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a b s t r a c t

This paper presents a 3-D adaptive line-of-sight (ALOS) path-following algorithm for autonomous
vehicles, marine craft, and aircraft. The origins of the cross- and vertical-track errors are proven to be
uniform semiglobal exponential stable (USGES). The stability proof is based on a kinematic amplitude-
phase representation of the North-East-Down (NED) positional rates instead of the classical Euler angle
rotation matrix representation. Parameter adaption is used to obtain integral action such that the
vehicle converges to the path in the presence of winds, waves, and ocean currents. Typical applications
are guidance and path-following control systems for autonomous vehicles, marine craft, and aircraft,
where the horizontal- and vertical-plane motions are strongly coupled.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Autonomous vehicles, marine craft, and aircraft can follow
path in 2-D and 3-D space by using line-of-sight (LOS) guid-
nce laws to compute setpoints to the altitude/depth and head-
ng/course autopilots; see Beard and McLain (2012), Breivik and
ossen (2005), Fossen (2021), Lekkas and Fossen (2013) and
anushevsky (2011). The objective of a path-following controller
s to follow a predefined path independent of time; that is, there
re no temporal constraints. This means that no restrictions are
laced on the temporal propagation along the path (Aguiar et al.,
008). The study in this article is limited to path-following control
ystems that can be implemented as interconnected systems. The
dvantage is that a conventional autopilot can be used in the
nner control loop, while the LOS guidance law is implemented
n the outer control loop.

.1. 2-D LOS guidance laws for path following

Many vehicle control systems use proportional LOS guidance
aws for path following, where the proportional gain is the inverse
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of the look-ahead distance. For 2-D path-following problems, the
LOS guidance law can mimic the heading angle command of an
experienced navigator (Healey & Lienard, 1993). Applications to
marine craft are discussed by Breivik and Fossen (2009), Fos-
sen et al. (2003) and Pettersen and Lefeber (2001). A similar
approach has been applied to small uncrewed aerial vehicles
(UAVs) by Nelson et al. (2007). This work uses a vector field sur-
rounding the path generating course commands to guide the UAV
towards the desired path. A comparative study of the LOS and
vector-field guidance laws are found in Caharija et al. (2015). Pro-
portional guidance laws also guide missiles; see Siouris (2010),
and Yanushevsky (2011). Model-based predictive control (MPC)
laws have been designed for LOS guidance by numerous authors;
see Liu et al. (2015), Oh and Sun (2010), Pavlov et al. (2009)
and Rout and Subudhi (2021). Uniform global asymptotic stability
(UGAS) of the proportional LOS guidance law was first proven
by Pettersen and Lefeber (2001). Later, Fossen and Pettersen
(2014) have shown that the origin of the tracking error dynamics
is USGES. This guarantees strong convergence and robustness
properties to perturbations (Pettersen, 2017).

Despite the effectiveness and popularity of proportional LOS
guidance laws, they have limitations when the vehicle is exposed
to drift forces caused by winds, waves, and ocean currents. The
consequence can be significant tracking errors during path fol-
lowing. The standard solution to this problem is integral LOS
(ILOS); see Børhaug et al. (2008). The ILOS guidance law has
been successfully implemented in many applications; see Cahar-
ija (2014) and Caharija et al. (2016). Extensions to path following
for curved paths have been made by Lekkas and Fossen (2014).
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he integral state in the ILOS guidance law can also be replaced
y a parameter for adaptive sideslip compensation (Fossen et al.,
015). Furthermore, Fossen and Lekkas (2015) have derived indi-
ect and direct adaptive control laws for LOS path following. An
lternative design method is the reduced-order extended state
bserver for estimation of the crab angle, known as the ELOS
uidance law (Liu et al., 2017). A comparative study of the ALOS,
LOS, and ILOS guidance laws for 2-D path following is found
n Fossen (2023a).

.2. 3-D LOS guidance laws for path following

The horizontal-plane LOS guidance principle has been ex-
ended to 3-D path following by adding a second LOS guidance
aw for altitude/depth control by assuming that the motions
etween the horizontal and vertical planes are decoupled; see Ca-
arija (2014) and Lekkas and Fossen (2013). This work assumes
hat the roll motions can be neglected in stability analysis. Several
-D path-following algorithms have been compared for UAVs
y Pelizer et al. (2017). This study concluded that the propor-
ional LOS guidance law has smaller tracking errors for straight-
ine path following than the vector-field guidance law (Beard &
cLain, 2012, Ch. 10) and the virtual target L1-based guidance

aw (Park et al., 2007). Monte Carlo simulations have been used to
nalyze five 3-D path-following algorithms by Sujit et al. (2014),
nd robustness to wind loads and tuning are discussed in detail.
owever, the main limitation of the algorithms above is the lack
f integral action to compensate for drift. In addition, the sta-
ility analysis is not valid for non-zero roll angles and couplings
etween the horizontal- and vertical-plane motions.

.3. Main contributions

The paper’s primary objective is 3-D path following specified
y waypoints where the cross- and vertical-track errors are min-
mized for a moving vehicle without knowing the speed. The
ehicle should converge to and follow a 3-D straight-line path
ithout speed requirements and not synchronize to a virtual
arget (moving particle) along the path (Breivik & Fossen, 2005). A
undamental result of the paper is the ALOS guidance law for 3-D
ath following, which extends the 2-D results of Fossen (2023a).
he guidance law is derived using a 3-D kinematic amplitude-
hase representation of the NED differential equations (Fossen,
023b). An essential theoretical contribution is the USGES sta-
ility proof, which guarantees that the origins of the cross- and
ertical-track errors converge exponentially to zero. In addition,
he stability analysis is valid for non-zero roll angles and coupled
orizontal- and vertical-plane motions.

. Kinematics

For marine craft and aircraft, the motion components in the
ODY frame {b} are defined as surge, sway, heave, roll, pitch
nd yaw. The NED reference frame is denoted by {n}. During
ath following a third reference frame {p} transforming the NED
rame to a frame with an axis parallel to the path is introduced;
ee Fig. 1. Consider a straight-line segment given by two way-
oints (xni , y

n
i , z

n
i ) and (xni+1, y

n
i+1, z

n
i+1) expressed in {n}. Then the

ath-tangential coordinate system {p} has its origin located at
xni , y

n
i , z

n
i ) and the xp-axis is pointing towards the next waypoint

n n n
xi+1, yi+1, zi+1).

2

.1. Along-, cross- and vertical-track errors

The along-, cross- and vertical-track errors (xpe , y
p
e , z

p
e ) expressed

n {p} are given by the product of two basic rotation matrices,
hich rotate the NED tracking errors an azimuth angle πh about

the z axis and an elevation angle πv about the resulting y axis from
the first rotation. This is mathematically equivalent to⎡⎢⎣xpe
ype
zpe

⎤⎥⎦ = R⊤

y,πvR
⊤

z,πh

⎛⎝⎡⎣xn

yn

zn

⎤⎦−

⎡⎣xni
yni
zni

⎤⎦⎞⎠ (1)

where pn
= [xn, yn, zn]⊤ is the vehicle’s position vector expressed

in {n}. The rotation matrices are

Ry,πv =

⎡⎣ cπv 0 sπv
0 1 0

−sπv 0 cπv

⎤⎦Rz,πh =

⎡⎣cπh −sπh 0
sπh cπh 0
0 0 1

⎤⎦ (2)

where s · = sin(·) and c · = cos(·), and

πh = atan2(yni+1 − yni , x
n
i+1 − xni ) (3)

πv = atan2
(
−(zni+1 − zni ),

√
(xni+1 − xni )2 + (yni+1 − yni )2

)
(4)

.2. NED kinematic differential equations

Let vb
= [u, v, w]

⊤ be the vehicle’s linear velocity vector ex-
ressed in {b}. Consequently, the kinematic differential equation
s (Fossen, 2021, Ch. 2)

˙
n

= Rn
bv

b (5)

here Rn
b is the Euler angle rotation matrix (zyx convention)

n
b =

⎡⎣cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

⎤⎦ (6)

.3. Amplitude-phase form of the NED kinematic differential equa-
ions

When analyzing the stability properties of the ALOS guidance
aw in Section 4, a 3-D amplitude-phase representation of the
inematic differential equation (5) will be used. Proposition 1
ummarizes the kinematic model.

roposition 1 (3-D Amplitude-Phase Form). For a vehicle with
urge velocity 0 < umin ≤ u ≤ umax, the kinematic differential
quation (5) for the NED positional rates can be expressed by

ẋn = Uh cos(ψ + βc) (7)

˙
n

= Uh sin(ψ + βc) (8)

żn = −Uv sin(θ − αc) (9)

here the phase angles are

c = tan−1
(
v sin(φ) + w cos(φ)

u

)
(10)

βc = tan−1
(
v cos(φ) − w sin(φ)

Uv cos(θ − αc)

)
(11)

and the amplitudes Uh and Uv are the horizontal and the vertical
speed components, respectively, given by

Uv = u
√
1 + tan2(αc) (12)

U = U cos(θ − α )
√
1 + tan2(β ) (13)
h v c c
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Fig. 1. LOS guidance geometry. The desired heading and pitch angles, ψd = χd − βc = πh − βc − tan−1(ype/∆h) and θd = γd + αc = πv + αc + tan−1(zpe /∆v), are
etermined such that the vehicle speeds Uh and Uv are directed towards a point on the path specified by the look-ahead distances ∆h and ∆v .
S

z

w

roof. See Fossen (2023b).

Note that under the influence of the environment, i.e., winds
or aircraft, or winds, waves, and ocean currents for marine craft,
he velocity vector vb will be changed by the environmental
orces. If the linear velocities u, v, and w change, αc and βc given
y (10) and (11) change. The environmental disturbances can
e simulated using the concept of the relative velocity vector,
hich is the difference between the vehicle velocity vb and the

low velocity vectors (Fossen, 2021). During straight-line path
ollowing the following assumption will be made:

ssumption 1. The angles αc and βc are constant during path
ollowing such that α̇c = 0 and β̇c = 0.

This is true for straight-line path following of vehicles mov-
ng at a constant speed. However, in practice, Assumption 1
an be relaxed to nearly constant to accommodate situations
here the speed varies slowly due to time-varying environmental
isturbances.

emark 1. For zero roll, φ ≡ 0, (10)–(11) reduce to

c = tan−1
(w
u

)
(14)

βc = tan−1
(

v

Uv cos(θ − αc)

)
θ=0
= tan−1

(v
u

)
(15)

ince cos(−αc) = cos(− tan−1(w/u)) = u/Uv where Uv = (u2
+

2)1/2. The decoupled horizontal-plane model for aircraft (Beard
& McLain, 2012, Ch. 2.4), and marine craft (Fossen, 2021, Ch. 2.5)
are obtained by expressing (7)–(8) as

ẋn = Uh cos(χ ), ẏn = Uh sin(χ ) (16)

where χ := ψ + βc is the course over ground (COG) and Uh =

(u2
+ v2)1/2 is the speed over ground (SOG). The phase angle βc

is recognized as the crab angle. For the vertical plane (9) reduces
to, żn = −Uv sin(γ ), where γ := θ − αc is the flight-path angle.

2.4. Differential equations for the along-, cross- and vertical-track
errors

The tracking-error dynamics expressed in {p} is found by
time differentiation of (1) and substitution of (7)–(9). This is
mathematically equivalent to⎡⎢⎣ẋpe
ẏpe
p

⎤⎥⎦ = R⊤

y,πvR
⊤

z,πh

⎡⎣Uh cos(ψ + βc)
Uh sin(ψ + βc)

⎤⎦ (17)

że −Uv sin(θ − αc) χ

3

Expanding the last two rows of (17) corresponding to the cross-
and vertical-track errors, yields

ẏpe = Uh sin(ψ + βc − πh) (18)

żpe = Uh sin(πv) cos(ψ + βc − πh) − Uv cos(πv) sin(θ − αc) (19)

For control design, it is advantageous to express the vertical-track
differential equation (19) as a function of the term sin(θ−αc−πv).
ubstituting (13) into (19) yields

˙
p
e = Uv cos(θ − αc)

√
1 + tan2(βc) sin(πv) cos(ψ + βc − πh)

− Uv cos(πv) sin(θ − αc) (20)

Application of the trigonometric identity for the difference of two
angles, sin(θ−αc −πv) = sin(θ−αc) cos(πv)−cos(θ−αc) sin(πv),
to (20) gives

żpe = Uv sin(πv) cos(θ − αc)
√
1 + tan2(βc) cos(ψ + βc − πh)

− Uv sin(πh) cos(θ − αc) − Uv sin(θ − αc − πv)
= −Uv sin(θ − αc − πv)
+ Uv sin(πv) cos(θ − αc)

·

(√
1 + tan2(βc) cos(ψ + βc − πh) − 1

)
(21)

Finally, substituting (13) into (21) yields

żpe = −Uv sin(θ − αc − πv) +
Uh sin(πv)√
1 + tan2(βc)

·

(√
1 + tan2(βc) cos(ψ + βc − πh) − 1

)
(22)

3. Conventional LOS guidance laws

To better grasp the proposed guidance law, this section briefly
reviews the conventional methods for proportional LOS guidance.

3.1. Proportional LOS guidance laws

For fixed-wing aircraft, it is common to control the course
angle χ . The desired course angle χd can be computed using the
vector-field guidance law (Beard & McLain, 2012, Ch. 10)

χd = πh − χ∞
2
π

tan−1
(

ype
∆h

)
(23)

here ∆h > 0 is the user specified look-ahead distance and
∞

∈ (0, π/2] defines the path approach angle when starting
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ar away. Note that the slope πh of the desired path is given by
3). Eq. (18) with χ = ψ + βc gives

˙
p
e = Uh sin(χ − πh) (24)

Assume that the course autopilot achieves perfect tracking such
that χ = χd. Then

˙
p
e = Uh sin

(
−χ∞

2
π

tan−1
(

ype
∆h

))
(25)

f χ∞
∈ (0, π/2], the origin ype = 0 can be shown to be uniformly

globally asymptotically stable (UGAS) by using Lyapunov’s direct
method (Nelson et al., 2007). Also note that the vector-field
guidance law (23) is equivalent to the classical proportional LOS
guidance law

χd = πh − tan−1
(

ype
∆h

)
(26)

if χ∞
= π/2. For this case, we can use sin(tan−1(x/d)) =

x/
√
d2 + x2 to obtain the cross-track error

ẏpe = −
Uh√

∆2
h + (ype )2

ype (27)

onsequently, Lyapunov stability theory guarantees that the equi-
ibrium point ype = 0 of (27) is USGES (Fossen & Pettersen, 2014).
he concept of a virtual target can also be used to guarantee
hat the aircraft follows the path: see Breivik and Fossen (2005)
nd Park et al. (2007). A clear distinction between LOS guidance
nd the L1 controller developed by Park et al. (2007) is that
he LOS look-ahead distance ahead of the vehicle is along the
ath. In contrast, the L1 distance is the radius around the vehicle.
ence, the reference point is the intersection of this circle and the
esired path. This resembles enclosure-based LOS (Fossen, 2021,
h. 12.4).
Marine craft, however, can operate at very low speeds Uh.

n such cases, neither the course angle χ nor the crab angle
c will be well defined and unsuited for feedback control. This

is why marine craft use heading autopilots to control the yaw
angle ψ instead of χ . If a heading command (Healey & Lienard,
1993 Fossen, 2021, Ch. 12.5)

ψd = πh − βc − tan−1
(

ype
∆h

)
(28)

is applied to (18) under the assumption that the heading autopilot
achieves perfect tracking ψ = ψd, we obtain the error dynamics
(27). Unfortunately, formula (28) requires knowledge of the crab
angle βc , which depends on the environment. Similarly, the angle
αc must be known when applying the proportional LOS guidance
law to altitude or depth control. ILOS is the standard technique
to compensate for the unknown angles αc and βc .

3.2. ILOS guidance laws

ILOS can be used to cancel drift (sideslip due to βc) in the
horizontal plane; see Børhaug et al. (2008), Caharija et al. (2016,
2015), Fossen and Lekkas (2015), Fossen et al. (2015) and Lekkas
and Fossen (2014). This is based on the assumption that βc is
nearly constant. Caharija (2014) and Lekkas and Fossen (2013)
have proposed extensions to the vertical plane under the as-
sumption that the motions between the horizontal and vertical
planes are decoupled and that the roll-induced motions can be
neglected. The next section presents a novel adaptive LOS guid-
ance law for coupled horizontal- and vertical-plane motions and
compensation of the unknown angles α and β .
c c

4

4. ALOS guidance law for 3-D path following

The main result of the paper is the ALOS guidance law

ψd = πh − β̂c − tan−1
(

ype
∆h

)
(29)

˙̂
βc = γh

∆h√
∆2

h + (ype )2
ype (30)

θd = πv + α̂c + tan−1
(

zpe
∆v

)
(31)

˙̂αc = γv
∆v√

∆2
v + (zpe )2

zpe (32)

for coupled horizontal- and vertical-plane motions governed by
(18) and (22). Here, ∆h > 0 and ∆v > 0 are the user specified
look-ahead distances, γh > 0 and γv > 0 are the adaptive
gains, and β̂c and α̂c are the parameter estimates of βc and αc ,
espectively. The stability analysis assumes that the heading and
ltitude/depth autopilots achieve perfect tracking such that ψ =

d and θ = θd. The ALOS guidance law can be robustified by using
he parameter projections

˙̂
βc = γh

∆h√
∆2

h + (ype )2
Proj(β̂c, ype ) (33)

˙̂αc = γv
∆v√

∆2
v + (zpe )2

Proj(α̂c, zpe ) (34)

instead of (30) and (32). This restricts the parameter estimates
to a compact set |β̂c | ≤ Mθ̂ and |α̂c | ≤ Mθ̂ where Mθ̂ = Mθ + ϵ,
and ϵ > 0 is a positive constant chosen such that Mθ̂ is slighter
larger than Mθ where |βc | ≤ Mθ and |αc | ≤ Mθ . Furthermore,

Proj(θ̂ , τ ) =

{(
1 − c(θ̂ )

)
τ if |θ̂ | > Mθ and θ̂⊤τ > 0

τ otherwise
(35)

where c(θ̂ ) = min{1, (θ̂2 − M2
θ )/(M

2
θ̂

− M2
θ )} is a special case

of the parameter projection algorithm by Krstic et al. (1995, Ap-
pendix E). As shown in Appendix A, the projection modifications
(33)–(34) ensure semiglobal stability properties. Inserting (29)
and (31) into (18) and (22), yields

ẏpe = Uh sin
(
β̃c − tan−1

(
ype
∆h

))
(36)

żpe = Uv sin
(
α̃c − tan−1

(
zpe
∆v

))
+ g(t, ype , β̃c) (37)

where α̃c = αc − α̂c , β̃c = βc − β̂c and

g(t, ype , β̃c) =
Uh sin(πv)√
1 + tan2(βc)

·

(√
1 + tan2(βc) cos

(
β̃c − tan−1

(
ype
∆h

))
− 1

)
(38)

pplication of sin(a−b) = sin(a) cos(b)−cos(a) sin(b) to (36)–(37)
gives

ẏpe = −Uh sin
(
tan−1

(
ype
∆h

))
cos(β̃c)

+ Uh cos
(
tan−1

(
ype
∆h

))
sin(β̃c) (39)

żpe = −Uv sin
(
tan−1

(
zpe
))

cos(α̃c)

∆v
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+ Uv cos
(
tan−1

(
zpe
∆v

))
sin(α̃c)

+ g(t, ype , β̃c) (40)

pplication of, sin(tan−1(x/d)) = x/
√
d2 + x2 and cos(tan−1(x/d))

= d/
√
d2 + x2, to (39)–(40) yields the nonlinear cascaded system

Σ1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
żpe = −

Uv∆v√
∆2
v+(zpe )2

(
cos(α̃c)

zpe
∆v

− sin(α̃c)
)

+ g(t, ype , β̃c)
˙̃αc = −γv

∆v√
∆2
v+(zpe )2

Proj(α̂c, z
p
e )

(41)

Σ2 :

⎧⎪⎪⎨⎪⎪⎩
ẏpe = −

Uh∆h√
∆2

h+(ype )2

(
cos(β̃c)

ype
∆h

− sin(β̃c)
)

˙̃
βc = −γh

∆h√
∆2

h+(ype )2
Proj(β̂c, y

p
e )

(42)

ote that ˙̃αc = −˙̂αc and
˙̃
βc = −

˙̂
βc follow from Assumption 1. The

1 and Σ2 subsystems are nonautonomous systems since Uh, Uv
nd g(t, ype , β̃c) vary with time. In some cases, it is advantageous
o let the look-ahead distances ∆h and ∆v vary with time as well,
.g., by using optimization techniques (Pavlov et al., 2009) or the
xplicit formula by Lekkas and Fossen (2012).
The main stability results for the cascade Σ1–Σ2 are sum-

arized by Lemmas 1–2 and Theorem 1, which assumes that
ssumption 1 holds.

emma 1. The origin (zpe , α̃c) = (0, 0) of the Σ1 subsystem is
SGES if the perturbation g(t, ype , β̃c) ≡ 0.

roof. See Appendix A.

emma 2. The origin (ype , β̃c) = (0, 0) of the Σ2 subsystem is
SGES.

roof. See Appendix B.

heorem 1. Let the altitude/depth and heading autopilots guar-
ntee that θ = θd and ψ = ψd, and u is kept constant by the
peed autopilot. Then, the ALOS guidance laws (29) and (31) with
arameter update laws (33)–(34), applied to the cross- and vertical-
rack errors (18) and (22) with adaptive gains γh > 0 and γv > 0,
render the origins (ype , β̃c) = (0, 0) and (zpe , α̃c − α̃ss

c ) = (0, 0)
of the cascade Σ1–Σ2 USGES. Here α̃ss

c is a (small) constant steady-
state value of α̃c , which vanishes for πv = 0 (constant depth) or
βc = 0 (zero sideslip).

Proof. See Appendix C.

Remark 2. The projection mechanism included in (33)–(34)
enables us to show USGES, a property that implies robustness
against unmodeled dynamics and exogenous bounded distur-
bances. From a practical point of view, it is observed that for most
vehicles, the use of (30) and (32) instead of (33)–(34) still exhibit
excellent path following, but in this case, there are no formal
guarantees.

5. Case study with the Remus 100 AUV

The 6-DOF mathematical model of the Remus 100 AUV is
available in the Matlab MSS toolbox (Fossen & Perez, 2004). The
script remus100.m describes an AUV of length 1.6 m, diameter of
19 cm and mass 31.9 kg (Fig. 2). The vehicle’s maximum speed,
2.5 m/s, is obtained by running the propeller at 1525 rpm when
there are no ocean currents. Depth is controlled by using the stern
5

Fig. 2. The Remus 100 at the Applied Underwater Robotics Laboratory (AUR-Lab)
at NTNU.

Fig. 3. Desired path and waypoints in the horizontal and vertical planes. The
maximum depth of the vehicle is 100 m.

plane δs, while the tail rudder δr controls the yaw angle. The
heading and depth autopilots are implemented as PID controllers

δs = −kpθ ssa(θ̃ ) − kdθ θ̇ − kiθ

∫ t

0
ssa(θ̃ )dτ (43)

δr = −kpψ ssa(ψ̃) − kdψ ψ̇ − kiψ

∫ t

0
ssa(ψ̃)dτ (44)

where θ̃ = θ − θd, ψ̃ = ψ − ψd and ssa(·) is the smallest-
signed angle confining the argument to the interval [−π, π ). The
controller gains were chosen as kpθ = 2.0, kdθ = 3.0, kiθ = 0.1,
kpψ = 4.8, kdψ = 12.0 and kiψ = 0.38. The vehicle speed was not
controlled. Instead, the propeller revolutions were initialized at
1000 rpm and increased to 1300 rpm. This increased the vehicle’s
initial speed from 1.0 m/s to a cruise speed just below 2.0 m/s
(Fig. 5).

The ALOS guidance laws (29) and (31) with parameter update
laws (33)–(34) were implemented using ∆v = ∆h = 20 m and
γv = γh = 0.002. The sampling time was chosen as 20 Hz. The
desired pitch and yaw angles and their true values are shown
in Fig. 4, confirming that ψ ≈ ψd and θ ≈ θd. The corre-
sponding waypoints are shown in Fig. 3. Switching between the
waypoints is important when implementing straight-line path
following control systems. The next waypoint (xni+1, y

n
i+1, z

n
i+1) is

selected based on whether or not the vehicle lies within a sphere
of acceptance with radius R around (xni+1, y

n
i+1, z

n
i+1). The ocean

current in the horizontal plane was initialized at 0.5 m/s with
direction 150 degrees (Fig. 5), while the vertical component was
chosen as 0.1 m/s. After 500 s the current direction was changed
from 150 to 160 degrees using a Gauss–Markov process. Finally,
the current speed was increased from 0.5 m/s to 0.65 m/s at time
t = 800 s.

The parameter estimates α̂c and β̂c track the true parameters
α and β with excellent accuracy, also when the current speed
c c
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Fig. 4. ALOS desired pitch angle θd and yaw angle ψd together with their true
alues obtained by using the depth and heading autopilots.

Fig. 5. Vehicle surge and sway velocities, speed and ocean current
peed/direction in the horizontal plane versus time.

nd direction change rapidly (Fig. 6). Note the angle of attack
and β are different from αc and βc , and that the vehicle will

ideslip with an angle βc ≈ 8.0 degrees after 1400 s. The accuracy
f the ALOS guidance law is demonstrated in Fig. 6 where ype and
p
e converge to zero. The initial transient is caused by a 90 degrees
nitial heading error, while the jumps in the tracking errors are
ue to waypoint switching.

. Conclusions

This paper has presented a 3-D adaptive line-of-sight (ALOS)
uidance law for path following inspired by the proportional
ine-of-sight (LOS) guidance laws used by ancient navigators.
6

Fig. 6. The vertical-plane angles α, αc and α̂c , the horizontal-plane angles β , βc

and β̂c and cross-track/vertical-track errors versus time.

The ALOS guidance law performed excellently during depth- and
heading-changing maneuvers when the vehicle was exposed to
a stochastic ocean current. Parameter adaption successfully re-
moved offsets caused by the environment. The origins of the
cross- and vertical-track errors were proven uniform semiglobal
exponential stable (USGES). This extends previous results for 3-
D LOS path following where the horizontal- and vertical-plane
motions are assumed to be decoupled. The assumption that the
roll motions are zero, such that a reduced-order model could be
used in the stability analysis, was also removed. Instead, a 3-
D amplitude-phase representation of the differential equations
for North-East-Down positional rates was used to analyze the
stability of the cross- and vertical-track errors. The motivation
for this was to avoid the classical Euler angle rotation matrix
representation, which complicates the stability analysis. Typical
applications are autonomous vehicles, marine craft, and aircraft
motion control systems for path following. Computer simulations
using a high-fidelity model of an autonomous underwater vehicle
confirm the theoretical results.

Appendix A. Proof of Lemma 1

The vertical-plane error dynamics (41) without perturbation,
g(t, ype , β̃c) ≡ 0, can be expressed by

ż = Uv Ωv(z) (Avz + dv(t, z)) (A.1)

where z = [z1, z2]⊤ := [zpe , α̃c]
⊤, and

Av =

[
−

1
∆v

1
]
, Ωv(z) =

∆v√
2 p 2

(A.2)

−κv 0 ∆v + (ze )
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here the speed Uv given by (12) is time varying and lower
ounded by 0 < Umin

v ≤ Uv , κv = γv/Umin
v > 0, ∆v > 0, and

v(t, z) =

⎡⎣ 1
∆v
(1 − cos(α̃c)) z

p
e + sin(α̃c) − α̃c

κv

(
zpe −

Umin
v

Uv
Proj

(
α̂c, z

p
e
))

⎤⎦
= d̄v(t, z) + κv

Umin
v

Uv

[
0
Q

]
(A.3)

here 0 < (Umin
v /Uv) ≤ 1 and

d̄(t, z) =

⎡⎣ 1
∆v
(1 − cos(α̃c)) z

p
e + sin(α̃c) − α̃c

κv

(
1 −

Umin
v

Uv

)
zpe

⎤⎦ (A.4)

Q =

{
c(α̂c)z

p
e if |α̂c | > Mθ and α̂c

⊤zpe > 0
0 otherwise

(A.5)

ote that the adaptive law (34) has the same form as the one
ithout projection (32) except for the additional term Q . Because

of the convex property of the projection algorithm, we have
that Q α̃c ≤ 0 (Ioannou & Sun, 2012, Theorem 4.1.1). There-
fore, the term Q α̃c introduced by projection can only make the
time derivative V̇ of the Lyapunov function (to be introduced
in the sequel) more negative. In addition, the perturbation term
d̄(t, z) = [d̄1(t, z), d̄2(t, z)]⊤ satisfies

|d̄1(t, z)| ≤
ε1

∆v
|zpe | + ε2|α̃c |, |d̄2(t, z)| ≤ κv|zpe | (A.6)

for ε1 = 0.73 and ε2 = 1.22. This holds for all values of zpe and α̃c
but a less conservative stability result is obtained if the parameter
projection algorithm (34) is applied. If |αc | ≤ Mθ and |α̂c | ≤ Mθ̂

where Mθ̂ = Mθ + ϵ and ϵ > 0 is a small constant, it follows that
|α̃c | = |αc − α̂c | ≤ 2Mθ + ϵ. This suggests that smaller values
than 0.73 and 1.22 can be used for ε1 and ε2 by specifying Mθ . For
instance, we can limit the parameter estimation error |α̃c | to 10.0
degrees by choosing Mθ = 0.087 (4.98 degrees) and ϵ = 0.0001.
This gives ε1 = 0.088 and ε2 = 0.006.

Furthermore, consider the Lyapunov function candidate V (z)
= z⊤Pvz where Pv = P⊤

v > 0. Consequently,

V̇ (z) = UvΩv(z)
(
z⊤(PvAv + A⊤

v Pv)z

+ 2d̄(t, z)⊤Pvz + 2κv
Umin
v

Uc
[0, Q ]Pvz

)
≤ Umin

v Ωv(z)
(

− z⊤Q vz

+ 2
Umax
v

Umin
v

d̄(t, z)⊤Pvz + 2κv[0, Q ]Pvz
)

(A.7)

here it has been exploited that the matrix Av is Hurwitz for
all γv > 0 and ∆v > 0, and therefore we can choose Q v =

iag{q1, q2} > 0 with Pv satisfying the Lyapunov equation PvAv+
⊤

v Pv = −Q v . This yields

v =
1

2κv

[
(q2 + q1κv)∆v q2

q2 q1κ2
v∆v + q2κv∆v +

q2
∆v

]
(A.8)

he maximum eigenvalue pmax = λmax(Pv) is

max =
1
2

(
p11 + p22 +

√
p211 − 2p11p22 + p222 + 4p212

)
(A.9)

ince ∥x∥2 ≤ ∥x∥1 for all x ∈ R2 and ∥x∥1 = |x1| + |x2|, it follows
hat ∥d̄(t, z)∥2 ≤ |d̄1(t, z)| + |d̄2(t, z)| and ∥z∥2 ≤ |zpe | + |α̃c |.
Hence,

2
Umax
v

min ∥d̄(t, z)⊤Pvz∥2 ≤ 2
Umax
v

min ∥d̄(t, z)∥2 ∥Pv∥2 ∥z∥2
Uv Uv H

7

≤ 2
Umax
v

Umin
v

pmax

((
ε1

∆v
+ κv

)
|zpe | + ε2|α̃c |

) (
|zpe | + |α̃c |

)
≤ 2

Umax
v

Umin
v

pmax

((
ε1

∆v
+ κv

)
|zpe |

2
+ ε2|α̃c |

2

+

(
ε1

∆v
+ ε2 + κv

)
|zpe ||α̃c |

)
(A.10)

he product, 2κv [0, Q ]Pvz , due to projection, satisfies

2κv∥ [0, Q ] Pvz∥2 = 2κv|p12Qzpe + p22Q α̃c |

≤ q2|zpe |
2 (A.11)

since p12 = q2/(2κv), p22 > 0, and Q α̃c ≤ 0. Consequently, it
follows from (A.7) that

V̇ (z) ≤ −Umin
v Ωv(z)z⊤Q ∗

vz (A.12)

Q ∗

v =

[
q1 − q2 − 2pmax(

ε1
∆v

+ κv) −cq(
ε1
∆v

+ ε2 + κv)

−cq(
ε1
∆v

+ ε2 + κv) q2 − 2pmaxε2

]
(A.13)

here cq = pmax Umax
v /Umin

v . Hence, we can choose q1, q2 and
v such that Q ∗

v > 0, and there exists a minimum eigenvalue
min = λmin(Q ∗

v) > 0 such that

˙ (z) ≤ −Umin
v qminΩv(z)z⊤z (A.14)

or instance, ε1 = 0.088, ε2 = 0.006, ∆v = Umin
v = 0.500, γv =

.090, κv = 0.180, Q v = diag{0.1, 0.0036}, and Umax
v = 0.545

ive two positive definite matrices

v =

[
0.0293 0.0085
0.0085 0.023

]
, Q ∗

v =

[
0.0720 −0.0138

−0.0138 0.0027

]
or which pmax = 0.035 and qmin = 1.19e−6. Computation
f the Pv and Q v matrices depend on Umin

v , Umax
v , the maxi-

um parameter estimation error, etc. It is well known that the
yapunov stability results are conservative but the numerical
xample shows that solutions can be found by specifying realistic
alues. For each r > 0 and all ∥z(t)∥2 ≤ r , we have that

v(z) ≥
∆v√
∆2
v + r2

:= c(r) (A.15)

˙ (z) ≤ −Umin
v qminc(r)z⊤z ≤ −2Umin

v

qmin

pmax
c(r)V (z) (A.16)

ince V (z) > 0 and V̇ (z) < 0 whenever z ̸= 0, it follows
rom Khalil (2002, Theorem 4.8) that the origin z = 0 is uniformly
table and ∥z(t)∥2 ≤ ∥z(t0)∥2,∀t ≥ t0. The above holds for all
rajectories generated by the initial conditions z(t0). Hence, we
an invoke the comparison lemma (Khalil, 2002, Lemma 3.4), by
oticing that the system χ̇ = −2Umin

v (qmin/pmax)c(r)χ has the
olution χ (t) = e−2Umin

v (qmin/pmax)c(r)(t−t0)χ (t0), which implies that
˙ (t) ≤ e−2Umin

v (qmin/pmax)c(r)(t−t0)w(t0) for w(t) = V (z). Conse-
uently,

z(t)∥2 ≤

√
pmax

pmin
e−Umin

v
qmin
pmax c(r)(t−t0)∥z(t0)∥2 (A.17)

or all t ≥ t0, ∥z(t0)∥2 ≤ r and any r > 0. This allows us to
onclude that the equilibrium point z = 0 is USGES (Loria &
anteley, 2004, Definition 2.7).

ppendix B. Proof of Lemma 2

In the horizontal-plane (42) can be expressed by ẏ = UhΩh(y)
hy where y = [y1, y2]⊤ := [ype , β̃c]

⊤, and

h =

[
−1/∆h 1
−κh 0

]
, Ωh(y) =

∆h√
∆2

h + (ype )2
(B.1)

ence, Lemma 1 guarantees that y = 0 is USGES.
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A

c

ppendix C. Proof of Theorem 1

The systems Σ1 and Σ2 corresponding to (41)–(42) forms a
ascade. Note also that the perturbation term g(t, ype , β̃c) defined
in (38) is bounded and that

g(t, 0, 0) = Uh sin(πv)

(
1 −

1√
1 + tan2(βc)

)
(C.1)

Lemma 2 guarantees that the Σ2 states ype and β̃c converge ex-
ponentially to zero. From Khalil (2002, Lemma 9.1), one can also
conclude that if πv = 0 (constant depth) or βc = 0 (zero sideslip),
the origin of Σ1 is USGES since the perturbation vanishes at zero
and there is no growth by the states zpe and α̃c . For the case that
βc ̸= 0 but constant (Assumption 1), πv ̸= 0, and u is time varying
with 0 < umin ≤ u ≤ umax, one can conclude using Khalil (2002,
Lemma 9.6, Case 2), that the solution of the perturbed system
Σ1 is uniform ultimate bounded since g(t, ype , β̃c) is bounded.
Moreover, notice that origin of the Σ1 subsystem will be shifted.
The steady-state solution żpe = ˙̃αc = 0 of (41) gives

(zpe )
ss

≡ 0, α̃ss
c ≡ − sin−1 (g(t, 0, 0)/Uv) (C.2)

Thus if the speed autopilot keeps u constant during path follow-
ing, then Uv given by (12) is constant. Hence, it follows that zpe
converges to zero but the estimate of αc will be shifted with a
constant value, which is very small for most vehicles. The bias
free estimate is given by α̂∗

c = α̂c − sin−1(g(t, 0, 0)/Uv).
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