
Robotics and Autonomous Systems 170 (2023) 104531

A
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Model-based variable impedance learning control for robotic manipulation
Akhil S. Anand a,∗, Jan Tommy Gravdahl a, Fares J. Abu-Dakka b

a Department of Engineering Cybernetics at Norwegian University of Science and Technology (NTNU), Trondheim, Norway
b Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany

A R T I C L E I N F O

Keywords:
Variable impedance control
Model predictive control
Robot learning

A B S T R A C T

The capability to adapt compliance by varying muscle stiffness is crucial for dexterous manipulation skills in
humans. Incorporating compliance in robot motor control is crucial for enabling real-world force interaction
tasks with human-like dexterity. In this study, we introduce a novel approach, we call ‘‘deep Model Predictive
Variable Impedance Controller (MPVIC)’’ for compliant robotic manipulation, which combines Variable
Impedance Control with Model Predictive Control (MPC). The method involves learning a generalized Cartesian
impedance model of a robot manipulator through an exploration strategy to maximize information gain.
Within the MPC framework, this learned model is utilized to adapt the impedance parameters of a low-level
variable impedance controller, thereby achieving the desired compliance behavior for various manipulation
tasks without requiring retraining or finetuning. We assess the efficacy of the proposed deep MPVIC approach
using a Franka Emika Panda robotic manipulator in simulations and real-world experiments involving diverse
manipulation tasks. Comparative evaluations against model-free and model-based reinforcement learning
approaches in variable impedance control are conducted, considering aspects such as transferability between
tasks and performance. The results demonstrate the effectiveness and potential of the presented approach for
advancing robotic manipulation capabilities.
1. Introduction

Human interaction with the real world heavily relies on the ability
to manipulate objects with remarkable dexterity; despite the limita-
tion of low-frequency biological feedback loops. The precise motor
control mechanisms responsible for such adept manipulation skills
remain largely elusive. Nevertheless, research has suggested that the
modulation of arm impedance plays a pivotal role in achieving these
capabilities [1–3]. In contrast, robotic manipulators, benefiting from
higher-frequency feedback control loops, have struggled to achieve
comparable levels of dexterity in real-world applications. Traditionally,
these applications have predominantly relied on trajectory planning
and position control, which prove to be inadequate in terms of dex-
terity, safety, energy efficiency, and constrained interactions. Notably,
human muscle actuators possess impedance properties, such as stiffness
and damping [4], which can be adapted by the neural control to
achieve various manipulation behaviors.

Drawing inspiration from the adaptability of human manipulation,
Impedance Control (IC) for robot control, as introduced by Hogan
in [5], seeks to establish a strong coupling between the manipulator’s
dynamics with its environment instead of treating it as an isolated sys-
tem when designing control strategies. In contrast to conventional con-
trol approaches, IC aims to establish a dynamic relation between ma-
nipulator variables such as end-point positions and forces rather than
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controlling these variables independently. By adopting IC, it becomes
possible to address position uncertainties effectively, thus mitigating
the risk of encountering significant impact forces. This is achieved by
allowing robots to adjust their motion or compliance based on force
feedback [6]. In doing so, IC offers a viable and effective solution
for managing positional uncertainties and promoting safer interactions
with the environment.

IC naturally extendes to VIC, where the impedance parameters are
varied during the task [7–9]. VIC has gained popularity in robotic
research due to its ability to provide scalability for IC in handling
complex robotic manipulation tasks. However, formulating variable
impedance laws for complex tasks is nontrivial, and hand-designing
them often proves impossible. To address this challenge, VILC emerges
as an alternative approach that combines learning algorithms with VIC.
In VILC, a learned policy is used to adapt the impedance gains in the
VIC framework. Readers can refer to [10] for an in-depth review of
diverse learning approaches applied to VIC.

RL is the most prominent approach in recent VILC research owing
to its inherent flexibility and scalability. However, when applying RL
to VILC, or robotics in general, significant drawbacks are evident,
particularly in terms of date-efficiency and constraint guarantees. RL
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typically requires a substantial amount of data to learn effective con-
trol policies, which can be impractical in real-world robotic systems.
Moreover, the control policies obtained through RL tend to be task
or scenario-specific, making them challenging to transfer seamlessly
to new tasks or scenarios. This lack of generalizability can hinder
the broader application of RL-based VILC methods in diverse robotic
manipulation contexts. As a result, researchers continue to explore
ways to address these limitations and enhance the practicality and
robustness of RL-based approaches in the field of VILC.

MPC provides a systematic framework for designing control systems
by formulating them as optimization problems, utilizing a system model
and an optimization objective [11]. MPC approaches are widely used
in robotic control, especially when a reliable model of the system
dynamics is available. By employing MPC, robotic control systems can
predict future system behavior based on the model and optimize control
inputs over a finite time horizon to achieve desired objectives. The MPC
methodology facilitates the incorporation of constraints, adaptability,
and precise tracking of desired trajectories, making it a valuable choice
for a variety of robotic manipulation tasks where an accurate model is
at hand.

When controlling a robot controlled with a Cartesian space VIC
approach, it becomes feasible to learn a Cartesian impedance model
of the robot and integrate it into an MPC framework for optimizing
impedance profiles. By employing MPC-based VIC, a potential alter-
native to RL-based VILC methods arises, offering advantages in terms
of data efficiency, transferability, and constraint satisfaction. However,
the effectiveness of an MPC scheme heavily relies on the quality of the
model employed. While various modeling approaches exist, determinis-
tic Neural Network (NN) are well-suited for learning complex dynamics
but may suffer from over-fitting and do not provide a quantification
of uncertainties. In contrast, Gaussian Processes (GP) models can ac-
count for uncertainty and are used from impedance learning [12,13].
However, they face challenges in scaling with high-dimensional data,
limiting their practicality in some cases, especially for robotic systems.
Addressing these limitations, the PENN models introduced in [14] offer
a promising solution. These models combine the strengths of NN and
GP models, enabling the quantification of both aleatoric and epistemic
uncertainties while being scalable. By incorporating PENN models into
the MPC-based VIC framework, it becomes possible to enhance the
robustness and reliability of impedance control, making it more suitable
for complex robotic manipulation tasks with uncertain environments.

In this paper, we propose a novel approach called deep Model
Predictive Variable Impedance Control (MPVIC) framework. Within
this framework, we leverage a PENN based Cartesian impedance model
of the robotic manipulator and combine it with a CEM-based MPC
strategy. The objective is to achieve online adaptation of the impedance
parameters while executing tasks that require VIC skills. With the
deep MPVIC framework, we aim to facilitate the learning of effective
impedance adaptation strategies for a wide range of robotic manipula-
tion tasks by defining a suitable cost function. Primary contributions of
our paper include:

• a novel VIC framework, we call it deep MPVIC that seamlessly in-
tegrates a CEM-based MPC with PENN dynamical model, allowing
for real-time adaptation of impedance parameters, offering the
following properties.

– transferability: the key property of the deep MPVIC frame-
work. It allows for the seamless transfer of the impedance
adaptation strategy between various manipulation tasks
without the need for relearning or fine-tuning.

– data efficiency and scalability: The proposed framework
is effective in learning VIC with high efficiency, requir-
ing fewer data samples while it is scalable to complex
manipulation tasks.
2

• an uncertainty-based exploration scheme is integrated into the
proposed framework to facilitate learning a generalized Cartesian
impedance model of the robot in a data-efficient manner.

• an extensive evaluation in simulation and real setups, in addition
to a comparison between our approach and the state-of-the-art
model-free and model-based RL approaches on transferability and
performance.

The rest of the paper is organized as follows. Section 2 describes
the existing references relevant to our work. Section 3 introduces the
necessary background knowledge, Section 4 presents the details of the
deep MPVIC framework proposed. Section 5 presents the evaluation
of our approach on simulation and experimental setups using Franka
Panda robotic manipulator. Detailed discussion on the results and the
limitations of our approach is presented in Section 6 and conclusion in
Section 7.

2. Related work

In this section, we present a concise review of relevant related works
that are pertinent to this paper, covering the area of VILC, MPC for VIC,
and finally, on uncertainty targeted exploration.

VILC approaches: A wide variety of learning-based approaches
have been integrated with VIC to develop diverse VILC methods [10].
Prominent examples of such learning-based approaches include Imita-
tion Learning (IL), Iterative learning control (ILC), and RL. IL has been
used in many recent VILC works [15–18]. IL-based VILC methods are
generally some form of Learning from Demonstration (LfD) methods
as they often rely on demonstrations to learn from [19]. IL can be
useful in developing highly sample efficient VILC [10]. However such
learning strategies can be biased to the demonstration which is often
suboptimal and potentially limits the performance and generalization
of the learned policies. IL is useful for tasks that are easy to demonstrate
and which do not have a clear optimal way of execution, whereas
RL is well suited for highly dynamic tasks, where there is a clear
measure of the success of the task [20]. Optimizing variable impedance
gains/parameters can be done using ILC where the robot improves its
performance iteratively. ILC based methods have been used for VILC
in a range of works [21–24]. The key difference between ILC and RL is
that, in RL, the control law is derived by maximizing a reward function
defined by the task requirements. One advantage of ILC compared to
RL is its sample efficiency. But even when a model of the dynamics
is not available, RL offers better performance and can be applied to a
broader range of problems [25].

RL-based VILC: Recently, RL has been explored largely for VILC
esearch. However, RL demands a large amount of data samples/
nteractions to obtain high performance. Refs. [26–30] are some exam-
les of using deep RL for VILC applied to different robotic manipulation
asks. All these approaches could learn complex VIC policies for spe-
ific tasks, however at the expense of sample efficiency. Ref. [31]
ombines human demonstrations with RL, providing improved sample
fficiency for learning stiffness control policies. But it is not suitable
or force-based VIC, as unlike stiffness values the impedance param-
ters cannot be estimated directly from kinesthetic demonstrations
sed in [31]. Ref. [32] demonstrated model-free RL based VILC using
ynamic Movement Primitive (DMP) policy and Policy Improvement
ith Path Integrals (PI2), which is sample efficient but fails to scale to

omplex policies. In comparison, our MPC based approach is scalable
o complex problems with a NN dynamics model. Apart from sample
fficiency a major drawback of the referenced RL based approaches is
heir inability to easily transfer a learned policy to a different task.
n practice, retraining the policy is necessary, which is difficult in
eal-world robotic tasks. In contrast, our deep-MPVIC framework uses
generalized Cartesian impedance model of the robot with an MPC

olicy that can be used for multiple tasks by designing suitable cost
unctions.
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Table 1
Comparison among state-of-the-art of VILC approaches.

Data-efficiency Task transferability Model-based/Model-free Computation time Force-/position-based VIC

[26,27,29,30] Low – Model-free Low Force
[28,31] Low – Model-free Low Position
[32] High – Model-free Low Force
[33,35] High – Model-based High Position
[34] High – Model-based High force
Our MPVIC High ✓ Model-based High force
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Model-based Reinforcement Learning (MBRL) for VILC: Alterna-
ively, MBRL approaches offer a sample efficient framework leveraging
n the model. In [13,33] MBRL is used for learning position-based VIC
n industrial robots using GP models. Ref. [34] used a similar approach
or force-based VIC for contact-sensitive tasks. All of these approaches
tilize GP models and the PILCO algorithm limiting its use to less
omplex tasks with smooth dynamics and relatively simple policies and
eward structure. Considering such limitations, in this paper, we aim
o go beyond such classical approaches to develop a scalable VILC ap-
roach. In [35], a PETS approach is utilized for learning position-based
IC strategy for Human-Robot Collaboration (HRC) tasks. This was
xtended in [36] combining CEM with Q-learning and enhanced with
he stability guarantees by means of Lyapunov constraints. Similar to
L approaches referenced earlier, all of these MBRL-based approaches
re task-specific and generally lack the performance of model-free RL
pproaches [37]. Unlike aforementioned VILC approaches, our deep
PVIC is not only able to adapt to new situations of the same task, but

lso it is transferable to new tasks using the same trained model without
ny need to re-train or train a new model. Transferability between tasks
s achieved by combining a generalized Cartesian impedance model
ith an MPC scheme. A comparison between existing RL-based VILC
pproaches is summarized in Table 1.

MPC for VIC: In literature, MPC is used in robotic interaction
ontrol for manipulations tasks [38,39], where MPC optimizes the robot
ontrol input but not the stiffness itself, while in our approach the
PC adapt the stiffness values directly. It is possible to couple our

eep MPVIC with the approach in [38] where it can be used as a low-
evel optimizer to solve additional constraints. Haningeret al. [40] used
n MPC scheme with GP models for human–robot interaction tasks.
he MPC scheme used could optimize the impedance parameters for
n admittance controller, but it is task-specific as the human force
odel is estimated from demonstrations as a function of robot states.
sing GP models limits the complexity and generalizability of the
odel as pointed out by the authors in [40]. Unlike [40], we optimize

he impedance parameters for a force-based VIC in our deep MPVIC
ramework using PENN to model the Cartesian impedance behavior of
he robot manipulator.

Uncertainty-based exploration: For efficient model learning in
erms of sample efficiency, uncertainty-based exploration with ensem-
les of NNs has been proposed in prior works [41–44]. The basis for
ncertainty-based exploration for model learning is derived from the
xpected information gain formulation in [45]. In [46] this approach is
ermed curiosity-driven exploration. The model uncertainty is evaluated
ased on the variance of the model in predicting the next state. We
ncorporated curiosity-driven exploration to our deep MPVIC framework
o learn a generalized Cartesian impedance model sample efficiently.

. Background

.1. Robot manipulator dynamics

For a rigid 𝑛-DOF robotic arm, the task space formulation of the
obot dynamics is given by

(𝐪)�̈� + 𝜞 (𝐪, �̇�)�̇� + 𝜼(𝐪) = 𝐟𝐜 − 𝐟𝐞𝐱𝐭 , (1)

here �̇�, �̈� are velocity and acceleration of the robot end-effector in
ask space, 𝐟 is the task space control force, 𝐟 is the external force,
3

𝐜 𝐞𝐱𝐭 W
(𝐪, �̇�) ∈ R6×6 is a matrix representing the centrifugal and Coriolis
ffects, and 𝜼(𝐪) = 𝐉−𝐓𝐠(𝐪) ∈ R6×1 is the gravitational force, where
(𝐪) is the joint space forces and torques. The Cartesian inertia matrix
s denoted as 𝜦(𝐪) = (𝐉𝐇(𝐪)−𝟏𝐉𝐓)−𝟏 ∈ R6×6, where 𝐇(𝐪) ∈ R𝑛×𝑛

s the joint space inertia matrix and 𝐉 is the end-effector geometric
acobian. By additionally knowing the joint space centrifugal and
oriolis matrix, 𝐕(𝐪, �̇�), the corresponding task space matrix is given
y 𝜞 (𝐪, �̇�) = 𝐉−𝑇𝐕(𝐪, �̇�)𝐉−1 −𝜦(𝐪)�̇�𝐉−1.

.2. Variable impedance control

VIC is designed to achieve force regulation by adjusting the sys-
em impedance [47], via the adaptation of the inertia, damping, and
tiffness components. In the presence of a force and torque sensor
easuring 𝐟𝐞𝐱𝐭 , impedance control can be implemented by enabling

nertia shaping [48]. Casting the control law

𝐜 = 𝜦(𝐪)𝜶 + 𝜞 (𝐪, �̇�)�̇� + 𝜼(𝐪) + 𝐟𝐞𝐱𝐭 , (2)

nto the dynamic model in (1) results in �̈� = 𝜶, 𝜶 being the control
nput denoting acceleration with respect to the base frame. In task space
C, the objective is to maintain a dynamics relationship (3) between
he external force, 𝐟𝐞𝐱𝐭 , and the error in position 𝜹𝐱 = 𝐱𝐫 − 𝐱, velocity
�̇� = �̇�𝑟 − �̇� and acceleration 𝛿�̈� = 𝐱𝑟 − �̈�. This dynamic relationship that
overns the interaction is modeled as a mass–spring-damper system as
ollows

𝛿�̈� + 𝐃𝛿�̇� +𝐊𝛿𝐱 = 𝐟𝐞𝐱𝐭 , (3)

here 𝐌, 𝐃 and 𝐊 are Symmetric Positive Definite (SPD) matrices,
djustable impedance parameters, representing inertia, damping, and
tiffness terms, respectively. This desired dynamic behavior (3) can be
chieved using the following control law,

= 𝐱𝑟 +𝐌−𝟏(𝐃𝛿�̇� +𝐊𝛿𝐱 − 𝐟𝐞𝐱𝐭 ) . (4)

With no external force acting on the manipulator, under this control
cheme, the end-effector will asymptotically follow the desired trajec-
ory. In the presence of external forces, the compliant behavior of the
nd-effector is described by (3).

.3. Probabilistic Ensemble NN (PENN)

PENN [14] is a NN based model approach capable of learning
ncertainty-aware NN dynamics models including both aleatoric and
pistemic uncertainties. Aleatoric uncertainty refers to the inherent
tochasticity of the system. Whereas epistemic uncertainty is a sys-
ematic uncertainty arising from issues one could in principle avoid
ut does not in practice, such as inaccurate measurement, lack of
ata, modeling errors, etc. The output neurons of the probabilistic NN
arameterize a probability distribution function, which can capture the
leatoric uncertainty of the model. Using multiple such networks in an
nsemble can capture epistemic uncertainty. In contrary, an ensemble
f deterministic NN can only quantify epistemic uncertainty. In [14] a
horough comparison of PENN with an ensemble of deterministic NN is
rovided, demonstrating the advantages of PENN for modeling dynam-
cs. The predictive PENN model is trained with negative log prediction
robability as a loss function, lossP(𝜽) = −

∑𝑁
𝑡=1 log 𝑓𝜽

(

𝑠𝑡+1 ∣ 𝑠𝑡, 𝑢𝑡
)

.

here 𝑠𝑡 is the state of the system at time step 𝑡, 𝑢𝑡 is the applied
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Fig. 1. Block diagram of the deep MPVIC with PENN Cartesian impedance model and the proposed CEM-based MPC scheme for impedance adaptation. This impedance adaptation
scheme along with the VIC forms the deep MPVIC framework. The task objective is represented by (6).
action, and 𝑠𝑡+1 is the next state. The PENN model is defined to output a
Gaussian distribution with mean 𝜇 and diagonal covariances 𝛴 param-
eterized by 𝜃 s.t, 𝑓 = Pr

(

𝑠𝑡+1 ∣ 𝑠𝑡, 𝑢𝑡
)

= 
(

𝜇𝜃
(

𝑠𝑡, 𝑢𝑡
)

, 𝛴𝜃
(

𝑠𝑡, 𝑢𝑡
))

[14].
The network output in this fashion parameterizes a Gaussian distribu-
tion allowing for modeling the aleatoric uncertainty. In this work, we
use the PENN model to learn a Cartesian impedance model of the robot
(see Section 4.1).

3.4. CEM-based MPC

The CEM [49] offers a gradient-free optimization scheme, and cou-
pling it with an MPC allows us to optimize an action sequence using
the learned model. CEM samples multiple action sequences from a
time-evolving distribution which is usually modeled as a Gaussian
distribution 𝑢𝑡∶𝑡+𝐻 ∼ 

(

𝜇𝑡∶𝑡+𝐻 , diag
(

𝜎2𝑡∶𝑡+𝐻
))

, where these action se-

quences are evaluated on the learned dynamical model with respect to a
cost function. The sampling distribution, 𝜇𝑡∶𝑡+𝐻 , 𝜎2𝑡∶𝑡+𝐻 is then updated
based on best  trajectories. Safety can be directly incorporated into
CEM-based optimization by sorting the samples based on constraint
satisfaction values [50], but we are not considering constraints in the
MPC scheme for this work.

4. Deep Model Predictive Variable Impedance Control (MPVIC)
framework

The deep MPVIC framework is formulated to optimize a VIC uti-
lizing a learned PENN based Cartesian impedance model of the robot
manipulator within a CEM based MPC.

4.1. Learning Cartesian impedance model

A Cartesian impedance model of the robot manipulator system
controlled using a VIC is learned as a PENN model in an MBRL
setting alternating between model learning and CEM based exploration
strategy. The Cartesian impedance model represents the environment-
robot dynamic relationship in (3). We define the state 𝑠𝑡 as [𝐱𝑡, �̇�𝑡],
and action 𝑢𝑡 as [𝐟 𝑡𝐞𝐱𝐭 , 𝐊𝑡]. 𝐊𝑡 is given by the CEM-based MPC scheme.
𝐟 𝑡𝐞𝐱𝐭 is the sensed external force acting on the robot at time instant 𝑡,
this is an uncertain external factor the VIC needs to compensate for.
The damping parameters are chosen according to the critical damping
condition, 𝐃 = 2

√

𝐊.
4

To learn a generalized model, an exploration strategy is designed to
minimize the epistemic uncertainty of the model across the entire state
space. The exploration strategy chooses the actions that maximize the
epistemic uncertainty estimate from PENN. Given a PENN model 𝑓 of
𝐵 bootstrap models 𝑓𝑏, the uncertainty of the model prediction at the
current state can be estimated by calculating the model variance [42],
𝜌 = 𝜎2, given by

𝜌(𝑠, 𝑢) = 1
𝐵 − 1

𝐵
∑

𝑏=1

(

𝑓𝑏(𝑠, 𝑢) − 𝑓 (𝑠, 𝑢)
)2

. (5)

The designed exploration scheme will excite the system in areas in
its state space where the model is more uncertain, thereby maximizing
the information gained during exploration. The exploration scheme
relies on a control strategy that chooses the actions that provide the
highest uncertainty estimate from any given state according to (5). We
employ a CEM-based MPC strategy to optimize for the actions that will
excite the system to the most uncertain areas. In order to achieve this
we define the MPC cost to maximize the variance of the outputs from all
the individual NN models in the PENN, 𝐶𝜌 = 𝜌(𝑠𝑡, 𝑢𝑡). At any given state
𝑠𝑡, CEM-based MPC scheme works by (i) sampling a set of actions from
the defined time-evolving distribution (we use Gaussian distribution),
(ii) sorting the actions according to the uncertainty estimate in (5),
(iii) apply the action 𝑢∗𝑡 with the highest value of 𝜌, and (iv) update
the Gaussian distribution. This exploration strategy enables learning
a generalized model in a sample-efficient way. The model learning
approach is summarized in Algorithm 1. Learning a model with low
uncertainty over the entire state-space facilitates reusing the model for
different tasks.

A free-space unconstrained manipulation task where the robot has
to interact with its external environment can be described by a scenario
where a robot in its current state 𝑠𝑡 under the influence of an external
force or sensed force 𝑓𝑡 provided with a goal state 𝑠𝑟𝑡 and a control
input 𝑢𝑡 transitions to the next state 𝑠𝑡+1. The dynamics model shown in
Fig. 1 represents a generalized Cartesian behavior of an unconstrained
end-effector of a robot manipulator controlled by a VIC.

4.2. Impedance adaptation

The compliant behavior of the robot end-effector can be optimized
by designing a suitable impedance adaptation strategy. The Cartesian
impedance model of the robotic system 𝑓 can be utilized in a MPC
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Algorithm 1 Learning a generalized Cartesian impedance model
Initialize dynamics model 𝑓 .
opulate dataset  using random controller for 𝑛 initial trials .
or 𝑘 ← 1 to 𝐾 Trials do

Train dynamics model 𝑓 on  .
for 𝑡 ← 1 to TaskHorizon do

for Actions 𝑢𝑡∶𝑡+𝑇 ∼CEM(⋅), 1 to CEM Iterations do
Evaluate and sort the actions by based on the uncertainty
estimate in (5) .

end
Execute first action 𝑢∗𝑡 from optimal action sequence 𝑢∗𝑡∶𝑡+𝑇 .
Record outcome:  ←  ∪ (𝑠𝑡, 𝑢𝑡, 𝑠𝑡+1) .

end
end

Algorithm 2 deep MPVIC
Given a cost function 𝐶 and a PENN dynamics model 𝑓 .

PC based optimization
or 𝑡 ← 1 to TaskHorizon do

CEM-based optimization
for 𝑖 ← 1 to CEM Iterations do

Generate N samples .
Sample 𝑁 stiffness profiles 𝐾𝑡∶𝑡+𝑇 ∼ CEM(⋅) .
Evaluate samples .
Calculate 𝐶 (6) for all 𝐾𝑡∶𝑡+𝑇 on 𝑓 with actions [𝐾𝑡∶𝑡+𝑇 , 𝑓𝑡, 𝑠𝑟𝑡 ]
using trajectory sampling (Section 4.2) .
Sort stiffness profiles 𝐾 based on 𝐶.
Update CEM(·) distribution .
Choose optimal 𝐾∗ where 𝐶 is minimum .

end
Adapt the impedance parameters of VIC .
Execute first action 𝐾∗

𝑡 from optimal action sequence 𝐾∗
𝑡∶𝑡+𝑇 .

nd

framework to adapt the impedance parameters of the VIC by designing
a suitable optimization objective as shown in Fig. 1. The MPC scheme
uses the prediction of the PENN model 𝑓 to plan action trajectories
yielding the highest reward. At every time-step, an MPC with a horizon
length of 𝑛, samples the current state and optimizes a control trajec-
tory 𝑢𝑡∶𝑡+𝑛 for 𝑛 future time-steps and applies the first control input,
𝑢𝑡, to the system. The action optimal action sequence is chosen by:
argmin𝑢𝑡∶𝑡+𝑛

∑𝑡+𝑛
𝑖=𝑡 E𝑓

[

𝐶
(

𝑠𝑖, 𝑢𝑖
)]

, where 𝐶 is the cost function. A gradient-
free optimization method, CEM is used in an MPC setting to optimize
the controller over the PENN model. CEM samples actions from a
distribution closer to previous action samples achieved the minimum
cost.

In order to calculate the cumulative cost of the action trajectories,
we use particle-based propagation as they are specifically suited for
PENN dynamics models, [14]. 𝑃 particles are created from the current
state, 𝑠𝑝𝑡=0 = 𝑠0∀𝑝 in order to predict the state trajectories using particle-
based propagation. Each of these particles are propagated along the
PENN model as, 𝑠𝑝𝑡+1 ∼ 𝑓𝑏(𝑝,𝑡)

(

𝑠𝑝𝑡 , 𝑢𝑡
)

based on a bootstrap 𝑏(𝑝, 𝑡) in
{1,… , 𝐵}. We keep the particle bootstrap index constant during a trial
as it allows us to separate between aleatoric and epistemic uncer-
tainties [51]. The aleatoric uncertainty can be quantified using the
average variance of particles of the same bootstrap whereas epistemic
uncertainty can be quantified using the variance of the average of
particles of the same bootstrap indexes.

The proposed deep MPVIC approach utilizing PENN models is de-
scribed in Algorithm 2. The objective of the impedance adaptation
strategy is to achieve the manipulation task requirement while execut-
5

ing a desired level of compliance. A cost function describing the task d
objective and the compliance objective is designed for the CEM-based
MPC as,

𝐶
(

𝑠𝑡, 𝑢𝑡
)

= 𝛿𝑠𝑇𝑡 𝐐𝑡𝛿𝑠𝑡 + 𝜆(𝐾𝑡)𝑇𝐑𝑡𝜆(𝐾𝑡) , (6)

here 𝜆(𝐾𝑡) are the eigenvalues of the stiffness matrix represented in
vector form, 𝛿𝑠𝑡 = 𝑠𝑟𝑡 − 𝑠𝑡 and 𝐐𝑡 and 𝐑𝑡 are diagonal gain matrices

or task and compliance components respectively. These gain matrices
an be either constant or can be a function of the robot’s states. The
PC output behavior will be tightly coupled with the gain matrices. In

ase of reference tracking tasks, we chose 𝐐𝑡 to be a linear function of
𝛿𝑠𝑡‖ so that MPC will penalize larger deviations from target more than
mall deviations.

. Experiments and evaluation

For evaluation, we consider only the stiffness adaptation along the
, 𝑦, 𝑧 directions of the robot manipulator while keeping the stiffness
alues along orientations constant. However, before evaluation, we first
eed to learn the Cartesian impedance model of the robot manipulator.
o do so, a free-space goal-reaching task with random external force is
sed to train the PENN model with ensembles of 5 NN with 3 hidden
ayers, each with 256 neurons. The network structure is chosen based on
ne-step prediction accuracy empirically over a pre-collected dataset.
ts state space is chosen as 𝑠 = [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�], while the sensed external
orces are denoted as 𝑓 = [𝑓𝑥

𝑒𝑥𝑡, 𝑓
𝑦
𝑒𝑥𝑡, 𝑓

𝑧
𝑒𝑥𝑡]. 𝑠𝑟 = [𝑥𝑟, 𝑦𝑟, 𝑧𝑟] represents the

arget positions in 𝑥, 𝑦 and 𝑧 directions, 𝐊 denotes the Cartesian stiffness
atrix. The damping matrix is chosen as 𝐃 = 2

√

𝐊. The mass matrix
𝐌 is kept constant to avoid stability issues during the experiment.
CEM is used to optimize the exploration strategy based on uncertainty
maximization. The control frequency for low-level VIC is set at 100 Hz.

For learning the model, the robot manipulator is excited at every
ime-step with 𝑓𝑒𝑥𝑡 ∼ U(−20, 20) N and 𝑠𝑟𝑡 , where 𝑥𝑟𝑡 , 𝑦

𝑟
𝑡 , 𝑧

𝑟
𝑡 ∼ U(−10, 10)

cm. The gain matrices 𝐐 and 𝐑 are kept constants for a specific task.
owever, while transferring to a new task, they can be scaled using

calar values 𝛼𝑄 and 𝛼𝑅 as 𝐐𝐧𝐞𝐰 = 𝐐 ∗ 𝛼𝑄 and 𝐑𝐧𝐞𝐰 = 𝐑 ∗ 𝛼𝑅
espectively to trade-off between compliance and accuracy depending
n the task requirement. The model was trained for 100 000 time-steps
ith a control frequency of 10 Hz which is equivalent to 2.77 h of

eal-world training. The quality of the model was evaluated using a
andomly sampled evaluation dataset as shown in Fig. 2. For exper-
ments, a prior model trained in simulations over 50 000 time-steps
re fine-tuned offline in the experimental scenario instead of training
rom scratch. The model was fine-tuned for 10 000 time-steps which is
quivalent to 33.33 min of real-world training. Similar to in simulations
andom external forces were manually applied to the robot end-effector
sing ropes attached to the gripper.

After learning the Cartesian impedance model of the manipulator, to
valuate the effectiveness of the proposed deep MPVIC, three different
imulation tasks and two experimental tasks using a Franka Emika
anda manipulator are designed. Tasks requiring real-time stiffness
daptation are suitable for evaluating the stiffness profile generated by
he deep MPVIC controller. For all chosen tasks, the requirements can
e defined as achieving a desired goal pose for the robot end-effector.
owever, the robot is also required to be highly compliant whenever

t is possible or be stiff only when it is necessary. This is achieved by
sing a weighted reward in (6) for the task requirement (first term)
nd maximizing compliance (second term). In the considered tasks,
e are, essentially, trying for a trade-off between position control and

ompliance.
The three different simulation tasks are modeled in the MuJoCo

hysics simulation framework [52], see Fig. 3(a), (b), and (c). The two
eal experimental scenarios are shown in Fig. 3(d) and (e). The aleatoric
ncertainties in these robotic tasks is majorly due to measurement
oise, whereas the epistemic uncertainty we target during exploration
rises from not having enough data to model the Cartesian impedance

ynamics in the system state-space we are interested in. In simulations,
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Fig. 2. Scatter plot demonstrating the prediction quality of the PENN model along all the six state dimensions. The plot compares the ground truth (target) with the model’s
prediction. This model evaluation is estimated over a randomly sampled evaluation dataset from the same training set-up on simulation. The plot shows the mean prediction as
well as the individual predictions of each ensemble member of the PENN model. The mean prediction from the PENN model is shown in red, and other colors in the scatter plot
represent the predictions from the individual networks in the PENN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 3. Three simulation tasks, (a) Cartesian compliance task: the robot manipulator end-effector should hold its pose in the Cartesian space compliantly while reacting to the
external forces acting on it. (b) Reacting to falling object: The robot manipulator with cup end-effector should hold a Cartesian position while smoothly catching a ball of weight
0.5 g falling into the cup. (c) Pushing task: A robot manipulator with a gripper end-effector should push an object over a rigid surface with friction to a target position. Two
experimental tasks, (d) Reacting to falling objects: the robot end-effector is fitted with a tray, where objects of different weights are dropped into the tray at regular intervals. (e)
Drawer opening task: Robot manipulator opening a table drawer.
the population size for CEM is chosen as 200 and elite size of 40 and
learning rate of 0.1 and number of CEM iterations as 10. The MPC
planning horizon is set to 5. While for the real experiments, the control
frequency is set as 5 Hz. The CEM is chosen as 64 and elite size of 32 and
learning rate of 0.5, number of CEM iterations as 5 and MPC planning
horizon is set as 5. More conservative control frequency and CEM
parameters are chosen for the experiment due to the computational
time limitations of the proposed method as discussed in Section 6.3. In
all the simulations and experiments the model described here is used
without any further fine-tuning. Here we consider only fixed goal states,
therefore 𝑠𝑟 is a constant value, 𝑠𝑟 for all timesteps.
6

𝑡

5.1. Simulations

Cartesian compliant behavior: In this task (Fig. 3(a)), the robot
is expected to behave highly compliant to hold its pose allowing only
small deviations. Upon applying an external force to the robot’s end-
effector, it is expected to counter the force by adapting its stiffness
such that it achieves a new rest position close to the initial position.
This task is ideal for testing the impedance adaptation strategy as it
needs to increase the stiffness in case of large external forces and
larger deviation from its initial position. Two scenarios with different
compliance behavior are evaluated here by changing the compliance
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Fig. 4. Simulations: (a) and (b), (Cartesian compliance behavior), results from 20 trials where a sinusoidal force profile with amplitude of 10 N with random noise of (±5) N
is applied to the robot end-effector. (a) High compliant behavior optimized using a cost function with larger compliance factor 𝛼𝑅 = 0.1, (b) Low compliant behavior optimized
using a cost function with 𝛼𝑅 = 0.01. (c), (Reacting to falling objects) The robot is initialized at a rest position being very compliant with 𝐾 → 0. Objects of different weights are
dropped at regular intervals of 2 s, from random heights between (0.5 − 1.0) m. Results shown here are over 10 such random trials with 𝛼𝑅 = 0.1. (d), (Pushing task) Robot with a
ripper end-effector is at rest with 𝐾 → 0. At 𝑡 = 1 s, it is commanded to push an object to a target position given by 𝛥𝑝𝑜𝑠 of 10 cm in 𝑥 and y directions (shown in solid black
ine) on a surface. The results shown here are over 10 trials with objects of random weights between (0.5 − 3.0) kg and 𝛼𝑅 = 0.1. A common legend for all four figures is provided
n (d). The black line in (a), (b) and (d) represents the goal position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
Fig. 5. Corresponding results from Model-free RL policy for the simulation tasks shown in Fig. 4. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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maximization component in the cost function. The results in Fig. 4(a)
and (b) show that the robot which is highly compliant at rest adapts
the stiffness in response to the external forces and deviation from the
rest position. Having a higher value of compliance factor 𝛼𝑅 allows
or larger deviations from the initial position when applied with an
xternal force while having a lower 𝛼𝑅 limits this deviation. It is also
oted that higher 𝛼𝑅 results in noisy stiffness adaption behavior as
arger 𝛥𝑝𝑜𝑠 (the deviation from the desired pose) creates larger gradients
n the cost function.

Reacting to falling object: In this task (Fig. 3(b)), a robot with a
up end-effector that is highly compliant at rest position is expected
o react optimally to objects falling into the cup end-effector. Four
ifferent objects are dropped from different heights to the cup in
ifferent trials resulting in large variations in the impact force. The
esired behavior of the robot is not to deviate largely from the rest
osition while reacting to falling objects. The robot is additionally
xpected to be as compliant as possible and be stiff only when necessary
s in (6). The resulting robot behavior is shown in Fig. 4(c), which
hows a sudden increase in 𝐾𝑧 upon a spike in 𝑓𝑒𝑥𝑡 in 𝑧 direction
nduced by the impact of the falling object. The robot increases its
tiffness every time a new object is falling to the cup and maintains a
igher level of stiffness during the later phases to hold the robot back
o a new rest position.

Pushing task: In this task (Fig. 3(c)), the robot is expected to push
cube-shaped object to a target position on a surface with friction.
ere, 𝐾𝑧 is set constant as 1000 as the robot is not expected to move

n 𝑧 direction. Stiffness in 𝑥 and 𝑦 directions are optimized to push
7

he object to the target while being compliant and stiff only when
ecessary. The results in Fig. 4(d) show that the stiffness is increased
o its upper limit in the pushing directions initially to overcome the
tatic friction. Upon reaching close to the target position the stiffness
s decreased to be more compliant.

.2. Comparison with model-free/based RL

The deep MPVIC is compared with RL based VILC approaches for
heir transferability between tasks which is the main contribution of
his work while also comparing their performance. Specifically, in these
omparisons, we utilize the PENN model trained with curiosity-driven
xploration with our deep MPVIC for different tasks without retraining
r fine-tuning the model. This enables the deep MPVIC to generalize
ver multiple tasks where the RL approaches are task-specific.

Model-free RL approaches have been successfully used in VILC for
obotic manipulation tasks in multiple previous works [26,29,30]. Out
f which we have chosen the off-policy RL algorithm Soft Actor Critic
SAC) because of its high sample efficiency. All the three simulation
asks shown in Fig. 3 are trained using SAC implementation from
table-baselines [53] for 500 000 time-steps.

In addition, we compare our approach with the MBRL approach
ETS [14]. In the case of PETS, the simulation tasks are trained for
00 000 time-steps. The PETS policies were trained with the same CEM
arameters and cost functions used for the corresponding tasks in our
eep MPVIC. The performance and the transferability of the learned
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Fig. 6. Corresponding results from PETS policy for the simulation tasks shown in Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
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Fig. 7. (left) Comparing the normalized value of the reward (mean value over 20
rials) obtained using Model-free RL, PETS, and our MPVIC framework on all the three
imulation tasks. (right) Comparing the transferability of the Model-free RL and PETS
ased policy with our MPVIC framework based on the normalized value of the mean
eward over 20 trials. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 8. Experiments: (left) task (e), Robot manipulator opening a table drawer. (right)
ask (d) The robot manipulator with a tray holding its pose while objects are dropped
o the tray. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

olicies in both of these approaches were compared with our MPVIC
pproach in Fig. 7.

Performance: The resulting robot behavior on applying the learned
odel-free RL and PETS policies on the three simulation tasks are

hown in Figs. 5 and 6 respectively. We compare the performance
n terms of the reward obtained by the final policies from each of
he approaches on the three simulation tasks. We do not compare the
eward during the learning process as the MPC scheme does not have
ny policy learning process. The rewards obtained while applying the
earned policies are shown in Fig. 7. Deep MPVIC performed better
n task a, the performance was similar on task b, and model-free RL

and PETS policies performed better on the task c by minimizing the
stiffness more effectively. The performance of MPVIC is lower in task
c as the model is learned on task a which has different dynamics. The
8

Table 2
Comparison on transferability between tasks.

Training samples (×105)

Transferability to

Task a Task b Task c

Model-free RL 50 38.6 27.95
PETS 10 3.2 3.9
Our MPVIC 10 0 0

key difference between the dynamics of task a and task c is the robot
movement is unconstrained in task a, whereas in task c it is constrained
by the object. That means the model cannot accurately predict the
dynamics as in other unconstrained tasks.

Task transferability: In order to evaluate how efficiently the policy
earned on a task can be transferred to another task, the model-free
L and PETS policies learned on the simulation task a was tested on
ask b and task c without retraining the policy/model. The performance
f the transferred model-free RL and PETS policies on task b and c
ere compared with the corresponding performance of deep MPVIC
sing the PENN model trained on task a. Fig. 7-right illustrates the
ransferability of our deep MPVIC in comparison with RL-based ap-
roaches, where deep MPVIC demonstrates the major advantage (green
ars). Further, the model-free RL and PETS policies have been retrained
o achieve similar performance as our deep MPVIC. A comparison
f the additional data samples/time steps required for retraining the
odels/policies for the tasks are shown in Table 2. For example, the
odel-free RL policy trained on task a needed additional training on
ask b with 38.6× 105 data samples to learn the task b. Whereas MPVIC
id not need any training at all (shown as 0 training samples in the
able). The number of additional training samples required is correlated
ith the computational time. While RL approaches demand additional

omputational/training time to perform a new task, the proposed deep
PVIC can be deployed without any additional computational effort.

.3. Real-world experiments

Reacting to falling objects: The experimental setup is shown in
ig. 3(d) where the robot end-effector is fitted with a tray and four
bjects of different weights are added to the tray at regular intervals.
he optimization objective here is similar to the simulation task (c),
he robot is expected to hold a pose while being highly compliant and
ecoming stiffer with extra weights being introduced to the tray. In
ig. 8 (right-column) the robot with a very low initial stiffness increases
he stiffness every instant a new object is introduced to the tray in order
o maintain it at the desired pose.

Opening a drawer: The pulling task is similar but in the opposite
irection of the pushing task. The experimental setup is shown in
ig. 3(e) where the robot is opening a table drawer to a desired position
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(15 cm in 𝑥 direction) in the Cartesian space. The results shown in Fig. 8
(left-column), show the impedance adaptation behavior similar to the
pushing task in the simulation where the robot increases its stiffness
initially to overcome the inertia of the drawer and then decreases once
the drawer starts to move closer to the desired position.

6. Discussion and limitations

6.1. Variable impedance learning control

The deep MPVIC-based approach presented in the work is evaluated
over different tasks in Section 5 for optimizing impedance adaptation
strategies. The objective in all experiments has been consistent in
having high stiffness values for the VIC only when the task objective
demands that. This objective is motivated by human manipulation
behavior and can increase the dexterity of the robot while encouraging
energy-efficient and safe behaviors. We considered three simulations
and two experimental tasks for evaluating the proposed method. In
all the tasks, the task requirement is defined by achieving a desired
goal pose for the robot end-effector. The performance of the impedance
adaptation strategy is evaluated based on how well it is able to achieve
this requirement while being maximally compliant. In all the evaluation
scenarios, both in simulation and experiments, the stiffness adaptation
guarantees a high level of compliance unless there is a large deviation
from the target position or an external force is applied to it. The deep
MPVIC scheme is able to adapt the impedance profiles to counteract
the external forces and also to trade-off effectively between position
accuracy and compliance during the task.

The modeling approach using PENN combined with uncertainty-
targeted exploration has been found to be very useful in learning a
generalized unconstrained Cartesian impedance model of the robot.
In addition, combining it with MPC based optimization has enabled
to solve different manipulation tasks demanding stiffness adaptation.
The proposed deep MPVIC approach succeeds in generalizing a single
model to solve multiple manipulation tasks. The versatility of the
impedance adaptation strategy is evident in the scenarios of impact
force from falling objects, overcoming the inertia of the objects in
the pushing and drawer opening tasks respectively. While a majority
of robot manipulation tasks rely on trajectory planning and tracking,
our approach is not straightforward in solving complex manipulation
problems. Nevertheless, it can be combined with a high-level planning
approach where the low-level VIC will modify the given trajectory
to ensure compliant behavior. Incorporating such compliant behav-
iors could improve manipulation skills, especially in tasks involving
contacts.

The deep MPVIC framework was compared with model-free and
model-based RL approaches utilized successfully in various previous
works [26,29,30,35] to solve complex manipulation tasks. The results
show that the deep MPVIC framework is able to achieve similar per-
formance to model-free and model-based RL approaches while being
highly sample efficient and able to seamlessly transfer the controller
between different tasks without any further training of the model.
Whereas in model-free and model-based RL, transferring policy be-
tween different tasks demands relearning the policy on the new task
or extensive fine-tuning of the existing policy. PETS shows better task
transferability compared to model-free RL, this can be justified by the
use of a model in PETS for impedance optimization even though it is
not a generalized model as in deep MPVIC. It is important to note that
the transferability of deep MPVIC is dependent on the quality of the
model. This is evident in its lower performance in the task c where the
model cannot accurately predict the dynamics of a constrained task.
RL has the potential to solve very complex tasks at the expense of
high sample complexity. It would be ideal to combine this aspect of RL
with sample efficiency and easy transferability of the learned controller
between tasks as in our deep MPVIC framework. Further extending the
model-based RL approaches for VILC could be a promising approach in
9

this direction.
6.2. Stability analysis

MBRL approaches could improve sample efficiency and can be use-
ful in providing stability and safety guarantees, but there is a need for
further research in this direction facilitating complex model structures
such as Deep Neural Networks (DNN) to build scalable and sample
efficient VILC approaches with theoretical guarantees. In general, the
stability of a dynamic system is not necessarily guaranteed when it
is coupled to a stable dynamic environment. However, [54] showed
stability of the manipulator is preserved when it is coupled to a large
class of stable environments if the manipulator has the behavior of a
simple impedance. An impedance controller with constant gains makes
the closed-loop robot-environment system passive and hence stable in
interaction with passive environments [54]. However, this passivity
property is lost if the impedance parameters are varied. If the learning-
based controller could identify the optimal impedance parameters, one
could achieve complex compliant manipulation skills with safety and
stability guarantees. But this is not obvious while using RL or CEM-
based MPC. One alternative in the case of RL is to use structured
policies as done by [55] where the authors use Integrated MOtion
Generator and Impedance Controller (iMOGIC) framework to guarantee
stable VILC with model-free RL. Even though safety can be achieved us-
ing constrained-CEM method [50] in the proposed MPVIC framework,
stability guarantees are difficult due to the PENN dynamical models.

Guaranteeing stability and robustness for controllers in a complex
robotic manipulator operating in uncertain environments is challeng-
ing. In the case of VIC, often passivity theory is used to provide
theoretical guarantees under relatively general working assumptions.
However, this approach is model-based and the passivity property is
lost if arbitrary variations of the impedance parameters are allowed.
Passivity-based approaches are often concerned with the analysis of
variable impedance profiles that already exist prior to task execu-
tion [56]. This is not suitable for guaranteeing the stability of state-
dependent real-time impedance variations. In another recent approach,
a modified impedance control strategy allows the reproduction of a
variable stiffness while preserving the passivity, and therefore a stable
behavior both in free motion and in interaction with partially known
environments, of the robot [57]. In [57], the goal is to modify the
impedance control in order to allow stiffness variations while pre-
serving passivity and, consequently, stable interactive behavior and
asymptotic tracking in free motion. This tank-based strategy has been
shown very well suited for VIC, in spite of some difficulties in tuning its
parameters. Nevertheless, it is dependent on the states of the system,
measured during task execution and so can only be applied online. An
approach based on the combination of passivity conditions with an
adaptation law on the impedance profile was proposed in [58]. This
method allows for verifying whether a given profile is passive and if
it is not, it provides a method to modify it in a way to guarantee
passivity. But none of these approaches are directly extendable to the
proposed MPVIC framework to guarantee stability. Ref. [59] proposed
an approach using a designed Lyapunov candidate function to stabilize
the learned impedance system with an optimal input law in analytical
form. But in the case of our MPVIC, this requires solving an additional
convex optimization problem at every MPC solution, which could be
computationally very expensive and not feasible practically.

The safe learning approaches described in [60] are interesting to
explore for model-based VILC. A feasible approach in this direction
could be to provide probabilistic safety and stability guarantees using
Control Barrier Functions (CBF) and Control Lyapunov Functions (CLF)
and solving constrained optimization problems over the GP model [61].
Guaranteeing stability properties to the resulting VILC is challenging
as guarantees have to be provided in real-time in an online fashion as
the stiffness values predicted by the policy are state-dependent. The
approach proposed in [59] by designing a quadratic Lyapunov candi-
date function could be coupled with GP models to provide probabilistic

stability guarantees similar to safety guarantees in [61]. But in the
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proposed MPVIC framework with PENN dynamics model, such methods
are not straightforward to apply. This problem in CEM-based MPC is
partly addressed in [62] using available prior models and an auxiliary
controller based on CLF and CBF to provide guarantees.

6.3. Limitations

While guaranteeing stability is one major challenge, there are other
identified limitations to the proposed approach. Applying our approach
to tasks with non-continuous contacts is not possible as the model
is not aware of the contact dynamics, which could lead to unstable
behavior. Detecting contact discontinuities and switching to a different
contact re-establish policy could be a solution to this issue. Whereas
a more general approach could be to learn a model aware of contact
constraints, incorporating such constraints into the model state-space
is challenging. In future work, we will explore ways to sufficiently
incorporate contact constraints to the model to aid faster fine-tuning
of the VILC for different manipulation tasks.

In addition, there are limitations inherited from applying CEM to
a real robotic system because of the high computation time, where
the trade-off is between optimization performance and the control
frequency. Even though VIC can be operated generally at lower control
frequencies, in tasks with complex contact dynamics this might not be
sufficient. This drawback of CEM can affect the model-learning aspect
in high-dimensional tasks in terms of sample efficiency. Applying a
sample efficient CEM approach [63] and efficient parallelization could
help in addressing this issue partly.

The performance of the MPVIC framework can be affected by the
quality of the model as the single-step prediction errors get com-
pounded during the multi-step MPC optimization. This can be ad-
dressed by training the model over multi-step predictions. Additionally,
the MPC horizon can be made adaptive based on the uncertainty
estimate from the PENN model. The level of impedance adaptation
or the compliance behavior can be adjusted by tuning the 𝑄 and 𝑅
arameters in the cost function (6). However, it is not obvious how
o find optimal values for these parameters as the cost function needs
o additionally account for model inaccuracies to guarantee optimal
erformance. Therefore, instead of focusing on the true cost, finding
surrogate cost using Bayesian optimization or evolutionary methods

s proposed in [64] offers a way to design the cost. Another interesting
pproach for cost designing is to iteratively update a baseline cost using
L for closed-loop performance [65]. But here we need to rely on a
ood enough baseline cost and model so that the RL agent can fine-tune
he cost for optimal performance.

. Conclusion

In this work, we presented a deep MPVIC approach for compli-
nt manipulation skills for a robotic manipulator by optimizing the
mpedance parameters. By utilizing PENN, a Cartesian impedance
odel of the robot is learned using an exploration strategy that max-

mizes the information gain. The PENN dynamic model is coupled
ith a CEM-based MPC to optimize impedance parameters of a low-

evel VIC. We identified an impedance optimization objective-based
uman manipulation skill and replicated it on a robot manipulator for
implified scenarios in simulations and experiments. The deep MPVIC
as compared with model-free and model-based RL approaches in
ILC. The approach proved experimentally to be beneficial for solving
ultiple tasks without any need to relearn the model or policy as op-
osed to other VILC approaches. In future work, we aim to extend this
pproach to scenarios with constraints, such as in-contact interaction
asks.
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