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Abstract
We study immiscible two-phase flow of a compressible and an incompressible fluid inside 
a capillary tube of varying radius under steady-state conditions. The incompressible fluid is 
Newtonian and the compressible fluid is an inviscid ideal gas. The surface tension associ-
ated with the interfaces between the two fluids introduces capillary forces that vary along 
the tube due to the variation in the tube radius. The interplay between effects due to the 
capillary forces and the compressibility results in a set of properties that are different from 
incompressible two-phase flow. As the fluids move towards the outlet, the bubbles of the 
compressible fluid grows in volume due to the decrease in pressure. The volumetric growth 
of the compressible bubbles makes the volumetric flow rate at the outlet higher than at the 
inlet. The growth is not only a function of the pressure drop across the tube, but also of 
the ambient pressure. Furthermore, the capillary forces create an effective threshold below 
which there is no flow. Above the threshold, the system shows a weak nonlinearity between 
the flow rates and the effective pressure drop, where the nonlinearity also depends on the 
absolute pressures across the tube.

Keywords Two-phase flow · Compressibility · Bubble-growth · Rheology

1 Introduction

Hydrodynamic properties of the flow of multiple immiscible and incompressible flu-
ids, otherwise known as two-phase flow (Bear 1988; Dullien 1992; Blunt 2017; Feder 
et al. 2022), are controlled by a number of different factors: fluid properties such as the 
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viscosity contrast and surface tension between the fluids, driving parameters such as 
the applied pressure drop or the flow rate, and geometrical properties such as the size 
and shape of the space in which the fluids are flowing. The combined effects of these 
factors make two-phase flow different and more complex than single phase flow. The 
dimensionless parameters that play a key role to define the flow properties are the ratio 
between the viscous and capillary forces, referred to as the capillary number, and the 
ratio between the viscosities of the two fluids. Depending on the values of these param-
eters, the flow generates different types of fingering patterns (Chen and Wilkinson 1985; 
Lenormand and Zarcone 1985; Måløy et al. 1985; Løvoll et al. 2004; Zhao et al. 2019) 
or stable displacement fronts (Lenormand and Touboul 1988) during invasion processes 
where one fluid displaces another in a porous medium.

Displacement processes are transient. If one continues to inject after breakthrough, 
the flow enters a steady state characterized by a situation where the macroscopic flow 
properties fluctuate or remain constant around well-defined averages. A more general 
form of steady-state flow can be achieved by continuously injecting both fluids simulta-
neously. In this case, the dynamics at the pore scale might have fluid clusters breaking 
up and forming, while the macroscopic flow parameters still have well-defined averages.

Over the last decade, it has become clear that steady-state flow deviates from the lin-
ear Darcy relationship (Darcy 1856) between the total flow rate and pressure drop over 
a range of parameters. Rather, one finds a power law relationship between pressure drop 
and the volumetric flow rate (Tallakstad et  al. 2009; Rassi et  al. 2011) in that range. 
In terms of the capillary number, this range is intermediary, with linearity appearing 
both for lower and higher values (Sinha et al. 2017; Gao et al. 2020; Zhang et al. 2021). 
Theoretical work to understand the physics behind the nonlinearity has appeared in, 
e.g., Tallakstad et al. (2009); Sinha and Hansen (2012); Zhang et al. (2021), and com-
putational studies have been performed using Lattice Boltzmann simulations (Yiotis 
et  al. 2013) and dynamic pore network modeling (Sinha et  al. 2021, 2017). It is now 
believed that a fundamental mechanism behind this nonlinearity is the capillary barriers 
at the pore throats, which create an effective yield threshold. When the viscous forces 
increase, they overcome the capillary barriers creating new flow paths. This increases 
the effective mobility and thus the nonlinear behavior appears (Roux and Herrmann 
1987). The disorder in the pore-space properties, such as the pore-size distribution (Roy 
et  al., 2021) and the wetting angle distribution (Fyhn et  al., 2021), therefore play key 
roles in determining the value of the exponent relating the volumetric flow rate and the 
pressure drop in the nonlinear regime.

The majority of the analytical and numerical approaches mentioned above consider the 
two fluids to be incompressible, whereas many of the experiments and applications use air 
as one of the fluids. Air is strongly compressible, which can enhance the complex pore-
scale mechanisms such as trapping and coalescence (Leverett 1941; Li and Yortsos 1994). 
Compressibility is relevant to a wide range of applications with liquid and gas transport in 
porous media, for example, CO2 transport and storage (Reynolds and Krevor 2015; Abi-
doye et al. 2015; Iglauer et al. 2019) and the transport in fuel cells (Niblett et al. 2020). 
Another class of applications where the compressibility plays a key role are those involv-
ing phase transitions of the fluids such as boiling and condensation. There are industrial 
applications where such processes are of high importance, for example aerospace vehicle 
thermal protection (Huang et al. 2017), high power electronics cooling systems (Gedupudi 
et al. 2011; Li et al. 2012, 2020) and chemical reactors (Bremer and Sundmacher 2019). 
These applications utilize the high specific surface area of a porous medium with fluid 
flowing inside, which enhances the heat and mass transfer rates (Sapin et  al. 2016; Sun 
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et  al. 2011). There are also natural processes such as drying of soil (Rossi and Nimmo 
1994) where a liquid to gas transition takes place.

In this article, we present a study of two-phase flow of a mixture of compressible and 
incompressible fluids in a capillary tube with varying radius. We consider two fluids, one is 
an incompressible Newtonian fluid obeying Poiseuille flow in the steady state whereas the 
other is a compressible ideal gas, where the viscosity is assumed to be negligible. The flu-
ids flow as a series of bubbles and droplets under a constant pressure drop along the tube.

In case of two-phase flow of two incompressible fluids in a corresponding capillary 
tube, it has been found that the volumetric flow rate (Q) depends on the square root of the 
pressure drop ( ΔP ) along the tube minus a threshold pressure ( Pt ), that is, Q ∼

√
ΔP − Pt 

(Sinha et al. 2013). One primary goal of the present work is to determine how this constitu-
tive equation changes when one of the two fluids is compressible.

A secondary goal of this work is to provide a basis for dynamic pore network modeling 
(Blunt 2001; Meakin and Tartakovsky 2009; Joekar-Niasar and Hassanizadeh 2012; Sinha 
et al. 2021) of compressible-incompressible fluid mixtures. This opens the possibility for 
incorporating thermodynamic effects in such models such as boiling. However, in order to 
explore the effect of compressibility on the rheological properties in general, we consid-
ered a higher range of pressure drops here, whereas some specific applications mentioned 
earlier in this section may need a different range. We also note that the other dominating 
computational model in this context, the Lattice Boltzmann model (Gunstensen et al. 1991; 
Ramstad et al. 2012), can only incorporate fluids that are weakly compressible (Qiu et al. 
2017; Guo et al. 2020).

We describe in Sect. 2.1 the equations that govern the flow through the capillary tube. 
In Sect. 2.2, we introduce the boundary conditions used, i.e., how we inject alternate com-
pressible and incompressible fluid into the tube. Sect.  2.3 describes how the governing 
equations are integrated in time.

Section 3 presents the results of our investigation. Section 3.1 defines what we mean by 
steady-state flow in the context of expanding bubbles. In Sect. 3.2, we investigate how the 
compressible bubbles grow as they advance along the tube, thus increasing the overall flow 
rate of the fluids. Section 3.3 presents the relation between volumetric flow rate and pres-
sure drop at both the inlet and outlet.

We summarize our results in Sect. 4. Section 5 contains the description of the videos 
provided in the electronic supplementary material.

2  Methodology

The capillary tube considered in this work is filled with an incompressible and a com-
pressible fluid, immiscible to each other, which flow through it. The fluids are separated by 
menisci associated with a surface tension. In order to introduce a variation in the capillary 
forces along the tube, we consider a periodic variation in the radius of the capillary tube 
along the flow direction x. The incompressible fluid is a viscous Newtonian liquid obeying 
Hagen-Poiseuille flow whereas the compressible fluid is an inviscid ideal gas. The flow 
occurs as a plug flow with a series of alternate bubbles and droplets of the two fluids as 
illustrated in Fig. 1. There is no fluid film along the tube walls and therefore no coalescence 
or snap off taking place inside the tube during the flow. We will refer the compressible and 
the incompressible fluid segments as bubbles and droplets, respectively.
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2.1  Governing Equations

We assume that at a given time the system contains N compressible bubbles denoted by 
i = 1, 2,… ,N from left to right as shown in Fig. 1. The volume Vi and the pressure Pi of 
the ith bubble are connected through the ideal gas law,

where ni is the number of moles of gas present inside the bubble, R is the ideal gas con-
stant and T is the temperature. The volume of an incompressible droplet on the other hand 
will remain constant throughout the flow and the flow rate will depend on the pressures of 
the two compressible bubbles bordering it. The volumetric flow rate of the incompressible 
droplet between i and i + 1 is denoted by Qi , and follows the constitutive equation (Dullien 
1992; Washburn 1921),

where � is the viscosity of the incompressible fluid and Pc(x) is the capillary pressure at x. 
Here we assumed that the variation in the tube radius only affects the capillary pressure Pc 
along the tube and therefore the area A in the above equation is considered to be the aver-
age cross-sectional area of the tube. This is an approximation that is commonly used in 
dynamic pore network models (Sinha et al. 2021). Furthermore, the bubbles are assumed to 
be smaller in size compared to the period of the tube so that the flow of the incompressible 
bubbles in the slowly-changing area can be considered locally as a Poiseuille flow (Panton 
2013). The volume of a compressible bubble is therefore given by, Vi = A(xr

i
− xl

i
) where xl

i
 

and xr
i
 are the positions of the left and right menisci of the ith bubble, respectively.

Here we consider the incompressible fluid to be more wetting with respect to the pore 
walls than the compressible fluid, thus determining the sign of Pc in Equation 2. We model 
Pc by using the Young-Laplace equation (Dullien 1992),

where r(x) is the radius of the tube at x. Here � = � cos(�) where � is the surface tension 
between the fluids and � is the wetting angle of the fluid with respect to the tube wall. The 
variation in the radius of the tube shown in Fig. 1 is modeled by

(1)PiVi = niRT ,

(2)Qi =
A2

8��(xl
i+1

− xr
i
)

[
Pi − Pc(x

r
i
) − Pi+1 + Pc(x

l
i+1

)
]
,

(3)Pc(x) =
2�

r(x)
,

Fig. 1  Illustration of the tube geometry and the indexed variables. The shaded fluid represents the non-wet-
ting compressible gas and the white fluid represents the wetting incompressible liquid. There are N = 6 
bubbles here indicated by the numbers i = 1,… , 6 . The indexed variables Pi , Vi and ni , respectively, cor-
respond to the pressure, volume and moles of the ith bubble whereas Qi corresponds to the flow rate of the 
droplet between ith and (i + 1) th bubbles.
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where L is the tube length, w is the average radius, a is the amplitude of oscillation and h is 
the number of periods.

2.2  Boundary Conditions

The system is driven by a constant pressure drop ΔP = P0 − PL where P0 and PL are the pres-
sures at the inlet ( x = 0 ) and outlet ( x = L ), respectively. The two fluids are injected alterna-
tively at the inlet. Depending on the fluid that is being injected and the fluid that is leaving the 
tube, there will be different configurations as illustrated in Fig. 2. When a bubble is entering at 
the inlet [Figure 2(a)] or leaving at the outlet [Figure 2(c)], the pressure in that bubble is given 
by P0 or PL , respectively. This is because the compressible fluid has no viscosity and thus the 
pressure inside a bubble is uniform. The pressures inside all other bubbles are calculated using 
Equation 1. When a droplet is entering at the inlet [Figure 2(b) and (c)] or leaving at the outlet 
[Figure 2(a) and (b)], the respective flow rates Q0 and QN are given by,

whereas the flow rates of the remaining droplets are calculated using Equation 2.
The simulation is started with the tube completely filled with the incompressible fluid. The 

two fluids are then injected alternately at the inlet using small time steps. Whenever the injec-
tion is switched to a different fluid, a new menisci is created and the injection is continued for 
that fluid until the bubble or the droplet being injected has reached a given length, bC or bI , 
respectively. For each new bubble or droplet, a new value for bC or bI is determined using the 
following scheme:

where k is chosen from a uniform distribution of random numbers between 0 and 1. FC and 
FI are the tentative values of the fractional flows for the bubbles and droplets, respectively. 

(4)r(x) =
1

2

[
w + 2a cos

(
2h�x

L

)]

(5)

Q0 =
A2

8��xl
1

[
P0 − P1 + Pc(x

l
1
)
]
and

QN =
A2

8��(L − xr
N
)

[
PN − Pc(x

r
N
) − PL

]
,

(6)bC = bmin + kFCbmax and bI = bmin + kFIbmax ,

Fig. 2  Illustration of different configurations where bubbles and droplets are colored as gray and white, 
respectively. In a, a bubble is entering at the inlet and therefore P1 = P0 there. In c, a bubble is leaving at 
the outlet, therefore PN = PL there. A droplet is entering at the inlet in (b) and (c), and leaving at the outlet 
in a and b. The flow rates of such droplets are calculated using Equation 5.
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The two parameters bmax and bmin set the smallest and largest allowed sizes of any bub-
ble or droplet. We consider here bmin = L∕104 and bmax = L∕50 . The parameters bC and bI 
decide the initial sizes of the bubbles and droplets just after they detach from the inlet. For 
the compressible fluid, this determines the number of moles ni inside a bubble,

which remains constant for that bubble throughout the flow after it gets detached from the 
inlet.

2.3  Updating the Menisci Positions

At any time, the two menisci bordering a droplet inside the tube move with the same veloci-
ties. The velocities of the menisci are calculated from the velocities vi of the droplets using 
Equations 2 and 5,

We solve these ordinary differential equations using an explicit Euler scheme, thus updat-
ing positions of all menisci by choosing a small time step Δt.

Depending on the positions of the menisci and the corresponding capillary pressures, the 
bubbles may compress or expand. If a bubble compresses at any time step, it means the left 
and right interfaces of that bubble approach each other. This necessitates the choice of time 
step Δt to be sufficiently small, as otherwise, the two menisci around that bubble will collapse 
after the time step. We deal with this situation in the following way. First we calculate a time 
Δt1 that is needed to pass one pore-volume of incompressible fluid through the tube,

Next, we check for every bubble i if (vi−1 − vi) > 0 , that is, whether the two menisci bor-
dering the bubble are approaching each other in that time step. If this criterion is found 
to be true for any of the bubbles j, we measure the time it will take for the two menisci to 
collapse,

After calculating Δt1 and Δtj
2
 , we determine a time Δt for that step from,

which means that if there is a possibility for a bubble to collapse during the time step, we 
chose Δt from the minimum of a∗Δt1 and all of b∗Δtj

2
 . If there is no possibility of collapse, 

we use Δt equal to a∗Δt1 . For the simulations presented in this paper, we set a∗ = 10−8 and 
b∗ = 10−6.

(7)ni =
AbCP0

RT
,

(8)
dxr

i

dt
=

dxl
i+1

dt
= vi =

Qi

A
.

(9)Δt1 =
8��L2

A(P0 − PL)
.

(10)Δt
j

2
=

xr
j
− xl

j

vj−1 − vj
.

(11)Δt = min(a∗Δt1, b
∗Δt

j

2
) ,
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3  Results and Discussions

We perform steady-state simulations considering a tube of length L = 100 cm with 
w = 1 cm , a = 0.25 cm and h = 30 (Equation 4). The viscosity of the incompressible fluid 
is � = 0.001Pa.s , the ideal gas constant is R = 8.31 J∕(mol.K) and the temperature is kept 
fixed throughout the simulation at T = 293K . We fix Fc = 0.4 (Equation 6) which sets the 
volumetric fractional flow of the compressible fluid at the inlet around that value. We per-
form simulations varying the pressure drops ( ΔP = P0 − PL ) as well as the absolute outlet 
pressure with different values of the surface tension, �.

3.1  Steady‑State Flow

The steady state is defined by the volumetric flow rates of the fluids fluctuating around a 
stable average. Due to the expansion of the compressible fluid, which we will discuss in 
a moment, the volumetric flow rate of the fluids changes as the fluids flow towards the 
outlet. We define the quantities Qi

T
 , Qi

C
 , Qi

I
 as the average steady-state flow rates for the 

total, compressible and incompressible fluids at the inlet and Qo
T
 , Qo

C
 , Qo

I
 as those at the 

outlet. The inlet and outlet flow rates are measured by tracking the displacements of the 
first meniscus nearest to the inlet and the last meniscus near the outlet, which are either the 
left or the right meniscus of the first ( i = 1 ) and the last ( i = N ) bubbles. The instantane-
ous flow rates of the bubbles and droplets are measured as qi

C
= A

∑
Δxr

1
∕
∑

Δt for xl
1
= 0 , 

qi
I
= A

∑
Δxl

1
∕
∑

Δt for xl
1
> 0 and qo

C
= A

∑
Δxl

N
∕
∑

Δt for xl
N
= L , qo

I
= A

∑
Δxr

N
∕
∑

Δt 
for xR

N
< L . This measurement is performed after every 0.05 pore-volumes of fluid are 

injected and the sum is therefore over the time steps in between. The total flow rates are 
therefore given by, qi,o

T
= q

i,o

C
+ q

i,o

I
 . This provides the measurement of the injected and out-

let flow rates as a function of the injected pore volumes or of the time. In Fig. 3, we plot qi
T
 

as a function of the pore-volumes ( Vp ) injected for (a) PL = 1 kPa and (b) PL = 100 kPa . 
The pore-volume Vp is defined as the ratio between the total volume of the inject fluids and 

Fig. 3  Total volumetric flow rate qi
T
 at the inlet as a function of the injected pore volume Vp for the outlet 

pressures (a) PL = 1 kPa and (b) PL = 100 kPa . Here the surface tension � = 0.09N∕m . The steady-state 
values of the flow rates are measured by taking averages in the range of 20 to 40 pore volumes as indicated 
by the dashed lines. Here we only show the data sets corresponding to the pressure drops ΔP = 1, 2, 4 and 
8 kPa in order to keep the clarity, however all the data sets show the similar trend of reaching the steady 
state.
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the volume of the total pore space of the tube, which provides an estimate of how many 
times the pore space was flushed with the fluids. All the plots show that the total flow 
rate qi

T
 increases with time at the beginning of the flow. This increase in qi

T
 is due to the 

decrease in the effective viscosity of the system caused by the injection of inviscid com-
pressible gas into the tube filled with viscous incompressible fluid. After the injection of 
a few pore volumes, qi

T
 fluctuates around a constant average ( Qi

T
 ) shown by the horizontal 

dashed lines which defines the steady state. Notice that, the averages are the same for the 
same values of ΔP for the two different outlet pressures PL , however the fluctuations are 
different. This we will see more in the following, that the outlet pressure PL plays a signifi-
cant role in the flow properties in addition to the pressure drop ΔP . We run our simulations 
for 40 pore volumes of fluid where the steady-state averages are taken after 20 pore vol-
umes injected to ensure that a steady state has been reached.

3.2  Bubble Growth

As a compressible bubble moves along the tube, the volume of the bubble increases due to 
the decrease in the pressure towards the outlet (Vazquez et al. 2010). The bubble can also 
grow due to other mechanisms, such as the increase in temperature or a phase transition 
between liquid and gas phases (Welch 1998; Kenning et al. 2006), but these phenomena 
are not studied here. A simulation with a single bubble inside a short tube is shown in 
the supplementary material which illustrates that the bubble increases in size as it flows 
towards the outlet. To understand how this growth depends on different flow parameters in 
the steady state, we define the growth function GC(x) by,

where V0 and V(x) are the volume of a given bubble initially after detaching from the 
inlet and when its center is at x. We measure GC by including all the bubbles that are not 
attached to the inlet or outlet and calculate the time average value of (V(x) − V0)∕V0 in the 
investigated time interval, where x is the center of the bubble.

Figure 4 shows the variation of GC(x) along the tube for two different outlet pressures, 
PL = 1 kPa and 100 kPa where we plot the results for the same set of pressure drops ΔP . 
These results are with zero surface tension, � = 0 . There are a few details to note here. 
First, the plots show that GC(x) increases with an increase in ΔP . In addition, GC(x) also 
depends on the absolute pressures at the inlet and outlet, since we can see that the curves 
are nonlinear functions of x for PL = 1 kPa , whereas for PL = 100 kPa , they show linear 
behavior. Furthermore, GC(x) approaches ΔP∕PL at x = L for all the data sets.

To explain the dependency of GC(x) on ΔP and PL , we recall Equation 1 and rewrite 
Equation 12 as,

where P(x) is the pressure inside a bubble at x. For x = L , P(x) = PL and therefore 
GC(L) = ΔP∕PL as observed. In Fig. 5, we plot P(x), averaged over different time steps in 
the steady state, for the two outlet pressures, PL = 1 kPa and 100 kPa . Both of the plots show 
linear variation along x with the slope −ΔP . We therefore have P(x) = −xΔP∕L + PL + ΔP 
and thus,

(12)GC(x) =
V(x) − V0

V0

,

(13)GC(x) =
P0 − P(x)

P(x)
,
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where nP = ΔP∕PL . This leads to

which explains the concave and linear variation of GC as function of x/L observed in Fig. 4 
a and b, respectively. The growth of the bubbles along the tube is therefore a function of 
nP = ΔP∕PL.

In Figure 6, we plot GC∕nP for the two outlet pressures PL with the same sets of values 
of nP for (a) � = 0 and (b) � = 0.3N∕m . The plots show that the results for the same values 
of nP follow the same curves, irrespective of the outlet pressures PL . Furthermore, for the 
non-zero surface tension case in Fig. 6 (b), GC also shows a periodic oscillation along x 

(14)
GC(x)

nP
=

x∕L

1 + nP(1 − x∕L)
,

(15)
GC(x)

nP
∼

⎧
⎪⎨⎪⎩

1

nP

�
1

1 − x∕L
− 1

�
for nP ≫ 1 ,

x∕L for nP ≪ 1 ,

Fig. 4  Plot of the bubble growth GC(x) in the steady state as a function of the scaled position x/L inside the 
tube for zero surface tension, � = 0 . The two plots show the results for the same set of pressure drops ΔP 
with different outlet pressures PL.

Fig. 5  Variation of the pressure P(x) [kPa] inside a compressible bubble along the tube during steady state 
flow. P(x) shows a linear behavior for different values of ΔP and PL.
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when both the nP and PL are small, that is, for PL = 1 kPa and nP ≤ 1 . In addition, there is 
no data point for nP ≤ 0.3 with PL = 1 kPa , as the movement of the bubbles stopped due 
to high capillary barriers. This suggests the existence of an effective threshold pressure, 
below which there will be no flow through the tube. This threshold depends on both � and 
PL , which we will explore more in the following section. We show the different characteris-
tics of flow in the videos provided in electronic supplementary material.

3.3  Effective Rheology

Equations 1 and 2 resist analytical solutions even in the case when there is only a single 
compressible bubble in the tube. This is due to the pressure in the compressible bubble 
being inversely proportional to the difference in position of the two menisci surrounding 
it, whereas the motion of the two surrounding incompressible fluids is determined by the 
cosine of the positions of the same menisci. These equations, even in this simplest case, are 
therefore highly nonlinear with an essential singularity lurking in the very neighborhood 
where we seek solutions. We therefore stick to numerical analysis in the following.

Due to the volumetric growth of the compressible bubbles during their flow towards the 
outlet, the volumetric flow rate varies along the tube. In addition, this volumetric growth is 
a function of the pressures, making the average saturation and the effective viscosity of the 
two fluids inside the tube pressure dependent. These two mechanisms together control the 
effective rheological behavior of the steady-state flow. In Fig. 7, we show the variation of 
the volumetric flow rates ( Qi,o

T
 , Qi,o

C
 , Qi,o

I
 ) as functions of the pressure drop ΔP for the outlet 

pressure PL = 1 kPa and for different values of the surface tension ( � ). Note the differences 
between the inlet and outlet flow rates for the total and for the each component of flow. For 
the incompressible fluid, there is no increase in the outlet flow rate compared to its inlet 
flow rate (third row in Fig. 7) whereas there is a noticeable increase in the outlet flow rate 
of the compressible fluid (second row in Fig. 7). This increase in Qo

C
 effectively increases 

the total flow rate at the outlet (first row in Fig. 7). The dashed line in Fig. 7 has a slope 
equal to 1. The total flow rates show deviations from this dashed line. For the inlet, Qi

T
 

shows small deviations from the dashed line for 𝛾 > 0 at small ΔP . Whereas at the outlet, 
the deviations are significantly higher due to the increase in the volumetric growth of the 
compressible fluid.

Fig. 6  Variation of the bubble growth GC , scaled with nP = ΔP∕PL , with x/L. Results are plotted for the 
same sets of nP for two different values of PL . The left and right figures correspond to � = 0 and 0.03N∕m , 
respectively. In each plot, the line corresponds to PL = 1 kPa and the symbols correspond to PL = 100 kPa.
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Another point to note in Fig. 7 is that there is a minimum value of ΔP , below which 
there is no data point available. This is due to the existence of a threshold pressure below 
which the flow stops. In the supplementary material we show a simulation video in this 
regime where one can observe that the flow of the bubbles stops at a certain time step. The 
threshold is due to the capillary forces at the menisci between the two fluids that create 
capillary barriers at the narrowest points along the tube. Such threshold was also observed 
in the case of two-phase flow of two incompressible fluids in a tube with variable radius 
(Sinha et  al. 2013). There, it was shown analytically that the average flow rate Q in the 
steady state varies with the applied pressure drop ΔP as, Q ∼

√
ΔP2 − P2

t
 where Pt is the 

Fig. 7  Plot of the flow rates for the total ( Qi,o

T
 ), compressible ( Qi,o

C
 ) and incompressible ( Qi,o

I
 ) fluids at the 

inlet (left column) and at the outlet (right column) for PL = 1 kPa as a function of ΔP . The different sets in 
each plot correspond to different values of the surface tension indicated in the legends. The quantities are 
divided with Q� = 1m3∕s and P� = 1 kPa , respectively, to make them dimensionless. The dashed line in 
each plot has a slope 1.
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effective threshold pressure. When |ΔP| − Pt ≪ Pt , this relationship translates to 
Q ∼

√�ΔP� − Pt , that is, the flow rate varies with the excess pressure drop to the power of 
0.5. The threshold pressure depends on the surface tension and on the configuration of the 
menisci positions inside the tube. If the total capillary barrier is higher than the applied 
pressure drop, the flow stops. This is similar here for the two-phase flow with one of the 
fluids being compressible.

We assume a general relation between the average volumetric flow rates Qi,o

T
 and the 

pressure drop ΔP as,

where �i,o is the corresponding exponent. In order to find both the effective threshold pres-
sure PT and the exponent �i,o from the measurements of Qi,o

T
 , we adopt an error minimiza-

tion technique that was used in earlier studies (Sinha and Hansen 2012; Fyhn et al. 2021). 
There we choose a series of trial values for Pt and calculate the mean square error � for the 
linear least square fit by fitting the data points with log(Q) ∼ log(ΔP − Pt) . Then we select 
the value of Pt that corresponds to the minimum value of � , implying the best fit of the data 
points with Equation 16. This is illustrated in the insets of Fig. 8 (a) and (b). The slope 
for the selected threshold Pt provides the exponent �i,o . The variation of the total inlet and 
outlet flow rates Qi,o

T
 with the excess pressure drop (ΔP − Pt) are plotted in Fig. 8 for the 

two outlet pressures PL = 1 and 100 kPa . The data sets show agreement with Equation 16 
with the selected values of Pt and � . There is a noticeable difference between the slopes for 
the inlet and outlet flow rates for PL = 1 kPa whereas for PL = 100 kPa they are similar. 
For PL = 100 kPa the data points for both Qi

T
 and Qo

T
 follow a slope of ≈ 1.0 whereas for 

PL = 1 kPa , the data points for Qi
T
 and Qo

T
 follow the slopes of ≈ 1.0 and 1.3, respectively. 

These are indicated by the dashed lines in the figures.
The variations of Pt and �i,o with the surface tension � are plotted in Fig. 9. The data 

points were calculated by considering different ranges of ΔP and taking averages over the 
ranges, and the corresponding standard deviations are plotted as error bars. The thresh-
old pressure Pt is zero at � = 0 and then increases gradually with � which shows that the 
threshold appears due to capillary forces. The increase in Pt with � appears to be linear 
here which is similar to the case of two incompressible fluids, where the linear depend-
ence of Pt on the surface tension was shown analytically (Sinha et al. 2013). Additionally 
for the compressible flow here, the thresholds also depend on the outlet pressure PL . For 

(16)Q
i,o

T
∼ (ΔP − Pt)

�i,o

Fig. 8  Plot of the volumetric inlet flow rate Qi

T
 as a function of the excess pressure drop (ΔP − Pt) for 

PL = 1 kPa and 100 kPa , where the values of Pt are obtained from a minimization of the least square fit 
error � . Here Q� = 1m3∕s and P� = 1 kPa . The minimization is illustrated in the insets of a and b for 
� = 0.05N∕m (green) and 0.09N∕m (purple). The dashed lines in a and b have a slope 1 whereas in c, the 
lower and upper dashed lines have slopes 1 and 1.3, respectively.
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the lower outlet pressure PL = 1 kPa , the thresholds are systematically higher compared 
to those for PL = 100 kPa for the whole range of � . Furthermore, the exponents �i,o also 
depend on the outlet pressure as seen from Figs. 9 (b) and (c). The difference is more vis-
ible for the exponents related to the outlet flow rates than the inlet. For the inlet flow rate, 
�i has values around ≈ 0.95 and 1.02 for PL = 1 kPa and 100 kPa , respectively, showing 
almost linear dependence for both the cases. For the outlet flow rates, �o remains close to 
�i for PL = 100 kPa whereas for PL = 1 kPa , �o increases to ≈ 1.3 . This increase in �o com-
pared to �i reflects the dependence of the volumetric growth GC(x) of the bubbles on PL , 
indicating an underlying dependence of the rheological behavior on the absolute inlet or 
outlet pressures. However, at this point we are unable to describe how the two parameters 
Pt and � scale with PL , which needs further study. In addition, we have only considered an 
intermediate volumetric fractional flow FC = 0.4 here, which also controls � and Pt (Roy 
et al. 2021). If the fractional flow or the saturation is made near to either 0 or 1, the system 
will approach single-phase flow and the linearity in the rheology of the Newtonian fluids 
should be retrieved.

Compared to the study of a single capillary tube here, a porous medium is composed of 
many interconnected pores of different sizes. Existing studies of two-phase flow in porous 
media have shown the existence of different power-law regimes for the relation between 
volumetric flow rate and pressure drop. These regimes are characterized by different expo-
nents. The studies involve experiments (Tallakstad et  al. 2009, 2009; Rassi et  al. 2011; 
Sinha et al. 2017; Gao et al. 2020; Zhang et al. 2021), Lattice Boltzmann simulations (Yio-
tis et al. 2013), pore-network modeling (Sinha and Hansen 2012; Sinha et al. 2017) and 
analytical calculations (Tallakstad et  al. 2009; Sinha and Hansen 2012; Roy et  al. 2019; 
Zhang et al. 2021). There are three regimes, an intermediate nonlinear regime where the 
flow rate Q increases at a rate much faster than the applied pressure drop ΔP with a power 
law exponent larger than one and up to around 2.5. There are in addition two linear regimes 
for either smaller (Yiotis et al. 2013; Gao et al. 2020; Zhang et al. 2021) or larger (Yiotis 
et al. 2013; Sinha and Hansen 2012; Sinha et al. 2017) volumetric flow rates than the non-
linear regime. This allows the definition of a lower and upper crossover pressure drop. The 
origin of the power law in a porous network and the crossovers to different regimes, can be 
explained by two dominant factors, the rheology of individual pores and the distribution 
of the threshold pressures in the network (Roy et al. 2019). A simple explanation can be 
drawn from a disordered network of threshold resistors (Roux and Herrmann 1987) where 

Fig. 9  Variation of the threshold pressure Pt and the exponents �i,o as functions of the effective surface 
tension � for PL = 1 and 100 kPa . Pt increases with the increase of � and the values are much higher for 
PL = 1 kPa compared to PL = 100 kPa . The exponent �i for the inlet flow rate are close to 1 for both the val-
ues of PL whereas for the outlet flow rate �o ≈ 1.3 for PL = 1 kPa . For PL = 100 kPa , �o remains close to �i . 
The dashed horizontal lines indicate the value 1.0 of the y axis.
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each resistor has a threshold voltage to start conducting the current. In a network with links 
with a distribution of thresholds, there will be a regime when new conducting paths will 
appear while increasing the global pressure drop. The increase in the flow rate through 
each path together with the increase in the number of paths leads to an effective increase 
in Q faster than ΔP . This results in the nonlinear exponent being higher than 1, the value 
of which depends on the distribution of the thresholds in each link (Roy et al. 2019). The 
linear regime above this nonlinear regime appears from all the available paths being con-
ducting whereas the linear regime below appears from the flow being in single percolating 
channels, which are governed by the rheology of individual pores. According to this expla-
nation, the experimental (Gao et al. 2020; Zhang et al. 2021) and numerical (Yiotis et al. 
2013) observations of two-phase flow in porous media showing linear variation of flow rate 
in the low pressure regime therefore indicate that the flow in the single channels consisting 
of many pores are linear, which is similar to what we have found for the lower outlet pres-
sure in the present compressible/incompressible flow case.

4  Conclusions

We have studied the flow of alternating compressible bubbles and incompressible droplets 
through a capillary tube with variable radius. The motion of the bubbles was given by the 
model Equations 1 and 2, thus assuming the compressible fluid to be an ideal gas with zero 
viscosity, whereas the incompressible fluid is Newtonian. The incompressible fluid is more 
wetting than the compressible gas, but not to a degree that films form. We switch between 
injecting the compressible and incompressible fluid at intervals so that the fractional flow 
rate is essentially constant at the inlet. We fix the pressure drop along the tube in addition 
to an ambient pressure. This creates steady-state flow conditions in the tube.

The compressible bubbles expand as they move from the higher pressure region at the 
inlet towards the lower pressure at the outlet. This expansion accelerates the incompress-
ible fluid, thus making the volumetric flow rate larger at the outlet than at the inlet. The 
lower the ambient pressure is, the stronger this effect is.

We measure volumetric flow rate at the inlet, finding essentially a linear relationship 
between the volumetric flow rate and the pressure drop. However, there is a threshold pres-
sure that needs to be overcome in order to have flow through the tube. At the outlet, we find 
that the volumetric flow rate is still linear in the excess pressure drop when the ambient 
pressure is low. However, when the ambient pressure is high, the volumetric flow rate at 
the outlet becomes proportional to the excess pressure to a power of around 1.3.

This behavior is very different from that of two incompressible fluids moving through a 
corresponding tube: Here the volumetric flow rate, being the same at the inlet and the out-
let, is proportional to the square root of the excess pressure.

We expected the flow rate-pressure drop constitutive relations to be different in this 
compressible/incompressible case than that of two incompressible fluids. However, that we 
should find linearity was a big surprise. A precise explanation as to why this is so, is still 
lacking.

Besides these surprising results, this work makes a first step in modeling of compressi-
ble/incompressible fluid mixtures in dynamic network models. We may then envision using 
more sophisticated equations of state for the compressible fluid beyond the ideal gas law. 
This allows the consideration of, e.g., phase transitions such as boiling and condensation in 
porous media.



29Steady‑State Two‑Phase Flow of Compressible and Incompressible…

1 3

Finally, we like to point out that we have not considered film-flow or contact line pin-
ning in this study. Pinning of the contact lines will change the relation between the capil-
lary force at the interfaces and the shape of the tube, which is determined by two more 
fixed parameters: the surface tension and the wetting angle. If the pinning is due to surface 
roughness at scales much finer than the variations in the tube radius, this will result in 
an effective wetting angle different from the one expected for smooth surfaces (see Blunt 
2017, pp 11-14). Hence, we do not expect our results to be qualitatively different in this 
case. If, on the other hand, the roughness is on the same scale as the radius variations, we 
are dealing with a tube that essentially has a different shape than the one we are consider-
ing. Even in this case, we do not expect qualitative changes from the results we report. 
However, there will most probability be quantitative changes. Different tube shapes were 
studied by Lanza et al. for an immiscible mixture of a yield stress fluid and a Newtonian 
fluid, finding a quantitative difference between different tube shapes (Lanza et  al. 2022; 
Talon et al. 2014). However, both the fluids were incompressible in that study, therefore a 
possible future extension of both of these studies would be to include a compressible fluid 
together with a non-Newtonian fluid in a capillary.

The film flow on the other hand will introduce parallel components of the two fluids in 
the system whereas in our present problem the two fluid components are always in series 
combination. Depending on the thickness of the films, this may change the effective rela-
tionship between the flow rate and the pressure drop. Film flow can be observed when the 
pores contain rough grain surfaces and corners (Chen et  al. 2018; Cejas et  al. 2018) or 
when a fluid phase is completely wetting (Aursjø et al. 2014), whereas in case of drainage 
dominated flow the film flow may be neglected. Experiments have also shown that grav-
ity plays a role in controlling the active zone of film flow in a porous media (Moura et al. 
2019). Experiments with the same porous media with different types of fluids have shown 
that the nonlinear exponent � was smaller for the fluids that show strong film flow (Aursjø 
et al. 2014) compared to those without film flow (Tallakstad et al. 2009). Fluid wettabilities 
in this context strongly affects the appearance of films as well as the rheological nonlin-
earity in general (Zhang et al. 2022; Fyhn et al. 2021). How the introduction of films or 
changing the wettability of the fluids will affect the results of the present study is therefore 
a question for the future.

5  Supplementary Material

The electronic supplementary material contains videos showing different flow character-
istics. In these videos we considered a tube with L = 10 cm , w = 1 cm , a = 0.25 cm and 
h = 5 (Equation 4). The simulations were performed for PL = 1 kPa and � = 0.2N∕m . The 
compressible bubbles are colored with magenta whereas the incompressible droplets are 
colored with black. The videos are not in real time. We show four different simulations 
with different values of ΔP : 

(a) Flow of a single bubble of compressible gas in incompressible fluid. Here ΔP = 5 kPa . 
The video shows the increase in the volume of the bubble as it approaches the outlet.

(b) Injection of multiple compressible bubbles and incompressible droplets at a very low 
pressure drop, ΔP = 0.3 kPa . The flow stops after a certain time when several inter-
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faces appeared in the tube. This shows the existence of a total capillary barrier, which 
is higher than the applied pressure drop here.

(c) Two-phase flow of multiple compressible bubbles and incompressible droplets at a 
low pressure drop, ΔP = 0.4 kPa . Here the bubbles speed up and slow down as they 
flow, showing the combined effect of the surface tension and the shape of the tube. The 
bubbles also grow in volume towards the outlet.

(d) Two-phase flow of multiple compressible bubbles and incompressible droplets at a 
higher pressure drop, ΔP = 3 kPa . The bubbles do not show any significant slowing 
down in this case, indicating the capillary forces being negligible compared to the 
viscous pressure drop. The volumetric expansion of the compressible bubbles can also 
be observed here.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11242- 022- 01893-2.
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