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Abstract— Hyperspectral imaging is one of the advanced re-
mote sensing techniques whose goal is to obtain the spectrum for
each pixel in the image of a scene, with the purpose of finding
objects, identifying materials or detecting processes. However,
the high dimensional nature of hyperspectral images makes
their analysis complex. Various methods have been developed to
reduce the dimension of hyperspectral images. Most commonly
used dimension reduction techniques are Principal Component
Analysis (PCA) and Independent Component Analysis (ICA).
PCA is a method to reduce the dimensionality by removing
the correlation among the bands, while ICA finds additively
independent components. FastICA is one of the most used ICA
algorithms. It is based on maximizing a loss derived from the
fourth order statistical moment (kurtosis) or negentropy, which
are both non-convex functions. Moreover, FastICA can find
irrelevant stationary points (no maxima) and is not scalable as
it uses at each iteration the whole set of pixels. In this paper,
we present a stochastic second-order Taylor-based algorithm
adapted to such ICA non-convex loss functions. Our algorithm
guarantees ascent, hence it usually identifies (local) maxima.
Moreover, the algorithm since it is stochastic, is scalable.
Detailed numerical simulations show the superior performance
of our method compared to FastICA.

I. INTRODUCTION

The hyperspectral imaging consists of acquiring and pro-
cessing information from the electromagnetic spectrum by
targeting a subset of wavelenghts that span beyond the usual
RGB spectrum. The hyperspectral data is becoming a valu-
able tool for monitoring the Earth’s surface or human body
and are used in many applications ranging from environment,
health, agriculture to astronomy and chemical imaging [6].
In the last two decades, a vast number of techniques were
proposed for image processing. Still, the majority of these
methods have been designed for application to colour and/or
grayscale images; therefore, they have limited success when
they are applied to hyperspectral images. This is partially
owing to large hyperspectral datasets being difficult to col-
lect, process and analyze, and also to the heavy computations
associated with images captured using many spectral bands.

The fast growth of the Artificial Intelligence (AI) and Big
Data fields, with support from hardware development, facil-
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itates the emergence of the next generation of Hyperspectral
Imaging Systems (HypIS), which are expected to learn from
streams of data and take optimal decisions in real-time on the
process at hand, leading to increased performance. However,
in order to move such technologies into HypIS, bottlenecks
have to be overcome, e.g., today computation for HypIS is
not locally embedded due to the huge dimension of the hy-
perspectral data cubes which yields enormous computational
load for the existing algorithms, requiring powerful data
centres or cloud infrastructures. Moreover, in hyperspectral
imaging, we usually deal with a small set of samples and a
large feature space, and the curse of dimensionality (Hughes
effect) becomes inevitable. Finally, high-dimensional data
is a source of variation and redundancy in hyperspectral
images. Some of the information in the image may be
redundant for analysis, due to strong correlation in the
bands. Therefore, dimensionality reduction is needed for
hyperspectral image analysis, see also [4], [6], [16]. The
main methods for dimensionality reduction of hyperspectral
images are Principal Component Analysis (PCA) [17] and
Independent Component Analysis (ICA) [7].

PCA is a method to reduce the dimensionality by removing
the correlation among the bands and identifying the optimum
linear combination of the original bands accounting for the
variation of pixel values in an image [10]. More precisely, the
principal components are ordered according to variance, such
that the first components carry more information with respect
to the full data space than the later components [17]. If the
variables or spectral signal under observation carry additive
independent normally distributed noise, PCA is an optimal
method for noise filtering. However, since the criterion used
by PCA is variance, which is used to measure second-order
statistics, such method may not be effective when the noise
is not normally distributed, see [4].

Similar to PCA, ICA is another method to reduce the
dimensionality of data, but finds additively separable com-
ponents rather than successive approximations [7]. More
precisely, ICA attempts to decompose a multivariate signal
into independent non-Gaussian signals, i.e. a decomposition
that provides statistical independence between the estimated
components. When the statistical independence assumption
is correct, ICA separation of a mixed signal gives good
results [4]. Whilst PCA is computed based on second or-
der statistical moments when estimating the subspace, ICA
utilizes higher order statistical moments, e.g. kurtosis (the
fourth order statistical moment). Due to this, ICA has good
performance in reducing the effects of noise and other



forms of undesired interference with the observed spectral
signatures, enhancing the classification and detection rate,
see e.g. [4], [15], [16].

In what follows, we explore and analyse optimization-based
methods for ICA. In the literature there are many iterative
algorithms available for finding Independent Components
(ICs). Commonly used one, including in industrial appli-
cations, is the FastICA algorithm, developed in [7], which
maximizes the kurtosis and is based on fixed point itera-
tions derived from the KKT conditions. Other methods for
computing the independent components are e.g., Joint Ap-
proximation Diagonalization of Eigenmatrices (JADE) [5],
Infomax [2] and stochastic majorization-minimization [1].
Infomax is based on a loss function which is a non-convex
log-likelihood. In [1], a new majorization-minimization op-
timization algorithm is developed, which is adapted to the
Infomax loss function and guarantees a decrease of the objec-
tive at each iteration. In [15], a comparative study was con-
ducted on different types of ICA algorithms (FastICA, Jade
and Infomax) for dimensionality reduction of hyperspectral
images. From this study it appears that JADE formulation is
more robust. FastICA algorithm is comparable to JADE from
the perspective of accuracy/precision. However, when more
features are considered, JADE demands a higher computa-
tional power than FastICA. Moreover, FastICA, JADE and
Infomax are full batch methods and consequently they can
perform poorly for large datasets (i.e., number of pixels is
very large in the given hypercube), calling for more scalable
algorithms. Additionally, these methods do not always find
good optimal points (maxima). It is thus of importance
to develop ICA solvers which are fast, easy to use and
with strong convergence guarantees. Various strategies have
been recently proposed to scale-up inferential problems from
big datasets. Besides parallelized and distributed approaches
exploiting hardware architectures, several variants of the
stochastic gradient descent method have been designed for
accelerating the optimization [3], [11].
We develop a stochastic second-order Taylor-based algorithm
adapted to the loss functions used in ICA, inspired from
[11] (see also the extended version [12] of this paper). In
particular, we show that the ICA loss functions have the
third derivatives bounded on the unit ball. Then, we derive
an upper bound approximation of the objective function
in ICA using a regularized second order Taylor-based ap-
proximation. At each iteration our algorithm minimizes this
approximation. This algorithm, due to his stochastic nature,
facilitates minibatching and thus is scalable and appropriate
for large datasets. Moreover, our algorithm guarantees ascent
of the loss function along iterations, hence it is able to
identify local maxima. We prove experimentally that FastICA
does not always find a local maximum point, hence it may
provide a direction where the non-Gaussianity is minimized
instead of maximizing it. On the other hand, our method be-
ing an ascent method always maximizes the non-Gaussianity.
Experiments on a real hyperspectral dataset demonstrate the
efficiency of our method.

II. INDEPENDENT COMPONENT ANALYSIS

In the signal processing field, the Independent Component
Analysis (ICA) technique becomes popular due to its effi-
ciency in solving the blind signal separation (BSS) problem.
The goal of the BSS problem is to separate a set of source
signals from a set of mixed observed signals, using little to
none information of the sources signals. In what follows,
we detail ICA technique, our presentation follows [7]. More
precisely, let us consider a set of observed signals, denoted
with X = [x1 x2 . . .xN ] ∈ Rd×N . We assume the set is a
linear combination of separated independent signals S =
[s1 s2 . . .sr] ∈ Rr×N , i.e:

X = AS,

where A∈Rd×r is called the mixing matrix and is unknown.
The goal is to recover the source signals by estimating the
unmixing matrix W = A+ (pseudoinverse), i.e.:

Ŝ =WX .

Note that this model is simple and we don’t consider noise.
Further, we formulate the basic assumptions for ICA:

1) Sources are considered statistically independent.
2) Independent components (ICs) are non-Gaussian.
3) Mixing matrix is (pseudo)invertible.

Let us observe that, for this technique, the independence
is fundamental. To define it, we introduce the notion of
probability density. Thus, let us denote the joint probability
density function (PDF) of two signals as p(s1,s2) and the
marginal PDF of a signal as pi(si). Two signals, s1 and s2,
are statistically independent if and only if the joint PDF can
be expressed as: p(s1,s2) = p1(s1)p2(s2). In other words,
the signals s1 and s2 are not offering information about
each other. Further, we need a way to quantify statistical
independence and the central limit theorem is giving us the
means. This theorem affirms that the distribution of a sum of
independent signals with arbitrary distributions tends toward
a Gaussian distribution. Thus, a Gaussian signal x can be
considered as a linear combination of many independent
signals si, i = 1 : r. Hence, this two notion, independence
and non-Gaussianity are equivalent. The standard technique
of measuring the non-Gaussianity of a random variable s is
the kurtosis, known as the fourth central moment [7]:

κ(s) = E[(s−µs)
4 /σ

4
s ], (1)

where µs is the mean of s and σs is the standard deviation
(to make kurtosis dimensionless we need to normalize it,
dividing by σ4

s ). Kurtosis measures the relative peakedness of
flatness of a distribution with respect to a Gaussian (normal)
distribution. Recall that the kurtosis of a Gaussian is equal to
3. Thus, a distribution with a positive kurtosis (κ > 3 in (1))
is named a super-Gaussian, while with a negative kurtosis
(κ < 3 in (1)) is termed a sub-Gaussian. In order to have
independence we need to maximize the kurtosis, since in
practice the signals tend to be more super-Gaussian:

maxκ(s) = max
∥w∥=1

E[(wT x−µs)
4], (2)



where we consider s = wT x and unit variance. Let us note
that the problem is formulated for only one vector, i.e finding
only one row of W , denoted w, at a time. Even though
kurtosis is theoretically a good measure of non-Gaussianity,
it is extremely sensitive to changes in the distribution tail.
Thus, other measures of non-Gaussianity are often used to
overcome this weakness. One of them is the approximation
of negentropy, which estimates the fourth moment using a
non-quadratic function g:

max
∥w∥=1

E [g(s)] . (3)

Two common choices for g are:

g1(s) =
1
α

lncosh(αs) =
1
α

ln(α
es + e−s

2
), with 1≤ α ≤ 2

and
g2(s) =−e−

s2
2 .

Usually g1 is used in applications, but if robustness is very
important or if the independent components are highly super-
Gaussian, then we should choose g2 [7].

Given a set of N i.i.d. samples [x1 x2 · · ·xN ], the empirical
risk minimization problem for (3) reads:

min
∥w∥=1

1
N

N

∑
i=1
−g(wT xi). (4)

We observe that (4) is a particular case of a finite sum
optimization problem, i.e. it can be written as:

min
∥w∥=1

f (w) :=
1
N

N

∑
i=1

fi(w). (5)

Before continuing with algorithms that solve the ICA prob-
lem (3) or its approximation (4), let us highlight that the
preprocessing steps are very important. The most basic and
necessary preprocessing step is to center x, i.e. subtract its
mean vector E[x] so as to make x a zero-mean variable.
This implies that s is zero-mean as well. After centering the
data, whitening the observed signals x is the next step. This
means that before the application of the ICA algorithm (and
after centering), we transform the observed vector x linearly
so that we obtain a new vector x̃ which is white, i.e. its
components are uncorrelated and their variances equal unity.
Thus, the covariance matrix of x̃ equals the identity matrix:

E[x̃x̃T ] = Id .

The whitening transformation is always possible. One popu-
lar method for whitening is to use the eigenvalue decompo-
sition of the covariance matrix E[xxT ] (see Section IV.A).

III. OPTIMIZATION ALGORITHMS FOR ICA

Below we describe two optimization algorithms for solving
ICA. FastICA is one of the most used ICA algorithms, which
is based on full batch Newton type iterations [7]. The second
algorithm is a stochastic Newton type method with a proper
cubic regularization term that guarantees descent, originally
developed in the paper [11].

A. FastICA method

The FastICA algorithm for one unit (row) finds a direction
w such that the projection wT x maximizes non-Gaussianity,
i.e. problem (3) is solved. To find the update expression of
FastICA, the Kuhn-Tucker optimality conditions are applied
to the equality constrained problem (3), see [7]:

E[xg′
(
wT x

)
]−λw = 0 and ∥w∥= 1, (6)

where λ is the Lagrange multiplier for the constraint ∥w∥=
1. We can solve this system of equations by Newton’s
method. Denoting the function on the left-hand side of (6) by
F , F(w) = E[xg′

(
wT x

)
]−λw, we obtain its Jacobian matrix

∇F(w) as:

∇F(w) = E[xxT g′′
(
wT x

)
]−λ Id . (7)

To simplify the inversion of this matrix, we will approximate
the first term in (7). Since the data is on the unit ball, a
reasonable approximation is:

E[xxT g′′
(
wT x

)
]

≈ E[xxT ] ·E[g′′
(
wT x

)
] = E[g′′

(
wT x

)
] · Id .

Thus the Jacobian matrix becomes diagonal and can be
easily inverted. We obtain the following approximate Newton
iteration (recall that we are using an approximation of the
Jacobian):

w+ = w−
(
E[xg′

(
wT x

)
]−λw

)
/
(
E[g′′

(
wT x

)
]−λ

)
.

At optimality the optimal multiplier is given by λ∗ =
E[wT

∗ xg′
(
wT
∗ x

)
], where w∗ is an optimal point. Therefore,

we also approximate the Lagrange multiplier at each iteration
using the current estimate of w:

λ = E[wT xg′
(
wT x

)
].

This algorithm can be further simplified by multiplying both
sides in the previous relation by λ −E[g′′

(
wT x

)
]. After few

algebraic simplifications, we obtain the FastICA iteration
(step 1 from Algorithm 1).

Algorithm 1: FastICA
Data: Choose a random w0 and normalize it.
while δ ≥ ε do

1. Update:

wk+1 = E[xg′
(
wT

k x
)
]−E[g′′

(
wT

k x
)
]wk

2. Normalize: wk+1← wk+1/∥wk+1∥
3. Update stopping criterion δ = |wT

k+1wk−1|
4. wk← wk+1 and increase k.

end

To estimate several independent components, we need to run
FastICA algorithm using several units (rows) with weight
vectors w1, . . . ,wr. To prevent different vectors from con-
verging to the same maxima we must decorrelate the outputs
wT

1 x, . . . ,wT
r x after every iteration. There are different meth-

ods to decorrelate, one example being a deflation scheme



based on a Gram-Schmidt-like decorrelation. Despite its
simplicity and fast convergence (as confirmed by many
experiments), FastICA may fail to find local maxima due
to the approximations used in the derivation of the Newton
iteration for solving the KKT system and since it is well
known that the convergence of the Newton method may be
rather uncertain outside of the quadratic convergence ball. It
is known that in order to guarantee global convergence for
the Newton method, a proper cubic regularization is needed
[14]. Hence, in the next section we describe a stochastic
variant of the cubic regularized Newton method for solving
the finite sum problem (4). The algorithm, in full generality,
was developed in [11], [12].

B. Stochastic second-order Taylor-based method

We consider the empirical risk minimization problem (4) or
equivalently the finite sum problem (5) coming from the ICA
formulation. For simplicity of the exposition we choose:

fi(w) =−g1(wT xi) = lncosh(wT xi), ∀i = 1 : N.

We prove below that this loss function has the third deriva-
tives bounded on the unit ball. Then, we derive an upper
bound approximation of the objective function in ICA using
a regularized second-order Taylor-based approximation. Our
algorithm below, at each iteration minimizes this approxima-
tion. Indeed, the derivatives of fi along a given direction ν

have the following expressions:

∇ fi(w)[ν ] =− tanh(wT xi)xT
i ν

∇
2 fi(w)[ν ]2 =−sech2(wT xi)(xT

i ν)2,

∇
3 fi(w)[ν ]3 = 2sech2(wT xi) tanh(wT xi)(xT

i ν)3.

Since the rows of unmixing matrix W satisfy ∥w∥ ≤ 1, it
follows that fi is concave function over the unit ball B = {w :
∥w∥ ≤ 1}, provided that the data satisfy ∥xi∥ ≤ 1. Moreover,
fi has the third derivative bounded on the unit ball B. Indeed,
since tanh(·) ∈ [−1,1] and sech(·) ∈ [0,1], we have:

∥∇3 fi(w)∥= max
∥ν∥≤1

|∇3 fi(w)[ν ]3|

= max
∥ν∥≤1

2sech2(xT
i w)| tanh(xT

i w)(xT
i ν)3|

≤ max
∥ν∥≤1

2|xT
i ν |3 ≤ 2∥xi∥3,

where in the last inequality we used Cauchy-Schwartz in-
equality |wT xi| ≤ ∥w∥∥xi∥. From here we conclude that the
hessian of fi, ∇2 fi, is Lipschitz continuous with the Lipschitz
constant:

L fi
2 = 2∥xi∥3.

In conclusion, the following inequality holds for each fi:∥∥∇
2 fi(w)−∇

2 fi(v)
∥∥≤ L fi

2 ∥w− v∥ ∀w,v ∈B. (8)

If we further define the second-order Taylor approximation
of the function fi around a point v:

T fi
2 (w;v)

= fi(v)+∇
T fi(v)(w− v)+

1
2
(w− v)T

∇
2 fi(v)(w− v),

then from (8) we can easily derive a majorizer of fi [13]:

fi(w)≤φi(w;v) := T fi
2 (w;v)+

M fi
2

6
∥w− v∥3 ∀w,v ∈B,

valid for any M fi
2 ≥ L fi

2 . Now, we are ready to derive a new
algorithm for solving the negentropy-based ICA problem (4)
(or equivalently the finite sum problem (5)). We propose
a stochastic second-order minibatch Taylor-based (SSOM)
algorithm based on the majorizers φi’s. Our method belongs
to the class of majorization-minimization algorithms, which
consist of successively minimizing a sequence of upper
bounds of the objective function so that along the iterations
the objective function decreases [9], [13]. Our scheme is
given in Algorithm 2. Note that the update of the global

Algorithm 2: Algorithm SSOM
Data: Given w0, compute surrogate functions

φ j(w;w j
0) of f j near w j

0 = w0 ∀ j = 1 : N.
while δ ≥ ε do

1. Chose uniformly random a subset (minibatch)
Sk ⊆ {1, · · · , N} of size τ ∈ [1,N].

2. For each ik ∈ Sk, compute the majorizer
φik(w;wk) of fik near wk and keep the previous
majorizers for j /∈ Sk

3. Update:

wk+1 ∈ argmin
∥w∥=1

φ(w; ŵk) :=
1
N

N

∑
j=1

φ j(w;w j
k),

where ŵk = [w j
k] j=1:N is defined as

w j
k =

{
wk, j ∈ Sk.

w j
k−1, j /∈ Sk.

4. Update stoping criterion δ = |wT
k+1wk−1|

5. wk← wk+1 and increase k.
end

majorizer φ can be done very efficiently as:

φ(w; ŵk) = φ(w; ŵk−1)+
φik(w;wk)−φik(w;wik

k−1)

N
.

We can also use the Hessian approximation used in FastICA
when computing the expression of the global majorizer φ .
Note that when τ = N, the previous algorithm (SSOM)
becomes a deterministic second order method with cubic
regularization [14], called DSOM. To estimate several in-
dependent components, we need to run SSOM for the rows
of W, w1, . . . ,wr, and use the same decorrelation procedure
as in FastICA. For this stochastic method one can derive the
following convergence and descent results (see [11], [12]).

Theorem 1: Assume that the functions fi have the second
derivatives Lipschitz over the unit ball B. Then, the sequence
(wk)k≥0 generated by SSOM is bounded, ∇ f (wk) converges
to 0 (hence, any limit point of (wk)k≥0 is a stationary point)
and the sequence of function values ( f (wk))k≥0 monotoni-
cally decreases in expectation, i.e.:

E[ f (wk+1)]≤ E[ f (wk)] ∀k ≥ 0.



In conclusion, our algorithm SSOM is scalable (due to its
stochastic nature) and has mathematical guarantees for the
decrease (increase) of the finite sum function f (of the loss
function g1) along iterations. Hence, it has more chances to
find local maxima than FastICA.

IV. ICA-BASED DIMENSIONALITY REDUCTION OF
HYPERSPECTRAL IMAGES

A hyperspectral image consists of a three-dimensional hyper-
spectral data cube m×n×d, having m×n pixels, in which
N = m · n is the number of pixels in each spectral channel
and d represents the number of spectral channels (see Figure
1). From the spectral perspective, a hyperspectral data cube
is composed of m×n pixels, where each pixel is a vector of
d values. Each pixel corresponds to the reflected radiation
of the specific region of the Earth and has multiple values
in spectral bands. This detailed spectral information can be
used to analyze different materials with precision. From the
spatial perspective, a hyperspectral data cube consists of d
gray scale images with a size of m× n. The values of all
pixels in one spectral band shape a grayscale image with
two dimensions: wavelength and reflectance.

Fig. 1. A hyperspectral datacube: grayscale image (left), hyperspectral data
cube (middle), pixel vector and its corresponding spectral signature (right).

However, relatively few bands can represent most of the
information in hyperspectral images [8], making dimension-
ality reduction useful for storage, transmission, classification,
target detection and visualization of remote sensing data
[4], [6], [16]. As discussed in Section II, ICA is an unsu-
pervised blind source separation technique, which identifies
statistically independent components by considering only
the observation of mixture signals. Based on this property,
ICA can be applied to hyperspectral images which can be
seen as a mixture of signals (bands), aiming at identifying
and eliminating statistical redundancies of hyperspectral data
while keeping as much spectral information as possible. We
usually represent a hyperspectral image as a matrix:

X =

x11 x12 · · · x1N
· · · · · · · · · · · ·
xd1 xd2 · · · xdN

 ∈ Rd×N ,

where xi, j is the pixel j on band i. We aim at reducing
the number of bands in the hypespectral image from d to
r < d using the negentropy-based ICA framework. In the

next section we present results obtained with the algorithms
SSOM and FastICA for solving the negentropy-based ICA
problem (4) (or equivalently the finite sum problem (5)).

A. Numerical results
For numerical simulations we used the hyperspectral image
from the dataset Indian Pines [18]. This scene was
gathered by AVIRIS sensor over the Indian Pines test site
in North-Western Indiana. The spatial dimensions of the
hyperspectral image are 145×145. It has 220 bands with 20
water absorption bands being discarded, hence d = 200. We
choose r = 15. We denote the matrix representation of the
image with X200×21025. Further, we start the preprocessing
step by extracting the mean from each column of X . We
denote the new matrix with X̃ and whiten it. This linear
transformation can be achieved by an infinite number of
whitening matrices Q. Since our goal is data reduction, we
choose a PCA whitening procedure:

X̃ X̃T =UΛUT , Q =UΛ
− 1

2 UT , X̂ = Q · X̃ ,

where the first relation is the eigendecomposition of the
covariance matrix X̃ X̃T and X̂ is the whitened data. Further,
for solving problem (4), we choose the loss function:

g1(wT x̂i) = ln(cosh(wT x̂i)).
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Fig. 2. Behavior of FastICA, SSOM and DSOM on Indian Pines dataset
[18] for τ = 145 and w0 = e1 along full iterations (epochs).

For FastICA, we use Matlab package from [19]. In Figure 2,
we depict the behavior of FastICA, SSOM and DSOM. For
high accuracies, our methods are better than FastICA, while
for lower accuracies the three methods are comparable. Also
note that SSOM is faster in CPU time than DSOM. In Figure
3, we plot the behavior of the three algorithms for two initial
points. We observe that for certain initializations (e.g. w0 =
1/∥1∥) FastICA doesn’t maximize the objective function
(non-Gaussianity), while our methods being of ascent nature
find a local maximum. The fact that FastICA can yield ICs
that are not relevant can be seen in Figure 4 (left side).
Finally, the three most relevant ICs are depicted in figure 5:
clearly the reduced hyperspectral image obtained with SSOM
is better than the one obtained with FastICA algorithm. The
reader should note that similar behavior was observed for
these algorithms on other initial points w0 (including random
choices) and on other loss functions. For the impact of
dimension reduction on the image classification see [12].
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Fig. 3. Objective function g1 along full iterations (epochs): comparison
between FastICA, SSOM and DSOM on Indian Pines dataset [18] for
different initializations: top w0 = e1, bottom w0 = 1/∥1∥. From the second
plot we observe that FastICA minimizes g1 instead of maximizing it.

Fig. 4. The IC found with the initialization w0 = 1/∥1∥ on the Indian
Pines dataset [18]: FastICA on the left, SSOM on the right.

V. CONCLUSIONS

In this paper we have present the ICA framework to reduce
the dimension of hyperspectral images. FastICA is one of
the most used ICA algorithms. It is based on a loss function
derived from the fourth order statistical moment (kurtosis)
or negentropy, which are non-convex functions. In this paper
we have presented an alternative optimization algorithm to
FastICA, which is a stochastic second-order majorization-
minimization algorithm adapted to this loss function. Since
our algorithm is stochastic in nature, it has the advantage
of scalability and also it guarantees a decrease of the loss
function along iterations.

Fig. 5. Three most relevant ICs found with FastICA (top), SSOM (bottom).
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