
Farhad Hajnoruzi

Design and Implementation of a Microservices-
Based Digital Twin Architecture

Master’s thesis in Simulation and Visualization
Supervisor: Ricardo da Silva Torres
Co-supervisor: Arne Styve
September 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

ABSTRACT

By bridging the gap between the physical and digital worlds, digital twins stand
out as a valuable asset for informed decision-making based on complex simulations
and predictive analytics. As they navigate the increasing complexity of real-time
data processing systems, digital twins necessitate the employment of architectures
that uphold scalability and reliability. This thesis embarks on a comprehensive
investigation of the design and implementation of a microservices-based digital
twin solution and aims at enhancing the growing need for scalable and reliable ar-
chitectures in such systems. In the pursuit of that, this thesis is anchored on three
primary goals. It first proposes a solid microservices-based architectural frame-
work for digital twins. The thesis then investigates the relationship between the
use of microservices architecture and the scalability and reliability of the digital
twin solution. The third goal of this study is to identify the challenges and trade-
offs faced during the design, implementation, and deployment of the proposed
model. Seven main microservices are defined in the architecture design among
which five more critical ones (data acquisition, digital twin management, simula-
tion, command and control, and visualization) are implemented and evaluated. To
validate the suggested design, an extensive test case is conducted employing a dig-
ital twin of a wind turbine. This test mirrors real-world conditions by employing
a variety of simulation modes, guaranteeing a thorough assessment of the system
in conditions applicable to real-world scenarios. The thesis offers useful insights
into the efficiency of the suggested microservices-based architecture in achieving
scalability and reliability in digital twin models. While providing a sound practical
foundation, it thoroughly examines and underscores the associated challenges and
trade-offs, presenting a balanced and informed road map for future advancements
in this field.

i

PREFACE

This thesis is the summit of my work on the subject of Simulation and Visualiza-
tion, more specifically, in the area of real-time data processing using microservices-
based digital twin solutions. My interest in this study subject was triggered by
the rising need for robust, scalable systems, especially in the renewable energy
industry.

I would like to express my deepest gratitude to my supervisors Ricardo Torres
and Arne Styve, whose expertise and guidance were invaluable throughout this
research. Thanks are also due to my family and friends for their unwavering
support and encouragement that made this work possible.

ii

CONTENTS

Abstract i

Preface ii

Contents iv

List of Figures iv

List of Tables v

Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Approach . 2

2 Background Concepts 5
2.1 Scalability and Reliability in Software Context 5

2.1.1 Scalability . 5
2.1.2 Reliability . 6
2.1.3 The Interplay between Scalability and Reliability 6

2.2 Microservices Architecture . 6
2.2.1 Docker and Microservices: A Seamless Integration 8

2.3 Digital Twins . 8

3 Microservices-based Design and Architecture 13
3.1 Introduction . 13
3.2 Systematic Design Process . 13

3.2.1 Business Requirements, System Functionalities, and Tech-
nical Constraints . 13

3.2.2 Bounded Context . 14
3.2.3 A Systematic Process for Designing the Architecture of an

Application that Handles Requests 14
3.2.4 Common Capabilities and Use Cases 15

3.3 Defining Microservices for Current Architectural Framework 17
3.4 Conclusion . 18

iii

iv CONTENTS

4 Microservices-based Implementation 21
4.1 Introduction . 21
4.2 Architectural Overview . 21
4.3 Implementation Details . 22

4.3.1 Data Acquisition Microservice 23
4.3.2 Digital Twin Management Microservice 24
4.3.3 Simulation Microservice . 25
4.3.4 Command and Control Microservice 26
4.3.5 Data Visualization Microservice 27
4.3.6 Future Microservices Implementation 28

4.4 Integration with RabbitMQ Message Broker 29
4.4.1 Role of RabbitMQ in the Architecture 29
4.4.2 Message Exchange Mechanism 30
4.4.3 Benefits of Using RabbitMQ as Message Broker 30

4.5 Deployment with Kubernetes . 31
4.5.1 Kubernetes Objects and Microservices 31
4.5.2 Performance and Reliability Gains 32
4.5.3 Containerization with Docker 32
4.5.4 Kubernetes Configurations 33

4.6 Conclusion . 33

5 Results and Discussion 35
5.1 Introduction . 35
5.2 Case Study: Wind Turbine Digital Twin 35
5.3 Results . 36

5.3.1 Data Acquisition Service . 36
5.3.2 Digital Twin Management 37
5.3.3 Simulation Service . 38
5.3.4 Command and Control Service 39
5.3.5 Visualization Service . 40

5.4 Discussion . 40
5.4.1 Scalability and Reliability 40
5.4.2 Identifying Obstacles and Trade-offs 41

5.5 Conclusions . 41

6 Conclusions and future work 43
6.1 Conclusion . 43
6.2 Future Work . 44

References 45

Appendices: 49

A - Github repository 49

LIST OF FIGURES

2.2.1 Comparison of a monolithic (left) and microservice architecture
(right). 7

2.3.1 Five-layer DT architecture proposed in [24]. 10
2.3.2 Overview of the nine-layer DT architecture proposed in [1]. 10

4.3.1 Diagram depicting the microservices implemented in the solution
and the connections to the message bus (RabbitMQ). 22

4.3.2 A simple diagram illustrating how Data Acquisition Microservice is
utilized in the solution . 23

4.3.3 Diagram illustrating how project and digital twin creation is applied
in Digital Twin Management Microservice. 24

4.3.4 A diagram depicting different technologies utilized when imple-
menting Visualization Microservice. 28

5.2.1 One frame of the 3D visualization of the test case in Unity 3D. . . . 36
5.3.1 Continuous simulation mode: Line diagrams showcasing wind data

and corresponding power generation over an extended period (wind
speed in km/h and output power in Watts, the horizontal axis is
time in seconds). 39

5.3.2 Instantaneous simulation mode: Line diagrams representing wind
data and the immediate power generation response based on his-
torical data (wind speed in km/h and output power in Watts, the
horizontal axis is time in seconds). 40

v

LIST OF TABLES

3.3.1 Microservice description. 18

5.3.1 Samples of generated wind data. 37
5.3.2 Attributes of the wind turbine digital twin in the test case. 38

vi

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• API Application Programming Interface

• DB Database

• DT Digital Twin

• FMI Functional Mockup Interface

• FMU Functional Mockup Unit

• IoT Internet of Things

• PLM Product Lifecycle Management

• RQ Research Question

• SQL Structured Query Language

• YAML YAML Ain’t Markup Language

vii

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

The concept of the “Digital Twin” has evolved as a key tool in the age of rapid
technology advances and Industry 4.0, linking the physical and digital domains.
Digital twins, which are digital clones of actual entities, enable real-time data
processing, allowing enterprises to foresee, visualize, and manage problems before
they occur [1]. The digital twin acts as a mirror, reflecting the real-time status,
working conditions, and properties of its physical counterpart.

This interconnection enables unparalleled data analysis and system monitoring,
paving the way for enhanced predictive maintenance, real-time optimization, and
the development of more robust and resilient systems [2]. The interaction between
digital twins and other cutting-edge technologies, such as big data analytics and
artificial intelligence further propels the capacities of real-time monitoring, remote
control, and data-driven decision-making [3].

These complex, interconnected, and dynamic real-time data processing sys-
tems typical of digital twins necessitate exceptional scalability, reliability, and
adaptability to manage the rapidly changing data streams effectively [4]. Tradi-
tional monolithic architectures, where the entire application is tightly integrated
and run as a single service, while once adequate, now face substantial challenges
in meeting these demands. In these architectures, even a small change in the
application necessitates redeploying the entire software, leading to challenges in
scaling, maintenance, and reliability [5]. These challenges highlight a crucial need
for an architectural shift to accommodate the growing complexity and real-time
demands of modern digital systems [6].

Microservices architecture is a design pattern that breaks down a traditional
monolithic system into smaller, self-contained services, each performing a specific
business function [7]. Such decoupled systems facilitate seamless integration and
adaptation to changing needs, ensuring long-term sustainability and evolution in
line with technological advancements [6]. When combined with the scalable and
fault-tolerant design of microservices, digital twins have the potential to change
industries ranging from manufacturing to healthcare and from agriculture to city
management, by offering robust and adaptable solutions for real-time data pro-
cessing and analysis[8].

With their modular and decentralized design, microservices provide a viable

1

2 CHAPTER 1. INTRODUCTION

answer to the aforementioned difficulties. However, developing a scalable and
reliable microservices-based digital twin system is not easy. Such a system ne-
cessitates careful planning, appropriate technology selection, and thorough imple-
mentation [9].

1.2 Research Approach
Designing and implementing a microservices-based digital twin solution is the main
objective of this thesis. In order to achieve this general goal, we aim to address
two important research questions:

RQ1: What will be the benefits of microservices architecture to the implementation
of digital twins for real-time data processing?

This question forms the foundation of our research, exploring the main ben-
efits that microservices architecture can offer in enhancing the scalability
and reliability of digital twin systems.

RQ2: What are the foundational design principles and methodologies for construct-
ing a robust microservices-based architectural framework for digital twins?

This question aims to clarify the fundamental design principles and method-
ologies that form the basis of an efficient architectural design, ensuring the
successful deployment and utilization of digital twins in a variety of real-
world scenarios.

RQ3: What will be the main obstacles and trade-offs that we will face when de-
signing and putting our microservices-based digital twin architecture into
practice?

This question seeks to bring insight into the difficulties that digital twin de-
velopers may encounter so they can navigate and make well-informed judg-
ments throughout the architectural design and implementation processes.

We will carefully examine these issues in order to understand their complex-
ity and the trade-offs that different design choices involved. By doing this, we
hope to make insightful contributions that can direct future efforts in the field of
microservices-based digital twin solutions.

By employing a digital twin of a wind turbine as a test case, the study aims
to glean practical insights and provide a comprehensive understanding of the mi-
croservices adoption in digital twin development for real-time data processing. By
investigating these questions, we aim to shed light on the critical aspects of mi-
croservices architecture in the context of digital twin development and real-time
data processing.

This document is organized according to the following structured sections:

1. Background Concepts: This section presents an exhaustive review of
existing literature on digital twins, microservices, and their intersection, set-
ting the research basis by providing context and background. Additionally,
it includes a thorough examination of the project’s fundamental concepts,
ranging from the components of digital twins to the principles governing
microservices.

CHAPTER 1. INTRODUCTION 3

2. Microservices-based Design and Architecture: Here, we delve into the
blueprint of our solution. This section illuminates the architectural choices,
design patterns adopted, and the rationale behind each decision.

3. Microservices-based Implementation: The metamorphosis of our de-
sign into a working solution. Every line of code, every deployed service,
and the testing methodologies employed to ensure system robustness are
discussed.

4. Results and Discussion: An empirical assessment of our system. We
critically analyze its performance, scalability, and reliability, especially con-
cerning real-time data processing.

5. Conclusion and Future Work: Reflecting on the journey, we summarize
the project’s achievements, and its implications, and chart out potential
future directions.

In the following chapters, we will go through each of these components in
detail, shining light on the complexities of creating a microservices-based digital
twin solution.

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

BACKGROUND CONCEPTS

This chapter explores the fundamental concepts needed to create a solid digital
twin system, focusing on the microservices architecture in real-time data process-
ing contexts. In order to clarify the importance of key software concepts like
scalability and dependability in modern software solutions, we initiate our discus-
sion by providing an overview of these concepts.

The reader is then introduced to the revolutionary world of microservices ar-
chitecture. We examine its inherent properties, clarify the numerous advantages
it offers over conventional monolithic constructions, and delve into its complex
operation. We also discuss Docker containerization and its valuable impact on
leveraging microservices architecture.

Next, we go on to the topic of digital twins as we end our discussion. These
entities, which integrate the physical and digital worlds effortlessly, serve as ex-
amples of technical innovation. The symbiotic relationship between digital twins
and microservices architecture becomes clear as we progress through this chapter,
setting the scene for the following chapters in which we explore the practical side
of developing and analyzing a digital twin solution supported by microservices.

2.1 Scalability and Reliability in Software Context

Scalability and reliability are two fundamental pillars in software engineering,
especially in today’s ever-evolving digital landscape.

2.1.1 Scalability

At its core, scalability refers to the ability of a system to handle an increase in
workload without compromising on performance [10]. It is not just about “making
things bigger” but ensuring that as the system grows, it can still deliver consistent,
if not improved, levels of service.

There are two major types when speaking about scalability:

• Vertical Scalability: This involves increasing the capacity of a single
server, usually by adding more resources like memory, storage, or faster
CPUs [11]. While this method is straightforward, there is an upper limit to
how much you can upgrade a single machine.

5

6 CHAPTER 2. BACKGROUND CONCEPTS

• Horizontal Scalability: This involves adding more servers to a system
and distributing the workload among them. Modern distributed systems,
cloud computing platforms, and databases often leverage this type of scala-
bility [12].

Factors affecting scalability include database design, system architecture, soft-
ware algorithms, and even organizational aspects.

2.1.2 Reliability

Reliability can be defined as the probability that a system will function without
failure over a specified period under stated conditions [13]. In software terms, the
system can operate consistently and as intended.

Several ways can be used to achieve reliability in software products:

• Redundancy: Employing backup components or systems that can take
over during failures, ensuring system availability.

• Failover Mechanisms: These mechanisms detect system failures and switch
to a backup or standby system, reducing system downtime [14].

• Continuous Monitoring and Testing: By constantly monitoring systems
and rigorously testing new updates and features, one can identify and rectify
points of failure [15].

2.1.3 The Interplay between Scalability and Reliability

One might think that by simply scaling a system (adding more machines or re-
sources), it would inherently become more reliable. While there is some truth to
this, it is a simplification. As systems scale, especially horizontally, they become
more complex. More machines mean more potential points of failure. Hence,
while scalability can contribute to reliability, it introduces new challenges that
need addressing.

The explosion of the internet and mobile devices has made the challenge of
scaling systems while maintaining (or even improving) their reliability even more
acute. Websites and applications that were once serving thousands are now cater-
ing to millions, and sometimes even billions. The stakes have never been higher.
A single hour of downtime can result in losses of significant revenues and can
negatively affect a company’s reputation [16].

2.2 Microservices Architecture
Microservices architecture is not just a trend but an impactful approach in mod-
ern software development paradigms [17]. This strategy promises faster software
product releases by maximizing automation. It is a modern software develop-
ment approach that revolutionizes the design and implementation of large-scale
applications. It comprises a collection of small, autonomous services, each run-
ning in its own process and communicating with lightweight mechanisms such as
HTTP/REST or message queues. This architectural style has gained significant

CHAPTER 2. BACKGROUND CONCEPTS 7

Monolithic
Architecture

Microservices
Architecture

Monolithic
Application

Microservices
Application

Business-logic

Database

Service 1Service 2 Service 3

DB 1DB 2 DB 3

Figure 2.2.1: Comparison of a monolithic (left) and microservice architecture
(right).

attention in recent years due to its ability to address the challenges of large-scale
and complex systems by promoting modularity, scalability, and flexibility [7].

In contrast to traditional monolithic architectures, where the entire applica-
tion is tightly coupled and deployed as a single unit, microservices architecture
encourages the decomposition of monolithic applications into smaller, independent
services. Each microservice is responsible for a specific business capability, such as
user management, inventory management, or payment processing. These services
can be developed, deployed, and scaled independently, allowing for faster develop-
ment cycles and improved maintainability. Figure 2.2.1 illustrates the comparison
between these two architectural styles.

Microservices architecture encourages the decomposition of monolithic appli-
cations into smaller, independent services, each responsible for a specific business
capability. These services can be developed, deployed, and scaled independently,
allowing for faster development cycles and improved maintainability. The loosely
coupled nature of microservices enables teams to work on different services con-
currently, facilitating faster innovation and reducing dependencies.

One of the key advantages of microservices architecture is its scalability. By
distributing the system’s functionalities across multiple services, each service can
be scaled independently based on its specific needs. This flexibility allows orga-
nizations to handle varying workloads effectively and efficiently, ensuring optimal
performance even under high demand.

Another benefit of microservices architecture is its ability to enhance fault
tolerance and resilience. Since each microservice is isolated and operates indepen-
dently, failures in one service do not necessarily impact the entire system. Services
can be designed to be resilient by implementing retry mechanisms, circuit breakers,
and fallback strategies, ensuring the overall system’s availability and reliability.

8 CHAPTER 2. BACKGROUND CONCEPTS

2.2.1 Docker and Microservices: A Seamless Integration

A game-changer in application development and deployment is the Docker technol-
ogy. Docker offers a consistent environment for apps wherever they are executed
as an open-source containerization solution. This makes sure that differences be-
tween the settings used for development, testing, and production are kept to a
minimum. Applications can be packed with all the components they require,
including the libraries and other dependencies, because of docker’s fundamental
ability to isolate software within containers. This ensures that the program will
execute consistently regardless of any external circumstances [18].

In addition, the microservices architecture breaks applications into more man-
ageable parts that can function independently. Docker’s capacity to containerize
each of these services separately is what makes the combination of Docker and mi-
croservices so attractive [19]. Their combination makes it possible for each service
to operate in a standardized environment and to be scaled, updated, or redeployed
independently of the others. Many of the difficulties with dependency manage-
ment and service orchestration in a microservices-based system are resolved by
the usage of Docker containers [18].

Together, Docker and microservices have the potential to reshape the landscape
of software development paradigms. By using those technologies, developers are
presented with an efficient and streamlined workflow, wherein the technologies
automate and optimize various development tasks, allowing developers to focus
on writing code and developing applications, rather than being overwhelmed by
deployment issues and related tasks. This combination leverages the modularity
of microservices with the environmental consistency of Docker, paving the way for
more robust, scalable, and maintainable software solutions.

2.3 Digital Twins

Digital twins have attracted substantial interest and traction recently, mostly be-
cause of their potential impact on a number of industries. The vision of digital
twins has its roots in product lifecycle management (PLM) [20]. This vision em-
phasizes the use of a digital replica for every physical product to manage its data
throughout its lifecycle. In the paper written by Glaessgen and Stargel in 2012 [21],
a digital twin is described as an integrated multi-physics, multiscale, probabilistic
simulation of a system or a vehicle that combines the best physical models cur-
rently available, sensor updates, fleet history, etc. to replicate the behavior of its
corresponding flying twin.

Despite its PLM origins, the rise of Digital Twins is closely linked to the Inter-
net of Things (IoT) advancements. The IoT emphasizes the connection between
physical objects and their digital counterparts [22]. These digital counterparts al-
low physical entities to have context awareness, communicate, act, and exchange
information. Saddik [23] defines digital twins with this perspective as a digital
replica of a living or non-living physical entity. By bridging the physical and the
virtual world, data is transmitted seamlessly allowing the virtual entity to exist
simultaneously with the physical entity.

Digital Twins, from both PLM and IoT viewpoints, have been described in
various ways. A commonly accepted notion is that a Digital Twin is a digital

CHAPTER 2. BACKGROUND CONCEPTS 9

representation of a system or asset, reflecting its real-world behavior [24, 25].
However, there is not a universally accepted definition yet.

A reliable and efficient architecture is essential for research using digital twins.
In this context, the study conducted by Minerva et al. [2] stands out particularly.
Their study provides a thorough exploration of the complex technological prop-
erties and structural paradigms inherent to digital twins. Their research provides
invaluable advice by identifying and outlining the fundamental software principles
that form the basis of Digital Twins in their entirety.

The Digital Twin concept substantially enhances our engagement with physi-
cal systems, enabling better understanding and optimization. While these systems
often rely on simulation models, challenges arise when considering modular multi-
domain systems like those in renewable energy. Moreover, with the continuous
growth in the size of wind turbines and their increasing deployment offshore, the
operation and maintenance of these turbines have become more challenging. The
digital infrastructure, which is based on the Industry 4.0 concept, like the predic-
tive digital twin, emerges as a key solution. Such technology not only facilitates
data collection, visualization, and wind power analytics at both individual turbine
and wind farm levels but also predicts potential failures of wind turbine compo-
nents [26].

Digital twins inherently lean on simulation to replicate real-world scenarios
and predict future behavior of their physical counterparts. A vital component
of this simulation aspect can be ensuring interoperable interfaces and modular
components for a precise and dynamic representation. One such interface is the
Functional Mock-up Interface (FMI) [27] Standard. While its prominence is noted
in the automotive industry, its potential in broader applications remains vast [28].
An innovative approach taps into this potential by constructing digital twins using
individual Functional Mock-up Units (FMUs). These units come equipped with
predefined model interfaces that enhance the digital twin’s simulation capabilities
across various industries and applications [26]. The evolution of such standards
signifies the continuous convergence of simulation technologies and digital twin
methodologies.

Various architectural solutions have been proposed in the literature for manag-
ing digital twins and their associated information sources. These solutions provide
insights into how the different layers and components of a digital twin architecture
can be organized. Some notable architectural solutions include:

• Architecture proposed in [29] for managing digital twins: This architecture
consists of four layers: Information Providers, Model Providers, Digital Twin
Providers, and Applications. It focuses on collecting data, processing infor-
mation, creating and managing digital twins, and providing applications for
accessing and manipulating the digital twins.

• Architecture presented in [24] for city digital twins: This architecture con-
sists of five layers: Data Acquisition, Transmission, Digital Modeling, Data/-
Model Integration, and Service. It emphasizes the integration of different
sub-DTs, data acquisition and transmission, digital modeling, and providing
various services to stakeholders. The structure of the proposed architecture
in this paper is provided in Figure 2.3.1.

10 CHAPTER 2. BACKGROUND CONCEPTS

Figure 2.3.1: Five-layer DT architecture proposed in [24].

• Verdouw et al. [1] introduced an architecture for DTs that unfolds across
nine designated layers. An overview of the proposed architecture is provided
in Figure 2.3.2.

Figure 2.3.2: Overview of the nine-layer DT architecture proposed in [1].

In this architecture, the Device Layer is the foundation, embedding hard-
ware components like sensors and actuators into physical objects for dynamic
property measurements and remote operations. The Communication Layer
assures seamless interactions and data transit between devices and IoT ser-
vices, promoting end-to-end communication across diverse networking en-
vironments. The IoT Service Layer streamlines information retrieval and
delivery, enhancing sensor and actuator control. The Digital Twin Manage-

CHAPTER 2. BACKGROUND CONCEPTS 11

ment Layer offers comprehensive insights into the Digital Twin information,
ensuring efficient association and monitoring of physical objects. The IoT
Process Management Layer enables the seamless deployment of IoT-aware
processes, backed by the Service Organization Layer’s orchestrated services.
Security concerns are adeptly managed in the Security Layer, ensuring robust
authorization, authentication, and identity management. The Management
Layer oversees system configuration, fault reporting, and state determina-
tion, ensuring seamless operations. Lastly, the Application Layer emerges
as the intelligence hub, empowering specific control tasks with diverse tech-
nologies, and ensuring effective interaction with Digital Twins across varied
user interfaces.

• Architecture provided in [30] for managing a network of digital twins: This
architecture consists of three layers: Device Layer, Cloud Platform Layer,
and Application Layer. It focuses on managing physical objects with digital
twins, providing a platform for managing the digital twins and their inter-
actions, and offering applications for accessing and manipulating the digital
twins.

These architectural solutions provide valuable insights into the organization
and composition of digital twin systems, enabling effective management, integra-
tion, and utilization of digital twins.

12 CHAPTER 2. BACKGROUND CONCEPTS

CHAPTER

THREE

MICROSERVICES-BASED DESIGN AND
ARCHITECTURE

3.1 Introduction
In this chapter, we focus on the layers of microservices-based design and archi-
tecture for digital twins. We commence our exploration by following a systematic
process for designing the architecture of an application that handles requests.
Next, we examine the common capabilities and specific use cases of digital twins.
This section forms the groundwork upon which the rest of the chapter is built,
painting a clear picture of the design methods of the architectural framework.

Transitioning from this approach, we proceed from our strategy to a wider
perspective. The services and microservices that can be incorporated into a digi-
tal twin solution are examined in this section. Collectively, these sections offer a
panoramic view, covering both the detailed complexities and the broader strokes
of creating a robust microservices-based architectural framework for digital twins.
As we navigate through the chapter, readers will gain a clear roadmap of the in-
terconnections and dependencies among various design elements and architectural
choices.

3.2 Systematic Design Process
This section describes the structured methodology we adopt for crafting a robust
architectural design tailored for digital twin applications. At the heart of our
approach lies the principle of addressing the specific challenges and requirements
presented by digital twins, while simultaneously ensuring flexibility, scalability,
and maintainability.

3.2.1 Business Requirements, System Functionalities, and
Technical Constraints

In order to design an effective system, it is important to consider the business
requirements, system functionalities, and technical constraints. The business re-
quirements define the goals and objectives of the system, while the system func-
tionalities describe the specific features and capabilities that the system should

13

14CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE

provide. Additionally, the technical constraints outline the limitations and re-
strictions that need to be taken into account during the design process. By un-
derstanding and addressing these factors, the system design can be aligned with
the needs of the business and ensure successful implementation.

3.2.2 Bounded Context

The concept of “Bounded Context” is a crucial aspect of domain-driven design
(DDD) in software architecture [31]. A Bounded Context represents a conceptual
boundary around a specific domain, where a distinct model and language are
applied. Using Bounded Contexts facilitates handling complexity in large software
systems by separating concerns and allowing each Bounded Context to have its
own model and language without interfering with others [32].

In the context of microservices architecture, Bounded Contexts play a signif-
icant role in identifying the boundaries between services [7]. When designing a
microservices architecture, architects need to identify the various business domains
that the system will serve and define the Bounded Contexts for each domain. This
ensures that each microservice is aligned with the needs of the business and fo-
cuses on a specific area of the organization. By defining Bounded Contexts based
on business requirements and capabilities, complexity can be reduced, and the
system becomes more adaptable to changing business requirements over time.

3.2.3 A Systematic Process for Designing the Architecture
of an Application that Handles Requests

Designing the architecture of an application that handles requests requires a sys-
tematic process to ensure modularity, maintainability, and scalability. The follow-
ing steps outline this process [7]:

1. Identifying the system operations: The first step involves identifying
the key requests that the application needs to handle and abstracting them
into system operations. These operations can be either commands, which
update data, or queries, which retrieve data. An abstract domain model
can be used to define the behavior of each command, providing a clear
understanding of the system’s functionalities.

2. Decomposing the application into services: The second step is to de-
compose the application into services. There are different strategies for
achieving this, such as organizing services around business capabilities or
domain-driven design subdomains. The goal is to create services that are
organized around business concepts rather than technical concepts, promot-
ing better maintainability and reusability.

3. Determining each service’s API: The third step involves determining
each service’s API, including assigning system operations to services and
defining how services collaborate. This may require additional operations to
be defined to facilitate communication between services. It is recommended
to use appropriate inter-process communication (IPC) mechanisms to im-
plement each service’s API, ensuring seamless interaction between services.

CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE15

By following this systematic process, the architecture of the application can
be designed in a modular and scalable manner, making it easier to manage and
adapt to changing business requirements.

3.2.3.1 Identifying the System Operations (An Example)

Creating a high-level domain model for the application is the initial step in iden-
tifying the system operations. Although each service has its own domain model,
establishing a high-level domain model helps describe how the system activities
behave. Standard methods, such as consulting domain experts and examining the
nouns in stories and situations, can be employed to construct the domain model.

For instance, in the context of a general digital twin solution, a simple story like
“Real-time monitoring of a physical system” can be expanded into a scenario. This
scenario involves continuously collecting sensor data from the physical system,
analyzing the data in real-time, and generating insights or alerts based on the
analysis.

Algorithm 1 outlines an example of how the “Real-time monitoring of a physical
system” scenario could be expanded:

Algorithm 1 Real-time monitoring of a physical system
Given: a production system
And: a set of sensors measuring key parameters of the system
And: a system to collect and store data from the sensors
And: a dashboard to display the collected data
When: the system is in operation
Then: the sensors continuously collect data
And: the data is stored in the data collection system
And: the dashboard displays the real-time status of the system
And: the dashboard sends alerts to maintenance personnel when the system’s

status reaches predefined thresholds
And: the data can be analyzed to identify trends and predict maintenance needs

The nouns in the scenario can hint at the existence of various classes, such as
a physical system, sensor, data point, monitoring system, alert, and notification.
These classes represent the entities and concepts within the system and help in
defining the system operations effectively.

3.2.4 Common Capabilities and Use Cases

In order to expand the systematic design approach discussed in the preceding sec-
tion, it is essential to dive into further detail about the practical considerations
that support our architectural decisions. The discovery of common capabilities
related to robust software systems and the clarification of essential use cases that
guide our design are fundamental components of our methodology. This guaran-
tees that our design is not only conceptually sound but also practically orientated
and in line with requirements found in the real world.

“Common Capabilities” are the fundamental features that every system must
have, in terms of software architecture. These features include integration, scala-

16CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE

bility, and security, and they guarantee the software’s reliable and effective oper-
ation [33]. On the other hand, “Use Cases” are detailed accounts of how a system
interacts with external entities to accomplish particular goals. They outline the
series of steps and requirements needed for the program to carry out a task, pro-
viding a clear picture of the system’s behavior and ensuring that it adheres to
the functionality and goals that were intended. The foundation for creating soft-
ware architectures that are robust, effective, and in line with stakeholder and user
expectations is formed by shared capabilities and use cases.

In the context of digital twins, “Common Capabilities” refer to the general func-
tionalities that digital twin systems provide irrespective of the specific use case
or application. These capabilities typically include real-time data collection and
analysis, simulation, visualization, and integration, among others. These func-
tionalities form the backbone of digital twin systems, enabling them to replicate,
predict, and analyze the behavior and performance of physical entities in a virtual
environment.

On the other hand, “Use Cases” pertain to the practical and specific appli-
cations of digital twin technology in various domains and contexts. Use cases
illustrate how the common capabilities of digital twins can be leveraged to solve
real-world problems, optimize systems, and improve decision-making in diverse.
More clarification can be obtained by taking a look at some examples.

As an example, in [26], a predictive digital twin is developed for wind farms,
and the following capabilities and use cases can be obtained from it:

– Predictive maintenance: The ability to predict failures of wind turbine
components, enabling proactive maintenance activities and reducing poten-
tial failures.

– Real-time data collection and analysis: The platform allows users to
collect, visualize, and analyze data in real time, improving predictive capa-
bilities and enabling better decision-making.

– Improved reliability: By providing predictive maintenance, the platform
can improve the reliability of wind turbines and wind farms.

– Visualization: The platform offers different result presentations through
2D and 3D visualization, and augmented reality, which can be chosen de-
pending on the desired objectives and requirements.

– Integration: The platform is developed based on the OPC-UA, making it
easy to adopt and integrate directly into energy companies’ existing systems.

– Teaching and research: The platform is also used in teaching and research
at the Department of ICT and Natural Sciences NTNU, which can be a
capability of the system.

For a city digital twin as in [34], potential capabilities and use cases could
include data management, visualization, situational awareness, planning and pre-
diction, and integration and collaboration. These capabilities enable stakeholders
to efficiently and securely manage, analyze, and visualize data, monitor and re-
spond to real-time events, simulate and forecast the impact of different scenarios

CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE17

and interventions, and collaborate with various stakeholders and data sources to
support effective decision-making and planning.

According to the examples, these common capabilities can be obtained for
digital twin solutions:

– Simulation capabilities: the ability to predict failures or simulate scenar-
ios to enable proactive maintenance and better decision-making.

– Real-time data collection and analysis: the ability to collect, process,
and analyze real-time data streams from various sources to improve situa-
tional awareness and predictive capabilities.

– Visualization: the ability to create and display 2D or 3D models of the
system or environment to improve understanding and decision-making.

– Integration: the ability to integrate and collaborate with various stakehold-
ers, data sources, and software tools to support effective decision-making and
planning.

3.3 Defining Microservices for Current Architec-
tural Framework

Based on the identified capabilities and use cases, a range of services can be
considered for a general digital twin solution. These services can be organized into
a microservices architecture, allowing for modularity, scalability, and flexibility.
Some possible services for a digital twin solution include:

• Data Acquisition: Collecting data from physical devices and sensors in real-
time.

• Data Integration: Integrating data from multiple sources into a unified view
of the system.

• Analytics: Analyzing data to identify patterns, trends, and anomalies.

• Simulation: Creating a virtual representation of the physical system and
running simulations to predict performance.

• Visualization: Providing a graphical representation of the system and its
data to aid in decision-making.

• Control: Using the virtual model to control the physical system in real time.

• Collaboration: Allowing multiple stakeholders to access and interact with
the digital twin solution.

• Security: Ensuring the solution is secure and protecting sensitive data and
intellectual property.

18CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE

In addition to these services, other candidate microservices can be consid-
ered based on the specific requirements and domain of the digital twin solution.
These include configuration management, event management, workflow manage-
ment, integration with enterprise systems, knowledge management, optimization,
predictive quality, and resource management.

In our digital twin solution, seven microservices are taken into account based
on different scenarios and use cases, which are presented in Table 3.3.1.

Table 3.3.1: Microservice description.

Microservice Description

Data Acquisition and Streaming This service handles real-time and batch data
acquisition from various sources such as sen-
sors, devices, and databases, and streams it
to the data processing layer.

Data Processing and Analytics This service processes and analyzes the in-
coming data in real-time and in batch mode
using various techniques such as machine
learning, deep learning, and statistical anal-
ysis.

Digital Twin Modeling This service creates and maintains the digital
twin model of the physical system using data
from various sources, and updates it in real-
time as new data becomes available.

Simulation This service utilizes the digital twin model
and runs simulations to predict performance.

Command and Control This service enables the communication be-
tween the digital twin and the physical sys-
tem, allowing the digital twin to send com-
mands and receive feedback.

Visualization and Reporting This service provides real-time and histori-
cal visualizations of the data, including dash-
boards, reports, and alerts.

Security and Access Control This service manages the security of the mi-
croservices architecture, including authen-
tication, authorization, and encryption of
data.

3.4 Conclusion

Digital twins offer a range of capabilities and use cases, enabling organizations to
gain valuable insights, improve decision-making, and enhance system performance.
By adopting a microservices architecture, digital twin solutions can be developed
with modularity, scalability, and flexibility in mind. The identified services and ar-
chitectural solutions provide a foundation for designing and implementing effective
digital twin systems.

CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE19

In this chapter, we have explored the common capabilities and specific use cases
of digital twins, discussed the services and microservices that can be incorporated
into a digital twin solution, and examined architectural solutions proposed in the
literature. By leveraging the power of digital twins and microservices, organiza-
tions can unlock new opportunities and achieve better outcomes in their respective
domains.

20CHAPTER 3. MICROSERVICES-BASED DESIGN AND ARCHITECTURE

CHAPTER

FOUR

MICROSERVICES-BASED IMPLEMENTATION

4.1 Introduction

This chapter explores the practical realization of the conceptual architecture previ-
ously covered. The main objective is to give an insightful account of the technical
procedures and approaches used to translate the theoretical constructs into a con-
crete, practical reality.

This chapter focuses on the seamless integration of microservices, Docker con-
tainerization, Kubernetes orchestration, and the use of RabbitMQ as a message
broker for inter-service communication. Microservices were chosen as the architec-
tural base because of their inherent scalability and adaptability, which correspond
well with the dynamic requirements of real-time digital twin systems. By assur-
ing portability, resource optimization, and effective management of microservice
installations, Docker and Kubernetes further improve implementation. The use of
RabbitMQ, a powerful and well-known message broker, enables the smooth inter-
change of information across microservices and adds to the digital twin ecosystem’s
real-time nature.

The details of the deployment procedure, the complex nature of microser-
vice relationships, and the orchestration done by Kubernetes are revealed in the
next sections. Through the journey outlined in this chapter, the study aims to
demonstrate the technical aspects required for the successful implementation of
the proposed microservice-based solution.

4.2 Architectural Overview

As discussed in the previous chapter, the microservices architecture designed for
the real-time digital twin solution serves as the foundation for the subsequent
implementation and testing phases. To provide context for the following sections,
a brief overview of the architecture and design is reiterated here, with emphasis
on the aspects most relevant to implementation and testing.

The microservices architecture is structured to encapsulate specific function-
alities within individual services, enabling modularity, scalability, and parallel
development. Each microservice is designed to fulfill a distinct role within the
digital twin ecosystem, facilitating real-time data synchronization, analysis, and

21

22 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

visualization. This architecture promotes flexibility and adaptability, crucial for
accommodating evolving requirements and diverse use cases.

Containerization, executed through Docker, enhances the portability of mi-
croservices across various environments, minimizing the “it works on my machine”
dilemma and ensuring consistency between development, testing, and production
environments. As an orchestration platform, Kubernetes manages the deploy-
ment, scaling, and management of microservices, promoting smooth operation
and efficient resource use.

Additionally, RabbitMQ, the chosen message broker, plays a pivotal role in
enabling communication between microservices in an asynchronous and decoupled
manner. This facilitates the exchange of data and commands crucial for real-time
synchronization and collaboration within the digital twin ecosystem.

The following sections cover the implementation details of the designated mi-
croservices with this architectural base in mind.

4.3 Implementation Details

In this section, we examine in depth the microservices that were chosen to be
used in our real-time digital twin system. Initially, our architecture plan included
a group of seven potential microservices, each of which addressed to a different
functional need in the context of the digital twin environment. However, after
careful thought and deliberation, we determined that five of these seven should be
implemented first due to their crucial necessity and the project’s limitations.

Figure 4.3.1: Diagram depicting the microservices implemented in the solution
and the connections to the message bus (RabbitMQ).

Figure 4.3.1 shows the diagram illustrating these microservices and the mes-
sage bus. The selected microservices for the current phase are Data Acquisition,
Digital Twin Management, Simulation, Command and Control, and Visualiza-
tion. Each of these was chosen because of their pivotal role within the digital
twin ecosystem. The Data Acquisition service acts as the gateway, bridging the
digital twin with real-world data, thus ensuring seamless synchronization. Digital

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 23

Twin Management forms the structural spine of the system, managing and main-
taining the digital replica of the physical counterpart. The Simulation service is
vital, providing insights into system performance and enabling predictive anal-
yses. Command and Control orchestrates the integral interactions between the
digital replica and its physical counterpart. Finally, the Visualization microser-
vice stands as the user’s window to the system, allowing real-time insights and
interactive engagements with the digital twin.

Weighing their immediate relevance and the concrete impact they could give
within our time constraint, we chose these five from the original seven. As the
project moves forward, other designated microservices can be developed and added
to the solution.

4.3.1 Data Acquisition Microservice

The Data Acquisition Microservice serves as the entry point to our real-time digital
twin solution. It is responsible for collecting and aggregating data from different
sources, such as sensors, devices, and databases. The decision to prioritize the
development of this microservice is grounded in its fundamental importance. Data
acquisition forms the basis upon which the entire digital twin ecosystem relies. By
ingesting both real-time and batch data, this microservice lays the foundation for
subsequent processing, analysis, and simulation. Figure 4.3.2 shows a diagram
illustrating how this microservice is utilized in the solution. As shown in this
figure, data is perceived from the sensors by this microservice and a message as an
event is created to be published to the message bus regarding the received data.

Data Acquisition Microservice

Sensors

Message Bus

Data
Received

Event

Figure 4.3.2: A simple diagram illustrating how Data Acquisition Microservice
is utilized in the solution

Our implementation of the Data Acquisition Microservice is executed using
.Net 6, with a specific focus on utilizing C# for its robust capabilities. .NET 6
offers enhanced support for asynchronous programming, allowing the microservice
to handle multiple data streams concurrently while maintaining responsiveness.
Leveraging the latest features of C#, the microservice effectively interacts with
diverse data sources, ensuring efficient and reliable data ingestion. A link to

24 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

the Github repository of the implementation of this microservice is provided in
Appendix A.

4.3.2 Digital Twin Management Microservice

The Digital Twin Management Microservice holds a pivotal role in our real-time
digital twin solution. This microservice is responsible for creating and maintaining
a virtual representation of the physical system. By harnessing the power of .NET
6 and C#, we have designed a robust system that encompasses the creation of
digital twin projects based on distinct types and the seamless storage of project
information within an SQL Server database.

4.3.2.1 Project Creation and Database Storage

In the context of the Digital Twin Management Microservice, projects serve as
the building blocks of our virtual representation. Projects are created based on
specific types that define the nature and scope of the digital twin. Leveraging the
extensibility of .NET and the expressive capabilities of C#, we have implemented
a project creation mechanism that allows stakeholders to define the purpose and
attributes of each project type.

The Digital Twin Management Microservice employs the Code-First approach
to database design, which aligns well with the agile nature of microservices de-
velopment. As part of this approach, our microservice’s C# models mirror the
structure of the SQL Server database. Through a carefully crafted set of C#
classes and data annotations, we define the attributes of each project type. These
annotations guide the Code-First process to generate corresponding database ta-
bles and relationships, ensuring a seamless translation between our application’s
object model and the database schema. Figure 4.3.3 depicts how project and dig-
ital twin creation is applied in Digital Twin Management Microservice. Projects
and digital twin instances are created in the user interface shown in the figure and
using a Rest API is transmitted to the SQL Server database.

DT Management Microservice

Digital Twins

Digital Twin Properties

Projects

SQL Server Database

Message Mail

Open in
App

Open
Link

User Interface

Rest API

Figure 4.3.3: Diagram illustrating how project and digital twin creation is ap-
plied in Digital Twin Management Microservice.

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 25

Upon project creation, the microservice captures essential metadata, such as
project type, creation timestamp, and owner details. This information is then
seamlessly persisted into the SQL Server database, preserving project integrity
and establishing a robust foundation for subsequent real-time updates. The use of
the Code-First approach simplifies database schema evolution, allowing us to it-
eratively enhance project attributes and relationships without compromising data
integrity.

4.3.2.2 SQL Server and Database Interaction

Our choice of SQL Server as the database management system is rooted in its
reliability, scalability, and seamless integration with the .NET ecosystem. The
Digital Twin Management Microservice interacts with the SQL Server database
using Entity Framework Core, a modern and extensible ORM framework provided
by the .NET 6 ecosystem. Entity Framework Core simplifies data access and
manipulation by providing a high-level abstraction over database interactions.

With Entity Framework Core, we define a DbContext that encapsulates the
interactions between our microservice and the SQL Server database. This Db-
Context enables seamless querying, insertion, updating, and deletion of project
records. The DbContext also supports LINQ queries, allowing us to retrieve
project data using expressive and readable code. The integration of Entity Frame-
work Core ensures that our microservice’s logic remains focused on business pro-
cesses, while the underlying data access complexities are abstracted.

4.3.3 Simulation Microservice

The Simulation Microservice holds a critical role within the real-time digital twin
solution, employing the digital twin model to predict the performance of the physi-
cal system. Our focus in this phase is on laying the foundation for future simulation
enhancements, including the integration of different simulators and the utilization
of Functional Mock-up Interface (FMI) standards for improved extensibility and
accuracy.

4.3.3.1 Foundational Simulation and Static Simulator

The Simulation Microservice initiates predictive simulations to provide stakehold-
ers with insights into potential future behaviors of the physical system, based
on real-time data from the digital twin. Our initial approach involves the in-
corporation of a static simulator. This simulator employs foundational simulation
techniques, such as mathematical models and heuristic algorithms, to approximate
system trajectories. While this approach may not capture intricate complexities,
it serves as a stepping stone for more sophisticated simulation methodologies.

Through the use of .NET and c#, we have implemented the static simulator
within the microservice. The simulator interprets data from the digital twin and
generates predictions that offer valuable insights into system performance. The
foundational simulator provides stakeholders with an initial understanding of the
system’s behavior and aids in decision-making.

26 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

4.3.3.2 Extensibility through FMI/FMU Integration

To establish a robust foundation for future enhancements, the Simulation Mi-
croservice architecture is designed to integrate various simulators using the FMI
standard. FMI is an open standard for model exchange and co-simulation that
allows diverse simulation tools to interact seamlessly. By adhering to FMI stan-
dards, we ensure compatibility with different simulation engines and facilitate the
integration of domain-specific simulators.

Our microservice’s extensibility is demonstrated by the integration of FMI/FMU
compatibility. This architectural decision empowers future iterations to incorpo-
rate advanced simulation tools, including domain-specific simulators and commer-
cial simulation software. Through the use of standardized interfaces, the Simula-
tion Microservice can dynamically load and execute different simulation engines,
enhancing accuracy and enabling sophisticated predictive capabilities.

4.3.4 Command and Control Microservice

The Command and Control Microservice serves as a critical communication bridge
between the digital twin and the physical system. While the initial design em-
phasized synchronization, the complexity of integrating with actual hardware and
compatibility considerations led us to focus on building a foundational framework.

4.3.4.1 Foundational Communication Framework

This Microservice facilitates bidirectional communication between the digital twin
and simulated devices, allowing dynamic adjustments and real-time control. The
microservice’s foundational communication framework is designed to accommo-
date a range of devices, systems, and protocols. It establishes lightweight commu-
nication protocols that enable seamless interaction while considering extensibility
for future integration.

Our implementation of the Command and Control Microservice utilizes .NET
and C#. This enables us to create communication channels that adhere to in-
dustry standards and best practices, ensuring reliability and security. The mi-
croservice’s modular design promotes maintainability, allowing for the addition of
custom communication protocols as needed.

4.3.4.2 Integration with Digital Twin

To enable real-time control and adjustments, the Command and Control Microser-
vice integrates tightly with the Digital Twin Management Microservice. The digi-
tal twin provides the necessary context and insights for informed decision-making,
while the Command and Control Microservice enables the translation of commands
into actionable changes within the physical system.

Through well-defined APIs and message formats, the microservices seamlessly
exchange information. The Command and Control Microservice can receive com-
mands from the digital twin and translate them into appropriate actions, simu-
lating the impact of these actions on the digital twin and physical system. This
integration empowers stakeholders with the ability to interact with the digital
twin, make informed adjustments, and observe their effects.

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 27

4.3.5 Data Visualization Microservice

The Data Visualization Microservice plays a crucial role in our real-time digital
twin solution, providing stakeholders with meaningful insights through interactive
visualizations. While the original design aimed for comprehensive dashboards and
reports, the current focus is on core visualization functionalities, with an emphasis
on user engagement and accessibility.

4.3.5.1 Interactive Visualization Interfaces

The user’s capacity to engage with, analyze, and comprehend complicated data
sets and trends is improved by the Data Visualization Microservice, which makes
use of a variety of technologies to produce dynamic and interactive visualization
interfaces. These technologies include:

• HTML (HyperText Markup Language) is used for creating the struc-
tured content for the web interfaces. It forms the backbone, providing the
basic structure and layout for the visual elements [35].

• CSS (Cascading Style Sheets) is deployed to enhance the presentation
of the HTML elements, offering stylization and design improvements that
make the interface more visually appealing and user-friendly [36].

• Angular is a renowned front-end web framework, instrumental in devel-
oping dynamic dashboards, real-time charts, and interactive components.
It allows for the seamless creation and management of complex front-end
logic, ensuring that the data is presented in a clear, concise, and interactive
manner [37].

These technologies together lay the foundation for robust data visualization
capabilities, making it easier for stakeholders to engage with and understand the
data presented to them. Moreover, to elevate the data visualization experience
further, Unity 3D [38] is integrated for enhanced 3D visualization purposes. Unity
3D, a powerful cross-platform game engine, empowers the creation of immersive
and interactive 3D visualizations, offering stakeholders a more engaging and in-
depth view of the data.

Our microservice’s implementation integrates seamlessly with the rest of the
ecosystem, receiving real-time and historical data streams from other microser-
vices. Through APIs and well-defined message formats, the Data Visualization
Microservice ensures that visualizations are synchronized with the most up-to-
date information from the digital twin and simulation microservices.

4.3.5.2 Real-time and Historical Insights

This Microservice provides stakeholders with both real-time and historical insights
into the behavior of the physical system. Real-time visualizations offer immediate
feedback on system status and changes, enabling stakeholders to make informed
decisions in real-time. Historical visualizations, on the other hand, allow stake-
holders to analyze trends and patterns over time, facilitating data-driven planning
and optimization. Figure 4.3.4 illustrates different technologies utilized when im-
plementing Visualization Microservice.

28 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

Visualization Microservice

Rest API

User Interface

DT Management
Microservice

Simulation
Microservice

Unity 3D

3D Visualization

Figure 4.3.4: A diagram depicting different technologies utilized when imple-
menting Visualization Microservice.

By leveraging HTML and CSS for layout and styling, and Angular for dynamic
content, the microservice delivers a rich and responsive user experience. The
visualizations are designed to be intuitive, allowing stakeholders to interact with
data, customize views, and gain actionable insights without requiring extensive
technical expertise.

4.3.5.3 Customizable Dashboards and Reports

While the initial implementation focuses on core visualization capabilities, the ar-
chitecture of the Data Visualization Microservice is designed for extensibility. Fu-
ture iterations can expand on this foundation to include customizable dashboards,
detailed reports, and additional visualization types. This modularity ensures that
the microservice can evolve to meet the evolving needs of stakeholders and adapt
to new visualization requirements.

4.3.6 Future Microservices Implementation

While our current focus has been on the implementation of the Data Acquisition,
Digital Twin Management, Simulation, Command and Control, and Data Visual-
ization microservices, the architectural design of the real-time digital twin solution
encompasses a broader spectrum of functionalities. Several additional microser-
vices are envisioned to complete the comprehensive ecosystem. Due to various
factors, including resource limitations and the complexity of advanced algorithms,
these microservices are planned for future implementation.

4.3.6.1 Data Processing and Analytics

The Data Processing and Analytics microservice will be responsible for process-
ing and analyzing incoming data in real-time and batch modes. Machine learn-
ing, deep learning, and statistical analysis techniques will be employed to extract

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 29

insights, identify trends, and predict system behaviors. This microservice will
play a crucial role in converting raw data into actionable information, supporting
decision-making and optimization strategies.

4.3.6.2 Security and Access Control

The Security and Access Control microservice will be responsible for managing
the security aspects of the microservices architecture. This includes user authen-
tication, authorization mechanisms, encryption of data at rest and in transit, and
auditing. As the solution grows, securing data and maintaining privacy will be-
come increasingly important, and this microservice will ensure compliance with
industry standards and best practices.

4.3.6.3 Other Future Enhancements

In addition to these planned microservices, other enhancements are anticipated.
These could include fine-tuning and optimizing existing microservices, expanding
integrations with external systems and APIs, and incorporating advanced visu-
alization techniques to provide richer insights. Furthermore, as new technologies
emerge and capabilities evolve, the microservices architecture will remain adapt-
able, enabling the integration of cutting-edge tools and algorithms.

The phased approach to microservices implementation allows us to prioritize
the most critical functionalities while building a solid foundation for future ex-
pansion. By taking a modular approach, our solution remains flexible, accommo-
dating changes in requirements, technology advancements, and stakeholder needs.
In the subsequent sections, we will delve into the comprehensive testing method-
ologies employed to validate the reliability, scalability, and performance of the
implemented microservices and the broader digital twin ecosystem.

4.4 Integration with RabbitMQ Message Broker

The seamless communication and coordination of microservices within the real-
time digital twin solution are facilitated by the integration with RabbitMQ [39], a
powerful message broker. RabbitMQ plays a crucial role in ensuring efficient data
exchange, reliable message delivery, and asynchronous communication among the
microservices, contributing to the robustness and scalability of the entire ecosys-
tem.

4.4.1 Role of RabbitMQ in the Architecture

RabbitMQ serves as a central hub that facilitates communication between mi-
croservices in a decoupled and asynchronous manner. It acts as an intermediary,
receiving messages from producer microservices and delivering them to consumer
microservices. This decoupling eliminates direct dependencies between microser-
vices, allowing them to operate independently and evolve without affecting one
another.

30 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

4.4.2 Message Exchange Mechanism

Messages are exchanged between microservices through RabbitMQ using the publish-
subscribe pattern. When a microservice produces a message, it publishes it to a
specific exchange. Consumer microservices interested in certain types of messages
bind to the exchange and receive messages as they are published. This mecha-
nism ensures that each microservice only processes the messages relevant to its
functionality, maintaining a clear separation of concerns.

The message content typically includes information needed for coordination,
data synchronization, or triggering specific actions. This includes updates from the
Data Acquisition Microservice, commands from the Command and Control Mi-
croservice, simulation results from the Simulation Microservice, and more. Rab-
bitMQ ensures that these messages are reliably delivered to the intended con-
sumers, even in scenarios of high traffic or temporary service unavailability.

4.4.3 Benefits of Using RabbitMQ as Message Broker

The integration with RabbitMQ offers several significant benefits within the con-
text of our real-time digital twin solution:

• Asynchronous Communication: RabbitMQ enables asynchronous commu-
nication between microservices. This decoupling prevents bottlenecks and
enhances the responsiveness of the entire system. Microservices can continue
processing requests and messages without waiting for immediate responses.

• Reliability: RabbitMQ ensures reliable message delivery through its mes-
sage queuing mechanisms. Messages are stored in queues until they are
successfully consumed, preventing data loss in case of temporary failures or
microservice unavailability.

• Scalability: As the solution scales, RabbitMQ supports load distribution and
efficient message routing. Microservices can be replicated and distributed
across multiple instances without affecting message exchange patterns.

• Flexibility: RabbitMQ supports various messaging patterns, such as publish-
subscribe, request-response, and work queues. This flexibility allows mi-
croservices to communicate in ways that best suit their communication
needs.

• Fault Tolerance: RabbitMQ provides mechanisms for clustering and high
availability, minimizing the risk of single points of failure. This ensures
continued communication even if some instances experience issues.

• Message Prioritization: RabbitMQ allows prioritization of messages, en-
abling critical messages to be processed ahead of others. This is particularly
useful when dealing with time-sensitive information or urgent commands.

In summary, the integration with RabbitMQ enhances the real-time digital
twin solution’s communication, coordination, and scalability. By adopting asyn-
chronous messaging patterns, we ensure efficient data exchange while maintaining
reliability and flexibility. As we proceed to the subsequent sections, we will delve

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 31

into the comprehensive testing methodologies employed to validate the effective-
ness and reliability of the integrated architecture, including RabbitMQ’s role in
ensuring seamless microservices communication.

4.5 Deployment with Kubernetes

The deployment of microservices within the real-time digital twin solution is or-
chestrated using Kubernetes [40], a powerful container orchestration platform. Ku-
bernetes streamlines the deployment, scaling, and management of containerized
applications, enhancing the solution’s reliability, scalability, and ease of mainte-
nance.

Kubernetes, an open-source platform for orchestrating containers, plays a piv-
otal role in the deployment and management of microservices within our real-time
digital twin solution. This section delves into the key Kubernetes concepts and
explains how different microservices can be represented as various Kubernetes
objects. Kubernetes efficiently manages the lifecycle and networking of container-
ized applications, providing automatic recovery and scaling. It abstracts away the
complexities of managing individual containers, ensuring that applications remain
responsive and reliable. When considering the adoption of Kubernetes, it is crucial
to assess whether the benefits align with your architectural needs.

For monolithic applications, Kubernetes might not immediately provide signif-
icant value. However, as we transition towards microservices, the need for service
orchestration, including connection management and scalability, becomes more
pronounced [6].

4.5.1 Kubernetes Objects and Microservices

This section explores how Kubernetes and microservices might work together. To
deploy, scale, and manage applications, Kubernetes offers a complete collection of
primitives, also known as objects. Understanding how Kubernetes deployments,
pods, services, and ingress work will help us build an architecture that makes
the most of both technologies and will produce a system that is reliable and fast.
The details of each of these important Kubernetes objects and how they interact
with the microservices in our digital twin solution are explained in the following
subsections.

4.5.1.1 Deployments for Scalability and Reliability

Kubernetes Deployments serve as blueprints for maintaining the desired state
of microservice pods. By creating multiple replicas of a pod and distributing
them across nodes, Deployments enhance both performance and reliability. If
a pod crashes, other replicas can seamlessly handle incoming requests, ensuring
uninterrupted service availability.

In our real-time digital twin solution, each microservice, such as the Data Ac-
quisition Microservice or the Simulation Microservice, can be encapsulated within
a Deployment. This guarantees a specified number of replicas are always running,
optimizing performance and enabling graceful recovery from failures.

32 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

4.5.1.2 Pods for Microservice Isolation

Pods, the smallest deployable units in Kubernetes, encapsulate one or more con-
tainers within a shared environment. For microservices, pods ensure isolation,
resource allocation, and a consistent execution environment. Each pod can host
a single microservice or multiple related microservices. In our architecture, we
can encapsulate microservices like the Data Acquisition Microservice or the Visu-
alization Microservice within separate pods. This isolation prevents conflicts and
resource contention while providing a dedicated execution environment.

4.5.1.3 Services for Communication

Kubernetes Services provide a stable endpoint for accessing microservices. They
enable load balancing, service discovery, and reliable communication between mi-
croservices. Services abstract away the complexities of individual pod IP addresses
and provide a consistent entry point. For instance, the Data Acquisition Microser-
vice and the Simulation Microservice can be exposed as Kubernetes Services. This
ensures other microservices can interact with them through stable endpoints, re-
gardless of the underlying pod distribution.

4.5.1.4 Ingress for External Access

Kubernetes Ingress acts as an entry point for external traffic into the cluster. It can
be configured as an API gateway, routing requests to different microservices based
on specific rules. Ingress supports features like SSL termination, load balancing,
and path-based routing. In our solution, the Ingress resource can provide external
access to microservices, including the Data Visualization Microservice. By defining
routing rules, we can ensure that incoming requests are directed to the appropriate
microservice based on the requested URLs or paths.

4.5.2 Performance and Reliability Gains

The inherent nature of Kubernetes orchestrations, such as Deployments, con-
tributes significantly to improved performance and reliability. Deployments fa-
cilitate scaling, distributing load across multiple replicas of a pod, while also en-
suring the availability of backups if any pod crashes. This translates to enhanced
responsiveness, minimized downtime, and efficient resource utilization. In sum-
mary, Kubernetes integration empowers our real-time digital twin solution with
orchestrated microservices deployment, communication, and scalability. These
concepts bolster the solution’s performance, reliability, and ease of management,
ultimately aligning with our architectural goals.

4.5.3 Containerization with Docker

Before diving into the Kubernetes deployment process, it is important to highlight
the role of Docker in containerization. Docker allows us to package microservices
and their dependencies into isolated containers, ensuring consistent environments
across development, testing, and production stages. Containers encapsulate the

CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION 33

microservices, including their runtime, libraries, and settings, providing a reliable
and portable execution environment.

Each microservice in the real-time digital twin solution is containerized us-
ing Docker images. These images are created based on predefined Dockerfiles,
specifying the necessary configuration and dependencies. By containerizing mi-
croservices, we eliminate potential conflicts between application components and
ensure seamless deployment across different environments.

4.5.4 Kubernetes Configurations

The deployment and management of microservices in Kubernetes involve creating
configuration files that define the desired state of resources. These configurations
are written in YAML (YAML Ain’t Markup Language) format, a human-readable
data serialization standard that can be used for all programming languages. It
is specifically designed to be easy to read and write due to its clear visual pre-
sentation and support for complex data structures. In the context of Kubernetes,
YAML files specify complex details, such as pod definitions, services, resource
constraints, and environment variables. This structured format allows adminis-
trators and developers to declare configurations and automate the deployment
process, ensuring consistent and reproducible results across various environments
and infrastructures.

Kubernetes configurations include pod templates, service specifications, and
deployment strategies. These configurations enable us to automate the deploy-
ment process and ensure consistency across different environments, from devel-
opment to production. As part of our deployment process, we have developed
a set of Kubernetes configuration files that define the deployment, services, and
scaling behavior of each microservice. These configurations ensure that the mi-
croservices are deployed consistently, are accessible through services, and can be
scaled efficiently.

The integration of Kubernetes and Docker revolutionizes the deployment and
management of microservices within the real-time digital twin solution. By con-
tainerizing microservices and utilizing Kubernetes abstractions, we achieve en-
hanced scalability, availability, and ease of management.

4.6 Conclusion
In conclusion, this chapter’s journey provided a comprehensive perspective on
the process of moving from a hypothetical microservices-based digital twin ar-
chitecture to its practical manifestation. This project’s foundation has evolved
as the interplay of microservices, Docker, Kubernetes, and RabbitMQ, reflecting
the demanding technical basis of a successful digital twin system. This project’s
breadth and accuracy are made clear by the rigorous deployment methods, exten-
sive network of microservice interactions, and grasp of Kubernetes orchestration.
This chapter serves as bridging the gap between theoretical design and practical
implementation by lifting the curtain on these details.

34 CHAPTER 4. MICROSERVICES-BASED IMPLEMENTATION

CHAPTER

FIVE

RESULTS AND DISCUSSION

5.1 Introduction

In this chapter, we evaluate and discuss the results obtained from the implemen-
tation of a microservices-based digital twin solution focused on real-time data
processing, using a wind turbine as our primary test case.

5.2 Case Study: Wind Turbine Digital Twin

For the purpose of capturing renewable energy, wind turbines are necessary. How-
ever, real-time maintenance and modifications, which can be greatly enhanced
using digital twin technology, typically determine their effectiveness and lifespan.
Consequently, our emphasis on creating a digital twin of a wind turbine is both
essential and a step toward the improvement of green technology.

In our case, the wind turbine’s digital twin acts as its virtual counterpart,
mirroring its every aspect and behavior in real time. This twin is not just a static
3D model; it is a living entity that captures the intricate data from the physical
turbine through sensors, processes this data, and reflects the turbine’s current
state, health, and performance. It can predict wear and tear, suggest preventive
maintenance, and even simulate various conditions to forecast how the turbine
might react. One frame of visualization of the test case is depicted in figure 5.2.1.

One of the core motivations behind focusing on wind turbines for our digital
twin test case stems from the challenges associated with turbine maintenance.
These giant structures, especially those located offshore, are often subjected to
harsh environmental conditions—be it saltwater corrosion, heavy winds, or tem-
perature fluctuations. Regular manual inspections, while necessary, are resource-
intensive and might not always pinpoint hidden issues. A wind turbine digital
twin, with its continuous monitoring capability, can provide early warnings for
parts showing signs of wear or failure, ensuring timely interventions and reducing
unplanned downtime.

Furthermore, the digital twin’s simulation capability allows operators to test
various operational scenarios without risking the actual physical asset. For in-
stance, how would the turbine react to a sudden increase in wind speed? Or
how would a minor pitch adjustment in the blades affect the energy output? Such

35

36 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.2.1: One frame of the 3D visualization of the test case in Unity 3D.

virtual experiments provide invaluable insights, leading to more informed decision-
making.

5.3 Results

This section presents a thorough description of the outcomes that proceeded the
deployment and integration of several microservices, which resulted in the con-
struction of our digital twin of a wind turbine. We examine each microservice’s
functionality, and performance metrics, emphasizing their interdependencies and
how they all work together to enhance the real-time capabilities of the digital twin.
These outcomes show how reliable and effective our system is, from data acquisi-
tion to visualization and simulation. The potential and worth of our microservice-
based approach in creating an efficient and responsive digital twin for wind tur-
bines are highlighted by this organized presentation of the findings.

5.3.1 Data Acquisition Service

In the real-world application, our Data Acquisition Service is designed to efficiently
gather real-time wind data directly from the turbine’s sensors. The importance of
this service cannot be overstated, as real-time data is fundamental to understand-
ing and optimizing the turbine’s performance. Typically, the turbine’s sensors
would capture critical parameters like wind speed and direction. This informa-
tion, when captured at consistent intervals, aids in understanding the turbine’s
instantaneous performance and any external factors influencing it.

However, for the scope of our project and in the absence of real sensors, we have
employed a data generation algorithm. This algorithm is designed to emulate the
behavior of actual wind sensors by generating random values that are reflective of
typical wind speeds and directions. The randomization ensures that the simulated
data is not monotonous and mirrors the variability one would expect from actual
wind conditions.

The Gaussian Normal Distribution is used here for creating these random val-
ues. The algorithm is summarized as:

CHAPTER 5. RESULTS AND DISCUSSION 37

Given:

• µ = mean wind speed (e.g., 6 m/s);

• σ = standard deviation of wind speeds (e.g., 1 m/s).

The generated wind speed v can be computed as:

v = µ+ σ ×N (0, 1) (5.1)

The wind direction θ is:

θ = Random(0, 360) (5.2)

where:

• N (0, 1) is a random number drawn from the standard normal distribution
(with a mean of 0 and a standard deviation of 1).

• Random(a, b) is a function that generates a random number between a and
b.

Below is a sample data table, generated using our algorithm, that showcases
the wind data collected over a short duration:

Table 5.3.1: Samples of generated wind data.

Sample Wind Speed (m/s) Direction (θ in degrees)

1 7.2 45
2 5.5 320
3 6.3 180
4 5.9 90
5 6.8 270

As a substitute assessment, this algorithmically generated data supports our
digital twin model. Therefore, even in the absence of actual sensor data, we can
validate and improve the performance of our digital twin. While not a replacement
for actual wind data, this offers a workable solution for our digital twin model’s
first testing and validation phases.

5.3.2 Digital Twin Management

The Digital Twin Management service is essential in handling our specific test
case, which is centered around creating a digital twin of a wind turbine. The
key objective of the test was to effectively establish, manage, and monitor a wind
turbine’s digital representation, considering its vital parameters.

Each wind turbine digital twin in our test case was defined by three primary
attributes:

• Rotor Diameter: This measures the span of the turbine blades and pro-
vides insights into the potential energy capture capacity of the turbine.

38 CHAPTER 5. RESULTS AND DISCUSSION

• Power Rating: It indicates the maximum power output capability of the
turbine, which is essential for grid integration and power distribution.

• Hub Height: This measures the distance from the turbine’s base to its
central hub, affecting its exposure to wind patterns and consequently its
efficiency.

These attributes form the basic profile of each wind turbine digital twin and
are crucial for any subsequent simulations, predictions, or performance analyses.
Table 5.3.2 provides attributes of the Wind Turbine Digital Twin in this test case.

Table 5.3.2: Attributes of the wind turbine digital twin in the test case.

Attribute Description Value

Rotor Diameter Span of turbine blades 120m
Power Rating Max power output 3.5MW
Hub Height Base to central hub distance 85m

With the project-based structure, our test case was implemented by creating
a unique project titled “Wind Turbine Digital Twin Test.” Within this project,
we housed the digital twin representation of our wind turbine, complete with its
rotor diameter, power rating, and hub height parameters. The modular approach
allowed for easy incorporation of additional turbines in the future, should they
possess different attribute configurations or be situated in varying locations.

5.3.3 Simulation Service

In the quest to replicate the functioning and efficiency of a wind turbine, our
test case hinges upon a structured and straightforward mathematical model [41].
This model meticulously assimilates primary parameters, specifically the rotor
diameter and wind speed, each holding profound implications on the turbine’s
power production capacity.

The rotor diameter is central to determining the rotor’s radius, r, expressed
as:

r =
D

2
, (5.3)

where D symbolizes the rotor diameter. The wind’s interaction with the rotor
blades, across a certain surface area, is the engine behind the turbine’s power
generation. This surface, termed as the rotor’s swept area A, is computed from
the radius:

A = πr2 = π

(
D

2

)2

(5.4)

A pivotal component in predicting the power output is the Power Coefficient,
Cp, which varies based on the tip-speed ratio (TSR). In our simplified model, we
have considered the following value as an estimate for Cp [41]:

Cp = 0.4 (5.5)

CHAPTER 5. RESULTS AND DISCUSSION 39

With Cp in hand, the turbine’s power output, Poutput, becomes discernible via
the formula [41]:

Poutput =
1

2
× Cp × A× V 3 (5.6)

Our simulation microservice, which can function in two modes, emerges as
the fundamental component of this system. The first, known as a continuous
simulation, provides a flexible pause-and-resume function along with a close to
real-time simulation of how a wind turbine operates. This mode takes in real-
time data, reflecting the effects of changing conditions on the performance of
the turbine right away. Users who use the pause-and-resume feature can briefly
halt simulations, examine intermediate findings, recalibrate parameters, and then
restart the simulation. Figure 5.3.1 shows wind data and corresponding power
generation over an extended period in continuous mode.

Figure 5.3.1: Continuous simulation mode: Line diagrams showcasing wind data
and corresponding power generation over an extended period (wind speed in km/h
and output power in Watts, the horizontal axis is time in seconds).

The instantaneous simulation, in contrast, is history-centric and uses archived
data. This mode is helpful when looking backward to see how the turbine per-
formed in the past or under earlier circumstances. The simulation microservice
quickly processes and forms insights after feeding past wind data into our model,
creating a clear picture of the turbine’s previous performances. Figure 5.3.1 shows
wind data and corresponding power generation based on historical data in instan-
taneous mode.

5.3.4 Command and Control Service

The Command and Control service is fundamental to the digital twin’s interactive
capabilities, establishing a two-way communication channel between the digital
replica and the physical wind turbine system. This bi-directional link is critical
not just for passive monitoring but for proactively influencing turbine behavior
based on insights gleaned from simulations and analytics.

One of the main functionalities of this service is to send operational commands
to the wind turbine. For instance, if the simulations predict adverse weather con-

40 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.3.2: Instantaneous simulation mode: Line diagrams representing wind
data and the immediate power generation response based on historical data (wind
speed in km/h and output power in Watts, the horizontal axis is time in seconds).

ditions, the service can relay a command to temporarily halt turbine operations
or adjust the blade angles to mitigate potential damage. Conversely, during opti-
mal wind conditions, the service can maximize power generation by suggesting or
automatically making real-time tweaks to the turbine’s operational parameters.

5.3.5 Visualization Service

The Visualization service plays a pivotal role in intuitively presenting the intricate
interplay between the real-time wind data and the corresponding turbine power
output. Leveraging state-of-the-art graphical rendering, this service brings forth
detailed visual representations, allowing stakeholders to grasp the intricate nuances
of turbine performance quickly.

A primary graphical representation dominates this service. A time-series chart
that displays the wind speed alongside the power output. This dual-axis line
chart enables users to immediately discern the correlation between wind input
and energy output. The x-axis typically represents the time continuum, be it in
seconds, minutes, hours, or even days, depending on the user’s selection. The
left y-axis corresponds to wind speed values, while the right y-axis represents
the power generated by the turbine. The diagrams are provided in Figures 5.3.1
and 5.3.2.

Furthermore, historical data comparisons are facilitated through overlaid graphs,
where users can juxtapose the current turbine performance against a chosen past
timeframe. Such comparisons are invaluable in assessing the long-term health and
efficiency of the turbine, potentially highlighting wear and tear or other mechanical
inefficiencies that might be creeping in over time.

5.4 Discussion

5.4.1 Scalability and Reliability

The microservices-based architecture adopted for the digital twin solution has
been central to our investigation. The wind turbine test case, serving as a concrete
implementation of the architecture, provided invaluable insights:

CHAPTER 5. RESULTS AND DISCUSSION 41

Scalability: We may autonomously expand each service in response to de-
mand by dividing functionality into separate microservices (such as Data Acqui-
sition, Digital Twin Management, Simulation, etc.). For instance, during times of
high data influx, the Data Acquisition service, which collects real-time wind data,
can be scaled up without disrupting other services. In our wind turbine test case,
where the system handled varied volumes of sensor data, this modular scalability
could clearly be illustrated.

Reliability: The decoupled nature of the microservices ensures that a failure
in one service does not cripple the entire system. This principle was tested in the
wind turbine case, where even if there were anomalies in the data streaming or
simulation service, the Digital Twin Management or Visualization service remained
unaffected.

5.4.2 Identifying Obstacles and Trade-offs

The practical application of the microservices-based architecture in the wind tur-
bine test case revealed multiple challenges and trade-offs. Every system has some
issues. One challenge we faced was making sure that data was always up-to-date.
When there is a lot of data coming in, making sure the digital twin matches the
real turbine can be tough.

Another problem was with our model for predicting turbine output. It works
for basic situations, but sometimes it is not accurate when many things affect the
turbine. Here are some of the trade-offs we could discover in this project:

Data Consistency: While microservices offer improved scalability, managing
consistent data across services can be challenging. For instance, ensuring that the
simulated data in the Visualization service matches the latest acquired wind data
posed synchronization challenges.

Network Overhead: As each microservice communicates over the network,
there’s added latency. This was evident in the command and control operations
for the wind turbine, where real-time decisions are paramount.

Trade-off Between Scalability and Complexity: While the system can
scale efficiently, it comes at the cost of added complexity. Monitoring, maintaining,
and orchestrating multiple microservices, as opposed to a monolithic architecture,
required sophisticated tools and techniques.

Resource Management: Allocating appropriate resources to each microser-
vice, especially in a real-time scenario like the wind turbine case, was a challenge.
Striking a balance between resource allocation and service performance required
continuous monitoring and fine-tuning.

5.5 Conclusions
By practically implementing the microservices-based architecture for the wind
turbine digital twin, we were able to delve deep into the benefits and challenges of
such a system. The test case served as an effective canvas, enabling us to explore
the nuances of microservices in a real-world scenario, thereby addressing our thesis
goals comprehensively.

42 CHAPTER 5. RESULTS AND DISCUSSION

CHAPTER

SIX

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The goal of this study was to develop an effective digital twin solution by utilizing
the flexibility and modularity of microservices for the efficient processing of real-
time data. The solution was built to test the real-time data processing capabilities
using a wind turbine as the test subject. The results confirm the system’s signifi-
cant operational advantages and successfully demonstrate real-time data handling
and processing.

In alignment with the initial research questions, the adoption of a microservices
architecture indeed contributed positively to the scalability and reliability of the
digital twin solution which was mentioned as the main concern in the second
question. The isolation of various tasks, such as data gathering, management,
simulation, and visualization into separate services facilitated unyielding flexibility.
The modular approach proved instrumental in enhancing manageability, a distinct
advantage over conventional methods, and endorsed the efficient utilization of
digital twins for our case study.

The exploration into the creation of a microservices-based architectural frame-
work for digital twins has yielded substantial insights and advancements. The in-
novative architectural framework presented in this thesis was carefully designed to
improve the usefulness and effectiveness of digital twin systems and a was detailed
response for the first research question of the thesis . The proposed framework,
built upon principled design approaches and innovative methodologies, stands as
a robust and scalable solution. It considerably reduces current difficulties and in-
creases the general effectiveness and reliability of digital twin systems in practical
applications.

However, despite the successful achievement of the goals, the analysis revealed
possible areas for improvement. A significant challenge lies in maintaining data
consistency, especially with a large data influx. The encountered obstacles and
trade-offs, though highlighting the solution’s limitations, offer an invaluable learn-
ing curve, extending insights into the complexities involved and providing a clear
perspective on the complicated balance required in design decisions and this sheds
insight into the third research question of the study.

But overall, despite the highlighted areas for improvement, the study under-
scores the promising potential of employing a microservices-based digital twin

43

44 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

model. The conclusions and discoveries derived from this study have the potential
to act as a solid basis and a compass for directing further exploratory efforts and
developments in the dynamic field of digital twin technologies.

6.2 Future Work
Looking ahead, there is a lot of room for improvement and growth:

• Enhanced Scalability and Fault Tolerance Analysis: Improve the sug-
gested microservices-based digital twin architecture’s scalability and fault
tolerance. Look into more sophisticated and effective methods and algo-
rithms that can support the architecture’s scalability and reliability even
more. Investigation on the paper written by Blinowski et al [42] might be
helpful in addressing this topic.

• Comprehensive Architectural Evaluation: Perform a more comprehen-
sive evaluation of the suggested microservices-based architectural framework
in various real-world scenarios. Examine its flexibility, effectiveness, and re-
silience for a variety of industries and applications beyond wind turbines,
as this could uncover particular difficulties and solutions relevant to those
situations.

• Improvement in Data Consistency: Address the identified challenge of
maintaining data consistency, especially with a large data influx. Research
advanced data management and synchronization techniques to ensure seam-
less and consistent operation of the digital twin system.

• User-Centered Design Enhancements: Gather detailed feedback from
potential end-users, especially digital twin developers, and stakeholders to
ascertain the usability and practicality of the proposed digital twin system.
Utilize the feedback to make informed enhancements to the system interface,
features, and functionality to ensure it effectively meets the user and industry
requirements.

In the end, our work is just one step towards enhancing the efficiency of digital
twin models through the innovative use of microservices architecture. The path
is now paved for further exploration and refinement, promising advancements in
scalability, reliability, and efficient data management. Digital twin solutions, such
as the one suggested in this work, can significantly improve and optimize a variety
of industries by promoting innovation, efficiency, and sustainability with additional
research and development.

REFERENCES

[1] Cor Verdouw et al. “Digital twins in smart farming”. In: Agricultural Systems
189 (2021), p. 103046.

[2] Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. “Digital twin in the
IoT context: a survey on technical features, scenarios, and architectural mod-
els”. In: Proceedings of the IEEE 108.10 (2020), pp. 1785–1824.

[3] Milan Groshev et al. “Toward intelligent cyber-physical systems: Digital
twin meets artificial intelligence”. In: IEEE Communications Magazine 59.8
(2021), pp. 14–20.

[4] Riyaz Ahamed Ariyaluran Habeeb et al. “Real-time big data processing for
anomaly detection: A survey”. In: International Journal of Information Man-
agement 45 (2019), pp. 289–307.

[5] Omar Al-Debagy and Peter Martinek. “A comparative review of microser-
vices and monolithic architectures”. In: 2018 IEEE 18th International Sym-
posium on Computational Intelligence and Informatics (CINTI). IEEE. 2018,
pp. 000149–000154.

[6] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. “Challenges when mov-
ing from monolith to microservice architecture”. In: Current Trends in Web
Engineering: ICWE 2017 International Workshops, Liquid Multi-Device Soft-
ware and EnWoT, practi-O-web, NLPIT, SoWeMine, Rome, Italy, June 5-8,
2017, Revised Selected Papers 17. Springer. 2018, pp. 32–47.

[7] Chris Richardson. Microservices Patterns: With examples in Java. Manning
Publications, 2020.

[8] Alfio Lombardo et al. “Design, implementation, and testing of a microservices-
based Digital Twins framework for network management and control”. In:
2022 IEEE 23rd International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM). IEEE. 2022, pp. 590–595.

[9] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo.
“Challenges in delivering software in the cloud as microservices”. In: IEEE
Cloud Computing 3.5 (2016), pp. 10–14.

[10] André B Bondi. “Characteristics of scalability and their impact on perfor-
mance”. In: Proceedings of the 2nd international workshop on Software and
performance. 2000, pp. 195–203.

45

46 REFERENCES

[11] Zhen Xiao, Qi Chen, and Haipeng Luo. “Automatic scaling of internet appli-
cations for cloud computing services”. In: IEEE transactions on computers
63.5 (2012), pp. 1111–1123.

[12] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The data-
center as a computer: Designing warehouse-scale machines. Springer Nature,
2019.

[13] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable and se-
cure computing”. In: IEEE transactions on dependable and secure computing
1.1 (2004), pp. 11–33.

[14] Matti A Hiltunen, Richard D Schlichting, and Carlos A Ugarte. “Enhancing
survivability of security services using redundancy”. In: 2001 International
Conference on Dependable Systems and Networks. IEEE. 2001, pp. 173–182.

[15] Michael R Lyu et al. Handbook of software reliability engineering. Vol. 222.
IEEE computer society press Los Alamitos, 1996.

[16] James R Hamilton et al. “On Designing and Deploying Internet-Scale Ser-
vices.” In: LISA. Vol. 18. 2007. 2007, pp. 1–18.

[17] S Newman. Building Microservices: Designing Fine-Grained Systems, 1ra
edición. Sebastopol, Ciudad de California. 2015.

[18] David Jaramillo, Duy V Nguyen, and Robert Smart. “Leveraging microser-
vices architecture by using Docker technology”. In: SoutheastCon 2016. IEEE.
2016, pp. 1–5.

[19] Karl Matthias and Sean P Kane. Docker: Up & Running: Shipping Reliable
Containers in Production. " O’Reilly Media, Inc.", 2015.

[20] Michael W Grieves. “Product lifecycle management: the new paradigm for
enterprises”. In: International Journal of Product Development 2.1-2 (2005),
pp. 71–84.

[21] Edward Glaessgen and David Stargel. “The digital twin paradigm for future
NASA and US Air Force vehicles”. In: 53rd AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics and materials conference 20th AIAA/AS-
ME/AHS adaptive structures conference 14th AIAA. 2012, p. 1818.

[22] Harald Sundmaeker et al. “Vision and challenges for realising the Internet of
Things”. In: Cluster of European research projects on the internet of things,
European Commision 3.3 (2010), pp. 34–36.

[23] Abdulmotaleb El Saddik. “Digital twins: The convergence of multimedia
technologies”. In: IEEE multimedia 25.2 (2018), pp. 87–92.

[24] Qiang Lu et al. “Developing a digital twin at building and city levels: Case
study of West Cambridge campus”. In: Journal of Management in Engineer-
ing 36.3 (2020), p. 05020004.

[25] Fei Tao et al. “Digital twin-driven product design, manufacturing and service
with big data”. In: The International Journal of Advanced Manufacturing
Technology 94 (2018), pp. 3563–3576.

[26] Amirashkan Haghshenas et al. “Predictive digital twin for offshore wind
farms”. In: Energy Informatics 6.1 (2023), pp. 1–26.

REFERENCES 47

[27] Functional Mock-up Interface Specification. 2010. url: https://fmi-standard.
org/docs/3.0/ (visited on 11/25/2022).

[28] Marcus Wiens, Tobias Meyer, and Philipp Thomas. “The potential of FMI
for the development of digital twins for large modular multi-domain sys-
tems”. In: Modelica Conferences. 2021, pp. 235–240.

[29] Somayeh Malakuti et al. “A four-layer architecture pattern for construct-
ing and managing digital twins”. In: Software Architecture: 13th European
Conference, ECSA 2019, Paris, France, September 9–13, 2019, Proceedings.
Springer, 2019, pp. 231–246.

[30] Zhihan Wang et al. “Mobility digital twin: Concept, architecture, case study,
and future challenges”. In: IEEE Internet of Things Journal 9.18 (Mar.
2022), pp. 17452–17467.

[31] Eric Evans. Domain-driven design: tackling complexity in the heart of soft-
ware. Addison-Wesley Professional, 2004.

[32] Florian Rademacher, Jonas Sorgalla, and Sabine Sachweh. “Challenges of
domain-driven microservice design: A model-driven perspective”. In: IEEE
Software 35.3 (2018), pp. 36–43.

[33] Brian Levy. “The common capability approach to new service development”.
In: BT Technology Journal 23.1 (2005), pp. 48–54.

[34] Essam Shahat, Chang Tae Hyun, and Cheolho Yeom. “City digital twin
potentials: A review and research agenda”. In: Sustainability 13.6 (2021),
p. 3386.

[35] Ian Hickson and David Hyatt. “Html5”. In: W3C Working Draft WD-Html5-
20110525 (2011), p. 53.

[36] Ben Frain. Responsive web design with HTML5 and CSS3. Packt Publishing
Ltd, 2012.

[37] Google. Angular. 2023. url: https://angular.io/.

[38] Alex Okita. Learning C# programming with Unity 3D. AK Peters/CRC
Press, 2019.

[39] David Dossot. RabbitMQ essentials. Packt Publishing Ltd, 2014.

[40] Linux Foundation. Kubernetes. 2023. url: https://kubernetes.io/.

[41] Tony Burton et al. Wind energy handbook. John Wiley & Sons, 2011.

[42] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. “Monolithic vs.
microservice architecture: A performance and scalability evaluation”. In:
IEEE Access 10 (2022), pp. 20357–20374.

https://fmi-standard.org/docs/3.0/
https://fmi-standard.org/docs/3.0/
https://angular.io/
https://kubernetes.io/

48 REFERENCES

A - GITHUB REPOSITORY

The following linked Github repositories contain all of the code and latex files used
in this work.

Github repository links

• Management Microservice
https://github.com/farhadhnz/FDT.Management (As of Sep. 2023).

• Simulation Microservice
https://github.com/farhadhnz/FDT.Simulation (As of Sep. 2023).

• Data Aquisition Microservice
https://github.com/farhadhnz/FDT.DataAquisition (As of Sep. 2023).

• Command and Control Microservice
https://github.com/farhadhnz/FDT.CommandControl (As of Sep. 2023).

• Visualization Microservice
https://github.com/farhadhnz/FDT.Visualization.UI (As of Sep. 2023).

• Kubernetes Implementation
https://github.com/farhadhnz/FDT.K8S (As of Sep. 2023).

• Thesis Latex Implementation
https://github.com/farhadhnz/Thesis-template-NTNU (As of Sep. 2023).

49

https://github.com/farhadhnz/FDT.Management
https://github.com/farhadhnz/FDT.Simulation
https://github.com/farhadhnz/FDT.DataAquisition
https://github.com/farhadhnz/FDT.CommandControl
https://github.com/farhadhnz/FDT.Visualization.UI
https://github.com/farhadhnz/FDT.K8S
https://github.com/farhadhnz/Thesis-template-NTNU

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Research Approach

	Background Concepts
	Scalability and Reliability in Software Context
	Scalability
	Reliability
	The Interplay between Scalability and Reliability

	Microservices Architecture
	Docker and Microservices: A Seamless Integration

	Digital Twins

	Microservices-based Design and Architecture
	Introduction
	Systematic Design Process
	Business Requirements, System Functionalities, and Technical Constraints
	Bounded Context
	A Systematic Process for Designing the Architecture of an Application that Handles Requests
	Common Capabilities and Use Cases

	Defining Microservices for Current Architectural Framework
	Conclusion

	Microservices-based Implementation
	Introduction
	Architectural Overview
	Implementation Details
	Data Acquisition Microservice
	Digital Twin Management Microservice
	Simulation Microservice
	Command and Control Microservice
	Data Visualization Microservice
	Future Microservices Implementation

	Integration with RabbitMQ Message Broker
	Role of RabbitMQ in the Architecture
	Message Exchange Mechanism
	Benefits of Using RabbitMQ as Message Broker

	Deployment with Kubernetes
	Kubernetes Objects and Microservices
	Performance and Reliability Gains
	Containerization with Docker
	Kubernetes Configurations

	Conclusion

	Results and Discussion
	Introduction
	Case Study: Wind Turbine Digital Twin
	Results
	Data Acquisition Service
	Digital Twin Management
	Simulation Service
	Command and Control Service
	Visualization Service

	Discussion
	Scalability and Reliability
	Identifying Obstacles and Trade-offs

	Conclusions

	Conclusions and future work
	Conclusion
	Future Work

	References
	Appendices:
	A - Github repository

