 2023) The markets are introduced in
Subsection 4.4.1 and 4.4.2, and forecasting techniques are presented in Subsection 4.4.3.

4.4.1 The Day Ahead Market

The central scheduling mechanism for physical trade of electric energy in Europe is organized in
day ahead auctions. As the name suggests, this process is conducted a day ahead of operation.
Each market participant submits a set of price-volume bids to a power exchange for each load hour
of the following day, typically at noon (Engmark et al., 2018). From the submitted demand and
supply bids, an equilibrium is found by the marginal bid that determines a unique price-vector
for each hour. The market clearing price, usually referred to as the system price, is announced
to all market participants and their respective dispatch volumes after the matching algorithm is
performed (Engmark et al., 2018). This market design analogies to day ahead markets across
Europe and is common for deregulated electricity markets and not exclusive to the Nordic region.

4.4.2 The Intraday Market

Unexpected circumstances such as imperfect supply or demand predictions, outages, poor fore-
casts, or intentional non-compliance with market commitments for strategic purposes, can cause
a discrepancy between anticipated and actual levels of production and consumption. In the in-
traday market participants are able to adjust their net position after day ahead market closure.
The purpose of the intraday market is usually to improve financial performance and account for
forecast errors (Kraft et al., 2023). The intraday market offers a valuable tool for generators and
consumers to modify their pre-agreed quantities based on updated information. These markets
are recognized as valuable for wind power generators, as the intermittent and unpredictability of
wind power makes bidding challenging (Karanfil & Li, 2017) The process of intraday scheduling
pertains to the immediate hours ahead aiming to arrange for the current or imminently commen-
cing hour (Weitzel & Glock, 2018). Usually the scope of the control horizon open for trading can
span from the next hour to several hours ahead. However, Narajewski and Ziel (2020a) describe
that most trades in the German intraday market are arranged a few hours before delivery, which
is significant for the scheduling problem. Thus, the intraday market becomes highly relevant for
close-to-realtime decisions.

4.4.3 Electricity Price Forecasting

Electricity prices are highly influenced by daily, weekly, and seasonal trends, which is why mul-
tivariate modeling frameworks are frequently found on this topic in the literature (Marcjasz, 2020).
Not only is electricity price forecasting very complex, but modeling performance is also dependent
on the origin of data. This field of literature distinguishes between so called first-class models,
which constructs 24 separate models for each individual hour, and second-class models that pro-
duce a single model for 24 hours ahead prediction as one time series (Ziel, 2016). The motivation
of the former technique is that when prices are announced simultaneously, this approach becomes
intuitive at a first glance. The more advanced methods belonging to the second-class are enriched
with regressors such as long-term trends, public holidays, non-linear effects (price spikes), funda-
mental regressors, time-varying time of the week effects, but more importantly, time-varying cross
hour-dependencies (Ziel, 2016) For instance, as the renewable share increases in the energy mix,
the electricity prices tend to decrease. Another example is the strong hourly correlation between
electricity prices in the late evening (22:00 – 00:00) on day D-1 and early morning (00:00-03:00) on
day D+1. This dependency is much stronger than the correlation between prices on the same hour
for consecutive days (Ziel, 2016). The forecasting techniques in the second-class includes various
types of time-series, but the majority of machine-learning models are found in this category. Both
approaches are relevant in the forecasting literature and the application depends on the model
design. However, as the number of regressors increases the potential of capturing dependencies, at
least in theory, it also increases the risk of overfitting the model. In those cases, the least shrinkage

30



and selection operator can be used to automatically extract significant explanatory variables (Mar-
cjasz, 2020). On the contrary, models based on empirical testing and expert knowledge, usually
referred to as expert models, provides simple autoregressive structures with a fixed set of paramet-
ers. The obvious advantage of these models lies in their simple interpretation and implementation,
with negligible overfitting complications. Even though this approach might involve less accuracy,
this type of pricing behavior has been extensively studied and is widely acknowledged in the field
of price prediction literature (Finnah et al., 2022).

4.5 Synthesis of the Literature Review

The existing literature on offshore energy systems with hydrogen production reveals a predomin-
ant focus on economic assessments and life cycle cost evaluations in terms of net present value
and discounted payback time. As these studies are primarily economic assessments, system be-
havior tends to be aggregated and simplified in order to address system performance over long
time horizons. Nonetheless, the literature favors centralized production in floating structures or
turbine tower integrated solutions with pipeline storage, despite uncertainties in future technology
and market prices. Shifting our attention to articles dedicated to operational planning programs,
it becomes apparent that a number of authors opt for a rolling horizon framework when solving
their scheduling problems, despite differences in look-ahead times and time resolutions. Highly
sophisticated models of onshore systems have been developed that capture the complex interplay
of switching between operational states and thermodynamic effects. The authors also estimate
performance over longer time horizons, compared to our work, with grid-integrated systems that
in principle cannot guarantee that the produced hydrogen is emission-free. Furthermore, simpli-
fications are made on modeling exogenous factors such as power market interactions and wind
power forecasting, neglecting power market auctions and the uncertain characteristics of the wind
speed. Additionally, the developed operational models typically model a single electrolyzer unit,
without considerations for the unmatched offshore scale and meteorological conditions unique to
the marine environment. In an offshore setting, wind power prediction is more difficult compared
to onshore wind forecasting due to sudden atmospheric phenomena that are felt more acutely and
amplified in the vast and flat offshore environment (Foley et al., 2012). This makes offshore wind
forecasting more challenging, and uncertain wind power generation gains relevance. A coherent
model for operational planning of offshore hydrogen production systems is, to the extent of the
authors’ knowledge, not found in the literature, signifying this work as one of the first operational
planning models for an isolated large-scale offshore hydrogen production system in the North Sea.

4.6 Our Contribution

The main contribution of this thesis is a short-term operational model for a large-scale offshore
energy system with hydrogen production. By simultaneously considering price differences and the
financial implications of not meeting power purchasing agreements, the model seeks to maximize
net income. The model achieves this objective by scheduling the optimal split between hydrogen
and electricity sales for every quarterly hour, considering the uncertainties associated with wind
power generation and power market prices. A key novelty of this work lies in the integration of
an advanced wind power scenario generation algorithm, complemented by real-time updates on
power purchasing agreements. The system incorporates state-of-the-art technologies and accurate
capacities, tailored to the specific offshore context. In order to account for the changing offshore
conditions, a stochastic framework is employed to schedule hydrogen production and power market
commitments, emphasizing the acknowledgement that the committed power one day ahead may
differ from the available power generation at the delivery hour. Furthermore, the system design
developed in this work serves as an accurate representation of the offshore system, and the model
can be theoretically applied to any offshore system with hydrogen production and onshore power
grid connection. This work can be helpful as assistance in the development phase of offshore energy
system alike the one presented in this thesis.
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CHAPTER

FIVE

MODELLING ASSUMPTIONS AND STRATEGIES

In this chapter the modeling assumptions for the optimization model is presented. Section 5.1
describes the modeling assumptions related to each of the system components. Further on, hy-
drogen and power markets are treated in Sections 5.2 and 5.3. The chapter wraps ups with the
presentation of modeling assumptions for wind power scenarios in Section 5.4.

5.1 Technical Components of the Energy System

5.1.1 Desalination

MSF and MED are more expensive, but thermal distillate designs perform better with respect to
quality measures for large-scale sea water desalination. MSF has been selected as the most appro-
priate system due to its superior reliability, which is given a high priority. It is widely acknowledged
that water desalination processes are typically characterized by their high energy intensity and sig-
nificant SEC. However, it is important to note that in comparison to the energy consumption of
electrolysis, the energy consumption of desalination can be relatively minor. Consequently, the ex-
tent to which desalination processes are incorporated into the investigation of energy systems with
hydrogen production can vary considerably. Dinh et al. (2021) specifically modeled desalination
as a distinct process, Lucas et al. (2022) integrated the energy consumption of desalination with
the SEC of electrolysis. In contrast, Carr et al. (2016) and Jiang et al. (2021) did not consider
water purification in their respective studies. This aspect should be considered when desalination
is modeled. Rather than treating desalination as an individual process, it is assumed that the
desalination process operates continuously, without any interruptions or ramping constraints that
may hinder hydrogen production. The detailed dynamics, such as maximum up-times, startup
and shutdown constraints, ramp-up and ramp-down limitations, concentrate disposal, and ther-
modynamic effects related to water temperature, salinity, and operating pressures on performance,
are not explicitly modeled but incorporated into the SEC parameter. All energy requirements for
pump operations, heat exchangers, and irreversibilities in the thermal process are consolidated into
the SEC constant.

5.1.2 Electrolyzer

Considering that the modeled energy system relies on wind energy, PEMEL electrolyzers are a
suitable choice. This observation also aligns with expert opinions, which identify PEMEL as the
optimal choice for offshore hydrogen production in the context of an offshore wind park. The
modeling of the electrolyzers is inspired by the work of Varela et al. (2021) and results from the
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project work (Falk & Hansen, 2022). At any given time period, the electrolyzers will either be in
an idle or producing state. When an electrolyzer is idle, it does not consume energy or produce
any hydrogen. When producing, the electrolyzer will consume energy eEsεt to produce hydrogen
mEH2

st . Transitioning from an idle to producing state between consecutive time periods prepares the
electrolyzer for full production in the next time period, and can only operate at half capacity in the
current. Switching between operating states is indicated by the binary variables zUp

sεt and zDown
sεt ,

which reflect the required energy consumption during transitions as these processes are subject to
ramping, which is assumed to be linear. This is a less advanced approach compared to the original
formulation in the project work, where each electrolyzer is associated with three operating states as
shown by Figure 5.1: idle, producing, and standby, involving a total of six possible state transitions.
Electrolysis is a highly energy-intensive process, and precise modeling of its properties is desirable,
especially when studying decisions with short-term resolution (Andrenacci et al., n.d.). However,
approximating real-world properties should be weighed against the computational budget. Results
from the project work demonstrated some reasonable tradeoffs and have been considered when
developing an efficient, yet descriptive, formulation of electrolyzer behavior. Our preliminary
findings in the project work did not suggest that the standby state provided any significant benefit,
as it was rarely utilized. Matute et al. (2021) also did not consider it to be profitable for electrolysis
facilities to switch between standby and idle states in practice. Incorporating the standby state
makes the problem computationally intractable for the given planning horizon and time-granularity.
Removing the standby state reduces the number of binary variables controlling operating states
from three to one per platform will operate more than 400 electrolyzer modules. The former
formulation also produced a cumbersome non-linear model, making it much harder to solve. Issues
with problem size and wind speed uncertainty allows for a more detailed description in the near
future that of compared to uncertain decisions relatively far ahead in time. The set E represents
a clustering of electrolyzers on the platform approximating the true number of electrolyzer units,
while EAgg is a further clustering of the electrolyzers and even more simplified representation of the
true set size. Each subproblem is partitioned into a set of time periods for each of the generated
set.
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Figure 5.1: Comparison of the more advanced state transitions modeling in project work (left) by Falk and
Hansen, 2022 and the less advanced approach adopted in this thesis (right). In the left approach, the binary
variables indicating the idle, standby and producing states are indicated by the superscripts (I ),(S) and (P).
Although some notation differ, the figure illustrates the modeling complexity of implementing three operating states
and corresponding state transitions, as opposed to modeling only two operating states.

5.1.3 Compression, Storage and Transportation

Pipelines are considered the most cost-effective by academia and industry. The most viable option
for storage and transport is therefore to assume a pipeline, either from retrofitting existing pipeline
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network or developed specifically for the hydrogen project. The pipeline stores and transport the
produced hydrogen from the North Sea to the European mainland. Compression of hydrogen gas
is a complex process, and fluid mechanic modelling within the pipeline extends way beyond the
scope of this work. Accurately modeling the compression of hydrogen gas, as shown in Equation
(4.2), involves a complex process that requires considering multiple design parameters. Figure
5.2 showcases the adiabatic compression curve represented by Equation (4.2). The rise in SEC
is evident at lower pressures, with adiabatic compression demonstrating higher SEC compared
to isothermal compression, which better reflects actual compressor operations. According to the
findings of Bossel and Eliasson (2003), multi-stage compression with cooling outperforms adiabatic
compression in terms of efficiency. As a result, the corresponding SEC curve for this process would
be positioned between the curves for adiabatic and isothermal compression. This specific approach
is intentionally designed to minimize compressor work and has gained widespread adoption, as
supported by insights from industry experts (Moreld, personal communication, October 19, 2022).

Figure 5.2: SEC for adiabatic and isothermal compression processes. Figure adapted from Bossel and Eliasson
(2003).

For this task, we model a single compression unit and the compression process described by Equa-
tion (4.2). A constant SEC. The project work demonstrated that the energy consumption of
compression is negligible compared to electrolysis. It is assumed that all hydrogen from electro-
lysis can be compressed. A storage balance equation governs the quantity of hydrogen in the
pipeline during each time period. The incoming flow represents the hydrogen produced from elec-
trolysis, while the outgoing flows include the hydrogen sold at a fixed price through contracts, and
hydrogen consumed by the fuel cells. Friction losses in the pipeline contribute to minor energy loss.
A maximum discharge rate is given. To preserve operability of our model, we include a terminal
value for pipeline storage amount.

34



5.1.4 Fuel Cell

Based on the findings of the literature review, PEMFC stands out as the most suitable fuel cell
technology. Throughout the planning horizon, the extraction of hydrogen from the pipeline for
electricity generation is possible, accounting for irreversible losses during the process. To simplify
the model, individual fuel cells are treated as a single entity operating symmetrically. While the
potential for heat recovery exists, it is assumed that heat dissipates into the surroundings without
additional utilization. A capacity limit on hydrogen consumption is imposed, and the relationship
between electricity generation and fuel consumption as determined by the SEC constant.

5.1.5 Battery

As lithium-ion battery systems are commonly used in energy systems with renewable energy, and
the preferred BESS technology suggested after consulting with Arendal Fossekompani a number
of lithium-ion battery packs with 4C-ratings is assumed to be installed on the offshore hub (M.
Johansen, personal communication, October 25, 2022). Cyclic degradation and ageing of batteries
cause capacity degradation over time. However, with respect to the short planning horizon of
the model, degradation effects are assumed negligible. Therefore, the round-trip efficiency of the
lithium-ion batteries is assumed to be constant. The state of charge is determined by monitoring
various parameters, including voltage level, temperature, and electron flow during charging and
discharging processes. Typically, a battery management system handles these functions, but they
are not addressed in this project. Aspects in regard to optimal and safe operation to prevent
thermal events, release of gases and toxicity due to battery failure, have not been considered.
Although, to prevent exorbitant activation of the batteries, charging and discharging cause a small
penalty in the objective function. The battery charge and discharge rates must respect the C-
rating, and energy storage balance equation is provided.

5.1.6 Power Transmission

Based on the studies of Rahman et al. (2021), an estimated value for total energy losses in offshore
HVDC configurations is 5%. The transmission cable capacity must not be violated. When modeling
the transfer capacity, resistive loss is included.

5.2 Hydrogen Market

The energy system in this work is likely to operate in a hydrogen market dominated by long-
term HPAs (M. Kjäll-Ohlsson, personal communication, January 13, 2023). This implies that the
energy system in a real-life application would need to deliver a required amount of hydrogen. The
production requirement is not necessarily easy to formulate in a short-term optimization. The HPA
could have hourly, daily and weekly demands. This planning horizon is larger than the horizon
considered in this thesis, as the model focuses on short-term optimization. A tactical planning
problem may be need in order to decompose the HPA. The model would also need to account
for the possibility to produce more than what is required by the HPA obligations. Stochasticity
of wind power generation may also make it unreasonable to have hourly, or even daily, hydrogen
demand constraints as the problem may turn infeasible. Due to the complexity of formulating
HPA as demand requirements, it has been assumed that the model can sell hydrogen at a fixed
price and is not subjected to demand constraints on hydrogen production.

5.3 Power Markets

The wind power producer engages in trading activities on the Nord Pool power exchange, specific-
ally in the ”NO2” (Kristiansand) bidding zone in Norway. The wind power producer exclusively
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participates in the day-ahead and intraday markets. It is assumed that the predicted market prices
in both markets are solely influenced by historical electricity prices. Notably, the wind power pro-
ducer is strictly prohibited from both overproducing and underproducing. In the event of a default,
Nord Pool possesses the authority to suspend the member from further trading and/or clearing
(Nord Pool AS, 2020). An event of default is determined by Nord Pool as a breach of one or
more obligations, among various other criteria. The consequences of such a default must be highly
financially unattractive. This suspension risk is incorporated into our model through a substantial
penalty, acknowledging its significant impact for power markets integrity. The modeling approach
employed encompasses the pertinent quantity and price risks from day-ahead clearing to intraday
gate closure. The analysis primarily focuses on day-ahead commitments, which enable optimal
pre-positioning in terms of risk, both in quantity and price, for recourse actions when wind power
generation and intraday information are realized. It should be noted that quarterly products have
not yet been implemented in the Nordic region. Currently, the availability of quarterly and half
hourly products is restricted to the German market. However, given the increasing prominence
of variable production in the energy mix, it is reasonable to anticipate the introduction of similar
products in the near future, and have been adopted in this thesis.

5.3.1 Day-ahead Market

The wind power producer submits price-accepting bids to Nord Pool based on forecasted day-ahead
prices. This process, also called self-schedule bidding, assumes the participant to be a price-taker.
Bids from single market actors are, in reality, not necessarily accepted. However, wind power
generation plants have a low marginal cost in the market supply curve, and the volume offered on
the day-ahead market is incomparably small to the total traded volume. This assumption reduces
the complexity of bidding modeling. Bids are submitted to the market operator at 12:00 CET,
and corresponding prices for day D+1 become known at 13:00 CET. day-ahead commitments
made at 12:00 CET are first-stage variables determined in a day-ahead clearing subproblem. The
promised commitments in TD+1 are scenario-independent. In the next subproblems, recourse
actions are taken in each wind power generation scenario. The recourse actions, in time periods
with delivery commitments, depends on the uncertain wind power generation through the energy
balance constraint. Wind power generation is realized in the current time period. To manage
expected deficits from scheduled day-ahead obligations, energy can be redirected from hydrogen
production, in addition to coverage by fuel cells, batteries and intraday purchase, as a last resort.
It is assumed that payment is linked to actual delivery, including resistive losses in the transmission
cable.

Day-ahead Price Forecast

Because the day-ahead market is cleared once per day, there will be time periods in the subprob-
lem’s planning horizon that do not contain any information about the market price. Before 12:00
CET on a given day D, bids have not yet been submitted for day D+1 ; only day-ahead commit-
ments for the remainder of day D exist. Nevertheless, the model should be able to estimate the
possible revenue generation from day-ahead sales for the remaining time periods of the planning
horizon. A simple auto-regressive structure based on a first-class expert model classification men-
tioned in Ziel (2016), is developed to predict future spotprices. The simple, yet effective forecast
makes the algorithm fast, which is relevant for the model. While some authors (Finnah et al.,
2022; Maciejowska et al., 2016; Narajewski & Ziel, 2020b) incorporate a weekday dummy vari-
able in their auto-regressive models, preliminary studies did not find weekday correlation to be
statistically significant in predicting future day-ahead prices.

The expert regression model for hour h on day d is formulated as

PDah
d,h = βh,0 + βh,1P

Dah
d−1,h + βh,2P

Dah
d−2,h + βd−7,hP

Dah
d−7,h + ϵd,h, (5.1)

assuming that the error term ln(ϵ) ∼ N(0, σ2
h).
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5.3.2 Intraday Market

The purpose of the ideal intraday market is to provide balancing mechanism and not targeting a
high volume per se (Karanfil & Li, 2017). It also not the intention to propose an arbitrage strategy
in our model, but to make optimal day-ahead commitments with the higher priority and then
balance if necessary. It is desirable to have optimal bids in both markets, however, the focus has
been to model the intraday market as an opportunity rather than purely speculative by representing
price processes and sales and purchase demands patterns. Also, production uncertainty would
require advanced forecasting models to make any justified forecasted decisions on the intraday
market. When bidding into the day-ahead market or forecasting day-ahead decisions, intraday
decisions are not modeled. It also makes sense to impose volume constraints in the intraday
market for two main reasons. Firstly, the volume traded on the intraday market is incomparably
small to the day-ahead market. Supplying bulk volumes and large shares of the total volume on
the intraday as a single market participant is not necessarily incorrect, but the modeled energy
system capacity is disproportionate and not in harmony with the current state of the intraday
market. Second, selling surplus of energy always requires a counterparty on the intraday market.
This means that the producer might not manage to find a counter-party to allocate the entire
production surplus. Negative prices are disregarded as it reduces the complexity of the problem,
although the majority of trades on Nord Pool’s intraday exchange have positive prices. With
access to Nord Pool’s database, it is possible to separate the intraday transactions into selling and
purchasing volumes and prices. To control the traded volume on a given day D, an intraday to
day-ahead volume ratio is defined and multiplied by the day-ahead commitment per time period
to give an upper bound for intraday trades. Furthermore, to prevent competing bids that negate
each other and artificially inflate bidding volumes, we can only submit either a sell or an ask
bid on a given price level for each time period in the horizon. The intraday price forecast is
also updated at the time of the day-ahead clearing process for model implementation purposes.
There are various approaches to manage the intraday scheduling problem. One way is to consider
the whole intraday horizon as one market clearing process with a one-time commitment. Other
authors have chosen more intricate models with intraday auctions occurring every hour before
each gate-closure, starting from the time of market opening. A hybrid variant of the latter has
been implemented that combines hourly auctions with deterministic prices and volumes in the
form of forecasts. We acknowledge the missed opportunity for revenue-increasing re-positioning in
reaction to the volatility of the true continuous price process with continuously updated bids and
dynamic prices and volumes, however, a multistage framework with multiple active contracts is not
in the scope of this work. Non-reversible commitments apply at gate-closure, which imposes non-
anticipativity constraints over the time periods in the upcoming delivery hour. The commitments
are then modeled under a separate set of time periods, and penalized in the event of under-delivery.
Intraday decisions are allowed in time periods associated with day-ahead commitments, but are
not penalized as they are planned events, and not bound by obligations. The interrelationship
between day-ahead and intraday commitments and auctions at particular moments makes model
formulation complicated.

Intraday Price Forecast

Intraday prices are dynamic and determined by bilateral transactions, unlike the day-ahead auction
where the last accepted bid determines the price for all transactions. In theory, the final average
price of the load hour is unknown up until gate-closure indicating that all intraday prices are
essentially uncertain. A simple auto-regressive model is developed to forecast intraday prices. The
model incorporates an integrated term, looking at the difference between the previous day intraday
price for the corresponding hour. It also incorporates the day-ahead price, as auto-regressive
structures that estimates intraday prices usually do. It follows a first-class expert model approach.
Intraday prices are forecasted for all time periods where there exist day-ahead commitments.
Namely, before the day-ahead clearing process we can only use intraday data up until day D-1 to
predict prices for day D and D+1, and day-ahead market data up until day D-1. After day-ahead
clearing, information on day-ahead prices for day D+1 becomes available which is accounted for in
the regression. Finnah et al. (2022) assume that the intraday prices can be explained by cross hour
dependencies of previous intraday prices, time-varying day of the week variables and the spotprices
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up until day d.

The expert model or hour h on day d is formulated as,

P Int
d,h = αh,0 + αh,1(P

Int
d−1,h − P Int

d−2,h) + αh,2P
Dah
d−1,h + ϵd,h, (5.2)

After the day-ahead bid submission, the regression data set is updated, and intraday prices for the
next day is estimated with new information on day-ahead prices,

P Int
d,h = αh,0 + αh,1(P

Int
d−1,h − P Int

d−2,h) + αh,2P
Dah
d,h + ϵd,h, (5.3)

5.4 Wind Power Scenarios

The optimization problem is continuously updated with the most recent wind speed data at the
beginning of each time period. Updated scenarios take into account the new information, which
could result in more accurate results as modeling uncertainty is reduced up until the delivery hour.
Forecasting error usually increases with forecasting horizon and time since the last forecast, and
updated forecast information at every time instant could provide more proficient results closer to
delivery times. As information is continually updated at each time instant, a perpetual stochastic
optimization problem is practically being solved. However, the newly registered wind data must
undergo a procedure in combination with the available forecasts to produce scenarios. This process
can be time-consuming and complex. It is however not affected by the decisions of the energy
system and can therefore be treated separately. The procedure to generate wind power scenarios
from historical observations and forecast is described with more details in Section 7.5.2. The
optimization problem is assumed to have scenarios accessible as initial values at the beginning of
each time period, and the time spent to generate new scenarios is not included in the solution time
of the optimization problem.
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CHAPTER

SIX

MATHEMATICAL MODEL AND FORMULATION

In this chapter, we present the mathematical formulation of a stochastic mixed integer linear
program used to analyze the short-term operational planning problem associated with offshore
production of hydrogen and electricity. A sequence of subproblems is solved using a rolling horizon
approach. The submission of non-reversible power market bids at certain time points impacts the
mathematical structure of subproblems. Slight modifications must be made in subproblems that
involve first-stage day-ahead and intraday decisions, those which involve only first-stage intraday
decisions, and subproblems without first-stage decisions but recourse actions. For practical pur-
poses, we will refer to the subproblem with both day-ahead and intraday first-stage decisions as
the day-ahead clearing subproblem.

The nomenclature for the model is outlined in Section 6.1. Then, a visual representation of a
small section of the global planning horizon is presented to the reader in Figure 6.1. The figure
depicts the partitioning of the subproblems and provides a visual guide of the diverse modeling
sets and their respective domains, and how they relate. Readers are encouraged to refer to this
figure when reading the mathematical formulations, aiding in better understanding of this section.
We then adopt a structured approach in which each system component is treated sequentially.
The remainder of the chapter is structured as follows. Section 6.2 presents the formulation of all
the technical components in the system. Section 6.3 connects the energy production and energy
requirements within the system through energy balances. Following up, the day-ahead market,
intraday and objective functions formulations are presented in Sections 6.4, 6.5 and 6.6. Required
non-anticipativity constraints are presented in Section 6.7. Modeling constraints found in all of
the subproblems are represented by simplified notation introduced in Section 6.8. At the end of
this chapter, the three types of subproblems solved in the rolling horizon are finally represented in
Sections 6.9 - 6.11.
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6.1 List of Symbols

Superscripts

Agg Aggregated

Aux Auxiliary

B Battery

D Day

Dah day-ahead

Dis Discharge

Down Shutdown

E Electrolyzer

El Electric power

F Fuel cell

H Hour

H2 Hydrogen

HHV Higher Heating Value

Int Intraday

Max Maximum

Min Minimum

P Pipeline

Sys System

T Transition

Up Startup

Sets

T̄Dah Set of time periods with day-ahead commitments, T̄Dah ⊂ T

T̄Int Set of time periods with intraday commitments, T̄Int ⊂ T

T̂Dah Set of time periods with forecasted day-ahead decisions, T̂Dah ⊂ T

B Set of batteries

E Clustered set approximating the true number of electrolyzers

EAgg Aggregated set of electrolyzers

S Set of wind power scenarios

T Set of time periods in planning horizon, T ⊂ T0

TEAgg

Set of time periods for aggregated set of electrolyzers TE,Agg ⊂ T

TE Set of time periods for true set of electrolyzers TE ⊂ T

TD+1 Set of time periods in the next day TD+1 ⊂ T
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TH+1 Set of time periods in the next hour TH+1 ⊂ T

T0 Set of time periods in the planning horizon including the initial-state period

Indices

ε Electrolyzer

s Scenario

t Time period

Parameters

r̄Dah
t day-ahead commitment [MWh]

r̄Int+t Intraday sale commitment [MWh]

r̄Int−t Intraday purchase commitment [MWh]

δEsε0 Initial state of electrolyzer [−]

ηB Round-trip efficiency of batteries [−]

ηEl Efficiency of electrical power transmission cable [−]

ηH2 Efficiency of hydrogen transmission pipeline [−]

γE Specific energy consumption of electrolyzers [MWh/kg]

γF Specific energy consumption of fuel cells [MWh/kg]

γAux Specific energy consumption of auxiliary systems [MWh/kg]

ΓB,Max Charge and discharge capacity of batteries [MWh]

ΓE,Max Maximum energy input to electrolyzer [MWh]

ΓE,Min Minimum energy input to electrolyzer [MWh]

ΓF,Max Maximum hydrogen input to fuel cells [kg]

ΓPH2,Dis Discharge capacity of hydrogen pipeline [kg]

ÊWind
st Wind power generation forecast [MWh]

p̂Int+t Intraday selling price forecast [EUR/MWh]

p̂Int−t Intraday buying price forecast [EUR/MWh]

p̂Dah
t day-ahead price forecast [EUR/MWh]

λB Penalty from activating batteries [EUR/MWh]

λDah Default cost from day-ahead contract breach [EUR/MWh]

λInt+ Default cost from intraday contract breach [EUR/MWh]

λShed Cost of load shed [EUR/MWh]

DCs Total default cost from day-ahead and intraday contract breach [EUR]

ΦB,Max Storage capacity of batteries [MWh]

ΦPH2,Max Storage capacity of hydrogen pipeline [kg]

a Linearization constant [−]
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b Linearization constant [−]

CB
s Total cost of battery activation [EUR]

CShed
s Total cost of energy shed [EUR]

DInt+
t Maximum intraday selling volume [MWh/kg]

DInt−
t Maximum intraday buying volume [MWh/kg]

DCDah
s Total default cost from expected day-ahead contract breach [EUR]

DCInt+
s Total default cost from expected intraday contract breach [EUR]

eBsb0 Initial state of batteries [MWh]

ET E,Agg Energy consumption in electrolyzer during state transition fopr aggregated set [MWh]

ET E Energy consumption in electrolyzer during state transition for true set [MWh]

HHV H2 Higher Heating Value of Hydrogen [MWh/kg]

IDah
s Total income from day-ahead operations [EUR]

IH2
s Total income from hydrogen sales [EUR]

LP Terminal value of hydrogen storage level [kg]

mPH2
s0 Initial state of hydrogen storage [kg]

NIInts Net income from intraday operations [EUR]

PMax Capacity of power transmission cable [MWh]

ps Probability of scenario s [−]

pDah
t day-ahead price [EUR/MWh]

pH2
t Hydrogen price [EUR/kg]

Variables

δEsεt Binary variable associated with electrolyzer operating state [−]

∆Dah
st Deviation from day-ahead commitment under scenario s [MWh]

∆Int+
st Deviation from intraday commitment under scenario s [MWh]

δInt+st Binary variable associated with intraday sale [−]

δInt−st Binary variable associated with intraday purchase [−]

µDah
st Underdelivery associated with day-ahead commitment [MWh]

µInt+
st Undelivery associated with intraday commitment [MWh]

θInt+st Energy surplus in system [MWh]

eEsεt Energy input to electrolyzer [MWh]

eB,Cha
sbt Electrical charging of battery [MWh]

eB,Dis
sbt Electrical discharging of battery [MWh]

eBsbt Energy storage in battery [MWh]

eShed
st Curtailed energy within the energy system [MWh]

mEH2
sεt Hydrogen production from electrolysis [kg]
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mFH2
st Hydrogen consumption in fuel cells [kg]

mPH2
st Hydrogen storage level in pipeline [kg]

rDah
st Electricity sold to the day-ahead market [MWh]

rH2
st Hydrogen sold [kg]

r
Int+
st Electricity sold on the intraday market [MWh]

r
Int−
st Electricity purchased on the intraday market [MWh]

rDah
t First-stage day-ahead decision [MWh]

zDown
sεt Binary variable associated with shutdown of electrolyzer [−]

zUp
sεt Binary variable associated with startup of electrolyzer [−]
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Figure 6.1: An overview of some of the different modeling sets and their associated domains in each subproblem.
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6.2 Technical Components Formulation

6.2.1 Electrolyzer

When in an operating state, an electrolyzer consume energy eEsεt between the minimum and max-
imum capacity ratings. A transition from an idle to producing state in consecutive time periods
reduce the production capacity for that time period, as indicated by the binary variable zUp

sεt,

eEsεt ≤ ΓE,MaxδEsεt(1−
1

2
zUp
sεt), s ∈ S, ε ∈ E, t ∈ TE, (6.1)

eEsεt ≥ ΓE,MinδEsεt, s ∈ S, ε ∈ E, t ∈ TE. (6.2)

Since the planning horizon is modeled with the help of two separate electrolyzer modeling sets,
E and EAgg, upper and lower capacity limits must also be specified for the set of electrolyzers in
EAgg over TE,Agg in Equation (6.3) and Equation (6.4), similar to the above constraints,

eEsεt ≤ ΓE,MaxδEsεt(1−
1

2
zUp
sεt), s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.3)

eEsεt ≥ ΓE,MinδEsεt, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

. (6.4)

We must establish the link between energy consumption and hydrogen output. This is accomplished
in Equation (6.5) through the SEC. However, the SEC is derived from electrolyzer’s efficiency ηεt,
which is a nonlinear function in terms of energy ratios,

eE = γEmEH2 , (6.5)

where

γE =
HHV H2

ηEεt
. (6.6)

Figure A.2 in the Appendix shows that the relationship between energy input and hydrogen output
is close to linear. We develop a set of equations to approximate this relationship with the help
of energy ratios RE and RH2. The energy ratios are normalized expressions for energy input and
output with respect to the electrolyzer’s maximum rating.

RH2 = a ·RE + b, (6.7)

RH2 =
eH2

ΓMax
, (6.8)

RE =
eE

ΓMax
, (6.9)

eH2 = mH2HHV H2. (6.10)

By combining Equations (6.7) - (6.10), an expression that couples the electrolyzer energy input
and hydrogen output is formulated,

eE =

(
HHV H2

ΓMax
mH2 − b

)
ΓMax

a
. (6.11)

The appropriate expression that provides the hydrogen production rate as a function of the energy
input for corresponding sets E and EAgg, are given by Equation (6.12) and (6.13),

eEsεt =

(
HHV H2

ΓE,Max
mEH2

sεt − b

)
ΓE,Max

a
, s ∈ S, ε ∈ E, t ∈ TE, (6.12)

eEsεt =

(
HHV H2

ΓE,Max
mEH2

sεt − b

)
ΓE,Max

a
, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

. (6.13)
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An electrolyzer startup is indicated by Equations (6.14) - (6.16) for E, and Equations (6.17) - (6.19)
for EAgg,

zUp
sεt ≤ 1− δEsε,t−1, s ∈ S, ε ∈ E, t ∈ TE, (6.14)

zUp
sεt ≤ δEsεt, s ∈ S, ε ∈ E, t ∈ TE, (6.15)

zUp
sεt ≥ δEsεt − δEsε,t−1, s ∈ S, ε ∈ E, t ∈ TE, (6.16)

zUp
sεt ≤ 1− δEsε,t−1, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.17)

zUp
sεt ≤ δEsεt, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.18)

zUp
sεt ≥ δEsεt − δEsε,t−1, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.19)

Similarly, a shutdown process is modeled by Equations (6.20) - (6.22) for E, and Equations (6.23)
- (6.25) for EAgg,

zDown
sεt ≤ δEsε,t−1, s ∈ S, ε ∈ E, t ∈ TE, (6.20)

zDown
sεt ≤ 1− δEsεt, s ∈ S, ε ∈ E, t ∈ TE, (6.21)

zDown
sεt ≥ δEsε,t−1 − δEsεt, s ∈ S, ε ∈ E, t ∈ TE. (6.22)

zDown
sεt ≤ δEsε,t−1, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.23)

zDown
sεt ≤ 1− δEsεt, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.24)

zDown
sεt ≥ δEsε,t−1 − δEsεt, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

. (6.25)

Non-negative and binary constraints on the variables must be defined,

eEsεt ≥ 0, s ∈ S, ε ∈ E, t ∈ TE, (6.26)

mEH2
sεt ≥ 0, s ∈ S, ε ∈ E, t ∈ TE ∩T0, (6.27)

eEsεt,m
EH2
sεt ≥ 0, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

, (6.28)

zUp
sεt, z

Down
sεt ∈ {0, 1}, s ∈ S, ε ∈ E, t ∈ TE, (6.29)

δEsεt ∈ {0, 1}, s ∈ S, ε ∈ E, t ∈ TE ∩T0, (6.30)

δEsεt, z
Up
sεt, z

Down
sεt ∈ {0, 1}, s ∈ S, ε ∈ EAgg, t ∈ TEAgg

. (6.31)

We denote the set of Equations (6.1) - (6.4), (6.14) - (6.28) as ΩE
1 (x) ≤ 0, Equations (6.12) -

(6.13) as ΩE
2 (x) = 0, and Equations (6.29) - (6.31) as ΥE(x) ∈ {0,1}, as the set of electrolyzer

constraints found in the three different types of subproblems.

6.2.2 Compression, Storage and Transportation

Equations (6.32) and (6.33) are the corresponding pipeline storage balance equations modeled ovcr
E and EAgg. The amount of hydrogen stored in the pipeline is determined by the hydrogen amount
from the previous time period, the hydrogen produced by all electrolyzers, less the hydrogen sold
and hydrogen combusted in the fuel cells.

mPH2
st = mPH2

s,t−1 +
∑
ε∈E

mEH2
sεt − rH2

st −mFH2
st , s ∈ S, t ∈ TE ∩T0. (6.32)

mPH2
st = mPH2

s,t−1 +
∑

ε∈EAgg

mEH2
sεt − rH2

st −mFH2
st , s ∈ S, t ∈ T\TE. (6.33)

The amount of hydrogen stored in the pipeline cannot exceed the maximum pipeline storage
capacity,

mPH2
st ≤ ΦPH2,Max, s ∈ S, t ∈ T. (6.34)
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Equation (6.35) restricts the hydrogen discharge rate of the pipeline for hydrogen sales,

rH2
st ≤ ΓPH2,Dis, s ∈ S, t ∈ T. (6.35)

The amount of hydrogen stored in the pipeline in the last time period in the planning horizon must
at least be equal to a predefined terminal value,

mPH2
st ≥ LP , s ∈ S, t := |T|. (6.36)

Non-negative constraints are defined for pipeline storage amount and hydrogen sale variables,

mPH2
st ≥ 0, s ∈ S, t ∈ T0, (6.37)

rH2
st ≥ 0, s ∈ S, t ∈ T. (6.38)

We denote the set of Equations (6.34) - (6.38) as ΩP
1 (x) ≤ 0, and Equations (6.32) - (6.33) as

ΩP
2 (x) = 0, as the set of pipeline constraints found in all subproblems.

6.2.3 Fuel Cell

Equation (6.39) relates the electricity production in fuel cells and hydrogen consumption from
storage through fuel cell operating efficiency and SEC,

eFst = mFH2
st γF , s ∈ S, t ∈ T. (6.39)

For convenience, the maximum electricity production capacity of the fuel cells is implicitly given
by the above equation and the maximum inlet flow of hydrogen represented by Equation (6.40),

mFH2
st ≤ ΓF,Max, s ∈ S, t ∈ T. (6.40)

Non-negativity constraints are imposed on the fuel cell variables,

mFH2
st , eFst ≥ 0 s ∈ S, t ∈ T. (6.41)

We denote Equations (6.40) - (6.41) as ΩF
1 (x) ≤ 0 and Equation (6.39) as ΩF

2 (x) = 0, when
referring to fuel cell constraints found in all subproblems.

6.2.4 Battery

Battery capacities in terms of charge and discharge rates must not violate the maximum charge
and discharge capacities,

eB,Cha
sbt ηB ≤ ΓB,Max, s ∈ S, b ∈ B, t ∈ T, (6.42)

eB,Dis
sbt ≤ ΓB,Max, s ∈ S, b ∈ B, t ∈ T. (6.43)

The energy stored in the batteries cannot exceed the storage capacity of the batteries,

eBsbt ≤ ΦB,Max, s ∈ S, b ∈ B, t ∈ T. (6.44)

Energy conservation in the battery system is expressed in Equation (6.45),

eBsb,t−1 + eB,Cha
sbt ηB − eB,Dis

sbt = eBsbt, s ∈ S, b ∈ B, t ∈ T0. (6.45)

At last, we include the non-negativity constraints on the variables related to the batteries,

eB,Cha
sbt , eB,Dis

sbt ≥ 0, s ∈ S, b ∈ B, t ∈ T, (6.46)

eBsbt ≥ 0, s ∈ S, b ∈ B, t ∈ T0. (6.47)

We denote the set of Equations (6.42) - (6.44), and (6.46)-(6.47) as ΩB
1 (x) ≤ 0, and Equation

(6.45) as ΩB
2 (x) = 0 when referring to battery constraints found in all subproblems.
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6.2.5 Power Transmission

Power delivery day-ahead rDah
st , and intraday rInt+st cannot not violate the transmission capacity

between the offshore hub and the mainland power grid. In time periods with promised day-
ahead deliveries T̄Dah, the sum of day-ahead and intraday power transfers cannot exceed the
cable capacity. A separate constraint holds for time periods without day-ahead commitments,
but forecasted day-ahead decisions T̂Dah. The intraday market is not modeled over T̂Dah, thus
intraday market operations are not included.

rDah
st + rInt+st ≤ PMax, s ∈ S, t ∈ T̄Dah, (6.48)

rDah
st ≤ PMax, s ∈ S, t ∈ T\T̄Dah. (6.49)

Power markets decisions are defined as non-negative variables,

rDah
st , rInt+st ≥ 0, s ∈ S, t ∈ T̄Dah, (6.50)

rDah
st ≥ 0, s ∈ S, t ∈ T\T̄Dah. (6.51)

We denote the set of Equations (6.48) - (6.51) as ΩT
1 (x) ≤ 0 when referring to power transmission

formulations found in all subproblems.

6.3 Energy Flows

As multiple sets are incorporated throughout the planning horizon, slight modifications are made
to the energy balance equation at various time intervals. In the case where both TE and T̄Dah

apply, the energy balance equation for the system model the true electrolyzer set and intraday
sales. Equation (6.52) is a general formulation modeled in all subproblems. However, when solving
a subproblem with first-stage intraday decisions, TE and TH+1 overlap, as illustrated in Figure
6.1. Equation (6.52) is therefore not valid over TH+1, and must be omitted. On the left side of
the equation, the wind energy availability, battery discharge to the system, and fuel cell electricity
production must be accounted for by all energy-consuming processes listed on the right side,
including total batteries charging, energy shedding, day-ahead delivery, intraday sales delivery, and
total consumption by transitions, production and auxiliary processes associated with operating the
electrolyzers.

ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst =

∑
b∈B

eB,Cha
sbt + eShed

st + rDah
st + rInt+st +

∑
ε∈E

[
ET E(zUp

sεt + zDown
sεt ) + eEsεt +mEH2

sεt γAux
]
, s ∈ S, t ∈ TE\TH+1. (6.52)

For the remaining time periods that involves day-ahead commitments, the only difference is that
the set E is replaced by EAgg,

ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst =

∑
b∈B

eB,Cha
sbt + eShed

st + rDah
st + rInt+st +

∑
ε∈E,Agg

[
ET E,Agg(zUp

sεt + zDown
sεt ) + eEsεt +mEH2

sεt γAux
]
, s ∈ S, t ∈ T̄Dah\TE. (6.53)

In the remaining time periods of the planning horizon, there are no day-ahead commitments and
thus no intraday decisions to be made. Equation (6.54) is the energy balance equation over T̂Dah.
The constraint is identical to the one above, except that the term related to intraday sale is left
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out.

ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst =

∑
b∈B

eB,Cha
sbt + eShed

st + rDah
st +

∑
ε∈E,Agg

[
ET E,Agg(zUp

sεt + zDown
sεt ) + eEsεt +mEH2

sεt γAux
]
, s ∈ S, t ∈ T̂Dah. (6.54)

We denote the set of Equations (6.52) - (6.53) as ΩSys
2 (x) = 0 when referring to energy flow

formulations found in all subproblems.

6.4 Day-ahead Market

The expected future day-ahead deviation ∆Dah
st depends upon the realization of wind power genera-

tion in D + 1 in constraint (6.55). Given the first-stage day-ahead variables, rDah
t . This constraint

is unique for the day-ahead clearing subproblem and replaces the general energy balance constraint
(6.54).

∆Dah
st =

∑
b∈B

eB,Cha
sbt + eShed

st + rDah
t +

∑
ε∈TE,Agg

[
ET E,Agg(zUp

sεt + zDown
sεt )+

eEst +mEH2
sεt γAux

]
− ÊWind

st −
∑
b∈B

eB,Dis
sbt − eFst, s ∈ S, t ∈ TD+1.

(6.55)

The first-stage day-ahead decisions cannot exceed the transmission cable capacity,

rDah
t ≤ PMax, s ∈ S, t ∈ TD+1. (6.56)

In subsequent subproblems, the first-stage decisions rDah
t , t ∈ TD+1 are input as parameters, r̄Dah

t .
Recourse actions for the day-ahead market is modeled in Equation (6.57). Equation (6.57) includes
the actual day-ahead delivery, any intraday purchases made and the slack variable representing
any underproduction,

rDah
st + rInt−st + µDah

st = r̄Dah
st , s ∈ S, t ∈ T̄Dah. (6.57)

Non-negative constraints are imposed in constraint (6.58) on the day-ahead-related variables,

rDah
t ,∆Dah

st ≥ 0, s ∈ S, t ∈ TD+1. (6.58)

µDah
st ≥ 0, s ∈ S, t ∈ T̄Dah. (6.59)

We denote Equation (6.57) and (6.59) ΩDah
2 (x) = 0 when referring to the day-ahead constraint

that is found in all subproblems.

6.5 Intraday Market

Solving a subproblem at any time period hh:45 - h(h+1):00 involves determining the first-stage
intraday decisions for the next delivery hour t ∈ TH+1. Notice that the day-ahead clearing
subproblem at 11:45-12:00 contains both intraday and day-ahead first-stage variables. In TH+1,
the energy balance equation is modeled with an extra slack variable θ+st indicating an excess energy
production in the system, which is not penalized as opposed to the energy shed variable, when
day-ahead commitments are accounted for.
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ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst =

∑
b∈B

eB,cha
sbt + eShed

st + rDah
st + θ+st+∑

ε∈TE

[
ET E(zUp

sεt + zDown
sεt ) + eEst +mEH2

sεt γAux
]
, s ∈ S, t ∈ TH+1. (6.60)

Depending on the amount of surplus energy available for intraday commitments, the over-commitment
∆Int+

st , which is penalized in the objective function, under scenario s when submitting intraday
sale bids is expressed as

∆Int+
st = rInt+st − θ+st, s ∈ S, t ∈ TH+1. (6.61)

Since we adopt a rolling horizon approach the first-stage intraday variables, rInt+st for sales and
rInt−st for purchases, are input as parameters r̄Int+st and r̄Int+st in subsequent subproblems.

Constraint (6.62) accounts for the deviation between the actual intraday sales delivery and the
committed quantity, where µInt+

st denotes any underproduction.

rInt+st + µInt+
st = r̄Int+t s ∈ S, t ∈ T̄Int. (6.62)

Constraint (6.63) ensures that we can either trade sales or purchases in the intraday market, not
both,

δInt+st + δInt−st ≤ 1, s ∈ S, t ∈ T̄Dah. (6.63)

The intraday sale and purchase decisions are upper bounded by the parameters DInt+
t and DInt−

t ,
which are volume restrictions on intraday trading reflecting that the intraday market is trading
smaller volumes than the day-ahead.

rInt+st ≤ DInt+
t δInt+st , s ∈ S, t ∈ T̄Dah. (6.64)

rInt−st ≤ DInt−
t δInt−st , s ∈ S, t ∈ T̄Dah. (6.65)

Intraday purchases are financial costs and contractual obligations to trading counterparties. On
the other hand, the wind power producer has an active role in delivering intraday sales. Therefore,
non-anticipativity constraints in T̄Int for all subproblems are formulated for the intraday purchases,
but not for the actual intraday delivery, which is subject to wind power uncertainty.

rInt−st = r̄Int−t , s ∈ S, t ∈ T̄Int (6.66)

Non-negative and binary restrictions are imposed on the intraday variables,

rInt+st , rInt−st ≥ 0, s ∈ S, t ∈ T̄Dah. (6.67)

δInt+st , δInt−st ∈ {0, 1}, s ∈ S, t ∈ T̄Dah. (6.68)

µInt+
st ≥ 0, s ∈ S, t ∈ T̄Int. (6.69)

θ+st,∆
Int+
st ≥ 0, s ∈ S, t ∈ TH+1. (6.70)

We denote the set of Equations (6.63) - (6.65), (6.67) and (6.69) as ΩInt
1 (x) ≤ 0, Equation (6.62)

as ΩInt
2 (x) = 0, and Equation (6.68) as ΥInt(x) ∈ {0,1}, for later convenience.

6.6 Objective Function Terms

The term IDah
s summarizes the income generated from day-ahead market contracts and non-

contractual day-ahead decisions under scenario s,.

IDah
s =

∑
t∈T̄Dah

pDah
t r̄Dah

t +
∑

t∈T̂Dah

p̂Dah
t rDah

st . (6.71)
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The net income from intraday market operations under scenario s is the sum all contractual
arrangements in T̄Int, and non-contractual operations in time periods with day-ahead obligations,
T̄Dah.

NIInts =
∑

t∈T̄Int

p̂Int+st r̄Int+t − p̂Int−st r̄Int−t +
∑

t∈T̄Dah\T̄Int

p̂Int+st rInt+st − p̂Int−st rInt−st . (6.72)

The term DCs represents the total default cost from under-delivery in scenario s of power market
commitments in T̄Dah and T̄Int, respectively.

DCs =
∑

t∈T̄Dah

−λDahµDah
st

∑
t∈T̄Int

−λInt+µInt+
st , (6.73)

Separate expressions for the expected future default cost for the day-ahead and intraday market
are defined. Any over-commitment, in TD+1 or TH+1, is penalized by a default cost rate of λDah

and λInt per unit MWh accordingly,

DCDah
s =

∑
t∈TD+1

−λDah∆Dah
st , (6.74)

DCInt+
s =

∑
t∈TH+1

−λInt+∆Int+
st . (6.75)

The total cost of energy shedding in the planning horizon under a given scenario is captured by
CShed

s ,

CShed
s =

∑
t∈T

−λShedeShed
st . (6.76)

Batteries cannot charge and discharge at the same time. Instead of introducing more binary
variables a small penalty is imposed for charging and discharging in the objective function to make
sure it will never be profitable to discharge and charge in the same time period,

CB
s =

∑
b∈B

λB

[∑
t∈T

eB,Cha
sbt + eB,Dis

sbt

]
. (6.77)

Finally, we include hydrogen sales in scenario s over the entire planning horizon of the subprpoblem,

IH2
s =

∑
t∈T

ηH2pH2
t rH2

st . (6.78)

6.7 Non-anticipativity Constraints

Decisions in the current time period are implemented by the wind power producer. Non-anticipativity
constraints are required for several variables, but not all, because variables are interlinked. One way
of defining non-anticipativity constraints in order to reduce the number of additional constraints,
is to make the variable take the average value across all scenarios. For simplicity, a vector X

defines the variables, represented as Xi, that requires non-anticipativity constraints in the current
time period,

X =
[
eEsϵt, e

B,Cha
sbt , eB,Dis

sbt , eFst, r
Dah
st , rInt+st , rInt−st , rH2

st , ÊWind
st

]
.

For i = {1}, the non-anticipaitivity constraints are

Xi

∣∣
s=s∗

=
1

|S|
∑
k∈S

Xi

∣∣
s=k

, s∗ ∈ S, ε ∈ E, t := 1. (6.79)
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For i = {2,3}, the non-anticipaitivty constraints are

Xi

∣∣
s=s∗

=
1

|S|
∑
k∈S

Xi

∣∣
s=k

, s∗ ∈ S, b ∈ B, t := 1. (6.80)

For i = {4,5,. . . ,9}, the non-anticipaitivty constraints are

Xi

∣∣
s=s∗

=
1

|S|
∑
k∈S

Xi

∣∣
s=k

, s∗ ∈ S, t := 1. (6.81)

For convenience, Equations (6.66), and (6.79) - (6.81) are label as ΩX(x) = 0, to represent
non-anticipativity constraints found in all the subproblems.

When solving a subproblem with first-stage intraday decisions, non-anticipativity constraints are
formulated for intraday sales and purchasing over TH+1, respectively, as

rInt+st =
1

|S|
∑
k∈S

rInt+kt , s ∈ S, t ∈ TH+1, (6.82)

rInt−st =
1

|S|
∑
k∈S

rInt−kt , s ∈ S, t ∈ TH+1. (6.83)

The observant reader noticed that the first-stage day-ahead variables in TD+1 defined in Equa-
tion (6.58) are scenario-independent in its formulation, and thus require none non-anticipativity
constraints.

6.8 Simplified Notation

For easier reading, we define the vectors Ω1(x), Ω2(x) such that

Ω1(x) =
[
ΩE

1 (x),ΩP
1 (x),ΩF

1 (x),Ω
B
1 (x),ΩT

1 (x),Ω
Int
1 (x)

]
(6.84)

Ω2(x) =
[
ΩE

2 (x),ΩP
2 (x),ΩF

2 (x),Ω
B
2 (x),ΩSys

2 (x),ΩDah
2 (x),ΩInt

2 (x),
]
(6.85)

A final formulation of the mathematical constraints that apply to all subproblems defined in the
rolling horizon algorithm, becomes [

Ω1(x)
]T ≤

[
0
]T

, (6.86)[
Ω2(x)

]T
=
[
0
]T

, (6.87)[
ΩX(x)

]T
=
[
0
]T

, (6.88)

ΥE(x)T ∈{0, 1}, (6.89)

ΥInt(x)T ∈{0, 1}. (6.90)

where T is the transposition operator.
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6.9 Subproblems with First-Stage Day-ahead and Intraday
Decisions

The day-ahead subproblem is solved in time period 11:45 - 12:00, and finds the first-stage day-
ahead and intraday decisions in T̄D+1 and T̄H+1 simultaneously. The complete mathematical
description of this subproblem is given below.

max
∑
s∈S

ps

[
IH2
s + IDah

s +NIInts +DCs +DCDah
s +DCInt+

s + CShed
s + CB

s

]
,

∆Dah
st =

∑
b∈B

eB,Cha
sbt + eShed

st + rDah
t +

∑
ε∈TE,Agg

[
ET E,Agg(zUp

sεt + zDown
sεt ) + eEst +mEH2

sεt γAux
]
− ÊWind

st −
∑
b∈B

eB,Dis
sbt − eFst, s ∈ S, t ∈ TD+1,

ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst = rDah

st + eShed
st + θ+st +

∑
b∈B

eB,Cha
sbt +

∑
ε∈TE

[
ET E(zUp

sεt + zDown
sεt ) + eEst +mEH2

sεt γAux
]
, s ∈ S, t ∈ TH+1,

∆Int+
st = rInt+st − θ+st, s ∈ S, t ∈ TH+1,

rInt+st =
1

|S|
∑
k∈S

rInt+kt , s ∈ S, t ∈ TH+1,

rInt−st =
1

|S|
∑
k∈S

rInt−kt , s ∈ S, t ∈ TH+1,

[
Ω1(x)

]T ≤
[
0
]T

,[
Ω2(x)

]T
=

[
0
]T

,[
ΩX(x)

]T
=

[
0
]T

,

ΥE(x) ∈ {0, 1},
ΥInt(x) ∈ {0, 1},

∆Dah
st ≥ 0, s ∈ S, t ∈ TD+1,

∆Int+
st , θ+st ≥ 0, s ∈ S, t ∈ TH+1.
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6.10 Subproblems with First-Stage Intraday Decisions

Subproblems starting in time period hh:45 - h[h+1]:00, finds the first-stage intraday decisions over
TH+1.

max
∑
s∈S

ps

[
IH2
s + IDah

s +NIInts +DCs +DCInt+
s + CShed

s + CB
s

]
,

ÊWind
st +

∑
b∈B

eB,Dis
sbt + eFst = rDah

st + eShed
st + θ+st +

∑
b∈B

eB,Cha
sbt +

∑
ε∈TE

[
ET E(zUp

sεt + zDown
sεt ) + eEst +mEH2

sεt γAux
]
, s ∈ S, t ∈ TH+1,

∆Int+
st = rInt+st − θ+st, s ∈ S, t ∈ TH+1,

rInt+st =
1

|S|
∑
k∈S

rInt+kt , s ∈ S, t ∈ TH+1,

rInt−st =
1

|S|
∑
k∈S

rInt−kt , s ∈ S, t ∈ TH+1,

[
Ω1(x)

]T ≤
[
0
]T

,[
Ω2(x)

]T
=

[
0
]T

,[
ΩX(x)

]T
=

[
0
]T

,

ΥE(x) ∈ {0, 1},
ΥInt(x) ∈ {0, 1},
∆Int+

st , θ+st ≥ 0, s ∈ S, t ∈ TH+1.

6.11 Subproblems without First-Stage Decisions

Subproblems that are purely modeling recourse decisions is reprsented by the complete formulation

max
∑
s∈S

ps

[
IH2
s + IDah +NIInts +DCs + CShed

s + CB
s

]
,

[
Ω1(x)

]T ≤
[
0
]T

,[
Ω2(x)

]T
=

[
0
]T

,[
ΩX(x)

]T
=

[
0
]T

,

ΥE(x) ∈ {0, 1},
ΥInt(x) ∈ {0, 1}.
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CHAPTER

SEVEN

IMPLEMENTATION AND INSTANCE GENERATION

The implementation phase encompasses various aspects, which are explored in this chapter. The
technical parameter values of the components in the energy system are highlighted in Section 7.1.
Section 7.2 gives an overview of the technical parameter model data and its implementation in
the rolling horizon framework. Hydrogen prices are described briefly in Section 7.3. Subsequently,
an overview of the data sets used for electricity prices is provided in Section 7.4. To generate
forecasts for electricity market prices, we demonstrate the forecast procedure along with relevant
model statistics. Section 7.5 presents the implementation process for wind power data, including
the generation of wind power forecasts and the creation of wind power generation scenarios. In
Section 7.6, we delve into the computational study, discussing all the test instances that were
conducted. In Section 7.7, we provide details about the hardware and software utilized for the test
instances, and also discuss solver attributes.

7.1 Technical Data on System Components

7.1.1 Electrolyzer Data

The energy system needs to accommodate the maximum power generation by the wind farm,
necessitating a combined capacity of 1 000 MW for the electrolyzers and the transmission cable. As
a default configuration, both the electrolyzers and transmission cables have individual ratings of 500
MW each. 500 MW is used as a base value for electrolysis to determine the minimum and maximum
capacity ratings, and the energy cost from startup and shutdown processes per electrolyzer unit.
In addition, the modeling sets E and EAgg requires adjustments in the capacities. When in a
producing state there is a minimum energy requirement to operate the electrolyzers (Andrenacci
et al., n.d.). This lower limit is approximated by setting the minimum energy consumption to 10 %
of the rated capacity, which translates to 0.625 MWh as a lower limit, and 6.25 MWh as an upper
limit for E. For the set EAgg, the minimum and maximum bounds are 1.25 MWh and 12.5 MWh.
The energy consumption during transitions is taken to be the average of the energy consumption
between being idle and when operating at the minimum capacity, under the condition that these
processes are linear. This implies that startup and shutdown require 5% of the rated capacity,
which implies that electrolyzers in E require 0.03125 MWh and electrolyzers in EAgg require 0.625
MWh when starting up or shutting down. The determine the conversion rate between electrolyzer
power supply and hydrogen output, the nonlinear relationship in Figure A.2 has been approximated
as a linear curve y = ax+ b and then determining a and b. The Higher Heating Value (HHV) for
hydrogen is assumed to be 0.039772 MWh/kg, according to Jiang et al. (2021).
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Reading of the chart of Figure A.2, b ≈ 0 and a ≈ 0.64. Equation (6.12) and (6.13) become,

eEsεt =
HHV H2

0.64
mEH2

sεt , s ∈ S, ε ∈ E, t ∈ TE. (7.1)

eEsεt =
HHV H2

0.64
mEH2

sεt , s ∈ S, ε ∈ EAgg, t ∈ TEAgg

. (7.2)

Reformulation of Nonlinear Constraints

The current electrolyzer formulation is nonlinear because of the startup penalty in Equations (6.1)
and (6.3). Both constraints are reformulated in order to keep the model linear. A product of
two binary variables σ1, σ2 is reformulated into a linear equivalent by introducing a third binary
variable x, demonstrated in Equations (7.3) - (7.5).

σ1 · σ2 = x, (7.3)

σ1 + σ2 ≥ 2x, (7.4)

σ1 + σ2 ≤ 1 + x. (7.5)

Equations (6.1) and (6.3) in linear form becomes,

eEsεt ≤ ΓE,Max(δEsεt −
1

2
xE
sεt), s ∈ S, e ∈ E, t ∈ TE . (7.6)

eEsεt ≤ ΓE,Max(δEsεt −
1

2
xE
sεt), s ∈ S, e ∈ EAgg, t ∈ TE,Agg. (7.7)

7.1.2 Pipeline Storage and Transportation Data

Equation (7.1) has been used to determine the maximum hydrogen production given 1 000 MW
electrolyzer capacity. It seems reasonable to assume that the pipeline would be dimensioned for
the highest possible power generation of the energy system, which is the installed capacity of 1
000 MW. This could be the outcome if the energy system was not integrated with the power
markets. Furthermore, it has been considered reasonable to assume that the maximum rate of
charge/discharge can be scaled simply as a function of time. Maximum hydrogen production in
terms of mass per time unit is thereby calculated as 4022.931 kg/quarter, 16 091.723 kg/h, 386
201.348 kg/day and 140.963 kton/year. This is according to Wind and Gas (2020) equivalent to a
pipe size of approximately 12 inches (30.48 cm) in diameter, which is also in accordance with the
work of Khan et al. (2021). Andersson and Grönkvist (2019) state that a pipeline with diameter
D2 = 1.4 m could store 12 tons of hydrogen per km of pipeline. The storage capacity of a 12 inch
pipeline is found by comparing the cross sections of pipelines with diameters 12 inch and 1.4 m,
and their respective cross sections are given by Equation (7.8) and (7.9).

π ·D2
1

4
= 0.0730m2, (7.8)

π ·D2
2

4
= 1.539m2. (7.9)

Since the pipeline of 1.4 m diameter could store 12 tonnes of hydrogen per 1000 m, the pipeline
storage capacity for this project can be calculated as shown in Equation (7.10)

0.0730

1.539
· 12t/km = 0.569t/km. (7.10)

The location of the exiting end of the pipe is uncertain, but a pipeline length of approximately
217.5 km could allow for several possible locations along the coast of Southern Norway. This is
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valid under the assumption that the pipeline is roughly the same length as the distance measured
on a map, although it would be somewhat longer in real life. With a pipeline of length 217.5
km, the capacity of the pipeline can be estimated to approximately 123.8 tonnes. There are
many factors that affect the true storage capacity such as distance, pressure, temperature etc. The
approximation made here does however provide a sufficiently good estimate of the dimension of the
storage capacity. With 500 MW electrolyzers capacity at full production (2011.465 kg/quarter),
the energy system can produce at full capacity for 14.1 hours without discharging until the pipeline
is full. According to Khan et al. (2021), the energy system in our case study exhibits an outlet
pressure of approximately 18 bar. Reducing the outlet pressure below this threshold would result
in an increased mass flow rate. Although theoretically, the output pressure could be reduced
to 0 bar, it is more practical to consider atmospheric pressure (1 bar) as the minimum viable
pressure. Consequently, the discharge rate may exceed 4022.931 kg per time step Khan et al.
(2021). Furthermore, Khan et al. (2021) elucidates that the gas flow rate is proportional to the
square root of the difference between the squares of the input and output pressures. Specifically,
when the output pressure is set at 1 bar, the gas flow rate experiences a marginal increase of
less than 4% compared to an output pressure of 18 bar. Therefore, it is reasonable to assume a
charge/discharge rate of 4022.931 kg per time step, given the specified dimensions. Additionally,
based on the findings in Section 4.3.2, leakage losses are assumed to be 0.5%, implying a hydrogen
transfer efficiency of 99.5%.

7.1.3 Fuel Cells Data

Ballard (n.d.) is among many companies that provide fuel cell modules specifically certified for
marine applications, including vessel transportation. These modules exhibit a fuel peak efficiency
of 56 % and possess the flexibility to be scaled from a modest 0.2 kW system to several MWs.
PowerCellution (n.d.) also offers systems that have been meticulously designed and developed in
compliance with maritime regulations. Their fuel cells demonstrate a net energy output of 200
kW, with reported fuel efficiency reaching 54 %. The peak efficiency is not reported for maximum
operating capacity. It is expected that the fuel cells will most likely be in full operation when
activated, a lower efficiency is deemed more appropriate. Reading from the graph in Figure A.3 in
the Appendix, which reports the efficiency and specific fuel consumption of their offered fuel cells.
The specific fuel consumption is taken to be 65 g/kWh, which translates to 0.01548 kg/MWh.
Considering the requirement for backup energy, the clustered fuel cell capacity is rated 40 MW,
as the fuel cell system will function in parallel with the batteries. The fuel cell modules are
interconnected in parallel and collectively treated as a single container unit, capable of delivering
10 MWh per specified time period.

7.1.4 Battery Data

Based on consultations conducted with battery experts regarding battery characteristics, the sys-
tem incorporates five battery packages with a total capacity of 40 MW. The BESS consists of con-
tainerized lithium-ion batteries arranged in a 40 ft. rack configuration (ECO Power, n.d.). These
units can be connected in parallel to achieve the desired overall capacity. Considering the variable
nature of wind power, a capacity of 40 MW is considered a reasonable smoothing capacity for the
batteries (personal communication with Hydepoint in the fall, 2022). To meet the requirement of
complete charging or discharging within a specific time period, the batteries have a C-rating of 4.
This corresponds to an aggregate maximum charge and discharge rate of 10 MWh per time period,
and 2 MWh for each battery. According to Schimpe et al. (2018), stationary lithium-ion battery
containers exhibit a round-trip efficiency of 70-80 %. Although the batteries themselves exhibit
high energy conversion efficiencies, auxiliary equipment significantly contributes to energy losses
at lower utilization rates. Considering the harsh marine environment in which the batteries are
situated, extensive auxiliary systems are expected to ensure safe operation. It is, however, worth
noting that batteries have been and continue to be extensively researched, with lithium-ion battery
efficiencies anticipated to improve in the future. An appropriate value of round-trip efficiency is
taken to be 0.85. The value of λB is determined to be 100 EUR/kg based on pretesting of the
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model and observing the charge and discharge patterns.

7.1.5 Auxiliary Systems Data: Desalination and Compression

Cummins (2021) reports that electrolyzers require 9 litres of water per kg of hydrogen. This
corresponds to an 11.11 % hydrogen recovery per kilogram of water. Ghaffour et al. (2013) reports
that the total energy required to desalinate 1 m3 of water is 10-16 kWh. Assuming an optimistic
value of 10 kWh, this results in a SEC per kg hydrogen produced in the desalination system as
0.0009 MWh/kg. Considering the available technology and the possibility of further advancements
of MSF, particularly in reheating, the achieved SEC reported in the next decade is probably even
lower. It makes, therefore, sense to assume that the more efficient systems today will soon be
average performing in the end of the decade. Khan et al. (2021) found that the input pressure
in the pipeline was set to 70 bar in the analysis of optimal pipeline design. By fixing the pipe
inlet pressure to 70 bar the SEC of the compressor will be constant as the pressure ratio between
the compressor inlet and outlet pressure is constant. PEMEL have an output pressure, which
is the inlet pressure to the compressor, of 30 bar (Cummins, 2021; Nel Hydrogen, 2021). With
the assumptions of adiabatic compression and pipeline inlet pressure fixed at 70 bar, which is
the compressor output pressure, compressor SEC of 0.7972 kWh/kg can be read from Figure 5.2.
In practice, mass flow is adjusted by changing the pressure difference between input and output
pressure in a pipeline. Thus, both pipe inlet and outlet pressure could be adjusted to find optimal
SEC for a given state, but this is out of the scope of this project.

7.1.6 Power Transmission Data

The examined energy system is interconnected with the onshore power grid via a transmission line
that has a capacity of 500 MW. This capacity corresponds to a power transfer capability of 125
MWh during each time step. Based on the studied articles in Section 4.3.2, the total energy losses
associated with the power transfer process are set at 5%, resulting in a transfer efficiency of 95%.

7.2 Model Data

This section describes the process and result of model data generation and its implementation in the
rolling horizon framework. System parameter estimation relies on guidance provided by industry
experts and information from literature studies. Hydepoint, the industrial partner providing tech-
nical support in this work, encouraged a 50 % split between transmission and electrolyzer capacity
for the system configuration. Key design parameters are given in Table 7.1.

Table 7.1: Key technical parameters of the system design.

System parameter Value Unit

Electrolyzer installed capacity 500 [MW]

Power transmission installed capacity 500 [MW]

Fuel cell installed capacity 40 [MW]

Battery installed capacity 40 [MW]

Pipeline installed capacity 123 800 [kg]

To accommodate the 15-minute time granularity, the design parameters of various components
need to be adjusted. This involves properly distributing the capacity among the units in the
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electrolyzer and battery sets. These additional design parameter values can be found in Table A.1
in the Appendix.

7.2.1 Boundary Conditions

Boundary conditions must be specified for the first problem instances that provide day ahead
commitments to the first subproblem in the rolling horizon. Also, the mathematical models in
the algorithm require input boundary conditions, at t = 0. The initial values are related to the
operational status of electrolyzers, hydrogen storage amount in the pipeline and battery state of
charge. The initial values are shown in Table A.7, also found in the Appendix.

7.3 Hydrogen Price

Prices in the current hydrogen market can range from 10 EUR/kg to 60 EUR/kg (Jovan & Dolanc,
2020). These prices are however not necessarily reflective of future market prices as a hydrogen
economy is not yet established and still relatively high production costs. The optimization model
presented in this thesis assumes a fixed unit price for hydrogen. This is, as described in 5.2
due to long-term HPAs that are expected. Several authors have studied the production costs of
hydrogen. Long-term productions costs could according to economic theory provide a basis for
long-term prices. Maggio et al. (2019) report that production costs ranging from 2 to 20 EUR/kg
have been used in research literature. Dinh et al. (2021) found that for their configuration of an
offshore energy system was only financially viable for hydrogen prices above 5 EUR/kg. There are
however several costs that the work in this thesis does not consider, as opposed to other literature
that considers overall profitability and investment decisions. Initial testing and observation of
preliminary results during the development of the model suggested that a hydrogen price of 4
EUR/kg could be reasonable starting point. Thus, the hydrogen price is set at 4 EUR/kg the base
case.

7.4 Electricity Prices

The data regarding electricity prices for bidding zone NO2 in the calendar year 2022 has been
gathered from both Nord Pool’s public website and through private access to Nord Pool’s database.
Prices are reported on an hourly basis for this particular bidding zone. In order to align with the
time granularity of 15 minutes, prices are duplicated across all time periods within each hour. The
implementation of electricity markets is discussed in the subsequent sections, starting with the
day-ahead market followed by the intraday market. Regression models for day-ahead and intraday
prices are constructed using the Julia software and leveraging the “GL.jl” library.

7.4.1 Day Ahead Market Data and Price Forecast

We examine the average value, variance, and standard deviation of the day-ahead prices per hour.
The day-ahead price for the third hour on 28.03.2022 is missing, and it has been replaced with the
average value of the prices for the corresponding hour of the previous and next day. Upon initial
investigation of the data set, clear seasonal patterns are evident, as depicted in Figure 7.1.
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Figure 7.1: Reported Day-ahead prices for the calendar year of 2022 by Nord Pool.

A comparison of the average day-ahead prices are found in Figure A.4 in the Appendix. It is
apparent that the price variation does not follow a typical pattern associated with the seasons.
The prices exhibit abnormally high prices during the summer, which can be attributed to the
energy crisis resulting from the energy deficit in Europe following the invasion of Ukraine. It is
worth noting that from the seasons’ definition and the provided data set, there is a smaller amount
of data available for the winter months compared to the other seasons, as data from January and
February 2023 is not included in the winter month’s data set. However, even with this limitation,
the highest prices are still observed in December although prices during the summer months are
exceptionally high. Since we are studying a relatively short time frame in the optimization model,
these effects are assumed to have an negligible impact. Additionally, a weekday effect is observed
in the data set, illustrated by Figure A.5 in the Appendix, as weekdays generally exhibit higher
prices compared to weekends.

The implementation of the expert-class auto-regressive model described in Equation (5.1) is carried
out and tested using the complete data set. A summary of model performance is provided in Table
7.2, while Table 7.3 presents the statistical properties of the explanatory parameters. The auto-
regressive model developed for this data set explains 81.3 % of the variance in day-ahead prices
in the first hour, which is sufficient precision for modeling. As observed in Figure 7.2 the auto-
regressive structure predicts the spot prices relatively well. The prices are continuously updated
for each subproblem, considering both the time periods with certain prices, denoted as T̄Dah, and
the time periods with uncertain prices, denoted as T̂Dah, as illustrated in Figure 6.1. For every
subproblem, the price vector is updated, and after the market clearing at 13:00 CET, actual prices
for day D+1 are included in T̄Dah. This approach allows the wind power producer to submit bids
based on a forecast of the day-ahead prices, which adds an element of realism to the modeling
process. When the respective time periods are solved, the wind power producer receives payment
based on the actual price, not the forecasted price used in the self-bidding process.
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Figure 7.2: Results from autoregressive structure with lags D-1,D-2 and D-7 trained on the complete data set.
Similar models are developed for each hour of the day.

Table 7.2: Regression statistics of the developed auto-regressive model developed to predict day-ahead prices for
hour 1.

Multiple R R squared Adjusted R square Standard error Observations
0.902 % 0.813 0.811 53.937 300

Table 7.3: Statistical properties of the regression parameters in the model used to predict day-ahead prices for
hour 1.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
β1,0 13.692 6.783 2.019 0.0444 0.343 27.042
β1,1 0.682 0.057 11.890 0.000 0.569 0.795
β1,2 0.182 0.060 3.018 0.003 0.063 0.300
β1,3 0.072 0.039 1.830 0.068 -0.005 0.150

7.4.2 Intraday Market Data and Price Forecast

The data set used for intraday prices does not include day-ahead data for the 25th of February
2022. To ensure the integrity of the data set, only data from the 26th of February 2022 onwards has
been utilized. The data set is then divided into separate files for selling and purchasing transactions
between bidding zone NO2 and other bidding zones. In each data set, the average price and traded
volume are calculated. Some hours in the calendar year have negative prices, which are replaced
with zeros. The calendar year contains several hours where no price information is available. This
leads to discontinuities in the data set, as depicted in Figures A.6 and A.8 found in the Appendix.
It is important to note that this does not indicate a price of zero if trades were to occur, but rather
reflects the reporting format. In order to maintain consistency within the data set, the open source
library Impute.jl in Julia software is utilized to interpolate and generate intraday prices for all the
missing hours. The modified data set, highlighting the interpolated data, is illustrated in Figures
7.3 and 7.4 below. Due to tail-effects resulting from the interpolation, the data set is restricted to
include data from the 1st of March 2022 until the 23rd of December 2022. To ensure consistency
between the day-ahead and intraday markets, only spot prices for the corresponding time periods
are included.
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Figure 7.3: Final time-series after recombining the original intraday buying prices time-series and the interpolated
time-series for 01.03.22 - 23.12.22
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Figure 7.4: Final time-series after recombining the original intraday selling prices time-series and the interpolated
time-series for 01.03.22 - 23.12.22

The intraday prices data set reveals interesting observations. Figure A.10, found in the Appendix,
illustrates the difference between day-ahead and intraday selling prices. In the earlier months of
2022, intraday selling prices tend to be lower than day-ahead prices. However, during the autumn
months, intraday selling prices surpass day-ahead prices. Conversely, the buying prices exhibit a
similar pattern, with higher values compared to day-ahead prices in the autumn months, and lower
values in the earlier months.

Comparing the total traded volumes between intraday and day-ahead markets reveals a significant
difference. The total volume traded intraday (selling) represents only 1.3% of the day-ahead
market volume. The largest disparity occurs on the 15th of March 2022, with intraday trading
volume at 551.1 MWh compared to the day-ahead volume of 201,402.30 MWh. Similarly, the total
purchased volume on the intraday market for the calendar year only accounts for 1.54% of the
day-ahead market volume. The most substantial difference occurs on the 7th of December 2022,
with an intraday volume of 1842.6 MWh compared to the day-ahead volume of 116,093.8 MWh.
To visualize the day-to-day variations between the markets, the reader is referred to Figures A.12
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for sales and A.13 for purchases, both found in the Appendix.

The auto-regressive model, as described in Equation (5.2), is utilized to forecast intraday prices.
Table 7.4 reports the regression statistics, showcasing its ability to explain 90.4% of the variation
in intraday selling prices for the first hour of the day. Both explanatory variables demonstrate
statistical significance, highlighting the strong correlation between the intraday price and the cor-
responding day-ahead price for the corresponding hour. To visualize the model’s performance,
Figure 7.5 plots the predicted intraday selling prices against the actual observed prices for the first
hour of the day throughout the year.
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Figure 7.5: Results from auto-regressive structure developed for predicting intraday sales prices and trained on
the complete data set. The graph illustrates the prediction of prices in the first hour of the day. Similar models are
developed for each hour of the day.

Table 7.4: Regression statistics on the auto-regressive model developed to predict intraday selling prices for hour
1.

Multiple R R squared Adjusted R square Standard Error Observations
0.951 0.904 0.903 38.832 297

Table 7.5: Statistical properties of the regression parameters in the auto-regressive model used to predict intraday
selling prices for hour 1.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
α1,0 28.040 4.682 5.988 0.000 18.825 37.256
α1,1 0.215 0.043 5.031 0.000 0.131 0.299
α1,2 0.949 0.019 51.262 0.000 0.912 0.985

7.5 Wind Forecasting and Scenario Generation

The model presented in this work uses wind power scenarios to model stochasticity. Scenarios
of future wind power production must therefore be generated. The central steps to generate
wind power scenarios are described here. Firstly, the wind data used in this thesis is presented.
Subsequently, a description of the wind forecasting and quantile forecasting techniques are given.
Finally, the wind power scenario generation method is presented.
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7.5.1 Wind Data

The data used in this thesis is acquired from The Norwegian Meteorological Institute (MET Nor-
way). MET Norway provides NWP forecast products for large parts of Northern Europe, especially
in Scandinavia. The particular product used in this thesis is the MET Nordic dataset. More spe-
cifically, the historical forecasts derive from the MET Nordic operational archive and the historical
weather data derives from the MET Nordic rerun archive version 3. The dataset contains a large
variety of information on historical forecasts and post-processed data on historic weather with one
hour resolution (MET Norway, 2023). Forecasts are available every 6th hour with forecast horizons
longer than 36 hours. Analyses of weather parameters are available every hour. Ideally, power
production data from an actual offshore wind would be used as historical data. This is however not
easily accessible due to the low amount of wind farms far offshore. The estimated and analyzed
data from MET Norway is a substitute for this data.

The dataset has a grid resolution of 1 km and data was extracted for the closest grid point
to 57°00’00.0”N 4°00’00.0”E. The extracted parameters are historical wind speeds and historical
forecasts of wind speeds between for 2021 and 2022. These parameters are however given for a
height of 10 meters, and offshore wind turbines are over 100 meters tall. Thus, all the extracted
data has been scaled up from 10 to 100 meters with a method used by Solbrekke and Sorteberg
(2022). The method is given by Equation (7.11), where α(t) is the hourly varying exponential
power law coefficient, and where vh2

(t) and vh1
(t) are recorded wind speeds at heights h2 and h1

for a given time t, respectively.

vh2
(t) = vh1

(t)

(
h2

h1

)α(t)

, (7.11)

The dataset made available in their work contains monthly values of the alpha exponent in the
period of 1996 to 2019 (288 values). This study period is however not the same as the data set
from MET Norway, and the exponential alpha cannot therefore not be applied directly to the MET
Nordic dataset. The exponential alpha values for 1996 to 2019 were averaged in order to create 12
exponential alpha values, one for each month. Thus, historical data and historical forecasts made
in month n were scaled with the corresponding exponential alpha value shown in Table A.5 found
in the Appendix. A turbine curve converts wind speed to wind power for a given turbine. The
turbine curve was empirically fitted with data from the dataset used by Kächele et al. (2022).

7.5.2 Wind Forecasting

Several methods have been used in this thesis in order to produce wind power scenarios. Pinson
et al. (2009) provided a comprehensive methodology to produce scenarios from historical data, and
the scenario generation process in this thesis is based on this work. The process from historical
data to scenarios can be divided into three major steps. The first step is the point forecasts, the
second step is the quantile forecasts, and the third step is the scenario generation procedure.

Point forecast describes a single prediction of a future outcome. This forecast does not convey
information about the distribution of the prediction error, which in many cases can be large.
As stated in Section 4.2.2, Hanifi et al. (2020) recommend hybrid methods for the 36-hour time
horizon this thesis considers. The forecasts in the database are updated every 6th hour and are
deterministic. The MET Norway Forecasts (MET-F) are in fact point forecasts of MET Norway
best prediction of future weather. The historic MET-F used in this work are updated every 6th

hour. The value of real-time observations of realized wind speeds in this 6 hour period is not
necessarily capitalized on as sudden unforeseen changes in wind speeds are not accounted for in
the forecasting model. Prediction errors, especially in the short term, could thus be substantial as
forecasts are not updated frequently.

Several authors have studied the performance of time series models for wind speed and wind power
forecasting. Grigonytė and Butkevičiūtė (2016) developed an ARIMA(3,1,1) model to forecast
wind power production with a time step of 1 hour and a forecasting horizon of 24 hours. Wang et
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al. (2018) developed an ARMA(4,1) model with a time step of 15 minutes and a forecasting horizon
of 24 hours. Based on relevant literature, an autoregressive model has been developed to provide
point forecasts over the 36-hour time period. While the long-term forecast error is relatively large
for AR models, these models have reportedly good performance in the short-term. AR models
are also relatively easy to implement and has low computational complexity. The AR model was
modelled with four lag terms. Bootstrapping has been applied to produce point forecasts after a
study of the residuals.

For real-time applications, MET Norway provides through MET Nordic operational real-time
hourly updated forecasts for the last three days. Furthermore, other third parties may poten-
tially also be used to receive forecasts on an on-demand basis. This implies that the AR model
used in this thesis would likely not be used in a real-life application. The AR was calibrated for a
dataset with 15000 data points and the description of the AR(4) model is presented in Table 7.6.
The AR model is used to forecast wind speed, and wind power values have been found with the
empirically fitted turbine curve available from Kächele et al. (2022). The two forecasting methods
are combined in a manner that is described in the next section.

Table 7.6: Statistical properties of the developed AR(4) forecasting model

Coef. Std. Error t Pr(> |t|) Lower 95% Upper 95%
Intercept 0.339 0.022 15.68 <1e-54 0.296 0.381
X1 1.039 0.008 127.26 <1e-99 1.023 1.055
X2 0.000 0.012 0.000 0.0283 -0.049 -0.003
X3 0.000 0.012 0.000 0.3377 -0.034 0.012
X4 0.000 0.008 0.000 <1e-05 -0.052 -0.020

7.5.3 Quantile Forecasting

Quantile forecasting is based on quantile regression models and have been used to quantify the
prediction error of the point forecasts. Spline basis functions have been implemented in order
to model the unknown non-linear relation between quantiles and forecasted power. In order to
account for a growing prediction error, which naturally occurs for both AR forecasts and NWP
forecasts, quantile parameters are computed for each individual horizon length. This approach
might lead to a problem called quantile-crossing. Quantile-crossing is a phenomenon that can
occur when quantiles are calculated individually, such as in this case. Constraints are added to
prevent quantile-crossing in the training set. Q is the set of quantiles, F is the set of all forecasting
length, and S is the set that contains all basis spline knots. Quantile estimators α and β are
calibrated for a given quantile θ ∈ Q and a given forecasting length f ∈ F. y is the realized power
value, x is the forecasted power value for the given forecasting horizon whilst b(x) is the natural
B-spline basis of x. The model is calculated over the training set T. u and v are dummy variables
used to linearize the minimization problem. q− denotes the value of the previously calculated
quantile and is activated after the first quantile for a given forecasting length has been calculated.
The quantile model in this thesis can be formulated as the following linear minimization problem:

minimize
∑
t∈T

θut + (1− θ)vt (7.12)

subject to yt − [αp − αn]−
∑
s∈S

bs(xt) [β
p
s − βn

s ] = ut − vt, t ∈ T, (7.13)

αp − αn +
∑
s∈S

bs(xt) [β
p
s − βn

s ] ≥ q−, t ∈ T, (7.14)

αp, αn, βp
s , β

n
s , ut, vt ≥ 0, t ∈ T, s ∈ S. (7.15)

α is defined as the difference between αp and αn, and βs is found in the same manner. The optim-
ization problem is solved for every quantile at every forecasting length, thus for every combination
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of θ and f . Thus, the output from this procedure is estimators α for every θ ∈ Q, f ∈ F and βs for
every θ ∈ Q, f ∈ F, s ∈ S. The estimators are used to estimate the quantile forecast q(θ, f) given
in Equation (7.16), where b(x) is the natural B-spline basis of forecasted power values x using the
same knots as in the parametrization of estimators.

q(θ, f) = α(θ, f) +
∑
s∈S

bs(x)βs(θ, f) (7.16)

Estimation of regression estimators with the current formulation of the quantile regression model
has a relatively high computational burden. Recalibration of α(θ; f) and βs(θ; f) at the beginning
of every subproblem in the rolling horizon model would reduce the time budget of 15 minutes
drastically. In order to reduce this computational burden, the quantile regression model has been
made static. This implies that the parametrization of the regression estimators is conducted before
the rolling horizon model is initiated. This could to some extent result in outdated regression
estimators, particularly in cases of extensive rolling horizon iterations and large seasonal variations.

Quantile regression estimators were parameterized for AR forecasts and MET-F individually. The
same dataset of 15000 data points used in the calibration of the AR(4) model was used for the
parametrization of the quantile regression estimators. The basis spline knots ranged from 0 to 1
with 0.1 increments. The quantile forecasts generated from the two forecasting methods indicated
that the MET Norway forecasts outperformed the AR-forecast in most cases. MET-F had super-
ior medium and long-term performance as well as a better ability to predict large future shocks
in power generation. However, while the MET-F predicted shocks to a greater extent, the AR
model demonstrated a substantial ability to respond to shocks. The ability to react to unexpected
large short-term variations in wind power production without large computational burdens could
become particularly useful as the MET-F is updated every 6th hour. Empirical observations of
the resulting quantile curves for both models suggested that switching from the AR(4)-model to
MET-F at a forecasting horizon of 4 hours could be sensible. A linear weighting scheme was imple-
mented in order to avoid “unnatural shocks” in the merging of the two quantile forecasting models.
The quantile forecasts of AR(4) and MET-F were weighted with a factor of 1-to-0 up until a fore-
casting horizon of 2 hours, 0.5-to-0.5 at 4 hours, and 0-to-1 at 6 hours and beyond. As previously
mentioned, the main focus of this work is not to create the most accurate forecasting methods,
but to have a reasonable set of scenarios to test the behaviour of the hydrogen production and
trade system. The proposed hybrid forecasting method should be subject to in-depth statistical
analysis, but this is not in the scope of this work. Figure 7.6 demonstrates quantile forecasts from
0 to 1 with 0.05 steps between quantiles.

Figure 7.6: Quantile forecast for a 36-hour forecasting horizon
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7.5.4 Wind and Power Scenario Generation

This section describes how historical observations and quantile forecasts are used to generate scen-
arios for the optimization model. Pinson et al. (2009) provides a method to generate scenarios
from probabilistic forecasts of wind power generation. The method factors in the structural in-
terdependence of forecasting error by introducing a multivariate Gaussian random variable. This
variable is defined by zero mean and a continuously updated empirical covariance matrix. Fur-
thermore, the method integrates the probabilistic distribution of forecasted power production to
generate scenarios.

The probabilistic forecasts required in the method by Pinson et al. (2009) are in this case quantile
forecasts. Quantile forecasts provide a nonparametric estimation of prediction intervals for future
realizations of wind power. A collection of quantile forecasts be seen as a discrete probability
distribution of possible outcomes. A curve can be fitted between each quantile and its corresponding
estimated power value to create a cumulative distribution function F . This operation is done for
every forecasting length. The cumulative distribution function denotes the probability of having
a power level p or lower at a given time. The uniformly distributed random variable Y describes
the possible return values of F , that are between 0 and 1. When Y is transformed into a normally
distributed variable for an entire forecasting length, a multivariate Gaussian variable denoted as X
is created. The multivariate Gaussian variable describes the interdependence between wind power
values in a time-series. X is a vector of normally distributed variables and is defined by a vector of
mean values µ and a covariance matrix Σ. The covariance matrix is recursively updated when new
observations of power production are registered, and an exponential memory loss scheme has been
applied in order to adjust for long-term variations. The recursive updating procedure proposed
by Pinson et al. (2009) is shown in Equation (7.17), where Xt is the observation of the random
variable X at time t which is used to update covariance matrix Σt with λ as the memory loss
factor.

Σt = λ

(
t− 2

t− 1

)
Σt−1 +

(
1 + λ

(
1

t− 1
− 1

))
XtX

⊤
t (7.17)

An element-wise division of Σ by σσ⊤ , where the vector σ contains the square root of the elements
in the main diagonal of Σ, is conducted to recalibrate the matrix. Scenarios are generated by
using a multivariate Gaussian random number generator with µ and matrix Σ to obtain X. The
steps described above are backtracked and the scenario generation method is summarized and
contextualized in Figure 7.7. The accompanied code provides a more detailed description of how
each step has been implemented as well as assumptions and adjustments that have been made.
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Figure 7.7: Map of the process flow of the scenario generation procedure

New scenarios are generated every quarter hour. As stated in Section 7.5.1, the dataset is of
hourly resolution. This thesis considers an optimization problem with a time resolution of 15
minutes. The hourly data has been converted to quarter hour values after the completion of all
forecast and scenario generation processes. The conversion was performed via the use of linear
interpolation. The conversion could have been done before the forecasting and scenario generation
processes, but this would create linear trends in the data that not necessarily exist. These trends
would have been captured by the autoregressive model as well as in the parametrization of quantile
estimators. Conversion after these processes was therefore considered to cause the least inaccuracy.
The covariance matrix is therefore only updated once an hour due to the hourly resolution of the
original dataset. Figure 7.8 shows the results of the scenario generation for 20 scenarios.
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Figure 7.8: Scenario generation of 20 scenarios

7.6 Test Instance Generation

The key objectives of the computational study is to assess the value of using a stochastic formula-
tion in regard to power market commitments and to study the behavior of the energy system. The
modeling of the stochastic nature of wind power generation is complex and results in a substantial
increase in problem size. In order to test the functionality and performance of the implemented
model, several test instances are created to illuminate the optimal model design parameters given
the available computational resources. Both model specific parameters and energy system para-
meters have been altered in the test instances in order to assess overall performance. Motivation
and description of the test instances are accounted for in this section. Modeling parameters for
the base case are described in Table A.6 in the Appendix. Technical parameters value of the base
case model are given in Table A.1 in the Appendix. Initial values for all test instances are stated
in Table A.7 in the Appendix. If not otherwise indicated, test instance parameters are the same
as for the base case.

7.6.1 Seven Days Operation

The base case is studied over a seven day period. An extended global planning horizon reveals
information on how the model performs over a longer time periods. Furthermore, this could
also disclose characteristics on energy system behaviour that is can not be captured over shorter
planning horizons. Furthermore, one week of operations allows us to study how the model deal
with hydrogen storage over a longer period of time. As shown by Falk and Hansen (2022), the
issue related to subproblem-endings in a rolling horizon framework could affect the behaviour of
the pipeline. This test, as opposed to a smaller testing period, can also to a greater extent capture
how variations of exogenous factors affect system behaviour over time. Such combinations can
for instance be large or small variability in both high wind power generation and power prices.
Operations over one week correspond to 672 iterations in the rolling-horizon framework. The
starting point of the seven day period is set at 08.10.2022:10:30.
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7.6.2 Number of Wind Power Scenarios

In stochastic programming it is important to determine a set of scenarios and corresponding prob-
abilities in such a way that the first-stage decisions have the hedging property. This is the ability to
hedge very well against outcomes not included in the scenario set (Narum, 2020). Such decisions
can also be thought of as robust solutions. The number of scenarios must be selected based on
a compromise between computational tractability and risk management. In general, the number
of scenarios increases the computational cost exponentially and thus impacts model performance.
As stated, varying the number of scenarios is a way to manage risk (Eyvindson & Kangas, 2016).
Effective risk management plays a crucial role when choosing between stochastic programming and
deterministic approaches. If operational risk is given a high priority, the need for several scenarios
is elevated. Consistent non-delivery of the agreed transferred amount of power can be interpreted
as an event of default by Nord Pool, which can lead to severe financial consequences. It is im-
portant to acknowledge this risk element when participating in power markets. The size of the
scenario set could influence how risks are taken into consideration by the model. The model has
been tested for 10, 20, 30, 40 and 50 number of wind power scenarios.

7.6.3 The Role of the Intraday Market

Renewable power producers are generally exposed to uncertain weather and variable production,
a risk that can be mitigated with accurate forecasts. The intraday market plays a significant role
in balancing the power system, as discussed earlier. Due to its importance, it can be interesting to
study how the system behaves when it has unlimited trading opportunities intraday, and also how
the system performs without access to the intraday market. The current intraday volumes may
not adequately represent the volumes anticipated in 2030, where renewable and variable energy
sources such as wind and solar are expected to constitute a significantly larger share of the energy
mix. The market is highly dynamic, and larger amounts of variable energy sources could further
increase volatility in market prices. The intraday market is an important mechanism to manage
under and overproduction. Other mechanisms such as energy storage systems can also contribute
to balancing the net energy position of the energy system. Fuel cells and battery both possess
risk-hedging properties, but only to a certain extent due to capacity limitations. Exclusion of
intraday operations could illustrate how the system responds to under- and overproduction, and
might indicate appropriate investment levels in fuel cells and batteries. Investigation the impact of
excluding intraday market operations can how reliant the energy system is on the intraday market
to fulfill its power purchasing agreements.

Hydrogen production is part of the European strategy, and sales are expected to be actualized
through HPAs. While this thesis has assumed constant hydrogen price and no delivery require-
ments, there will in real-life applications be a demand requirement for hydrogen production in
order to fulfill the HPAs. Although the contracts are assumed to be of long-term character, there
may be hourly, daily or even weekly demand that must be satisfied. The energy system may have
an excess of energy if the wind farm generates more power than can be used for hydrogen pro-
duction and day-ahead commitments. Energy shedding and curtailment will occur if the batteries
cannot absorb the excess energy and the energy system is without access to the intraday market.
Conversely, the energy system may need to reallocate energy to power market deliveries in cases
of low power production. Furthermore, under-delivery on day-ahead commitments may occur if
the generated power by the wind farm is less than the day-ahead obligations, the activation of
fuel cells cannot offset the deviation, and there is no access to the intraday market. Access to
intraday market may alleviate the consequences of energy surplus and deficit in cases where an
energy system with intraday trading opportunities cannot regulate itself. The role of the intraay
market is therefore tested in this instance. The model is solved for the base case with three different
cases of intraday trading. The first case consist of no access to intraday market, while the second
case is identical to intraday assumptions made for the base case. The model has in the third case
unlimited access to the intraday market.
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7.6.4 What-If Analysis of Capacity Limits

Capacity limits have an impact on the utilization of resources in the energy system. A what-if
analysis is performed to study the sensitivity of the proposed model to changes in capacities. This
test aims to provide insight as to how the system could have performed with different investment
decisions on capacity limits. It could be useful for decision-makers to understand the potentially
added value of upgrades in capacity limits and how the energy system and profitability would
benefit from early-stage capacity investments decisions.

Electrolyzer Capacity

In cases of wind power generation that exceeds day-ahead commitments, the excess wind power
production can be utilized in hydrogen production, intraday sales or battery charging. The energy
that cannot be absorbed by the system must be curtailed. If commitments to the day-ahead
market are robust in the sense that the first-stage decisions are very conservative, the system can
benefit from a higher electrolyzer capacity. Increasing the electrolyzer capacity could be one way
of dealing with overproduction and at the same time generate revenues from hydrogen sales. The
system performance has in this test been studied with electrolyzer capacities of 500, 600, 700, 800
and 1 000 MW.

Fuel Cell Capacity

Fuel cells provides the energy system the opportunity to convert hydrogen to electricity. This
option can be useful in cases of low power production where the model wants to increase in power
in the system to fulfill power market obligations or support hydrogen production processes. The
fuel cell capacity determines the maximum amount of hydrogen that can be converted to electricity
in each time period. The impact of the capacity limit is studied in this test with fuel cell capacities
of 40, 50, 60, 70 and 80 MW.

Power Transmission Capacity

The day-ahead market can generate large revenues for a wind farm owner. The power transmission
capacity determines the upper bound on how much electricity that can be sold to the power
market. M. Kjäll-Ohlsson (personal communication, October 28, 2022) expressed that a realistic
transmission line capacity could be somewhere between 300 and 700 MW for an installed offshore
wind power capacity of 1 000 MW. Thus, system behaviour has been tested for a power transmission
capacity of 300, 400, 500, 600 and 700 MW.

7.6.5 Electrolyzer Modeling - Number of Electrolyzers in E and Time
Periods in TE

The number of electrolyzers in E serves as a primary determinant of problem size. In order to
depict operational states and requisite ramping processes, multiple binary variables are associated
with each electrolyzer. Despite efforts to minimize this count while preserving realistic behavior,
employing the entire set of variables throughout the planning horizon may render the problem
computationally demanding within a given time limit. The proposed formulation introduces sym-
metry, which can be problematic as the solver may spend significant resources exploring isomorph
solutions; mathematically distinct yet practically identical solutions, due to the components being
identical. Consequently, an extensive enumeration tree may arise. To mitigate symmetry and
enforce an electrolyzer ordering to reduce solution times, lexicographic ordering constraints can be
implemented. However, predicting their performance proves difficult. Preliminary tests did not
demonstrate success in incorporating these additional constraints. Subproblems may prove chal-
lenging to solve optimally within the given time limit of 15 minutes or yield suboptimal bounds. To
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address the problem’s magnitude, the planning horizon has been divided into two parts: one set of
time periods representing the actual number of electrolyzers in the system and another set repres-
enting an approximation thereof based on available computational power. Rather than striving for
optimality in solving the ”exact problem,” which is typically unattainable, an alternative strategy
involves solving a slightly modified problem and exploring all solutions to identify an improved
solution. The complexity of the problem is also dependent on the number of time periods the
clustered set E is modeled, denoted as TE. This test instance aims to study the trade-offs between
accurate electrolyzer modeling and computational complexity. The model has been tested where
E takes represents 20, 50, 100, 150, 200 and 400 electrolyzers in addition to evaluating the model
with TE being 5, 10, 15, 20 and 25 time periods.

7.6.6 Hydrogen Price

Hydrogen has been assumed to be sold via HPAs. This is reflected by constant hydrogen prices.
Hydrogen prices are in combination with power prices central for decision-making by the model as
revenues between the sale of hydrogen and electricity are considered simultaneously. Changes in
hydrogen prices should alter the profitability of hydrogen production, and this test instances aims
to examine how the energy system is affected by changes in hydrogen prices. System behaviour is
evaluated with hydrogen prices of 2, 3, 4, 6, 8, 10, 15 and 20 EUR/kg.

7.6.7 Model Performance - Value of Perfect Information and Value of
the Stochastic Solution

Test instances that estimate PI and SS are generated. The stochastic framework introduces mod-
eling complexity and more importantly problem size, which makes the optimization models much
harder to solve. We estimate the value of perfect information to evaluate how much information
about future wind power generation the model is able to control. Then we estimate the SS in
order to determine how well the stochastic model performs in comparison to the deterministic
problem. The perfect information case is implemented by running the model using the realized
wind power generation over the global planning horizon. The EEV is calculated by modeling the
wind power generation point-forecast in the day-ahead clearing subproblem and the subproblems
with first-stage intraday decisions. The recourse subproblems are then solved using the scenario
description combined with the first-stage decisions found in previous time periods. Because the
pipeline storage can be quite different in the last time period for the different cases, we have to
account for the unsold hydrogen in the pipeline as well. EVPI and VSS is also separately estimated
when default costs are included.

7.7 Hardware and Software

All test instances have been conducted on the shared supercomputer cluster Solstorm, offered by
the Norwegian University of Science and Technology. Technical specifications of the hardware and
software is given in Table 7.7.
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Table 7.7: Technical specifications of modeling software and solver hardware.

Description Technical Specification

Type HP BL686 G7

Processor 4xAMD OPTERON 6274

GHz 2.2

Cores 64

Threads 64

Memory 128 GB

Disk 300 GB SAS 15’rpm

Compiler Julia

Compiler version Julia 1.8.2

Solver Gurobi

Solver version Gurobi 10.0

7.7.1 Solver Attributes

The proposed model is implemented with the Gurobi solver. It is fundamental that a solution can
be provided in less than 15 minutes – the wind power producer needs the production plan before
the next time period starts. Gurobi offers the opportunity to define model attributes such as a
time limit, which has been adopted for the computational study. It is by no means said that all
subproblems will use all of the 15 minutes, and could find significant sufficient solutions in shorter
times depending on the design parameters. A MIPGap can be defined in the solver. However,
setting a suitable gap MIPGap is hardly general to define as the computational study involves
different system design parameters, modeling formulations and thus different problem sizes. Initial
testing has indicated that good solutions are typically found fast.
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CHAPTER

EIGHT

COMPUTATIONAL STUDY

The test instances described in Section 7.6 have been implemented, test and analyzed. This
chapter presents and provides a discussion of the computational results. The aim is to study
both how the model presented in this thesis performs as well as assess the behaviour of an offshore
energy system with hydrogen production under uncertainty. Section 8.1 presents the computational
results. Section 8.2 discusses the computational results and provides managerial insights.

8.1 Results

In order to better communicate the value of stored hydrogen in the pipeline, hydrogen sales [EUR],
and net income are denoted with ”*” to highlight that we value the unsold hydrogen in the pipeline.
Accordingly, if net income is presented with ”*”, the unsold hydrogen is included. The same lo-
gic is applied when evaluating the value of perfect information and the value of the stochastic
solution, where ”objective function value*” indicates that the unsold hydrogen in the pipeline is
included, and ”objective function value**” is an extension of the former by also including pen-
alties on under-delivery in the day-ahead and intraday market, as well as cost of energy shed.
Percentages of revenues generated from hydrogen and electricity are based on net income. In this
part, the key observations are presented in the text. To view more details related to the tables in
each subsection, the reader is referred to the Appendix. To avoid confusion, curtailment is often
used interchangeably with energy shed. The same is true for under-delivery which is sometimes
used instead of actual deviation, which must not be mixed up with the expected deviation when
submitting bids. When referring to electrolyzer energy consumption, that includes the total energy
requirement, not just for a single electrolyzer.

8.1.1 Seven Days Operation

This test instance serves to provide insight in the behaviour of the energy system over a longer
time period. Table 8.1 summarizes the most central results for the base case tested over a week.
For the parameters in the base case, the model tends to favor participation in the power market
over hydrogen market participation. The model diverts almost one half more power to the day-
ahead market compared to electrolysis and hydrogen production. Furthermore, the revenues from
electricity sales are more than three times as large as the revenues from hydrogen production.
This suggests that access to power markets increases overall project profitability for the given
configuration. However, the costs from day-ahead deviation are not included in the net income.
The penalty for not delivering is set to a very high number in order to avoid contract breach, but
the real penalty that would incur is prone to uncertainty. Thus, the real net income for electricity
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sales would in practice be somewhat lower. In reality, the day-ahead deviation could be further
reduced by placing purchase orders in the intraday market with a high unit price. Furthermore,
participation in other power markets, such as various balancing and reserve markets, could be
activated in order to clear a power deficit that occurs after the closing of the intraday market. The
price achieved in these markets is uncertain, which makes the actual penalty for not delivering
ambiguous.

Table 8.1: Main results from applying the rolling horizon approach to one week of operation.

Description Unit Value
Day-ahead Commitment [MWh] 45 580.8
Actual Day-ahead Deviation [MWh] 2 167.0
Day-ahead Delivery Success [%] 95.2
Electrolysis [MWh] 31 306.1
Energy Shed [MWh] 6 447.1
Hydrogen Production [kg] 503 725.8
Hydrogen Sales* [EUR] 1 730 248.5
Day-Ahead Sales [EUR] 6 113 813.2
Net Income* [EUR] 7 755 543.9
Hydrogen Sales [%] 22.3
Electricity Sales [%] 77.7

The model is severely penalized for deviation in power sale commitments. This implies that it
would be beneficial for the model to avoid or reduce day-ahead deviation as much as possible.
System behaviour is therefore heavily influenced by day-ahead deviations, and it is natural to
commence the analysis of system behaviour by observing the day-ahead deviations. It is observed
in Figure 8.1 that a day-ahead deviation occurs in cases where the wind power is lower than the
day-ahead commitments. Moreover, it can be observed that day-ahead deviations do not occur
frequently over the one week period. However, when deviations first occur they are often of a high
value. The design of the energy system and the optimization model handle small deviations well,
but struggle to plan for and respond to large deviations.
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Figure 8.1: Illustration of the interplay between available energy resource, promised day-ahead deliveries and
incurred deviations.

Day-ahead deviations and behaviour of components in the energy system are inspected closer in
Figure 8.2. The activation of batteries, an intraday market and fuel cells demonstrate how various
components in the energy system could be used in order to reduce the day-ahead deviation. Fuel
cells are observed to be activated to either reduce or eliminate this deviation. From time period
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300 the model starts to drastically increase hydrogen storage levels, as can be seen in Figure 8.3.
The figure also suggests that there is always enough hydrogen stored in the pipeline for the fuel
cells to be activated and even operate at full capacity. Furthermore, it can observed in Figure
8.1 that a prolonged duration of low power generation initiates approximately at time period 400,
which explains the energy deficit Figure 8.2 for the same period. These observations could suggest
that the model is “stockpiling” hydrogen for future activation of fuel cells. The model is observed
to have fuel cells in continuous use for over 57 time periods in the period of lower power generation.
Over this period, the fuel cells consume approximately 34 tons of hydrogen that is converted to
power. One can observe that the fuel cells operate at maximum capacity whenever there is a
day-ahead deviation. They are operate when day-ahead deviation is zero. This implies that fuel
cells can be an important tool to minimize the penalties for unmet delivery.

The model considers the activation of fuel cells, batteries and intraday purchases simultaneously.
The main application area of the fuel cells is expected to be for deviation reductions. However,
the fuel cells could also be activated to support hydrogen production processes. Fuel cells operate
at almost maximum capacity at period 372 despite there being no energy deficit, meaning that
the wind power generation is high enough to deliver on the day-ahead contract. It appears that
the fuel cells have been activated in this period in order to prevent shutoff for some electrolyzers
and also activate several other electrolyzer units. Also, the fuel cells are activated in time period
66 to charge up batteries. This could be done in an attempt to hedge against future low power
production that one of the scenarios could describe.

0

20

40

60

80

100

120

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561 601 641

En
er

g
y 

[M
W

h]

Time Period [0.25h]

Mitigation of Actual Day-ahead Deviation 

Battery Discharge Intraday Purchase Fuel Cell Actual Day-ahead Deviation Energy Deficit

Figure 8.2: The figure illustrates how the model minimizes the penalty cost from under-delivery by activating the
fuel cells, batteries and purchasing power intraday.
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Figure 8.3: Hydrogen storage level in the pipeline during the 7 days operation of the energy system

The model generally decides to alternate between battery discharge, fuel cells and intraday pur-
chases during the studied time period. Practically, the model has the opportunity to use fuel
cells to generate more power in every time period, which is not the case for intraday purchases.
Intraday purchases in periods where fuel cell could be activated then indicate that the model often
prefers to buy power from the intraday markets instead of converting hydrogen to power. This
could be explained with relative price differences between intraday and hydrogen. As there is a
high conversion loss for hydrogen-to-power, the intraday price needs to be relatively large in order
to offset this loss. It is therefore often more profitable for the model to sell hydrogen compared
to activating fuel cells when intraday access is available. Batteries and intraday purchases allows
the energy system to increase the available energy, and when energy from these sources can be
used to fulfill the day-ahead contract, then the power from the wind farm can be used to produce
hydrogen.

Energy shed also conveys key information on overall system performance. Several large spikes in
energy shed can be observed in Figure 8.4. These spikes are due to electrolyzers being shutoff
instead of producing. This could seem counter-intuitive as it would more profitable for the system
to continue the production of hydrogen in this period, or that it might turn on electrolyzer and
produce at half the installed capacity. However, it could happen that the model in the current time
period has one scenario value with zero wind power generation in the subsequent period. There is
an energy cost associated with the shutdown of electrolyzers. This means that the model avoids
having this shutoff cost being potentially added as penalty in the subsequent period, as one of
the scenarios could indicate the possibility of zero power production the next period. This shows
that the model is highly sensitive to extreme fluctuations, especially cases of extremely low power
generation. This sensitivity is rooted in the high penalty for under-delivery.
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Figure 8.4: Electrolysis energy balance. The figure illustrates the electrolyzers operation during the studied time
period.

8.1.2 Changing the Number of Wind Power Generation Scenarios

The impact of the number of wind power scenarios is presented in Table 8.2. A general observa-
tion is that an increase in the number of scenarios do not necessarily incur systematic variations in
energy system performance, while the solution time expectedly increases. This could suggest that
the underlying scenario generation process may create ambiguous results in the different model
runs. The number of scenarios has several implications for the output of the scenario generation
procedure. Scenarios are drawn randomly based on a covariance matrix and quantile distributions.
A larger number of scenarios provides a more representative view on possible future realizations
of wind power as more values from the entire quantile distributions are drawn. Thus, the prob-
ability of having extreme values in one of the scenarios increases in proportion to the number of
scenarios. The presence of more extreme scenario values could be an explaining factor for what
may be considered inconsistent system behaviour. However, the behaviour tends to become more
prudential as more scenarios are added.

Table 8.2: Main results from running the optimization model with different number of wind power generation
scenarios.

Unit S = 10 S = 20 S = 30 S = 40 S = 50
Day-ahead Commitment [MWh] 16 110.5 16 428.8 16 322.7 16 369.4 16 644.9
Intraday Purchase [MWh] 184.2 231.7 256.7 276.0 303.4
Actual Day-ahead Deviation [MWh] 231.5 178.1 172.8 190.9 191.2
Actual Day-ahead Deviation [%] 1.4 1.1 1.1 1.2 1.1
Intraday Sale Commitment [MWh] 45.7 35.8 31.2 13.7 14.7
Battery Discharge [MWh] 111.0 82.7 98.2 93.1 100.3
Fuel Cell [MWh] 85.7 95.7 123.9 139.5 188.8
Energy Shed [MWh] 1 753.7 1 663.9 2 452.0 2 320.1 1 980.6
Energy Shed [%] 6.7 6.4 9.4 8.9 7.6
Hydrogen Production [kg] 134 857.1 131 513.9 120 794.8 123 688.6 126 165.3
Hydrogen Sales* [%] 25.7 24.7 23.0 23.3 22.8
Net Electricity Sales* [%] 74.3 75.3 77.0 76.7 77.2
Average Runtime [s] 21.5 55.1 87.7 118.9 171.2

As discussed in Section 8.1.1, the model is severely penalized for not delivering the agreed quantity
of power and this could interfere with the “true” value of having more scenarios. Since the penalty
of not delivering is relatively large, it could mean that it suffices with one scenario with very
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low power production in order to adjust itself against over-commitments. Again, as the number
of scenarios increases, it is more likely that the number of extreme scenarios could occur. The
high penalization could cause the model to hedge against the associated tail-distribution of over-
committing, especially in the day-ahead market. If the number of scenarios were to increase
infinitely there could theoretically be one scenario that projects zero power generation in every
future time period. The high penalty could then lead the model to choose the lowest possible
level of power market participation as it wants to avoid this penalty. The solution could in this
case become practically robust as it never risks over-commitments. It has been observed that
participation in the intraday market, more specifically intraday purchases, acts as a mechanism
to reduce day-ahead deviation. An increase in intraday purchases can be observed in Table 8.2
when the number of scenarios increases. Larger numbers of scenarios may capture more of the
wind power stochasticity as a wider span of future realization is represented through the various
scenarios. Variation in scenario values, and in this case short-term variation, could lead the model
to purchase more power from the intraday market. This would allow the model to hedge against the
lowest scenario power value for the upcoming time periods that will be locked for further intraday
trading. Fuel cell activity can also be observed to increase when more scenarios are included in
the model. A similar reasoning can be projected to the fuel cell behaviour.

There is an increasing trend in curtailment and it occurs periodically across different scenarios,
which raises concerns. The abrupt shutdown of electrolyzers is particularly puzzling, given the
availability of sufficient wind power for their operation. One possible explanation for this behavior
is that the current subproblem has least one wind power scenario which contains a sudden drop
in wind power generation for the subsequent time period. This becomes more likely with a larger
number of scenarios. To prevent potential delivery issues in the subsequent time period, the model
chooses to shut down all electrolyzers instead of running them at minimum capacity, ensuring
optimal performance for fulfilling day-ahead commitments. However, as the wind power rebounds
in the following time period, the model becomes fully capable of meeting the power demand.
Regrettably, the electrolyzers start up during this time and can therefore only produce for half of
the installed capacity, leading to significant curtailment as illustrated in Figure 8.5.
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Figure 8.5: Energy shed with different number of scenarios.

The fact that an increase in a number of scenarios increases the absolute number of low-power
scenarios could explain the increase intraday purchases and fuel cell activity. As the penalty is
substantial, low-power scenarios are heavily penalized and the model would want to avoid these
by intraday-purchases. It is therefore plausible that the model buys more from the intraday than
it needs to, meaning that it needs to shed the surplus energy. This could also explain the decrease
in intraday delivery. The model wants to avoid further penalties on unmet intraday deliveries
and therefore reduces these commitments. However, this is not necessarily consistent with the
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increase in day-ahead commitments. The fluctuating outcomes of random processes in the model
are therefore likely to have a large impact on model solutions.,

8.1.3 The Role of the Intraday Market

The role of the intraday market has been studied in order to assess the impact of intraday purchases
and sales on the model and energy system behaviour. Test results from three different degrees of
market access are presented in Table 8.3. It is observed when that relaxing the volume constraints
results in a substantial decrease in day-ahead deviations. Furthermore, energy shed is reduced con-
siderably which could be attributed to the increase in hydrogen production. Net income does not
increase with intraday trading due to costs associated with intraday purchases despite the increase
in hydrogen production. Fuel cell activity is significantly reduced when the model has higher access
to the intraday market. Higher intraday access also leads to higher average runtimes for the model.

Table 8.3: Key model results for different intraday market policies.

Unit No Intraday Access Limited Intraday Trading Unlimited Intraday Trading
Day-ahead Commitment [MWh] 16 423.4 16 428.8 16 426.9
Intraday Purchase [MWh] 0.0 231.7 4 250.0
Actual Day-ahead Deviation [MWh] 193.9 178.1 0.0
Actual Day-ahead Deviation [%] 1.2 1.1 0.0
Intraday Sale Commitment [MWh] 0.0 35.8 271.5
Intraday Sale Delivery Success [%] 0.0 100.0 100.0
Auxiliary Processes [MWh] 119.2 124.6 189.0
Electrolyzer Transitions [MWh] 203.7 195.0 50.6
Battery Discharge [MWh] 102.1 82.7 36.6
Fuel Cell [MWh] 109.5 95.7 1.5
Energy Shed [MWh] 1 852.5 1 663.9 1 019.5
Energy Shed [%] 7.1 6.4 3.9
Hydrogen Production [kg] 125 822.3 131 513.9 199 547.8
Hydrogen Sales* [EUR] 476 537.3 502 635.8 797 914.5
Net Income* [EUR] 2 032 794.6 2 037 856.0 1 892 034.4
Hydrogen Sales* [%] 23.4 24.7 42.2
Electricity Sales* [%] 76.6 75.3 57.8
Average Runtime [s] 53.8 55.1 453.2

It could appear counter-intuitive that the day-ahead commitments do not increase when the model
has larger access to the intraday market. This is predominantly due to the fact that the model
does not include decisions in the intraday market when day-ahead decision are made, as there is
a large uncertainty associated with forecasting intraday market prices for time periods relatively
far in the future. Under the condition that the day-ahead prices are always higher than intraday
prices, the model could in theory commit as much power as possible as it would always be able to
buy cheaper power from the intraday market and sell to the day-ahead market. However, arbitrage
situations could arise with unlimited intraday market access as there is no upper bound on day-
ahead commitments in the model formulation. This could theoretically lead to the trading of
infinitely high volumes. For the more general case, some probability distribution of intraday-prices
would be weighted against the known day-ahead prices in order to determine the optimal sale
quantity.

Energy shedding is influenced by a combination of factors such as price evaluations, the non-
reversible nature of intraday decisions, and the model’s objective to avoid under-delivery penalties.
One could expect that full access to intraday markets would eliminate the occurrence of energy
shedding. It would also be expected that the model could sell excess energy instead of curtailing it.
One possible explanation is that the model adjusts its energy allocation based on price evaluation.
It seems plausible that the model tends to purchase power in the intraday market if the intraday
buying price is lower, replacing the need to inject power into the grid. The energy system is however
not able to eliminate curtailment as shown in Table 8.3, which is can be surprising considering
the penalty associated with shedding. It is observed in Figure 8.6 that the model occasionally has
purchased power in a period where it experiences energy shedding. It is also observed that this
occurs at times where the generated wind power is at its maximum possible value, which would
be sufficient to cover both maximum day-ahead commitments and support maximum hydrogen
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production. When intraday decisions are made, which occur once every hour, they are non-
reversible and made prior to the realization of wind power production. Given that the day-ahead
commitment is fixed, the model anticipates the worst-case scenario and seeks to avoid under-
delivery of its market obligations when the wind power is anticipated to diminish. Unlimited
intraday trading can therefore contribute to high levels of energy shedding as it simultaneously
eliminates day-ahead deviations.
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Figure 8.6: This figure primarily illustrates the relationship between the day-ahead delivery (not shown), energy
curtailment, intraday purchases in regards to fulfilling day-ahead contracts.

Any extreme scenario with low wind power production would incentivize the model to purchase
large intraday volumes. Then, if the wind power generation is abundant at the time of delivery, the
power injection to the grid must decrease according to Equation (6.57) and as seen in Figure A.17,
as a net surplus power injection to the grid is prohibited. This happens to minimize the risk of
under-delivery, which, if realized, incurs a penalty of a factor of 1000 higher than from curtailment.
In comparison, the consequences of energy curtailment are considered less dramatic compared
against expected under-delivery. This could also explain why the model responds by maximizing
hydrogen production with unlimited access to intraday trading, as deviating from market contracts
is far more costly than curtailment. Moreover, intraday purchases are power injections into the
power system by other parties, freeing more available energy for other purposes, such as hydrogen
production. The model can balance risk mitigation and at the same time generate revenues from
the ”missing” energy that is supposed to be injected to the power grid. The model weights the unit
cost in the intraday market against the foregone revenues from producing hydrogen when deciding
on which power source to use for fulfilling the power market obligations. This artificial increase in
hydrogen production is a result of the intraday bidding process.

Furthermore, an increase in the upper volume bound on intraday sale and purchase causes con-
siderably higher activity in the intraday market than under a restricted trading scheme. This can
be observed from Figure 8.7 as intraday sales increase significantly when the energy system has
unlimited access to the intraday, and Figure 8.8 suggests the same for intraday purchases. The
same hours in the two cases are being traded, which is reasonable considering similar wind power
scenarios are modeled. The difference in intraday volumes signals that the ability to be able to
trade higher intraday volumes is substantially valued by the model. One would expect the model
to prioritize selling electricity in the intraday market rather than dedicating energy to hydrogen
production, especially considering the lower selling price for hydrogen and the efficiency loss in the
electrolyzer process. However, the increase in intraday purchases shows that the model is more
concerned about fulfilling existing power market obligations than generating more income in the
intraday market when access to the intraday market is granted. This concern also provides an
explanation of the higher frequency of intraday purchases compared to intraday sales.
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There are two concerns, however, regarding intraday sales. Firstly, when submitting intraday bids
at gate-closure time, the model take into account already engaged contracts. Failure to fulfill the
initial obligations incurs penalties, making it a first-priority to fulfill them. If the wind power
producer expects that intraday purchases will be required to meet the initial commitments, it
does not make sense to speculate in intraday sales, even at highly attractive prices. Secondly, it
is not possible to both sell and buy power in the same time period, forcing the model to choose
between the two. Additionally, selling power intraday would entail additional market obligations,
possibly requiring support from the fuel cell and battery in the upcoming delivery hour. Based
on the results, it is apparent that such behavior carries considerable risk. In summary, although
larger trading volumes in the intraday market lead to increased activity, the model faces challenges
and constraints when selling power intraday. Prioritizing intraday purchases to fulfill existing
commitments, the inability to simultaneously sell and buy power, and the risks associated with
additional market obligations all contribute to the model’s cautious approach to intraday selling.
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Figure 8.7: A comparison between the intraday sale commitments over the planning period for limited and
unlimited intraday trading policies.
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Figure 8.8: A comparison between the intraday purchase commitments over the planning period for limited and
unlimited intraday trading policies.
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The increase in intraday trading access has a notable impact on fuel cell activity. Considering
the efficiency loss of over 50% in fuel cells, it becomes apparent that it in many cases would be
more profitable to purchase from the intraday market to cover the day-ahead position rather than
activating fuel cells and incurring high losses from selling energy as hydrogen instead of electrical
power. As such, a sufficiently large intraday market could essentially render fuel cells obsolete,
replacing their role with market transactions. Fuel cells offer flexibility to energy systems with
limited market access, but their relevance diminishes when the market needs can be effectively met
through the intraday market. However, it should be noted that fuel cells still play a significant
role in reducing day-ahead deviations, particularly in scenarios with limited or no access to the
intraday market, as clearly shown in Figure 8.9.
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Figure 8.9: Plot highlighting the utility of fuel cells and batteries when the energy system is decoupled from
intraday market trading.

The fuel cells help mitigate costs associated with fluctuations in power generation and day-ahead
contracts. Given the substantial penalties involved, even minimal activation of fuel cells can result
in significant cost savings, which underscores their importance in the overall energy system. Fuel
cells contribute to the optimization of energy systems when they are included as decision variables
in the bidding process. There is however a risk of over-commitment in relation to the purchases of
power in the intraday market, causing the system to curtail and receive penalties similar to those of
over-commitments in the day-ahead market. However, due to the absence of hedging options other
than batteries and fuel cells, intraday sales are not as attractive. Consequently, the model avoids
taking excessive risks in over-committing to intraday sales, as it would require significant fuel cell
and battery capacity to secure both large day-ahead and intraday commitments, as mentioned
earlier.

It can be seen in Table 8.3 that the net income is lower for unlimited intraday trading compared to
no and limited intraday trading. This is due to the larger costs associated with intraday purchases.
However, the net income for unlimite intraday trading has not been adjusted for the costs of under-
delivery as opposed to no and limited intraday trading. A high penalty would reduce the net income
substantially and leave unlimited intraday traing as the best performing case. The inclusion of
intraday markets comes at the expense of higher computational complexity and longer solution
times. The sale of hydrogen takes a larger part of net income when the access to intraday trading
increases. This could be due to the model’s ability to compare intraday prices to hydrogen prices,
meaning that it directs wind farm power to hydrogen production and uses the intraday market
to fulfill the day-ahead contract. Again, the model is not allowed to use power from the power
markets to produce hydrogen, as this power cannot be guaranteed to be entirely renewable. Access
to the intraday market provides the model with more room to identify situations with degrees of
arbitrage.
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8.1.4 What-If Analysis

Increased Electrolyzer Capacity

Electrolyzer capacity is a central part in planning of investments. An analysis of the implications
of electrolyzer capacity could reveal impacts on operational revenues that are not captured in
NPV-analyses. The results are presented in Table 8.4. It can be observed that commitments in
the day-ahead market decrease with increasing electrolyzer capacity, in addition to decreases in
day-ahead deviation. Hydrogen production is increased, and the decreasing revenues from power
sale results in larger relative contribution to net income from the sale of hydrogen. The net income
is increasing, for cases with same day-ahead deviation, as electrolyzer capacity increases. Energy
shedding also tends to reduce with higher electrolyzer capacity.

Table 8.4: Key findings when studying the impact on system performance under different electrolyzer capacities.

Unit 500 MW 600 MW 700 MW 800 MW 1 000 MW
Day-ahead Commitment [MWh] 16 428.8 14 408.1 13 130.5 12 462.2 12 195.4
Actual Day-ahead Delivery [MWh] 16 019.2 14 182.2 12 990.1 12 335.2 12 071.3
Intraday Purchase [MWh] 231.7 173.5 133.5 120.1 117.2
Actual Day-ahead Deviation [MWh] 178.1 53.1 7.5 7.5 7.5
Actual Day-ahead Deviation [%] 1.1 0.4 0.1 0.1 0.1
Electrolyzer Transitions [MWh] 195.0 213.0 243.3 231.0 227.5
Battery Discharge [MWh] 82.7 112.7 83.0 46.7 22.0
Fuel Cell [MWh] 95.7 51.5 33.7 26.6 26.6
Energy Shed [MWh] 1 663.9 1 747.1 1 383.6 1 237.1 1 068.0
Energy Shed [%] 6.4 6.7 5.3 4.7 4.1
Hydrogen Production [kg] 131 513.9 158 025.4 182 022.9 194 857.3 201 970.4
Hydrogen Sales* [EUR] 502 635.8 619 618.3 719 892.4 772 580.9 800 932.8
Total Net Income* [EUR] 2 037 856.0 1 981 681.6 1 976 179.9 1 982 658.3 1 987 789.9
Hydrogen Sales* [%] 24.7 31.3 36.4 39.0 40.3
Net Electricity Sales* [%] 75.3 68.7 63.6 61.0 59.7
Average Runtime [s] 57.2 66.2 61.0 72.6 95.0

Increasing the capacity of electrolyzers has a noticeable impact on day-ahead commitments and
day-ahead deviation. As the electrolyzer capacity increases, there is a decrease in day-ahead
commitments, shown in Figure 8.10, and subsequently a lower day-ahead deviation.
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Figure 8.10: The change in day-ahead commitments as the total electrolyzer capacity changes. Higher electrolyzer
capacities are associated with lower day-ahead commitments.

The reduction in day-ahead deviation is also accompanied by a decrease in fuel cell and battery
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activity, likely due to the lower day-ahead commitments. When comparing the net incomes of the
500 MW capacity case to the net income generated with a capacity of 1 000 MW, a significant
decrease in day-ahead deviation is observed. The distribution of income also varies considerably
between the two cases, with hydrogen contributing 24.7% and 40.3% of the income in the base-
case and 1 000 MW capacity case, respectively. Notably, the day-ahead deviation remains the
same for cases with electrolyzer capacities of 700 MW, 800 MW, and 1 000 MW. This implies
that the net incomes of these cases can be directly compared. With that in mind, it is observed
from Table 8.4 that the net income increases as the electrolyzer capacity decreases, primarily due
to the corresponding increase in hydrogen production, visualized in Figure 8.11. As with higher
possibilities of obtaining income with hydrogen it is beneficial to have less exposure on the risks of
operating in the power markets, given the high price of under-delivery. For an investor, it would
be of interest to determine the cost of additional capacity and assess how much it would contribute
to revenue growth. However, it remains uncertain how expensive it is to offset the day-ahead
deviation in an ideal market scenario. The storage level develops quite differently in the analyses
as seen in Figure 8.12, requiring to consider the unsold hydrogen in the pipeline when determining
how total hydrogen revenues change between the cases which is captured in Figure A.19, as found
in the Appendix.
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platform.
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Figure 8.12: The graph illustrates how differently the storage amount in the pipeline is developing for the different
electrolyzer capacities.

It is important to consider the financial consequences of under-delivery and energy-shedding in
this particular test instance. A higher hydrogen production capacity does not necessarily mean
that hydrogen is prioritized over day-ahead sales. Instead, it could indicate that when power
market obligations are fulfilled, an opportunity to produce more hydrogen comes with higher
capacities. Operational risk could also play a part in the explanation of this model behaviour.
Day-ahead commitments carry more risk compared to hydrogen production, and an increase in
hydrogen production capacity could entail lower risk compared to day-ahead commitments yielding
approximately equivalent revenues from the same resources. Expansion of the production capacity
could allow the achievement of comparable revenues to lower electrolyzer capacities, even with
efficiency losses and price differences in consideration. It is important to note that although the
base-case capacity generates higher net income, the day-ahead deviation and energy curtailment,
as defined in the model, offsets these gains. This could potentially make the 1 000 MW capacity
more profitable in terms of net income from operations. However, the difference in day-ahead
deviation is not convincing enough to render any of the higher capacities as techno-economic viable
configurations from the observed penalties. If there any real-world mechanism to compensate
for this deficit, as there likely is through various power markets, the base-case capacity could
potentially earn roughly the same as the 1 000 MW capacity when the deficit is compensated at
competitive market prices, even though the other configuration requires a significant investment
in additional 500 MW electrolysis.

The expectation that increased hydrogen production capacity would lead to reduced energy shed-
ding seems reasonable in theory. However, in practice, this result is not consistently observed.
Despite having the capability to produce more hydrogen when market commitments are fulfilled,
it is still observed in Table 8.4 that curtailment remains significant. This discrepancy can be at-
tributed to how the model reacts to wind power scenarios with low power generation, as discussed
earlier. Similarly to the case in Section 8.1.2, the shutdown of electrolyzers could occur in or-
der to reduce expected day-ahead deviation in upcoming time-periods where one of the scenarios
involves low power generation. This model behavior is shown in Figure 8.13. If wind power gen-
eration increases again, the electrolyzers may not be able to consume all the energy, resulting in
curtailment. For instance, in the case of a 1 000 MW hydrogen production capacity, during time
period 52, the day-ahead commitment is 94.44 MWh, while the recorded power production is 203
MWh. Although the electrolyzers were operating at 90.75 MWh in the previous time period, they
completely shut down. The subsequent time period shows a power production of 191.1 MWh and
a day-ahead commitment of 125 MWh, indicating no specific reason to shut down the electrolyz-
ers unless a significant decrease in wind power production was anticipated by the model. This
behavior occurs inconsistently, but typically in time periods with high commitments as shown in
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Figure 8.13. Namely, operating in the hydrogen market does not entail the need for instantaneous
fulfillment of the obligations, and therefore requires less flexibility. On the other hand, operating
in the electricity market requires quite some level of flexibility, and the cost of flexibility might be
quite high. This justifies a higher involvement in the hydrogen market, when it is possible. One
would also anticipate a higher energy requirement from electrolyzer transitions with an increase
in capacity and the number of electrolyzers, as transitions make up a percentage of the capacity.
Despite the presence of more electrolyzers operating at higher capacity, energy requirement seems
only to slightly increase, but it is not a consistent observation.

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

En
er

g
y 

[M
W

h]

Time Period [0.25h]

Day-ahead Commitments Fulfillment
Electrolycer Capacity 1 000 MW

Wind Power Day-ahead Commitments

Electrolycer Energy Consumption Intraday Purchases

Energy Shed

Figure 8.13: Illustration that most importantly highlights the sudden energy shedding in regards to fulfilling
day-ahead contracts.

Fuel Cell Capacity

Fuel cells give the energy system the option to increase the energy availability in a given time
period. Additional energy can be useful for hydrogen production and particularly to reduce under-
deliveries. Results for different fuel cell capacities are shown in Table 8.5. Slight increase in day-
ahead commitments and relatively large decreases in day-ahead deviation is observed for higher
fuel cell capacities. Table 8.5 also also shows a reduction in hydrogen revenues despite a minor
positive trend in hydrogen production. Furthermore, energy shedding decreases for larger fuel cell
capacity, and so does the energy consumption by electrolyzer state transitions.

Table 8.5: Key findings from testing the model with different fuel cell capacities.

Unit 40 MW 50 MW 60 MW 70 MW 80 MW
Day-ahead Commitment [MWh] 16 428.8 16 458.0 16 489.0 16 531.8 16 578.3
Actual Day-ahead Delivery [MWh] 16 019.2 16 063.0 16 117.4 16 170.5 16 230.9
Intraday Purchase [MWh] 231.7 235.8 227.4 230.1 228.1
Actual Day-ahead Deviation [MWh] 178.1 160.0 144.8 132.1 120.1
Actual Day-ahead Deviation [%] 1.1 1.0 0.9 0.8 0.7
Electrolyzer Transitions [MWh] 195.0 182.5 185.0 175.6 165.0
Fuel Cell [MWh] 95.7 115.4 134.2 159.5 180.7
Energy Shed [MWh] 1 663.9 1 590.4 1 535.0 1 469.6 1 441.6
Energy Shed [%] 6.4 6.1 5.9 5.6 5.5
Hydrogen Production [kg] 131 513.9 132 534.5 132 680.7 133 589.6 133 535.8
Hydrogen Sales* [EUR] 502 635.8 501 609.0 497 305.0 494 395.6 488 688.7
Day-Ahead Sales [EUR] 1 556 594.7 1 560 282.3 1 564 015.6 1 568 425.6 1 573 472.4
Total Net Income* [EUR] 2 037 856.0 2 040 434.7 2 040 518.1 2 041 767.8 2 041 643.8
Hydrogen Sales* [%] 24.7 24.6 24.4 24.2 23.9
Net Electricity Sales* [%] 75.3 75.4 75.6 75.8 76.1
Average Runtime [s] 56.3 53.9 53.0 67.5 64.1
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A consistent marginal increase in day-ahead commitment volumes is observed in Table 8.5. Despite
the increase in total commitments, the absolute day-ahead deviation decreases, which is opposite
to the previously studied test instances. This observation is summarized by an increase in day-
ahead delivery success for an increase in fuel cell capacity. Fuel cells can lead to a higher ability
to deliver the committed amount of power in the day-ahead market. This again leads to reduced
penalties from contrct violations. Intraday participation shows no particular response to a change
in fuel cell capacity. There is however a noticeable decrease in energy shed when fuel cells have a
larger capacity.

There is a slight positive trend in hydrogen production when the capacity is increased. There
is however a decrease in the energy consumption for electrolyzer transitions with higher fuel cell
power ratings. This could indicate that fuel cells can prevent electrolyzer from shutting off in cases
of low realized power production. It could also be that fuel cells are considered when planning
future periods, where some scenarios could take zero as power value, and that the model plans
that fuel cells can be used to keep electrolyzers going if this scenario does in fact materialize. This
allows the model to prevent shutting of electrolyzers as the energy system can generate enough
power to keep them going. This situation also relies on how day-ahead commitments for such a
situation have been done, so that there is in fact more than enough power to fulfill the contract so
that power from fuel cells can be directed to the electrolyzers and not contribute to fulfilling the
contract.

This situation could also explain why the energy shed is considerably lower for high capacities.
The fuel cells can in fact prevent the electrolyzers from shutting down, meaning that there is no
reduction in hydrogen production capacity in the subsequent period. This leads to higher utilization
of the available energy and does in fact point towards fuel cells lowering energy curtailment and
promoting higher efficiency of the overall energy system.

Hydrogen sales are lowered when fuel capacity is increased. This could seem to be in contrast with
the increase in hydrogen production that is observed. However, the increase in fuel cell activity
implies that hydrogen is combusted in the fuel cells to generate electricity. An increase in day-
ahead revenues could point to this, as more electricity is delivered. The overall impact of fuel
cell capacity is negligible on the total net income. However, the day-ahead deviation decreases
meaning that the overall profits would increase for higher fuel cell capacities. This could explain
the fact that the ratio between hydrogen revenues and power revenues shifts slightly towards a
higher contribution from electricity sales.

Increased Power Transmission Capacity

Power transmission capacity is, like electrolyzer capacity, a fundamental decision in the investment
phase of the offshore energy system. Due to both material and installation costs, it is paramount
that the transmission capacity is dimensioned appropriately. The model performance when chan-
ging the power transmission capacity are seen in Table 8.6, and do have a large effect on the
behaviour of the entire energy system. Higher power transmission capacity results in a substan-
tial increase in day-ahead commitments, and thus electricity revenues, accompanied by higher
activation of fuel cells, intraday purchases and partly battery discharges. The day-ahead devi-
ation increases with transmission capacity nevertheless. While hydrogen production and hydrogen
sales decrease, energy shedding experiences non-systematic changes when transmission capacity
increases.
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Table 8.6: Key findings from the sensitivity analysis on transmission cable capacity.

Unit 300 MW 400 MW 500 MW 600 MW 700 MW
Day-ahead Commitment [MWh] 10 163.7 13 257.0 16 428.8 19 846.0 23 501.8
Actual Day-ahead Delivery [MWh] 10 078.0 13 051.9 16 019.2 18 983.3 21 566.3
Intraday Purchase [MWh] 81.7 150.3 231.7 354.9 459.1
Actual Day-ahead Deviation [MWh] 4.0 54.8 178.1 506.8 1 476.4
Actual Day-ahead Deviation [%] 0.0 0.4 1.1 2.6 6.3
∆ Day-ahead commitment [%] -38.1 -19.3 0 20.8 43.1
∆ Actual day-ahead deviation [%] -97.8 -69.3 0 184.5 728.9
Auxiliary Processes [MWh] 220.2 171.5 124.6 95.1 61.2
Electrolyzer Transitions [MWh] 225.8 179.3 195.0 105.5 70.1
Battery Discharge [MWh] 59.6 75.5 82.7 84.4 73.0
Fuel Cell [MWh] 27.3 50.9 95.7 305.6 489.7
Energy Shed [MWh] 1 155.5 1 487.7 1 663.9 982.8 892.8
Energy Shed [%] 4.4 5.7 6.4 3.8 3.4
Hydrogen Production [kg] 232 520.3 181 053.3 131 513.9 100 384.9 64 657.0
Hydrogen Sales* [EUR] 922 358.9 711 285.7 502 635.8 324 455.9 134 634.6
Day-Ahead Sales [EUR] 968 001.5 1 262 226.5 1 556 594.7 1 880 514.5 2 228 076.6
Cost Intraday Purchases [EUR] 9 481.0 16 994.6 26 041.9 38 694.8 50 051.0
Net Income* [EUR] 1 883 808.5 1 960 836.2 2 037 856.0 2 169 120.7 2 314 185.0
Hydrogen Sales* [%] 49.0 36.3 24.7 15.0 5.8
Electricity Sales* [%] 51.0 63.7 75.3 85.0 94.2
Average Runtime [s] 76.3 58.4 55.1 102.4 112.4

Day-ahead commitments increase drastically as transmission capacity increases (Figure 8.14) and
the system over-commits systematically, which is observed by the large increase in day-ahead
deviation, referred to Figure A.20 in Appendix, and decrease in delivery success. The increase
in intraday purchases, as shown in Figure 8.15, fuel cell activity and in most cases batteries are
responds in order to reduce the deviations. As a result from steadily higher over-commitments,
hydrogen production is reduced accordingly as power is being directed to the power markets to
fulfill the commitments. As over-commitments increase with higher transmission capacity, an
increasing amount of energy is diverted to avoid large penalties, sacrificing hydrogen production.
Systematic over-commitment unfortunately leads to systematic low levels of power available to
produce hydrogen, as seen in Figure A.21, also attached to the Appendix.
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Figure 8.14: Comparison of the day-ahead commitments made with different transmission cable capacities. Chan-
ging the transmission cable capacity significantly increases the day-ahead commitments.
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Figure 8.15: The total volume purchased intraday is compared under different transmission cable capacities.

It is observed in Table 8.6 that energy shedding both decreases and increases when the capacity
moves in either direction from the base case. As stated in Section 7.6.3, the combined total
installed capacity of power transmission and electrolyzer is 1 000 MW. The hydrogen production
in the ”300 MW”-case is more than three and a half time higher compared to the ”700 MW”-case,
despite the installed electrolyzer capacity only being less than two and a half between the two cases.
Furthermore, it is observed that energy consumption from electrolyzers transitions increases for low
transmission capacities. As energy shedding is heavily penalized, the electrolyzers become more
susceptible to transitioning between operating states to avoid incurred costs of energy shedding.
Another contributing factor is that the transition energy cost increases when electrolyzer capacity
increases as per reported in the previous section. The high day-ahead commitments could lead to
situations where all power needs to be directed to minimize day-ahead deviations, thus leaving little
available power for the electrolyzers and necessitating a shutdown of the electrolyzers. When it is
discovered that for instance, the power generation is above the day-ahead commitment, the model
suffers from reduced capacity due to the electrolyzers being shut off in the previous period. As
the energy system has more available energy for hydrogen production when the transmission cable
has low capacity, this could lead to substantial energy shedding. Furthermore, over-commitments
happen less frequently when the transmission capacity decreases. Lower capacity constraints would
decrease the probability of cases where the power generation is lower than the first-stage day-ahead
commitments. These factors, in combination with a higher electrolyzer capacity, lead to a higher
hydrogen production when transmission capacity is reduced.

It becomes apparent that when the model has a low power transmission capacity, it has a stronger
ability to effectively manage hydrogen production. According to this line of argument, the energy
shed should increase when power transmission capacity increases. This is however not the case
for transmission capacity above the base case. As stated above, the model systematically over-
commits when the transmission capacity is high. The upper bound on power sale is to a great
extent decided by first-stage day-ahead decisions as the intraday trading limit is a function of
the day-ahead commitments. As the model consistently commits larger volumes of power to the
day-ahead market, the upper bound on power sales increases as these are directly related to the
committed power day-ahead in Constraints (6.64) and (6.65). This implies that the model in
cases with higher power transmission capacity has a higher bound on power sales. The bound
on power sale becomes low in cases with low transmission capacity as the bound is limited by
the actual day-ahead commitment, despite potentially having a lot higher power generation than
what was planned for. This, in combination with electrolyzer capacity and shutdown implications,
causes higher energy shed in cases of lower transmission capacity and lower energy shed in cases
with higher transmission capacity. It is also important to factor in that the model does not have
the opportunity to participate in the intraday market at every time period, due to zero demand
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and/or supply. This could naturally increase energy shed as day-ahead commitment is fulfilled and
electrolyzers operate at maximum capacity.

The two effects described above impact the overall energy shed in opposite ways. For the studied
cases it appears that the effect of higher bounds on power sales reduces energy shedding to a greater
extent than stronger the effect of hydrogen production management, as the lowest energy shed is
found for a transmission capacity of 700 MW. Furthermore, low transmission capacity increases
the impact of hydrogen revenues on net income, and vice versa for electricity sales, as is to be
expected. The net income increases with transmission capacity, as shown in Figure 8.16. This
is likely due to the price differences between hydrogen and day-ahead power sale, as can be seen
in Figure A.18, and that these effects are enforced when the upper bounds are adjusted for each
market. However, the considerable day-ahead deviation found with higher transmission capacity
could infer substantial consequences on profitability in the end.
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Figure 8.16: With time the income from day-ahead operations under higher transmission cable capacities increases
at a high rate.

The model submits day-ahead bids 12-36 hours ahead of delivery and the wind power scenarios are
identical across all configurations for this particular test instance. Independent of the transmission
capacity, the cases face the same risk profile when submitting day-ahead bids, which is reflected
in the lowest producing scenario. To understand the increased electricity revenues and the strong
correlation with higher under-delivery, one must recognize the price difference between power and
hydrogen. This price difference, in combination with higher upper bounds on transmission capacity,
inevitably leads to higher bids inconsequentially on how the power generation actually develops
12-36 hours later.

8.1.5 Size of E

The number of electrolyzers directly affects how accurate electrolyzer behaviour can be modelled.
The larger size of E results in a higher granularity for the modelling of electrolyzers. The idea
behind varying the number of electrolyzers allows to study the trade off between more accurate
modelling and computational complexity. The results from increasing the number of electrolyzers
are presented in Table 8.7. The most important variables, such as day-ahead commitments and
deviation, hydrogen production and energy shed do not have a uniform behaviour in this test in-
stance. However, the average solution time increases substantially as the number of electrolyzers
increases.
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Table 8.7: Key findings from the sensitivity analysis on number of electrolyzers.

Unit E = 20 E = 50 E = 100 E = 150 E = 200 E = 400
Day-ahead Commitment [MWh] 16 428.8 16 429.9 16 427.5 16 428.3 16 427.7 16 428.6
Intraday Purchase [MWh] 231.7 243.0 236.0 247.0 237.6 252.1
Actual Day-ahead Deviation [MWh] 178.1 177.5 178.6 178.5 177.0 177.5
Actual Day-ahead Deviation [%] 1.1 1.1 1.1 1.1 1.1 1.1
Intraday Sale Commitment [MWh] 35.8 33.3 33.2 31.5 35.8 28.9
Auxiliary Processes [MWh] 124.6 131.6 132.5 131.4 129.6 134.9
Electrolyzer Transitions [MWh] 195.0 165.0 156.3 161.3 177.8 137.9
Battery Discharge [MWh] 82.7 84.3 89.9 82.4 76.5 84.9
Fuel Cell [MWh] 95.7 94.5 92.9 97.0 97.1 92.5
Energy Shed [MWh] 1 663.9 1 242.5 1 181.7 1 260.9 1 355.3 1 058.7
Energy Shed [%] 6.4 4.8 4.5 4.8 5.2 4.1
Hydrogen Production [kg] 131 513.9 138 967.8 139 880.2 138 725.5 136 779.6 142 365.7
Hydrogen Sales* [EUR] 502 635.8 532 665.3 536 719.7 531 047.0 523 245.8 546 699.6
Day-Ahead Sales [EUR] 1 556 594.7 1 556 695.9 1 556 537.9 1 556 623.7 1 556 546.9 1 556 651.4
Net Income* [EUR] 2 037 856.0 2 066 316.9 2 071 333.0 2 063 567.0 2 058 054.1 2 079 222.3
Hydrogen Sales* [%] 24.7 25.8 25.9 25.7 25.4 26.3
Electricity Sales* [%] 75.3 74.2 74.1 74.3 74.6 73.7
Average Runtime [s] 54.3 71.1 90.4 119.3 145.8 300.8

The impact of increasing the number of electrolyzers leads to a higher allocation of activities in the
hydrogen market. While there is a slight increase in net income for larger electrolyzer sets, there is
no definitive trend; neither in intraday sales or purchases as the volume of intraday trades shows
both increases and decreases. Similarly, the day-ahead deviation does not provide a justification
for using larger sets. The behavior of the energy system appears to be consistent regardless of
the size of the electrolyzer set, which may be attributed to the dynamic operating point of the
electrolyzers. One would expect that a higher number of electrolyzers would offer more flexibility
in regulating hydrogen production, particularly in terms of ramping processes and transitioning
between states. A more detailed analysis of the electrolyzers’ behavior would help identify the
optimal number of electrolyzers needed to effectively switch states.

In cases where the system needs to shut down electrolyzers, the minimum energy requirement for
operating an electrolyzer with 200 units is 0.0625 MWh, while for 20 units, it is 0.625 MWh. If
there is only enough energy to operate an additional 0.50 MWh, the model cannot turn on an
electrolyzer in the set of 20 units. However, with 200 electrolyzers, it would be possible to turn on
8 electrolyzers. In theory, a higher number of electrolyzers provides more operational flexibility,
and although the overall results are inconsistent, there seems to be a decrease in energy shedding
with a higher number of electrolyzers. Although the solutions do not demonstrate noteworthy
differences overall, the amount of curtailment could be an indicator of the value of higher modeling
accuracy. It is important to keep in mind that the number of electrolyzers does not impact the
curtailment resulting from maximum electrolyzer production in situations with surplus energy in
the system.

Increases in the size of the true electrolyzer set do not seem to have a significant impact on model
solutions. The planning and consequences of day-ahead commitments appear to be the same across
all test cases. However, the model tends to increase the amount of energy allotted to hydrogen
production for larger electrolyzer sets, which leads to higher revenues from hydrogen sales. The
slight differences in variable values could also be attributed to the optimality gap, which varies
among the different cases. Additionally, it is worth noting that the solution time increases rapidly
as the set size increases. It is important to remember that the electrolyzer sets are modeled for
a total of five time periods. Preliminary testing did not give convincing results that increasing
this number of time periods is of any considerable value, and the solution times are likely to
increase exponentially if combined with a larger modeling set of the electrolyzers. It is uncertain
that utilizing larger electrolyzer sets would offer practical value to the model. A larger set of
electrolyzer could offer marginally better management of electrolyzer, but at the cost significantly
longer solution times. A potential increase in the size of the electrolyzer set must be considered
together with potential increases in other sets, such as number of scenario and number of time
periods with true electrolyzer sets. Increases in numerous sets would cause an exponential increase
in size, and there is a risk that solutions cannot be found within the real-life time limits. It can
also be concluded that the base case with a set size of 20 is a sufficient formulation, as there are
no significant differences in solutions compared to larger sets.
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8.1.6 System Performance with Different Hydrogen Prices

Changes in hydrogen price can affect revenues from hydrogen in two ways. A price change causes
a scaling of the revenue per unit hydrogen with all other things being equal. A change in hydrogen
price can also affect system behaviour as the model could favor hydrogen production instead of
power sale when relative price differences are taken into consideration. The results presented in
Table 8.8 suggest however that changes in overall system behaviour are small when compared to
the large relative changes in hydrogen price per kilogram.

Table 8.8: Key findings of system performance with different hydrogen prices per kilogram hydrogen.

Unit 2 EUR 3 EUR 4 EUR 6 EUR 8 EUR 10 EUR 15 EUR 20 EUR
Day-ahead Commitments
Day-ahead Commitment [MWh] 16 441.7 16 441.7 16 428.8 16 292.9 16 129.6 16 117.6 16 075.7 16 069.1
Intraday Purchase [MWh] 228.1 228.1 231.7 238.2 237.7 240.2 251.5 248.5
Actual Day-ahead Deviation [MWh] 178.5 178.0 178.1 179.2 182.4 181.9 182.4 182.3
Actual Day-ahead Deviation [%] 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Auxiliary Processes [MWh] 120.9 122.9 124.6 124.4 126.1 129.5 127.1 132.9
Electrolyzer Transitions [MWh] 210.0 189.4 195.0 199.4 197.8 185.6 197.2 170.3
Battery Discharge [MWh] 79.8 82.5 82.7 88.5 98.6 101.9 93.8 98.1
Fuel Cell [MWh] 98.8 97.9 95.7 89.6 86.6 86.5 87.7 85.3
Energy Shed [MWh] 1 888.9 1 765.5 1 663.9 1 810.6 1 859.5 1 670.1 1 861.1 1 509.4
Energy Shed [%] 7.2 6.8 6.4 6.9 7.1 6.4 7.1 5.8
Hydrogen Production [kg] 127 587.2 129 721.3 131 513.9 131 284.2 133 123.0 136 682.9 134 206.6 140 253.0
Hydrogen Sales* [EUR] 243 102.8 371 205.6 502 635.8 754 989.5 1 022 885.5 1 314 003.0 1 932 930.8 2 700 710.6
Day-Ahead Sales [EUR] 1 557 467.7 1 557 470.9 1 556 594.7 1 545 171.5 1 528 890.2 1 528 164.4 1 523 954.7 1 523 529.6
Intraday Sales [EUR] 4 666.8 4 667.6 4 667.5 4 512.3 4 538.1 4 230.6 3 850.6 3 863.9
Net Income [EUR] 1 700 664.9 1 855 266.2 1 853 701.4 2 163 668.1 2 282 317.6 2 594 205.3 2 278 395.8 4 150 239.7
Net Income* [EUR] 1 779 429.1 1 907 533.6 2 037 856.0 2 278 292.1 2 529 873.6 2 819 771.8 3 432 844.6 4 200 387.7
Hydrogen Sales* [%] 13.7 19.5 24.7 33.1 40.4 46.6 56.3 64.3
Electricity Sales* [%] 86.3 80.5 75.3 66.9 59.6 53.4 43.7 35.7
Average Runtime [s] 58.1 58.6 55.5 57.5 57.0 58.3 54.9 56.8

It can be seen that the revenue contributions from hydrogen sales increase when the hydrogen price
increases. This is expected as the scaling of hydrogen unit price scales the revenues correspondingly
with all others being equal. It can also be seen that total day-ahead commitments tend to decrease
when hydrogen price increases, and logically, electrolyzer power consumption increases. The power
consumption of electrolyzers increases when hydrogen prices increase. The increase in the amount
of produced hydrogen is however relatively small. Thus, the monetary increase in hydrogen sales is
driven by the scaling of revenues and not a large increase in hydrogen production. It appears that
the direct sale of electricity remains more profitable for hydrogen prices up to 20 EUR/kg. This
could seem counter-intuitive at first as the relative hydrogen price is considerably larger than the
power prices. The decision between selling power and selling hydrogen is based on the relative price
differences between the periods. The hydrogen price remains constant throughout the test period
while power prices vary. A higher hydrogen price would increase the number of situations where
hydrogen is relatively more profitable compared to power market sales. 20 EUR/kg is however
relatively higher than every power price in the studied time period. This implies that it is not
relative price differences that result in large commitments in the day-ahead market. It is however a
possibility that the production of hydrogen does not increase significantly due to capacity limits on
production. Thus, the true value and implications of higher hydrogen prices on system behaviour
is not necessarily captured by only varying the hydrogen price without other changes in energy
system design.

8.1.7 Value of Perfect Information

The results of the perfect information case is given in Table 8.9 together with the results of the
stochastic solution.
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Table 8.9: Comparing the objective function values of the perfect information solution and stochastic solution
together with key system performance metrics.

Unit Perfect Information Stochastic Solution
Objective Function Value [EUR] 1 947 099.1 1 853 733.2
Objective Function Value* [EUR] 2 208 027.9 2 037 887.8
Objective Function Value** [EUR] 2 206 680.9 -177 737 990.8
Day-ahead Deviation [MWh] 0.0 178.1
Intraday Sale Deviation [MWh] 0.0 0.0
Energy Shed [MWh] 1.3 1 663.9

Without consideration of the unsold hydrogen in the pipeline, the EVPI is

EV PI = PI − SS = (1 947 099.1− 1 853 733.2) EUR = 93 365.9 EUR, (8.1)

or 5.0 % better. If we include the value of the unsold hydrogen but no default cost, the EVPI is

EV PI∗ = PI∗ − SS∗ = (2 208 027.9− 2 037 887.8) EUR = 170 140.1 EUR. (8.2)

In other words, the perfect information solution is 8.4% better than the stochastic solution. Con-
versely, when accounting for the default cost from under-deliveries, the EVPI becomes

EV PI∗∗ = PI∗∗ − SS∗∗ = (2 206 680.9− (−177 737 990.8)) EUR = 179 944 671.7 EUR (8.3)

It is obvious that the perfect information case is better than the stochastic solution when including
penalties. Yet, the negative objective function value of the stochastic solution becomes dramatically
worse when including penalties, which stems from a high penalty cost in the model. As mentioned
earlier, that doesn’t suggest that 179 944 671.7 is the true value. In order to obtain the true
value one would need to investigate the real costs of eliminating the delivery deficit first, and then
compare the the two objective function values.

8.1.8 Value of the Stochastic Solution

The results of solving the expectation of the expected value problem is compared to the stochastic
problem is given in Table 8.9.

Table 8.10: Comparing the objective function values of the expected value solution and the stochastic solution,
and key system performance metrics.

Unit Expected Value Solution Stochastic Solution
Objective Function Value [EUR] 1 910 153.2 1 853 733.2
Objective Function Value* [EUR] 2 176 216.2 2 037 887.8
Objective Function Value** [EUR] -468 232 743.7 -177 737 990.8
Day-ahead Deviation [MWh] 470.1 178.1
Intraday Sale Deviation [MWh] 0.0 0.0
Energy Shed [MWh] 314.0 1 663.9

The VSS is computed according to Equation (2.13). When comparing the objective function terms,
as reported as net income without taking into account the cost of load shed or default cost from
power market contracts, the VSS is reported as

V SS = SS − EV = (1 853 733.2− 1 910153.3) EUR = −56 420.1 EUR (8.4)

When including the unsold hydrogen in the pipeline,

V SS∗ = SS∗ − EV ∗ = (2 037 887.8− 2 176 216.3) EUR = −138 328.5 EUR (8.5)

However, it is necessary to include the penalties for both the stochastic and the expected value
solution in order to make a fair comparison. The total shedding over the planning horizon is 1
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663.9 MWh and 314.0 MWh, respectively for SS and EV. The total day-ahead deviation over the
planning horizon is 178.1 MWh and 470.1 MWh, for SS and EV. Since the battery activation cost
is only for modeling and not representing any financial cost, it is not included.

V SS∗∗ = SS∗∗ − EV ∗∗ = (−177 737 990.8− (−468 232 743.7)) = 290 494 752.9 EUR (8.6)

The inclusion of penalties reveals that the stochastic solution outperforms the deterministic prob-
lem significantly. However, evaluating the value of the stochastic solution compared to the de-
terministic model is challenging due to the complexity of accurately estimating the true cost of
market penalties in the model. The value of 290 494 752.9 EUR serves as compelling evidence that
the stochastic solution is superior to the deterministic solution, by definition, and is a preferred
modeling choice, because it explicitly considers the risk of not meeting demand.
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8.2 Managerial Insights and Discussion

The model has been tested over shorter and longer time periods in order to reveal the modelled
behaviour of the energy system. Both modelling parameters and energy system design parameters
were manipulated to study the model under different operating conditions. The results presented
in Section 8.1 provides a foundation for the further analysis of model behaviour and operational
performance made here. Projects similar to the energy system described in this thesis are to the
authors’ knowledge still in the investment phase. This has also been reflected in the available
literature on offshore hydrogen production, where a large part of the current research efforts stud-
ies profitability of such projects. Short-term optimization focuses on optimizing decisions in an
operational planning horizon. Models such as the one presented in this thesis would typically be
applied to a real-life case study to assess how the proposed solution would improve operations and
profitability. This is evidently not possible for this thesis due to the non-existence of operational
offshore energy systems with hydrogen production. The results of the work in this thesis can still
provide valuable insights for decision-makers. A study of the operational performance of the energy
system could give more accurate estimations of revenues and cash flows, which are often used in
NPV analyses to assess profitability of investment decisions. Furthermore, decision-makers could
receive valuable information on the operational implications for different installed capacities on
certain components. This suggests that the model presented in this thesis could be used iteratively
with project life-time profitability tools to optimize energy system designs.

This section intends to contextualize the results in order to provide value to decision-makers.
Several aspects and implications of the results in Section 8.1 are analyzed further in this section.
Additional test instances have been identified, generated and tested to provide more insight in
model behaviour. The results have been placed in both an operational and strategic context to
reveal the co-dependence of operational decisions and investment decisions in the investment phase
of a planning process. The assumption of being a price-taker in the power markets is discussed
in Section 8.2.1. The intraday bidding process is addressed in Section 8.2.2. The implications
of non-delivery in the power market on risk management are discussed in Section 8.2.3. A small
study of the energy system under no access to power markets has been conducted in Section 8.2.4.
The impact of the scenario generation method is explored in Section 8.2.5. A discussion of model
design and energy system design is undertaken in Section 8.2.6. Finally, the profitability of power
market participation is examined in Section 8.2.7.

8.2.1 Price-Taker Assumption

There are several important implications to consider in regard to increased participation in intraday
markets. The model formulation is based on the price-taker assumption, which is the premise that
market prices are not impacted by the participation of the wind power producer. Although this is
a reasonable assumption for day-ahead market, intraday power prices within the current market
would be significantly affected by the substantial increase in supply and demand caused by an
energy system with unlimited intraday trading opportunities. The intraday market could in some
extreme cases become as large as the day-ahead market. However, the provided data set has
established that it is not typical to trade large volumes in the intraday market. Unlimited trading
volumes would have a profound impact on pricing and may even pose technical and physical
challenges in the management of such a large intraday market. The available transmission and
production capacity are also reflected by the observed prices in the data set.

It is however worth noting that power markets, including the day-ahead market, could experience
substantial growth in the coming years as a result of electrification efforts in many parts of Europe.
The German intraday market already offers quarterly products, which can reduce the potential
risks associated with trading surplus energy from the anticipated wind farm power within the
upcoming hour. As the proportion of variable energy sources in the energy mix rises, quarterly
products will progressively gain relevance in the Nordic Market. In this context, the possibility of
an “unlimited intraday trading” scenario becomes more plausible as the intraday market becomes
more liquid. Whether or not this scenario becomes a reality, one clear advantage of having high
access to intraday markets is the reduction in day-ahead deviations for the energy system. The
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model would always have the opportunity to avoid penalties by adjusting day-ahead commitments
based on intraday trading opportunities.

8.2.2 A Complicated Intraday Bidding Process

Upon further investigation, it can be argued that the optimization model under full intraday
access resembles a trading algorithm for both the day-ahead and intraday markets. This can seem
surprising as the model does not consider intraday prices when day-ahead commitments are made.
However, the model can in this case maximize revenues by comparing prices between the hydrogen
market and the intraday market. Briefly explained, the model performs intraday purchases to cover
the day-ahead contract and instead diverts the power from the wind farm to hydrogen production.
This highlights the potential benefits of high access to intraday markets and the importance of
capturing price differentials to optimize the energy system’s financial performance.

The dynamics of the bidding process make the intraday modeling challenging, which is arguably
why some authors choose a simpler modeling approach. Such approaches can consist of not mod-
eling sequential intraday auctions and commitments. There are several aspects that make the
bidding process intricate. There are for instance numerous regulations and products related to
intraday trading, and possibilities to withdraw orders or placing bids well ahead of delivery hours.
It is generally also possible to place both sale and buy orders, which can lead to numerous intraday
contracts being active simultaneously. The inclusion of such aspects could result in a model that
to a large extent would speculate in arbitrage opportunities, which is not the focus of this work.
Intraday bids are therefore not modeled together with day-ahead bids.

Intraday transactions are based on bilateral arrangements and finding an optimal bid can be
difficult as the market brings together multiple parties. The parties can have different net positions,
financial and data resources to make their own informed decisions that align with the decisions of
the wind power producer. Furthermore, one could argue that the upper bounds on intraday trades
are too restrictive. In a case of energy abundance, it is possible to lower the selling price, or even
selling at negative prices, to make the offer more attractive to other parties. With the same logic,
another party could accept a buy order if the offered price is high enough. The unpredictability
of modeling the intraday bidding process can be reflected in the fact that the traded volume can
be anywhere between 5 MWh to several hundred MWh per hour. As observed, the wind power
producer is trading a considerable higher volume of purchase contracts compared to sale contracts.
This could, with correlated production patterns between variable power producers of similar scale,
cause technical concerns for the grid infrastructure. The current implementation is justified by the
idea that trading constraints should reflect the demand and supply. It might be the case that the
value of the intraday market to the wind power producer is not accurately represented with hard
volume restrictions and could potentially benefit from other modeling strategies of the intraday
market dynamics. In retrospect, a more appropriate approach could have been to estimate intraday
prices as a function of the requested volume to be sold or purchased.

8.2.3 Risk Management: Non-delivery Penalties and Power Market Ex-
clusion

The occurrence of under-delivery in certain test instances does not imply exclusion of wind power
producers from the Nordic Power Exchange. However, it highlights the need for balancing mech-
anisms. Minimizing the under-delivery is desirable for a number of reasons, and insights can be
gained by comparing the relative decrease (or increase) of under-deliveries as a percentage of the
promised commitment. The base-case exhibits a relatively low deviation (∼1%). In contrast,
increasing the transmission capacity leads to relatively significant increases in day-ahead over-
commitments. With a 700 MW transmission cable, the total under-delivery is 728.9 % higher than
the base-case scenario. At first glance, a total deviation of 6.8 % from the promised delivery is
substantial. It is therefore important to discuss the financial implications of this finding. It can
be difficult to determine the tolerable level of under-delivery, but the true cost ultimately depends
on the financial burdens from actions taken to correct this under-delivery. As emphasized earlier,
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the intraday market is crucial in addressing imbalances in the net position which can serve as a
cost-estimator for covering the production deficit. Repeated under-delivery must however be taken
seriously as participation in power markets requires the ability to deliver promised commitments.
The tolerance level for observed under-delivery should be evaluated against the quality of the power
generation forecasts.

The penalty costs in the original formulation are extremely high. To investigate the impact of the
penalty parameter value, the base case is tested with a substantial lower penalty. Penalties for
under-delivery in all power markets are set to 1 000 EUR/MWh and the cost of energy shed is
adjusted to 500 EUR/MWh. All other system characteristics remain unaffected. As seen in Table
8.11, it is evident that the penalty costs does have a profound impact. A lower penalty encourages
higher commitments which is accompanied by larger amounts of under-delivery.

Table 8.11: Key findings from the impact of lower penalty costs.

Unit 1 000 000 1 000
Day-ahead Commitment [MWh] 29106.0 29616.9
Actual Day-ahead Deviation [MWh] 188.8 203.3
Energy Shed [MWh] 3919.2 15.4
Energy Shed [%] 7.5 0.0
Hydrogen Production [kg] 306086.2 363418.7
Day-Ahead Sales [EUR] 2834662.4 2903469.5
Cost Intraday Purchases [EUR] 40162.0 15488.5
Average Runtime [s] 65.6 540.7

One of the main implications of lower penalty cost is the weighting of extreme scenarios, and low-
power scenarios in particular. Low-power scenarios have been seen to determine model behaviour
extensively as the expected deviation costs are significant. It can also be seen in Figure 7.8 that
the number of extreme scenarios can be limited to only a few, and often just one scenario. This
scenario could be a statistical outlier from stochastic processes in the scenario generation method.
It could therefore be argued that the weight given to this scenario by a high penalty cost does
not necessarily reflect the true expected cost. A lower penalty cost will reduce the impact of such
extreme scenarios.

The penalty costs affect to a great extent how the model reacts sudden changes in wind power
production within the generated scenarios. Large short-term variations in wind speed can cause
deviations in commitments that the model needs to adjust for. It can be seen in Figure 8.17 that
there are only minor differences in day-ahead commitment patterns for a low and high penalty cost.
Most of the differences are observed for commitments that are close to the capacity limit of the
transmission cable. This is likely due to lower impact of extreme scenarios, which in this case would
be low-power scenarios. Reduced impact of extreme scenarios could be one of the explanatory
factors behind the increase in day-ahead deviation with a lower penalty. When deviations are
not as severely punished as before, the model evaluates candidate solutions that previously were
suboptimal. An example of this behavior could be to prevent shutdown of electolyzers in cases
where only a single scenario projects a low power value. Such cases can also explain why hydrogen
production has increased significantly between the two cases and how energy shedding has been
almost eliminated in its entirety. A simple numerical example could illustrate such situations.
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Figure 8.17: Comparison of day-ahead commitments for day-ahead penalties of 1 000 000 EUR/MWh and 1 000
EUR/MWh.

The costs of day-ahead deviation are evaluated against the costs of energy shedding and lost
hydrogen revenues when electrolyzers are decided to be turned off. This has been observed in
Figure 8.4 where the model responded to forecasted wind power variations in a more sensitive
manner when a high penalty was in place. This lead to what in hindsight can be characterized
as unnecessary shutdowns of the electrolyzers. However, the relative difference between these two
aforementioned costs changes with a lower penalty cost. The day-ahead deviation in a single time
period would in a worst case situation be 125 MWh, with a penalization of 1 000 EUR/MWh. For
this simple example it is assumed that 20 scenarios are generated and that the true power value is
given by one of them. If 19 out of 20 scenarios expect power generation at maximum capacity and
the remaining scenario projects zero power generation, the expected deviation cost of not turning off
electrolyzer before the subsequent time period would be 6 250 EUR. The expected shedding would
in 19 out of 20 scenarios become half of the maximum hydrogen production capacity subtracted
by start-up energy costs, due to the shutdown of electrolyzers. With an associated shedding cost
of 500 EUR/MWh, this would correspond to a shedding cost of 26 718.75 EUR. Additionally, the
revenues from lost hydrogen sales must be added to the calculations. Had the electrolyzer not
been turned off, the energy system would have been able to produce approximately one additional
ton of hydrogen, with a value of 4 000EUR. Battery discharges, fuel cell activation and intraday
purchases would naturally have an impact on the final differences between the situation described
here. However, the model would still prefer to keep electrolyzers in operation and instead risk
having a higher day-ahead deviation in the subsequent period.

These types of situations could explain the difference in electrolyzer consumption in Figure 8.18
and the energy shedding in Figure 8.19, where the model produces hydrogen for a low penalty and
sheds for high penalty for given periods. The dimensions of the number suggests that the line of
argument in the numerical example could be valid for an even lower penalty for energy shedding.
Furthermore, these types of situation could explain the increase in day-ahead deviation described
by Table 8.11, while hydrogen production increases and energy shedding decreases. The same pen-
alty for under-delivery during operation is imposed on the model when it makes bid submissions
to the power exchange and accounts for the expected under-delivery. The increase in total day-
ahead commitments could therefore also be explained by the reduced impact of low-power scenarios.
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Figure 8.18: Difference between electrolyzer consumption for day-ahead penalties of 1 000 000 EUR/MWh and 1
000 EUR/MWh.
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Figure 8.19: Comparison of energy shed for day-ahead penalties of 1 000 000 EUR/MWh and 1 000 EUR/MWh.

A central question in regard to modeling with difference penalty costs is raised by the revenue and
cost distributions from operation imperfections in Table 8.11. How should decision-makers assign a
cost estimate of the large energy shed and small day-ahead deviation under a high penalty cost, as
compared to the much smaller energy shed and slightly higher day-ahead deviation with a smaller
penalty? This dilemma encounters different perspectives on how to effectively model the costs of
these imperfections. While there are many factors that influence the choice of penalty cost, such
as the forecast quality and model formulation, the real-world financial implications should be the
main contributor in the selection of appropriate penalty values. It was argued in Section 8.1.3 that
with no volume restrictions on intraday trading, the net position can be adjusted as needed, which
has also been confirmed when testing the model under these circumstances. In other words, the
penalty cost should under optimal conditions reflect this cost. Choice of optimal penalty becomes
even more complex when several balancing mechanisms are available. Such mechanisms are in
this case fuel cells and batteries, which can be cheaper to utilize although with limited capacities.
Real-life operations would also be influenced by other various balancing and reserve markets, which
could complicate the matter even further. Despite all available balancing mechanisms, there would
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always be a small possibility that the contract as a worst consequence is defaulted. Repeated cases
of contract default could lead to exclusion from the power markets. Power producers with variable
renewable energy sources are themselves victims of the stochastic nature of wind and weather.
In other words, power producers could be penalized for exogenous factors that are beyond their
control. Hard penalization of day-ahead deviation could disincentives new wind farm projects.
However, too soft penalization could lead to systematic over-commitment from power producers.
Thus, efforts from both power producers and policy makers must be made to ensure maximum
economic efficiency and reduce curtailment.

8.2.4 Decoupling from Power Markets - Island Mode

Several of the authors that figure in the literature review have studied different offshore configura-
tions. While the energy system in this thesis is interconnected to hydrogen and electricity markets,
similar future offshore energy systems could be isolated from the power markets. A power grid
decoupled energy system, or what is commonly referred to as “island mode”, has been studied in
order to assess the revenues of system that can only generate revenues with production and sale
of hydrogen. More specifically, an examination of which hydrogen prices would yield comparable
revenues between the island mode setting to the hybrid system has been conducted. This examin-
ation could provide value to decision-makers if it currently is uncertain if similar offshore energy
systems will be connected to the power grid. The net income of the base-case is established as
a benchmark for comparison, which amounted to 2 037 856.0 EUR. The results are presented in
Table 8.12.

Table 8.12: Key findings of island mode assessment.

Unit 2 4 5 6 8 10 15
Technical Performance
Electrolysis [MWh] 25 667.9 25 667.9 25 667.9 25 667.9 25 667.9 25 667.9 25 667.9
Auxiliary Processes [MWh] 391.2 391.2 391.2 391.2 391.2 391.2 391.2
Electrolyzer Transitions [MWh] 12.5 12.5 12.5 12.5 12.5 12.5 12.5
Battery Discharge [MWh] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fuel Cell [MWh] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy Shed [MWh] 56.6 56.6 56.6 56.6 56.6 56.6 56.6
Energy Shed [%] 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Hydrogen Production [kg] 413 072.8 413 072.8 413 072.8 413 072.8 413 072.8 413 072.8 413 072.8

Financials
Hydrogen Sales [kg] 365 297.9 372 081.0 372 294.0 385 018.1 372 986.7 385 702.1 372 643.5
Hydrogen Sales [EUR] 726 940.2 1 480 887.6 1 852 145.3 2 298 569.9 2 968 973.3 3 837 709.5 5 561 724.6
Hydrogen Sales* [EUR] 823 992.5 1 648 007.8 2 060 000.8 2 471 938.7 3 295 970.1 4 119 991.0 6 180 067.3

The results indicate that the island mode generates 18.8 % less revenue compared to the hybrid
mode in the base-case. This suggests a break-even price for hydrogen of approximately 4.9 EUR/kg,
which shows a relatively modest increase from the initial price level. However, to achieve this,
an additional 500 MW of electrolyzer capacity would be required, necessitating a comparison
between the investment in transmission cable and the electrolyzers. It is important to note that
the profitability of the hybrid configuration is influenced by both power market and hydrogen
prices. Additionally, specific hydrogen demand contracts may undermine these results if they
require a specific amount of hydrogen on a regular basis, potentially reducing the profitability of
the hybrid mode.

A second observation is that the battery and fuel cells remain inactive over the planning period.
Having an aggregated electrolyzer capacity of 1 000 MW requires a minimum energy consumption
of 25 MWh to keep all of the electrolyzers operating. However, recorded wind energy production
never reaches such low levels (49.42 MWh lowest, 250 MWh highest) and the model utilizes the
dynamic operating range to maintain continuous operation without shutdowns. This suggests that
fuel cells and batteries may potentially be omitted in the design of the energy system in an island
mode configuration.
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8.2.5 Scenario Generation and Wind Power Stochasticity

Scenarios have been seen to have a large effect on the value of stochastic solution. While scenarios
can capture elements of the probability distribution of stochastic parameters, it has been observed
that statistical outliers can have a large effect on model behaviour. The likelihood of statistical
deviations increases when many scenarios are generated over a long period of time as the scenario
generation method contains random processes. However, the value of including statistical outliers
in decision-making tools can be essential for risk management, as rare events can incur large costs
if not considered. The scenario generation method used in this thesis and the handling of wind
power stochasticity is discussed in this section. The next three paragraphs looks at the impact
of scenario diversity, the application of the utilized scenario generation method to offshore wind
farms and, finally, a brief elaboration of wind data sources is given.

Scenario Diversity

An increase in the number of scenarios presents both advantages and disadvantages. Extremely
low wind power scenarios raise the risk of over-commitment. Conversely, the inclusion of addi-
tional wind power scenarios with high energy availability serves to increase the likelihood of higher
production which helps to mitigate this risk by bolstering the model’s confidence in its bidding
strategy. The model consistently seeks to achieve an optimal balance between risk and income
generation, making decisions that maximize the expected income. It carefully evaluates the trade-
off between over-committing and the corresponding penalties in each scenario, taking into account
the value of committing additional energy units. Moreover, as the number of scenarios increases,
it is reasonable to anticipate that the day-ahead commitment will align closely with the scenario
featuring lower production, while the inclusion of additional scenarios helps to enhance bidding
confidence. This could however be counterbalanced by a low value for the day-ahead deviation
penalty. Thus, the choice of penalty would influence the effects and implications of scenario di-
versity. It is therefore crucial to assign an appropriate penalty value before making an assessment
of potential changes that have to be made in terms of scenario diversity. Such changes could be
various scenario reduction and bundling techniques, so that the impact of statistical outliers are
reduced.

An increased number of scenario would not only give a larger set of potential outcomes. It would
also increase the solution time of the problem substantially. The model has in this thesis been
given a maximum of 15 minutes to solve each subproblem. This could give the decision-maker little
time to implement the operational schedule proposed by the model. In practice, the model would
likely have less than 15 minutes to find a solution. It could also happen that the model is not
able to find any feasible solution for the given time limit, if the number of scenarios is excessive.
It is therefore important not to increase the problem size without considering the impact of high
computational complexity. This is especially important if the accuracy is only marginally improved
by an increased number of scenarios.

Scenario Generation Method

While the scenario generation method appears to perform well when power values are not at a
maximum over longer time periods, it does not always perform too well when power generation is at
full capacity over a long time period. This could be due to the covariance matrix having problems
when numerous quantiles take the value of 1, denoting 100 % power production. When historically
realized values are 1, it is not clear which quantile should be considered in the recalibration process.
Also, when numerous quantiles are 1, it is difficult to generate future scenarios from the quantile
distribution when drawing random numbers from the distributions. It is for instance not clear
which quantile Y = 0.5 belongs to if a total of 15 separate quantiles have the value 1. This directly
affects the covariance matrix. Also, forecasted wind speeds instead of forecasted power production
could perhaps be applied directly in the quantile regression models.

There is however one issue that could arise if the quantile regression model is applied to forecasted
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wind values. The highest quantile will have the highest wind speed value compared to the other
quantiles. An issue here is that there is no theoretical upper bound on the 100%-quantile. Some
measures must then be used to model this quantile with a proper exponential tail. Furthermore,
the upper quantile would be the first quantile to go over the upper wind speed for the turbine.
The wind turbine is shut off if the wind speed exceeds this upper bound, which is equivalent to
zero power generation. This would lead the upper quantile in terms of wind speed to become the
lowest quantile when converted to power values. This could cause issues in the parametrization of
estimators in the quantile model.

The covariance matrix is also slightly sensitive to starting conditions as the effect of exponential
smoothing is large for small numbers of iterations. It could perhaps be useful to train and initialize
the covariance matrix over a larger set. Furthermore, it could be that the method provided by
Pinson et al. (2009) is not necessarily suitable for offshore winds. Offshore winds are stronger
compared to onshore winds, and power generation could be at maximum for longer time periods
for offshore wind farms compared to onshore wind farms.

Wind Data Sources

The model developed in this thesis has been provided data from MET Norway. The methods
described in Section 7.5.1 were necessary to scale and convert wind speeds to appropriate values
that could be used be the model, in addition to linear interpolation to create data with 15 minute
resolution. These methods are however not ideal as actual production data should be used by
the model. The historical data is a post-processed product from MET Norway, meaning that it is
not actual measured data. There are to the authors’ knowledge relatively few offshore wind farms
in the North-Sea. Furthermore, there are no floating offshore wind farms situated far out in the
North-Sea. This makes it challenging to access real observed data, which would be useful for the
work in this thesis.

8.2.6 Model Design and Energy System Design

Operational decisions are heavily influenced by energy system design. The design of the energy
system is particularly shaped by investment decisions made early in the lifetime of a project. This
implies that the decision on installed capacity on system components may only be made once. It
could also be possible to expand capacities in the operational stage of the project, however this
would require certain early-stage decisions that would in practice create real options. It has for
instance been observed in Section 8.1.4 that over-dimensioning of electrolyzer and fuel cells capacity
can lead to significantly better solutions. This suggests that the decision-maker could invest in over-
dimensioning of certain component capacities to increase operational profits. It could therefore be
essential that the decision-maker considers the added value of flexibility from over-dimensioning as
decisions on installed capacities in a worst case can only be made once. Modelling choices made
to control problem size and computational complexity also influence the operational decisions as
simplifications of real-life behaviour lead to theoretically suboptimal solutions. This section first
expands on the design of the model in this thesis. This is followed by a discussion on energy
system design starting with electrolyzer capacity and followed by fuel cells and batteries, pipeline
and finally power transmission cable.

Model

The challenge of solving a model with a 36 hours look-ahead horizon is the problem size. This
issue requires careful consideration of the mathematical formulation in the development of the
stochastic optimization model. Small changes can lead to drastic results on solution performance
and significantly longer solution times, as demonstrated when increasing the size of E or reducing
the under-delivery penalty. In the first case, the number of binary variables increases exponentially
given the scenario description, and the original formulation had over 4 million binaries in the
preliminary testing phase. In the second case, a high penalty narrows the candidate solution space
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dramatically, as many solutions are cut off from having negative objective function values. The
opposite is true when decreasing the penalty. These examples demonstrate how model performance
and problem complexity can be very sensitive to changes in parameters. The original formulation
was downsized from 400 electrolyzers to 20 after the model made use of the computational resources
and even crashed to due lack of random-access memory in the computer cluster.

A strength of the proposed model is that it can incorporate large amounts information simultan-
eously and that the acquisition of new information imitates the real-life process. This allows a
more accurate information flow as the submission of market bids and revealing of market prices
is approximated to real-life conditions. The model also incorporates risk-assessment by modeling
the consequences of under-delivery on the submitted bids. Too optimistic bidding would be the
consequence if these financial consequences were not modeled, and true income would be consider-
ably less without this aspect taken into consideration. The strategy of sequential intraday auctions
resembles real-life market behavior, although the possibility of arbitrage has not been considered.
Sequential intraday auctions and arbitrage raises concerns of interference with hydrogen produc-
tion, and literature suggests that a multi-stage model would be needed instead of two-stage model.
This would require a different approach and formulation. Furthermore, the stochastic processes
in the model formulation would most likely result in chaotic model behavior. Commitments to
intraday purchasing contracts could be done as soon as any wind power scenario projects low
power generation, which could to an irrational and excessive trading behavior. However, a differ-
ent approach could have been taken to model supply-demand patterns of the intraday market in
order to capture a dynamic range of intraday prices for different volumes. The hard constraint on
intraday trading volume does not provide the needed flexibility to adjust the net position in the
power markets.

Electrolyzer Capacity

Increase in electrolyzer capacity was seen in Section 8.1.4 to increase the overall performance of
the energy system. The decrease in energy shedding could be a sign of less curtailment and thus
larger efficiency. Moreover, the decrease in day-ahead deviation could potentially assign a high
value of over-dimensioning electrolyzer capacity in the energy system. Over-dimensioning consists
of having a larger combined electrolyzer and power transmission capacity that supersedes the
installed capacity of the wind farm. The value of reduced day-ahead deviation is to a large extent
given by the penalty cost and could be significant in cases of high penalty costs. The investment
decision on electrolyzer capacity should therefore include an assessment of the added operational
value of flexibility and over-dimensioning. As high electrolyzer capacity tends to decrease power
market commitments and deviations, fuel cells and batteries could become less essential to the
energy system. It could be argued that investment costs in these components would be lowered.
Investments in high electrolyzer capacity could therefore reduce the investment costs in other
components and potentially reduce the overall investment cost of the energy system. This should
however be subjected to a comprehensive analysis of investment costs and operational benefits.

Decision-makers could find that it for a given economic environment would not be profitable to
invest in a substantially over-dimensioned energy system. Electrolyzer costs are however expected
to fall and efficiency is expected to increase as the technology matures. While the value of increased
electrolyzer capacity is uncertain, it is certain that there is a positive value that could be exploited.
The physical footprint of the energy system does however impose physical constraints as to the
amount of equipment that can be fitted on the floating hydrogen production site. This is a
key point of difference between onshore and offshore hydrogen production sites. Expansion of
electrolyzer capacity at a later time could in offshore applications be technically infeasible due to
lack of space. Decision-makers must therefore consider to over-dimension the physical footprint of
the production site if capacity expansion at a later time would be feasible. Expanding electrolyzer
capacity could therefore be considered a real option, and the value of the option should be included
in the investment phase of the energy system. By extension, over-dimensioning of the physical
footprint of the offshore production site could also be considered a real option.
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Fuel Cells and Batteries

The overall value of fuel cells must be evaluated from both the operational value of flexibility and
the investment costs. The operational value from fuel cells could be quantified by finding the true
value of the deviation penalty. This value would then be aggregated over the lifetime of the fuel
cells which would provide an estimation of the reduction in deviation costs that the fuel cells are
able to provide. Batteries provide in many ways the same operational flexibility as fuel cells. The
role of fuel cells and batteries is minimal when the energy system is not coupled to the power
markets. Activation of fuel cells and batteries could be triggered in some particular cases, but are
most of the time expected to remain inactive. Batteries and especially fuel cells take a pivotal role
when the energy system has access to power markets, and they are frequently activated to find
optimal solutions.

Activation of fuel cells is a mechanism that can reduce the deviation of day-ahead commitments. It
is important in the evaluation of fuel cell capacity to conduct an economic assessment that considers
the costs associated with the use of fuel cells to other alternative methods in the reduction of day-
ahead deviation. Determining the value of fuel cells is complex as it involves an evaluation of price
differences when mitigating day-ahead deviations. If the price of hydrogen is high, the use of fuel
cells for electricity generation may lead to a higher cost level compared to power purchases on the
intraday market, as high revenues from hydrogen sales are foregone. If the intraday buying prices
are relatively high compared to the hydrogen price, it makes more sense to use fuel cells at a high
capacity.

To assess the potential savings from using fuel cells instead of the intraday market, it could be
interesting to evaluate price differences between hydrogen and intraday purchases over time. An
appropriate fuel cell capacity can be estimated by incorporating investment costs. Furthermore,
it is argued that fuel cells can be activate to avoid shutdowns of the electrolyzers by providing
the minimum energy requirement. Cost are incurred in subsequent time periods due to reduced
production capacity resulting from previous shutdowns along with the energy consumption during
shutdowns. This must be compared to the cost of continuing operation. In that case, the fuel cell
capacity could be optimally designed to keep the electrolyzers running at minimum capacity but
avoid shutting them down.

The impact of transitions should be considered if it is costly to avoid electrolyzer shutdowns and
transitions in general. Additionally, transitions accelerate the degradation of electrolyzers. Minim-
izing the number of commutation cycles is a topic explored in the reviewed papers. Maintenance
and potential replacement costs are associated with electrolyzers, and it should be possible to es-
timate the cost of a single transition and compare it to the value of hydrogen. It is worth noting
that fuel cells require maintenance, while intraday purchases do not. Any maintenance requirement
would result in the shutdown of fuel cells, leaving the system without backup power. While fuel
cells could power other critical system components, it is important to consider the low round-trip
efficiency of hydrogen power-to-gas-to-power. In such cases, it may be more sensible to directly
power these components with energy from the wind farm.

Similarly to investments in electrolyzer capacity, the investment decision of fuel cells can be seen
as a real option. The line of argument in terms of electrolyzer capacity and physical footprint
being real options applies to fuel cells as long as they are situated offshore. While it has been
assumed in this thesis that fuel cells are installed at the offshore facility, it is not required that the
fuel cells are situated offshore. They could be placed on an onshore facility, and it might also be
more profitable do it so. An onshore location does however have some other practical implications.
One implication could for instance be that hydrogen designated for sale and hydrogen designated
for fuel cells ”share” the same discharge rate. Another implications is that the power from fuel
cells would need to be transferred to the offshore facility via the power transmission cable and not
directly injected into the energy system when placed offshore. Thus, the practical application of
onshore fuel cells could be different compared to offshore placement. While the equipment costs
would remain the same for onshore and offshore placement, it would be reasonable to assume
that installing costs are substantially lower for onshore installation. It is therefore important for
decision-makers to consider the operational flexibility and practical application of fuel cells that
have been described here to the investment costs associated with having fuel cells as a part of the
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energy system.

The batteries are frequently and consistently utilized across the test instances, but it can only
provide a burst of energy. During several time periods with low power production, the fuel cells
need to assume the role of supplying energy instead of the batteries. While batteries are known
for their higher efficiency compared to fuel cells, their ability to mitigate or cover under-deliveries
day-ahead contracts is limited in terms of energy provision. This work provides an estimation of
the utilization rate of batteries, offering a more precise understanding of their application. To
assess the value of incorporating lithium-ion batteries in the energy system, one can evaluate the
financial implications weighing the lost revenues resulting from allocating energy to the batteries
charging against the cost of under-delivery, operational costs associated with their maintenance,
degradation, and eventual replacement. This economic assessment helps determine the overall
economic feasibility of installing and operating the batteries. Batteries are however prone to
degradation. The inclusion of batteries when coupled to power markets could provoke behaviour
that is consistent with that of a trading algorithm as it charges and discharges to profit on price
differences in the power markets. This behaviour is observed in Figure 8.2 where the battery
discharges in periods where day-ahead commitments are lower than the generated power in a given
time period. The degradation of battery life is the cumulative degradation from battery cycles,
where each independent cycle induces stress on the battery (Xu, 2016). As a result, frequent
charge and discharge of batteries could make it necessary to replace them often, which would
be costly for the overall profitability of the energy system. The main purpose of batteries is to
provide operational security by peak-shaving and balancing ultra short-term variation in power.
While batteries play a crucial role for safe operations in the energy system, it can be argued that
batteries should not be included in the decision-making processes related participation and activity
in the power market.

Pipeline

This study did not consider the constraints imposed by hydrogen demand, despite the fact that
hydrogen sales are realized through HPAs It is important to account for purchasing agreements
as they influence investment decisions in hydrogen production and help mitigate excessive risks
for the investors (personal communication with Martin Kjäll Olsson in the fall, 2022). In the
presence of HPAs, there is a requirement to determine the necessary quantity of hydrogen that
must be produced in order to fulfill one or multiple contracts. It is also possible to have multiple
active HPAs with different start and end dates simultaneously as the energy system is likely to
serve multiple customers. HPAs are typically active over longer time periods, which means there
could be hourly, daily, and potentially weekly hydrogen demands that need to be met. Demand
constraints must then be implemented within the rolling horizon framework appropriately. From
a risk perspective, it is reasonable to ensure that the contracts can be honored and not violated
during periods of low production. Even from an economic standpoint, assuming risk neutrality, it
makes sense to utilize storage as a form of hedging against periods with low power production. For
instance, producing and storing hydrogen during periods of low electricity prices and high power
production can be beneficial. In such cases, producing more hydrogen than the immediate demand
should be rewarded in the objective function. The upper bound of pipeline capacity is thus relevant
to the optimization model and could vary depending on the storage capacity required to fulfill the
delivery of hydrogen through the contracts.

The pipeline capacity analyzed in this project is specifically designed to suit the requirements of
the studied energy system. As mentioned in the introduction, the European Commission has set a
target of achieving 60 GW of offshore wind capacity by the end of the decade. In practice, due to
economies of scale, it is highly feasible to integrate the pipeline into a larger network that includes
a main pipeline connecting multiple offshore hydrogen systems, as illustrated in Figure 8.20.
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Figure 8.20: Example of potential hydrogen pipeline setup in the North-Sea.

However, while this integration may be advantageous from an investment standpoint, it would
significantly increase the complexity and difficulty of the modeling process. The model would
need to consider the available capacity not only within its own pipeline but also within the main
pipeline, which relies on the production of other offshore energy systems. This integration would
also introduce additional complexities when modeling hydrogen demands, posing further challenges
to the modeling process.

Power Transmission Cable

It is not unlikely that energy systems similar to the one described in this thesis will be connected
to the power markets, regardless if the energy system intends to sell electricity in the power
markets or not. Electricity from power markets could be essential to ensure safe operations of
hydrogen production as the power from the wind farm has ultra short-term fluctuations. Other
solutions, such as a diesel aggregate unit, could also be used to ensure safe operations. This
work assumes however that the power transmission cable is used for access to the intraday and
day-ahead market, where power sales in the day-ahead market play a large role. Results have
shown that larger transmission capacity increases the revenues from electricity sales. However,
this is at the expense of a larger day-ahead deviation. The overall operational profitability of the
power transmission cable is therefore difficult to assess as the costs and implications of day-ahead
deviation are uncertain.

There is a clear trend that the income from electricity sales is higher than hydrogen sales. A
transmission cable allows direct and instant transmission of renewable electricity. Compared to
hydrogen production, which undergoes the process of production, transportation and distribution
and combustion, the transfer of electrical energy is a much more efficient method to transport
energy to onshore locations. It is important to recognize that subsea transmission cables are
expensive. Transportation distance is an important cost driver, although the capacity rating would
also impact the investment cost. The electrical infrastructure would require immense upgrades with
higher capacity levels than 500 MW. Investigating the current available capacity in the power grid
(DataArena, 2023), injecting anything above 500 MW seems, even in 2030, as a long shot. It would
require a transformation of the entire electrical infrastructure to be able to handle this amount of
power, which the wind power producer would be responsible of financing. Therefore, it is expected
that the current transmission capacity of 500 MW would be sufficient. Although this is considered
a stand-alone project, several initiatives to produce renewable power are required in the energy
transitions. This would put enormous pressure on the need for reinforcement of the power grid.

It is difficult to decide the appropriate transmission capacity based solely on these results, as the
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net income from electricity sales finances not only the cable, but also other parts of the project.
Without considering the investment costs of other components, it is difficult to propose any definite
answer on the reasonable transmission capacity.

8.2.7 Power Market Participation - a Profitability Driver

The German power market offers quarterly product trading, which can help mitigate the risk
associated with trading anticipated excess energy from wind farms in the next hour. This is
something that will be more relevant in the Nordic Market with time as the share of variable
products in the energy mix increases. The model could possibly potentialize from 15 minute
products as there is less risk of over-committing. In addition to previous discussions, it has been
shown throughout several test instances in Section 8.1 that there are especially two factors that
in this model that affects the value of power market participation. The two factors are the power
transmission line and the true cost of under-delivery penalty. Capacity limits, and in this case of
the power transmission line, are decided in the investment phase of the project. The operational
value is measured against the investment costs. However, the operational value is also dependent
on the true penalty cost. It is therefore difficult from an investment perspective to evaluate the
true profitability of power transmission lines.

However, it has been seen that a large part of the operational value for power market participation
is affected by the relative prices between hydrogen and power. It was shown in Section 8.1.6 that
changes in hydrogen price did not have a large effect on system behaviour, that what was suspec-
ted to be a consequence of shedding costs. The electrolyzer capacity has been increased to 1 000
MW in an attempt to study the impact of power market access given different hydrogen prices.
Contrary to the results in Section 8.1.6, Table 8.13 demonstrates that increases in hydrogen price
reduces the activity in the power market. This is more in line with expected system behaviour in
reaction to changes in relative prices. The power transmission capacity has been kept at 500 MW
for the results in Table 8.13, as it stated in Section 8.2.6 that it would be difficult from a technical
point of view to have a higher transmission cable than this.

Table 8.13: Key findings of hydrogen price test for 1 000 MW Electrolysis and 500 MW power transmission cable.

Unit 2 4 5 6 8 10 15
Day-ahead Commitment [MWh] 12 604.6 12 195.4 11 344.7 10 021.0 1 600.1 1.9 0.0
Intraday Purchase [MWh] 125.0 117.2 120.6 131.9 23.5 0.0 0.0
Actual Day-ahead Deviation [MWh] 7.5 7.5 7.5 6.3 0.0 0.0 0.0
Intraday Sale Commitment [MWh] 45.5 44.6 38.6 28.6 6.1 0.0 0.0
Electrolysis [MWh] 12 056.7 12 550.9 13 571.3 15 350.2 23 825.4 25 666.0 25 667.9
Battery Discharge [MWh] 21.2 18.7 24.3 17.8 10.5 0.0 0.0
Fuel Cell [MWh] 27.6 26.6 19.8 10.0 7.7 0.0 0.0
Energy Shed [MWh] 1 106.3 1 068.0 897.8 490.4 309.0 56.6 56.6
Hydrogen Production [kg] 194 014.8 201 970.4 218 388.5 247 012.2 383 422.9 413 041.8 413 072.8
Hydrogen Sales* [EUR] 384 517.5 800 932.8 1 085 042.5 1 476 612.6 3 056 061.3 4 119 740.8 6 179 868.3
Day-Ahead Sales [EUR] 1 217 600.8 1 194 305.8 1 136 831.9 1 038 478.6 226 243.7 316.5 0.0
Net Income* [EUR] 1 594 180.8 1 987 789.9 2 214 136.0 2 505 326.5 3 280 055.5 4 120 062.0 6 179 868.3
Hydrogen Sales* [%] 24.1 40.3 49.0 58.9 93.2 100.0 100.0
Electricity Sales* [%] 75.9 59.7 51.0 41.1 6.8 0.0 0.0

The break-even price for hydrogen to become competitive falls within the range of 4 to 6 EUR/kg.
These price levels correspond to hydrogen income percentages of 40.3% to 58.9%. At lower prices,
the main source of income is the power markets. However, when prices exceed 6 EUR/kg, the
profitability of hydrogen production significantly increases. In this case, day-ahead sales drop from
1 038 478.6 EUR to 226 243.7 EUR, resulting in an 84.0% reduction. The highest recorded spot
prices for electricity are 177.4 EUR/MWh and 213.7 EUR/MWh. When the price of hydrogen
reaches 8 EUR/kg, the price per unit of energy becomes 242.4 EUR/MWh. Once the price surpasses
10 EUR/kg, approximately equivalent to 300.3 EUR/MWh, all energy generated from the wind
farm is directed towards the hydrogen market. This finding is significant since the investment in
the transmission cable is heavily underutilized. High hydrogen price in combination with 1 000
MW of electrolysis can render the 500 MW transmission cable obsolete.

Further observations indicate that fuel cells and batteries become redundant when the system
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primarily produces hydrogen. Without any commitments to the power market and the ability
to utilize all the generated energy, the penalties associated with under-delivery and shedding are
significantly reduced. While the wind energy availability consistently exceeds the minimum re-
quirements for activating the fuel cells, it is challenging to accurately determine the relevance of
investing in fuel cells and batteries. However, at hydrogen prices of 10 and 15 EUR/kg, the only
remaining energy shedding occurs during the initial conditions when all electrolyzers are simul-
taneously shut down. These are interesting topics to be discussed for decision-makers in regard to
investment decisions, when investment costs are also part of the economic assessment. The most
important finding of this extended research is the break-even price of hydrogen.
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CHAPTER

NINE

CONCLUDING REMARKS

A stochastic linear program has been formulated to account for uncertainty in wind power gener-
ation 36 hours ahead, by combining quantile regression with spline basis functions and a scenario
generation method proposed by Pinson et al. (2009) to generate wind power scenarios from de-
terministic forecasts and historical observations. Deterministic forecasts are assumed for electricity
market prices, and a rolling horizon approach is implemented that maximizes the net income with
operational decisions taken every 15 minutes. A compromise between computational tractability
and modeling precision was made when modeling electrolyzer characteristics, which includes ramp-
ing constraints between operational states. To accurately assess the model performance various
test instances have been generated and tested.

The stochastic model has been compared to the case of having complete information about future
power generation. High penalties from under-deliveries deteriorate the stochastic solution while
all power market contracts are fulfilled under perfect information. An estimate of the value of
perfect information is 170 140.1 EUR, or 8.4 % better. The expected value problem achieves,
when including penalties, a higher objective function value than the stochastic solution. When
accounting for financial implications from under-deliveries in the two cases, it is still difficult to
accurately determine the value of the stochastic solution.

Substantial consideration of real-life operating conditions has been given in the development of
the model presented in this thesis. A real-life application of the model imposes the expectations
of short solution times while high accuracy is preserved, which is not always feasible. This work
has seen the importance of coupling and aggregating individual electrolyzers into larger sets to
control problem complexity. A high number of electrolyzers has inconclusive impacts on model
performance despite being theoretically more accurate. The increase in computational cost does
however suggest that the modelling of 20 electrolyzer units suffices for practical purposes.

A scenario description of stochastic wind power production has provided an approximation of real-
life operating situations where the energy system must make first second-stage decisions. Modeling
a higher number of scenarios provides a more accurate description of the uncertainty in wind power
generation, which can make solutions more robust when penalties incur for under-deliveries. How-
ever, it is inconclusive evidence as to what is an appropriate number of scenarios. Statistically
outlying scenario values can be generated due to random processes in the scenario generation
procedure. A higher number of scenarios increases the likelihood of having an extreme scenario.
Furthermore, the appropriate number of scenarios depends on the power market and energy shed-
ding penalties. These two factors combined create situations where statistically deviant low-power
scenario values are weighted heavily by the significant penalties, which results in model behavior
that in hindsight is unreasonable. A reduction in penalty costs was seen to alleviate this issue
significantly.

Power market participation has many implications for system design and modeling choices. The
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profitability of power market participation depends on power prices, hydrogen prices and con-
sequences of under-delivery. Access to intraday markets is pivotal to reducing day-ahead deviation
and managing the risk of over-commitments in the day-ahead market. The unit value of the day-
ahead deviation penalty has a large effect on profitability, and it is essential to have a high-quality
approximation of this parameter to effectively evaluate overall profitability. In an energy system
with 1 000 MW electrolysis capacity, the model will stop commitments to the day-ahead mar-
ket for a hydrogen price of approximately 10 EUR/kg. The results suggest a break-even price
of hydrogen at 4.9 EUR/kg for this configuration. At this price level, power sales are disfavored
compared to more income-generating hydrogen even for the hybrid mode. The island configuration
becomes competitive to the hybrid mode for hydrogen prices exceeding 5 EUR/kg when revenues
are compared.

Uncertainty related to the exogenous factors influences the model performance in every aspect, as
both wind speeds and power prices have strong variability. The effect of price differences between
electricity and hydrogen markets is significant for revenue allocation in the short-term and is
enhanced over longer time periods. A high-capacity power transmission line increases revenue
significantly at the cost of higher deviation in the day-ahead market. However, this might not be
technically feasible as it would demand substantial grid reinforcement.

Increasing the electrolyzer capacity in the hybrid system leads to a higher percentage of income from
hydrogen as hydrogen sales sacrifice conversion losses for less risk compared to direct transmission
to the power grid, however, it is not necessarily techno-economically feasible. The system can
absorb more of the energy instead of making too high promises to the power markets that the
model is comfortable when the power generation is maxed out. However, this is influenced by
the forecasting accuracy and expected default cost of deviation from power market obligations,
although in the absence of hydrogen purchasing agreements. Furthermore, the high cost associated
with energy shedding would encourage higher electrolyzer capacity.

Fuel cells and batteries contribute to mitigating under-deliveries to the power market. Although
their contributions are not sufficient alone, if their operation cost is less expensive than adjusting
net position in the intraday market, they provide value to the system. However, it is uncertain
how much they contribute to support the continuous operation of the electrolyzers in cases of low
power generation. Fuel cells and batteries were not at any time activated for the island mode
configuration. The intraday market proves essential to the wind power producer in adjusting
the net position. Intraday purchases are prioritized because of the expected downside of under-
delivery compared to the potential upside from additional sales, advocating risk-averse behavior.
Future power market designs can decrease uncertainty related to commitments as short-time frame
products become available and more variable production enters the energy mix leading to higher
trading volumes.

The model presented in this thesis has allowed us to study the behaviour of an offshore energy
system with hydrogen production with stochastic power generation. Approximations of revenues
for different configurations of the energy system can provide decision-makers with information
on the operational implications of early-stage investment decisions. The model proposed in this
work can therefore be used as a decision-making tool. The contractual price of hydrogen will
have a critical role for the profitability of electrolyzers in the offshore system, and to evaluate the
competitiveness of the decoupled system. If the hydrogen price is too low, significant revenues
are lost from the inability to trade in the power markets. On the other hand, a high hydrogen
price would favor a decoupled configuration as the transmission cable becomes under-utilized. The
break-even price of hydrogen lies just above 5 EUR/kg. This is the price at which the hybrid mode
with 1 000 MW/500 MW hydrogen and 1 000 MW hydrogen island mode become competitive
solutions. It has been seen that over-dimensioning of installed capacities provides operational
value, and the question surrounding capacity expansion becomes a real option for decision-makers
to consider. Thus, the model presented in this thesis could be used iteratively with project life-
time profitability tools to optimize energy system designs. Future price estimations on electricity
and hydrogen in combination with equipment costs can become decisive for the profitability and
viability of projects with offshore hydrogen production.
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CHAPTER

TEN

FUTURE RESEARCH

This thesis has presented a stochastic short-term optimization model and applied it to a hypo-
thetical offshore energy system with hydrogen production. Several relevant focus areas for future
research have been identified during the development, testing and analysis of the work presented
in this thesis. The three main areas for future research can be highlighted as an extension of
stochastic modelling, the development of energy system designs, and the integration of short-term
optimization models into other decision-making tools.

The current methods to assess the stochastic behaviour of wind are generally designed for onshore
applications. The development of both forecasting and scenario generation methods specifically
for offshore applications is central in order to more accurately integrate the stochasticity of wind
power generation in optimization models. In the context of modeling wind power generation
scenarios, a scenario reduction method can effectively streamline power generation scenarios by
clustering similar scenarios together. This approach significantly reduces the number of scenarios
to be considered, and could provide value to the model. In terms of power market participation, an
enhanced bidding process for intraday operations can be implemented to more accurately model
demand and supply. Moreover, wind power producers have the opportunity to engage in reserve
markets, which could be explored in future research. The energy system is heavily impacted by the
penalty costs of energy shedding and over-commitment in the power markets. A study of the true
costs associated with the operations of the offshore energy system could provide valuable insights
to more accurately model economic viability and revenue streams.

Furthermore, existing literature underscores the potential for offshore energy systems with hydro-
gen production to significantly boost revenues through the inclusion of commercial oxygen sales.
This work does not account for hydrogen demand in its modeling. The energy system could be
under the obligation to deliver on an hourly, daily or weekly basis. Therefore, further investigation
is required to assess the behavior of the model when it must consider both the power market and
hydrogen market obligations. To address increasing modeling complexity, incorporating approxim-
ative solution methods becomes advantageous in order to overcome computational intractability.
The application of specific solution algorithms can expedite the optimization process, enabling
faster resolution of complex problems. This is particularly valuable when aiming to achieve higher
modeling precision.

Detailed modeling of short-term operations has allowed us to assess revenue streams at high gran-
ularity. The model presented in this thesis could therefore be used as a tool to assess cash flows for
a given design. It would therefore be interesting to integrate the presented model with economic
tools that assess the overall profitability of investment decisions. The work in this thesis demon-
strates that operating conditions and revenues are significantly affected by investment decisions,
and some investment decisions could also be considered real options. The presented model could
be used in a real options analysis to assess the value capacity expansion opportunities.
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APPENDIX

A. 4.3 Technologies for Offshore Hydrogen Production Liter-
ature

Figure A.1: Efficiency of a PEM electrolyzer as a function of the operating point.
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Figure A.2: Energy output in hydrogen per unit of energy input in a PEM electrolyzer

Figure A.3: Efficiency of PEMFC as a function of output current. Figure taken from PowerCellution (n.d.)
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A. 7.2 Model Data

Table A.1: Technical parameter values in the model formulation.

Parameter Value Unit
ηB 0.85 [-]
ηEl 0.95 [-]
ηH2 0.995 [-]
γAux 0.0009472 [MWh/kg H2]
γF 0.01538 [MWh/kg H2]
ΓB 2 [MWh]
ΓE,Min 0.625 [MWh]
ΓE,Max 6.25 [MWh]
ΓE,Agg,Min 1.25 [MWh]
ΓE,Agg,Max 12.5 [MWh]
ΓF 650.20 [kg]
ΓPH2,Dis 4022.93 [kg]
ET E 0.3125 [MWh]
ET E,Agg 0.625 [MWh]
ΦPH2 123 800 [kg]
ΦB 2 [MWh]
HHV H2 0.039772 [MWh/kg]
PMax 500 [kg]
LP 10 000 [kg]
λB 100 [EUR]
λDah 1 000 000 [EUR]
λInt+ 1 000 000 [EUR]
λShed 1 000 [EUR]
a 0.64 [-]
b 0 [-]

A. 7.4 Electricity Prices

Table A.2: Average day-ahead prices in 2022 by season for all hours.

Hour Spring Summer Autumn Winter
1 176.6 309.9 171.5 246.5
2 172.7 288.9 159.8 236.4
3 169.9 279.2 152.7 231.7
4 168.5 270.1 146.4 225.1
5 168.8 267.4 148.9 226.1
6 172 275.4 166 241.3
7 179.8 288.2 189 265.5
8 200.9 306.1 218.3 317.5
9 208.8 320.2 228.4 352.8
10 193.2 311.9 225.3 359
11 181.5 294.3 220.5 354.6
12 174.5 279.6 206.7 353.9
13 170 265.1 191.8 339.3
14 164 250.5 188.5 337.5
15 160.4 244.4 183.2 348.3
16 162.3 255.5 190.6 352.8
17 168.9 273.3 202.6 364.6
18 177.8 300.5 223.5 382.5
19 186.5 324.6 238.2 367.3
20 189.6 342.8 240.2 343.9
21 189.8 345 230.9 318.9
22 187.9 341.9 211.4 285.6
23 185.3 335.1 195.4 266.2
24 180.2 314.6 174.8 246.1
Average 178.7 295.2 196 306.8
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Table A.3: Standard deviation of day-ahead prices in 2022 by season for all hours.

Hour Spring Summer Autumn Winter
1 30.1 134.1 131.2 57.1
2 32.3 124.4 122.3 56.2
3 34.2 124.6 119 55.7
4 35.8 120.7 117.3 59.4
5 36.7 122.6 118.2 61.3
6 39 134.1 132.2 59.6
7 40.1 143.3 146.4 64.7
8 75.5 150.1 157.3 100.7
9 77.4 156.8 159.6 119.8
10 55.6 156.7 152.2 117.5
11 43 153.2 146.6 108.8
12 39.4 152.9 138.3 107
13 40.2 146.3 132.1 98.3
14 44.8 145.6 128.5 96.1
15 49 145.7 127.1 102.2
16 45.7 146 130.8 108.5
17 41.3 148.7 138.9 115.4
18 37 150.3 150.3 130.4
19 32.9 158 159.3 116.7
20 27.9 165.1 170.2 106
21 25.7 162.3 167.8 100.1
22 24.4 154.4 154 72
23 23.3 146.8 139.3 63.2
24 24.7 136.5 127.5 57.7
Average 39.8 145 140.3 88.9
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Figure A.4: Plot of Average day-ahead prices in 2022 by weekday for all hours.
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Table A.4: Average day-ahead prices in 2022 by weekday for all hours.

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1 206.9 227.2 225.6 233.5 228.8 223.8 204.5
2 193.5 212.8 216.5 222.5 216.1 213.5 191.4
3 188.5 207 211 216.8 209.8 204.5 183.8
4 182.3 202.5 207.1 212.9 204.3 197.1 175.1
5 183.8 205.8 210 212.8 204.9 193.3 171.6
6 204.4 218.8 217.3 227.9 216.4 195.6 170.5
7 233.3 238 236.9 242.9 236.8 196.7 172.6
8 270.5 276.2 263.4 266.2 267.6 211.1 176.7
9 290.6 294.3 278.7 281.2 280.3 216 178.7
10 274 280.4 270 273.2 274.3 217.2 175.9
11 256 263.3 259.3 260.7 263.1 213 173.7
12 237.3 253.4 246.1 246.1 253.2 202.9 173.5
13 227.9 235.1 236.6 236.5 239.6 194.3 161.9
14 221.9 232.6 231.8 229.6 225.7 175.7 161.9
15 214.8 234.5 231.6 230.5 218.1 168.2 154.8
16 223.5 241.2 237.7 235.4 219.8 174.3 167.2
17 237.8 253 251.4 246.3 229.1 184 182.4
18 262.5 266.5 262.6 259.6 245.3 207.8 212.3
19 278 279.4 269.7 267.1 256.9 230.3 229.8
20 279.9 279.5 270.8 271.3 260.4 241.7 245.7
21 274.3 268.3 265.2 268 254.4 241.6 249.5
22 263 254.1 255.5 258 241.8 236 242.8
23 249.7 244.8 247.3 247 233.8 228 235.2
24 231.3 228.1 232.3 231.3 215.8 216.4 220.7
Average 236.9 245.7 243.1 244.9 237.3 207.6 192.2
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Figure A.5: Average day-ahead prices in 2022 by weekday.
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Figure A.6: Original data set of intraday selling prices for 2022.
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Figure A.7: Interpolated data set of intraday selling prices for 2022.
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Figure A.8: Original data set of intraday buying prices for 2022.
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Figure A.9: Interpolated data set of intraday buying prices for 2022.
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Figure A.10: Difference between day-ahead prices and artificial intraday selling prices in 2022.
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Figure A.11: Difference between day-ahead prices and artificial intraday buying prices in 2022.
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Figure A.12: Comparison of traded volume day-ahead versus intraday sales contracts in 2022.
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Figure A.13: Comparison of traded volume day-ahead versus intraday purchasing contracts in 2022.
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A. 7.5 Wind Forecasting and Scenario Generation

Table A.5: Exponential alpha values for wind speed scaling

Month number Unit Value
1 [-] 1.177663
2 [-] 1.190666
3 [-] 1.219631
4 [-] 1.276513
5 [-] 1.284481
6 [-] 1.244307
7 [-] 1.203376
8 [-] 1.180236
9 [-] 1.181066
10 [-] 1.191049
11 [-] 1.179459
12 [-] 1.173860

A. 7.6 Test Instance Generation

Table A.6: Modeling parameters implemented in the base case of the model.

Parameter Value
Number of Scenarios 20
Number of Electrolyzers units in E 20
Number of Electrolyzers units in EAgg 10
Number of Batteries 5
Number of Desalination Units 1
Number of Fuel cell Units 1
Number of Compressors units 1
Number of Pipelines 1
Number of quarters of hour 146

Test horizon
24.10.2022:10:30 -
25.10.2022:23:00

Forecasting horizon length [h] 36
Time limit subproblem [minutes] 15

Table A.7: Initial values for all test instances of the rolling horizon model.

Parameter Value Unit
δEεs0 0 [-]
eBsb0 0 [MWh]

mPH2
s0 1000 [kg]
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A. 8.1.1 Seven Days Operation

Table A.8: Model results for one week of operation.

Unit Value
Day-ahead Commitments
Day-ahead Commitment [MWh] 45 580.8
Actual Day-ahead Delivery [MWh] 42 796.8
Intraday Purchase [MWh] 617.3
Actual Day-ahead Deviation [MWh] 2 167.0
Actual Day-ahead Deviation [%] 4.8

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 114.3
Actual Intraday Sale Delivery [MWh] 113.2
Actual Intraday Sale Deviation [MWh] 1.1
Intraday Sale Delivery Ratio [%] 99.0

Technical Performance
Electrolysis [MWh] 31 306.1
Auxiliary Processes [MWh] 477.1
Electrolyzer Transitions [MWh] 657.5
Battery Discharge [MWh] 440.4
Fuel Cell [MWh] 1 076.9
Energy Shed [MWh] 6 447.1
Energy Shed [%] 8.0
Hydrogen Production [kg] 503 725.8

Financials
Hydrogen Sales [kg] 421 965.8
Hydrogen Sales [EUR] 1 679 423.9
Hydrogen Sales* [EUR] 1 730 248.5
Day-Ahead Sales [EUR] 6 113 813.2
Intraday Sales [EUR] 24 521.4
Cost Intraday Purchases [EUR] 113 039.3
Net Income [EUR] 7 704 719.3
Net Income* [EUR] 7 755 543.9

Income Distribution
Hydrogen Sales [%] 21.8
Hydrogen Sales* [%] 22.3
Electricity Sales [%] 78.2
Electricity Sales* [%] 77.7

Solver Performance
Minimum Runtime [s] 31.1
Maximum Runtime [s] 901.2
Average Runtime [s] 66.6
Minimum Optimality Gap [%] 0.0002
Maximum Optimality Gap [%] 0.0241
Average Optimality Gap [%] 0.0040
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A 8.1.2 Changing the Number of Wind Power Generation
Scenarios

Table A.9: Model results for different number of scenarios.

Unit S = 10 S = 20 S = 30 S = 40 S = 50
Day-ahead Commitments
Day-ahead Commitment [MWh] 16 110.5 16 428.8 16 322.7 16 369.4 16 644.9
Actual Day-ahead Delivery [MWh] 15 695.7 16 019.2 15 893.6 15 902.6 16 149.9
Intraday Purchase [MWh] 184.2 231.7 256.7 276.0 303.4
Actual Day-ahead Deviation [MWh] 231.5 178.1 172.8 190.9 191.2
Actual Day-ahead Deviation [%] 1.4 1.1 1.1 1.2 1.1

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 45.7 35.8 31.2 13.7 14.7
Actual Intraday Sale Delivery [MWh] 44.4 35.8 31.2 13.7 14.7
Actual Intraday Sale Deviation [MWh] 1.3 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 97.1 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 8 380.8 8 173.3 7 507.1 7 687.0 7 841.2
Auxiliary Processes [MWh] 127.7 124.6 114.4 117.2 119.5
Electrolyzer Transitions [MWh] 202.2 195.0 248.8 215.0 199.4
Battery Discharge [MWh] 111.0 82.7 98.2 93.1 100.3
Fuel Cell [MWh] 85.7 95.7 123.9 139.5 188.8
Energy Shed [MWh] 1 753.7 1 663.9 2 452.0 2 320.1 1 980.6
Energy Shed [%] 6.7 6.4 9.4 8.9 7.6
Hydrogen Production [kg] 134 857.1 131 513.9 120 794.8 123 688.6 126 165.3

Financials
Hydrogen Sales [kg] 16 092.0 80 020.4 45 034.0 32 808.6 86 692.5
Hydrogen Sales [EUR] 64 046.2 318 481.2 179 235.3 130 578.2 345 036.2
Hydrogen Sales* [EUR] 518 562.2 502 635.8 452 701.1 460 201.8 457 312.0
Day-Ahead Sales [EUR] 1 514 038.1 1 556 594.7 1 542 645.0 1 539 629.8 1 576 850.0
Intraday Sales [EUR] 6 730.3 4 667.5 3 761.6 1 655.2 1 758.7
Cost Intraday Purchases [EUR] 19 884.0 26 041.9 28 404.4 30 177.2 33 458.5
Net Income [EUR] 1 564 930.6 1 853 701.4 1 697 237.6 1 641 686.0 1 890 186.4
Net Income* [EUR] 2 019 446.6 2 037 856.0 1 970 703.4 1 971 309.6 2 002 462.2

Income Distribution
Hydrogen Sales [%] 4.1 17.2 10.6 8.0 18.3
Hydrogen Sales* [%] 25.7 24.7 23.0 23.3 22.8
Net Electricity Sales [%] 95.9 82.8 89.4 92.0 81.7
Net Electricity Sales* [%] 74.3 75.3 77.0 76.7 77.2

Runtime
Minimum Runtime [s] 15.3 39.9 59.5 81.0 102.9
Maximum Runtime [s] 82.7 331.5 893.7 900.3 900.5
Average Runtime [s] 21.5 55.1 87.7 118.9 171.2
Minimum Optitimality Gap [%] 0.0006 0.0003 0.0007 0.0010 0.0003
Maximum Optimality Gap [%] 0.0100 0.0098 0.0100 0.1061 0.6700
Average Optimality Gap [%] 0.0038 0.0038 0.0040 0.0053 0.0095
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Figure A.14: The impact on day-ahead commitments when changing the number of scenarios.
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Figure A.15: The impact on net income when changing the number of scenarios.
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A 8.1.3 The Role of the Intraday Market

Table A.10: Model results for intraday market policies.

Unit No Intraday Access Limited Intraday Trading Unlimited Intraday Trading
Day-ahead Commitments
Day-ahead Commitment [MWh] 16 423.4 16 428.8 16 426.9
Actual Day-ahead Delivery [MWh] 16 229.5 16 019.2 12 176.9
Intraday Purchase [MWh] 0.0 231.7 4 250.0
Actual Day-ahead Deviation [MWh] 193.9 178.1 0.0
Actual Day-ahead Deviation [%] 1.2 1.1 0.0

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 0.0 35.8 271.5
Actual Intraday Sale Delivery [MWh] 0.0 35.8 271.5
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 0.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 7 819.7 8 173.3 12 401.5
Auxiliary Processes [MWh] 119.2 124.6 189.0
Electrolyzer Transitions [MWh] 203.7 195.0 50.6
Battery Discharge [MWh] 102.1 82.7 36.6
Fuel Cell [MWh] 109.5 95.7 1.5
Energy Shed [MWh] 1 852.5 1 663.9 1 019.5
Energy Shed [%] 7.1 6.4 3.9
Hydrogen Production [kg] 125 822.3 131 513.9 199 547.8

Financials
Hydrogen Sales [kg] 19 433.0 80 020.4 79 681.0
Hydrogen Sales [EUR] 77 343.3 318 481.2 317 130.5
Hydrogen Sales* [EUR] 476 537.3 502 635.8 797 914.5
Day-Ahead Sales [EUR] 1 556 257.2 1 556 594.7 1 556 462.2
Intraday Sales [EUR] 0.0 4 667.5 35 690.1
Cost Intraday Purchases [EUR] 0.0 26 041.9 498 032.3
Net Income [EUR] 1 633 600.6 1 853 701.4 1 411 250.4
Net Income* [EUR] 2 032 794.6 2 037 856.0 1 892 034.4

Income Distribution
Hydrogen Sales [%] 4.7 17.2 22.5
Hydrogen Sales* [%] 23.4 24.7 42.2
Electricity Sales [%] 95.3 82.8 77.5
Electricity Sales* [%] 76.6 75.3 57.8

Solver Performance
Minimum Runtime [s] 40.2 39.9 245.5
Maximum Runtime [s] 317.7 331.5 903.9
Average Runtime [s] 53.8 55.1 453.2
Minimum Optitimality Gap [%] 0.0002 0.0003 0.0016
Maximum Optimality Gap [%] 0.0099 0.0098 0.0160
Average Optimality Gap [%] 0.0041 0.0038 0.0079
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Figure A.16: The energy requirement for electrolysis over the planning period is modeled in the absence of the
intraday market, with intraday trading volume restrictions and without any restrictions.
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Figure A.17: The actual day-ahead delivery, equivalent to the amount of wind farm energy injected into the
power grid, over the planning period is modeled in the absence of the intraday market, with intraday trading
volume restrictions and without any restrictions.
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Figure A.18: The development of electricity prices and hydrogen price in the test instance when studying how
the intraday market affects operations.
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A 8.1.4 What if Analysis

Increased Electrolyzer Capacity

Table A.11: Model results for different electrolyzer capacities.

Unit 500 MW 600 MW 700 MW 800 MW 1000 MW
Day ahead Commitment
Day-ahead Commitment [MWh] 16 428.8 14 408.1 13 130.5 12 462.2 12 195.4
Actual Day-ahead Delivery [MWh] 16 019.2 14 182.2 12 990.1 12 335.2 12 071.3
Intraday Purchase [MWh] 231.7 173.5 133.5 120.1 117.2
Actual Day-ahead Deviation [MWh] 178.1 53.1 7.5 7.5 7.5
Actual Day-ahead Deviation [%] 1.1 0.4 0.1 0.1 0.1

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 35.8 46.4 49.1 48.0 44.6
Actual Intraday Sale Delivery [MWh] 35.8 46.4 49.1 48.0 44.6
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 8 173.3 9 820.3 11 311.4 12 109.4 12 550.9
Auxiliary Processes [MWh] 124.6 149.7 172.4 184.6 191.3
Electrolyzer Transitions [MWh] 195.0 213.0 243.3 231.0 227.5
Battery Discharge [MWh] 82.7 112.7 83.0 46.7 22.0
Fuel Cell [MWh] 95.7 51.5 33.7 26.6 26.6
Energy Shed [MWh] 1 663.9 1 747.1 1 383.6 1 237.1 1 068.0
Energy Shed [%] 6.4 6.7 5.3 4.7 4.1
Hydrogen Production [kg] 131 513.9 158 025.4 182 022.9 194 857.3 201 970.4

Financials
Hydrogen Sales [kg] 80 020.4 70 353.0 57 477.5 78 815.8 108 529.4
Hydrogen Sales [EUR] 318 481.2 280 004.9 228 760.4 313 686.9 431 947.0
Hydrogen Sales* [EUR] 502 635.8 619 618.3 719 892.4 772 580.9 800 932.8
Day-Ahead Sales [EUR] 1 556 594.7 1 375 342.7 1 264 884.3 1 210 325.1 1 194 305.8
Intraday Sales [EUR] 4 667.5 6 070.5 6 555.8 13 382.6 6 015.8
Intraday Purchases [EUR] 26 041.9 19 350.0 15 152.7 13 630.3 13 464.4
Total Net Income [EUR] 1 853 701.4 1 642 068.2 1 485 047.9 1 523 764.3 1 618 804.1
Total Net Income* [EUR] 2 037 856.0 1 981 681.6 1 976 179.9 1 982 658.3 1 987 789.9

Income Distribution
Hydrogen Sales [%] 17.2 17.1 15.4 20.6 26.7
Hydrogen Sales* [%] 24.7 31.3 36.4 39.0 40.3
Net Electricity Sales [%] 82.8 82.9 84.6 79.4 73.3
Net Electricity Sales* [%] 75.3 68.7 63.6 61.0 59.7

Solver Performance
Minimum Runtime [s] 42.5 41.1 37.3 38.8 46.1
Maximum Runtime [s] 338.3 901.4 901.6 900.7 900.7
Average Runtime [s] 57.2 66.2 61.0 72.6 95.0
Minimum Optimality Gap [%] 0.0003 0.0001 0.0001 0.0005 0.0003
Maximum Optimality Gap [%] 0.0098 0.0143 0.0961 0.1008 0.1577
Average Optimality Gap [%] 0.0038 0.0060 0.0060 0.0063 0.0069
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Figure A.19: Hydrogen sales does not follow the same sales pattern when comparing higher electrolyzer capacities
to 500 MW.
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Increased Fuel Cell Capacity

Table A.12: Model results for different fuel cell capacities.

Unit 40 MW 50 MW 60 MW 70 MW 80 MW
Day-ahead Commitments
Day-ahead Commitment [MWh] 16 428.8 16 458.0 16 489.0 16 531.8 16 578.3
Actual Day-ahead Delivery [MWh] 16 019.2 16 063.0 16 117.4 16 170.5 16 230.9
Intraday Purchase [MWh] 231.7 235.8 227.4 230.1 228.1
Actual Day-ahead Deviation [MWh] 178.1 160.0 144.8 132.1 120.1
Actual Day-ahead Deviation [%] 1.1 1.0 0.9 0.8 0.7

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 35.8 36.6 36.8 35.2 37.7
Actual Intraday Sale Delivery [MWh] 35.8 36.6 36.8 35.2 37.7
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 8 173.3 8 236.7 8 245.8 8 302.5 8 299.0
Auxiliary Processes [MWh] 124.6 125.5 125.7 126.5 126.5
Electrolyzer Transitions [MWh] 195.0 182.5 185.0 175.6 165.0
Battery Discharge [MWh] 82.7 87.7 94.6 89.0 80.1
Fuel Cell [MWh] 95.7 115.4 134.2 159.5 180.7
Energy Shed [MWh] 1 663.9 1 590.4 1 535.0 1 469.6 1 441.6
Energy Shed [%] 6.4 6.1 5.9 5.6 5.5
Hydrogen Production [kg] 131 513.9 132 534.5 132 680.7 133 589.6 133 535.8

Financials
Hydrogen Sales [kg] 80 020.4 94 322.4 94 041.0 85 870.0 62 346.1
Hydrogen Sales [EUR] 318 481.2 375 403.2 374 283.2 341 762.6 248 137.5
Hydrogen Sales* [EUR] 502 635.8 501 609.0 497 305.0 494 395.6 488 688.7
Day-Ahead Sales [EUR] 1 556 594.7 1 560 282.3 1 564 015.6 1 568 425.6 1 573 472.4
Intraday Sales [EUR] 4 667.5 4 779.9 4 737.4 4 526.6 4 872.8
Cost Intraday Purchases [EUR] 26 041.9 26 236.4 25 539.9 25 579.9 25 390.1
Total Net Income [EUR] 1 853 701.4 1 914 228.9 1 917 496.3 1 889 134.8 1 801 092.6
Total Net Income* [EUR] 2 037 856.0 2 040 434.7 2 040 518.1 2 041 767.8 2 041 643.8

Income Distribution
Hydrogen Sales [%] 17.2 19.6 19.5 18.1 13.8
Hydrogen Sales* [%] 24.7 24.6 24.4 24.2 23.9
Net Electricity Sales [%] 82.8 80.4 80.5 81.9 86.2
Net Electricity Sales* [%] 75.3 75.4 75.6 75.8 76.1

Solver Performance
Minimum Runtime [s] 41.6 38.8 37.4 38.5 42.8
Maximum Runtime [s] 324.5 378.0 232.2 930.0 900.5
Average Runtime [s] 56.3 53.9 53.0 67.5 64.1
Minimum Optimality Gap [%] 0.0003 0.0001 0.0000 0.0008 0.0008
Maximum Optimality Gap [%] 0.0098 0.0100 0.0098 0.0115 0.1938
Average Optimality Gap [%] 0.0038 0.0038 0.0043 0.0041 0.0055
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Increasing the Power Transmission Capacity

Table A.13: Model results for different transmission cable capacities.

Unit 300 MW 400 MW 500 MW 600 MW 700 MW
Day-ahead Commitments
Day-ahead Commitment [MWh] 10 163.7 13 257.0 16 428.8 19 846.0 23 501.8
Actual Day-ahead Delivery [MWh] 10 078.0 13 051.9 16 019.2 18 983.3 21 566.3
Intraday Purchase [MWh] 81.7 150.3 231.7 354.9 459.1
Actual Day-ahead Deviation [MWh] 4.0 54.8 178.1 506.8 1 476.4
Actual Day-ahead Deviation [%] 0.0 0.4 1.1 2.6 6.3

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 23.1 34.8 35.8 21.1 11.9
Actual Intraday Sale Delivery [MWh] 23.1 34.8 35.8 21.1 11.9
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 14 450.1 11 250.1 8 173.3 6 238.7 4 017.8
Auxiliary Processes [MWh] 220.2 171.5 124.6 95.1 61.2
Electrolyzer Transitions [MWh] 225.8 179.3 195.0 105.5 70.1
Battery Discharge [MWh] 59.6 75.5 82.7 84.4 73.0
Fuel Cell [MWh] 27.3 50.9 95.7 305.6 489.7
Energy Shed [MWh] 1 155.5 1 487.7 1 663.9 982.8 892.8
Energy Shed [%] 4.4 5.7 6.4 3.8 3.4
Hydrogen Production [kg] 232 520.3 181 053.3 131 513.9 100 384.9 64 657.0

Financials
Hydrogen Sales [kg] 107 948.5 72 015.0 80 020.4 81 455.4 33 145.0
Hydrogen Sales [EUR] 429 634.9 286 619.7 318 481.2 324 192.5 131 917.1
Hydrogen Sales* [EUR] 922 358.9 711 285.7 502 635.8 324 455.9 134 634.6
Day-Ahead Sales [EUR] 968 001.5 1 262 226.5 1 556 594.7 1 880 514.5 2 228 076.6
Intraday Sales [EUR] 2 929.0 4 318.6 4 667.5 2 845.2 1 524.7
Cost Intraday Purchases [EUR] 9 481.0 16 994.6 26 041.9 38 694.8 50 051.0
Net Income [EUR] 1 391 084.5 1 536 170.2 1 853 701.4 2 168 857.3 2 311 467.4
Net Income* [EUR] 1 883 808.5 1 960 836.2 2 037 856.0 2 169 120.7 2 314 185.0

Income Distribution
Hydrogen Sales [%] 30.9 18.7 17.2 14.9 5.7
Hydrogen Sales* [%] 49.0 36.3 24.7 15.0 5.8
Electricity Sales [%] 69.1 81.3 82.8 85.1 94.3
Electricity Sales* [%] 51.0 63.7 75.3 85.0 94.2

Solver Performance
Minimum Runtime [s] 48.5 41.4 39.9 41.4 41.6
Maximum Runtime [s] 900.6 201.8 331.5 904.7 490.3
Average Runtime [s] 76.3 58.4 55.1 102.4 112.4
Minimum Optimality Gap [%] 0.0001 0.0008 0.0003 0.0003 0.0001
Maximum Optimality Gap [%] 0.0308 0.0099 0.0098 0.0172 0.0100
Average Optimality Gap [%] 0.0059 0.0050 0.0038 0.0039 0.0049
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Figure A.20: Increasing the transmission cable capacity is associated with higher day-ahead deviations.
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Figure A.21: The electrolysis energy requirements for different transmission cable capacities.
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Number of Electrolyzers in E

Table A.14: Model results with different electrolyzer modeling sets.

Unit E = 20 E = 50 E = 100 E = 150 E = 200 E = 400
Day-ahead Commitment
Day-ahead Commitment [MWh] 16 428.8 16 429.9 16 427.5 16 428.3 16 427.7 16 428.6
Actual Day-ahead Delivery [MWh] 16 019.2 16 010.2 16 013.4 16 003.9 16 013.8 15 999.7
Intraday Purchase [MWh] 231.7 243.0 236.0 247.0 237.6 252.1
Actual Day-ahead Deviation [MWh] 178.1 177.5 178.6 178.5 177.0 177.5
Actual Day-ahead Deviation [%] 1.1 1.1 1.1 1.1 1.1 1.1

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 35.8 33.3 33.2 31.5 35.8 28.9
Actual Intraday Sale Delivery [MWh] 35.8 33.3 33.2 31.5 35.8 28.9
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 8 173.3 8 636.6 8 693.5 8 621.8 8 500.6 8 847.6
Auxiliary Processes [MWh] 124.6 131.6 132.5 131.4 129.6 134.9
Electrolyzer Transitions [MWh] 195.0 165.0 156.3 161.3 177.8 137.9
Battery Discharge [MWh] 82.7 84.3 89.9 82.4 76.5 84.9
Fuel Cell [MWh] 95.7 94.5 92.9 97.0 97.1 92.5
Energy Shed [MWh] 1 663.9 1 242.5 1 181.7 1 260.9 1 355.3 1 058.7
Energy Shed [%] 6.4 4.8 4.5 4.8 5.2 4.1
Hydrogen Production [kg] 131 513.9 138 967.8 139 880.2 138 725.5 136 779.6 142 365.7

Financials
Hydrogen Sales [kg] 131 513.9 138 967.8 139 880.2 138 725.5 136 779.6 142 365.7
Hydrogen Sales [EUR] 318 481.2 530 077.5 534 131.9 522 466.1 515 086.8 544 111.8
Hydrogen Sales* [EUR] 502 635.8 532 665.3 536 719.7 531 047.0 523 245.8 546 699.6
Day-Ahead Sales [EUR] 1 556 594.7 1 556 695.9 1 556 537.9 1 556 623.7 1 556 546.9 1 556 651.4
Intraday Sales [EUR] 4 667.5 4 251.0 4 437.5 3 888.2 4 666.3 3 803.4
Cost Intraday Purchases [EUR] 26 041.9 27 295.3 26 362.1 27 991.9 26 404.9 27 932.2
Net Income [EUR] 1 853 701.4 2 063 729.1 2 068 745.2 2 054 986.1 2 049 895.1 2 076 634.5
Net Income* [EUR] 2 037 856.0 2 066 316.9 2 071 333.0 2 063 567.0 2 058 054.1 2 079 222.3

Income Distribution
Hydrogen Sales [%] 17.2 25.7 25.8 25.4 25.1 26.2
Hydrogen Sales* [%] 24.7 25.8 25.9 25.7 25.4 26.3
Electricity Sales [%] 82.8 74.3 74.2 74.6 74.9 73.8
Electricity Sales* [%] 75.3 74.2 74.1 74.3 74.6 73.7

Solver Performance
Minimum Runtime [s] 38.8 46.0 68.4 82.4 98.4 172.2
Maximum Runtime [s] 332.2 334.3 545.5 739.8 414.8 901.3
Average Runtime [s] 54.3 71.1 90.4 119.3 145.8 300.8
Minimum Optimality Gap [%] 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000
Maximum Optimality Gap [%] 0.0098 0.0100 0.0100 0.0100 0.0099 0.1882
Average Optimality Gap [%] 0.0038 0.0045 0.0040 0.0041 0.0036 0.0052
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System Performance With Different Hydrogen Prices [500 MW Electro-
lysis]

Table A.15: Model results with different hydrogen prices and 500 MW electrolyzer capacity.

Unit 2 3 4 6 8 10 15 20
Day-ahead Commitments
Day-ahead Commitment [MWh] 16 441.7 16 441.7 16 428.8 16 292.9 16 129.6 16 117.6 16 075.7 16 069.1
Actual Day-ahead Delivery [MWh] 16 035.7 16 035.8 16 019.2 15 875.8 15 709.7 15 695.6 15 642.0 15 638.6
Intraday Purchase [MWh] 228.1 228.1 231.7 238.2 237.7 240.2 251.5 248.5
Actual Day-ahead Deviation [MWh] 178.5 178.0 178.1 179.2 182.4 181.9 182.4 182.3
Actual Day-ahead Deviation [%] 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 35.8 35.8 35.8 34.7 34.7 31.1 29.7 29.6
Actual Intraday Sale Delivery [MWh] 35.8 35.8 35.8 34.7 34.7 31.1 29.7 29.6
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Technical Performance
Electrolysis [MWh] 7 929.6 8 062.1 8 173.3 8 159.2 8 273.6 8 494.9 8 341.0 8 716.8
Auxiliary Processes [MWh] 120.9 122.9 124.6 124.4 126.1 129.5 127.1 132.9
Electrolyzer Transitions [MWh] 210.0 189.4 195.0 199.4 197.8 185.6 197.2 170.3
Battery Discharge [MWh] 79.8 82.5 82.7 88.5 98.6 101.9 93.8 98.1
Fuel Cell [MWh] 98.8 97.9 95.7 89.6 86.6 86.5 87.7 85.3
Energy Shed [MWh] 1 888.9 1 765.5 1 663.9 1 810.6 1 859.5 1 670.1 1 861.1 1 509.4
Energy Shed [%] 7.2 6.8 6.4 6.9 7.1 6.4 7.1 5.8
Hydrogen Production [kg] 127 587.2 129 721.3 131 513.9 131 284.2 133 123.0 136 682.9 134 206.6 140 253.0

Financials
Hydrogen Sales [kg] 82 582.2 106 847.0 80 020.4 107 263.9 97 403.2 109 390.6 52 159.6 133 194.1
Hydrogen Sales [EUR] 164 338.6 318 938.3 318 481.2 640 365.5 775 329.5 1 088 436.5 778 482.0 2 650 562.6
Hydrogen Sales* [EUR] 243 102.8 371 205.6 502 635.8 754 989.5 1 022 885.5 1 314 003.0 1 932 930.8 2 700 710.6
Day-Ahead Sales [EUR] 1 557 467.7 1 557 470.9 1 556 594.7 1 545 171.5 1 528 890.2 1 528 164.4 1 523 954.7 1 523 529.6
Intraday Sales [EUR] 4 666.8 4 667.6 4 667.5 4 512.3 4 538.1 4 230.6 3 850.6 3 863.9
Cost Intraday Purchases [EUR] 25 808.1 25 810.5 26 041.9 26 381.2 26 440.2 26 626.2 27 891.5 27 716.5
Net Income [EUR] 1 700 664.9 1 855 266.2 1 853 701.4 2 163 668.1 2 282 317.6 2 594 205.3 2 278 395.8 4 150 239.7
Net Income* [EUR] 1 779 429.1 1 907 533.6 2 037 856.0 2 278 292.1 2 529 873.6 2 819 771.8 3 432 844.6 4 200 387.7

Income Ditribution
Hydrogen Sales [%] 9.7 17.2 17.2 29.6 34.0 42.0 34.2 63.9
Hydrogen Sales* [%] 13.7 19.5 24.7 33.1 40.4 46.6 56.3 64.3
Electricity Sales [%] 90.3 82.8 82.8 70.4 66.0 58.0 65.8 36.1
Electricity Sales* [%] 86.3 80.5 75.3 66.9 59.6 53.4 43.7 35.7

Solver Performance
Minimum Runtime [s] 41.6 40.4 40.1 41.4 40.9 31.0 36.8 35.7
Maximum Runtime [s] 447.0 294.2 345.6 264.0 431.5 554.4 377.5 422.7
Average Runtime [s] 58.1 58.6 55.5 57.5 57.0 58.3 54.9 56.8
Min Optimality Gap [%] 0.0006 0.0002 0.0003 0.0008 0.0004 0.0005 0.0010 0.0009
Max Optimality Gap [%] 0.0099 0.0100 0.0098 0.0097 0.0099 0.0097 0.0100 0.0100
Average Optimality Gap [%] 0.0041 0.0039 0.0038 0.0042 0.0047 0.0044 0.0047 0.0050
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A. 8.1.7 Value of Perfect Information

Table A.16: Model results under perfect information.

Solution Value
Scenario 1 1 982 720.0
Scenario 2 1 955 730.7
Scenario 3 1 916 534.1
Scenario 4 1 959 490.6
Scenario 5 1 873 809.7
Scenario 6 1 955 854.0
Scenario 7 1 815 337.4
Scenario 8 1 879 046.9
Scenario 9 1 635 405.5
Scenario 10 1 871 512.9
Scenario 11 1 624 777.7
Scenario 12 1 831 764.3
Scenario 13 1 985 992.6
Scenario 14 1 911 671.4
Scenario 15 1 897 383.4
Scenario 16 1 894 268.2
Scenario 17 1 915 866.3
Scenario 18 1 863 913.1
Scenario 19 1 912 421.8
Scenario 20 1 951 432.2
SS 1 853 733.2

A. 8.2.4 Decoupling From Power Markets - Island Mode
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Figure A.22: Wind power generation profile when testing for fuel cell and battery activation in island mode
configuration.
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A. 8.2.7 Power Market Participation - A Profitability Driver

Table A.17: Model results with different hydrogen prices and 1000 MW electrolyzer capacity.

Unit 2 EUR 4 EUR 5 EUR 6 EUR 8 EUR 10 EUR 15 EUR
Day-ahead Commitments
Day-ahead Commitment [MWh] 12 604.6 12 195.4 11 344.7 10 021.0 1 600.1 1.9 0.0
Actual Day-ahead Delivery [MWh] 12 472.5 12 071.3 11 217.1 9 883.8 1 576.5 1.9 0.0
Intraday Purchase [MWh] 125.0 117.2 120.6 131.9 23.5 0.0 0.0
Actual Day-ahead Deviation [MWh] 7.5 7.5 7.5 6.3 0.0 0.0 0.0
Actual Day-ahead Deviation [%] 0.1 0.1 0.1 0.1 0.0 0.0 NA

Intraday Sale Commitments
Intraday Sale Commitment [MWh] 45.5 44.6 38.6 28.6 6.1 0.0 0.0
Actual Intraday Sale Delivery [MWh] 45.5 44.6 38.6 28.6 6.1 0.0 0.0
Actual Intraday Sale Deviation [MWh] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Intraday Sale Delivery Success [%] 100.0 100.0 100.0 100.0 100.0 NA NA

Technical Performance
Electrolysis [MWh] 12 056.7 12 550.9 13 571.3 15 350.2 23 825.4 25 666.0 25 667.9
Auxiliary Processes [MWh] 183.8 191.3 206.9 234.0 363.2 391.2 391.2
Electrolyzer Transitions [MWh] 286.3 227.5 206.3 142.5 56.9 12.5 12.5
Battery Discharge [MWh] 21.2 18.7 24.3 17.8 10.5 0.0 0.0
Fuel Cell [MWh] 27.6 26.6 19.8 10.0 7.7 0.0 0.0
Energy Shed [MWh] 1 106.3 1 068.0 897.8 490.4 309.0 56.6 56.6
Energy Shed [%] 4.2 4.1 3.4 1.9 1.2 0.2 0.2
Hydrogen Production [kg] 194 014.8 201 970.4 218 388.5 247 012.2 383 422.9 413 041.8 413 072.8

Financials
Hydrogen Sales [kg] 122 404.8 108 529.4 122 709.0 144 238.8 307 007.3 377 164.3 367 891.5
Hydrogen Sales [EUR] 243 585.7 431 947.0 610 477.3 861 105.6 2 443 778.1 3 752 784.8 5 490 781.1
Hydrogen Sales* [EUR] 384 517.5 800 932.8 1 085 042.5 1 476 612.6 3 056 061.3 4 119 740.8 6 179 868.3
Day-Ahead Sales [EUR] 1 217 600.8 1 194 305.8 1 136 831.9 1 038 478.6 226 243.7 316.5 0.0
Intraday Sales [EUR] 6 146.7 6 015.8 5 610.5 4 195.6 1 111.7 4.8 0.0
Cost Intraday Purchases [EUR] 14 084.2 13 464.4 13 348.9 13 960.4 3 361.2 0.0 0.0
Net Income [EUR] 1 453 249.0 1 618 804.1 1 739 570.8 1 889 819.5 2 667 772.3 3 753 106.0 5 490 781.1
Net Income* [EUR] 1 594 180.8 1 987 789.9 2 214 136.0 2 505 326.5 3 280 055.5 4 120 062.0 6 179 868.3

Income Ditribution
Hydrogen Sales [%] 16.8 26.7 35.1 45.6 91.6 100.0 100.0
Hydrogen Sales* [%] 24.1 40.3 49.0 58.9 93.2 100.0 100.0
Electricity Sales [%] 83.2 73.3 64.9 54.4 8.4 0.0 0.0
Electricity Sales* [%] 75.9 59.7 51.0 41.1 6.8 0.0 0.0

Solver Performance
Minimum Runtime [s] 47.0 50.8 49.0 51.6 49.3 51.1 53.8
Maximum Runtime [s] 900.8 900.6 900.5 545.1 901.4 901.7 509.6
Average Runtime [s] 115.8 95.9 113.5 108.4 170.5 181.4 145.8
Min Optimality Gap [%] 0.0001 0.0003 0.0002 0.0005 0.0003 0.0015 0.0021
Max Optimality Gap [%] 0.0219 0.1577 0.0240 0.0100 0.2643 0.0879 0.0100
Average Optimality Gap [%] 0.0059 0.0069 0.0063 0.0063 0.0077 0.0085 0.0072
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