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Abstract—In this work we address the modeling of multi-port
subsystems with unknown inner dynamics by utilizing vector
fitting to identify state-space models for performing eigenvalue-
based analysis. Vector fitting is used to characterize frequency
responses obtained from frequency domain analysis, for example,
from Fourier transformation of time domain data. The intended
use is for interconnection with other models in system stability
analysis, where the use of compact state-space models is desir-
able. Typically, vector fitting of a multiple-input/multiple-output
(MIMO) system leads to a large state-space model where each
column (input) is fitted by a common pole set using a predefined
model order. An alternative vector fitting process based on a pole
collapsing scheme is proposed which can find suitable poles for
a more compact state-space model. Additionally, a method for
simpler, more automated order determination is introduced. The
use of the presented approach for obtaining a fully compacted
model (without pole repetitions) is examined and compared
against a previously proposed method based on singular value
decomposition. Application to an example system representing a
2-level power electronic converter demonstrates that the proposed
method gives a model with improved accuracy of eigenvalue
identification and model compaction, while retaining the essential
information in terms of system dynamic behavior.

Index Terms—vector fitting, MIMO system, black-box model-
ing, pole location, order selection, compaction

NOMENCLATURE

FCHSV Full compaction based on balanced truncation.
HSV Hankel singular value.
MF Matrix fitting.
MIMO Multiple-input/multiple-output.
PC-CF Pole-collapsing column fitting.
SAE Sum of absolute errors.
SVD Singular value decomposition.
VF Vector fitting.
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I. INTRODUCTION

STATE-space models offer several advantages for analysing

the behaviour of dynamic systems and form the basis

for large parts of modern control theory [1]. Access to a

state-space model also provides significant flexibility in the

available tools for analyses and the type of simulations that

can be performed. In particular, the stability of a linear

system can be easily determined from the state-space model by

examining the eigenvalues [2]. Additionally, nonlinear systems

can be linearized around an operating point and provide similar

analyses for small-signal dynamics [2]. To formulate a state-

space model with an analytical approach requires detailed,

comprehensive information about the studied system and its

parameters. Additionally, the required information is usually

not available for commercial products due to confidential-

ity requirements. Instead, black-box models for time-domain

simulation are commonly utilized to represent such systems,

where the internal details are not revealed and only access

to external ports is available. However, techniques have been

developed to create mathematical models using only input and

output signals. Such system identification methods can provide

a state-space model from a black-box model [3]. Although

originally developed as a fitting tool, vector fitting (VF) can

be used as a system identification tool.

VF was introduced by Gustavsen and Semlyen in 1999

[4] and has since received much attention due to its open-

source code, ease of use, and wide suitability. Thus, the

reported range of applications for VF is broad and varied,

from simulation of transmission line transients [5] and thermal

modeling of batteries [6] to controller parameter estimation [7]

or incorporation into transfer function estimation in Matlab [8].

Furthermore, many publications have suggested improvements

and modifications to the original method. Some of these im-

provements have been incorporated into the open-source code

provided at the vector fitting website, such as “relaxed vector

fitting” for removal of biasing [9], and a fast implementation

reducing the computation time of the algorithm [10].

In general, the VF algorithm provides a pole-residue model

from the frequency response curves of a system, which can be

easily converted to a state-space model. VF was originally de-

signed for single-input/single-output or single-input/multiple-

output systems, but the extended column fitting (CF) and

matrix fitting (MF) [11] algorithms were developed for use

with MIMO systems. The design-case for these adaptations
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of VF was primarily for admittance matrices; however, the

use cases have extended beyond. The matrix fitting website

provides several examples of use cases [12].

Furthermore, the matrix fitting algorithm can identify a

common set of poles for all the inputs, in contrast to column

fitting which fits a common pole set to each column. A real

system has a common set of poles that are based on physical

and control parameters of the system, and so the common

pole set produced by matrix fitting is more representative of a

real system. Although the columns (inputs) share a common

pole set, matrix fitting will produce a state-space system with

these poles repeated for each column [13]. This can lead to

much larger state-space models than would be determined

analytically, and therefore more computationally expensive

models. Additionally, a model with repeated poles is less

representative of the real system, which is significantly more

constrained in number of variables. A method of compacting

the state-space model to have fewer or no repeated poles was

therefore presented in [13] at the cost of increased error in the

model.

Regardless of the number of inputs/outputs, VF requires

the user to select an order. The conventional method is based

on “trial and error” by successively increasing/decreasing the

order to optimize the trade-off between a low order and

sufficiently small error for the application. Such a method

requires iteration from the user and order selection is not

always straightforward. For example, frequency response data

with some random deviations and noise will be fitted more

accurately with progressively higher order; however, the noise

will also be fitted, leading to over-fitting and a deceptively

high order selection.

This work attempts to address these issues and extends

the functionality of vector fitting with respect to system

identification of MIMO systems. The two main contributions

of this work can be summarized as:

1) A novel method for determining poles for vector fitting is

proposed, named pole-collapsing column fitting (PC-CF).

This method is characterized by:

• Increased pole placement accuracy compared to matrix

fitting.

• Appropriate order selection, less prone to overfitting.

2) Introduction of a compaction method with reduced model

error.

The paper is organized as follows. First, the VF algorithm is

briefly described to give proper context for the introduction of

the new method. Then, the new MIMO system vector fitting

method is presented with a simple example to highlight the dif-

ference in comparison to matrix fitting and demonstrate its use.

Subsequently, the theoretical basis for system compaction is

presented, including changes to previously proposed methods.

The methods are demonstrated on a more detailed, realistic

example system (a power electronics converter), and finally

the main results from this work are discussed and summarized.

II. CLASSICAL VECTOR FITTING

This section examines the basic vector fitting algorithm and

its application process to provide context.

A. Vector Fitting Algorithm
VF approximates a given scalar or vector frequency re-

sponse f(s) with a pole-residue model (1), defined by N poles,

pn, and residues, cn, where terms d and e can be zero [4].

f(s) =
N∑

n=1

cn
s− pn

+ d+ se (1)

VF iteratively relocates the initial poles using a linear least-

squares approach, and then calculates the residues. The system

order and placement of poles are determined as follows.
1) Order Selection: The number of poles, or the order, is

usually selected by a “trial and error” method, progressively

increasing the order until the responses are fitted with suf-

ficient accuracy. Although some reasonable guesses can be

made for the order based on the observed frequency response,

this still results in an iterative solution that requires input from

the user, and may capture only the most apparent poles. In the

case where a system is linearized around an operating point,

the influence of a pole may change at each operating point

and give different apparent orders. If many operating points

are examined, this may become cumbersome.
2) Pole Location: It is important to note that vector fitting

first iteratively relocates the poles before calculating the final

residues for each pole. When using matrix fitting for a MIMO

system, the frequency responses for each column (inputs in a

MIMO system) are combined into a single column [11]. This

single column is fitted with one set of poles, and the residues

can then be calculated for each input. In this way, the MIMO

system is vector fitted with a common pole set. Note that

matrix fitting was originally developed for square admittance

matrices where reciprocity must be preserved, so some minor

adjustments must be made to adapt the open-source code for

non-square MIMO systems.

B. Conversion from Pole-Residue Model to State-Space Model
1) SISO and SIMO Systems: Once a pole-residue model is

obtained, it is a straightforward process to convert to a state-

space model. For a general system with one input, a total of J
outputs, and N poles, the A matrix will be an N×N diagonal

matrix, with each pole, pn, placed on the diagonal. The B
matrix is simply a N × 1 ones matrix, while the C matrix

places the residues for each pole, cn, into a column, creating

a J × N matrix. The D matrix is a J × 1 matrix, with the

feedthrough values for each output, dj , in the column vector.

The following demonstrates how the matrices are constructed.

A =

⎡
⎢⎢⎢⎣
p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...

0 0 . . . pN

⎤
⎥⎥⎥⎦ , bT =

[
1 1 . . . 1

]
(2)

C =

⎡
⎢⎢⎢⎣
c1,1 c1,2 . . . c1,N
c2,1 c2,2 . . . c2,N

...
...

. . .
...

cJ,1 cJ,2 . . . cJ,N

⎤
⎥⎥⎥⎦ , dT =

[
d1 d2 . . . dJ

]

(3)
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2) MIMO Systems: Several methods for applying vector

fitting to a MIMO system are discussed in [14]. These are

defined as single-element fitting (multi-SISO structure), single-

column fitting (multi-SIMO structure), and matrix fitting

(MIMO structure). The difference between these methods is

the degree to which poles are shared, with single-element fit-

ting sharing no common poles, column fitting sharing common

poles for each column (as shown in (2) and (3)), and matrix

fitting sharing common poles for the entire MIMO system.

The methodology of matrix fitting is shown below as it is also

relevant to this work.

After fitting a common pole set to the system as described

previously, the residues for each input can be assembled into

a larger state-space system. For a total I number of inputs,

the matrices can be constructed as follows, where Ac is the

matrix with common poles, bi is the column vector for input

i, Ci is the C matrix for input i, and di is the column vector

for input i, all constructed according to (2) and (3). Note that

Ac is repeated I times.

A =

⎡
⎢⎢⎢⎣
Ac 0 . . . 0
0 Ac . . . 0
...

...
. . .

...

0 0 . . . Ac

⎤
⎥⎥⎥⎦ ,B =

⎡
⎢⎢⎢⎣
b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...

0 0 . . . bI

⎤
⎥⎥⎥⎦ (4)

C =
[
C1 C2 . . . CI

]
,D =

[
d1 d2 . . . dI

]
(5)

Constructing the matrices in this way gives a state-space

matrix that contains significantly more states than the physical

system. Whether such a large state-space system is acceptable

is debatable and may depend on the application. This expanded

form allows more degrees of freedom for vector fitting, which

as demonstrated later, can result in a more accurate system

model. However, the system will result in more computa-

tionally expensive simulations. A fully-compacted state-space

system (without repeated poles but with a full B matrix)

is approximately I/2 times more efficient in time-domain

simulations, depending on the solver [13]. For this reason,

among others, an attempt to compact the state-space model is

made in this work.

3) Complex-Valued to Real-Valued State-Space: The meth-

ods for creating the state-space matrices described thus far

use complex-valued matrices, i.e. the poles on the diagonal

of A can be complex. This can cause problems when using

simulation software, as state-space matrices are often required

to be real-valued only. Therefore, real-valued realizations are

assumed in this work unless otherwise stated. The above state-

space matrices can be converted to real-only valued matrices

according to [4]. For an imaginary pole pair, p = p′ ± jp′′,
the sub-matrices for the two poles are then altered to:

Ap =

[
p′ p′′

−p′′ p′

]
, bp =

[
2
0

]
(6)

Cp =
[
real(c) imag(c)

]
(7)

III. POLE-COLLAPSING COLUMN FITTING

This section presents a novel method of VF for a MIMO

system, called PC-CF. This method can be loosely described

as a combination of column fitting (multi-SIMO structure) and

matrix fitting (MIMO structure). A pole set is fitted to each

column (in this case equivalent to the outputs for an individual

input) and then “collapsed” into a single common pole set for

the MIMO system, after which the residues are calculated.

This method is characterized by increased accuracy in pole

placement and simplified order selection compared to matrix

fitting, while still using a common pole set for the system.

The selection of model order is not a trivial problem,

and many other system identification or fitting methods also

require an explicit selection of the model order (e.g. N4SID

[15]). Aside from the trial and error method commonly used

with VF, another approach is to use the Hankel singular

values (HSVs) to recommend an order. The Hankel singular

values, σH , are defined as the square root of the eigenvalues

of the product of the controllability grammian, WC , and the

observability grammian, WO (8), where the controllability and

observability grammians are the solutions to the following two

Lyapunov equations (9), (10), respectively. These equations

can be solved using well-known and scalable methods.

σH =
√

eig(WCWO) (8)

AWC +WCA
T = −BBT (9)

ATWO +WOA = −CTC (10)

The HSV approach uses singular value decomposition of

the Hankel matrix, which gives an indication of each state’s

importance. Typically, the HSVs are plotted and significant

drops in value between two states indicate that the rest can

be discarded, which gives the indication of a suitable model

order. Although this method can provide a good determination

of order, it is not always reliable. A simple example can

demonstrate this. A system of order four is defined as follows:

A =

⎡
⎢⎢⎣
−0.2 0.4 0 0
−0.4 −0.2 0 0
0 0 −0.4 0.2
0 0 −0.2 −0.4

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣
1 2
1 2
1 2
1 2

⎤
⎥⎥⎦ (11)

C1 =
[
100 100 100 100

]
(12)

C2 =
[
100 100 2 2

]
(13)

Note that two alternative C matrices are used to highlight

the difference this creates in the HSV evaluation. A plot of the

frequency response of the system is given in Fig. 1. The data

input used for VF are frequency responses constructed with

800 samples logarithmically spaced from 10−2 to 102 Hz.

Fig. 2a shows that when using C1 to generate the HSVs

from the frequency response data, the HSVs give a good

indication of model order. There is a significant drop after

order four, which provides evidence for selecting this order.
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Fig. 1. Frequency response of example system, using C1

.

(a)

(b)

Fig. 2. Hankel singular values comparing sample system with different C
matrices. (a) Values using C1. (b) Values using C2.

However, when using frequency responses derived from the

system using C2, the HSVs do not provide such a clear

indication of order. Fig. 2b shows a drop after order two and

another drop after order four, and so determination of the order

is ambiguous. This can be even more inconclusive for a system

with more poles and without any clear drops in value. It can

be argued that states with low HSVs can be safely ignored,

but without knowledge of the system, it can be difficult to

make a decision on where an acceptable cut-off is. This is

more apparent in the example in Section V.

To determine the correct order, and to more accurately

locate the poles, a novel method is presented. In contrast to

matrix fitting, which fits a common set of poles to all the data

columns, an initial pole set is fitted to each input separately, as

in column fitting. The first column (input) responses are fitted

iteratively to find the poles for that column. Each successive

Real(p)*tol

Im
ag

(p
)*

to
l

Fig. 3. Example of pole collapsing from a large initial pole set.

column is then fitted separately. Eq. (1) can be rewritten in

column fitting form for each column i as:

fi(s) =

N∑
n=1

ci,n
s− pi,n

+ di + sei , i = 1, 2, ..., I (14)

The total initial pole set can then be given as the union of all

column pole sets:

Pinitial =

I⋃
i=1

N⋃
n=1

pi,n (15)

When a relatively high number of poles are used for each

column in this successive fitting (i.e. N in (14) is two to

three times the expected order of the system), the “true” poles

become convergent and the rest are largely random or fitted

to noise in the data. Thus, the “true” poles of the system

can be discovered by examining the poles which are common

between each column. The poles that are overlapping (with

some small tolerance) between several inputs can be chosen

as the common poles of the system.

Fig. 3 demonstrates how the poles are collapsed. Note that

the Sec. V system is used to better highlight the methodology.

The tolerance used is taken as a percentage of the real and

imaginary components of each pole. This will result in a

tolerance area that scales by proximity to the origin. This

allows for lower frequency oscillations (associated with poles

nearer the origin) to be fit with similar relative accuracy as

higher frequency oscillations. If there are at least two other

poles within this tolerance rectangular area (one other pole if

there are only two inputs in the system), this pole is treated

as a cluster. The figure shows how this tolerance area changes

depending on the location of the pole in the complex plane.

Then the pole nearest to the median of this cluster of poles is

taken to be the singular collapsed pole for that cluster.

The selection of the tolerance is important and affects how

many common poles are found but this tolerance is much
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Fig. 4. PC-CF process diagram.

less sensitive than selecting the order manually. Furthermore,

the tolerance more directly relates to the noise and error in

the measured frequency responses. Frequency responses with

higher noise need a larger tolerance as the poles will not

converge as precisely as with a data set with low noise. In the

sample system used in Section V, 3% is used, and generally

a tolerance of 1-10% is suggested. The overall poles of the

system are determined by selecting only those overlapping

poles, and the number of these poles gives an approximate

order of the system. This collapsing process is reminiscent

of a stabilization diagram [16]. A stabilization diagram can

indicate the true modes of a system by examining which modes

are consistent when identifying at different model orders,

where those repeating over a wide range of orders can be

taken as true poles, while those appearing inconsistently can

be treated as purely mathematical poles. Instead of stability

over model order, PC-CF can be said to examine stability be-

tween inputs. Reference [16] suggests using a 1-5% tolerance

for determining mode stability. Additionally, several mode-

clustering methods for stabilization diagrams are examined in

[17], providing further basis for collapsing multiple close poles

into one.

The poles found in the pole-collapsing method can then be

used as the common pole set to find the residues in a standard

vector fitting manner. Fig. 4 describes the total PC-CF process.

The common pole set between all columns, as opposed to

unique pole sets for each column, allows for further model

compaction, discussed in the next section.

When PC-CF is applied to the state-space system given by

(11) and (13) (C2), the order found is four. This system has

an ambiguous order selection based on HSVs. If the C matrix

is altered such that the third and fourth states have an HSV

as low as the subsequent states (i.e. 10−12), this would give

a clear indication for order two according to HSV analysis.

However, PC-CF is still able to find all four poles.

To demonstrate the improved pole finding ability of PC-CF

compared to matrix fitting, the system is examined using both

C1 and C2. The difference can be highlighted best when the

number of poles found is less than the actual system order, i.e.

underfitted. Therefore, the pole overlapping tolerance (shown

in Fig. 3) is set to an extremely low value, 10−12. With this

tolerance, PC-CF finds only one pole pair. Matrix fitting is

also used with an order of two.

Fig. 5 shows that PC-CF locates the two poles closer to the

theoretical poles than MF, especially when C1 is used. This

is because MF attempts to fit all four poles to a reduced set

of two poles. This effectively “drags” one pole pair towards

the 2nd pole pair to compensate. As the relative contribution

of the 2nd pole pair increases (from C2 to C1), this behavior

becomes more pronounced and the poles are dragged further.

C1 C2 C1,C2

Fig. 5. Pole location, PC-CF vs matrix fitting.

PC-CF places the poles first with higher order, and so is not

affected in the same way, resulting in more accurate placement

of these two poles.

It is also possible to fit the model with MF by using a high

initial order and then reduce the model to the poles with the

highest HSV. This will give a similar pole placement to PC-CF

in this simple case but it can result in undesirable behavior in

more complex systems. This is addressed further in Section

V. Note that in a case such as this, the increased accuracy of

the poles will typically come at the cost of increased error in

the frequency response. The consequences of the difference in

pole placement are discussed further in Section VI.

Although the system is demonstrated with a very simple ex-

ample, the process can be expanded to higher orders and more

complex systems. In fact, the difficulties with order selection

and accurate pole location are typically more pronounced in

more complex systems, as is demonstrated in Section V.

IV. MODEL COMPACTION

Obtaining a state-space model with as few repeated poles

as possible can increase the computational performance, es-

pecially when combining multiple systems together. There-

fore, two alternative state-space model compaction methods

of vector-fitted systems are examined, specifically a method

based on singular value decomposition (SVD) and a method

based on balanced truncation.

A. Compaction Using Singular Value Decomposition (SVD)

The compaction process described in [13] is used as a

framework for this section. SVD is performed on the residue

matrices (in complex form) for each pole, where the residue

matrix for a single pole, Rp can be written as the multiplica-

tion of three matrices:

Rp = UΣVT (16)

Here Σ is a matrix containing the singular values, σ, on

the diagonal in descending order. It should be noted that the

number of non-zero singular values is equal to the rank of

Rp. Originally, each pole will be repeated by the number of

columns (inputs), I. The number of repeated poles kept during

compaction can be determined by the number of singular

values kept. With an r number of retained singular values,
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the B and C matrices for a specific pole, Bp and Cp, are

found by:

Bp = VT (1 : r, :) (17)

Cp = U(:, 1 : r)Σ(1 : r, 1 : r) (18)

The result is that the rank of the residue matrix is reduced

to the number of singular values retained. The compaction

performed on the full state-space system can be performed

according to various degrees. As discussed in [13], the number

of retained singular values of the residue matrices can be

defined by a threshold, ρ, between the first and the last retained

singular values:

σr

σ1
< ρ (19)

The minimal realization for a system (where the state-

space system is both controllable and observable) is the

number of common poles times the number of ports [14].

Although correct, this lacks completeness when dealing with

a system which is explicitly input-output instead of a port

representation, and therefore may be non-square. For a residue

matrix of a single pole, Rp, with I inputs and J outputs, Σ
will be an I×J matrix. As the rank is given by the number of

singular values on the diagonal, the rank will be determined

by:

rank(Σ) = rank(Rp) = min(I, J) (20)

Therefore, the minimal realization for a MIMO system with

n common poles will be order min(I, J) · n. With a square

system, this is equivalent to that in [14]; however, for a system

with J < I , this implies the order of the minimal realization

will be governed by J, and not I. The pole repetitions can then

be reduced to J repetitions, without loss of accuracy in the

resulting state-space model. This can be achieved in practice

by simply setting the compaction threshold to zero, such that

all the singular values are retained.

To compact the system such that there are no repeated

poles, one singular value can be used for each pole. This can

be achieved by setting the compaction threshold in (19) to

unity. Note that choosing a threshold between zero and one

will result in some repeated poles but fewer than the original

system.

B. Compaction using Balanced Truncation

Another way to perform the compaction is to use the Hankel

singular values (Eq. 8) of the state-space system defined by a

single pole. Order reduction using balanced truncation of the

state-space system (given by Ap, Bp, Cp, and D) based on the

HSVs results in a similar compaction for each pole as the SVD

method. The major difference from Section IV-A is that SVD

is used on the product of the controllability and observability

grammians instead of directly on the residue matrix. Balanced

truncation is a common technique for order reduction of state-

space systems and retains the highest “energy” poles, and by

using the HSVs, the pole repetitions can be reduced in a way

Vector Fitted 
State Space

Singular Value 
Decomposition

Calculate compacted 
matrices for each pole

Combine individual 
pole matrices to 
total state space

Calculate Hankel 
Singular Values

Balanced truncation 
for each pole

Iterative 
refinement of B 
and C matrices

Choose 
tolerance

Choose 
tolerance

Fig. 6. Compaction flowchart with compaction based on SVD or balanced
reduction.

to better retain the behavior of the system [18]. The same

threshold criterion as (19) can be used for selecting how many

HSVs to retain and thereby the degree of compaction, modified

to:

σH,r

σH,1
< ρ (21)

where σH are the HSVs found by applying (8). It should be

noted that this is performed on the system after it has been

converted to real-valued matrices, using the process described

in (6) and (7). It is demonstrated later that compacting the sys-

tem based on balanced truncation is generally more accurate

than using the SVD-based method.

C. Iterative Refinement

Compaction will typically result in increased model errors,

as some information is lost in the compaction. The work

in [13] used an iterative nonlinear solver for improving the

resulting compacted system. Therefore, the compacted system

is improved in the frequency domain in this work using an

iterative refinement process. A nonlinear optimization of B
and C is performed, while the A matrix is not altered. In this

case, the Matlab function pem is used, which uses prediction

error method and various solver methods to optimize a system.

A unitary weighting scheme is used for the refinement.

Fig. 6 shows a flowchart for the compaction process ac-

cording to the two methods discussed, with optional iterative

refinement. The iterative refinement process is the same re-

gardless of whether the original compaction is done using SVD

or balanced truncation.

V. APPLICATION EXAMPLE

This section demonstrates the proposed vector fitting

method compared to MF, as well as a comparison of com-

paction methods. A Simulink model of a 2-level voltage source
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Inputs

Outputs
d-axis inductor current,
q-axis inductor current,
d-axis output current,
q-axis output current,
d-axis output voltage,
q-axis output voltage,

ndv
nqv

odv
oqv

odi
oqi

idi
iqi

Fig. 7. VSM model frequency responses. Example with I=7 inputs and J=6 outputs, obtained from time-domain simulations.

(a) (b)

Fig. 8. Hankel singular values for example VSM system. (a) Values using theoretical system. (b) Values using Simulink model.

converter is used to evaluate the accuracy and simulation CPU

time according to several metrics. The frequency responses for

the system with 7 inputs and 6 outputs are shown in Fig. 7.

The two VF methods with common pole sets (PC-CF and

MF) as well as compaction using SVD versus balanced trun-

cation of each method are compared. The same order as found

from PC-CF is used for matrix fitting to give a fair comparison.

To demonstrate the differences between compaction methods

more clearly, the systems are fully compacted such that they

have no repeated poles (compaction threshold of one). The

B and C matrices of the compacted systems are improved

with the Matlab function pem to demonstrate the increased

accuracy achieved by refinement.

A. Example System

A 2-level converter controlled as a virtual synchronous ma-

chine is used as an example, based on the models developed in

[19] and [20]. Note that the analytical state-space formulation

is available for this model; however, the analytical model

is only used to assess the accuracy of pole placement of

the resulting identified models. Frequency responses obtained

from time-domain simulations of the Simulink model are used

for the fitting process, referred to as simulated frequency

responses. Specifically, a frequency sweep of single-tone sinu-

soidal inputs is performed, output responses are measured, and

the Fast Fourier Transform (FFT) is performed on the input

and output time series to obtain the frequency responses. These

simulated responses are used as opposed to the analytical
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ones as they represent a more realistic system identification

scenario, with noise and errors more typical of frequency

responses found from simulated, experimental, or operational

data. The analytical counterpart is necessary to determine the

accuracy of the identified eigenvalues from the fitted models,

which are otherwise unavailable from frequency responses.

It should be noted that the selected system is nonlinear in

nature, while VF is able to provide linear identified models.

However, linear models can accurately represent the dynamics

of a nonlinear system for small perturbations around an

operating point, and the resulting frequency responses and

state-space models remain valid for small-signal analyses [2].

Therefore, VF or other linear system identification techniques

are directly applicable for obtaining small-signal models from

the frequency responses of nonlinear systems. The limita-

tion is that the input perturbations during the time-domain

simulations or experiments for frequency scanning must be

kept sufficiently small to maintain validity of the small-signal

approximation, and that the obtained model will only be valid

at the studied operating point. This process has also been

applied in [7], [21], [22]. For the studied example, the validity

of small-signal models has been demonstrated in [19], [20].

The selected model is also suitable for illustrating the

difficulty in defining a system order based on the HSVs

from simulated frequency responses, as shown in Fig. 8.

Moreover, this model represents a MIMO system with an

unequal number of inputs and outputs. System identification of

power electronics systems presents a technically challenging

case, with practical applications [22], [23], [24]. Finally, this

model provides an excellent example of how the proposed VF

method can be used to increase the accuracy of VF of a MIMO

system for eigenvalue identification and analysis.

The inputs and outputs are listed in Fig. 7. The number of

inputs, I, is 7, and the number of outputs, J, is 6. By using

the control references as inputs, the entire system including

the physical system components and the control system are

included in the resulting identified system model. Note that

the simulated system frequency responses are used for fitting,

not those from the analytical system model.

B. Evaluation of Accuracy and Efficiency

The classic MF, PC-CF, and the compacted models of each

are examined for their ability to fit the test system from a set

of frequency responses.

1) Eigenvalues: PC-CF and matrix fitting are examined for

their ability to find the correct eigenvalues of the system. It

should be noted that the eigenvalues are not of equal impor-

tance in an eigenvalue analysis. The Hankel singular values

(HSVs) effectively describe the magnitude of each state’s

importance on the input/output behavior [25]. In canonical

form, a state can then be directly correlated with an eigenvalue

of the system. Eigenvalues with a small HSV will have little

effect on the system, and therefore are of relatively low

importance.

For each eigenvalue in the known analytical system model,

pn, the distance in the complex plane, dn, to the closest

eigenvalue in the identified model is found and normalized

by the distance to the origin. A weighted sum of these errors

gives an overall measure of the error in the eigenvalue location

accuracy. This fitting accuracy can be found by:

rel error =

N∑
n=1

wn · |dn||pn| (22)

where wn is the weighting for an eigenvalue. A weighting

scheme based on the HSVs is given as:

wn =
σH,n

max(σH)
(23)

where σH,n is the HSV for an eigenvalue. Therefore, the

eigenvalues are given weights according to magnitude of the

corresponding HSVs. Unitary weighting is also applied to (22)

to give equal weight to all eigenvalues.

Fig. 9 shows a comparison of eigenvalues found from the

proposed PC-CF as opposed to MF. PC-CF is used with an

initial pole count of 50, and MF is used with the same order as

found by PC-CF, such that the final pole count is equivalent.

PC-CF finds a total of 14 poles for the system, out of 19 in the

theoretical state-space. As seen in Figure 9 at approximately

−100 on the real axis, three of these poles are located quite

closely together, and PC-CF finds one pole for these three

combined. Additionally, from Fig. 8a, only 17 or 18 poles are

actually relevant. Therefore, an order of 14 is reasonable. If the

frequency responses are generated from the analytical system

model, 18 of 19 poles are found with a total relative error of

0.05 (unitary weighting). This is the same order as would be

suggested by examining the HSVs of the analytical system.

Fig. 9a and Fig. 9b show by visual examination that PC-CF

clearly places the poles closer to the theoretical eigenvalues

of the system than MF. Note that in this figure, the theoretical

eigenvalues are marked with ‘x’s that are sized according to

the square root of the HSV to give a visual indication of the

important poles. Fig. 9c quantifies the accuracy of the pole

location as described by (22), with unitary weighting on the

poles, and with weighting according to the HSVs. In both

cases, PC-CF is able to more accurately place the poles. The

most important poles in this system (in this case, the 4 located

closest to the imaginary axis) are found by both methods. This

can be inferred from the decrease in error of MF from unitary

weighting to HSV weighting, i.e. the error value of MF more

closely matches that of PC-CF when using HSV weighting.

A meaningful interpretation of this is that while both methods

can find the most dominant poles, PC-CF can more accurately

locate the less dominant poles.

While it is true in some cases that fitting using MF with

a higher order and subsequently reducing to only the most

important poles can result in similarly accurate pole locations,

this is not necessarily true of systems such as this. Fig. 10

shows the results of using this method, which actually result

in higher error. If the few poles closest to the origin (those

with highest HSVs) are examined closely, it can be seen

that MF places several poles in close proximity where before

there was one. These “split” poles also share contributions to

the system behavior, resulting in multiple “important” poles

instead of one. This can be attributed to overfitting such that
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(a) (b) (c)

Fig. 9. Comparison of poles from fitting vs. example system eigenvalues. (a) Eigenvalues found by PC-CF. (b) Eigenvalues found by MF. (c) Eigenvalue
accuracy comparison with unitary weighting on poles (UW) and weighting according to HSVs.

Fig. 10. Pole location using MF with high initial order (50) and reducing to
14 based on highest HSV poles, resulting in a unitary weighting error of 9.46
and HSV weighting error of 0.58.

small differences in the frequency response result in multiple

nearby poles instead of one.

2) Frequency Response Fitting: The second measure of

accuracy is the fitting of the frequency response data. Since

this data is used to identify the system, a high degree of

accuracy is expected. The sum of absolute errors (SAE) is

used to find the total error, calculated as:

SAE =

J∑
j=1

I∑
i=1

F∑
f=1

||H0(j, i, f)−H(j, i, f)|| (24)

where H0 is the reference data set for an output j, input i, and

sample point at frequency f, and H is the fitted system at the

same data point.

Table I shows the comparison of the accuracy for the

frequency responses. According to the SAE in row 1 and 4,

PC-CF without compaction performs better than MF (20.9

compared to 29.8). However, this is due to the change in

weighting scheme from finding the poles and residues. This

is discussed further in Section VI. Both methods of full

compaction show increased error, as expected, although re-

gardless of vector fitting methodology, full compaction based

TABLE I
FREQUENCY RESPONSE COMPARISON

Method Sum of Absolute Errors

before after

refinement refinement

1. PC − CF 20.9 -

2. FCSV D 335 59.0

3. FCHSV 294 75.8

4. MF 29.8 -

5. FCSV D 734 115

6. FCHSV 296 107

on balanced truncation (FCHSV) (row 3 and 6) performs

better than full compaction based on SVD (row 2 and 5).

The importance of improving the residue matrices after

compaction can clearly be seen from this table, as the metrics

are given before and after iterative refinement by pem. It

is interesting to note that after improvement of the residue

matrices, the two methods of compaction give far more sim-

ilar accuracy. This indicates that, although FCHSV is more

accurate, the difference can largely be compensated for by

refinement after compaction. Starting with PC-CF as a base

for compaction results in reduction of error by approximately

a factor of two compared to matrix fitting. However, the refine-

ment process reduces the error by a factor of approximately

6. Therefore, iterative refinement is always recommended in

the compaction process.

Fig. 11 shows an example of a frequency response compar-

ison between the compacted and non-compacted systems. The

compacted system after iterative refinement is used. Although

there is increased error after compaction, the match is still

highly accurate. This sample response is representative of the

other input responses.

3) Effect of Compaction on Simulation Time: The result

of compaction on simulation time for the resulting state-

space models is examined. Ten seconds are simulated with

a time step of 1 × 10−5s using the Matlab function lsim
for various levels of compaction to demonstrate the benefit of

compacting the model. An arbitrary system with 60 poles, 10

inputs, and 6 outputs is used. Note that the Matlab function

sparss is used to create sparse matrices for state-space
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Fig. 11. Example of frequency response fitting for one input.

system. This takes advantage of the sparse nature of the non-

compacted systems to give faster simulation times and a more

fair comparison. It should be noted that the non-compacted

system can be calculated according to [26] for additional

computational savings; however, the fully compacted system

is also simulated faster in this case without using sparss.

Fig. 12 shows the simulation time compared to the total

order (including repeated poles). Full compaction (FC), with

no repeated poles, leads to a simulation savings of 5.3 times,

which aligns closely with the predicted savings, I/2, which,

with 10 inputs, would predict a 5 times computational savings.

Additionally, a minimal realization of this system which

retains all information from the non-compacted system (called

here minimal compaction (MC)), with a compaction threshold

of zero, results in 44% faster computation time than no

compaction (NC). This is for a system with 6 outputs and 10

inputs, so the minimal realization results in four repeating pole

sets eliminated. For systems with a larger difference between

number of outputs to inputs, the computational savings would

be even further in the direction of full compaction. It should

also be noted that minimal compaction results in no decrease

in accuracy compared to no compaction. In cases of combining

multiple state-space models, the simulation times will be

compounded and reducing the times by even a factor of 2

will have significant impacts on the overall simulation time.

Fig. 12. Simulation times for no compaction (NC), minimal compaction
(MC), and full compaction (FC), using 106 time steps.

VI. DISCUSSION

This section summarizes some of the main findings and

benefits of using the proposed methods, as well as discussion

of their applicability.

A. Qualitative Advantages

There are several important results that can be taken from

this work regarding vector fitting and compaction of MIMO

systems:

• By applying the PC-CF method to a MIMO system,

an appropriate order for the system can be obtained

without knowledge of the system and without manually

or iteratively selecting the order. This technique helps

to prevent overfitting, while still using a sufficient order.

This can be especially useful for systems with high levels

of noise.

• PC-CF gives a model with improved eigenvalue-locating

properties compared to matrix fitting. This can be useful

in eigenvalue stability analyses, such as performed in

[23], [27], [21].

• When a MIMO system is not square, i.e. there are an

uneven number of outputs and inputs, the resulting vector-

fitted state-space model can be compacted such that the

poles are repeated only min(I, J) number of times. This

can be done without loss in accuracy or information in

the model.

• A vector-fitted MIMO state-space model can be com-

pacted to reduce the number of repeated poles, although

with an increased error. This error can be significantly

reduced by optimizing the B and C matrices after com-

paction.

• Compaction using balanced reduction via Hankel singular

values provides a more accurate initial compaction than

the singular value decomposition method. A large portion

of this difference can be compensated for, however, by

refining the B and C matrices.
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• Compaction of a model can greatly increase the compu-

tational efficiency of simulations, with greater efficiency

associated with more compaction.

B. Qualitative Assessment

MF iteratively places the poles to minimize the error in

frequency response while PC-CF has higher focus on correct

pole location. However, in an eigenvalue analysis, the pole

placement is of higher importance and MF can critically

miscalculate the poles. In the first example, the poles found

by MF are further to the left-hand side of the plane, implying

a larger stability margin than actually exists.

In the fitting process, several weighting schemes can be

applied to the frequency responses. For example, an inverse or

inverse square root of the magnitude weighting can be applied

so that low amplitude responses will be fitted with similar

accuracy as the high amplitude frequencies. The most desirable

weighting scheme will depend upon the application. When

fully compacting a system, there are three distinct instances

to apply a weighting scheme: pole location, residue fitting, and

iterative refinement. Since the iterative refinement acts on the

residue matrices B and C, the weighting scheme for iterative

refinement should match that used for residue fitting. Note that

only unitary weighting is readily possible with pem, and so

other refinement tools or adaptations should be made if other

weighting schemes are desired.

An inverse square root weighting was found to be the most

suitable for pole location in both examples. However, after the

poles are determined, a uniform weighting scheme is used for

residue fitting and iterative refinement, which places greater

importance on fitting high amplitude regions of the frequency

response. This is because the resonance peaks are of highest

concern in the second example. Note that since a different

weighting scheme is used for pole placement and residue

fitting, MF will not place the poles optimally to reduce the

total error, giving a slightly higher error compared to PC-CF

in Table I.

The time to find the poles using PC-CF is naturally in-

creased as a high number of poles is used to fit to each

input before collapsing. For the second example with an

initial pole number of 50 per input and 30 iterations, PC-

CF uses approximately 1.6 seconds to find the poles, as

opposed to 0.3 seconds for MF. Of this 1.6 seconds, only

0.005 seconds are used to collapse the large initial pole set.

Compaction using balanced reduction only implies a relatively

small increase in computation time, taking approximately 0.05

seconds compared to 0.015 seconds using SVD. The CPU

time of nonlinear iterative refinement, however, can incur a

considerable computational effort. On the fully compacted

model with a maximum of 30 iterations for 14 poles, pem
uses approximately 5 seconds. This process does not scale

well as the number of poles increases, taking 12 seconds with

a 20 pole system. Therefore, a system with a high number of

poles may have significantly increased calculation times if the

compacted system is refined. The number of iterations also

plays a direct role in computation time.

VII. CONCLUSION

This work has introduced a new method for applying vector

fitting to system identification of MIMO systems, called pole-

collapsing column fitting (PC-CF). It is shown that this method

has improved common pole selection properties over matrix

fitting for identifying the eigenvalues of the system, while

still providing a common pole set capability. Additionally,

this method does not need an order selection from the user

and will automatically determine an appropriate order. This

work has also demonstrated an improvement in methodology

for compaction of the state-space systems to reduce the

error introduced by compaction. PC-CF and the suggested

compaction methodology are performed on an example system

to demonstrate the effectiveness.

Further work can include refinement of the methodology for

finding overlapping poles. As of now, a percentage tolerance

in the real and imaginary axis is used; however, some im-

provement could likely be achieved by using more advanced

clustering techniques, as well as by providing the option to

specify a given number of poles to be found. It would be useful

to investigate cases such as large systems where MF might

have excessive computation times solving the least-squares

problem, while PC-CF could solve it column by column.

Additionally, it would be relevant to compare the performance

of PC-CF to other system identification methods.
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