
ISBN 978-82-326-7606-4 (printed ver.)
ISBN 978-82-326-7605-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:52

Björn Gottschall

Time-Proportional
Performance Analysis for
Out-of-Order ProcessorsD

oc
to

ra
l t

he
si

s

D
octor al theses at N

TN
U

, 2024:52
Björn G

ottschall

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce

Thesis for the Degree of Philosophiae Doctor

Trondheim, March 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Björn Gottschall

Time-Proportional
Performance Analysis for
Out-of-Order Processors

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

© Björn Gottschall

ISBN 978-82-326-7606-4 (printed ver.)
ISBN 978-82-326-7605-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:52

Printed by NTNU Grafisk senter

Abstract

The quest for an increase in processor performance has become difficult due to
the inherent power limitations of today’s chips. As processors become more
complex with deeper and wider pipelines, out-of-order execution, and the
integration of heterogeneous accelerators, software developers face increasing
challenges in utilizing these resources efficiently. Therefore, understanding the
performance characteristics of our workloads running on these complex archi-
tectures has never been more important to enable optimization that increases
efficiency and performance. In this thesis, we present three contributions that
collectively answer the two fundamental questions of performance analysis
for out-of-order processors by explaining what an application spends time on
and why.

Our first contribution is TIP: Time-Proportional Instruction Profiling, which
establishes the time-proportional principle of performance analysis and iden-
tifies the four states of commitment that a time-proportional performance
analyzer must be able to differentiate. Time-proportional instruction pro-
filing is able to attribute execution time to instruction accurately, unlike
contemporary performance profilers, which are not time-proportional.

Our second contribution is TEA: Time-Proportional Event Analysis. TEA
combines time-proportional instruction profiling with accurate performance
event attribution, thereby explaining why certain instructions are performance-
critical.

The evaluation of the accuracy of performance profilers was made possible
through TraceDoctor, which is our third key contribution. TraceDoctor is a
high-performance tracing framework that enabled the creation of a golden
performance reference and proved its flexibility by enabling the evaluation of
accuracy and overhead in sampled simulations.

To demonstrate the potential of time-proportional performance analysis, we
used it to optimize the industry-standard SPEC CPU2017 benchmarks Imag-
ick, lbm, and nab, and achieved a speedup of 1.93, 1.28, and 2.45 times,
respectively. Contemporary performance profilers, such as Intel PEBS, AMD
IBS, Arm SPE, and IBM RIS are not time-proportional and hence do not
clearly identify these optimization opportunities.

Structure of Thesis

This thesis is a collection of papers organized into two parts.

Part I provides an overview of the research contributions and introduces the
most relevant background.

Part II includes the published papers. For improved readability, the format
of the papers has been altered from their original published forms, but their
content remains unchanged. The three papers included in this thesis are
listed below.

Paper A. TIP: Time-Proportional Instruction Profiling
Björn Gottschall, Lieven Eeckhout, Magnus Jahre
54th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2021
Best Paper Runner-Up Award, HiPEAC Paper Award

Paper B. TEA: Time-Proportional Event Analysis
Björn Gottschall, Lieven Eeckhout, Magnus Jahre
50th Annual International Symposium on Computer Architecture
(ISCA), 2023
Nominated for Best Paper Award

Paper C. Balancing Accuracy and Evaluation Overhead in Simula-
tion Point Selection
Björn Gottschall, Silvio Campelo de Santana, Magnus Jahre
2023 IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2023
Nominated for Best Paper Award

iii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor,
Professor Magnus Jahre, for his invaluable guidance and support throughout
the years of my doctoral studies. Thank you for always keeping your door
open for me to seek help and advice. I also feel very fortunate to have had the
opportunity to work and collaborate with Professor Lieven Eeckhout, who
consistently encouraged me to seek out the missing pieces in my research.

A big round of applause goes to the NTNU Computer Architecture Lab and
all the amazing people with our lunch sessions, presentations, and discussions.
There is always someone listening to you, bouncing off ideas, or helping out
in tricky situations. If it were not for you, my workplace would not have
been as amazing as it was.

Over the years I have been fortunate to make some wonderful friends, whom
I am incredibly thankful for. They have supported me in countless ways, and
we have enjoyed many activities together. Whether it has been payday beers,
hiking, skiing, going on cabin trips, or brewing beer, I have always had a
great time with you.

And finally, I am deeply grateful to my wife, children, and family for their
endless patience, love, and support during this intense period of my life. I
am coming home now.

v

Contents

I Research Overview 1

1 Introduction 3
1.1 Research Scope . 4
1.2 Time-Proportional Performance Analysis 5
1.3 Thesis Contributions . 8

2 Background 11
2.1 Performance Analysis . 11

2.1.1 Sampling . 12
2.1.2 Instrumentation . 13
2.1.3 Tracing . 14
2.1.4 Event Analysis . 14

2.2 Statistical Sampling . 15
2.3 Software Performance Profilers 17
2.4 Hardware-Assisted Performance Profilers 19

2.4.1 Frontend Instruction Tagging Profilers 20
2.4.2 Next-Committing Instruction Profilers 20
2.4.3 Last-Committed Instruction Profilers 21

2.5 Other Approaches to Performance Analysis 22

3 Conclusion and Future Work 25
3.1 Conclusion . 25
3.2 Future Work . 26

3.2.1 Multi-Threaded Workloads 26
3.2.2 GPU Performance Profiling 27

Questions
Q1 What takes time? . 4
Q2 Why does it take time? . 4

vii

Contents

Definitions
D1 Time-Proportionality . 6

Commit States
C1 Computing . 6
C2 Stalled . 6
C3 Flushed . 6
C4 Drained . 6

References 29

Acronyms 33

II Publications 35

A TIP: Time-Proportional Instruction Profiling (Gottschall et al.,
2021) 37
1 Introduction . 40
2 Time-Proportional Profiling 44

2.1 Dispatch and Software Profiling 45
2.2 Oracle Profiling . 46

3 TIP: Time-Proportional and Practical Profiling 51
3.1 Implementing TIP . 52
3.2 TIP Overhead Analysis 55

4 Experimental Setup . 56
5 Results . 59

5.1 Profile Error . 60
5.2 Sensitivity Analyses 63

6 Profiling Case Study . 65
7 Related Work . 68
8 Conclusion . 69
References . 70

B TEA: Time-Proportional Event Analysis (Gottschall et al., 2023) 79
1 Introduction . 82
2 Background and Motivation 86
3 Time-Proportional Event Analysis 91
4 Experimental Setup . 96

viii

Contents

5 Results . 99
5.1 Average Accuracy . 99
5.2 Per-Instruction Accuracy 101
5.3 Why Event-Driven Analysis Falls Short 102
5.4 Sensitivity analysis . 103

6 Case Studies . 105
7 Related Work . 108
8 Conclusion . 110
References . 110

C Balancing Accuracy and Evaluation Overhead in Simulation Point
Selection (Gottschall et al., 2023) 119
1 Introduction . 122
2 Background . 125
3 TraceDoctor . 126
4 Experimental Setup . 128
5 TraceDoctor Evaluation . 129
6 Validating SimPoint . 132

6.1 A Primer on SimPoint 133
6.2 SimPoint Error . 136
6.3 Selecting Favorable SimPoint Parameters 140

7 Related Work . 145
8 Conclusion . 146
References . 147

ix

Part I

Research Overview

1

Chapter 1

Introduction

In today’s world, computers, cloud services, and mobile and embedded devices
are ubiquitous. Increasing computing power and efficiency have become the
fundamental driving forces of computer architecture, catering to the ever-
growing demand for higher performance and less energy consumption. Thanks
to Moore’s Law, technology has advanced tremendously over the last few
decades, which has helped scale integrated circuits’ performance [1]. However,
shrinking transistors becomes increasingly difficult, requiring to manufacture
larger chips to fit more transistors. Current EUV lithography equipment,
used for the most advanced silicon technologies, limits the maximum chip
area, which is already exhausted with today’s high-performance graphic
accelerators, meaning they cannot grow any bigger. A solution that the chip
industry is adopting is the use of chiplets [2], which allows for increased
transistor counts by integrating multiple chips on a single interposer.

Increasing the clock frequency was another solution for many years to improve
the performance of integrated circuits, which has mostly stopped due to the
breakdown of Dennard scaling [3]. In the past, scaling voltages, currents, and
clock frequencies were mostly free as transistors became smaller. However,
the shrinkage of transistors has resulted in leakage currents dominating the
energy consumed by chips, leading to power densities that strain cooling
systems [4]. As clock frequencies and silicon size have increased, chips have
become power-limited. This started the era of dark silicon, where it is
impossible to power and use all chip resources due to power constraints and
cooling limitations [5]. This means that during times of high energy usage,
certain areas of the chip may need to be power or clock-gated, making some
resources temporarily unavailable.

With new and improved semiconductor technologies, multi-core design, and
heterogeneous architectures, the number of transistors on a chip is still in-
creasing. Power constraints do not allow the use of all of these resources

3

Chapter 1 Introduction

simultaneously, which means wasting power is, in effect, wasting performance.
Performance analysis helps understand application behavior, optimize work-
loads to achieve maximum hardware and software performance, and utilize
the chip resources as efficiently as possible. As processors become increasingly
complex, the task of performance analysis — to understand an application’s
performance characteristics — becomes increasingly challenging and more
important.

1.1 Research Scope

This thesis focuses on performance analysis, which must answer two funda-
mental questions when profiling an application on a specific architecture.

Question 1: What takes time? Q1

Software consists of smaller components such as functions, basic blocks,
and instructions, and their execution takes a certain amount of time. A
performance profiler aims to answer the question of how long the different
parts of an application take to execute.

Question 2: Why does it take time? Q2

Application performance can be affected by performance events to which
instructions may be subjected. Performance analysis must identify the
instructions and events that impacted performance to explain their exe-
cution times.

Answering the first question requires identifying the performance-critical
instructions within an application, which are the instructions that impact the
execution time the most. Answering the second question allows connecting
the performance-critical instructions to the events that are the cause of their
execution time and thereby explain why they are performance-critical.

By answering both questions, a developer can optimize and change the ap-
plication to improve performance, waste less resources, and save energy. A
key challenge in performance analysis is achieving high accuracy since a per-
formance profiler that cannot accurately point out performance problems
in an application is not helpful in the endeavor of optimization. Inaccurate

4

1.2 Time-Proportional Performance Analysis

performance profiles mislead developers to focus on unimportant parts of an
application, missing optimization potential.

In this thesis, we will reveal and explain why today’s performance profilers
are inaccurate and propose time-proportional performance analysis as the
accurate solution to this problem. Time-proportional performance analysis
answers both Q1 and Q2 with a very low error and overhead, revealing the
performance-critical instructions in an application and explaining why they
exhibit such a long execution time. We focus on single-threaded applications
in this thesis because this is a necessary first step, as performance analysis
cannot be accurate for multi-threaded applications without being accurate
at the level of a single thread.

1.2 Time-Proportional Performance Analysis

Our core contribution of this thesis is time-proportional performance analysis,
which combines accurate time and event profiling, revealing the performance-
critical instructions of an application and explaining their architectural bottle-
necks. This allows for quickly identifying problems and more successful soft-
ware optimizations that squeeze most performance out of today’s hardware.
Time-proportional performance analysis adheres to the time-proportional
principle (D1), which states that the probability of sampling an instruction
must be proportional to its contribution to overall runtime. We use sta-
tistical sampling because it can be used on any application without prior
knowledge or changes to the application, and it exhibits low overheads that
could impact the application’s performance. We found that all existing profil-
ers such as Intel PEBS, AMD IBS, Arm SPE, IBM RIS, Lynsyn, Xilinx TCF,
Linux perf, OProfile, GNU gprof, and PPerf are inaccurate because they are
not time-proportional, which is explained in more detail in Section 2.3 and
Section 2.4.

Time-proportional performance analysis focuses on the commit stage of the
processor core, which is the point at which instructions retire after successful
execution. Thus, it is the place where instruction latencies in a core are
exposed. For example, a stalling core means that an instruction has reached
the commit stage but has not finished execution yet and thus cannot retire.
It is then this instruction that is responsible for the time the core cannot
progress further. A key observation that time-proportional performance

5

Chapter 1 Introduction

Definition 1: Time-Proportionality D1

To accurately distribute the execution time of the instructions of an
application using statistical sampling, the probability of sampling an
instruction must be proportional to its contribution to overall runtime.

Commit State 1: Computing C1

In the computing commit state, one or more instructions are committing,
and the core is advancing through the application. When profiling dur-
ing this state, a profiler must account time to all currently committing
instructions equally.

Commit State 2: Stalled C2

In the stalled state, exactly one instruction is stalling the commit stage
and preventing the core from making progress, for example, a long latency
load. A profiler profiling during this state must account time to the
stalling instruction.

Commit State 3: Flushed C3

In the flushed state, no instructions are currently executing because a
previously retired instruction has flushed the cores pipeline, for example,
in the case of a mispredicted branch. When profiling during this state, a
profiler must account time to the instruction that caused the flush.

Commit State 4: Drained C4

In the drained state, the core ran out of instructions to execute, for
example, an instruction cache miss in the frontend. When profiling
during this state, a profiler must account time to the instruction that
comes next to execute.

6

1.2 Time-Proportional Performance Analysis

analysis made is that a processor core can only be in one of four commit
states: Computing (C1), Stalled (C2), Flushed (C3), or Drained (C4).

Time-proportional performance analysis can differentiate all four commit
states and retrieve the instructions responsible for runtime. When the pro-
cessor is in the computing commit state, it will retrieve all instructions that
commit in the cycle the sample is taken. If the processor is in the stalled
commit state, it will retrieve the oldest stalling instruction as the sample,
since it is the instruction that prevents the core from making progress. In
the flushed commit state, a previously committed instruction has flushed the
pipeline, and it is in this cycle this last committed instruction that is to be
blamed and, therefore, sampled. In case the core runs out of instructions, for
example, when the frontend cannot supply enough instructions to the backend
because of an instruction cache miss, commit is in the drained state, and the
first instruction that enters the pipeline will be sampled. Time-proportional
performance analysis retrieves additionally the performance events that the
instructions were subjected to. This makes it possible to attribute execution
time to instructions accurately and explain why they exhibit a longer latency
during their execution by exposing the architectural bottlenecks.

We evaluate the accuracy of our time-proportional performance analyzer
and contemporary performance analysis approaches by comparing them to a
golden reference that accounts for all dynamic instruction, clock cycles, and
performance events.

With time-proportional performance analysis, we profiled industry-standard
benchmarks from SPEC CPU2017 [6] and PARSEC [7] executed end-to-end
using reference input sets in full-stack Linux environments. While contempo-
rary performance profilers missed many optimization potentials, with time-
proportional performance analysis, we were able to identify the performance
problems and optimize the following benchmarks.

• SPEC CPU2017 Imagick. Time-proportional profiling identified
flushing instructions responsible for nearly half of the runtime. These
flushing instructions turned out to be necessary in this benchmark, and
once we removed them, the benchmark sped up by 1.93 times.

• SPEC CPU2017 lbm. Time-proportional profiling identified one load
instruction to be the performance-critical instruction due to numerous
non-hidden cache misses. We employed software prefetching to load
the data ahead of time and sped up this benchmark by 1.28 times.

7

Chapter 1 Introduction

• SPEC CPU2017 nab. Time-proportional profiling identified a float-
ing point instruction as performance-critical that follows a flushing
instruction. We recompiled the benchmark with a relaxed IEEE 754
floating-point standard, which increased the floating-point pipeline uti-
lization by avoiding the flushing instruction. This sped up the bench-
mark by 2.45 times.

1.3 Thesis Contributions

The contributions of this thesis are framed within three papers.

In Paper A we present TIP: Time-Proportional Instruction Profiling, which
introduces the principle of time proportionality (D1) and the four commit
states (C1, C2, C3, and C4). TIP explains on which instructions the applica-
tion spends time on and with that answers Q1. TIP is an instruction-level
performance profiler that adds hardware support inside the processor core
for time-proportionally retrieving the addresses of the instructions that the
out-of-order processor is exposing the latency of in the cycle the sample is
taken.

In Paper B we present TEA: Time-Proportional Event Analysis, which ex-
tends the time-proportional instruction profiling with accurate performance
event attribution. TEA answers both Q1 and Q2 by identifying which in-
structions take time in an application using TIP’s attribution policies, and
attributes the time accurately to performance events that the instructions
were subjected to. Therefore, TEA adds hardware support to track perfor-
mance events for every in-flight instruction within the processor pipeline and
time-proportionally retrieve the instruction addresses and performance events
when sampling.

To quantify the accuracy of TIP and TEA, we needed to create a golden
reference that captures all clock cycles, dynamic instruction, and performance
events. To enable this, I implemented TraceDoctor, a very flexible and high-
performance tracing interface for cycle-accurate simulations, which is the first
to allow end-to-end tracing of industry-standard benchmarks in full-stack
environments. TraceDoctor is the first contribution from Paper C, and to
demonstrate that TraceDoctor is not limited to performance profiling and
event analysis, we used it to analyze the accuracy and overhead sampled
simulations using SimPoint [8]. Sampled simulation is an often-used method-
ology in computer architecture research to shorten the simulation overhead by

8

1.3 Thesis Contributions

focusing on representative parts of an application. In the second contribution
of Paper C, we analyzed for the first time how accurate sampled simula-
tions are when executing large-scale workloads to completion on high-detail
architecture models.

We found that sampled simulations can accurately represent benchmark
performance when collecting relatively many and relatively small simulation
points over the whole benchmark execution. Since the simulation overhead
increases with the simulation point size and the number of simulation points,
it must be balanced with the overhead of the microarchitectural state that
needs to be collected and warmed up for each simulation point. By selecting
sensible parameters, it is possible to simulate state-of-the-art benchmarks
with high accuracy and a low simulation overhead, while common practice
often achieves the opposite.

9

Chapter 2

Background

Performance profiling has been around for a long time, and many tools exist
that promise to help a developer understand the performance characteris-
tics of software. Performance profiling tools, as shown in Figure 2.1, often
rely on sampling, instrumentation, or tracing. Each of these techniques pro-
vides different depths of information about the application and its execution
(information capabilities), with the tradeoff on performance and profiling
overhead.

A problem with contemporary performance profilers is that the tools that
aim to collect the same type of performance-related data often show vastly
different results when profiling the same application on the same machine.
The reason is that each tool exhibits a different systematic bias that affects
its profiling results and is explained in more detail later. These biases can
even lead to some tools showing big variations across several of the same
profiling runs, leaving developers clueless about what can be trusted.

This chapter gives an overview of performance analysis and explains statistical
sampling in detail. Finally, the chapter describes how today’s performance
profilers and other approaches work to understand why they fall short in
accurate performance analysis.

2.1 Performance Analysis

The first step in performance analysis is to figure out what takes time in an
application, which is surprisingly challenging since it requires high accuracy.
The easiest method of timing the execution of an application is to take the
difference between the start and end times. However, this is not helpful
for optimizing big and complex applications, which requires identifying and

11

Chapter 2 Background

O
ve

rh
ea

d

Information Capability

Sampling
gprof perf Intel PEBS

AMD IBS IBM RIS

Instrumentation

Linux Tracepoints
Intel Pin DynamoRIO

Tracing
J-TraceIntel PT

Intel LBR

Figure 2.1: The three types of performance profiling with examples are compared
based on their overheads and information capabilities. Sampling has the least impact
on application execution, storage, and manual effort than tracing and instrumenta-
tion.

pinpointing performance bottlenecks towards smaller components such as
functions, basic blocks, or instructions. Measuring the performance of these
smaller components is not straightforward and can lead to high overheads
and profiling errors.

Performance profiling that can give more insights into the execution of an
application can be divided into three types, as shown in Figure 2.1, each
having advantages and disadvantages. This thesis focuses on sampling as
it is — when applied accurately — a good starting point for performance
analysis due to its low overhead and wide applicability. A low overhead is very
important in performance profiling, as every bit of impact on the system’s
performance through the technique skews the data one intends to gather.

2.1.1 Sampling

Sampling is the most widespread technique used for performance profiling,
which periodically retrieves some information about the executing applica-
tion. The obtained data can represent the performance characteristics of the
whole application execution. However, this is only achieved when the col-
lected samples represent a statistical distribution that is free from systematic
biases over the execution of an application and is discussed in more detail
in Section 2.2. Sampling can be applied to any application without prior
knowledge and does not require any modifications to the application. Due

12

2.1 Performance Analysis

to its low overhead, sampling can achieve low profiling errors and profile full
application executions.

One limitation of sampling is scenarios in which the application runs only for
a very short time, and the collected samples are not sufficient to accurately
represent the application’s performance. One example is Functions-as-a-
Service (FaaS), where applications typically execute one relatively short task,
but are invocated many many times. Short and complex applications can
still be analyzed using sampling by scaling up their workloads and runtime
to gather sufficient samples. If the executed code is short enough, applying
other profiling techniques, such as instrumentation, might also be trivial.

Since sampling relies on statistics, it is crucial to retrieve the profiling data
through random sampling because small biases during this process are am-
plified and will lead to big errors in the performance profile. Unfortunately,
as this thesis will show, all contemporary performance profilers that em-
ploy sampling, such as Linux perf [9], Intel Processor Event Based Sam-
pling (PEBS) [10], AMD Instruction Based Sampling (IBS) [11], Arm Sta-
tistical Profiling Extension (SPE) [12] and IBM Random Instruction Sam-
pling (RIS) [13] suffer from systematic errors.

2.1.2 Instrumentation

Instrumentation inserts instructions into an application and allows for gather-
ing information about its execution. There are two types of instrumentation:
static instrumentation is adding additional code into the application’s source
either manually or from within the compiler, and dynamic instrumentation
injects instructions into an already compiled application. Dynamic instru-
mentation is used by tools such as Intel Pin [14], DynamoRIO [15] or Linux
tracepoints [16], whereas static instrumentation is often a manual effort by
the developer or is applied from compiler frameworks such as GCC [17], [18]
or LLVM [19].

Static instrumentation has the benefit that the developer can target the points
of interest inside the application, while dynamic instrumentation can gather
data about the execution of an application without the need for the source
code. This, however, comes with the disadvantage that the instrumentation
code must be specifically targeted within the application to avoid the creation
of high overheads.

13

Chapter 2 Background

For example, adding code into very tight loops can create a bias that intro-
duces additional performance problems and mislead any optimization efforts.
To avoid this, a performance analyst must have already acquired insights
about the performance characteristics of an application before instrumenta-
tion can be employed.

2.1.3 Tracing

Tracing is a technique that records very fine-grained details about the ex-
ecution of an application. This can be, for example, the exact order of
instructions executed or functions called and is often coupled with more infor-
mation like memory accesses or call stacks. Tracing allows for reconstructing
an application’s execution and, with additional architectural state, provides
insights into the exact workings of the application.

Tracers such as Segger J-Trace [20] are popular on embedded platforms, which,
through their relatively low performance, create a manageable amount of
tracing data that can be recorded out-of-band, in parallel to the application
execution and, thus, without performance impact on the target platform. In
high-performance processors, tracing can significantly reduce the application
performance due to the large amount of generated data. As a result, tracing
affects the performance data collected, making it unrepresentative of non-
traced executions. Therefore, tracers such as Intel Last Branch Record
(LBR) and Intel Processor Trace (PT) [21] must typically be limited to
small timeframes. Consequently, tracing is not an adequate approach for
performance analysis when it comes to large and complex workloads running
on high-performance processors.

2.1.4 Event Analysis

Modern architectures have grown exceedingly complex and use many strate-
gies, such as branch predictors or caches, to gain performance in software
execution. As a result of this situation, it has become more challenging
to analyze the performance of an application and reason why instructions
take longer than others. Performance events play an important role in such
architectures in order to explain why certain instructions experience a longer
execution latency. Performance event profilers such as Intel VTune [22],
AMD µProf [23], and Linux perf [24] are able to sample event counts over

14

2.2 Statistical Sampling

the complete execution of an application1. Other event profilers such as
Intel PEBS [10], AMD IBS [11], ARM SPE [12] or IBM RIS [13] can record
performance events that specific instructions are subjected to. These perfor-
mance event profiles then aim to explain the architectural bottlenecks of an
application.

While performance events are useful for explaining performance characteris-
tics in simpler architectures, they are more difficult to make sense of on deeper
and wider out-of-order processor pipelines that are designed to hide such
events. To better utilize core and memory resources, out-of-order pipelines
execute many instructions in parallel and, as the name implies, possibly out-
of-order. With the parallel execution of instructions, performance events will
overlap, one hiding the latency of another. For example, load instructions of-
ten experience hidden and non-hidden cache misses, but hidden cache misses
do not directly impact the application’s performance.

To account for overlapping effects of performance events, it is often com-
bined with performance profiling, which is called performance analysis in
this thesis, and allows — when done time proportionally — for an accurate
performance profile that exposes the instructions that take time together
with the performance events that caused them to take time.

2.2 Statistical Sampling

To profile an application’s execution, data must be retrieved to represent its
performance characteristics. To minimize the impact on the performance of
an application, statistical sampling is used since it can keep the overhead in
check. Statistical sampling intermittently retrieves performance data from
the target application. In most cases, it retrieves the currently active or
executing instruction. It can also retrieve other kinds of data like, for exam-
ple, performance event information that helps to reason about architectural
bottlenecks.

From the application’s perspective, instructions are executed in order, one
after another. Figure 2.2 shows such an example of an instruction stream in
which each instruction exposes a certain latency. When applying statistical

1Event counts are attributed to the instructions of an application through statistical
sampling, that creates an event distribution over the executed instruction. Instructions
that experience more events are more likely to be sampled and represented in this
distribution.

15

Chapter 2 Background

I0 I1 I2 I3 I4 I5 I6 I7

Instruction stream

Sampling period i i+1

I3Sample + Sampling period

Figure 2.2: Statistical sampling periodically retrieves the currently executing in-
struction, which is taken as the representative of the sampling period. The collection
of samples is used to create a runtime distribution over the executing application.

sampling, an instruction is retrieved after each sampling period and taken
as representative of it. By sampling executions for longer, a collection of
samples is recorded, which is then used to create a distribution over the full
execution. Periodic time-based sampling is typically used in performance
profiling, which uses a small timeframe or, as used in Linux perf, a sampling
frequency to collect samples periodically. Thus, instructions that execute
more often or experience higher execution latencies will collect more samples
and are attributed with more sampling periods. This runtime distribution
then represents the performance profile showing which instruction took longer
in the application’s execution and which did not.

When a different metric is used as the sampling period, it is possible to
use statistical sampling to record other distributions over an execution. For
example, a distribution of cache misses of an application is gathered when
using a certain number of cache misses as the sampling period. In this case,
instructions that are causing more cache misses are more likely to be sampled.
This thesis will solely focus on time-based statistical sampling as any other
sampling technique cannot be time-proportional [25]. For example, event
sampling is suffering from overlapping effects in high-performance processors
that cause the latency of some events to be hidden and, thus, their occurrence
to have no impact on time.

The sampling period for statistical sampling can itself introduce a bias in
the collected distribution when the period aligns with reoccurring patterns
in the application execution. One way to avoid this bias is to sample with
a fully random sampling period. However, when using a fixed timeframe as
the sampling period, it is very unlikely that the sampling aligns with any
execution patterns since the execution time inherently varies through memory

16

2.3 Software Performance Profilers

Commit Last Committed
InstructionFrontendProgram

Counter Backend

Fetch

Software
Profiler

Frontend Instruction
Tagging Profiler

Next-Committing
Instruction Profiler

Last-Committed
Instruction Profiler

Dispatch Retire Update

Figure 2.3: Performance profilers sample instructions from different stages of the
processor pipeline, but are unable to accurately attribute execution time to instruc-
tions.

operations and external factors such as interrupts.

Time-proportional statistical sampling is the key to performance profiling
because an accurate performance profile that is supposed to be representative
of the overall execution time, must be collected in a time-proportional manner.
To create such an accurate performance profile, every instruction must be
represented proportional to its contribution to overall application execution
time (D1). Statistical sampling only infrequently retrieves the currently
executing instruction, and the probability of sampling this instruction must
be time-proportional. Equation 2.1 computes the sampling probability p of
instruction Ix by relating the time the instruction contributes to the overall
runtime ttotal of the application:

p(Ix) = t(Ix)
ttotal

(2.1)

Statistical sampling is limited to applications and workloads that accumulate
sufficient samples to represent the overall distribution of runtime. Applica-
tions with a very short execution time must scale up their workloads or be
sampled more frequently using shorter sampling periods. Fortunately, in per-
formance profiling, the interest is focused on instructions that execute more
often or take longer to execute and are, thus, more likely to be sampled.

2.3 Software Performance Profilers

Software performance profilers are well known and have the benefit that they
work almost on all systems independent from the hardware. There are many

17

Chapter 2 Background

different software performance profilers, and while their inner workings differ,
they all have in common that they periodically sample the program counter
of the running application. To achieve this, they interrupt the currently
running application using a timer and then record its program counter.

GNU Gprof [17], LLVM PGO [19], and Google performance tools [26] work
very similarly by setting a signal handler within the application and setting
up a periodic timer interrupt that issues the signal to the application. Within
the signal handler, both then retrieve the return address from the stack, which
is the program counter of the application at which execution resumes. While
also using a periodic timer signal, PPerf [27] uses the Linux ptrace API to
control the process, allowing it to profile multi-threaded applications and
record the program counters from the threads control blocks. OProfile [28]
and Linux perf [24] are performance profilers embedded in the Linux kernel
and can profit from a low overhead by avoiding unnecessary context switches.
When the regular timer interrupt occurs, they can record the program coun-
ters directly from the process control blocks inside the kernel. Unlike the
userspace software performance profilers, kernel-based performance profilers
are also able to profile kernel code and multi-core systems running multi-
threaded applications. While Linux perf is also used in the later described
hardware-assisted performance profilers (Section 2.4), it uses software-based
performance profiling by default.

Software performance profilers exhibit a bias called skid [29], that makes
them very inaccurate when it comes to performance profiling. The time-
proportional principle (D1) states that the probability of sampling an instruc-
tion must be proportional to the instruction’s contribution to overall runtime.
Figure 2.3 illustrates why this is not the case for a software performance
profiler. All software performance profilers rely on interrupts to record a
sample. An interrupt diverts the frontend of a core to the address of the
interrupt handler, while the instructions queued in the backend, which can be
hundreds, still finish execution. The program counter that is then recorded
is the address of the instruction that execution is resuming after the sample
is recorded. The problem that software performance profilers cannot over-
come is that the instruction they sample is possibly hundreds of instructions
away from when the interrupt was issued, and the instruction they sample is
not even close to executing. This means software performance profilers are
unable to distinguish any of the commit states as shown in Table 2.1 and are,
therefore, not time-proportional.

18

2.4 Hardware-Assisted Performance Profilers

Table 2.1: Overview of the commit states covered by different profilers. Unlike TIP
and TEA, other profilers systematically misattribute time by being unable to detect
all commit states.

Commit State Software
Frontend

Instruction
Tagging

Next
Committed
Instruction

Last
Committed
Instruction

TIP &
TEA

Computing (C1)
Stalled (C2)
Flushed (C3)
Drained (C4)

2.4 Hardware-Assisted Performance Profilers

Performance profiling can benefit from hardware support inside the processor
core to record performance data during the execution of instructions without
interference. Many profilers have the ability to capture additional data related
to an instruction and store it in designated registers. This information can
then be accessed through the profiling software by interrupting the execution,
or it can be saved to a memory buffer [21].

Hardware-assisted performance profiling can achieve highly accurate results
by respecting the time proportionality principle. Unfortunately, current
hardware-assisted profilers produce inaccurate performance profiles due to
systematic biases that cause them to sample an instruction other than the
one that the processor is exposing the latency of.

• Frontend Instruction Tagging Profilers — Section 2.4.1
Profilers such as AMD IBS, Arm SPE, and IBM RIS periodically mark
instructions in the frontend and sample them when they commit. By
doing so, they disregard the computing, stalled, and flushed commit
states, and misattribute time to the wrong instructions.

• Next-Committing Instruction Profilers — Section 2.4.2
Profilers such as Intel PEBS periodically retrieve the next committing
instruction when sampling, ignoring the computing and flushed commit
states, and misattributing time from instructions, such as mispredicted
branches.

• Last-Committed Instruction Profilers — Section 2.4.3
Profilers such as Xilinx TCF and Lynsyn periodically sample the last
committed instruction, ignoring the computing, stalled, and drained

19

Chapter 2 Background

commit states, which causes them to misattribute time from instruc-
tions, such as long latency loads.

2.4.1 Frontend Instruction Tagging Profilers

Frontend instruction tagging profilers periodically tag an instruction in the
frontend and follow it through its execution in the backend until it commits.
Once it commits, the recorded information is stored in designated registers,
ready to be retrieved from the profiling software.

IBM RIS [13] is tagging instructions after they are fetched, Arm SPE [12]
is tagging instructions at dispatch, and AMD IBS [11] can tag instructions
either at fetch or dispatch. They can record additional information about
the instruction, such as which latency is exhibited during execution, what
performance events it is subjected to, or even things like the data address for
load instructions. These profilers have all in common: they provide one set of
designated registers that hold the sampling data for a tagged instruction, and
with that, they are the only contemporary profilers that provide instruction
sampling combined with accurate event attribution.

While the event attribution of RIS, SPE, and IBS is accurate in the sense that
the sampled instruction has, in fact, experienced these events, the selected
instructions are not representative of their contribution to overall runtime.
Similar to software-based performance profilers, frontend instruction tagging
profilers decide which instruction to sample in the frontend and thus before
it has executed. Therefore, instructions accumulate samples and with that
time irrespective of their actual execution latency. Unlike time-proportional
profiling, frontend instruction tagging profilers are only able to identify the
draining commit state (C4) out of the four commit states (see Table 2.1).

2.4.2 Next-Committing Instruction Profilers

Next-committing instruction profilers periodically sample the instruction that
is next to finish execution and commit. This instruction is saved to designated
sampling registers that are then retrieved by the profiling software. One of the
limitations of these profilers is that they can only gather limited additional
information, such as performance events, about the sampled instruction.
This is because, in most cases, by the time the decision is made on which
instruction to sample, it is already in execution or has fully executed.

20

2.4 Hardware-Assisted Performance Profilers

Intel PEBS [10] is such a next-committing instruction profiler that is also
able to retrieve specific events with the sampled instructions. When profiling
events using Intel PEBS it is limited to only one event at a time, and its
sampling period must be configured to a certain number of occurrences of this
event. By not using time for the sampling period, the resulting performance
profile will not represent a time distribution over the instructions but rather
an event distribution. For example, Intel PEBS can precisely capture cache
missing instructions by setting it up to sample an instruction every nth cache
miss, and the resulting profile will show which instructions are missing more
or less in the cache. However, this profile will not have any direct correlation
to execution time or performance, as cache misses can be hidden through
overlapping execution in the out-of-order pipeline.

As Figure 2.3 illustrates, next-committing instruction profilers retrieve the
instructions from the commit stage and, therefore, should be much better at
identifying the correct commit states. However, they also experience a bias
imposed by their fixed sampling policy of always choosing the next committing
instruction and are not able to detect two of the four commit states (see
Table 2.1). The first is the computing commit state (C1), in which the
processor can commit more than one instruction in a cycle. This state requires
that all committing instructions are retrieved to be time-proportional. A next
committing instruction profiler only retrieves one instruction and is, thus,
not able to cover the computing commit state. The second missed commit
state is the flushed commit state, in which no instructions are available in
the pipeline to be sampled. This profiler will then choose the instruction
that is next to commit and, with that, ignores the flushed commit state. For
example, after a mispredicted branch retires, the pipeline will be flushed, and
when a next-committing instruction profiler takes a sample during that time,
it will sample the next instruction to come instead of the mispredicted branch
that was responsible. Ignoring these two commit states violates the time-
proportional principle (D1) since the probability of sampling an instruction is
no longer proportional to the instruction’s contribution to overall runtime.

2.4.3 Last-Committed Instruction Profilers

Last-committed instruction profilers periodically sample the instruction that
was last committed. Unlike the other hardware-assisted performance profilers,
these make use of external hardware to collect and analyze the data out-of-
band. Since these profilers have only access to the program counter of the

21

Chapter 2 Background

last committed instruction, they are not able to record any other information,
such as performance events.

Xilinx Target Communication Framework (TCF) [30], ULINKplus [31], and
Lynsyn [32] are last-committed instruction profilers that make use of the
exact same technique to access a special program counter debug register on
Arm platforms via JTAG. This program counter debug register is updated
every time an instruction is committed; thus, it always holds the address to
the last committed instruction. In contrast to other profiling techniques that
rely on interrupts for data retrieval, these registers are read over an external
debug interface, which is non-intrusive and does not interfere with the target
platform’s performance.

While non-intrusive statistical sampling can reduce the error of performance
profiling compared to non-profiled executions, last-committed instruction pro-
filers have a significant systematic bias by overly sampling instructions that
do not contribute much to runtime. The reason is that the last-committed in-
struction register is not updated whenever an instruction stalls (e.g., a cache
missing load). The probability of accounting time to the last-committed
instruction increases, even though it is not responsible for the stall. That
violates the time-proportional principle (D1) by overly representing instruc-
tions that execute before long latency instructions. By sampling the last
committed instruction, these profilers can correctly identify only the flushed
commit state (C3) out of the four commit states (see Table 2.1).

2.5 Other Approaches to Performance Analysis

Performance event profiling, as provided by tools like Linux perf [24], Intel
VTune [22] or AMD µProf [23], is a common technique used in performance
analysis, that samples selected performance events over the execution of an
application. Although performance events can indicate a bottleneck in an
application, they fall short in several fundamental ways. Firstly, a devel-
oper must choose the events that are likely to be problematic. Secondly,
performance events do not accurately reflect performance loss, as modern
out-of-order architectures are designed to hide latencies. BayesPerf [33] tries
to minimize event sampling error when sampling bigger event sets that re-
quire multiplexing, but unlike the approaches presented in this thesis, cannot
infer actual performance data from event counts.

22

2.5 Other Approaches to Performance Analysis

Approaches exist that try to combine performance profiling with event anal-
ysis. Intel’s top-down model [34] first profiles an application to find out
where most of the time is spent and then iteratively drills down to which
events might be the cause for that. Apart from the time it takes to profile
an application many times iteratively, the top-down model suffers from the
systematic bias that is described for next-committing instruction profilers in
Section 2.4 and is also not able to accurately attribute execution time to the
performance events it identifies. DCPI [35] does time and event profiling on
the older Alpha architecture that allows, unlike other software-based profil-
ing approaches, to actually interrupt the currently executing instruction and,
thus, can more accurately measure the runtime of instructions. While it is
also able to retrieve event counters with every sample, it cannot attribute
time to the events that matter for performance. On modern, more com-
plex architectures, DCPI would perform similarly to regular software-based
profilers and thus suffer from high errors.

Interval analysis [36] can be used to create Cycles-per-Instruction (CPI) stacks
from the dispatch stage, allowing to reason about performance bottlenecks
an application experiences on an out-of-order processor. Unlike the Per-
Instruction Cycle Stacks (PICS) that TEA produces with negligible overhead,
interval analysis incurs higher overheads as the CPI stack granularity becomes
finer. In practice, it is unattainable to use interval analysis to sample every
single cycle as required for PICS. Therefore, interval analysis is unable to
provide instruction-level performance analysis that can pinpoint performance
problems within an application.

Xu et al. [29] argue for regular software performance profiling and propose a
mathematical model to correct the error. In this thesis, we have shown that
software performance profilers are highly inaccurate by blaming instructions
for execution time that have not been executed. To achieve low profiling
errors, hardware support for performance profiling is critical, and hence,
developers should make use of this feature when it is available.

23

Chapter 3

Conclusion and Future Work

This thesis presented time-proportional performance analysis for out-of-order
processors that allows for highly accurate performance and event profiling of
applications. This chapter will summarize the contributions and provide an
outlook on future work that is foreseen in the area of performance profiling
with a special focus on time-proportionality.

3.1 Conclusion

Time-proportional performance analysis makes use of the time-proportional
principle, which attributes runtime to instructions in proportion to their im-
pact on overall runtime. In addition to that, time-proportional performance
event analysis records the events an instruction is subjected to during exe-
cution and exposes them to the profiler. With these instruments in place,
time-proportional performance analysis identifies the instructions that are
performance-critical in an application and explains the reasons why they
are performance-critical. This creates actionable performance profiles that
enable developers to optimize and resolve software and hardware bottlenecks.
Time-proportional performance analysis made detecting and resolving per-
formance problems possible, enabling us to speed up the SPEC CPU2017
benchmarks Imagick, lbm and nab by 1.93, 1.28 and 2.45 times respectively.
Other contemporary performance profilers are not time-proportional and
missed these optimization opportunities.

TraceDoctor is the crucial enabler of all contributions in this thesis as it is the
first tracing interface that allows for end-to-end tracing of industry-standard
benchmarks and with that made it possible to create a golden reference
for performance analysis. Its flexible and highly parallel design eased the
analysis and comparison of performance profilers on an unprecedented scale.

25

Chapter 3 Conclusion and Future Work

We demonstrated TraceDoctor’s versatility outside of evaluating performance
profilers with a first-time analysis of the overhead and accuracy of sampled
simulations on large-scale workloads. We confirmed that sampled simulation
can be accurate and reduce the simulation overhead significantly when using
relatively many and relatively small simulation intervals captured over the
execution of the whole benchmark.

3.2 Future Work

The domain of performance profiling and analysis holds numerous research
topics for the future. Software and hardware continuously grow more complex,
and performance analysis must keep up with this trend. Profiling tools must
continue to support the engineer and developer in optimizing software and
hardware.

3.2.1 Multi-Threaded Workloads

The thesis did not give much attention to multi-threaded workloads and
multi-core processors, which requires further exploration. Performance profil-
ers and profiling circuitry are multi-core agnostics, meaning they treat and
profile code executed on each core individually and are, therefore, already
capable of profiling multi-threaded applications. However, the performance
characteristics of multi-threaded applications, mainly caused by resource con-
tentions and synchronization behavior, are very different from serial code.
Time-proportional performance analysis exposes these performance bottle-
necks simply through the additional time incurred to instructions but cannot
pinpoint the exact causes of thread contention, thus, is unable to expose the
thread that prevents the progress of others. Recording additional events and
information from within the operating system scheduler might improve the
interpretability of these cases. Presumably, this requires hardware-software
co-design of the profiling circuitry and software to analyze the multi-threaded
workloads.

Solving these issues would help developers optimize the throughput and
efficiency of multi-threaded applications with time-proportional analysis that
can expose the performance bottlenecks for each thread down to instruction
granularity.

26

3.2 Future Work

3.2.2 GPU Performance Profiling

GPUs have evolved from graphic processors to general-purpose computing
accelerators. Although unsuitable for all workloads, they can achieve much
higher performance and throughput than general-purpose processors. Their
highly parallel architecture operates after the Single Instruction Multiple
Data (SIMD) principle and executes many (of the same) instructions on big
datasets inside the Streaming Multiprocessors (SM).

The GPU execution model is very different from multi-core processors. GPU
threads are scheduled in warps or wavefronts, of which numerous execute
on each streaming multiprocessor in parallel. They are orchestrated by
a hardware thread scheduler that tries to minimize stall time caused by
resource contentions and dependencies. Similar to CPUs, GPUs have memory
hierarchies that use caches to speed up access to the global and local memory,
and data locality is, therefore, equally important to lower the stall time of
threads.

Time-proportional profiling can play an important role in GPU performance
analysis to transparently explain the exact reasons for performance bottle-
necks in this complex parallel architecture and pinpoint the threads and
instructions of the application that stalled the most.

27

References

[1] R. Schaller, “Moore’s Law: Past, Present and Future,” IEEE Spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[2] G. H. Loh and R. Swaminathan, “The Next Era for Chiplet Innovation,”
in 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2023, pp. 1–6.

[3] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and
A. LeBlanc, “Design of Ion-Implanted MOSFET’s with Very Small
Physical Dimensions,” IEEE Journal of Solid-State Circuits, vol. 9,
no. 5, pp. 256–268, 1974.

[4] F. J. Pollack, “New Microarchitecture Challenges in the Coming Gen-
erations of CMOS Process Technologies (Keynote Address)(Abstract
Only),” in Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 32, Haifa, Israel: IEEE
Computer Society, 1999, p. 2.

[5] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger, “Dark Silicon and the End of Multicore Scaling,” SIGARCH
Comput. Archit. News, vol. 39, no. 3, pp. 365–376, Jun. 2011. Available:
https://doi.org/10.1145/2024723.2000108.

[6] SPEC, SPEC CPU 2017, https://www.spec.org/cpu2017/, 2019.
[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark

Suite: Characterization and Architectural Implications,” in Proceedings
of the International Conference on Parallel Architectures and Compi-
lation Techniques, ser. PACT, Association for Computing Machinery,
2008, pp. 72–81.

[8] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and More Flexible Program Analysis,” in Journal of Instruction Level
Parallelism (JILP), vol. 7, 2005, pp. 1–28.

[9] Linux, Perf Wiki, 2023. Available: https://perf.wiki.kernel.org/
index.php/Main%5C_Page.

29

https://doi.org/10.1145/2024723.2000108
https://www.spec.org/cpu2017/
https://perf.wiki.kernel.org/index.php/Main%5C_Page
https://perf.wiki.kernel.org/index.php/Main%5C_Page

References

[10] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, https:
//software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html, 2021.

[11] P. J. Drongowski, “Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors,” AMD, Tech. Rep.,
2007.

[12] Arm, ARM Architecture Reference Manual Supplement Statistical Pro-
filing Extension, for ARMv8-A, https://static.docs.arm.com/
ddi0586 / a / DDI0586A _ Statistical _ Profiling _ Extension . pdf,
2017.

[13] IBM, POWER9 Performance Monitor Unit User’s Guide, https://
ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j, 2018.

[14] C.-K. Luk, R. Cohn, R. Muth, et al., “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005, pp. 190–200. Available: https://doi.org/
10.1145/1065010.1065034.

[15] D. L. Bruening and S. Amarasinghe, “Efficient, Transparent, and Com-
prehensive Runtime Code Manipulation,” AAI0807735, Ph.D. disserta-
tion, USA, 2004.

[16] M. Desnoyers, Linux Tracepoints, https://www.kernel.org/doc/
Documentation/trace/tracepoints.txt, 2023.

[17] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: a Call Graph
Execution Profiler,” in Proceedings of the ACM SIGPLAN Symposium
on Compiler Construction, ser. SIGPLAN, Association for Computing
Machinery, 1982, pp. 120–126.

[18] F. S. Foundation, GCC online documentation, https://gcc.gnu.org/
onlinedocs/, 2023.

[19] C. Lattner and V. Adve, “LLVM: a Compilation Framework for Life-
long Program Analysis & Transformation,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO, IEEE Computer Society,
2004, p. 75.

[20] SEGGER, SEGGER J-Trace Streaming Trace Probes, 2023. Available:
https://www.segger.com/products/debug-probes/j-trace/.

30

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://www.segger.com/products/debug-probes/j-trace/

[21] Intel, Intel® 64 and IA-32 Architectures Software Developer Manuals,
2023. Available: https://intel.com/content/www/us/en/develope
r/articles/technical/intel-sdm.

[22] Intel, VTune Profiler User Guide, 2021. Available: https://www.intel.
com/content/dam/develop/external/us/en/documents/vtune-
profiler-user-guide.pdf.

[23] AMD, µProf, https://developer.amd.com/amd-uprof/, 2021.
[24] Linux, perf, https://perf.wiki.kernel.org/index.php/Main_Page,

2020.
[25] B. Gottschall, L. Eeckhout, and M. Jahre, “TIP: Time-Proportional

Instruction Profiling,” in Proceedings of the International Symposium on
Microarchitecture, ser. MICRO, Association for Computing Machinery,
2021, pp. 15–27.

[26] Google, gperftools, https://github.com/gperftools/gperftools,
2020.

[27] NTNU, PPerf, https://github.com/EECS-NTNU/pperf, 2020.
[28] J. Levon, OProfile, https://oprofile.sourceforge.io/news/, 2021.
[29] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can We Trust

Profiling Results? Understanding and Fixing the Inaccuracy in Modern
Profilers,” in Proceedings of the International Conference on Supercom-
puting, ser. ICS, Association for Computing Machinery, 2019, pp. 284–
295.

[30] AMD, Xilinx TCF, https://docs.xilinx.com/r/en-US/ug1400-
vitis-embedded/TCF-Profiling, 2023.

[31] Arm, ULINKplus, http://www2.keil.com/mdk5/ulink/ulinkplus/,
2020.

[32] A. Djupdal, B. Gottschall, F. Ghasemi, and M. Jahre, “Lynsyn and
LynsynLite: The STHEM Power Measurement Units,” in Towards Ubiq-
uitous Low-Power Image Processing Platforms, M. Jahre, D. Göhringer,
and P. Millet, Eds., Springer International Publishing, 2021, pp. 93–
114.

[33] S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “BayesPerf:
Minimizing Performance Monitoring Errors Using Bayesian Statistics,”
in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,
Association for Computing Machinery, 2021, pp. 832–844.

31

https://intel.com/content/www/us/en/developer/articles/technical/intel-sdm
https://intel.com/content/www/us/en/developer/articles/technical/intel-sdm
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://developer.amd.com/amd-uprof/
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/gperftools/gperftools
https://github.com/EECS-NTNU/pperf
https://oprofile.sourceforge.io/news/
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/TCF-Profiling
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/TCF-Profiling
http://www2.keil.com/mdk5/ulink/ulinkplus/

References

[34] A. Yasin, “A Top-Down Method for Performance Analysis and Counters
Architecture,” in Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), IEEE Computer
Society, 2014, pp. 35–44.

[35] J. M. Anderson, L. M. Berc, J. Dean, et al., “Continuous Profiling:
Where Have All the Cycles Gone?” ACM Transactions on Computer
Systems, vol. 15, no. 4, pp. 357–390, 1997.

[36] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Per-
formance Counter Architecture for Computing Accurate CPI Compo-
nents,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS, Association for Computing Machinery, 2006, pp. 175–184.

32

Acronyms

TIP Time-Proportional Instruction Profiling

TEA Time-Proportional Event Analysis

PICS Per-Instruction Cycle Stacks

AMD RIS AMD Random Instruction Sampling

IBM IBS IBM Instruction Based Sampling

Arm SPE Arm Statistical Profiling Extension

Intel PEBS Intel Processor Event Based Sampling

Xilinx TCF Xilinx Target Communication Framework

Intel LBR Intel Last Branch Record

Intel PT Intel Processor Trace

33

Part II

Publications

35

Paper A

TIP: Time-Proportional Instruction
Profiling

Authors:
Björn Gottschall, Lieven Eeckhout, Magnus Jahre

Published at conference:
54th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO)

Nominations/Awards:
Best Paper Runner-Up Award, HiPEAC Paper Award

Copyright:
© 2021 Association for Computing Machinery

Go
tt

sc
ha

ll
et

al
.(

20
21

)
Pa

pe
r

A

37

Pa
pe

r
A

Go
tt

sc
ha

ll
et

al
.(

20
21

)

TIP: Time-Proportional Instruction
Profiling

Björn Gottschall1, Lieven Eeckhout2, Magnus Jahre1

1Norwegian University of Science and Technology, Norway
2Ghent University, Belgium

Abstract

A fundamental part of developing software is to understand what
the application spends time on. This is typically determined using a
performance profiler which essentially captures how execution time is
distributed across the instructions of a program. At the same time,
the highly parallel execution model of modern high-performance
processors means that it is difficult to reliably attribute time to
instructions — resulting in performance analysis being unnecessarily
challenging.

In this work, we first propose the Oracle profiler which is a golden
reference for performance profilers. Oracle is golden because (i) it
accounts every clock cycle and every dynamic instruction, and (ii)
it is time-proportional, i.e., it attributes a clock cycle to the instruc-
tion(s) that the processor exposes the latency of. We use Oracle
to, for the first time, quantify the error of software-level profiling,
the dispatch-tagging heuristic used in AMD IBS and Arm SPE, the
Last-Committing Instruction (LCI) heuristic used in external mon-
itors, and the Next-Committing Instruction (NCI) heuristic used
in Intel PEBS, resulting in average instruction-level profile errors
of 61.8%, 53.1%, 55.4%, and 9.3%, respectively. The reason for
these errors is that all existing profilers have cases in which they
systematically attribute execution time to instructions that are not
the root cause of performance loss. To overcome this issue, we pro-
pose Time-Proportional Instruction Profiling (TIP) which combines
Oracle’s time attribution policies with statistical sampling to enable
practical implementation. We implement TIP within the Berkeley

39

Paper A TIP: Time-Proportional Instruction Profiling

Out-of-Order Machine (BOOM) and find that TIP is highly accu-
rate. More specifically, TIP’s instruction-level profile error is only
1.6% on average (maximally 5.0%) versus 9.3% on average (max-
imally 21.0%) for state-of-the-art NCI. TIP’s improved accuracy
matters in practice, as we exemplify by using TIP to identify a per-
formance problem in the SPEC CPU2017 benchmark Imagick that,
once addressed, improves performance by 1.93×.

1 Introduction

The imminent end of Moore’s law implies that software inefficiencies can
no longer be hidden through technology scaling. Analyzing performance-
critical workloads in detail is extremely challenging though given the high
(and continuously increasing) complexity of both software and hardware in
modern-day computer systems. Software developers thus critically need
practical and accurate tools to automatically attribute execution time to
source code constructs such as instructions, basic blocks, and functions [1].

A performance profile (statistically) attributes execution time to application-
level symbols. Depending on the use case, developers can select symbols
at different granularities, including functions, basic blocks, and individual
instructions. Gathering profiles without hardware support is inherently in-
accurate (see Figure A.1). Software-level profilers (e.g., Linux perf [2]1)
interrupt the application and retrieve the address of the instruction that
execution will resume from after the interrupt has been handled. Hence,
the current in-flight instructions will drain before the interrupt handler is
executed which means that the sampled instruction can be tens or even
hundreds of instructions away from the instruction(s) that the processor was
committing at the time the sample was taken. This phenomenon is known
as skid [3] and can be addressed by adding hardware support for instruction
sampling (e.g., Intel PEBS [4], AMD IBS [5], or Arm SPE [6]).

Hardware-supported profiling enables sampling in-flight instructions without
interrupting the application and hence eliminates skid by (practically) re-
moving the latency from sampling decision to sample collection. While all
hardware profilers rely on sampling, i.e., collecting an instruction address
at regular time intervals, their instruction selection policies differ. Intel’s

1Software-level profiling is the default for perf, but it can be configured to use PEBS or
IBS for instruction sampling when available.

40

1 Introduction

Processor Event-Based Sampling (PEBS) [4] returns the address of the next
instruction that commits after the sample is taken, i.e., a Next Committing
Instruction (NCI) heuristic. Profiling approaches [7], [8] that use debug inter-
faces, such as Arm CoreSight [9], systematically sample the Last Committed
Instruction (LCI). Finally, AMD’s Instruction-Based Sampling (IBS) [5] and
Arm’s Statistical Profiling Extension (SPE) [6] tag an instruction at Dispatch
and then retrieve the sample when the instruction commits (which unlike the
commit-focused approaches enable gathering data about how this instruction
flows through the processor back-end [10]). Unfortunately, it is entirely un-
clear if these heuristics result in accurate performance profiles because we
lack a golden reference — an unsolved problem that has plagued researchers
and practitioners [3], [11], [12].

Oracle Profiler. We hence propose the Oracle profiler as a golden reference
for performance profiling. The fundamental principle when deriving the
Oracle profiler is that a profiler must perform time-proportional attribution,
i.e., that every clock cycle is attributed to the instruction(s) that the processor
exposes the latency of. The Oracle profiler hence focuses on the processor’s
commit stage because this is where the latency cost of each instruction is
resolved and becomes visible to software. More specifically, the best-case
instruction latency in a processor that can commit w instructions per cycle
is 1/w cycles — meaning that the processor has been able to hide all of the
instruction latency except for 1/w cycles. If the processor is unable to fully
hide an instruction’s execution latency, the instruction will stall at the head
of the reorder buffer (ROB) and thereby block forward progress; i.e., the time
commit blocks is the instruction’s contribution to the application’s execution
time.

The Oracle profiler enables us to establish the accuracy of state-of-the-art
hardware performance profiling approaches. (Section 4 describes our experi-
mental setup and error metric.) Figure A.1a shows that Software profiling,
the Dispatch-tagging strategy used by AMD’s IBS [5], and the LCI-strategy
of external profilers [7]–[9] all yield inaccurate instruction-level profiles with
average errors of 61.8%, 53.1%, and 55.4%, respectively. The NCI-strategy
used in Intel PEBS [4] is more accurate, but still leaves room for improve-
ment (9.3% average error). These errors occur because existing profilers are
not time-proportional. More specifically, they (i) do not account for ILP —
i.e., incorrectly attributing the latency of co-committed instructions to only
one of the instructions — and (ii) all suffer from systematic misattribution

— i.e., attributing the latency of processor stalls to a different instruction

41

Paper A TIP: Time-Proportional Instruction Profiling

Softw
are

Dispatch LCI
NCI

0 %

10 %

20 %

30 %

40 %

50 %

60 %

TIP

Er
ro

r

(a) Average error.
Softw

are

Dispatch LCI
NCI

0 %

10 %

20 %

30 %

40 %

50 %

60 %

TIP

Er
ro

r
(b) Imagick.

Figure A.1: Instruction-level profile error of state-of-the-art profilers compared to
our Time-Proportional Instruction Profiler (TIP). Existing profilers are inaccurate
due to lack of ILP support and systematic latency misattribution.

than the one that caused the stall. For example, NCI systematically blames
the instruction after a pipeline flush for stalls due to misspeculation which
results in a 21.0% error on the flush-intensive Imagick benchmark (see Fig-
ure A.1b). While Oracle is time-proportional, it cannot be implemented
in real systems because accounting every instruction and every clock cycle
generates an impractical amount of data (179 GB/s in our setup).

Time-Proportional Instruction Profiler (TIP). TIP bridges the gap
between the state-of-the-art profilers and Oracle by combining the time at-
tribution policies of Oracle with statistical sampling, thereby reducing the
amount of profiling data by several orders of magnitude compared to Ora-
cle (i.e., 192 KB/s versus 179 GB/s at the commonly used 4 KHz sampling
frequency [2]) at the cost of introducing statistical error. Interestingly, Fig-
ure A.1 shows that statistical error is negligible in practice. More specifically,
the average instruction-level profile error of TIP is merely 1.6% — hence TIP
reduces average error by 5.8×, 34.6×, 33.2×, and 38.6× compared to NCI,
LCI, Dispatch, and Software profiling, respectively. We implemented TIP
in the Berkeley Out-of-Order Machine (BOOM) [13] within the FireSim [14]
simulation infrastructure.2

While low profile error is attractive, the real benefit of accurate performance
profiling comes from helping developers write more efficient applications. To

2Our tools are available at https://github.com/EECS-NTNU.

42

https://github.com/EECS-NTNU

1 Introduction

illustrate that TIP’s accuracy matters in practice, we use TIP and NCI to
analyze the SPEC CPU2017 benchmark Imagick. We find that while both TIP
and NCI are accurate at the function-level (0.3% and 0.6% average error, res-
pectively), the function-level profile does not clearly identify the performance
problem; this is a common challenge with function-level profiles as developers
use functions to organize functionality rather than performance. At the
instruction-level, TIP correctly attributes time to Control Status Register
(CSR) instructions that cause pipeline flushes whereas NCI misattributes
execution time to the next-committing instruction (see Section 6 for details).
Interestingly, Imagick does not need to execute the CSR instructions, and
replacing them with nop instructions yields a 1.93× speed-up compared to
the original, mostly due to the second-order effect that removing flushes
improves the processor’s ability to hide latencies.

Key Contributions:

• We propose a golden reference — the Oracle profiler — which enables
quantifying performance profiler accuracy. To ensure that Oracle is
robust, we implement it within a 4-wide BOOM core [13], and use the
FPGA-accelerated FireSim [14] to simulate SPEC CPU2017 [15] and
PARSEC [16] benchmarks to completion in a full-system setup.

• We explain how time-proportional performance profiles can be con-
structed, and show that existing profilers fall short because they are not
time-proportional, i.e., they do not account for ILP and systematically
misattribute latencies. More specifically, software-level profiling [2], the
dispatch-tagging heuristic used in AMD IBS [5] and Arm SPE [6], the
LCI-heuristic used in external monitors [7]–[9], and the NCI-heuristic
used in Intel PEBS [4], yield average errors of 61.8%, 53.1%, 55.4%,
and 9.3%, respectively.

• We propose the Time-Proportional Instruction Profiler (TIP) which
combines Oracle’s time attribution policies with statistical sampling to
retain high accuracy (1.6% average error) while enabling real-system
implementation. TIP is significantly more accurate than existing profil-
ers, i.e., it reduces instruction-level profile error by 5.8×, 34.6×, 33.2×,
and 38.6× compared to NCI, LCI, Dispatch, and Software profiling,
respectively.

• We use TIP and NCI to analyze the SPEC CPU2017 benchmark Imagick.
TIP pinpoints a performance problem that, once addressed, improves
performance by 1.93× whereas NCI’s profile is inconclusive.

43

Paper A TIP: Time-Proportional Instruction Profiling

Data Cache/TLB

Decode
Register Rename

Dispatch
Memory

Inst. Cache/TLB

Branch Predictor

Re-Order Buffer (ROB)

Performance Monitoring Unit (PMU)

Instruction Fetch

Program Counter

Issue Buffer

Issue Buffer
Issue Buffer

Integer
Floating Point Commit

Software
sampling Dispatch sampling

LCI

NCI

TIP

(a) Out-of-order architecture.

Dispatch

Re-Order Buffer (ROB)

Issue Buffers

Commit

Head

Load

Load

I6
I7

I10
(Stalled)

I1 I2

Executed

Execution Units
1

2

I6 I8I7

I8

I3 I4 I9

I9

I5

(b) Dispatch sampling example.
Cycles

0 3 61 2 4 5

Load
I1
I2

I3
I4

I5
I6

I7
I8

I9
I10

7 8

3 4

(c) Commit timeline.

Figure A.2: LCI, NCI and TIP sample instructions at commit whereas Dispatch
(Software) samples at dispatch (fetch). Dispatch and Software are biased because (i)
different instructions spend more time in some pipeline stages than others, and (ii)
the time an instruction spends at the head of the ROB directly impacts execution
time.

2 Time-Proportional Profiling

Practical performance profilers rely on statistical sampling to create a pro-
file, i.e., they randomly retrieve the address(es) of (a) currently executing
instruction(s). Since sampling is random in time, the probability of sam-
pling an instruction — and time hence being attributed to it — should be
proportional to the instruction’s impact on overall execution time, and we
refer to this property as time-proportional attribution. Consider for example
a processor that executes a single instruction at a time: an instruction that
takes two clock cycles to execute should be attributed twice as much time as
a single-cycle instruction.

Understanding why sampling at the commit stage enables time-proportional
attribution requires going into some detail on how an out-of-order processor
operates (see Figure A.2a). Out-of-order processors consist of an in-order
front-end that fetches and decodes instructions, predicts branches, performs
register renaming, and finally dispatches instructions to the reorder buffer
(ROB) and to the issue queues of the appropriate execution unit [17]. Then,
instructions are executed as soon as their inputs are available (possibly out-

44

2 Time-Proportional Profiling

of-order). Instructions are typically committed in program order to support
precise exceptions, and the ROB is used to track instruction order. Sampling
at commit hence enables time-proportional attribution because this is where,
not only an instruction’s execution becomes visible to software, but also its
latency impact on overall execution time becomes visible.

Sampling at commit is a necessary but not sufficient condition for achieving
time-proportional attribution because the profiler must also attribute time
to the instruction that the processor spends time on (e.g., the time spent
resolving a mispredicted branch must be attributed to the branch and not
some other instruction). We find that none of the existing profilers we consider
in this work do time-proportional attribution as Dispatch and Software do
not sample at commit whereas NCI and LCI misattribute time. We will first
exemplify why not sampling at commit is inaccurate in Section 2.1 before we
explain why our Oracle profiler does time-proportional attribution, and why
NCI and LCI do not, in Section 2.2.

2.1 Dispatch and Software Profiling

Dispatch sampling (as used in AMD IBS [5], Arm SPE [6], and ProfileMe [10])
selects the instruction to be profiled at the dispatch stage and then tracks
it through the processor back-end. While this provides interesting insight
regarding how an individual instruction progresses through the pipeline, it
is not time-proportional. Figure A.2b shows the state of a processor that
is currently stalling on a load instruction (see 1). Since the processor has
a number of independent instructions to process, it is able to execute these
instructions while the load is pending. However, this leads to the ROB
filling up with instructions which in turn stalls dispatch (see 2). This
results in instruction I10 getting stuck at dispatch due to the back-pressure
created by the load instruction. I10 will hence attract samples under the
dispatch sampling policy as it spends more time in the dispatch stage than
other instructions. Figure A.2c shows the situation in Figure A.2b from the
perspective of the commit stage. If we sample at commit, the load instruction
will attract samples as it spends more time at the head of the ROB than
the other instructions (see 3). Sampling at commit hence enables time-
proportional attribution, i.e., the load instruction is sampled more frequently
because the processor spends more time executing it. In fact, the processor
only exposes a half-clock-cycle latency for I10 because its execution latency
was almost completely hidden (see 4).

45

Paper A TIP: Time-Proportional Instruction Profiling

One or more
instructions in the

ROB?

Every clock cycle

Yes No

Is the ROB empty
due to a flush?

Committing one or
more instructions?

Attribute the cycle to the
instruction that emptied the ROB.

Evenly distribute the cycle
across instruction(s).

State 1: Computing

Attribute the cycle to the
instruction that stalls.

State 2: Stalled State 4: Drained

Yes No

State 3: Flushed

Yes No

Figure A.3: Oracle profiler clock cycle attribution overview.

Software profiling is also not time-proportional due to a phenomenon prior
work referred to as skid [3], [5]. As with Dispatch, long-latency instructions
lead to commit stalls that attract samples, but, unlike Dispatch, Software
attributes time to instructions that are fetched around the time the sample
is taken. The reason is that Software relies on interrupts. Upon an interrupt,
the processor stores the application’s current Program Counter (PC) and
transfers control to the interrupt handler which then attributes the sample to
the instruction address in the PC. Software hence tends to attribute latency
to instructions that are even further away from the stalled instruction in the
instruction stream than Dispatch.

2.2 Oracle Profiling

In this section, we present Oracle which is time-proportional by design, i.e.,
it attributes each clock cycle during program execution to the instruction(s)
which the processor exposed the latency of in this cycle. While NCI and LCI
both sample at commit, they employ different instruction selection policies.
More specifically, NCI (as supported by Intel PEBS [4]) samples the next-
committing instruction, whereas LCI (as supported by external monitors [7],
[8], [18]–[20]) samples the last-committed instruction, and we will now explain
why neither policy is time-proportional.

Oracle overview. Oracle leverages the fundamental insight that the commit

46

2 Time-Proportional Profiling

LCINCIOracle

1

Cycle(s)

I1 I2 I3 I4

I3 I4 I5 I6

I5 I6 I7 I8

2

3

I1

I2

I3

I4

Committing

I5

I6

0.5

0.5

0.5

0.5

0.5

0.5

1 1

1 1

1 1

0 0

0 0

0 0 N
ot

 a
cc

ou
n
ti
n
g
 f

or
 I

LP

Profile

ROB state

Inst.

(a) Computing.

LCINCIOracle

1

Cycle(s)

I1 Load I3 I4

Load I3 I4 I5

Load I3 I4 I5

2 - 41

42

I1

Load

I3

1

40.5

0.5

1 41

0 0

41 1

S
ta

ll
m

is
at

tr
ib

u
ti
onProfile

ROB state
Committing

Inst.

(b) Stalled.

LCINCIOracle

1

Cycle(s)

I1 Branch I3 I4

I5 I6

2 - 5

6

I1

Branch

I3

I4

I5

I6

0.5

4.5

0

0

1

0

1 1

0 0

5 0

0 5

0 0

0 0 Fl
u
sh

 m
is

at
tr

ib
u
ti
on

Profile

ROB state Committing Squashed

Dispatched, not executed
Inst.

(c) Flushed.

Dispatched, not executed

LCINCIOracle

1

Cycle(s)

I1 I2

I3 I4

2 - 41

42

I1

I2

I3

I4

0.5

0.5

41

0

1 1

41 0

0 41

0 0

D
ra

in
m

is
at

tr
ib

u
ti
on

Profile

ROB state Committing

Inst.

(d) Drained.

Figure A.4: Example illustrating the Oracle, NCI, and LCI profilers on a 2-wide
out-of-order processor. NCI and LCI fall short because they do not account for ILP
at the commit stage and misattribute pipeline stall, flush and/or drain latencies.

stage is in one of four possible states in each clock cycle. Hence, every clock
cycle, the Oracle first checks if the ROB contains instructions (i.e., it is not
empty). If the ROB contains (an) instruction(s), the Oracle profiler checks
if the processor is committing (an) instruction(s) in this cycle. If so, the
processor is in the Computing state (State 1 in Figure A.3), and the Oracle
attributes 1/n clock cycles to each of the n committing instructions. If the
processor is not committing instructions and there are instructions in the
ROB, it is in the Stalled state (State 2 in Figure A.3). In this case, there is an
instruction at the head of the ROB but it cannot be committed as it has not
yet fully executed. The Oracle hence attributes the cycle to the instruction
at the head of the ROB as it is blocking commit.

47

Paper A TIP: Time-Proportional Instruction Profiling

If the ROB is empty, Oracle attributes the clock cycle to the instruction that
cleared the ROB. If the ROB is empty due to misspeculation, the processor is
in the Flushed state (State 3 in Figure A.3). More specifically, the processor
is in the flushed state if it committed all non-speculative in-flight instructions
before the ROB could be refilled. In this case, the Oracle attributes the cycle
to the instruction that caused the flush (e.g., a mispredicted branch). The
ROB can also be empty because the front-end is not supplying instructions,
typically due to an instruction cache or instruction Translation Lookaside
Buffer (TLB) miss. In this case, the processor is in the Drained state (State 4
in Figure A.3), and the Oracle attributes the cycle to the first instruction that
enters the ROB after the stall as this instruction delayed the front-end.

Comparing Oracle against NCI and LCI. We now explain Oracle in
more detail for the four fundamental states, and compare against NCI and
LCI to explain in which cases they do or do not misattribute clock cycles.

State 1: Computing. In the computing state, Oracle accounts 1/n cycles to
each committed instruction where n is the number of instructions committed
in that cycle (i.e., n is a number between 1 and the processor’s commit width).
Figure A.4a illustrates this behavior by showing the four oldest ROB-entries
of a processor with 2-wide commit. In cycle 1, instructions I1 and I2 are
committing and Oracle hence accounts 0.5 cycles to both. In contrast, NCI
and LCI select a single instruction to attribute the clock cycle to. This is
undesirable as it overly attributes cycles to some instructions while missing
others — possibly to the extent that certain instructions are executed but
not represented in the profile. Oracle, on the other hand, accounts for every
clock cycle and every dynamic instruction.

Not acknowledging ILP within the commit stage renders the NCI and LCI
profiles difficult to interpret. The key reason is that many applications
execute similar instruction sequences over and over. Since NCI and LCI
select instructions to sample with a fixed policy, they will be biased towards
selecting certain instructions at the expense of others. It is hence difficult for
developers to ascertain if a latency difference between instructions in straight-
line code segments is due to a performance issue (e.g., some instructions
stalling more than others) or attribution bias.

State 2: Stalled. Figure A.4b illustrates how Oracle, NCI, and LCI handle
pipeline stalls that occur when instructions reach the head of the ROB before
they have been executed. In this example, I1 is committed in cycle 1 before
commit stalls for 40 cycles on the load instruction from cycle 2 to 41; a

48

2 Time-Proportional Profiling

40-cycle latency is consistent with a partially hidden Last-Level Cache (LLC)
hit in our setup. Oracle attributes the 40 cycles where the processor is stalled
to the oldest instruction in the ROB since this is the instruction that the
processor is stalling on, before attributing 0.5 cycles to the load and 0.5
cycles to I3 when they both commit in cycle 42. NCI agrees with Oracle
with the exception of missing I3 in cycle 42 because it does not handle ILP.
LCI, on the other hand, completely misattributes the load stall as I1 is the
last-committed instruction from cycle 1 to cycle 41, i.e., LCI attributes 41
cycles to I1 and only a single cycle to the load (when it commits in cycle
42).

State 3: Flushed. Pipeline flushes occur when the processor has speculatively
fetched and (possibly) executed instructions that should not be committed.
Figure A.4c illustrates how Oracle handles this case for a mispredicted branch.
Some cycles before the example starts, the branch instruction was executed,
and the processor discovered that the branch was mispredicted. The processor
hence squashed all speculative instructions (e.g., I3 and I4). In cycle 1, I1
and the branch are committed, and Oracle attributes 0.5 cycles to both
instructions. In parallel, the front-end fetches instructions along the correct
path which ultimately leads to instructions being dispatched in cycle 6; branch
mispredicts lead to the ROB being empty for 3.5 cycles on average in our
setup. Oracle hence attributes the 4 cycles the ROB is empty to the branch
instruction and 1 cycle to I5 (since the processor is stalling on it in cycle 6).
LCI correctly attributes the stall cycles to the mispredicted branch whereas
NCI does not. More specifically, NCI attributes the empty ROB cycles to
I5 as it will be the next instruction to commit. Moreover, it attributes zero
cycles to the branch instruction since it is committed in parallel with I1.
It will undoubtedly be challenging for a developer to understand that an
instruction that appears to not take any time is in fact responsible for the
ROB being empty.

While the above attribution policy is sufficient to handle other misspeculation
cases such as load-store ordering (i.e., a younger load was executed before
an older store to the same address), flushes due to exceptions need to be
handled differently. More specifically, an exception fires when the excepting
instruction reaches the head of the ROB which in turn results in the pipeline
being flushed and control transferred to the OS exception handler. When
the exception has been handled (e.g., the missing page has been installed
in the page table), the excepting instruction is re-executed. Hence, Oracle
attributes the cycles where the ROB is empty due to an exception to the

49

Paper A TIP: Time-Proportional Instruction Profiling

instruction that caused the exception. Once the instructions of the exception
handler are dispatched, the Oracle attributes cycles to these instructions (i.e.,
the Oracle does not differentiate between application and system code).

State 4: Drained. The ROB drains when the processor runs out of instructions
to execute, for instance due to an instruction cache miss. This situation differs
from pipeline flushes in that all instructions to be drained from the ROB are
on the correct path and hence will be executed and committed. Figure A.4d
exemplifies this situation. In cycle 1, I1 and I2 are committed. This leaves
the ROB empty until cycle 42. The culprit is that the processor missed in
the instruction cache when fetching I3, and that the latency of retrieving the
cache block and resuming execution was only partially hidden by executing
previously fetched instructions. Oracle hence attributes 0.5 cycles to I1 and
I2 since they both commit in cycle 1. It also attributes 41 cycles to I3; 40
cycles is due to the drain and one cycle is attributed because I3 is stalled at
the head of the ROB in cycle 42. Similar to the stalled case, NCI is mostly
correct since I3 is the next instruction to commit when the instruction cache
miss is resolved. In contrast, LCI misattributes the empty ROB cycles to
I2.

Putting-it-all-together. We have so far discussed the four fundamental
states of the commit stage (mostly) independently, but instructions often
accumulate cycles across multiple states. For example, I5 moves from the
Flushed state to the Stalled state within the example in Figure A.4c, and the
processor will be in the Computing state when I5 eventually commits. The
same applies to I3 from Drained to Stalled (Figure A.4d). This observation
is critical to understand how Oracle handles more complex situations, and
we now describe how the four states are sufficient for serialized instructions
(e.g., fences and atomic instructions) and page misses.

Serialized instructions require that (i) all prior instructions have fully executed
before they are dispatched, and (ii) that no other instructions are dispatched
until they have committed. While the ROB drains, Oracle will account time
to the preceding instructions according to the time they spend at the head
of the ROB. When the last preceding instruction commits, the serialized
instruction is dispatched and hence immediately becomes the oldest in-flight
instruction. Oracle hence accounts time to this instruction as Stalled while
it executes and as Computing the cycle it commits. Once it has committed,
the subsequent instruction is dispatched and Oracle will account it as Stalled
while it executes.

50

3 TIP: Time-Proportional and Practical Profiling

CPU

CSRs

TIP Registers

Cycle Flags
Addr. 0 Addr. 1 Addr. i

Sample Valid

ROB
Inst. 2 Inst. 5-

Inst. 3 Inst. 6Inst. 0

Inst. 4Inst. 1 Inst. 7

PMU

TIP

CycleEvent

Sample Selection

Mispredicted

Valid

Commits

Flush

Address

Exception
Bank Pointer

OIR

OIR Update

Mispredicted

V0

Stalled

Frontend

Flush

Exception

V1 Vi

Column Pointer Oldest ID

Figure A.5: Structural overview of our Time-Proportional Instruction Profiler
(TIP). TIP is triggered by the PMU, collects a sample, and finally exposes the sample
to software.

Another example is a page miss on a load instruction. In this case, the load
accesses the data TLB and L1 data cache in parallel. This results in a TLB
miss which invokes the hardware page table walker. Eventually, the page
table walker concludes that the requested page is not in memory which causes
the exception bit to be set in the load’s ROB-entry. If the load reaches the
head of the ROB before the page table walk completes, the Oracle starts
accounting time as stalled. When the page table walk completes, the load is
marked as executed and the exception is triggered once it reaches the head of
the ROB. The cycles from the exception to dispatching the first instruction
in the OS exception handler are attributed to the load. Once the OS has
handled the exception by installing the missing page in memory, the load
is re-executed. The load will then incur more stall cycles as it waits at the
ROB head for its page mapping to be installed in the TLB and its data to
be fetched from memory.

3 TIP: Time-Proportional and Practical Profiling

We now build upon the cycle-level attribution insights of Oracle to design
our practical and accurate Time-Proportional Instruction Profiler (TIP).

51

Paper A TIP: Time-Proportional Instruction Profiling

3.1 Implementing TIP

Figure A.5 shows that TIP is located between the Performance Monitoring
Unit (PMU) and the ROB. We now describe in detail how TIP captures
samples, as well as how profiling software such as Linux perf [2] retrieves
TIP’s samples at runtime and, once the application terminates, post-processes
the samples to create a performance profile.

Sample collection. As TIP is tightly coupled to the processor’s ROB, we
first quickly explain its main operation. In the BOOM core [13], the ROB
consists of b banks, and up to one instruction per bank can be committed in
each clock cycle (i.e., b is the commit width). Instructions are allocated to
banks in the order of the bank identifiers. The instruction in bank i is hence
always older than the instruction in bank i + 1 within a column, but the b
oldest ROB-entries may be distributed across two columns (see Figure A.5).
Identifying the head of the ROB hence requires a pointer to the head bank
and another pointer to the head column. The core can commit b instructions
each cycle since the b oldest instructions will always be allocated in different
banks. Similarly, b ROB-entries can be allocated concurrently at dispatch
as long as b entries are available between the tail pointers and the current
head pointers. When there are no invalid entries between the tail and head
pointers, the ROB is full and dispatch stalls until one or more instructions
commit. While the exact ROB realization may differ between architectures,
it must fundamentally allow b-wide reads (which TIP exploits).

Figure A.5 shows that TIP consists of an Offending Instruction Register
(OIR) and two functional units (OIR Update and Sample Selection), and
Figure A.6 fleshes out the details of the Sample Selection unit. (The color-
coding maps the components of Figure A.6 to units in Figure A.5.) When the
ROB is not empty, TIP simply copies the addresses3 of the head ROB-entries
into its address registers (see 1). To enable identifying the oldest ROB-entry,
TIP stores the ROB bank pointer in the Oldest ID register (see 2). The
address valid bits are selected from the commit and valid signals (see 3) in
the Computing state and Stall state, respectively (see Figure A.3). During
post-processing, these states are identified by inspecting TIP’s Stalled flag
which is 1 when no instructions are committed (see 4). If the Stalled bit is
0, the core is in the Computing state, and the sample should be attributed

3Architectures commonly divide instructions into one or more µOps. In such implemen-
tations, TIP exploits that processors track the µOp-to-instruction mapping to handle
interrupts and exceptions.

52

3 TIP: Time-Proportional and Practical Profiling

64

64

64

64

b

64

64

64

b

b

Exception

Flush

Mispredicted

OIR
Flushes

Mispredicted

Exception

Address

OA

V0

V1

Vi

V0 V1 Vi

Frontend

Sample
valid

C0

C1

Ci Stalled

Flag Write Enable

ROB

Commits

Valid

Address

Commits

Valid

Address

Commits

Valid

Address A0

V0

C0

A1

V1

C1

Ai

Vi

Ci

Address i

Address 1

Address 0A0/OA

A1

Ai

Address-related Write EnableSignal Routing

Oldest IDBPtr.

BPtr.Bank Pointer

Valid

1

2

7

5

8

6

4

3

Figure A.6: TIP sample selection logic. TIP classifies samples based on the the
core state, ROB-flags, and OIR-flags.

to all valid address CSRs. Conversely, the sample should be attributed to
the address identified by the Oldest ID flag if the Stalled flag is 1. TIP only
needs to record that the core stalled on this particular instruction since the
stall type can be identified by inspecting the instruction type in the binary
during post-processing.

If the processor is neither committing nor stalling, the ROB is empty due
to a flush or a drain. TIP’s OIR Update unit hence continuously tracks
the last-committed and last-excepting instruction (see Figure A.5). More
specifically, TIP updates the OIR with the address and relevant ROB-flags
of the youngest committing ROB-entry every cycle; the relevant flags record
if the instruction is a mispredicted branch or triggered a pipeline flush. If
the processor is not committing instructions, TIP checks if the core is about
to trigger an exception. If it is, TIP writes the address of the excepting
instruction and an exception flag into the OIR. Returning to Figure A.6,
we see that when all head ROB-entries are invalid, TIP (i) places the OIR
address in the Address 0 CSR, (ii) sets the oldest ID to 0 (see 5), (iii) sets

V0 to 1 and remaining valid bits to 0 (see 6), and (iv) sets the Exception,
Flush, or Mispredicted TIP-flags based on the OIR-flags (see 7). If one of
these flags is set, the core is in the Flushed state.

53

Paper A TIP: Time-Proportional Instruction Profiling

If the ROB is not empty due to a flush, it must have drained (see Figure A.3).
TIP hence immediately sets the Front-end flag as (i) the ROB is empty, and (ii)
none of the Exception, Flush, or Mispredicted flags are set (see 8). TIP then
deasserts the write enable signal of the flags to prevent further updates, but
keeps the write enable signal of the address-related CSRs and flags asserted.
When the first instruction (eventually) dispatches, its ROB-entry becomes
valid and TIP copies this address into the address CSR corresponding to the
ROB-bank the entry is dispatched to (and sets the Oldest ID and valid bits
accordingly). TIP then deasserts the address-related write enable signal to
prevent further updates.

Creating an application profile. We have designed TIP to interface
cleanly with Linux perf [2]. When using hardware support for profiling,
perf configures the PMU to collect samples at a certain frequency (4 KHz
is the default), and the profiler issues an interrupt when a new sample is
ready. This interrupt invokes perf’s interrupt handler which simply copies
the profiler’s CSRs into a memory buffer; the profile is written to non-volatile
storage when the buffer is full. At the end of application execution, perf has
written the raw samples to a file which then needs to be post-processed. To
build the profile, we use a data structure in which a zero-initialized counter
is assigned to each unique instruction address in the profile. For each sample,
we then add 1/n of the value in the cycles register to each instruction’s
counter when the sample contains n instructions. We also track the total
number of cycles to enable normalizing the profile.

To help developers understand why some instructions take longer than others,
TIP combines the information provided by its status flags with analysis of
the application binary. We label cycles where the application is committing
(an) instruction(s) as execution cycles and cycles where the ROB has drained
as front-end cycles. If the processor is stalled, TIP uses the application
binary to determine the instruction type and thereby understand if the
oldest instruction is an ALU-instruction, a load, or a store. Moreover, we
differentiate between flushes due to branch mispredicts and miscellaneous
flushes based on TIP’s status flags. (We group the miscellaneous flushes as
they only account for 1.4% of application execution time on average.) While
this categorization serves our purpose for this work, TIP can easily support
more fine-grained categories if necessary.

54

3 TIP: Time-Proportional and Practical Profiling

3.2 TIP Overhead Analysis

Hardware overhead. TIP is extremely lean as it mostly relies on function-
ality that is already available either in the ROB or the PMU. The storage
overhead of TIP is the OIR register (64-bit address and a 3-bit flag) and the
CSRs (i.e., cycle, flags, and b address CSRs); we merge all TIP flags into a
single CSR. All CSRs are 64-bit since RISC-V’s CSR instructions operate on
the full architectural bit width, resulting in an overall storage overhead of
57 B for our 4-wide BOOM core (9 B for the OIR and 48 B for the six CSRs).
The logic complexity for collecting the samples is also negligible; the main
overhead is two multiplexors, one to select the oldest ROB-entry in OIR
Update and one to choose between the OIR and the address in ROB-bank 0
in Sample Selection (see Figure A.5). TIP’s logic is not on the critical path
of our BOOM core. If necessary, the logic can be pipelined.

Sampling overhead. As aforementioned, we assume that TIP interrupts
the core when a new sample is ready. Another possible approach would be
for TIP to write samples to a buffer in memory and then interrupt the core
once the buffer is full. This requires more hardware support (i.e., inserting
memory requests and managing the memory buffer), but reduces the number
of interrupts. However, the interrupts become longer (as more data needs to
be copied), so the total time spent copying samples is similar.

For each sample, perf reads the OS kernel structures to determine key
metadata including core, process, and thread identifiers which account for
40 B per sample in total. For our 4-wide BOOM core, the non-ILP-aware
profilers (e.g., NCI) capture a single instruction address and the cycle counter
(an additional 16 B) whereas TIP captures four instruction addresses, the
cycle counter, and the flags CSR (an additional 48 B). At perf’s default
4 KHz sampling frequency, TIP hence generates data at 352 KB/s whereas
the data rate of the non-ILP-aware profilers is 224 KB/s. To quantify the
performance overhead of TIP, we compare PEBS’ default sample size (i.e.,
56 B per sample) to a configuration with TIP-sized samples on an Intel Core
i7-4770. We mimic TIP by including additional general-purpose registers
from the PEBS record to reach TIP’s 88 B sample size. We find that the
increased data rate of TIP adds negligible overhead. More specifically, it
increases application runtime by 1.1% compared to a configuration with
profiling disabled; the performance overhead with PEBS’ default sample size
is 1.0%.

55

Paper A TIP: Time-Proportional Instruction Profiling

Table A.1: Simulated Configuration.
Part Configuration

Core OoO BOOM: RV64IMAFDCSUX @ 3.2 GHz
Front-end 8-wide fetch, 32-entry fetch buffer, 4-wide decode, 28 KB TAGE branch

predictor, 40-entry fetch target queue, max 20 outstanding branches
Execute 128-entry ROB, 128 int/fp physical registers, 24-entry dual-issue MEM

queue, 40-entry 4-issue INT queue, 32-entry dual-issue FP queue
LSU 32-entry load/store queue
L1 32 KB 8-way I-cache, 32 KB 8-way D-cache w/ 8 MSHRs, next-line

prefetcher from L2
L2/LLC 512 KB 8-way L2 w/ 12 MSHRs, 4 MB 8-way LLC w/ 8 MSHRs
TLB Page Table Walker, 32-entry fully-assoc L1 D-TLB, 32-entry fully-assoc L1

I-TLB, 512-entry direct-mapped L2 TLB
Memory 16 GB DDR3 FR-FCFS quad-rank, 25.6 GB/s maximum bandwidth, 14-14-

14 (CAS-RCD-RP) latencies @ 1 GHz, 8 queue depth, 32 max reads/writes
OS Buildroot, Linux 5.7.0

Multi-threading. Although we have so far described TIP in the context
of single-threaded applications, this is not a fundamental limitation. More
specifically, perf adds the core, process, and thread identifiers to each sample;
the core identifier maps to a logical core under Simultaneous Multithreading
(SMT). Apart from this, TIP will attribute time to (an) instruction(s) as
in the single-threaded case. For example, if a physical core is committing
instruction I1 on logical core C1 and instruction I2 on logical core C2 in the
same cycle, TIP attributes half of the time to I1 and half to I2. Each physical
core needs its own TIP unit.

4 Experimental Setup

Simulator. We use the FireSim cycle-accurate FPGA-accelerated full-system
simulator [14] to evaluate the different performance profiling strategies. The
simulated model uses the BOOM 4-way superscalar out-of-order core [13],
see Table A.1 for its configuration, which runs a common buildroot 5.7.0
Linux kernel. The BOOM core is synthesized to and run on the FPGAs in
the Amazon’s EC2 F1 nodes [21]. We account for the frequency difference
between the FPGA-realization of the BOOM core and the FPGA’s memory
system using FireSim’s token mechanism. We enable the hardware profilers
when the system boots and profile until the system shuts down after the
benchmark has terminated. However, we only include the samples that hit

56

4 Experimental Setup

ex
ch

an
ge

2
x2

64
de

ep
sj

en
g

na
m

d
le

el
a

sw
ap

tio
ns

0

0.2

0.4

0.6

0.8

1

im
ag

ic
k

na
b

pe
rl

be
nc

h
flu

id
an

im
at

e
bl

ac
ks

ch
ol

es
po

vr
ay

bo
dy

tr
ac

k
gc

c

ca
nn

ea
l

lb
m

m
cf

fo
to

ni
k3

d
bw

av
es

om
ne

tp
p

ro
m

s
st

re
am

cl
us

te
r

xa
la

nc
bm

k
w

rf
pa

re
st

ca
m

4
ca

ct
uB

SS
N

Execution ALU stall Load stall Store stall Front-end Mispredict Misc. flush

Compute Flush Stall

N
or

m
al

iz
ed

 R
un

tim
e

Figure A.7: Normalized cycle stacks collected at commit.

application code in our profiles as (i) the time our benchmarks spend in OS
code (e.g., syscalls) is limited (1.1% on average), and (ii) we do not want to
include boot and shutdown time in the profiles.

We modified FireSim to trace out the instruction address and the valid,
commit, exception, flush, and mispredicted flags of the head ROB-entry in
each ROB bank every cycle; the trace includes the ROB’s head and tail
pointers which we need to model Dispatch. We feed this trace to a highly
parallel framework on the CPU-side to enable on-the-fly processing with only
minimal simulation slowdown. The profilers are hence modeled on the CPUs
that operate in lock-step with the FPGA by processing the traces. This allows
us to simulate and evaluate multiple profiler configurations out-of-band in
a single simulation run; we run up to 19 profiler configurations on 8 CPUs
per FPGA simulation run. For this paper, the total time spent on Amazon
EC2 amounts to 5,459 FPGA hours and 30,778 CPU hours. We evaluate
multiple profilers with a single simulation run because (i) it enables fairly
comparing profilers as they sample in the exact same cycle, and (ii) it reduces
the evaluation time (and cost) on Amazon EC2.

Benchmarks. We run 27 SPEC CPU2017 [15] and PARSEC 3.0 [16] bench-
marks that are compatible with our setup. (We use x264 from PARSEC).
We simulate the benchmarks to completion using the reference inputs for
CPU2017 and the native inputs for PARSEC; we run single-threaded versions
of PARSEC. We compile all benchmarks using GCC 10.1 with the -O3 -g
compilation flags and static linking.

57

Paper A TIP: Time-Proportional Instruction Profiling

exc
hange

2
x2

64

deepsje
ng
namd

leela

sw
aptio

ns
0 %

5 %

10 %

15 %

20 %

im
agic

k
nab

perlb
ench

fluidanim
ate

black
sc

holes

povra
y

bodytr
ack gc

c

ca
nneal

lbm mcf

fo
to

nik3
d

bwave
s

omnetp
p
ro

ms

str
eamclu

ste
r

xa
lancb

mk
wrf

pare
st
ca

m4

ca
ctu

BSS
N

Compute
Flu

shSta
ll All

Software Dispatch LCI NCI TIP-ILP TIP

Compute Flush Stall Average

Er
ro

r

32% 27% 24%

Figure A.8: Function-level errors for the different profilers. TIP, TIP-ILP, NCI,
and LCI are accurate at the function level, while Software and Dispatch are largely
inaccurate.

The benchmarks’ execution characteristics are shown in Figure A.7 which
reports normalized cycle stacks captured at commit [22], i.e., we attribute
every cycle to a specific type, and we then represent the cycle types as a
stacked bar with the execute component shown at the bottom, followed by
the other cycle types on top; we introduced the categories in Section 3.1.
We use the cycle stacks to classify our benchmarks: (i) a benchmark is
classified as Compute-Intensive if it spends more than 50% of its execution
time committing instructions; (ii) if not, and if the benchmark spends more
than 3% of its time on pipeline flushing, the benchmark is classified as Flush-
Intensive; and (iii) the rest of the benchmarks are classified as Stall-Intensive
as they spend a major fraction of their execution time on processor stalls.

Quantifying profile error. Practical profilers incur inaccuracies compared
to the (impractical) Oracle since they rely on statistical sampling and hence
record a small percentage of instruction addresses, which are then attributed
to symbols in the application binary; the symbols are individual instructions,
basic blocks or functions, depending on profile granularity. There are two
fundamental sources of error. Unsystematic errors occur because sampling is
random and the distribution of sampled symbols does not exactly match the
distribution obtained with Oracle. Unsystematic errors can be reduced by
increasing sampling rate, as we will quantify in the evaluation. Systematic
errors, on the other hand, occur because the profiling strategy attributes
samples to the wrong symbol. We focus on systematic error in the evaluation
by quantifying to what extent the different profilers attribute samples to the
correct symbol as determined by the Oracle. Because we sample the exact

58

5 Results

exc
hange

2
x2

64

deepsje
ng
namd

leela

sw
aptio

ns
0 %

5 %

10 %

15 %

20 %

25 %

im
agic

k
nab

perlb
ench

fluidanim
ate

black
sc

holes

povra
y

bodytr
ack gc

c

ca
nneal

lbm mcf

fo
to

nik3
d

bwave
s

omnetp
p
ro

ms

str
eamclu

ste
r

xa
lancb

mk
wrf

pare
st
ca

m4

ca
ctu

BSS
N

Compute
Flu

shSta
ll All

LCI NCI TIP-ILP TIP

Compute Flush Stall Average

Er
ro

r
56%

33%

Figure A.9: Basic-block-level errors for the different profilers. (Software and
Dispatch are not shown because of their high error.) TIP, TIP-ILP, and NCI are
accurate at the basic block level, whereas LCI (and Software and Dispatch) are not.

same cycle for all the practical profilers in a single simulation run, we can
precisely quantify and compare a profiler’s systematic error.

Each sample is taken as a representative for the entire time period since
the last sample. By comparing the symbol the sample is attributed to by
the practical profiler against the symbol identified by Oracle, we determine
whether a sample is correctly or incorrectly attributed. By aggregating the
cycles correctly attributed to symbols (i.e., ccorrect) and relating this to the
total number of cycles it takes to execute the application (i.e., ctotal), we
can compute the relative error e (i.e., e = (ctotal − ccorrect)/ctotal). Error is a
lower-is-better metric varying between 100% and 0%, where 100% means that
all samples were incorrectly attributed, while 0% means that the practical
profiler attributes each sample to the same symbol as Oracle. Profile error can
be computed at any granularity, i.e., instruction, basic block, or function level;
incorrect attribution at lower granularity can be correct at higher granularity
(e.g., misattributing a sample to an instruction within the function that
contains the correct instruction). We aggregate errors across benchmarks
using the arithmetic mean.

5 Results

We compare the following profilers:

59

Paper A TIP: Time-Proportional Instruction Profiling

• Software generates an interrupt and samples the instruction after the
interrupt (e.g., Linux perf [2]).

• Dispatch tags an instruction at dispatch and samples when it commits
(e.g., AMD IBS [5] and Arm SPE [6]).

• Last Committed Instruction (LCI) selects the last-committed in-
struction (e.g., Arm CoreSight [9])

• Next Committing Instruction (NCI) selects the next-committing
instruction (e.g., Intel PEBS [4]).

• ILP-Oblivious Time-Proportional Instruction Profiling (TIP
‘minus’ ILP, or TIP-ILP) follows TIP (see Section 3), but omits
ILP accounting, i.e., when multiple instructions commit in the sampled
cycle, the sample is attributed to a single instruction.

• Time-Proportional Instruction Profiling (TIP) is the profiler
proposed in Section 3.

We compare against Oracle which attributes every cycle to the symbol at
the profiling granularity of interest, using the policy described in Section 2.2.
As mentioned before, the error differences between the hardware profiling
strategies (i.e., all profilers except Software) are due to systematic inaccuracies
only as we sample in the exact same cycle. We assume periodic sampling
at a typical sampling frequency of 4 KHz, unless mentioned otherwise. We
explore the impact of periodic versus random sampling and the impact of
sampling frequency in our sensitivity analyses.

5.1 Profile Error

Function-level profiling. Figure A.8 reports error at the function level
across all the profilers considered in this work. While TIP is the most accu-
rate profiler (average error 0.3%), TIP-ILP, NCI, and LCI are also accurate
with average errors of 0.4%, 0.6%, and 1.6%, respectively. (Note there are
some outliers though for LCI up to 10.9%.) Software and Dispatch are much
less accurate (9.1% and 5.8% average error, and up to 31.7% and 27.4%,
respectively) because tagging instructions at fetch and dispatch creates sig-
nificant bias. More specifically, samples are attracted to the instructions
that are being fetched or dispatched while the processor is experiencing long-
latency stalls. The overall conclusion is that all profilers, except Software
and Dispatch, are accurate at function-level granularity. Since Software and

60

5 Results

Dispatch are inherently inaccurate, we will exclude them for the smaller
profiling granularities to more clearly show the differences between the more
accurate profilers. However, we will report their average errors in the text
for completeness.

Basic-block-level profiling. Correctly attributing samples to functions
does not necessarily mean that a performance analyst will be able to identify
the most performance-critical basic blocks. We hence need to dive deeper
and evaluate our profilers at the basic block level. Figure A.9 shows profile
errors at the basic block level for all profiling strategies, except Software and
Dispatch which are largely inaccurate (average error of 29.9% and 22.4%,
respectively). TIP and TIP-ILP are most accurate with average errors of
0.7% and 1.2%, respectively. NCI is also reasonably accurate with an average
error of 2.3%, whereas LCI is inaccurate at this level with an average error
of 11.9% and up to 56.1%. The reason is that LCI incorrectly attributes
stalls on long-latency instructions (e.g., LLC load misses) to the instruction
that last committed before the stall. For example, load stalls and functional
unit stalls dominate lbm’s runtime (66.2% and 15.6%, respectively). The
performance-critical loop nest in lbm also contains significant control flow
which leads LCI to attribute samples to the wrong basic block, which results
in an overall error of 56.1%. The overall conclusion is that TIP, TIP-ILP,
and NCI are accurate at the basic block level, whereas Software, Dispatch,
and LCI are not.

It is also interesting to note that the error is higher at the basic block
level compared to the function level; and this is true for all profilers. The
most striking example is lbm: the LCI’s function-level error is merely 0.3%
and then increases to 56.1% at the basic block level. The reason is that
a single function accounts for 99.7% of lbm’s total runtime, which means
that an incorrect attribution at the basic block level most likely still leads
to a correct attribution at the function level. This reinforces our claim that
fine-granularity profiles are critical as knowing that 99.7% of runtime is spent
in a (non-trivial) function is too high-level to clearly identify optimization
opportunities.

Instruction-level profiling. Performance analysts need profiling informa-
tion that is even more detailed than the basic block (and function) level,
i.e., performance stranglers need to be identified at the instruction level so
that the performance analysts can understand and hopefully mitigate these
bottlenecks. Figure A.10 reports instruction-level profile error for TIP, TIP-
ILP, and NCI. Software, Dispatch, and LCI are not included here as they

61

Paper A TIP: Time-Proportional Instruction Profiling

exc
hange

2
x2

64

deepsje
ng
namd

leela

sw
aptio

ns
0 %

5 %

10 %

15 %

20 %

im
agic

k
nab

perlb
ench

fluidanim
ate

black
sc

holes

povra
y

bodytr
ack gc

c

ca
nneal

lbm mcf

fo
to

nik3
d

bwave
s

omnetp
p
ro

ms

str
eamclu

ste
r

xa
lancb

mk
wrf

pare
st
ca

m4

ca
ctu

BSS
N

Compute
Flu

shSta
ll All

NCI TIP-ILP TIP

Compute Flush Stall Average

Er
ro

r

Figure A.10: Instruction-level errors for the different profilers. (Software, Dispatch,
and LCI are omitted because of their large errors.) TIP is the only accurate profiler
at the instruction level.

are largely inaccurate (i.e., average error of 61.8%, 53.1%, and 55.4%, respec-
tively). The key conclusion is that TIP is the only accurate profiler at the
instruction level. Indeed, the average profile error for TIP equals 1.6%, while
the errors for TIP-ILP and NCI are significantly higher, namely 7.2% and
9.3%, respectively. Hence, TIP reduces average error by 5.8×, 34.6×, 33.2×,
and 38.6× compared to NCI, LCI, Dispatch, and Software, respectively. We
observe the highest error under TIP for gcc (5.0%), and find that the error
can be reduced significantly by increasing the sampling frequency, as we will
discuss later.

There are two reasons why TIP is the most accurate profiler. First, we observe
a significant decrease in profile error when comparing NCI versus TIP-ILP for
the flush-intensive benchmarks (see Figure A.10). The reason is TIP-ILP (and
TIP) correctly attributes a sample that hits a branch misprediction or pipeline
flush to the instruction that is responsible for refilling the pipeline, namely
the mispredicted branch or the flush instruction, which is the instruction that
was last committed. NCI on the other hand incorrectly attributes the sample
to the instruction that will be committed next. Second, we observe the largest
decrease in profile error between TIP-ILP and TIP for the compute-intensive
benchmarks (see Figure A.10). The compute-intensive benchmarks commit
multiple instructions per cycle, and hence attributing an equal share of the
sample to all the committing instructions is the correct approach. TIP-ILP
and NCI on the other hand attribute the sample to a single instruction which
leads to a biased performance profile.

62

5 Results

NCI TIP-ILP TIP
0 %
2 %
4 %
6 %
8 %

10 %
12 %

100 Hz 1 kHz 4 kHz 10 kHz 20 kHz
Er

ro
r

(a) Sampling frequency.
NCI+ILP NCI TIP-ILP TIP

0 %
5 %

10 %
15 %
20 %
25 %
30 %
35 %

Er
ro

r

(c) Parallelism-aware NCI+ILP

exc
hange

2
x2

64

deepsje
ng
namd

leela

sw
aptio

ns
0 %

1 %

2 %

3 %

4 %

5 %

im
agic

k
nab

perlb
ench

fluidanim
ate

black
sc

holes

povra
y

bodytr
ack gc

c

ca
nneal

lbm mcf

fo
to

nik3
d

bwave
s

omnetp
p
ro

ms

str
eamclu

ste
r

xa
lancb

mk
wrf

pare
st
ca

m4

ca
ctu

BSS
N

Compute
Flu

sh Sta
ll All

Periodic Sampling Random Sampling

Compute Flush Stall Average

Er
ro

r

(b) Periodic versus random sampling.

Figure A.11: Sensitivity analyses. (a) TIP’s accuracy continues to measurably
improve beyond 4 KHz unlike the other profilers. (b) Periodic sampling is only slightly
more inaccurate than random sampling while being simpler to implement in hardware.
(c) Making NCI commit-parallelism-aware increases profile error, in contrast to TIP.

5.2 Sensitivity Analyses

We now perform various sensitivity analyses with respect to sampling rate,
sampling method, and commit-ILP accounting. We focus on instruction-level
profiling and consider the most accurate profilers only, namely TIP, TIP-ILP,
and NCI.

Sampling rate. As mentioned before, our default sampling rate is set to
4 KHz. We now focus on unsystematic error by evaluating how profiling error
varies with sampling frequency from 100 Hz to 20 KHz, see Figure A.11a.
As expected, profiling error decreases with increasing sampling frequency;
and this is true for all profilers. Moreover, the reduction in error is more
significant for the lower frequencies as these have more unsystematic error.

63

Paper A TIP: Time-Proportional Instruction Profiling

The most interesting observation is that TIP’s accuracy continues to mea-
surably improve as the sampling frequency is increased beyond 4 KHz, while
it saturates for the other profilers. The most notable example is gcc for
which the error decreases from 5.0% at 4 KHz (see Figure A.10) to 2.6% at
20 KHz. Profiling continues to decrease with frequency under TIP because
it, unlike TIP-ILP and NCI, attributes high-ILP commit cycles to multiple
instructions.

Sampling method. The sampling method used so far assumes periodic
sampling, i.e., we take a sample every 250 µs (sampling frequency of 4 KHz).
Periodic sampling may lead to an unrepresentative profile if the sampling
frequency aligns unfavorably with the application’s time-varying execution
behavior (cf. Shannon-Nyquist sampling theorem). Random sampling may
alleviate this by selecting a random sample within each 250 µs sampling
interval. Figure A.11b quantifies profile error for periodic versus random
sampling. We find that the impact is small for most benchmarks, except for
a handful stall-intensive benchmarks such as streamcluster, lbm, and fotonik;
these benchmarks exhibit repetitive time-varying execution behavior that
is susceptible to sampling bias. On average, the error decreases from 1.6%
under periodic sampling to 1.1% under random sampling. Because random
sampling is more complicated to implement in hardware, we opt for periodic
sampling in this work.

Commit-parallelism-aware NCI. TIP is more accurate than NCI because
it correctly accounts for pipeline flushes and commit parallelism. Our results
show that the biggest contribution comes from correctly attributing commit
parallelism, i.e., compare the decrease in average instruction-level profile error
from 9.3% (NCI) to 7.2% (TIP-ILP) due to correctly attributing pipeline
flushing, versus the decrease in profile error from 7.2% (TIP-ILP) to 1.6%
(TIP) due to attributing commit parallelism. The question can be raised
whether accounting for commit parallelism in NCI would yield a level of
accuracy that is similar to TIP, and we hence make NCI commit-parallelism-
aware by simply attributing 1/n of the sample to the n next-committing
instructions.

Figure A.11c presents box plots of the instruction-level error for commit-
parallelism-aware NCI, called NCI+ILP, versus TIP, TIP-ILP, and NCI. Sur-
prisingly, the average profile error increases with NCI+ILP, from 9.3% (NCI)
to 19.3% (NCI+ILP). The primary reason is that NCI+ILP incorrectly at-
tributes a sample to the n next-committing instructions after a long-latency

64

6 Profiling Case Study

stall (e.g., LLC miss), instead of attributing the entire sample to the long-
latency instruction as done by TIP. The key insight is that commit-parallelism
attribution is only beneficial when sample attribution is done in a correct
and principled way in the first place, as is the case for TIP.

Validation. We use FireSim for our evaluation because the profilers con-
sidered in this work are platform-specific, hence it is impossible to compare
the different profilers without reimplementing on a common platform. To
evaluate our experimental setup, we conduct a validation experiment for the
most accurate profiler in prior work, namely NCI. Lacking an Oracle profiler
on real hardware platforms, we have to compare the relative difference among
existing profilers to gauge their accuracy. In particular, we compare Linux
perf [2] against PEBS [4] on an Intel i7-4770 system, versus our implementa-
tions of the Software profiler and NCI in FireSim, respectively. Obviously, one
cannot expect a perfect match because we are comparing across instruction-
set architectures (x86-64 versus RISC-V) and thus benchmark binaries. Yet,
we still verify that the relative difference (computed using our error metric)
between the respective profilers indeed falls within the same ballpark across
our set of benchmarks, both at the instruction level and function level. At the
instruction level, the difference between PEBS and perf on Intel amounts to
69% on average versus 57% on FireSim when comparing NCI versus Software.
At the function level, the difference equals 4% versus 7%, respectively.

6 Profiling Case Study

We now perform a case study on the SPEC CPU2017 benchmark Imagick to
illustrate how TIP pinpoints the root cause of performance issues. Figure A.12
shows the function- and instruction-level profiles of NCI, TIP, and Oracle
for the ceil function in Imagick; ceil is a math library function and the
third hottest function in Imagick. (We report the fraction of total runtime
in the function-level profile, and the fraction of time within the function
in the instruction-level profile.) The function-level profile does not clearly
identify any performance problem (see 1), suggesting to the developer that
no further optimization is possible; a basic-block-level profile suffers from
the same limitation. The instruction-level NCI profile attributes most of
the execution time to the feq.d and the ret instructions (see 2 and 3 ,
respectively), likely leading to the conclusion that the floating point unit(s)
are overloaded and that the return address predictor is ineffective. Hence,

65

Paper A TIP: Time-Proportional Instruction Profiling

Oracle TIP NCI
0.64% 0.63% 0.00%fcvt.l.d

0.64% 0.63% 0.00%fcvt.d.l

24.99% 24.98% 11.53%fsflags

3.90% 3.91% 3.91%fsgnj.d

Oracle TIP NCI
24.99% 24.91% 11.51%frflags

14.42% 14.43% 28.80%feq.d

6.73% 6.78% 7.75%beqz

0.96% 0.97% 0.00%fabs.d

Oracle TIP NCI
0.96% 0.97% 0.00%fld

5.77% 5.76% 5.76%lt.d

6.41% 6.39% 7.66%beqz

Oracle TIP NCI
9.61% 9.63% 23.09%ret

Oracle TIP NCI
0.00% 0.00% 0.00%fadd.d

0.00% 0.00% 0.00%ret

Ceil function entry

Ceil function exit

Oracle TIP NCI
25.25% 25.25% 25.16%MeanSh..

21.90% 21.95% 21.95%floor

18.53% 18.56% 18.56%Morpho..

21.57% 21.63% 21.63%ceil

Ceil function exit

Imagick Function-Level Profile

Percentage of application runtime
Percentage of function runtime

1

2

3

Basic Block (straight-line code segment)

Figure A.12: Function and instruction-level profiles for Imagick for TIP and NCI
compared to Oracle.

the developer will probably conclude that further software-level optimization
is difficult.

TIP, on the other hand, correctly reports that most of the time in ceil is
spent on the frflags and fsflags instructions, and the purpose of these
instructions is to mask any changes to the floating-point status register that
may occur within the function from the calling code. These instructions
are hence necessary if the calling code relies on ceil being side-effect free.
Interestingly, Imagick never reads the floating-point status register which
means that the masking performed within ceil is unnecessary. Moreover, the
floor function suffers from exactly the same problem. We hence optimized
Imagick’s code by replacing frflags and fsflags in ceil and floor with
nop instructions to remove the unnecessary status register operations.

Figure A.13 presents a cycle stack that compares the original Imagick bench-
mark (marked “Orig.”) to our optimized version (marked “Opt.”) across
the four hottest functions in the original version. As expected, the original
benchmark spends significant time in the “Misc. flush” category because the
BOOM core flushes the pipeline after floating-point status register updates to

66

6 Profiling Case Study

Orig.
Orig. Orig.

Orig.
Opt.

Opt. Opt.

Opt.

MeanShiftImage floor ceil MorphologyApply
0 s

50 s

100 s

150 s

200 s

250 s

300 s Misc. flush

Mispredict

I-Cache miss

Store stall

Load stall

ALU stall

Execution

Ti
m

e

Figure A.13: Time breakdown for the four most runtime-intensive functions in
Imagick comparing the original to our optimized version. The 1.93× speed-up is
primarily due improved processor utilization.

guarantee that instruction dependencies are respected (the BOOM core does
not rename status registers) whereas our optimized version does not flush
at all. Overall, our optimized version improves performance by 1.93× com-
pared to the original version and hence clearly illustrates that TIP identifies
optimization opportunities that matter.

Interestingly, the speedup is (much) higher than expected based on the
fraction of time spent executing the frflags and fsflags instructions (see
Figure A.12). More specifically, the instructions collectively account for about
50% of the execution time of two functions that each account for around
22% of overall execution time, yielding an expected speedup of 1.28×. The
reason is that the frequent pipeline flushing induced by the floating-point
status register accesses has a detrimental effect on the processor’s ability to
hide latencies. For instance, both ceil and floor spend significant time on
ALU stalls and front-end stalls — since the processor does not have sufficient
instructions available to hide functional unit latencies and instruction cache
misses. Moreover, our optimization improves IPC from 1.2 to 2.3 which
leads to the processor spending less time executing instructions. The effects
of improved IPC and reduced stalling carry over to the MeanShiftImage
function from which ceil and floor is called, reducing its execution time
by roughly one third.

67

Paper A TIP: Time-Proportional Instruction Profiling

7 Related Work

Hardware-supported profiling. The most related work is the hardware-
based instruction profilers employed in current processors: Intel PEBS [4],
AMD IBS [5], and Arm SPE [6]; IBS and SPE are inspired by ProfileMe [10].
In addition, external profilers [7], [8], [18]–[20] use debug interfaces such as
Arm CoreSight [9] to sample dynamic instructions. TIP is more accurate
than these schemes (see Section 5).

Software-level profiling. Software-level profilers [2], [23], [24] are signif-
icantly less accurate than TIP and hence sacrifice profile accuracy at the
benefit of not requiring hardware support. While TIP helps developers under-
stand how time is distributed across instructions, other performance aspects
are also interesting. Vertical profiling [25], [26] combines hardware perfor-
mance counters with software instrumentation to profile an application across
deep software stacks, while call-context profiling [27] efficiently identifies the
common orders functions are called in. Causal profiling [11], [28]–[30] is able
to identify the criticality of program segments in parallel codes by artificially
slowing down segments and measuring their impact. Researchers have also
devised approaches for profiling highly optimized code [31], assessing input
sensitivity [32], [33], profiling deployed applications [34], and function-level
energy attribution [35].

Performance Monitoring Units (PMUs). A large body of work has inves-
tigated PMU design [36], and PMUs have a variety of uses (e.g., runtime op-
timization [37], performance analysis in managed languages [38]–[40], profile-
guided compilation [41], [42], and profile-guided meta-programming [43]).
Eyerman et al. [44] propose a PMU architecture that enables constructing
CPI stacks. In contrast to TIP, CPI stacks capture coarse-grain performance
information (e.g., across the entire application) whereas TIP precisely at-
tributes time to individual instructions. The top-down model [45] is also
coarse-grain and cannot attribute time to instructions. Researchers have also
investigated relating PMU events to application activities [3], [12] and how
to make sense of PMU output [46]–[49]; these issues are orthogonal to the
problem TIP addresses (i.e., attributing time to instructions).

Instrumentation, simulation, and modeling. Static instrumentation
modifies the binary to gather (extensive) application execution data at the
cost of performance overhead [1], [50]–[53]. Dynamic instrumentation (e.g.,
PIN [54] and Valgrind [55]) does not modify the binary which leads to higher

68

8 Conclusion

performance overheads than static instrumentation. Statistical performance
profilers (e.g., TIP and Intel PEBS) do not add instructions and hence have
(much) lower overhead than instrumentation-based approaches.

Simulation and modeling can also be used to understand key performance
issues. The most related approach to ours is FirePerf [56] which uses
FireSim [14] to non-intrusively gather extensive performance statistics. Un-
like TIP, which is straightforwardly implementable in an out-of-order core,
FirePerf cannot be employed outside of the simulator as it generates a similar
amount of data to Oracle. Our approach is also related to interval analy-
sis [57], [58], but interval analysis targets dispatch while we target commit.
GDP [59] applies interval modeling at commit, but focuses on slowdown
prediction and hence only considers memory loads.

8 Conclusion

We have presented our Oracle profiler, the first golden reference for perfor-
mance profiling, and used it to show that existing profilers fall short because
they are not time-proportional (i.e., they lack ILP support and systematically
misattribute instruction latencies). We hence propose the Time-Proportional
Instruction Profiler (TIP) which combines the attribution policies of Oracle
with statistical sampling to enable practical implementation. TIP is highly
accurate (average instruction-level error of 1.6%), and this accuracy enabled
us to identify a performance issue in the SPEC CPU2017 benchmark Imagick
that, once addressed, yields a 1.93× speed-up.

Acknowledgments

We thank David Metz for his help with FireSim and BOOM, and the anony-
mous reviewers for their valuable feedback. Lieven Eeckhout is supported
through the European Research Council (ERC) Advanced Grant no. 741097.
Magnus Jahre is supported by the Research Council of Norway (Grant no.
286596).

69

Paper A TIP: Time-Proportional Instruction Profiling

References
[1] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance Debugging

in the Large Via Mining Millions of Stack Traces,” in Proceedings of
the International Conference on Software Engineering, ser. ICSE, IEEE
Press, 2012, pp. 145–155.

[2] Linux, perf, https://perf.wiki.kernel.org/index.php/Main_Page,
2020.

[3] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can We Trust
Profiling Results? Understanding and Fixing the Inaccuracy in Modern
Profilers,” in Proceedings of the International Conference on Supercom-
puting, ser. ICS, Association for Computing Machinery, 2019, pp. 284–
295.

[4] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, https:
//software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html, 2021.

[5] P. J. Drongowski, “Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors,” AMD, Tech. Rep.,
2007.

[6] Arm, ARM Architecture Reference Manual Supplement Statistical Pro-
filing Extension, for ARMv8-A, https://static.docs.arm.com/
ddi0586 / a / DDI0586A _ Statistical _ Profiling _ Extension . pdf,
2017.

[7] A. Djupdal, B. Gottschall, F. Ghasemi, and M. Jahre, “Lynsyn and
LynsynLite: The STHEM Power Measurement Units,” in Towards Ubiq-
uitous Low-Power Image Processing Platforms, M. Jahre, D. Göhringer,
and P. Millet, Eds., Springer International Publishing, 2021, pp. 93–
114.

[8] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan, “Aveksha:
a Hardware-Software Approach for Non-Intrusive Tracing and Profil-
ing of Wireless Embedded Systems,” in Proceedings of the Conference
on Embedded Networked Sensor Systems, ser. SenSys, Association for
Computing Machinery, 2011, pp. 288–301.

[9] Arm, CoreSight Architecture Specification v3.0, https://developer.
arm.com/documentation/ihi0029/, 2017.

70

https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://developer.arm.com/documentation/ihi0029/
https://developer.arm.com/documentation/ihi0029/

References

[10] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
“ProfileMe: Hardware Support for Instruction-Level Profiling on Out-of-
Order Processors,” in Proceedings of the International Symposium on
Microarchitecture, ser. MICRO, IEEE Computer Society, 1997, pp. 292–
302.

[11] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluat-
ing the Accuracy of Java Profilers,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI, Association for Computing Machinery, 2010, pp. 187–
197.

[12] S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “BayesPerf:
Minimizing Performance Monitoring Errors Using Bayesian Statistics,”
in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,
Association for Computing Machinery, 2021, pp. 832–844.

[13] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, SonicBOOM: the
3rd Generation Berkeley Out-of-Order Machine, Fourth Workshop on
Computer Architecture Research with RISC-V, 2020.

[14] S. Karandikar, H. Mao, D. Kim, et al., “Firesim: FPGA-Accelerated
Cycle-Exact Scale-Out System Simulation in the Public Cloud,” in
Proceedings of the International Symposium on Computer Architecture,
ser. ISCA, IEEE Press, 2018, pp. 29–42.

[15] SPEC, SPEC CPU 2017, https://www.spec.org/cpu2017/, 2019.
[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark

Suite: Characterization and Architectural Implications,” in Proceedings
of the International Conference on Parallel Architectures and Compi-
lation Techniques, ser. PACT, Association for Computing Machinery,
2008, pp. 72–81.

[17] A. González, F. Latorre, and G. Magklis, Processor Microarchitecture:
An Implementation Perspective (Synthesis Lectures on Computer Ar-
chitecture). Morgan & Claypool Publishers, 2010.

[18] A. Sadek, A. Muddukrishna, L. Kalms, et al., “Supporting Utilities for
Heterogeneous Embedded Image Processing Platforms (STHEM): An
Overview,” in Applied Reconfigurable Computing (ARC), 2018.

[19] IAR, I-jet, https://www.iar.com/iar-embedded-workbench/add-
ons-and-integrations/in-circuit-debugging-probes/, 2020.

71

https://www.spec.org/cpu2017/
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/in-circuit-debugging-probes/
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/in-circuit-debugging-probes/

Paper A TIP: Time-Proportional Instruction Profiling

[20] Arm, ULINKplus, http://www2.keil.com/mdk5/ulink/ulinkplus/,
2020.

[21] Amazon, Amazon EC2 F1 Instances, https://aws.amazon.com/ec2/
instance-types/f1/, 2021.

[22] S. Eyerman, W. Heirman, K. Du Bois, and I. Hur, “Multi-Stage CPI
Stacks,” IEEE Computer Architecture Letters (CAL), vol. 17, no. 1,
pp. 55–58, 2018.

[23] NTNU, PPerf, https://github.com/EECS-NTNU/pperf, 2020.
[24] Google, gperftools, https://github.com/gperftools/gperftools,

2020.
[25] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical Pro-

filing: Understanding the Behavior of Object-Priented Applications,”
in Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA,
Association for Computing Machinery, 2004, pp. 251–269.

[26] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer, “Automating
Vertical Profiling,” in Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA, Association for Computing Machinery, 2005, pp. 281–
296.

[27] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi, “Accurate,
Efficient, and Adaptive Calling Context Profiling,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI, Association for Computing Machinery, 2006,
pp. 263–271.

[28] C. Curtsinger and E. D. Berger, “Coz: Finding Code That Counts
with Causal Profiling,” in Proceedings of the Symposium on Operating
Systems Principles, ser. SOSP, Association for Computing Machinery,
2015, pp. 184–197.

[29] A. Yoga and S. Nagarakatte, “Parallelism-Centric What-If and Differ-
ential Analyses,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI, Associ-
ation for Computing Machinery, 2019, pp. 485–501.

72

http://www2.keil.com/mdk5/ulink/ulinkplus/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/EECS-NTNU/pperf
https://github.com/gperftools/gperftools

References

[30] B. Pourghassemi, A. Amiri Sani, and A. Chandramowlishwaran, “What-
If Analysis of Page Load Time in Web Browsers Using Causal Profil-
ing,” in Proceedings of the International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), Association for
Computing Machinery, 2019, pp. 87–88.

[31] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan, “Binary
Analysis for Measurement and Attribution of Program Performance,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI, Association for Com-
puting Machinery, 2009, pp. 441–452.

[32] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-Sensitive Profiling,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI, Association for Com-
puting Machinery, 2012, pp. 89–98.

[33] D. Zaparanuks and M. Hauswirth, “Algorithmic Profiling,” in Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI, Association for Computing
Machinery, 2012, pp. 67–76.

[34] C. H. Kim, J. Rhee, H. Zhang, et al., “IntroPerf: Transparent Context-
Sensitive Multi-Layer Performance Inference Using System Stack Traces,”
in Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS, Association for
Computing Machinery, 2014, pp. 235–247.

[35] L. Mukhanov, D. S. Nikolopoulos, and B. R. d. Supinski, “ALEA: Fine-
Grain Energy Profiling with Basic Block Sampling,” in Proceedings of
the International Conference on Parallel Architecture and Compilation
(PACT), 2015, pp. 87–98.

[36] G. Kornaros and D. Pnevmatikatos, “A Survey and Taxonomy of on-
Chip Monitoring of Multicore Systems-on-Chip,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2,
pp. 1–38, 2013.

[37] D. Buytaert, A. Georges, M. Hind, M. Arnold, L. Eeckhout, and K.
De Bosschere, “Using HPM-Sampling to Drive Dynamic Compilation,”
in Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, ser. OOPSLA, As-
sociation for Computing Machinery, 2007, pp. 553–568.

73

Paper A TIP: Time-Proportional Instruction Profiling

[38] P. F. Sweeney, M. Hauswirth, B. Cahoon, et al., “Using Hardware Per-
formance Monitors to Understand the Behavior of Java Applications,”
in Proceedings of the Conference on Virtual Machine Research and
Technology Symposium, ser. VM, USENIX Association, 2004, p. 5.

[39] J. Whaley, “A Portable Sampling-Based Profiler for Java Virtual Ma-
chines,” in Proceedings of the Conference on Java Grande, ser. JAVA,
Association for Computing Machinery, 2000, pp. 78–87.

[40] Y. Zheng, L. Bulej, and W. Binder, “Accurate Profiling in the Pres-
ence of Dynamic Compilation,” in Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA, Association for Computing
Machinery, 2015, pp. 433–450.

[41] T. M. Conte, K. N. Menezes, and M. A. Hirsch, “Accurate and Practical
Profile-Driven Compilation Using the Profile Buffer,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, IEEE
Computer Society, 1996, pp. 36–45.

[42] T. M. Conte, B. A. Patel, and J. S. Cox, “Using Branch Handling
Hardware to Support Profile-Driven Optimization,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, Asso-
ciation for Computing Machinery, 1994, pp. 12–21.

[43] W. J. Bowman, S. Miller, V. St-Amour, and R. K. Dybvig, “Profile-
Guided Meta-Programming,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI, Association for Computing Machinery, 2015, pp. 403–412.

[44] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Per-
formance Counter Architecture for Computing Accurate CPI Compo-
nents,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS, Association for Computing Machinery, 2006, pp. 175–184.

[45] A. Yasin, “A Top-Down Method for Performance Analysis and Counters
Architecture,” in Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), IEEE Computer
Society, 2014, pp. 35–44.

[46] V. M. Weaver and S. A. McKee, “Can Hardware Performance Counters
Be Trusted?” In Proceedings of the International Symposium on Work-
load Characterization (IISWC), IEEE Computer Society, 2008, pp. 141–
150.

74

References

[47] V. M. Weaver, D. Terpstra, and S. Moore, “Non-Determinism and Over-
count on Modern Hardware Performance Counter Implementations,”
in Proceedings of the International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), IEEE Computer Society, 2013,
pp. 215–224.

[48] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of Performance
Counter Measurements,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), IEEE
Computer Society, 2009, pp. 23–32.

[49] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan, “Time
Interpolation: So Many Metrics, So Few Registers,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, IEEE
Computer Society, 2007, pp. 286–300.

[50] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying Page Load Performance with WProf,” in Proceedings of
the USENIX Conference on Networked Systems Design and Implemen-
tation, ser. NSDI, USENIX Association, 2013, pp. 473–486.

[51] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: a Call Graph
Execution Profiler,” in Proceedings of the ACM SIGPLAN Symposium
on Compiler Construction, ser. SIGPLAN, Association for Computing
Machinery, 1982, pp. 120–126.

[52] C. Lattner and V. Adve, “LLVM: a Compilation Framework for Life-
long Program Analysis & Transformation,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO, IEEE Computer Society,
2004, p. 75.

[53] T. B. Schardl, T. Denniston, D. Doucet, B. C. Kuszmaul, I.-T. A.
Lee, and C. E. Leiserson, “The CSI Framework for Compiler-Inserted
Program Instrumentation,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 1, no. 2, 2017.

[54] C.-K. Luk, R. Cohn, R. Muth, et al., “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI, Association for Computing Machinery,
2005, pp. 190–200.

75

Paper A TIP: Time-Proportional Instruction Profiling

[55] N. Nethercote and J. Seward, “Valgrind: a Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI, Association for Computing Machinery, 2007, pp. 89–
100.

[56] S. Karandikar, A. Ou, A. Amid, et al., “FirePerf: FPGA-Accelerated
Full-System Hardware/Software Performance Profiling and Co-Design,”
in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,
Association for Computing Machinery, 2020, pp. 715–731.

[57] T. S. Karkhanis and J. E. Smith, “A First-Order Superscalar Processor
Model,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), 2004.

[58] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Mechanis-
tic Performance Model for Superscalar Out-of-Order Processors,” ACM
Transactions on Computer Systems (TOCS), vol. 27, no. 2, pp. 1–37,
2009.

[59] M. Jahre and L. Eeckhout, “GDP: Using Dataflow Properties to Accu-
rately Estimate Interference-Free Performance At Runtime,” in Proceed-
ings of the International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 296–309.

76

References

77

Paper B

TEA: Time-Proportional Event
Analysis

Authors:
Björn Gottschall, Lieven Eeckhout, Magnus Jahre

Published at conference:
50th Annual International Symposium on Computer Architecture
(ISCA)

Nominations/Awards:
Best Paper Nomination

Copyright:
© 2023 Copyright held by authors

Go
tt

sc
ha

ll
et

al
.(

20
23

)
Pa

pe
r

B

79

Pa
pe

r
B

Go
tt

sc
ha

ll
et

al
.(

20
23

)

TEA: Time-Proportional Event
Analysis

Björn Gottschall1, Lieven Eeckhout2, Magnus Jahre1

1Norwegian University of Science and Technology, Norway
2Ghent University, Belgium

Abstract

As computer architectures become increasingly complex and hetero-
geneous, it becomes progressively more difficult to write applications
that make good use of hardware resources. Performance analysis
tools are hence critically important as they are the only way through
which developers can gain insight into the reasons why their appli-
cation performs as it does. State-of-the-art performance analysis
tools capture a plethora of performance events and are practically
non-intrusive, but performance optimization is still extremely chal-
lenging. We believe that the fundamental reason is that current
state-of-the-art tools in general cannot explain why executing the
application’s performance-critical instructions take time.

We hence propose Time-Proportional Event Analysis (TEA) which
explains why the architecture spends time executing the applica-
tion’s performance-critical instructions by creating time-proportional
Per-Instruction Cycle Stacks (PICS). PICS unify performance pro-
filing and performance event analysis, and thereby (i) report the
contribution of each static instruction to overall execution time, and
(ii) break down per-instruction execution time across the (combina-
tions of) performance events that a static instruction was subjected
to across its dynamic executions. Creating time-proportional PICS
requires tracking performance events across all in-flight instructions,
but TEA only increases per-core power consumption by ∼3.2 mW
(∼0.1%) because we carefully select events to balance insight and
overhead. TEA leverages statistical sampling to keep performance
overhead at 1.1% on average while incurring an average error of
2.1% compared to a non-sampling golden reference; a significant

81

Paper B TEA: Time-Proportional Event Analysis

improvement upon the 55.6%, 55.5%, and 56.0% average error for
AMD IBS, Arm SPE, and IBM RIS. We demonstrate that TEA’s
accuracy matters by using TEA to identify performance issues in
the SPEC CPU2017 benchmarks lbm and nab that, once addressed,
yield speedups of 1.28× and 2.45×, respectively.

1 Introduction

The end of Dennard scaling and the imminent end of Moore’s law means
that we can no longer expect general-purpose CPU architectures to deliver
performance scaling [1]. Industry has responded by exploiting specialization
and integrating heterogeneous compute engines including GPU and domain-
specific accelerators alongside conventional CPU cores [2]. Counter-intuitively
perhaps, sequential CPU code becomes relatively more performance-critical
in heterogeneous systems due to Amdahl’s Law, i.e., acceleratable code re-
gions take much less time to execute while non-acceleratable code still takes
the same amount of time [3]. Performance tuning of sequential CPU code to
better exploit the underlying hardware is hence becoming increasingly criti-
cal. Unfortunately, this is a time-consuming and tedious endeavor because
of how state-of-the-art CPU architectures optimize performance through var-
ious forms and degrees of instruction-level parallelism, speculation, caching,
prefetching, and latency hiding.

Performance tuning is practically impossible without advanced performance
analysis tools, such as Intel VTune [4] and AMD µProf [5], whose purpose it
is to help developers answer two fundamental questions:

Q1 Which instructions does the application spend most time executing?
Or in other words, which are the performance-critical instructions?1

Q2 Why are instructions performance-critical? What are the microarchi-
tectural events (cache misses, branch mispredictions, etc.) that render
these instructions performance-critical?

1While attributing time to functions can be sufficient to address simple performance issues,
addressing challenging performance issues requires instruction-level analysis [6]. Note
that instruction-level analysis can also always be aggregated for presentation at coarser
granularity whereas the opposite is not true.

82

1 Introduction

The first question (Q1) is typically addressed with a performance profiler.
The state-of-the-art performance profiler TIP [6] is time-proportional, in con-
trast to other performance profilers [7]–[13], which means that the importance
of an instruction in its final performance profile is proportional to the instruc-
tion’s relative contribution to overall execution time. Time proportionality is
achieved by analyzing an instruction’s impact on performance at commit time
because that is where an instruction’s latency is exposed. More specifically,
an instruction’s key contribution to execution time is the fraction of time
it prevents the core from committing instructions [6]. Time-proportional
performance profiling is practical because it relies on statistical sampling, i.e.,
the profiler infrequently interrupts the CPU to retrieve the address(es) of
the instruction(s) that the CPU is exposing the latency of in the cycle the
sample is taken.

While performance profiling is a necessary first step, it is not sufficient because
it does not answer the second question (Q2). More specifically, performance
profilers such as TIP [6] do not explain why the architecture spends time on
performance-critical instructions because they do not break down the time con-
tribution of an instruction’s execution across microarchitectural performance
events. State-of-the-art approaches that attempt to address Q2 fall short
because they account for performance events in a non-time-proportional man-
ner, hence providing a skewed view on performance. Existing performance
analysis approaches can be classified as instruction-driven versus event-driven.
Instruction-driven approaches such as AMD IBS [9], Arm SPE [7], and IBM
RIS [14] tag instructions at either the fetch or dispatch stage in the pipeline
and then record the performance events that a tagged individual instruction
is subjected to. Tagging instructions at the fetch or dispatch stages biases the
instruction profile towards instructions that spend a lot of time in the fetch
and dispatch stages, and not necessarily at the commit stage — hence lacking
time-proportionality. Event-driven approaches [8], [10], [15], [16] on the other
hand rely on counting performance events (e.g., cache misses, branch mispre-
dicts, etc.). Event counts are then either attributed to instructions or used
to generate coarse-grained performance information, such as application-level
cycles per instruction stacks. Event-driven approaches also provide a skewed
view on performance because the performance event counts they provide do
not necessarily correlate with the impact these events have on performance
because of latency hiding effects (as we will quantify in Section 5).

Our key insight is that both Q1 and Q2 can be answered by creating time-
proportional Per-Instruction Cycle Stacks (PICS) in which the time the
architecture spends executing each instruction is broken down into the (com-

83

Paper B TEA: Time-Proportional Event Analysis

binations of) performance events it encountered during program execution.2
Since our PICS are time-proportional by design, they have the desirable
properties that (i) the height of the cycle stack is proportional to a static
instruction’s impact on overall execution time — addressing Q1 — and (ii)
the size of each component in the cycle stack is proportional to the impact
on overall performance that this (combination of) performance event(s) in-
curs — addressing Q2. While time-proportional TIP [6] captures each static
instruction’s impact on overall execution time (thereby answering Q1), it
cannot answer Q2 and create PICS because this requires breaking down each
static instruction’s performance impact across the events the instruction was
subjected to during its dynamic executions.

A key challenge for creating PICS is that contemporary processors record
many performance events, e.g., the Performance Monitoring Unit (PMU) of
the recent Intel Alder Lake can report 297 distinct performance events [17].
Building time-proportional PICS however requires tracking events across
all in-flight instructions — and limiting the number of tracked events is
hence key to keeping overheads in check. We address this issue by returning
to first principles, i.e., PICS must break down the execution time impact
of an instruction according to the architectural behavior that caused the
instruction’s latency. We must hence focus on the commit stage and exploit
that it can be in three non-compute states: (i) Commit stalled because an
instruction reached the head of the Re-Order Buffer (ROB) before it had fully
executed; (ii) it drained because of a front-end stall; or (iii) it flushed due
to, for instance, a mispredicted branch. The task at hand is hence to map
these states back to the performance events that caused them. Fortunately,
performance events form hierarchies, and we exploit these to select events
that make PICS easy to interpret while keeping overheads low. Surprisingly
perhaps, we find that capturing only nine events is sufficient to ensure that
99% of the stall cycles incurred by instructions that are not subjected to any
event is less than 5.8 clock cycles.

We hence propose Time-proportional Event Analysis (TEA), which enables
creating PICS by adding hardware support for tracking the performance
events that each instruction encounters during its execution. More specifically,
TEA allocates a Performance Signature Vector (PSV) for each dynamically
executed instruction which includes one bit for each supported performance

2Performance-critical instructions are typically executed in (nested) loops and have many
dynamic executions; we collect performance events across multiple sampled dynamic
executions per static instruction in the binary.

84

1 Introduction

event. During application execution, TEA uses a cycle counter to periodi-
cally collect PSV(s) at a typical 4 KHz sampling frequency. The PMU then
retrieves the instruction pointer(s) and PSV(s) of the instruction(s) that the
architecture is exposing the latency of at the time of sampling following the
time-proportional attribution policies described in prior work [6]. When the
sample is ready, the PMU interrupts the core, and the interrupt handler reads
the instruction pointer(s) and PSV(s) and stores them in a memory buffer.
When the application completes, the PSVs are post-processed to create PICS
for each static instruction by aggregating the PSVs captured for each of its
dynamic execution samples.

We implement TEA within the Berkeley Out-of-Order Machine (BOOM)
core [18], and our implementation tracks nine performance events across all
in-flight instructions. TEA incurs only minor overhead, i.e., requires 249
bytes of storage and increases per-core power consumption by only ∼3.2 mW
(∼0.1%). We demonstrate the accuracy of TEA by comparing its PICS to
those generated by AMD IBS [9], Arm SPE [7], and IBM RIS [14]3, which
are the state-of-the-art instruction-driven performance analysis approaches,
and an (unimplementable) golden reference that retrieves the PSVs for all
dynamic instructions in all clock cycles. TEA is very accurate with an
average error of 2.1% relative to the golden reference which is a significant
improvement over the 55.6%, 55.5%, and 56.0% average error of IBS, SPE, and
RIS, respectively. Since TEA relies on statistical sampling, the performance
overhead of enabling it is only 1.1% on average.

To demonstrate that TEA is useful in practice, we used it to analyze the
SPEC CPU2017 [19] benchmarks lbm and nab. For both benchmarks, the
PICS provided by TEA explains the performance problems whereas state-
of-the-art approaches do not. The performance problem of lbm is due to a
non-hidden load instruction, and we address this issue by inserting software
prefetch instructions. TEA enabled us to choose a prefetch distance that is
large enough to hide most of the load latency while not being too large as
this creates contention for store resources in the core and L1 cache, yielding
an overall performance improvement of 1.28×. For nab, the high accuracy
of TEA enabled us to deduce that a floating-point square root instruction
was performance-critical because an earlier instruction flushed the pipeline
and hence caused it to be issued too late for its execution latency to be

3The key benefit of the front-end-tagging strategy used by IBS, SPE, and RIS is that it
only requires tracking performance events for a single instruction which yields a single
byte of storage overhead (compared to 249 bytes for TEA). Unfortunately, this lower
overhead comes at the cost of poor accuracy.

85

Paper B TEA: Time-Proportional Event Analysis

hidden. We addressed this issue by relaxing IEEE 754 compliance with the
–finite-math and –fast-math compiler options which yielded speedups of
1.96× and 2.45×, respectively.

In summary, we make the following major contributions:

• We observe that time-proportional Per-Instruction Cycle Stacks (PICS)
provide all the necessary information to explain both which instructions
are performance-critical (i.e., answering Q1) and why these instructions
are performance-critical (i.e., answering Q2) — thereby helping devel-
opers understand tedious performance problems.

• We propose Time-proportional Event Analysis (TEA) which captures
the information necessary to create PICS by tracking key performance
events for all in-flight instructions with Performance Signature Vectors
(PSVs).

• We implement TEA at the RTL-level within the out-of-order BOOM
core [18] and demonstrate that it achieves a 2.1% average error relative
to the golden reference; a significant improvement upon the 55.6%,
55.5%, and 56.0% error of IBS, SPE, and RIS, respectively. TEA has
low overhead (i.e., storage overhead of 249 bytes, power consumption
overhead of ∼0.1%, and performance overhead of 1.1%).

• We used TEA to analyze the lbm and nab benchmarks from SPEC
CPU2017. TEA identifies two performance problems that are difficult
to identify with state-of-the-art approaches, and addressing them yields
speedups of 1.28× and 2.45×, respectively.

2 Background and Motivation

Time-proportional performance profiling [6] is based on the observation that
determining the contribution of each instruction to overall execution time
requires determining the instruction(s) that the core is currently exposing
the latency of. (We assume a baseline that already supports TIP [6], the
state-of-the-art time-proportional performance profiler.) Time-proportional
profiling needs to focus on the commit stage of the pipeline because this is
where the non-hidden instruction latency is exposed. Focusing on commit is
a necessary but not a sufficient condition for time-proportionality because,
depending on the state of the CPU, it will expose the latency of different

86

2 Background and Motivation

instruction(s). More specifically, the processor will be in one of four commit
states in any given cycle:

• Compute: The processor is committing one or more instructions.
Time-proportionality hence evenly distributes time across the commit-
ting instructions (i.e., 1/n cycles to each instruction when n instructions
commit in parallel).

• Drained: The ROB is empty because of a front-end stall, for instance
due to an instruction cache miss. Time is hence attributed to the
next-committing instruction.

• Stalled: An instruction I is stalled at the head of the ROB because it
has not yet been fully executed. Time is hence attributed to I which is
the next-committing instruction.

• Flushed: An instruction I caused the ROB to flush, for instance due to
a mispredicted branch, and the ROB is empty. Time is hence attributed
to I but unlike in the stall and drain states it has already committed,
i.e., it is the last-committed instruction.

Explaining why it takes time to execute a particular instruction hence requires
mapping the non-compute commit states Drained, Stalled, and Flushed to
the performance events that caused them to occur. (Execution latency is
fully hidden in the Compute state, and there is hence no additional execution
time to explain in this state.)

TEA example. Figure B.1 illustrates how TEA works in practice when
an application executes the short loop in Figure B.1b on an out-of-order
processor that supports three performance events (i.e., instruction cache miss,
data cache miss, and branch mispredict). TEA relies on statistical sampling
and for the purpose of this example we assume that it samples once every
1,000 cycles; the samples that TEA collects are shown in Figure B.1a. (In
our evaluation, TEA samples at 4 kHz, i.e., once every 800,000 cycles at
3.2 GHz, which is the default for Linux perf [11].) In Sample 1, the ROB
has drained due to an instruction cache miss when fetching I1 and TIP [6]
hence samples I1. TEA additionally tracks the performance events that each
dynamic instruction was subjected to by attaching a Performance Signature

Vector (PSV) to each in-flight instruction. The PSV consists of one bit for
each supported performance event and hence consists of three bits in this
example. Since I1 was subjected to an instruction cache miss, its instruction
cache miss event bit is set in its PSV, see 1 . A TEA sample hence consists

87

Paper B TEA: Time-Proportional Event Analysis

(a) TEA samples.

IX ...
I1 lw a4,(a5)
I2 addw a0,a0,a4
I3 addi a5,a5,4
I4 bne a5,a3,I1
IY ...

(b) Example code. (c) Time-proportional PICS.

Figure B.1: Example explaining how TEA creates PICS. TEA explains how per-
formance events cause performance loss.

of a PSV for all sampled instructions in addition to the information returned
by TIP (i.e., instruction address(es) and timestamp).

In Sample 2, the ROB has again emptied, but now the reason is that branch
instruction I4 was mispredicted. I4 hence committed while all younger in-
structions were squashed, resulting in the processor being in the Flushed
state. The sample is hence attributed to I4, and TEA provides a PSV where
the branch mispredict bit is set, see 2 . In Sample 3, I1 is again the cause of
performance loss, but this time it is stalled on a cache miss. The processor is
therefore in the Stalled state, and TEA explains why because the data cache
miss event bit is set in the PSV. In Samples 4 and 5, the working set of I1
has been loaded into the L1 cache and the branch predictor has learned how
to predict I4 correctly. The 4-wide core is thus able to commit I1, I2, I3, and
I4 in parallel and is in the Compute state. All PSV entries are 0 because
none of the instructions were subjected to any performance event, see 3 .

The application terminates without additional samples being collected, and
TEA then uses the captured samples to create PICS for I1, I2, I3, and
I4 (see Figure B.1c). Each sample is mapped to static instructions using
the address(es) of the instruction(s) and then categorized according to the

88

2 Background and Motivation

L1I miss ITLB missInst. ID Branch mispredict LLC miss L1D miss DTLB miss
Performance Signature Vector (PSV) format

3

DCache/TLB

Decode Rename Dispatch

Re-Order Buffer (ROB)ICache/TLB Perf. Monitoring Unit (PMU)

Branch pred.

Sampler

Fetch
Issue Buffers

Int.

Mem.

Commit

I1 I2

I3I4

I1 000011I1 000011 I2 000010 I3 000000 I4 000000 I5 100000

I6 00I7 00I8 00 I5 10

1 2

4

5

(a) TEA.

(b) Dispatch-tagging (e.g., IBS).

Figure B.2: Example comparing TEA to dispatch-tagging. TEA is time-
proportional whereas dispatch-tagging is not.

PSV value — which identifies the (combination of) performance event(s)
that caused the processor to expose the latency of this instruction in this
sample. From Samples 1 and 3, TEA attributes 1,000 cycles to I1 due to the
instruction cache miss event and data cache miss event, respectively, see 4 .
Similarly, TEA attributes 1,000 cycles to I4 for the mispredicted branch in
Sample 2. The remaining cycles are distributed evenly across I1, I2, I3, and
I4 since they commit in parallel in Samples 4 and 5. This category is labeled
’Base’ since none of the instructions were subjected to performance events.

If an instruction is subjected to multiple events, multiple bits are set in the
PSV, and we refer to events that impact the same instruction as combined
events. Combined events are often serviced sequentially, e.g., an instruction
cache miss must resolve for a load to be executed and subjected to a data
cache miss. The stall cycles caused by this load are hence caused by both
events and it is challenging to tease apart the stall impact of each event. TEA
hence reports combined events as separate categories. Out of all dynamic
instruction executions that encounter at least one event, 30.0% are subjected
to combined events (see Section 5). Combined events are hence not too
common, but can help to explain challenging issues.

89

Paper B TEA: Time-Proportional Event Analysis

Capturing PSVs. Creating PICS requires recording the performance events
each instruction is subjected to during its execution, i.e., creating a PSV for
each instruction packet. An instruction packet is the instruction (or µop)
itself and its associated meta-data (e.g., the instruction address) which the
processor updates and forwards as the instruction flows through the pipeline.
Figure B.2a illustrates how TEA captures PSVs by showing the execution
state of an out-of-order core and PSVs for each instruction; this architecture
supports six performance events and hence has a six-bit PSV format. (We
will explain how we implement TEA in detail in Section 3.) In the front-end,
the PSVs need to capture and pass along the events that can occur in this and
previous pipeline stages which are instruction cache and TLB misses in this
example, see 1 . At dispatch, TEA initializes the six-bit PSV associated with
each ROB entry by setting the front-end bits of the PSV to their respective
values and all remaining PSV-bits to zero. At 2 , instruction I5, which was
subjected to an instruction cache miss, hence has its two most significant
bits set to 10 as these are the front-end PSV-bits (see 3). In the cycle we
focus on, I1 is the oldest instruction and stalled due to an L1 cache miss and
a TLB miss and its two least significant PSV-bits are hence both 1, see 4 .
Similarly, I2 is also a data cache miss while the PSVs for I3 and I4 are all
zeros because they so far have not been subjected to any performance events.
Since TEA is time-proportional, its hardware sampler selects I1 and its PSV
before interrupting the processor such that the software sampling function
can retrieve the sample and store it in a memory buffer.

Instruction-driven performance analysis. AMD IBS [9], Arm SPE [7],
and IBM RIS [14] fall short because they tag instructions at dispatch or fetch
and are hence not time-proportional. Figure B.2b illustrates the operation
of dispatch-tagging with the same core state as we used to explain TEA in
Figure B.2a. Dispatch-tagging marks the instruction that is dispatched in the
cycle the sample is taken, i.e., I5 (see 6). Fetch-tagging works in the same
way except that it tags at fetch rather than at dispatch and would hence tag
I8 in this example. The key benefit of tagging instructions in the front-end is
that the scheme only needs to track events for the tagged instruction, i.e., it
needs one PSV to record the events that the tagged instruction is subjected
to, see 7 .

Tagging at dispatch or fetch does however incur significant error because it
is not time-proportional. More specifically, sampling I5 or I8 is not time-
proportional because I1 is stalled at the head of the ROB at the time the
sample is taken, i.e., the processor is exposing the latency of I1 in this cycle.

90

3 Time-Proportional Event Analysis

LLC miss

L1 data cache miss L1 data TLB miss

L2 data TLB miss

Level 1

Level 2

Level 3

Data Load Stall (DLS)

Dependent events

Independent
events

L1TLBL1D

L2TLBL1TLBL1D

L2TLBL1TLBL1D LLC

L1TLBL1D LLC

DLS

PSVs for different event sets
1

2

3

4

Figure B.3: Performance event hierarchy for the Stalled (ST) commit state.

(Recall that TEA sampled I1 in Figure B.2a.) This situation is common
because performance-critical instructions tend to stall at commit which in
turn stalls the front-end — resulting in the PSVs of the instructions that are
dispatched or fetched during stalls being overrepresented in the PICS. Tagging
at dispatch or fetch also captures events that may not impact performance.
For example, I1 is stalled on a combined data cache and TLB miss event, but
dispatch-tagging captures I5’s instruction cache miss (which is hidden under
I1’s events).

3 Time-Proportional Event Analysis

We now explain the details of our TEA implementation. While we focus
on the open-source BOOM core [18] in this section, the approach will be
similar for other microarchitectures, i.e., some implementation details will be
different but the flow of information will remain the same.

Performance event hierarchies. PICS help developers understand why
instructions are performance-critical, and TEA provides this information by
mapping the non-compute commit states to the most important performance
events that cause them. However, TEA has to track performance events for
all in-flight instructions, and we hence need to carefully select a small set of
performance events that collectively capture key architectural bottlenecks to
keep overheads in check. Fortunately, performance events can be grouped
according to the non-compute commit state they can cause. Performance
events hence form hierarchies that we can exploit to trade off overhead against
interpretability, i.e., the ability of the selected set of performance counters
to explain commit stalls.

91

Paper B TEA: Time-Proportional Event Analysis

Table B.1: The performance events of TEA, IBS, SPE, and RIS.
Event Description TEA IBS SPE RIS

DR-L1 L1 instruction cache miss ✓ ✓ ✗ ✓

DR-TLB L1 instruction TLB miss ✓ ✓ ✗ ✓

DR-SQ Store instruction stalled at dispatch ✓ ✗ ✗ ✓

FL-MB Mispredicted branch ✓ ✓ ✓ ✓

FL-EX Instruction caused exception ✓ ✗ ✓ ✗

FL-MO Memory ordering violation ✓ ✗ ✗ ✗

ST-L1 L1 data cache miss ✓ ✓ ✓ ✓

ST-TLB L1 data TLB miss ✓ ✓ ✓ ✓

ST-LLC LLC miss caused by a load instruction ✓ ✓ ✓ ✓

Figure B.3 explains how event hierarchies enable reasoning about event selec-
tion by focusing on the Stalled (ST) commit state. Performance events can
be dependent or independent. Dependent performance events can only occur
if a prior performance event has occurred, e.g., a load can only miss in the
LLC if it has already missed in the L1 cache 1 . Independent performance
events in contrast occur independently of each other, e.g., a load can hit in
the L1 cache independently of it hitting or missing in the L1 TLB 2 . We can
hence exploit the event hierarchy to balance how easy it is for a developer to
interpret PICS — which favors capturing more events and thereby explaining
increasingly complex architectural behaviors — against overheads — which
increases with event count because TEA must track events for all in-flight
instructions.

We refer to the events captured by a PSV as an event set. For the events
in Figure B.3, we can create one single-bit PSV which only captures that
a load stall occurred and hence has low overhead but offers limited insight.
We can improve interpretability by moving to a 2-bit PSV. In this case, the
most favorable option is to include the L1 data cache and TLB miss events as
they cover all possible Level 2 events in the event hierarchy, see 3 . We can
improve interpretability by adding the dependent events of the L1 data and
TLB misses as exemplified by the 3-bit and 4-bit PSVs 4 . In this case, we
still need to report the root event of each dependency chain to avoid losing
interpretability. For example, if we capture LLC misses and not L1 misses,
we can no longer identify LLC hits.

TEA’s performance events. Table B.1 lists the nine performance events
that TEA captures in our BOOM implementation. We name the performance

92

3 Time-Proportional Event Analysis

events on the form X-Y where X is the commit state and Y is the event,
e.g., an L1 data cache miss is labeled ST-L1 since it explains the Stalled
commit state. To explain the Drained state, TEA captures that an instruction
missed in the L1 instruction cache (DR-L1), missed in the L1 instruction
TLB (DR-TLB), and that the ROB drains due to a full store queue (DR-SQ).
The DR-SQ event captures the case where the ROB drains because a store
cannot dispatch because the Load/Store Queue (LSQ) is full of completed
but not yet retired stores; this improves interpretability when the application
is sensitive to store bandwidth. For the Flushed state, TEA captures that
an instruction is a mispredicted branch (FL-MB), caused an exception (FL-
EX), and caused a memory ordering violation (FL-MO). A memory ordering
violation occurs when a load executes before an older store to the same address
and hence has read stale data. It is addressed by re-executing the load and
squashing all younger in-flight instructions (which is time-consuming). To
explain the Stalled state, TEA captures L1 data cache misses (ST-L1), L1
data TLB misses (ST-TLB), and LLC misses caused by load instructions (ST-
LLC). Capturing LLC misses improves interpretability for memory-sensitive
applications.

TEA exploits event hierarchies to balance interpretability and overhead. Re-
taining interpretability means that TEA should assign events to instructions
that caused long stalls, i.e., stalls that cannot be explained by instruction
execution latencies and dependencies, because these determine the expected
stall time in the absence of miss events. We evaluate TEA from this perspec-
tive by capturing the stalls caused by any dynamic instruction. Our golden
reference provides this data because it captures all dynamic instructions and
all clock cycles (see Section 4 for details regarding our experimental setup).
We further extract the instructions that stall commit and TEA does not
assign an event to. Overall, 99% of these instructions cause stalls that are
shorter than 5.8 clock cycles, and TEA hence captures the events that can
majorly impact performance.

Table B.1 also shows that the instruction-driven approaches AMD IBS [9],
[20], Arm SPE [7], [21], and IBM RIS [14] capture many of the same events
as TEA which indicates that some events are important regardless of the
specific architecture.

TEA microarchitecture. Figure B.4 illustrates how we implement TEA
in the BOOM core. The DR-L1 and DR-TLB events occur in Fetch which
requires allocating a 2-bit PSV in the fetch packet, see 1 . Because the first
instruction of the fetch packet always incurs the DR-L1 and DR-TLB events,

93

Paper B TEA: Time-Proportional Event Analysis

Fetch &
PreDecode Decode Dispatch

PMU TEA

Fetch
Buffer

Fetch Packet
2b PSV

Instr
2b PSV

S
a
m

p
le

S
e
le

ct
io

nTimestamp

Flags

Sample

Cycle Counter

Event

LSU FPUALU

DR-SQ

ST-L1/ST-LLC
ST-TLB

DR-L1/DR-TLB

I-
C

a
ch

e
I-T

LB

D-Cache D-TLB

Writeback

Re-Order
Buffer

Instr

9b PSV

ST-TLBST-L1

ST-LLC

FL-MO

FL-MB FL-EX

Control Status Registers

1

2

3 4

Instr
1b PSV

5

6
7

8

9

Figure B.4: TEA microarchitecture.

TEA only requires a single PSV 2 . When the fetch packet is expanded into
individual instructions and added to the Fetch Buffer, the PSV of the first
instruction is copied and the PSVs of all other instructions are initialized to
zero. In Decode, the instructions from the fetch buffer are decoded into µops
and the PSV of each µop is passed along 3 . Dispatch inserts µops into the
ROB and the issue queues of the functional units. Dispatch detects DR-SQ
when a store is the oldest µop and cannot dispatch due to a full LSQ 4 . To
avoid complicating the LSU-to-ROB interface, we allocate storage for an ST-
TLB event in each LSU entry because it is detected before the cache responds
5 . ST-L1 and ST-LLC events in contrast become available upon a cache
response and can hence be communicated immediately (through Writeback).
The complete 9-bit PSV of each µop is stored in the µop’s ROB-entry 6 .
The FL-MB, FL-EX, and FL-MO events are already detected by the ROB
because they require flushing the pipeline, and the ROB can hence record
them in the PSV.

TEA is connected to the head of the ROB with the time-proportional sample
selection logic inherited from TIP [6] 7 . Once a cycle counter event is emitted
by the PMU (see 8), the Sample Selection unit identifies the commit state
(i.e., Computing, Stalled, Flushed, or Drained) and selects the appropriate
instruction(s) given the state. TEA delays returning the sample in the Stalled
and Drained state until the next µop commits to ensure that the µop’s PSV
is updated. A sample contains a timestamp, flags (i.e., commit state and
valid bits) as well as the instruction address(es) and PSV(s) 9 . TEA is
hence indifferent to tracking µops or dynamic instructions since it in both

94

3 Time-Proportional Event Analysis

cases maps them to static instructions when sampling. Finally, the sample is
written to TEA’s Control and Status Registers (CSRs) and an interrupt is
issued.

Sample collection and PICS generation. The interrupt causes the
sampling software to retrieve TEA’s sample as well as inspect other CSRs
to determine the logical core identifier and process and thread identifiers
before writing all of this information to a buffer in memory (which is flushed
to a file when necessary); this is the typical operation of Linux perf [11].
The logical core identifier maps to a hardware thread under Simultaneous
Multi-Threading (SMT) and a physical core otherwise; we require one TEA
unit per physical core. While we focus on single-threaded applications in
this work, TEA is hence equally applicable to multi-threaded applications
since we capture sufficient information to create PICS for each thread. The
ability of profiling tools to map samples to processes also enables creating
PICS for any piece of software (e.g., operating system code and just-in-time
compilers).

All collected samples are hence available in a file when the application termi-
nates. We have created a tool that takes this sample file as input and then
aggregates cycles across the PSV signatures of each static instruction, thereby
creating PICS for each static instruction in which each category corresponds
to a specific (combination of) performance event(s). A developer can then use
this tool to analyze application performance by visualizing PICS at various
granularities (e.g., static instructions and functions).

Overheads. We assume a baseline that implements TIP [6], and TIP incurs
a storage overhead of 57 B compared to an unmodified BOOM core. TEA
additionally needs to track PSVs across all in-flight instructions and hence
requires adding two bits per entry in the 48-entry fetch buffer to store the
DR-L1 and DR-TLB events (12 B) and a 9-bit PSV field to each ROB entry
(216 B for our 192-entry ROB). TEA also needs three 2-bit registers in fetch
to track DR-L1 and DR-TLB for all fetch packets and 2 bits for each entry in
decode and dispatch to track these events through the rest of the front-end.
TEA needs a one-bit register in dispatch to track the DR-SQ event and one
bit in each LSU entry to track ST-TLB until the load completes. TEA also
needs a register for the PSV of the last-committed instruction to correctly
handle the Flushed state (2 B). The overall storage overhead of TEA is hence
249 B per core (and 306 B per core for TEA and TIP).

Since IBS, SPE, and RIS tag instructions in the front-end, they know which

95

Paper B TEA: Time-Proportional Event Analysis

instruction to capture PSVs from and hence only require storing 6, 5, and 7
bits, respectively, i.e., one byte. They do however capture other information
such as branch targets, memory addresses, and various latencies when imple-
mented in commercial cores. The minimum storage requirements of IBS, SPE,
and RIS are hence negligible, but this benefit is due to tagging instructions
in the front-end which is also the root cause of their large errors.

To better understand the power overhead of TEA (and TIP), we synthesized
the ROB and fetch buffer modules of the BOOM core in a commercially
available 28 nm technology with and without TEA using Cadence Genus [22]
and estimated its power consumption with Cadence Joules [23]. We focus on
the ROB and fetch buffer because they account for 91.7% of TEA’s storage
overhead. (Recall that the events TEA captures are already identified in the
microarchitecture.) Overall, TEA increases the power consumption of these
units by 4.6%. In absolute terms, supporting TEA in these units increases
power consumption by 3.2 mW which is negligible. For example, RAPL [24]
reports a core power consumption of 32.7 W on a recent laptop with an Intel
i7-1260P chip running stress-ng on all 8 physical cores which yield 4.7 W
per core. Implementing TEA on this system would hence increase per-core
power consumption by ∼0.1%. If this power overhead is a concern, the PSVs
can be clock or power-gated and enabled ahead of time such that the PSVs
for all in-flight instructions are updated when sampling.

TEA’s performance overhead is the same as TIP because we can pack the
PSVs into the CSR that TIP uses to communicate sample metadata to
software. A CSR must be 64 bit wide to match the width of the other registers
in the architecture, but TIP only uses 10 bits for metadata. Communicating
four PSVs requires 36 bits which result in TEA using 46 out of 64 CSR
bits. TEA hence retains the 88 B sample size from TIP which results in a
performance overhead of 1.1% [6]. TEA’s logic is not on any critical path of
the BOOM core, and TEA hence does not impact cycle time.

4 Experimental Setup

Simulator. We use FireSim [25], a cycle-accurate FPGA-accelerated full-
system simulator, to evaluate the different performance profiling strategies.
The simulated model is the BOOM 4-way superscalar out-of-order core [18],
see Table B.2 for its configuration, which runs a common buildroot 5.7.0
Linux kernel. The BOOM core is synthesized to and runs on Xilinx U250

96

4 Experimental Setup

Table B.2: Baseline architecture configuration.
Part Configuration

Core OoO BOOM [18]: RV64IMAFDCSUX @ 3.2 GHz
Front-end 8-wide fetch, 48-entry fetch buffer, 4-wide decode, 28 KB TAGE branch

predictor, 60-entry fetch target queue, max. 30 outstanding branches
Execute 192-entry ROB, 192 integer/floating-point physical registers, 48-entry dual-

issue memory queue, 80-entry 4-issue integer queue, 48-entry dual-issue
floating-point queue

LSU 64-entry load/store queue
L1 32 KB 8-way I-cache, 32 KB 8-way D-cache w/ 16 MSHRs, 64 SDQ/RPQ

entries, next-line prefetcher
LLC 2 MiB 16-way dual-bank w/ 12 MSHRs
TLB Page Table Walker, 32-entry fully-assoc L1 D-TLB, 32-entry fully-assoc L1

I-TLB, 1024-entry direct-mapped L2 TLB
Memory 16 GB DDR3 FR-FCFS quad-rank, 16 GB/s maximum bandwidth, 14-14-

14 (CAS-RCD-RP) latencies @ 1 GHz, 8 queue depth, 32 max reads/writes
OS Buildroot, Linux 5.7.0

FPGAs in NTNU’s Idun cluster [26]. We account for the frequency difference
between the FPGA-realization of the BOOM core and the FPGA’s mem-
ory system using FireSim’s token mechanism. We use TraceDoctor [27] to
capture cycle-by-cycle traces that contain the instruction address and the
valid, commit, exception, and flush flags as well as the PSV of the head
ROB-entry in each ROB bank; the trace includes the ROB’s head and tail
pointers which we need to model dispatch-tagging. We configure a highly
parallel framework of TraceDoctor workers on the host to enable on-the-fly
processing while minimizing simulation slowdown. The performance analysis
approaches are hence modeled on the host CPUs that operate in parallel
with the FPGA by processing the traces. This allows us to simulate and
evaluate multiple configurations out-of-band in a single simulation run; we
run up to 15 configurations on 12 CPUs per FPGA simulation run. We
evaluate multiple configurations with a single run because (i) it enables fairly
comparing analysis approaches as they sample in the exact same cycle, and
(ii) it reduces evaluation time.

Benchmarks. We run a broad set of SPEC CPU2017 [19] benchmarks that
are compatible with our setup. We simulate the benchmarks to completion
using the reference inputs. We compile all benchmarks using GCC 10.1 with
the -O3 -g compilation flags and static linking. We enable the performance
analyzers when the system boots up until the system shuts down after the
benchmark has terminated. We only retain the samples that hit user-level

97

Paper B TEA: Time-Proportional Event Analysis

code because (i) the time our benchmarks spend in OS code (e.g., syscalls) is
limited (1.7% of total time), and (ii) we do not want to include system boot
and shutdown time in the profiles.

Golden reference. The baseline we compare against computes PICS for
every instruction, i.e., we know for each instruction how it contributes to
the total execution time and where it spends its time — we consider this to
be our golden reference. This is clearly impractical to implement in a real
system because it would require communicating the PSVs to software for every
dynamically executed instruction which would incur too high performance
overhead. More specifically, the golden reference requires communicating
and parsing 2.7 petabytes of performance data in total at a rate of 116 GB/s.
This golden reference is nevertheless extremely useful because it represents
the ideal performance profile to compare against.

Error metric. Quantifying the accuracy of the cycle stacks obtained by
TEA (or any other technique) requires an error metric that quantifies the
error across all components in the cycle stack. Moreover, we want to be able
to compute the error metric at the level of granularity at which the cycle
stack is computed. We consider instruction and function granularities in
this work. We refer to a component in the cycle stack as Ci,j , 1 ≤ j ≤ N
with N being the number of components in the stack and i being a unit
of granularity, i.e., an instruction, a basic block, a function or the entire
application. The corresponding component in the cycle stack as obtained
through the golden reference is referred to as CR

i,j . The correctly attributed
cycle count per component hence equals min(Ci,j,,C

R
i,j). Summing up these

correctly attributed cycle counts across all components and all units G at the
granularity of interest yields the total number of correctly attributed cycles,
i.e., Tcorrect =

∑G
i=1

∑N
j=1 min(Ci,j,,C

R
i,j). The error is defined as the relative

difference between the total cycle count Ttotal and the correctly attributed
cycle count, i.e., E = (Ttotal −Tcorrect)/Ttotal . Not all techniques that we
evaluate generate the same set of components. In particular, IBS, SPE,
and RIS do not provide the same components as TEA. For fair comparison
against the golden reference, we hence compare each scheme against a golden
reference with the same set of components as the scheme supports.

98

5 Results

5 Results

The state-of-the-art approaches for creating Per-Instruction Cycle Stacks
(PICS) are represented by IBS, SPE, and RIS which are our best-effort
implementations4 of AMD IBS [20], Arm SPE [7], and IBM RIS [14]. IBS
and SPE tags instructions at dispatch whereas RIS tags instructions while
forming instruction groups in the fetch stage. IBS, SPE, and RIS all record the
performance events that tagged instructions are subjected to while they travel
through the pipeline but support different event sets (see Table B.1). We
also compare against two variants of TEA. NCI-TEA combines the events
supported by TEA with the Next-Committing Instruction (NCI) sampling
policy used by Intel PEBS [8] which has been shown to be significantly
more accurate than tagging instructions at fetch or dispatch [6]. TEA is
our approach as described in Section 3 which uses time-proportional PSV
sampling. We sample instructions at a frequency of 4 KHz for all techniques,
unless mentioned otherwise. We also evaluated a version of TEA that tags
instructions at dispatch which yields similar accuracy to IBS, SPE, and RIS,
but we could not include this configuration due to page restrictions.

5.1 Average Accuracy

We first focus on the accuracy of TEA for generating PICS, and Figure B.5
reports error per benchmark. A couple of interesting observations can be
made. First, IBS, SPE, and RIS are significantly less accurate than NCI-TEA
and TEA. The reason is that IBS, SPE, and RIS tag instructions at dispatch
or fetch which leads to non-time-proportional performance profiles. (This
confirms the observation from prior work [6].) Fundamentally, tagging an
instruction in the front-end skews the profile to instructions that spend a
significant amount of time at dispatch or fetch — which are not necessarily
the instructions the application spends time on at commit. RIS performs
slightly worse than IBS and SPE because it captures more events and the cycle
stacks thus have more components. By consequence, accurately capturing
all components in the stack is more challenging. The marginal difference
between IBS and SPE is also due to capturing different event sets.

4While we took great care to implement and configure IBS, SPE, and RIS as faith-
fully as possible, we are ultimately limited by the information that has been disclosed
publicly. The fundamental issue with these approaches is however that they are not
time-proportional.

99

Paper B TEA: Time-Proportional Event Analysis

pe
rlb
en
ch gc

c

bw
av
es mc

f

ca
ctu
BS
SN
na
md

pa
re
st

po
vra
y
lbm

om
ne
tp
p wr

f

xa
lan
cb
mk x2

64
ca
m4

de
ep
sje
ng

im
ag
ick lee

la
na
b

ex
ch
an
ge
2

fo
to
nik
3d
ro
ms xz

0%

20%

40%

60%

80%

Av
er
ag
e

IBS SPE RIS NCI-TEA TEA

Er
ro
r

Figure B.5: Quantifying the error for the PICS obtained through IBS, SPE, RIS,
NCI-TEA, and TEA. TEA achieves the highest accuracy within 2.1% (and at most
7.7%) compared to the golden reference.

Second, sampling instructions at commit substantially improves accuracy
as is evident from comparing NCI-TEA versus IBS, SPE, and RIS. NCI-
TEA samples the instructions as they contribute to execution time, i.e., an
instruction that stalls commit has a higher likelihood of being sampled, and,
as a result, the cycle stack is more representative of the contribution of this
instruction to the program’s overall execution time.

Third, sampling at commit is not a sufficient condition for obtaining accurate
cycle stacks. We need to attribute the sample to the correct instruction and
we need to attribute the sample to the correct signature. Attributing the
sample to the next-committing instruction (NCI) is inaccurate in case of a
pipeline flush due to a mispredicted branch or an exception. The instruction
which is to blame is not the next-committing instruction but the instruction
that was last committed, namely the mispredicted branch or the excepting
instruction. TEA solves this issue by keeping track of the PSV of the last-
committing instruction as previously described in Section 3.

Overall, TEA achieves an average error of 2.1% (and at most 7.7%). This
is significantly more accurate compared to the other techniques: NCI-TEA
(11.3% average error and up to 22.0%), RIS (56.0% average error and up to
79.7%), IBS (55.6% average error and up to 79.7%), and SPE (55.5% average
error and up to 79.7%).

100

5 Results

IBS TEA GR IBS TEA GR IBS TEA GR

fld fa2,(a4) fld fa1,(a1) fld fa5,(a2)

0

100B

200B

300B

400B

500B

base others ST-TLB ST-L1,ST-TLB

ST-L1 ST-LLC,ST-TLB ST-LLC

C
y
c
le

s

(a) bwaves

IBS TEA GR IBS TEA GR IBS TEA GR

sw t1,120(a1) ld a6,104(a1) ld a7,104(t4)

0

20B

40B

60B

80B

100B

120B

base others FL-MB ST-L1,ST-TLB

ST-LLC ST-TLB ST-LLC,ST-TLB

C
y
c
le

s

(b) omnetpp

IBS TEA GR IBS TEA GR IBS TEA GR

fld ft2,24(a5) fld ft2,24(a3) ld a5,48(sp)

0

200B

400B

600B

800B

base others ST-L1,ST-TLB FL-MO

ST-LLC,ST-TLB ST-TLB ST-LLC

C
y
c
le

s

(c) fotonik3d

IBS TEA GR IBS TEA GR IBS TEA GR

bgtz a2,b2ce bgtz a4,af5a lw a2,(s4)

0

5B

10B

15B

base others DR-SQ DR-L1,FL-MB

DR-L1,DR-TLB DR-L1 FL-MB

C
y
c
le

s

(d) exchange2

Figure B.6: PICS for the top-3 instructions as provided by IBS, TEA, and the
golden reference (GR). The PICS provided by TEA are accurate compared to the
golden reference, in contrast to IBS.

5.2 Per-Instruction Accuracy

The previous section quantified the average accuracy of the PICS across
all instructions within a benchmark. We now zoom in on the accuracy for
individual instructions. Figure B.6 reports the PICS of the top-3 (most
execution time) instructions for four benchmarks for IBS, TEA, and the
golden reference; we take IBS as representative of SPE and RIS since their
accuracy is very similar (see Figure B.5). We select bwaves, omnetpp, and
fotonik3d because they collectively illustrate how TEA reports solitary versus
combined events, and exchange2 because it is the benchmark for which IBS
yields the lowest error. The overall conclusion is that the PICS reported
by IBS are inaccurate for two reasons: (i) the height of the cycle stacks

101

Paper B TEA: Time-Proportional Event Analysis

is inaccurate because IBS is not time-proportional, and (ii) the relative
importance of the components within the cycle stacks is inaccurate because
of signature misattribution. This also applies to exchange2 which is the
benchmark for which IBS incurs the lowest error (i.e., comparing Figure B.6d
to Figure B.5).

This analysis also illustrates TEA’s ability to detect combined events. For
example, the combination of cache and TLB misses, i.e., (ST-L1, ST-TLB)
and (ST-LLC, ST-TLB), accounts for a significant fraction of the PICS of
the top-3 instructions for bwaves and omnetpp (see Figures B.6a and B.6b).
Out of all dynamic instruction executions that are subjected to at least
one event, 30.0% encounter combined events. Combined events are hence
not too common, but they can help explain specific performance problems.
Optimizing bwaves would for example require improving both cache and TLB
utilization, whereas optimizing fotonik3d can focus solely on improving cache
utilization (see Figures B.6a and B.6c).

5.3 Why Event-Driven Analysis Falls Short

As aforementioned in the introduction, event-driven performance analysis at-
tempts to answer question (Q2) of why instructions are performance-critical
by counting performance events (e.g., cache misses, TLB misses, branch
mispredicts, etc.). This is a widely used approach for software tuning. Unfor-
tunately, it is extremely tedious and time-consuming and appears to be more
of an art than a science, i.e., performance tuning requires intimate familiarity
with the code and the underlying hardware. The fundamental reason is that
event counts do not necessarily correlate with the impact these events have
on overall performance. Having developed a method to compute accurate
PICS, we can now quantify the adequacy of performance event counting.

We do this by computing the correlation between event counts and the
corresponding components in the cycle stack. We compute the Pearson
correlation coefficient r which varies between -1 and +1. In our context, r
close to one implies an almost perfect positive correlation; on the other hand,
r close to zero means no correlation. Figure B.7 reports box plots for the
Pearson correlation coefficient for all PSV events across all benchmarks.5

5Event-driven approaches such as Intel PEBS [8] and DCPI [10] cannot detect combined
events because they must fundamentally sample based on the event they are counting;
many events only apply to certain instruction types (e.g., only loads and stores can
miss in the cache). When counting multiple events in parallel, the events will not be

102

5 Results

DR-SQ DR-TLB ST-TLB ST-L1 ST-LLC DR-L1 FL-MB FL-EX FL-MO
0

0.2

0.4

0.6

0.8

1
Co

rr
el
at
io
n

Figure B.7: Quantifying the correlation between event count and its impact on
performance. Some event counts correlate strongly with their impact on performance
while others do not.

Some performance events strongly correlate with performance, as is the
case for branch mispredictions (FL-MB), exceptions (FL-EX), and memory
ordering violations (FL-MO). The reason is that these events lead to a pipeline
flush, which in most cases cannot be hidden. TLB misses (DR-TLB and ST-
TLB) and cache misses (ST-L1, ST-LLC, and DR-L1) on the other hand
show moderate correlation with performance, with LLC misses (SL-LLC)
showing higher correlation than L1 data cache misses (ST-L1). The reason
is that cache misses can be partially hidden, and this is true more so for L1
data cache misses than for LLC misses. The least correlation and the largest
spread are observed for store queue stalls (DR-SQ), i.e., in some cases, a full
store queue is completely hidden while in other cases a full store queue stalls
the processor.

While the above analysis is intuitively understood, i.e., architects are well
aware of latency hiding effects, this work is the first to quantify the (lack of)
correlation between event counts and their impact on performance. This is
also the fundamental reason why performance tuning using event counts is so
tedious and time-consuming. TEA solves this problem by providing accurate
PICS.

5.4 Sensitivity analysis

Sampling frequency. Figure B.8 reports the accuracy of the various tech-
niques as a function of sampling frequency. Accuracy is rather insensitive to

captured in the same cycle, yielding independent profiles.

103

Paper B TEA: Time-Proportional Event Analysis

IBS SPE RIS NCI-TEA TEA
0%

10%
20%
30%
40%
50%
60%
70%
80%

100 Hz 1 kHz 4 kHz 8 kHz

Er
ro

r

Figure B.8: Error versus sampling frequency.

IBS SPE RIS NCI-TEA TEA
0%

10%

20%

30%

40%

50%

60%

70%

80%

Er
ro
r

(a) Instruction
IBS SPE RIS NCI-TEA TEA

0%

10%

20%

30%

40%

50%

60%

70%

80%
Er
ro
r

(b) Function

Figure B.9: Errors at instruction and function granularity.

sampling frequency above 4 KHz, which is why we chose it as our baseline
sampling frequency to balance accuracy and run-time overhead.

Analysis granularity. Figure B.9 evaluates the accuracy of the various
techniques when cycle stacks are computed at the instruction and function
granularities; basic block and application granularities exhibit the same trends.
TEA is uniformly the most accurate technique. While the error decreases
at function granularity for the alternative approaches, it does not decrease
as steeply as one may expect. The reason is that cycles are systematically
misattributed to the wrong events. As a result, the alternative approaches
fall short, even at coarse granularity. This reinforces the need for a more
adequate analysis technique such as TEA.

104

6 Case Studies

0 20B 40B

fld ft11,40(a0)

fld fa2,32(a0)

fadd.d fa5,fs3,ft6

fld fs0,24(a0)

fld ft5,16(a0)

fld fs3,8(a0)

bnez t5,10001a34

andi t5,t4,1

fld ft6,(a0)

lw t4,152(a0)

base others ST-LLC,ST-TLB

ST-TLB ST-LLC

Cycles

692B

(a) PICS generated by TEA.

0 100B 200B 300B

fmul.d fs10,fs4,fs8

fadd.d fs1,fs5,fs4

fmv.x.d s8,fs1

fadd.d fs1,fs9,fs7

fmv.x.d s0,fs1

fmul.d fs9,fs9,fs5

fmul.d fs1,fs5,fs5

fdiv.d fs4,fs4,fa5

fmul.d fs9,fs5,fs8

fdiv.d fs5,fs5,fa5

base

Cycles

(b) PICS generated by IBS.

Figure B.10: Lbm performance analysis. TEA identifies the performance-critical
load whereas IBS does not.

6 Case Studies

We now demonstrate that TEA — by identifying the performance-critical
instructions (Q1) and explaining why they are performance-critical (Q2) —
comprehensively identifies application optimization opportunities that state-
of-the-art approaches miss by analyzing and optimizing lbm and nab. As in
Section 5.2, we take IBS as representative of SPE and RIS.

Analyzing lbm. When using current state-of-the-art approaches, the first
step is to collect a performance profile. If we use TIP [6], the profile is time-
proportional and hence reports the contribution of each static instruction to
overall execution time (i.e., answers Q1). TIP however does not explain why
a particular instruction is performance-critical and therefore forces developers
to guess what the problem could be from the instruction type and TIP’s flags.
In the case of lbm, TIP will identify the performance-critical load instruction
and, unsurprisingly perhaps, report that this load stalls commit.

TEA in contrast provides PICS as shown in Figure B.10a which (i) identify
the performance-critical lw instruction — thereby answering Q1 — and (ii)
explains that this lw instruction always misses in the LLC while hiding the
latency of the following load instructions that also miss in the LLC — hence
answering Q2; TEA’s PICS are practically identical to the PICS generated
by the golden reference. Figure B.10b shows PICS generated by IBS for the
region of the code which it identifies as performance-critical. IBS attributes
the performance problem to some floating-point arithmetic instructions that

105

Paper B TEA: Time-Proportional Event Analysis

ld st ld st ld st ld st ld st ld st ld st ld st ld st
Orig. Pf 1 Pf 2 Pf 3 Pf 4 Pf 5 Pf 6 Pf 7 Pf 8

0

50B

100B

150B

200B

1

1.05

1.1

1.15

1.2

1.25

1.3
base others ST-TLB ST-TLB,DR-SQ DR-SQ ST-L1 ST-LLC

Cy
cl

es

Sp
ee

du
p

692B
562B

Figure B.11: PICS and speedup for the most performance-critical load instruction
and store instruction of lbm across a range of prefetch distances.

happen to dispatch while the performance-critical lw instruction is stalled
at the head of the ROB. The event-driven analysis is also unclear because
lbm has 11 load instructions in the inner loop which all incur between 3.3
and 3.9 billion misses each. The key problem is that event counting does not
differentiate between hidden and non-hidden misses.

TEA explains that the key performance problem of lbm is that (i) its working
set exceeds the size of the LLC, and (ii) the architecture is not able to issue
the load instructions sufficiently early to hide their latency. More specifically,
the body of the inner loop of lbm contains sufficient compute instructions to
fill the ROB and hence blocks the processor from issuing the loads of the next
iteration while processing a previous iteration. TEA, unlike TIP, IBS, and
event counting, provides all of this information in its PICS — and thereby
explains that software prefetching is the optimization to apply.

Optimizing lbm. Applying software prefetching is challenging because the
developer must insert prefetches sufficiently early to hide memory latencies
while at the same time taking care not to bottleneck other core resources
(e.g., the LSQ) or pollute the caches. (Since the BOOM core does not support
software prefetching, we implemented a custom software prefetch instruction
using its ROCC interface.) Figure B.11 shows the TEA-generated PICS
for the most performance-critical load and store instructions when issuing
software prefetches for the three cache lines lbm requires to execute the body
of its inner loop n iterations before it is used (we refer to this as a prefetch
distance of n). The PICS show that as we increase prefetch distance, the
impact of the most performance-critical load instruction on overall execution
time goes down until it saturates at prefetch distance 4, i.e., LLC hits (ST-L1)
accounts for most of its execution time impact. This increases performance

106

6 Case Studies

0 50B 100B

slli a4,a4,x3

fsqrt.d fs3,fs0

j 100044d0

beqz a5,100030ca

fsflags a3

flt.d a5,fs0,fa5

frflags a3

fmv.d.x fa5,zero

Flushing instruction base

Cycles

(a) PICS generated by TEA.

0 200B 400B

slli a4,a4,x3

fsqrt.d fs3,fs0

j 100044d0

beqz a5,100030ca

fsflags a3

flt.d a5,fs0,fa5

frflags a3

fmv.d.x fa5,zero

Flushing instruction base

Cycles

(b) PICS generated by IBS.

Figure B.12: Nab performance analysis. TEA identifies that the fsqrt.d instruction
issues too late to hide its execution latency.

which in turn increases store bandwidth requirements. The performance
impact of the most performance-critical store instruction hence increases,
mainly due to categories involving a full store queue (DR-SQ). Lbm writes 19
cache lines in each iteration, and prefetching hence moves its bottleneck from
load latency to store bandwidth. While latency issues typically affect one
static instruction, a bandwidth problem is typically distributed over multiple
instructions, e.g., lbm has seven store instructions with a runtime over 10
billion clock cycles at distance 4.

Addressing this performance problem requires sweeping prefetch distances to
identify the point where the load latency and store bandwidth effects balance
out which exemplifies why TEA — by providing a comprehensive view on
performance after running the application once — is desirable. The optimal
prefetch distance for this architecture is 3 which yields a speedup of 1.28×
over the original (see the line in Figure B.11).

Analyzing nab. Figure B.12a shows the PICS as reported by TEA for the
code region that contains the performance-critical fsqrt.d instruction of nab.
Again, the PICS reported by TEA are very similar to the golden reference
whereas the PICS generated by IBS are not (Figure B.12b). (Flushing
instructions such as fsflags and frflags always flush the pipeline in this
architecture and can hence be identified statically.) In this example, none of
the instructions are subjected to performance events, and the key advantage
of TEA is hence that the developer can trust that (i) the time attributed to
fsqrt.d is accurate, and (ii) that TEA did not miss any performance events

107

Paper B TEA: Time-Proportional Event Analysis

that can majorly impact performance.

Fsqrt.d is hence performance-critical because its execution latency was not
hidden. The reason is that the fsflags and frflags instructions that were
executed just prior to it always flush the pipeline in this architecture. These
instructions are inserted by the compiler to be compliant with the IEEE
754 standard because flt.d by default should not trigger an exception upon
a comparison involving a NaN value. The RISC-V ISA however does not
include a non-excepting version of the flt.d instruction, and the fsflags
and frflags instructions are hence required to mask exceptions. While
understanding this (involved) behavior is possible when looking at the PICS
of these exact instructions, it would be extremely challenging to understand
otherwise.

Optimizing nab. Addressing this problem is simple because nab does not re-
quire any special handling of comparisons involving NaN values. More specif-
ically, enabling the compiler options –finite-math or –fast-math yields
speed-ups of 1.96× and 2.45×, respectively. The reason for the significant
speedups is that avoiding pipeline flushes enables the processor to fetch and
execute further ahead into the instruction stream, thereby better hiding the
execution latencies of independent floating-point instructions.

7 Related Work

The most related approaches to TEA are the instruction-driven performance
analysis approaches AMD IBS [9], Arm SPE [7], and IBM RIS [14] which are
inaccurate because they are not time-proportional (see Section 5).

A large body of work relies on event-driven performance analysis using Perfor-
mance Monitoring Counters (PMCs) as provided by Intel [8] and DCPI [10].
Researchers have hence investigated PMU design [28], and PMUs have a vari-
ety of uses (e.g., runtime optimization [29], performance analysis in managed
languages [30]–[32], profile-guided compilation [33], [34], and profile-guided
meta-programming [35]). Xu et al. [36] focus on providing correct offsets in
PMC sampling by exploiting counters that are the same when running on
real hardware and during binary instrumentation (e.g., retired instructions).
BayesPerf [37] encodes known relationships between performance counters in
a machine learning model and then infers which performance counter values
can be trusted. It is well-known that PMCs can be challenging to make

108

7 Related Work

sense of [38]–[40], and approaches have been proposed for reducing the conse-
quences of the fact that only a limited number of events can be monitored
concurrently (e.g., [41]). We demonstrated in Section 5 that optimization
based on PMCs is challenging because PMC counts often correlate poorly
with performance, and adopting TEA will hence also address these issues.

Eyerman et al. [16] propose a PMC architecture that enables constructing Cy-
cles Per Instruction (CPI) stacks. The top-down model [15], which combines
PMC output with a performance model to classify the application as mainly
retiring instructions or being front-end-bound, back-end-bound, or suffering
from bad speculation, can be viewed as a restricted form of a cycle stack
because it presents a classification of an application’s predominant perfor-
mance bottleneck whereas a CPI stack breaks down an application’s overall
CPI across the units of the processors in which time was spent. Unlike TEA,
these approaches cannot produce per-instruction cycle stacks — and our case
studies demonstrate that instruction-level analysis is critical to understand
performance issues.

While TEA explains why instructions are performance-critical, other per-
formance aspects are also interesting. Vertical profiling [42], [43] combines
hardware performance counters with software instrumentation to profile an
application across deep software stacks, while call-context profiling [44] effi-
ciently identifies the common orders functions are called in. Causal profil-
ing [45]–[48] is able to identify the criticality of program segments in parallel
codes by artificially slowing down segments and measuring their impact. Re-
searchers have also devised approaches for profiling highly optimized code [49],
assessing input sensitivity [50], [51], and profiling deployed applications [52].

Static instrumentation modifies the binary to gather (extensive) applica-
tion execution data at the cost of performance overhead [53]–[57]. Dynamic
instrumentation (e.g., Pin [58] and Valgrind [59]) does not modify the bi-
nary which leads to higher performance overheads than static instrumenta-
tion. Statistical performance analysis approaches (e.g., TEA, IBS, SPE, and
RIS) do not modify the binary and hence have (much) lower overhead than
instrumentation-based approaches. Simulation and modeling can also be used
to understand key performance issues. The most related approach to ours
is FirePerf [60] which uses FireSim [25] to non-intrusively gather extensive
performance statistics. FirePerf would hence, unlike TEA, incur a significant
performance overhead if used in a non-simulated environment.

109

Paper B TEA: Time-Proportional Event Analysis

8 Conclusion

We have presented Time-Proportional Event Analysis (TEA) which explains
execution time by mapping commit stalls to the performance events that
caused them — thereby enabling the creation of time-proportional Per-
Instruction Cycle Stacks (PICS). To generate PICS, TEA tracks performance
events across all in-flight instructions, but, by carefully selecting which events
to track, it only increases per-core power consumption by ∼0.1%. TEA re-
lies on statistical sampling and hence has a performance overhead of merely
1.1%, yet only incurs an average error of 2.1% compared to a non-sampling
golden reference. We demonstrate the utility of TEA by using it to identify
performance problems in the SPEC CPU2017 benchmarks lbm and nab that,
once addressed, yield speedups of 1.28× and 2.45×, respectively.

Acknowledgments

We thank the reviewers for their valuable feedback. Lieven Eeckhout is sup-
ported in part by the UGent-BOF-GOA grant No. 01G01421, the Research
Foundation Flanders (FWO) grant No. G018722N, and the European Re-
search Council (ERC) Advanced Grant agreement No. 741097. Magnus Jahre
is supported by the Research Council of Norway (Grant No. 286596).

References
[1] W. J. Dally, Y. Turakhia, and S. Han, “Domain-Specific Hardware

Accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
2020.

[2] M. D. Hill and V. J. Reddi, “Accelerator-Level Parallelism,” Commu-
nications of the ACM, vol. 64, no. 12, pp. 36–38, 2021.

[3] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the Role of the CPU in the Era of CPU-GPU Integration,”
IEEE Micro, vol. 32, no. 6, pp. 4–16, 2012.

[4] Intel, VTune Profiler User Guide, 2021. Available: https://www.intel.
com/content/dam/develop/external/us/en/documents/vtune-
profiler-user-guide.pdf.

[5] AMD, µProf, https://developer.amd.com/amd-uprof/, 2021.

110

https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://developer.amd.com/amd-uprof/

References

[6] B. Gottschall, L. Eeckhout, and M. Jahre, “TIP: Time-Proportional
Instruction Profiling,” in Proceedings of the International Symposium on
Microarchitecture, ser. MICRO, Association for Computing Machinery,
2021, pp. 15–27.

[7] Arm, ARM Architecture Reference Manual Supplement Statistical Pro-
filing Extension, for ARMv8-A, https://static.docs.arm.com/
ddi0586 / a / DDI0586A _ Statistical _ Profiling _ Extension . pdf,
2017.

[8] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, https:
//software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html, 2021.

[9] P. J. Drongowski, “Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors,” AMD, Tech. Rep.,
2007.

[10] J. M. Anderson, L. M. Berc, J. Dean, et al., “Continuous Profiling:
Where Have All the Cycles Gone?” ACM Transactions on Computer
Systems, vol. 15, no. 4, pp. 357–390, 1997.

[11] Linux, perf, https://perf.wiki.kernel.org/index.php/Main_Page,
2020.

[12] Google, gperftools, https://github.com/gperftools/gperftools,
2020.

[13] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
“ProfileMe: Hardware Support for Instruction-Level Profiling on Out-of-
Order Processors,” in Proceedings of the International Symposium on
Microarchitecture, ser. MICRO, IEEE Computer Society, 1997, pp. 292–
302.

[14] IBM, POWER9 Performance Monitor Unit User’s Guide, https://
ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j, 2018.

[15] A. Yasin, “A Top-Down Method for Performance Analysis and Counters
Architecture,” in Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), IEEE Computer
Society, 2014, pp. 35–44.

111

https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://static.docs.arm.com/ddi0586/a/DDI0586A_Statistical_Profiling_Extension.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/gperftools/gperftools
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j
https://ibm.ent.box.com/s/8kh0orsr8sg32zb6zmq1d7zz6hud3f8j

Paper B TEA: Time-Proportional Event Analysis

[16] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Per-
formance Counter Architecture for Computing Accurate CPI Compo-
nents,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS, Association for Computing Machinery, 2006, pp. 175–184.

[17] Intel, Performance Monitoring Event Reference, https://perfmon-
events.intel.com/, 2022.

[18] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, SonicBOOM: the
3rd Generation Berkeley Out-of-Order Machine, Fourth Workshop on
Computer Architecture Research with RISC-V, 2020.

[19] SPEC, SPEC CPU 2017, https://www.spec.org/cpu2017/, 2019.
[20] AMD, Processor Programming Reference (PPR) for AMD Family 19h

Model 21h, Revision B0 Processors, https://www.amd.com/en/supp
ort/tech-docs/preliminary-processor-programming-reference-
ppr-for-amd-family-19h-model-21h, 2021.

[21] Arm, Arm Neoverse N2 Core Technical Reference Manual, https://
developer.arm.com/documentation/102099/0000/Statistical-Pr
ofiling-Extension-support/Statistical-Profiling-Extension-
events-packet, 2022.

[22] Cadence, Genus Synthesis Solution, https://www.cadence.com/ko_
KR/home/tools/digital-design-and-signoff/synthesis/genus-
synthesis-solution.html, 2022.

[23] Cadence, Joules RTL Power Solution, https://www.cadence.com/en_
US/home/tools/digital-design-and-signoff/power-analysis/
joules-rtl-power-solution.html, 2022.

[24] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design, ser. ISLPED,
Association for Computing Machinery, 2010, pp. 189–194.

[25] S. Karandikar, H. Mao, D. Kim, et al., “Firesim: FPGA-Accelerated
Cycle-Exact Scale-Out System Simulation in the Public Cloud,” in
Proceedings of the International Symposium on Computer Architecture,
ser. ISCA, IEEE Press, 2018, pp. 29–42.

[26] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastruc-
ture, 2019. arXiv: 1912.05848 [cs.DC].

112

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://www.spec.org/cpu2017/
https://www.amd.com/en/support/tech-docs/preliminary-processor-programming-reference-ppr-for-amd-family-19h-model-21h
https://www.amd.com/en/support/tech-docs/preliminary-processor-programming-reference-ppr-for-amd-family-19h-model-21h
https://www.amd.com/en/support/tech-docs/preliminary-processor-programming-reference-ppr-for-amd-family-19h-model-21h
https://developer.arm.com/documentation/102099/0000/Statistical-Profiling-Extension-support/Statistical-Profiling-Extension-events-packet
https://developer.arm.com/documentation/102099/0000/Statistical-Profiling-Extension-support/Statistical-Profiling-Extension-events-packet
https://developer.arm.com/documentation/102099/0000/Statistical-Profiling-Extension-support/Statistical-Profiling-Extension-events-packet
https://developer.arm.com/documentation/102099/0000/Statistical-Profiling-Extension-support/Statistical-Profiling-Extension-events-packet
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://arxiv.org/abs/1912.05848

References

[27] B. Gottschall and M. Jahre, TraceDoctor: Versatile High-Performance
Tracing for FireSim, The First FireSim and Chipyard User and Devel-
oper Workshop at ASPLOS, 2023.

[28] G. Kornaros and D. Pnevmatikatos, “A Survey and Taxonomy of on-
Chip Monitoring of Multicore Systems-on-Chip,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2,
pp. 1–38, 2013.

[29] D. Buytaert, A. Georges, M. Hind, M. Arnold, L. Eeckhout, and K.
De Bosschere, “Using HPM-Sampling to Drive Dynamic Compilation,”
in Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, ser. OOPSLA, As-
sociation for Computing Machinery, 2007, pp. 553–568.

[30] P. F. Sweeney, M. Hauswirth, B. Cahoon, et al., “Using Hardware Per-
formance Monitors to Understand the Behavior of Java Applications,”
in Proceedings of the Conference on Virtual Machine Research and
Technology Symposium, ser. VM, USENIX Association, 2004, p. 5.

[31] J. Whaley, “A Portable Sampling-Based Profiler for Java Virtual Ma-
chines,” in Proceedings of the Conference on Java Grande, ser. JAVA,
Association for Computing Machinery, 2000, pp. 78–87.

[32] Y. Zheng, L. Bulej, and W. Binder, “Accurate Profiling in the Pres-
ence of Dynamic Compilation,” in Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA, Association for Computing
Machinery, 2015, pp. 433–450.

[33] T. M. Conte, K. N. Menezes, and M. A. Hirsch, “Accurate and Practical
Profile-Driven Compilation Using the Profile Buffer,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, IEEE
Computer Society, 1996, pp. 36–45.

[34] T. M. Conte, B. A. Patel, and J. S. Cox, “Using Branch Handling
Hardware to Support Profile-Driven Optimization,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, Asso-
ciation for Computing Machinery, 1994, pp. 12–21.

[35] W. J. Bowman, S. Miller, V. St-Amour, and R. K. Dybvig, “Profile-
Guided Meta-Programming,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI, Association for Computing Machinery, 2015, pp. 403–412.

113

Paper B TEA: Time-Proportional Event Analysis

[36] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can We Trust
Profiling Results? Understanding and Fixing the Inaccuracy in Modern
Profilers,” in Proceedings of the International Conference on Supercom-
puting, ser. ICS, Association for Computing Machinery, 2019, pp. 284–
295.

[37] S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “BayesPerf:
Minimizing Performance Monitoring Errors Using Bayesian Statistics,”
in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,
Association for Computing Machinery, 2021, pp. 832–844.

[38] V. M. Weaver and S. A. McKee, “Can Hardware Performance Counters
Be Trusted?” In Proceedings of the International Symposium on Work-
load Characterization (IISWC), IEEE Computer Society, 2008, pp. 141–
150.

[39] V. M. Weaver, D. Terpstra, and S. Moore, “Non-Determinism and Over-
count on Modern Hardware Performance Counter Implementations,”
in Proceedings of the International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), IEEE Computer Society, 2013,
pp. 215–224.

[40] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of Performance
Counter Measurements,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), IEEE
Computer Society, 2009, pp. 23–32.

[41] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan, “Time
Interpolation: So Many Metrics, So Few Registers,” in Proceedings of
the International Symposium on Microarchitecture, ser. MICRO, IEEE
Computer Society, 2007, pp. 286–300.

[42] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical Pro-
filing: Understanding the Behavior of Object-Priented Applications,”
in Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA,
Association for Computing Machinery, 2004, pp. 251–269.

[43] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer, “Automating
Vertical Profiling,” in Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA, Association for Computing Machinery, 2005, pp. 281–
296.

114

References

[44] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi, “Accurate,
Efficient, and Adaptive Calling Context Profiling,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI, Association for Computing Machinery, 2006,
pp. 263–271.

[45] C. Curtsinger and E. D. Berger, “Coz: Finding Code That Counts
with Causal Profiling,” in Proceedings of the Symposium on Operating
Systems Principles, ser. SOSP, Association for Computing Machinery,
2015, pp. 184–197.

[46] A. Yoga and S. Nagarakatte, “Parallelism-Centric What-If and Differ-
ential Analyses,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI, Associ-
ation for Computing Machinery, 2019, pp. 485–501.

[47] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluat-
ing the Accuracy of Java Profilers,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI, Association for Computing Machinery, 2010, pp. 187–
197.

[48] B. Pourghassemi, A. Amiri Sani, and A. Chandramowlishwaran, “What-
If Analysis of Page Load Time in Web Browsers Using Causal Profil-
ing,” in Proceedings of the International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), Association for
Computing Machinery, 2019, pp. 87–88.

[49] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan, “Binary
Analysis for Measurement and Attribution of Program Performance,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI, Association for Com-
puting Machinery, 2009, pp. 441–452.

[50] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-Sensitive Profiling,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI, Association for Com-
puting Machinery, 2012, pp. 89–98.

[51] D. Zaparanuks and M. Hauswirth, “Algorithmic Profiling,” in Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI, Association for Computing
Machinery, 2012, pp. 67–76.

115

Paper B TEA: Time-Proportional Event Analysis

[52] C. H. Kim, J. Rhee, H. Zhang, et al., “IntroPerf: Transparent Context-
Sensitive Multi-Layer Performance Inference Using System Stack Traces,”
in Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS, Association for
Computing Machinery, 2014, pp. 235–247.

[53] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying Page Load Performance with WProf,” in Proceedings of
the USENIX Conference on Networked Systems Design and Implemen-
tation, ser. NSDI, USENIX Association, 2013, pp. 473–486.

[54] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance Debugging
in the Large Via Mining Millions of Stack Traces,” in Proceedings of
the International Conference on Software Engineering, ser. ICSE, IEEE
Press, 2012, pp. 145–155.

[55] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: a Call Graph
Execution Profiler,” in Proceedings of the ACM SIGPLAN Symposium
on Compiler Construction, ser. SIGPLAN, Association for Computing
Machinery, 1982, pp. 120–126.

[56] C. Lattner and V. Adve, “LLVM: a Compilation Framework for Life-
long Program Analysis & Transformation,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO, IEEE Computer Society,
2004, p. 75.

[57] T. B. Schardl, T. Denniston, D. Doucet, B. C. Kuszmaul, I.-T. A.
Lee, and C. E. Leiserson, “The CSI Framework for Compiler-Inserted
Program Instrumentation,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 1, no. 2, 2017.

[58] C.-K. Luk, R. Cohn, R. Muth, et al., “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI, Association for Computing Machinery,
2005, pp. 190–200.

[59] N. Nethercote and J. Seward, “Valgrind: a Framework for Heavyweight
Dynamic Binary Instrumentation,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI, Association for Computing Machinery, 2007, pp. 89–
100.

116

References

[60] S. Karandikar, A. Ou, A. Amid, et al., “FirePerf: FPGA-Accelerated
Full-System Hardware/Software Performance Profiling and Co-Design,”
in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS,
Association for Computing Machinery, 2020, pp. 715–731.

117

Paper B TEA: Time-Proportional Event Analysis

118

Paper C

Balancing Accuracy and Evaluation
Overhead in Simulation Point
Selection

Authors:
Björn Gottschall, Silvio Campelo de Santana, Magnus Jahre

Published at conference:
2023 IEEE International Symposium on Workload Characterization
(IISWC)

Nominations/Awards:
Best Paper Nomination

Copyright:
© 2023 Institute of Electrical and Electronics Engineers

Go
tt

sc
ha

ll
et

al
.(

20
23

)
Pa

pe
r

C

119

Pa
pe

r
C

Go
tt

sc
ha

ll
et

al
.(

20
23

)

Balancing Accuracy and Evaluation
Overhead in Simulation Point

Selection
Björn Gottschall, Silvio Campelo de Santana, Magnus Jahre

Norwegian University of Science and Technology, Norway

Abstract

Simulators are the tool of choice when designing new computer ar-
chitectures. While software-based simulators are (relatively) easy
to adapt to evaluate new architectural mechanisms and can provide
extensive non-invasive performance measurements, they are slow,
and executing benchmarks to completion with realistic input sets is
practically impossible. FPGA-accelerated simulators are orders of
magnitude faster but require hardware implementations of all simu-
lated components and provide limited performance measurements.

In this paper, we first propose TraceDoctor to enable extensive non-
invasive performance measurement within the FPGA-accelerated
FireSim simulator. TraceDoctor enables tracing any architectural
signal and keeps overheads in check by enabling architects to imple-
ment analysis-specific workers which run on the host computer to
filter or compress trace data. We then use TraceDoctor to better
understand which part(s) of a benchmark to focus on in software-
based simulators, i.e., explaining how architects should configure the
SimPoint methodology to yield simulation points that accurately pre-
dict whole-benchmark performance while minimizing the number of
simulated instructions. Our analysis yields a number of interesting
insights. For example, we find that evaluating relatively many, rela-
tively small simulation points accurately predicts whole-benchmark
performance while requiring to simulate relatively few instructions.
In contrast, the current typical practice of selecting a single large
simulation point yields low accuracy yet requires simulating many
instructions.

121

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

1 Introduction

Developing high-performance hardware is a challenging and complex task,
but understanding and alleviating full-stack performance issues is arguably
even more challenging. Simulators play a key role in the development process
to verify and debug new circuitry because they combine relative ease of
development with the ability to provide detailed insight into architectural
behavior. Software-based computer architecture simulators such as gem5 [1]
and Sniper [2], carefully model the behavior of hardware components, can
be (easily) adapted to model novel architectural approaches, and enables
architects to non-intrusively collect highly detailed performance information.
Unfortunately, they incur long simulation times which in general makes it
intractable to simulate applications to completion at high detail with realistic
input sets. Register Transfer Level (RTL) simulators, such as Synopsys
VCS [3] or Verilator [4], can simulate hardware components at the level
of signals, gates, and registers and thereby provide waveforms that exactly
represent the switching behavior of the circuits. Register Transfer Level
(RTL) simulators, however, incur (much) higher simulation time overhead
than computer architecture simulators.

Hardware-accelerated simulators, such as FireSim [5], use Field Programmable
Gate Arrays (FPGAs) to accelerate simulation. This reduces simulation time
by roughly two orders of magnitude compared to software-based computer
architecture simulators and enables simulating SPEC CPU17 [6] benchmarks
to completion in full-stack configurations with reference input sets in (many)
tens of hours. The root cause of FireSim’s high performance is that it requires
RTL-level models of key system components such as the processor cores (e.g.,
Rocket [7] and BOOM [8]). This enables FireSim to instantiate hardware
configurations of these components in FPGAs. Simulation is hence massively
parallel, i.e., all actions in a given clock cycle occur in parallel as opposed to
being modeled with (mostly) sequential instructions in conventional computer
architecture simulators. FireSim’s high performance hence comes at the cost
of making it more challenging to implement novel architecture mechanisms

– because fully functional RTL implementations are required — and limited
opportunity to collect performance information — because hardware must
be added to retrieve it.

Accessing architecture-internal state is however critical to gain insight into ar-
chitectural behavior, and FireSim hence provides TracerV and AutoCounter
to enable out-of-band inspection of architecture-internal state [9]. TracerV fo-

122

1 Introduction

cuses on instruction retirement and traces out the addresses of all instructions
that commit in each cycle. AutoCounter can be used to add performance
counters to signals within the design which is then periodically exported dur-
ing simulation. While both interfaces are very helpful, they are not without
limitations. TracerV traces out all retired instructions — and hence incurs
significant storage overhead for all but the shortest timeframes — whereas
AutoCounter only supports infrequently retrieving event counts or signal
states — and therefore only to a limited extent reports how signals change
over time.

We hence propose TraceDoctor which (i) supports tracing any architecture-
internal signal every simulator clock cycle, and (ii) keeps storage overhead in
check with analysis-specific software workers that run on the host computer
and compress or filter trace data. More specifically, TraceDoctor provides a
trace vector that connects the signals of interest within the simulated hard-
ware design to TraceDoctor’s hardware component; the width of the trace
vector is set to accommodate the target signals. The (valid) trace vectors
are transferred to the host over the FPGA’s Direct Memory Access (DMA)
interface and dispatched to software workers within TraceDoctor’s simulation
driver. TraceDoctor supports executing multiple workers in parallel on the
host to (i) minimize the impact of tracing on simulator performance, and (ii)
enable performing different analyses on the traced data in parallel. The work-
ers are independent of the hardware design, thereby avoiding time-consuming
FPGA synthesis as long as the trace vector is not changed. We demonstrate
that TraceDoctor reduces Effective Simulator Frequency (ESF) only by 3.9%,
5.7%, and 3.5% on average when configured with workers that implement
the binary, text, and flamegraph output modes of TracerV. TracerV on the
other hand reduces ESF by 84.3%, 76.8%, and 38.9% for the binary, text, and
flamegraph outputs, respectively, because it stalls simulation while processing
sample data on the host.

We then use TraceDoctor to gain insight into a key challenge in software-based
simulation, i.e., how to select a representative subset of whole-benchmark
execution. SimPoint [10]–[13] is the de facto standard approach, but the
runtime overhead of software-based simulators means that SimPoint has not
been validated with detailed processor implementations, such as the BOOM
core [8], and modern benchmarks, such as SPEC CPU2017 [6], e.g., the
most recent SimPoint validation effort [11] used SimpleScalar [14] and SPEC
CPU2000. Moreover, the relationship between Cycles Per Instruction (CPI)
prediction error and evaluation overhead, i.e., the number of instructions
that must be simulated to predict CPI, has not been studied in detail. Fi-

123

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

nally, current practice tends towards selecting one long simulation point per
benchmark that consists of between 100 million and 2 billion instructions
(see Section 6.1). In contrast, existing validation studies focus on many short
simulation points, e.g., up to 30 simulation points that each consist of 10
million instructions for each benchmark [11].

We hence develop a TraceDoctor worker which retrieves Basic Block Vectors
(BBVs) by simulating 21 SPEC CPU2017 benchmarks to completion in a full-
system FireSim setup built around a high-performance out-of-order BOOM
core [8] configuration. We then sweep a broad range of SimPoint parameters,
the most important of which are the maximum number of simulation points
and the number of instructions in a simulation point, to generate in total
710,850 simulation points. Our analysis1 of this extensive data set yields the
following key insights:

• We confirm that SimPoint is accurate when configured to collect a suffi-
cient number of simulation points for each benchmark. More specifically,
SimPoint achieves the lowest average CPI prediction errors, i.e., 0.9%,
0.7%, 0.5%, 0.4%, and 0.3% for interval sizes of 10, 30, 100, 500, and
1,000 million instructions, respectively, when allowed to select up to 44,
46, 48, 43, and 40 simulation points.

• SimPoint incurs errors when a cluster’s centroid — which it selects by
solely considering basic block execution frequencies — does not yield
average CPI, for instance due to accesses to irregular data structures
such as maps and graphs. Such situations are rare in our benchmarks,
and the accuracy of SimPoint is hence generally high.

• The best balance between simulation overhead and accuracy is obtained
by selecting relatively many simulation points that each consist of rela-
tively few instructions. Architects must however weigh this advantage
against operational overheads, e.g., the overheads of generating and
storing checkpoints as well as ensuring that history-based structures
such as caches and branch predictors are warm.

• If constraints force architects to run few simulation points, these should
be large (i.e., 100 million instructions or larger). CPU prediction error
however improves significantly when moving from a single simulation
point per benchmark to two simulation points per benchmark.

1TraceDoctor is available at https://github.com/EECS-NTNU/firesim and integration
into mainline FireSim is in progress. We have also made the dataset of our SimPoint
exploration publicly available [15].

124

https://github.com/EECS-NTNU/firesim

2 Background

FPGA Host
Simulated System M

M
IO Simulation Driver

D
M

A

TracerV

AutoCounter

TraceDoctor

TracerV
Bridge

AutoCounter
Registers

TraceDoctor
Bridge

Front-end

I-Cache D-Cache

Commit

Execute

Reorder Buffer

Functional Units

Figure C.1: Overview of how AutoCounter, TracerV, and TraceDoctor integrate
with a FireSim simulation.

• Basic block vectors must be captured across a complete benchmark exe-
cution with the target data set to be representative of whole-benchmark
execution. If architects are forced to profile a subset of benchmark exe-
cution, the selected simulation points will only be representative of this
subset.

2 Background

We will now briefly introduce TracerV and AutoCounter because this is
necessary to understand how TraceDoctor improves upon the state-of-the-art
(see Figure C.1).

TracerV traces out the addresses of retiring dynamic instructions per CPU
core. To achieve this, TracerV adds signals to the commit stage of the CPU
core (e.g., Rocket or BOOM) which exposes the addresses of the committing
instructions. The TracerV bridge receives these signals and then inserts
the instruction addresses and a timestamp into a DMA queue. Once the
queue is full, the TracerV host driver pulls the contents of the DMA queue
into a buffer on the host and processes the data. TracerV has a triggering
subsystem that enables limiting tracing to a region of interest by specifying
start (and end) cycles, addresses, or instructions. The triggers are specified
when instantiating the TracerV host driver and can hence be changed without
having to synthesize the FPGA design.

The TracerV host driver supports three output modes. The first mode is the
binary output which writes raw tracing data to a file in a binary format. The
second mode writes trace data as plain text in a Comma-Separated Values
(CSV) format, i.e., it retrieves the instruction addresses and the timestamp,

125

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

FPGA Host
Simulated System

Simulation Driver

D
M

A

TracerV Trigger

Target

TraceDoctor
TraceDoctor

Bridge

Buffer Queue

Buffer Control

Clock
Ready

Trace Vector

Trace Valid

Worker 0

Worker 1

Worker n

1

4
2

3

5

6

78

Figure C.2: TraceDoctor overview.

separates them by commas, and writes the resulting string to a file. The
third and last mode is FirePerf [9] in which TracerV first creates a symbol
table using the debug information in the target binary and then correlates
traced instruction addresses with this table. In this way, FirePerf emits only
the start and end cycles of each function call into a file and thereby enables
generating flamegraphs once simulation completes.

AutoCounter creates identity registers or performance counter registers by
annotating signals within the target design. The identity register exposes the
value of the selected signal, whereas the performance counter register adds
one to the register every time the target signal toggles. These registers are
then periodically sampled by the host driver. AutoCounter is hence similar
to performance monitoring counters in contemporary processors and enables
retrieving statistical information from a simulation but cannot track how
signals change at cycle-accurate time scales.

3 TraceDoctor

TraceDoctor overview. Figure C.2 continues where Figure C.1 left off and
explains the details of how TraceDoctor integrates with the FireSim ecosystem.
The tracing bundle of TraceDoctor consists of a user-configurable trace vector
1 and a valid signal and can be attached to any signal within the simulated
system. We include the valid signal such that the target hardware can choose
to not emit a trace vector in cycles that it knows are not interesting (e.g., the
processor core is still stalled on the same load instruction as it was in the
previous cycle). The tracing bundle is connected to the TraceDoctor Bridge
which inserts valid trace vectors into the Direct Memory Access (DMA) queue
2 on the hardware side; invalid trace vectors are discarded. We attach the

126

3 TraceDoctor

TraceDoctor Bridge to the trigger module of TracerV to support starting
and stopping tracing in a specific cycle or when a specific instruction or
address is observed 3 . If the DMA queue fills up, the TraceDoctor Bridge
provides back-pressure by lowering its ready signal 4 which in turn stalls
simulation.

On the host side, the TraceDoctor simulation driver provides a queue of
buffers in which each buffer by default stores a single DMA transfer 5 . If
an insufficient number of buffers are available in the buffer queue, the DMA
queue on the hardware side cannot be drained which in turn (eventually)
stalls simulation. The buffer control component ensures that buffers are
processed in order by broadcasting each vector to work queues in arrival
order 6 ; it also initializes the buffer’s reference counter to n (where n is the
number of workers). By default, each worker executes in a separate thread
and consumes buffers from its work queue 7 . The worker decrements the
buffer’s reference counter when it has been processed, and the buffer can be
reused when the counter reaches zero 8 .

Configuring TraceDoctor. Architects should take care to configure Trace-
Doctor to minimize simulation slowdown. One critical point is to ensure that
the tracing vector fits within the bit-width of the DMA engine (which is typ-
ically 512 bits). Wider tracing vectors will require multiple DMA tokens for
each transfer which will typically result in DMA transfers bottlenecking simu-
lation. Similarly, architects must take care to (i) configure TraceDoctor with
a sufficient number of workers, and (ii) ensure that work is well-distributed
across workers. Since a buffer cannot be reused until all workers have pro-
cessed it, host processing will be bottlenecked by the slowest worker, i.e.,
the slowest worker will execute back-to-back while the latency of all other
workers is hidden. An effective strategy for improving the performance of
time-consuming analyses is to distribute it across n workers and configure
each worker to only process one in n buffers, i.e., for the n−1 buffers which
the worker will not process, it simply decrements the reference counter be-
fore moving on to the next buffer. This strategy is however only applicable
when (i) buffers can be analyzed independently, and (ii) the data emitted by
the different workers contain sufficient information to be merged when the
simulation completes.

127

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

Table C.1: Simulator configuration.
Part Configuration

Core OoO BOOM [8]: RV64IMAFDCSUX @ 3.2 GHz
Front-end 8-wide fetch, 32-entry fetch buffer, 4-wide decode, 28 KB TAGE branch

predictor, 40-entry fetch target queue, max. 20 outstanding branches
Execute 128-entry ROB, 128 integer/floating-point physical registers, 24-entry dual-

issue memory queue, 40-entry 4-issue integer queue, 32-entry dual-issue
floating-point queue

LSU 32-entry load/store queue
L1 32 KB 8-way I-cache, 32 KB 8-way D-cache w/ 8 MSHRs, next-line

prefetcher from L2
L2/LLC 512 KB 8-way L2 w/ 12 MSHRs, 4 MB 8-way LLC w/ 8 MSHRs
TLB Page Table Walker, 32-entry fully-assoc L1 D-TLB, 32-entry fully-assoc L1

I-TLB, 512-entry direct-mapped L2 TLB
Memory 16 GB DDR3 FR-FCFS quad-rank, 16 GB/s maximum bandwidth, 14-14-14

(CAS-RCD-RP) latencies @ 1 GHz, 8 queue depth, 32 max reads/writes
OS Buildroot, Linux 5.7.0

4 Experimental Setup

Simulator configuration. Our simulations are performed on either a dual-
socket AMD EPYC 7413 host system with 512 GB of main memory and
two Xilinx Alveo FPGA accelerators cards (one U250 [16] and one U280 [17])
provided by eX3 [18] or the U250-instances of NTNU’s EPIC cluster [19]. We
evaluate a single-core system with a 4-wide BOOM core [8] as described in
Table C.1. We focus on an FPGA configuration that includes the simulated
architecture and the hardware components of TracerV and TraceDoctor,
which runs at a clock frequency of 70 MHz. When including AutoCounter in
the configuration, the FPGA clock frequency dropped to 50 MHz.

Benchmarks. We run the 21 benchmarks in SPEC CPU2017 [6] that
are compatible with our setup. We used GCC 10.1 with -O3 compiler op-
timizations enabled and static linkage. Our full system simulator runs all
benchmarks to completion using reference input sets. We exclude system boot
and power-off time by starting (stopping) tracing before (after) benchmark
execution.

Metrics. While our default FPGA configuration runs at a clock frequency of
70 MHz, the simulated architecture will only reach this frequency if it does not
interact with the host or non-RTL simulator components (e.g., network access,
disk access, or the FASED [20] memory model). We use Effective Simulator

128

5 TraceDoctor Evaluation

Frequency (ESF), i.e., the number of simulated clock cycles per second, as
our simulator performance metric. ESF is maximally 70 MHz in our setup,
but any interaction with the host or memory system that requires stalling the
simulator to maintain cycle accuracy reduces ESF. The ideal tracing interface
would avoid reducing ESF beyond what is necessary to preserve simulator
accuracy, i.e., the ESF achieved by FireSim without tracing.

When evaluating SimPoint configurations, our evaluation overhead metric
is the number of simulated instructions. We report evaluation overhead
instead of evaluation time as evaluation time differs between simulators and
can differ within the same simulator depending on the level of detail. The
number of simulated instructions hence captures the amount of work that
the simulator must perform, and the practitioner can then multiply it by the
average number of simulated instructions per second for their target simulator
configuration to estimate evaluation time.

CPI prediction error e is the absolute relative percentage error of CPI as
predicted by SimPoint (CPISimPoint) relative to the golden reference CPI
which we obtain by simulating each benchmark to completion with reference
inputs:

e = |CPISimPoint −CPI|
CPI ×100. (C.1)

We aggregate errors across benchmarks by computing the average (arithmetic
mean) or maximum across per-benchmark errors.

5 TraceDoctor Evaluation

We now compare FireSim’s performance with TraceDoctor to its performance
with TracerV, AutoCounter, and a configuration in which tracing is disabled
(which we refer to as “No Trace”). We label our TraceDoctor configurations
TD-Wi where i is the number of workers. TD-W1 is hence a single-worker
TraceDoctor configuration whereas the TD-W3 configuration has three work-
ers. To fairly compare TraceDoctor to prior work, we exploit the flexibility
of TraceDoctor to configure it to provide the exact same output as TracerV
and AutoCounter. Since TracerV and AutoCounter provide different output
data, we first compare to TracerV and then to AutoCounter.

For the experiments in this section, we run nab from SPEC CPU2017 [6] with
the test input set. This is necessary to keep simulation time sufficiently short
to execute to completion with all tracing interfaces. Even this relatively short

129

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

0s 1s 2s 3s 4s 5s 6s
 0 MHz

 10 MHz
 20 MHz
 30 MHz
 40 MHz
 50 MHz
 60 MHz
 70 MHz

No Trace TD-W1 TracerV

Simulated Time

ES
F

Boot Trace

(a) Binary

0s 1s 2s 3s 4s 5s 6s
 0 MHz

 10 MHz
 20 MHz
 30 MHz
 40 MHz
 50 MHz
 60 MHz
 70 MHz

No Trace TD-W1 TD-W3 TracerV

Simulated Time

ES
F

Boot Trace

(b) CSV

0s 1s 2s 3s 4s 5s 6s
 0 MHz

 10 MHz
 20 MHz
 30 MHz
 40 MHz
 50 MHz
 60 MHz
 70 MHz

No Trace TD-W1 TracerV

Simulated Time

ES
F

Boot Trace

(c) FirePerf

Figure C.3: Simulator performance with TraceDoctor (TD) and TracerV when
generating (a) binary, (b) CSV, and (c) FirePerf traces. TraceDoctor (i) yields
higher performance than TracerV across all modes, and (ii) only minorly slows down
simulation time compared to No Trace when configured with a sufficient number of
workers.

130

5 TraceDoctor Evaluation

timeframe yields traces that contain 7.1 billion dynamic instructions and
hence pushes against the storage overhead limits of TracerV. As mentioned
before, TracerV writes uncompressed binary or CSV files that quickly become
large, i.e., its binary (CSV) trace files for nab with the test input set is
1,001 GB (319 GB). While TraceDoctor supports compression of trace outputs
by default, adding support for compression is trivial, and we hence disable
this feature to ensure a fair comparison. We further ensure that storage
latency does not impact simulator performance by writing all tracing output
to the null device (i.e., /dev/null).

TraceDoctor versus TracerV. Figure C.3 reports ESF for FireSim with
TraceDoctor compared to TracerV and no tracing across TracerV’s three
supported output modes, i.e., binary, CSV, or FirePerf [9] (see Figures C.3a,
C.3b and C.3c, respectively). TraceDoctor yields average ESF slowdowns
of 3.9%, 5.7%, and 3.5%, whereas TracerV reduces ESF by 84.3%, 76.8%,
and 38.9% for the binary, CSV, and FirePerf outputs, respectively. The
performance difference is primarily due to TraceDoctor processing trace data
on the host in parallel with simulation whereas TracerV stalls simulation
during host processing. This however requires that TraceDoctor is configured
with a sufficient number of workers to process tracing data at least equally
fast as it is being supplied by the FPGA. More specifically, a single worker is
sufficient for the binary and FirePerf outputs (i.e., see TD-W1 in Figures C.3a
and C.3c) whereas three workers are required in the CSV case (i.e., compare
TD-W3 to TD-W1 in Figure C.3b).

TracerV yields lowest performance with binary output, i.e., ESF is consistently
below 10 MHz in Figure C.3a. Since TracerV stalls FireSim during the
processing of trace data, it directly affects simulator performance. With
the binary format, TracerV also (i) generates a massive amount of tracing
data (i.e., 1 TB in total), and (ii) writes the data to a file in 8-byte chunks
that each generates a syscall — which in combination are the root causes
of TracerV’s simulator performance degradation. TracerV performs much
better in the FirePerf configuration (see Figure C.3c), primarily because it
generates significantly less tracing data (i.e., 122 MB).

Both TraceDoctor with a single worker (TD-W1) and TracerV slow down
FireSim significantly in the CSV configuration (see Figure C.3b). When
tracing is triggered after 1.3 seconds of simulated time, TracerV immediately
drops ESF to 28 MHz before further reducing ESF to 10 MHz after 2.4 s.
TD-W1 on the other hand initially does not slow down simulation (i.e., an
ESF of 55.9 MHz), but ESF then drops to 17.3 MHz after 2.8 s. There are two

131

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

observations to be made here. First, the phase in which TracerV yields higher
ESF is a benchmark phase where fewer instructions are executed. It is hence
easier for the host to keep up with the FPGA because fewer instructions
need to be written to the CSV file. Second, TraceDoctor’s buffer architecture
enables it to keep ESF high until the buffer fills up. In this experiment, we
configured TraceDoctor to buffer up to 12.9 GB of tracing data before stalling
simulation. Since the TD-1W configuration only has a single worker, it is not
able to consume trace data at the same rate as the FPGA produces it and
hence ultimately stalls simulation. If the benchmark however would have
entered a phase in which it commits fewer instructions per cycle, the trace
data bandwidth could drop sufficiently for the worker to catch up (and this
is why we configure such a large buffer).

The root cause of the low ESF with TD-W1 and TracerV for the CSV output
is that it relies on printf to format the output which incurs a performance
overhead. Figure C.3b shows that the TD-W3 configuration overcomes this
limitation by instantiating three workers which each process every third buffer,
i.e., worker 0 processes buffers (0, 3, 6, . . .), worker 1 processes buffers (1, 4,
7, . . .) and worker 2 processes buffers (2, 5, 8, . . .). Since each line in the
CSV file contains a timestamp, it is trivial to merge the output files of each
worker after simulation is complete.

TraceDoctor versus AutoCounter. We now compare TraceDoctor to
AutoCounter by implementing a worker that counts the selected signals cycle-
accurately and then periodically writes counter values to a file. We compared
the ESF of TraceDoctor and AutoCounter across 34 sampling frequencies
between 1 kHz and 128 kHz, but we were unable to detect a drop in ESF, i.e.,
neither TraceDoctor nor AutoCounter has a measurable impact on simulator
performance. While TraceDoctor is not intended to replace AutoCounter, this
result demonstrates that TraceDoctor can be employed to capture simulator
statistics in parallel to other tracing activities. (While enabling AutoCounter
forced us to reduce FPGA clock frequency to 50 MHz, we expect that we
could regain our default 70 MHz frequency with some optimization.)

6 Validating SimPoint

We now demonstrate the utility of TraceDoctor by using it to validate Sim-
Point [10]–[13]. More specifically, we use TraceDoctor workers to create
instruction-level execution profiles from which we in turn create Basic Block

132

6 Validating SimPoint

Table C.2: SimPoint validation space.

SimPoint Parameter Default Validation Range
Coverage Full Full and first 50b to 1000b instruc-

tions (increments of 50b)
Interval size N/A 10m, 30m, 100m, 500m, and 1b in-

structions
Dimensionality 15 1 to 50 (increments of 1)
MaxK 30 1 to 50 (increments of 1)
BIC threshold 0.9 0.0 to 1.0 (increments of 0.05)

Vector (BBV) profiles during post-processing. We will first quickly recapit-
ulate the main operation of SimPoint before presenting the results of our
experiments.

6.1 A Primer on SimPoint

Table C.2 lists the key parameters of the SimPoint methodology and the
ranges we consider in our validation experiments. The first parameter is
benchmark coverage, i.e., how many instructions are considered when captur-
ing Basic Block Vectors (BBVs). While it is clearly better to capture BBVs
across complete benchmark executions, this is not always possible in practice
because capturing BBVs can take a long time in some setups.

Basic Block Vector (BBV) collection. SimPoint divides the benchmark
into intervals of i dynamic instructions; i is a user-selected parameter, which
we refer to as interval size. The first i dynamic instructions are hence part
of the first instruction interval, the second group of i dynamic instructions
forms the second interval, and so on. SimPoint requires a BBV for each
instruction interval which is simply the number of times each basic block
was executed during the instruction interval the BBV represents. BBVs are
typically long since they have one entry for each basic block in the benchmark,
e.g., gcc executes 659,156 unique basic blocks in our evaluation. It is hence
impractical to use BBVs for clustering directly as each basic block then
becomes a dimension in the solution space, and SimPoint thus projects BBVs
into a space with fewer dimensions using a random linear projection. The
number of dimensions to project onto is 15 by default, and we refer to this
parameter as dimensionality.

133

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

21 21 21 21 21
42 42 40

42
42

144 160 110

105
78

307 219
207

153

135

407 428
398

344

369

10m 30m 100m 500m 1b
0

50B

100B

150B

200B

250B

300B

350B

400B
10% 5% 2% 1% Default(1.3%)

Si
m

ul
at

ed
 In

st
ru

ct
io

ns

Figure C.4: Aggregate number of simulated instructions for our 21 SPEC2017
benchmarks for various sizes and CPI prediction error constraints compared to
the SimPoint default parameters. SimPoint is generally accurate, but simulation
overhead can be substantially reduced by selecting different parameters or tolerating
higher error.

Simulation point selection. The key SimPoint parameters that control
simulation point selection are MaxK and the Bayesian Information Criterion
(BIC) threshold. MaxK represents the maximum number of simulation points
that can be created, whereas BIC is a statistical criterion that balances the
improvement from adding more clusters against how well they explain the
data. We use the default search policy of SimPoint, which is to perform a
binary search through the range of values of k between 1 and MaxK to find
the clustering that maximizes the BIC score. Binary search reduces SimPoint
execution time substantially compared to linear search while yielding similar
accuracy because BIC scores generally increase with k [11].

For each k, SimPoint runs k-means five times with different random seeds
yielding different initial centroids. This is necessary because the initial cen-
troid selection can have a big impact on the final clustering. (The centroid
is the element closest to the center of a cluster.) In each iteration, k-means
computes the Euclidean distance between each data point and all centroids
and moves the data point to the cluster with the closest centroid. It then
recomputes the centroids of all clusters because they could have changed due
to data point movement. K-means either completes after a fixed number of
iterations or when it converges, i.e., the centroids remain the same after iter-
ating over all data points, and we configure SimPoint to run to convergence.
SimPoint finally computes the BIC score of each candidate clustering and
retains the one with the highest score.

134

6 Validating SimPoint

SimPoint has now identified the clustering that yields the best BIC score
for each inspected k. It then applies the BIC threshold, which expresses the
deviation from the maximal BIC score that SimPoint can exploit to reduce the
number of simulation points. More specifically, SimPoint normalizes the BIC
score of each evaluated clustering to the best observed BIC score and returns
the clustering with the fewest number of clusters (i.e., the lowest k) which
has a normalized BIC score above the threshold. Consider clusterings k1, k2,
k3, k4, and k5 with BIC scores of 100, 200, 300, 400, and 500, respectively,
as well as k-values of 1, 2, 3, 4, and 5. The maximum observed BIC score is
500, and the normalized BIC scores are hence 0.2, 0.4, 0.6, 0.8, and 1.0. If
the BIC threshold is 0.5, SimPoint will consider k3, k4, and k5 because their
normalized BIC score is greater than 0.5 and select k3 because it has the
lowest k value. If the threshold is 0.9, SimPoint will select k5 because it is the
only clustering with a normalized BIC score above the threshold. Providing
a lower BIC threshold hence reduces the number of instructions to simulate
because it favors fewer clusters but (potentially) increases prediction error.

Predicting CPI. Our SimPoint configuration represents each cluster by
its centroid instruction interval and computes the weight of the cluster as
the ratio of the number of intervals in the cluster divided by the number of
intervals in the benchmark. From this information, it is straightforward to
predict whole-benchmark CPI, i.e., the architect evaluates each simulation
point to retrieve its individual CPI and then computes the weighted average
of the simulation point CPIs to predicted whole-benchmark CPI.

SimPoint in current practice. The most detailed validation studies of
SimPoint focus on relatively large MaxK and short intervals [10], [11]. For
example, Hamerly et al. [11] focused on a configuration with MaxK equal to
30 and 10 million instruction intervals. To better understand how SimPoint
is used in practice, we surveyed the proceedings of ISCA from 2018 to 2022
and found 25 papers that used SimPoint in their evaluation. Out of these
papers, 52% used a MaxK of 1 and 30% used a MaxK larger than one; 16%
did not clearly specify their MaxK value. Interestingly, only a single paper
used a MaxK of 30, and for the remaining papers, MaxK was typically much
less than 10 or not specified. With respect to interval sizes, 16% used interval
sizes between 5 million and 30 million instructions, 48% used interval sizes
between 100 and 500 million instructions, and 28% used interval sizes greater
than or equal to 1 billion instructions; 8% did not clearly report their interval
size.

135

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

4

6 5

6
5

5 6 5
6 4 6 5 6 6 6 5 5 5 2 6 6

9

8
12

9

12

11

11

10 11
4

12 8 12
12

5 7 13 10 8 11 12

xa
lancb

mk

ca
ctu

BSS
N gc

c xz wrf

bwave
s

fo
to

nik3
d

povra
y

mcf

deepsje
ng

pare
st

exc
hange

2
namd

ro
ms

lbm nab

omnetp
p

perlb
ench

im
agic

k
ca

m4
leela

0%

2%

4%

6%

8%

10%

12%

14%

5.2

9.9

Ave
ra

ge

2% 1%

CP
I E

rr
or

Figure C.5: Per-benchmark CPI prediction error with the 100m interval size and
a 2% and 1% average error constraint. SimPoint predicts CPI accurately for most
benchmarks, but outliers occur when BBVs do not predict CPI well.

6.2 SimPoint Error

The above analysis demonstrates that there is a mismatch between the Sim-
Point configurations that are used in practice and the configurations that
have been validated, and we will now first explore the impact of SimPoint
parameters on CPI prediction error before delving into the trade-off between
prediction error and evaluation overhead.

Parameters. We focus on the interval size, MaxK, dimensionality, BIC
threshold, and benchmark coverage parameters. While Table C.2 shows the
extent of the validation space we consider, our validation is not completely
orthogonal as this yields intractable evaluation overhead. We perform three
parameter sweeps in which we consider interval sizes of 10 million, 30 million,
100 million, 500 million, and 1 billion instructions and vary a subset of
parameters. More specifically, we vary MaxK and dimensionality in the
first sweep, MaxK and BIC threshold in the second sweep, and MaxK and
benchmark coverage in the third sweep.

Evaluation overhead under an error constraint. Figure C.4 plots eval-
uation overhead versus error for the SimPoint configurations that minimize
evaluation overhead under an error bound. More specifically, we select the
SimPoint configuration that minimizes simulation overhead within 0.25%
of a target average error e (i.e., e ± 0.25%) across our 21 SPEC CPU2017
benchmarks. We consider target errors e of 10%, 5%, 2%, and 1% as well as
interval sizes of 10m, 30m, 100m, 500m, and 1b instructions. We also report

136

6 Validating SimPoint

0.62 0.22 0.16 0.00

0 1 2 3

1

2

3

Cluster identifier

W
ei

gh
t

CP
I

Figure C.6: CPI distribution across clusters for xalancbmk in the 2% error config-
uration. CPI prediction error is due to the centroid not being representative of the
cluster’s average CPI.

the simulation overhead of the SimPoint default configuration. The numbers
above the bars are the number of simulation points required to evaluate all
21 benchmarks.

Our analysis, which unlike prior validation efforts [10], [11] runs modern
benchmarks to completion with the reference input sets on a cycle-exact
processor core model, confirms that SimPoint is accurate. More specifically,
it yields an average error of only 1.3% in its default configuration, i.e., 1.9%,
1.3%, 1.4%, 1.0%, and 1.2% for the 10m, 30m, 100m, 500m, and 1b interval
sizes, respectively. The default SimPoint configuration however prioritizes
accuracy at the expense of evaluation overhead, and our analysis shows that
SimPoint can yield similar accuracy at much lower overhead. For example,
the default SimPoint configuration requires evaluating 369 simulation points
to achieve the 1.2% average error with the 1b interval size. We find that the
same interval size, full instruction coverage, MaxK equal to 8, dimensionality
35, and a BIC threshold of 0.9 yields an average error of 1.2% while evaluat-
ing only 135 simulation points — thereby reducing evaluation overhead by
2.7×.

Explaining residual error. Figure C.5 drills down into the 100m interval
size with error limits of 2% and 1%. The 2% and 1% SimPoint configurations
yield average errors of 2.2% and 1.2% with MaxK of 6 and 14 and dimensional-
ities of 15 and 8, respectively; both configurations have full coverage and BIC
thresholds of 0.9. Figure C.5 shows that errors are low for most benchmarks,
but that there are some outliers with higher errors. For example, the average

137

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

✞ ☎
1 bool ValueStore :: contains (const FieldValueMap * const other) {
2 unsigned int otherSize = other ->size ();
3 unsigned int tupleSize = fValueTuples ->size ();
4 for (unsigned int i=0; i< tupleSize ; i++) {
5 FieldValueMap * valueMap = fValueTuples -> elementAt (i);
6 if (otherSize == valueMap ->size ()) {
7 for (unsigned int j=0; j< otherSize ; j++) {
8 ...
9 }

10 }
11 return false ;
12 }✝ ✆
Listing C.1: The xalancbmk function responsible for the CPI variation in Cluster 1.

CPI prediction error of xalancbmk in the 2% configuration is 12.6%. The
root cause of these outliers is that the CPI of the cluster centroid does not
represent the average CPI of the instruction intervals in the cluster.

Figure C.6 explains this observation in more detail by showing the CPI
distribution within each of the four clusters selected by SimPoint for the 2%
error configuration of xalancbmk. In other words, we retrieved the CPI of
each 100m instruction interval within xalancbmk that SimPoint assigns to
each cluster and plotted their distribution. The red dots mark the CPI of
the selected simulation point and the numbers above each distribution report
the weight that SimPoint assigned to this cluster. SimPoint fundamentally
assumes that an instruction interval that is close to the center of the cluster
in terms of the (projected) BBV vector also yields close-to-average CPI.
Figure C.6, and all our previously presented results, demonstrate that this
assumption typically holds true, i.e., the red dots (BBV centroids) yield
close-to-average CPI for Cluster 0, 2, and 3. For Cluster 1 on the other hand,
the red dot is in the upper end of the CPI distribution.

Listing C.1 shows the xalancbmk function which contains the performance-
critical basic block in Cluster 1 and hence is the root cause of its CPI variation.
Xalancbmk converts XML into HTML and other formats, and this specific
function checks if a value map is contained within another. The performance
difference is caused by a load instruction which is part of the value map
dereferencing operation at line 6. The latency of this load varies significantly
throughout benchmark execution because locality is a property of the input
document, i.e., it determines to what extent xalancbmk accesses cache blocks
that are spatially or temporally close to each other. The result is that the
CPI of this cluster is high (i.e., up to 2.8) when locality is poor and low (i.e.,

138

6 Validating SimPoint

1

2
3 6 8 13 20 24 320 1B 2B 3B 4B 5B 6B

0%
5%

10%
15%
20%
25%
30%
35%

Evaluated Instructions

Er
ro

r

(a) 10 million (avg).

1

3 6
10 16 25 30 440 5B 10B 15B

0%

5%

10%

15%

20%

Evaluated Instructions

Er
ro

r

(b) 30 million (avg).
1

2 5
6 11 18 21 33 47

0 10B 20B 30B 40B 50B
0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions

Er
ro

r

(c) 100 million (avg).

1

2
3

7
13 20 28

0 50B 100B 150B 200B 250B
0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions

Er
ro

r
(d) 500 million (avg).

1

2
5 7 10 19 32

0 100B 200B 300B 400B 500B
0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions

Er
ro

r

(e) 1 billion (avg).

1

2
3 5

7 13 19 330 1B 2B 3B 4B 5B 6B
0%

20%
40%
60%
80%

100%
120%

Evaluated Instructions

Er
ro

r
445%

(f) 10 million (max).
1

2 4 8 16 27 380 5B 10B 15B
0%

20%
40%
60%
80%

100%
120%

Evaluated Instructions

Er
ro

r

(g) 30 million (max).

1

2
6 18

26 47
0 10B 20B 30B 40B 50B

0%
10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(h) 100 million (max).
1

2

3
4 7 13 20 38

0 50B 100B 150B 200B 250B
0%

10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(i) 500 million (max).

1

2 10 19 31
0 100B 200B 300B 400B 500B

0%
10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(j) 1 billion (max).

Figure C.7: Average and maximum CPI prediction error versus evaluation overhead
for MaxK values between 1 and 50. Selecting a MaxK value close to the error
saturation point balances error and evaluation overhead.

139

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

0.5) when locality is good.

6.3 Selecting Favorable SimPoint Parameters

Having confirmed that SimPoint can yield high accuracy, we now explore the
impact of SimPoint parameter selection. Our objective is to devise general
guidelines that architects can use to configure SimPoint to yield a favorable
balance between accuracy and evaluation overhead.

MaxK. The SimPoint parameter that has the most significant impact on
error and evaluation overhead is MaxK. The reason is that MaxK bounds
the number of simulation points that SimPoints can use for any benchmark
and setting it too low results in higher error whereas setting it too high
yields higher evaluation overhead because SimPoint returns more clusters.
Figure C.7 quantifies this relationship by comparing the average (Figures C.7a
to C.7e) and maximum CPI prediction error (Figures C.7f to C.7j) to the
number of evaluated instructions for MaxK values between 1 and 50.

Points that are on the Pareto front in Figure C.7 are red, and these points
are important because they strike a Pareto-optimal balance between CPI
prediction error and evaluation overhead, i.e., reducing error will result in
an increase in evaluation overhead and vice versa. Figures C.7a to C.7e
show that error improves with increasing MaxK and then saturates. We
note that saturation occurs with lower MaxK values for the larger interval
sizes. Computer architects should hence select MaxK values around the
saturation point as increasing MaxK beyond this increases overhead while only
marginally reducing error. To give a specific recommendation, we consider
MaxK values that are Pareto optimal with respect to both average and
maximal error and select the lowest MaxK value that achieves an average
error within one percentage point of the minimal average error, yielding
saturation MaxK values of 13, 16, 18, 13, and 10 for the 10m, 30m, 100m,
500m, and 1b interval sizes.

Figures C.7a to C.7e also show that fewer simulation points are needed to
achieve a target CPI prediction error with larger simulation points. For
example, Figure C.7a shows that MaxK must be set to 6 to achieve an error
below 4% with the 10m interval, whereas Figure C.7e shows that setting
MaxK to 3 is sufficient with the 1b interval. The reason is that larger
simulation points capture a larger part of benchmark execution and therefore
fewer are required to accurately predict average CPI. On the flip side, larger

140

6 Validating SimPoint

5 10 15 20 25 30

200b

400b

600b

800b

0.1

0.15

0.2

0.25

0.3

MaxK

In
st

ru
ct

io
n

Li
m

it

(a) 10 million (avg).

5 10 15 20 25 30

200b

400b

600b

800b

0.1

0.15

0.2

0.25

0.3

MaxK

In
st

ru
ct

io
n

Li
m

it

(b) 30 million (avg).

5 10 15 20 25 30

200b

400b

600b

800b

0.1

0.15

0.2

0.25

0.3

MaxK

In
st

ru
ct

io
n

Li
m

it

(c) 100 million (avg).

5 10 15 20 25 30

200b

400b

600b

800b

0.1

0.15

0.2

0.25

0.3

MaxK

In
st

ru
ct

io
n

Li
m

it
(d) 500 million (avg).

5 10 15 20 25 30

200b

400b

600b

800b

0.1

0.15

0.2

0.25

0.3

MaxK

In
st

ru
ct

io
n

Li
m

it

(e) 1 billion (avg).

5 10 15 20 25 30

200b

400b

600b

800b

0.7

0.8

0.9

1

MaxK

In
st

ru
ct

io
n

Li
m

it

(f) 10 million (max).

5 10 15 20 25 30

200b

400b

600b

800b

0.7

0.8

0.9

1

MaxK

In
st

ru
ct

io
n

Li
m

it

(g) 30 million (max).

5 10 15 20 25 30

200b

400b

600b

800b

0.7

0.8

0.9

1

MaxK

In
st

ru
ct

io
n

Li
m

it

(h) 100 million (max).

5 10 15 20 25 30

200b

400b

600b

800b

0.7

0.8

0.9

1

MaxK

In
st

ru
ct

io
n

Li
m

it

(i) 500 million (max).

5 10 15 20 25 30

200b

400b

600b

800b

0.7

0.8

0.9

1

MaxK

In
st

ru
ct

io
n

Li
m

it

(j) 1 billion (max).

Figure C.8: Saturating average and maximum CPI prediction error for instruction
coverage versus MaxK. High errors occur when SimPoint misses key benchmark
phases.

141

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

10 20 30 40 50

10

20

30

40

0

0.02

0.04

0.06

0.08

0.1

MaxK

D
im

en
si
on

s

(a) 10 million (avg).

10 20 30 40 50

10

20

30

40

0

0.02

0.04

0.06

0.08

0.1

MaxK

D
im

en
si
on

s

(b) 30 million (avg).

10 20 30 40 50

10

20

30

40

0

0.02

0.04

0.06

0.08

0.1

MaxK

D
im

en
si
on

s

(c) 100 million (avg).

10 20 30 40 50

10

20

30

40

0

0.02

0.04

0.06

0.08

0.1

MaxK
D
im

en
si
on

s
(d) 500 million (avg).

10 20 30 40 50

10

20

30

40

0

0.02

0.04

0.06

0.08

0.1

MaxK

D
im

en
si
on

s

(e) 1 billion (avg).

10 20 30 40 50

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

MaxK

D
im

en
si
on

s

(f) 10 million (max).

10 20 30 40 50

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

MaxK

D
im

en
si
on

s

(g) 30 million (max).

10 20 30 40 50

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

MaxK

D
im

en
si
on

s

(h) 100 million (max).

10 20 30 40 50

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

MaxK

D
im

en
si
on

s

(i) 500 million (max).

10 20 30 40 50

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

MaxK

D
im

en
si
on

s

(j) 1 billion (max).

Figure C.9: Saturating average and maximum CPI prediction error for dimensional-
ity versus MaxK. Dimensionality should be 10 or higher, and it is hence unnecessary
to deviate from the SimPoint default of 15.

142

6 Validating SimPoint

intervals also yield much higher evaluation overhead as reaching this accuracy
requires simulating 1.1 billion instructions with 10m intervals and 61 billion
instructions with 1b intervals; 1b intervals hence increase evaluation overhead
by 55.5×.

Benchmark coverage. Figure C.8 shows heat maps of average and max-
imum CPI prediction errors when we vary MaxK and collect BBVs from
the first 50 to 1,000 billion dynamic instructions of each benchmark. We let
average (maximum) errors saturate at 30% (100%) to improve readability,
i.e., the lightest dots in the heat maps represent errors of this magnitude
or higher. While the average errors are generally reasonable when MaxK is
sufficiently high, the maximum errors are high across the board. The reason
is that imagick has an important phase that does not occur in the first 1,000
billion instructions. The line across Figures C.8f to C.8j between 250 billion
and 450 billion instructions is due to xz selecting simulation points which are
not representative of its overall CPI. Architects should hence be cognizant of
the fact that the identified simulation points will only be representative of
the part of benchmark execution that they collect BBVs from.

Dimensionality. Figure C.9 reports the average and maximum error when
we sweep the validation space spanned by dimensionalities from 1 to 50
and MaxK from 1 to 50. Recall that dimensionality describes the number
of dimensions in the space that BBVs are projected onto before running
k-means clustering. The key takeaway is that both average and maximum
error improves with increasing dimensionality and MaxK, i.e., selecting a
higher MaxK cannot compensate for selecting too low dimensionality and
vice versa. More specifically, we find that selecting a dimensionality of at least
10 is sufficient; the SimPoint default dimensionality of 15 is hence reasonable.
While we do not observe any loss of accuracy with high dimensionality, it
marginally increases the runtime of the SimPoint tool.

BIC threshold. Figure C.10 plots the average and maximum CPI prediction
error versus evaluation overhead for all BIC thresholds between 0 and 1.0
in increments of 0.05. We fix MaxK at the saturation error points for each
instruction interval, i.e., 13, 16, 18, 13, and 10 for the 10m, 30m, 100m, 500m,
and 1b intervals, respectively, to ensure that we optimize the BIC threshold
on top of an efficient configuration. Figure C.10 shows that bringing the
BIC threshold down from the SimPoint default of 0.9 can reduce evaluation
overhead while maintaining low error, but setting the BIC threshold too low
yields high maximum errors. As in our MaxK analysis, we find a balance by
considering the BIC thresholds that are Pareto optimal for both average and

143

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

0

0.1

0.25 0.6 0.90.5B 1B 1.5B 2B 2.5B
0%
5%

10%
15%
20%
25%
30%
35%

Evaluated Instructions

Er
ro

r

(a) 10 million (avg).

0

0.05
0.4 0.7 0.8 1

2B 4B 6B 8B
0%

5%

10%

15%

20%

Evaluated Instructions

Er
ro

r

(b) 30 million (avg).
0

0.05
0.35

0.55 0.75 0.9 0.95
0 5B 10B 15B 20B 25B 30B 35B

0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions

Er
ro

r

(c) 100 million (avg).

0

0.25 0.65 0.8 0.9 1
20B 40B 60B 80B 100B 120B

0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions
Er

ro
r

(d) 500 million (avg).

0

0.05

0.1
0.65 0.8 0.9 1

50B 100B 150B
0%
2%
4%
6%
8%

10%
12%

Evaluated Instructions

Er
ro

r

(e) 1 billion (avg).

0

0.1

0.15 0.6 0.9 1
0.5B 1B 1.5B 2B 2.5B

0%

100%

200%

300%

400%

500%

Evaluated Instructions

Er
ro

r

(f) 10 million (max).
0

0.05
0.4 0.8 0.9 1

2B 4B 6B 8B
0%

20%
40%
60%
80%

100%
120%

Evaluated Instructions

Er
ro

r

(g) 30 million (max).

0

0.05
0.35

0.55 0.9 1
0 5B 10B 15B 20B 25B 30B 35B

0%
10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(h) 100 million (max).
0

0.05
0.1 0.65 0.9 1

20B 40B 60B 80B 100B 120B
0%

10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(i) 500 million (max).

0

0.05

0.1 0.65 0.9 1
50B 100B 150B

0%
10%
20%
30%
40%
50%
60%

Evaluated Instructions

Er
ro

r

(j) 1 billion (max).

Figure C.10: Average and maximum CPI prediction error versus simulation over-
head for BIC thresholds between 0 and 1 at saturation MaxKs. Moderately lowering
the BIC threshold reduces evaluation overhead while maintaining low error.

144

7 Related Work

maximum error and then select the lowest threshold that yields an average
error within one percentage point of the minimum average error for each
interval size. This yields BIC thresholds of 0.9, 0.8, 0.55, 0.9, and 0.65 for the
10m, 30m, 100m, 500m, and 1b intervals, respectively. The differences are
primarily caused by the subset of thresholds that are Pareto optimal. More
specifically, the 100m and 1b intervals have configurations close to the error
constraint that are Pareto optimal with both errors and therefore yield lower
BIC thresholds than the other intervals.

7 Related Work

Benchmark sampling. Sampled simulation methodologies divide the pro-
gram into representative samples that can be simulated to reduce simulation
runtime. The underlying motivation is that software applications consist
of regions with repetitive microarchitectural behavior, e.g., similar CPI or
number of cache misses. SimPoint [10]–[13], which we focus on in this work,
was one of the first approaches to appear, and many later approaches are
based on SimPoint. Pinpointing [21], for example, uses dynamic instrumen-
tation to collect BBVs. Other approaches adapt SimPoint to multi-threaded
simulation. Perelman et al. [22] proposes an approach that extends SimPoint
to analyze phase behavior in parallel programs and selects simulation points
based on this phase characterization. BarrierPoint [23] and LoopPoint [24]
also adapt SimPoint to multi-threaded benchmarks. BarrierPoint creates the
regions for selecting the representative intervals based on barriers, whereas
LoopPoint uses loop boundaries to create intervals.

Statistical simulation [25], [26] alternates between a fast low-detail simulation
mode and a slow high-detail mode and predicts target metrics (e.g., CPI)
from the measurements obtained during detailed simulation. A key benefit
of this approach is that the statistical confidence of the prediction can be
computed. Time-Based Sampling (TBS) [27] selects the representative por-
tions of the program by sampling based on time instead of instruction count,
and TaskPoint [28] proposes a technique for sampled simulation of task-based
programs. A small number of task instances are selected as representative
and simulated in detail while the remaining are fast-forwarded. LiveSim [29]
incrementally simulates the benchmark from memory checkpoints, i.e., check-
points are randomly selected for simulation, and metrics of interest (with
confidence) are reported in real-time.

145

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

Tracing mechanisms. The most related tracing mechanism to TraceDoctor
is TracerV [9], and we demonstrated that TracerDoctor yields higher per-
formance than TracerV in Section 5. Beyond the FireSim [5] ecosystem, a
plethora of hardware-based tracing tools exist [30]–[34]. Fundamentally, the
amount of trace data must be adapted to the bandwidth of the tracing inter-
face, and the insights that led to TraceDoctor are hence applicable to these
approaches as well. More specifically, it is generally beneficial to (i) provide
flexibility in selecting what information to trace, and (ii) empower users to
implement problem-specific filtering and compression on the host. Tracing
can also be performed in software, e.g., with perf [35] and strace [36], but
software-level tracing typically has a significant performance impact.

8 Conclusion

We have now presented TraceDoctor which is a versatile high-performance
tracing interface for FireSim. TraceDoctor minimizes simulator slowdown by
executing a configurable number of workers on the host to perform evaluation-
specific analyses on trace data in parallel with the FireSim simulation. We
used TraceDoctor to independently validate SimPoint as well as study the
accuracy versus evaluation overhead trade-off. We confirm that SimPoint is
accurate when configured to collect a sufficient number of simulation points
and explain that the residual error of SimPoint occurs when the CPI of the
cluster centroid is not representative of the average CPI of the instruction
intervals in the cluster. Interestingly, we find that relatively many and
relatively small simulation points yield low error and low evaluation overhead.
This is in contrast to current practice in the field where architects typically
select one or a few relatively large simulation points — which yields both
relatively high error and relatively high evaluation overhead.

Acknowledgments

We thank the anonymous reviewers for their feedback. We used the Experi-
mental Infrastructure for Exploration of Exascale Computing (eX3) for some
of our experiments; eX3 is supported by the Research Council of Norway
(Grant No. 270053). Magnus Jahre is supported by the Research Council of
Norway (Grant No. 286596).

146

References

References
[1] N. Binkert, B. Beckmann, G. Black, et al., “The Gem5 Simulator,”

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.
[2] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the

Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2011,
pp. 1–12.

[3] Synopsys, Synopsys VCS, 2023. Available: https://www.synopsys.
com/verification/simulation/vcs.html.

[4] W. Snyder, Verilator, 2023. Available: https://verilator.org.
[5] S. Karandikar, H. Mao, D. Kim, et al., “Firesim: FPGA-Accelerated

Cycle-Exact Scale-Out System Simulation in the Public Cloud,” in
Proceedings of the International Symposium on Computer Architecture,
ser. ISCA, IEEE Press, 2018, pp. 29–42.

[6] SPEC, SPEC CPU 2017, https://www.spec.org/cpu2017/, 2019.
[7] K. Asanović, R. Avizienis, J. Bachrach, et al., “The Rocket Chip Gener-

ator,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17, 2016. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[8] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “SonicBOOM: The
3rd Generation Berkeley Out-of-Order Machine,” in Fourth Workshop
on Computer Architecture Research with RISC-V, 2020.

[9] S. Karandikar, A. Ou, A. Amid, et al., “FirePerf: FPGA-Accelerated
Full-System Hardware/Software Performance Profiling and Co-Design,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020,
pp. 715–731.

[10] E. Perelman, G. Hamerly, and B. Calder, “Picking Statistically Valid
and Early Simulation Points,” in Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2003, pp. 244–255.

[11] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and More Flexible Program Analysis,” in Journal of Instruction Level
Parallelism (JILP), vol. 7, 2005, pp. 1–28.

147

https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://verilator.org
https://www.spec.org/cpu2017/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

[12] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribution
Analysis to Find Periodic Behavior and Simulation Points in Applica-
tions,” in Proceedings International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2001, pp. 3–14.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automati-
cally Characterizing Large Scale Program Behavior,” ACM SIGPLAN
Notices, vol. 37, no. 10, pp. 45–57, 2002.

[14] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” Computer, vol. 35, pp. 59–67, 2002.

[15] B. Gottschall, S. Santana, and M. Jahre, Balancing Accuracy and Eval-
uation Overhead in Simulation Point Selection, Zenodo, 2023. Available:
https://doi.org/10.5281/zenodo.8273178.

[16] AMD, Alveo U250 Data Center Accelerator Card, 2023. Available: ht
tps://www.xilinx.com/products/boards-and-kits/alveo/u250.
html.

[17] AMD, Alveo U280 Data Center Accelerator Card, 2023. Available: ht
tps://www.xilinx.com/products/boards-and-kits/alveo/u280.
html.

[18] Simula Research Laboratory, Experimental Infrastructure for Explo-
ration of Exascale Computing. Available: https://www.ex3.simula.
no/.

[19] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastruc-
ture, 2019. arXiv: 1912.05848 [cs.DC].

[20] D. Biancolin, S. Karandikar, D. Kim, et al., “FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2019, pp. 330–339.

[21] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing Representative Portions of Large Intel ® Itanium ® Pro-
grams with Dynamic Instrumentation,” in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2004, pp. 81–92.

[22] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C.
Dulong, “Detecting Phases in Parallel Applications on Shared Memory
Architectures,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2006, 10–pp.

148

https://doi.org/10.5281/zenodo.8273178
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.ex3.simula.no/
https://www.ex3.simula.no/
https://arxiv.org/abs/1912.05848

References

[23] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout, “Bar-
rierPoint: Sampled Simulation of Multi-Threaded Applications,” in
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 2–12.

[24] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson, “LoopPoint: Checkpoint-
Driven Sampled Simulation for Multi-Threaded Applications,” in Pro-
ceedings of the IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 604–618.

[25] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation Via Rigorous Statistical Sam-
pling,” in ACM SIGARCH Computer Architecture News, 2003, pp. 84–
97.

[26] M. Ekman and P. Stenstrom, “Enhancing Multiprocessor Architecture
Simulation Speed Using Matched-Pair Comparison,” in Proceedings of
the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2005, pp. 89–99.

[27] E. K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator
Using Time-Based Sampling,” in Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2013,
pp. 448–459.

[28] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé, “TaskPoint:
Sampled Simulation of Task-Based Programs,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2016, pp. 296–306.

[29] S. Hassani, G. Southern, and J. Renau, “LiveSim: Going Live with Mi-
croarchitecture Simulation,” in Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016,
pp. 606–617.

[30] ARM, ARM CoreSight Architecture, 2023. Available: https://develo
per.arm.com/Architectures/CoreSight%5C%20Architecture.

[31] Intel, Intel® 64 and IA-32 Architectures Software Developer Manuals,
2023. Available: https://intel.com/content/www/us/en/develope
r/articles/technical/intel-sdm.

[32] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas, “iWatcher: Effi-
cient Architectural Support for Software Debugging,” in Proceedings of
the International Symposium on Computer Architecture (ISCA), 2004,
p. 224.

149

https://developer.arm.com/Architectures/CoreSight%5C%20Architecture
https://developer.arm.com/Architectures/CoreSight%5C%20Architecture
https://intel.com/content/www/us/en/developer/articles/technical/intel-sdm
https://intel.com/content/www/us/en/developer/articles/technical/intel-sdm

Paper C Balancing Accuracy and Evaluation Overhead in Simulation ...

[33] SEGGER, SEGGER J-Trace Streaming Trace Probes, 2023. Available:
https://www.segger.com/products/debug-probes/j-trace/.

[34] AMD, AMD Xilinx Integrated Logic Analyzer, 2023. Available: https:
//www.xilinx.com/products/intellectual-property/ila.html.

[35] Linux, Perf Wiki, 2023. Available: https://perf.wiki.kernel.org/
index.php/Main%5C_Page.

[36] Linux, Strace – The Linux Syscall Tracer, 2023. Available: https://
strace.io/.

150

https://www.segger.com/products/debug-probes/j-trace/
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://perf.wiki.kernel.org/index.php/Main%5C_Page
https://perf.wiki.kernel.org/index.php/Main%5C_Page
https://strace.io/
https://strace.io/

References

151

ISBN 978-82-326-7606-4 (printed ver.)
ISBN 978-82-326-7605-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:52

Björn Gottschall

Time-Proportional
Performance Analysis for
Out-of-Order ProcessorsD

oc
to

ra
l t

he
si

s

D
octor al theses at N

TN
U

, 2024:52
Björn G

ottschall

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce

	Research Overview
	Introduction
	Research Scope
	Time-Proportional Performance Analysis
	Thesis Contributions

	Background
	Performance Analysis
	Sampling
	Instrumentation
	Tracing
	Event Analysis

	Statistical Sampling
	Software Performance Profilers
	Hardware-Assisted Performance Profilers
	Frontend Instruction Tagging Profilers
	Next-Committing Instruction Profilers
	Last-Committed Instruction Profilers

	Other Approaches to Performance Analysis

	Conclusion and Future Work
	Conclusion
	Future Work
	Multi-Threaded Workloads
	GPU Performance Profiling

	References
	Acronyms

	Publications
	TIP: Time-Proportional Instruction Profiling (Gottschall et al., 2021)
	Introduction
	Time-Proportional Profiling
	Dispatch and Software Profiling
	Oracle Profiling

	TIP: Time-Proportional and Practical Profiling
	Implementing TIP
	TIP Overhead Analysis

	Experimental Setup
	Results
	Profile Error
	Sensitivity Analyses

	Profiling Case Study
	Related Work
	Conclusion
	References

	TEA: Time-Proportional Event Analysis (Gottschall et al., 2023)
	Introduction
	Background and Motivation
	Time-Proportional Event Analysis
	Experimental Setup
	Results
	Average Accuracy
	Per-Instruction Accuracy
	Why Event-Driven Analysis Falls Short
	Sensitivity analysis

	Case Studies
	Related Work
	Conclusion
	References

	Balancing Accuracy and Evaluation Overhead in Simulation Point Selection (Gottschall et al., 2023)
	Introduction
	Background
	TraceDoctor
	Experimental Setup
	TraceDoctor Evaluation
	Validating SimPoint
	A Primer on SimPoint
	SimPoint Error
	Selecting Favorable SimPoint Parameters

	Related Work
	Conclusion
	References

	Blank Page

