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Abstract

As the world population continues to grow, a significant challenge emerges to
provide healthcare facilities to an ever-expanding population. Harnessing the power
of AI, this challenge could be easily mitigated. One of the solutions to solve the
lack of manpower in the field of medical sector is to incorporate AI to help in the
decision making of the medical profession. In order to automate the identification
of diseases in the field of chest x-rays, this thesis conducts a thorough investiga-
tion of image classification and object recognition techniques. With an emphasis
on improving diagnostic capabilities, the work makes use of cutting-edge image
classification and object identification models, to detect the anomalies in chest
X-rays.

The study highlights the results of these experiments and discusses how crucial
it is to constantly enhance and improve in order to correctly identify the disease
as a whole. Evaluation and visual assessments of model outputs provide a deeper
understanding of their effectiveness, laying the groundwork for future advance-
ments in using machine learning for detecting deformities in chest X-rays.

i





Acknowledgement

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Ali
Shariq Imran and my co supervisor Mohib Ullah for their continuous guidance and
support throughout the thesis works. Their consistent guidance and supervision
has helped me to create a right path for my thesis and also perform my best. I am
truly grateful for their mentorship.

Additionally, I would like to express my gratitude to Norwegian University of
Science and Technology for providing me with the necessary resources to conduct
the experiments. This thesis would have been incomplete without the support
provided by the university.

I would also like to extend my appreciation to my friends and family for their
unwavering support throughout the entire process and their warm words of en-
couragement.

Rumi Rajbhandari

iii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction and Problem statement . . . . . . . . . . . . . . . . . . . 1
1.2 Justification, Motivation and Benefits . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Paper Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Image Classification, Object Detection and Instance Segmentation . 5
2.3 Image Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Mobilenet V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Resnet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Efficient Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Object Detection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Detectron2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 RTMDet using MMDetection . . . . . . . . . . . . . . . . . . . . 9
2.4.3 YOLOv8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Intersection over Union(IoU) . . . . . . . . . . . . . . . . . . . 12
2.5.2 True Positive, False Positive, False negative and True Negative 12
2.5.3 Precision, Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 Average Precision (AP) . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Stochastic Gradient Descent(SGD) Optimizer . . . . . . . . . 14
2.6.2 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Medical Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . 17

v



vi R.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

3.1.1 Fully Convolutional Neural Networks . . . . . . . . . . . . . . 18
3.1.2 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Dataset Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . 21
4.1 Dataset acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Database search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Dataset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Dataset Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Data Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Domain of the dataset . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Dataset overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Dataset Visualization . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Binary Image Classification . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Eight class Image Classification . . . . . . . . . . . . . . . . . . 29

5.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Object Detection for 8 classes . . . . . . . . . . . . . . . . . . . 31
5.2.2 Object Detection for 2 and 3 classes . . . . . . . . . . . . . . . 35

6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 Object Detection for 8 classes . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Object Detection for 2 and 3 classes . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Code to convert Vindr dataset into COCO dataset Format . . . . . . 55
A.2 Visualization of input images . . . . . . . . . . . . . . . . . . . . . . . . 57



Figures

2.1 Image Classification [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Object detection [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Instance segmentation [8] . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Residual block [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Inverted residual block [10] . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Building block of ResNet[12] . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Detectron2 architecture (Base RCNN-FPN)[14] . . . . . . . . . . . . . 9
2.8 RTM-Det architecture[15] . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 YOLOv8 architecture[26] . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 IoU[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Class Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Annotated sample image from VinDr . . . . . . . . . . . . . . . . . . . 26

5.1 Class Distribution for all the classes except No findings . . . . . . . . 31
5.2 Class Distribution for eight classes . . . . . . . . . . . . . . . . . . . . . 32
5.3 Class Accuracy for SGD Optimizer . . . . . . . . . . . . . . . . . . . . . 34
5.4 Total Loss for SGD Optimizer . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Class Accuracy for Adam Optimizer . . . . . . . . . . . . . . . . . . . . 34
5.6 Total Loss for Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Ground truth 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 RTMDet Output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Ground truth 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 RTMDet Output 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Ground truth 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 RTMDet Output 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.7 Ground truth 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.8 YOLOv8 Output 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.9 Ground truth 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.10 YOLOv8 Output 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.11 Ground truth 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.12 YOLOv8 Output 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.13 SGD optimizer ground truth and output 1 . . . . . . . . . . . . . . . . 42

vii



viiiR.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

6.14 SGD optimizer ground truth and output 2 . . . . . . . . . . . . . . . . 42
6.15 Adam optimizer ground truth and output 1 . . . . . . . . . . . . . . . 43
6.16 Adam optimizer ground truth and output 2 . . . . . . . . . . . . . . . 43
6.17 2 classes object detection output 1 . . . . . . . . . . . . . . . . . . . . . 44
6.18 2 classes object detection output 2 . . . . . . . . . . . . . . . . . . . . . 44
6.19 3 classes object detection output 1 . . . . . . . . . . . . . . . . . . . . . 45
6.20 3 classes object detection output 2 . . . . . . . . . . . . . . . . . . . . . 45

A.1 Respective classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Input data visualization 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 Input data visualization 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Tables

4.1 Chest X-rays dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Data classes in VinDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Ablation study for binary image classification . . . . . . . . . . . . . . 28
5.2 Dataset count per class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Ablation study for 8 classes image classification . . . . . . . . . . . . 30
5.4 Ablation study on different models . . . . . . . . . . . . . . . . . . . . 32
5.5 8 classes object detection in Detectron 2 . . . . . . . . . . . . . . . . . 33
5.6 Classwise AP for 8 classes using SGD and Adam Optimizer . . . . . . 33
5.7 Result for 3 classs vs 3 classes . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Classwise AP for 2 and 3 classes . . . . . . . . . . . . . . . . . . . . . . 36

ix





Acronyms

Adam Adaptive Moment Estimation Optimizer. v, 14, 15

AP Average Precision. v, 13

BCE Binary Cross Entropy. 11

BN Batch Normalization. 10

COCO Common Objects in Context. 3

CSP Cross Stage Partial. 10, 11

CT Computed Tomography. 1

DFL Distribution Focal Loss. 11

FN False Negative. 12

FP False Positive. 12

FPN Feature Pyramid Network. 8

IoU Intersection over Union. v, 12

mAP Mean Average Precision. 13

MRI . 1, 17

NMS Non-Maximum Suppression. 12

PAFPN Path Aggregation Feature Pyramid Network. 10

ROI Region of Interest. 2, 3, 8

RPN Region Proposal Network. 8

RTMDet Real Time Models for Object Detection. 9, 10

xi



xii R.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

SGD Stochastic gradient descent. v, 14

TN True Negative. 13

TP True Positive. 12, 13

WHO Word Health Organization. 1

YOLO You Only Look Once. 10



Chapter 1

Introduction

1.1 Introduction and Problem statement

Machine learning, especially deep learning, has become an inseparable part of our
everyday life. From voice search technology to self-driven cars, it has influenced
every domain imaginable. Its impact on healthcare is remarkable as well. Some of
the applications of deep learning in health care include drug development, disease
prediction, medical imaging and diagnostics, personalized treatment and so on.
These applications have revolutionized the health care domain of the world by
making it more efficient and accessible to wider group of population.

Using deep learning to interpret medical images like X-ray, Magnetic resonance
imaging (MRI) scan, or Computed Tomography (CT) scan to perform diagnosis
of the patients can be extremely useful in the current scenarios where doctor to
population ratio is extremely low. The recommended doctor to population ratio by
World Health Organization (WHO) is 10 doctors per 10,000 population whereas
the current ratio in many countries is less than 1 doctor per 10,000 population [1].
The nation’s medical health care system is heavily burdened by the lack of doctors,
especially in the event of a pandemic, which will seriously impair people’s quality
of life and disrupt the health care system. Leveraging the power of deep learning
to alleviate the burden faced by the doctor in these countries can not only lead to
providing better health care facilities but also results in improving the quality of
healthcare services. Using deep learning can also enhance the outreach services
provided by health workers in remote areas of the world.

Accurately diagnosing any deformities in the medical images depends on the
experience and the knowledge of the medical professional. According to Delrue
et. al. [2], the examiner has to have following skills to accurately diagnose the
disease.

• Knowledge of Anatomy and Physiology
• Radiograph Analysis Using a Fixed Pattern
• Familiarity with the clinical presentation, history, and correlation to other

diagnostic outcomes

1
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Without a full understanding of physical and physiological concepts, medical
imaging can be misread. Psychological interpretation aspects should be taken into
consideration as a potential source of errors while interpreting chest X-rays. In this
case, machine learning can be used to lessen the possibility of a disease being mis-
diagnosed. By using image segmentation, the area with defects can be highlighted,
bringing attention to the problematic area and lowering the likelihood of a false
diagnosis. For improved health-care services, improving diagnosis accuracy and
reducing diagnosis time are both vital. Both of these tasks could be accomplished
with the use of machine learning, which would ultimately assist in saving lives.

Extensive research [3], [4],[5], [6] has been conducted to identify the Region
of Interest (ROI) in the medical domain. However, the application of ROI detec-
tion in the medical field is in the early stages of development. Further researches
are required to advance its maturity, in order to make it suitable for practical im-
plementation in real-world scenarios.

1.2 Justification, Motivation and Benefits

Having accessible healthcare is a fundamental human right and in order to make
it accessible for everyone, we need to maximize resource utilization. Empowering
the healthcare sector with AI provides a solution to address existing gaps in the
medical sector. Especially in resource-constrained settings, the use of AI allows
patients to be diagnosed faster, allowing doctors to treat patients more effectively
and allocate more time for subsequent cases. The early diagnosis not only speeds
up the treatment but also serves as a way to prevent possible complications as
a consequence of later diagnosis. The use of AI in medical imaging is proving
incredibly valuable, guiding physicians on where to focus and what to look for in
diagnostic testing. By identifying potential issues in medical images, AI simplifies
analysis by focusing attention on specific areas of concern. This not only allows
the time needed to properly assess the patient but also provides greater support
for an accurate and timely diagnosis.

In essence, the use of AI in healthcare optimizes the use of available resources,
helping to diagnose medical conditions more efficiently and accurately. This trans-
formative technology helps ensure that individuals receive treatment in a timely
manner. This ultimately helps more people get healthcare quickly and reduces the
risk of adverse outcomes as a result of delayed diagnosis.

1.3 Research Questions

The research intends to address three crucial research questions related to medical
imagery. They are:

• How do state-of-the-art models perform in terms of accuracy when it comes
to the classification of chest X-ray images and what conclusions can be made
for their applicability in medical image classification tasks?
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• How effective and accurate are existing machine learning models for de-
termining the ROI in medical images?
• What is the impact of altering the number of classes on determining the

performance of object detection models and how does it affect the accuracy
of the model?

1.4 Contributions

The main contributions of this thesis are mentioned below:

• Curation and creation of diverse sets of dataset from Vindr chest X-rays im-
ages to ensure a well rounded representation of various abnormalities and
medical conditions. These subsets of the dataset consist of COCO-format
images with different class counts.
• Presents ablation studies of different object detection models when trained

with different datasets containing varying numbers of image classes.
• Evaluation of the performance of different object detection models for de-

termining ROI in chest X-rays. examined the effects of changing the number
of classes on object detection models, offering information on how the size
of the class affects model accuracy.

1.5 Paper Outline

The rest of the paper is structured as follows: In Chapter 2, the theoretical in-
formation required for the research is covered along with an overview of image
classification and object detection. The next chapter, chapter 3, includes literature
review that consists of the state-of-the-art works on medical image classification
and segmentation. Chapter 4 contains the details of the process of the dataset cre-
ation. Next in chapter 5, different experiments that are carried out in this thesis
are discussed along with the comparison of its performance. Chapter 6 consists of
results obtained from different models in different experiments. The discussion of
various observations made throughout this research work and their explanations
are presented in this chapter. At last, Chapter 7 summarizes the conclusions as
well as provides direction for further research.





Chapter 2

Background

This chapter will provide the user with the basic understanding of different con-
cepts and knowledge related to the project. It starts by discussing different topics
related to computer vision and then proceeds to the discussion on different models
employed in this project and a variety of evaluation metrics used for image clas-
sification and object detection. Reading this chapter will provide the user with all
the necessary information to get a better understanding of the knowledge used in
the project.

2.1 Object Detection

Object detection is a computer vision technique for detecting instances of semantic
objects that belongs to a certain class such as animals, plants, etc in digital images
and videos [7]. The aim of object detection is to develop a computational model
that predict a set of bounding box and labels each object of interest. Humans can
quickly identify and locate objects of interest when viewing images or videos. The
goal of object detection is to recreate this intelligence using computer.

Despite the apparent similarity of various computer vision subfields, such as
image classification, object detection, and image segmentation, each has its own
goals and techniques.

2.2 Image Classification, Object Detection and Instance
Segmentation

Image classification refers to the task of associating one or more labels or classes to
a given image [9]. Single label classification deals with labeling the entire image
with only one label or class whereas multi label classification deals with annotat-
ing the image with more than one label. If we look at the figure 2.1 we instantly
classify the image as an image of sheep. This is exactly what image classification
accomplishes - determine if the image falls under a specific class or not.

5
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Figure 2.1: Image
Classification [8]

Figure 2.2: Object
detection [8]

Figure 2.3:
Instance segment-
ation [8]

While image classification is capable of identifying the items in a given image,
it is unable to determine their exact locations. That’s when object detection comes
into action. It is possible to determine the bounding box of the object using object
detection. However, it offers no details regarding the object’s shape. Instance seg-
mentation can be utilized to determine the instances of the objects and marking
their boundaries.

2.3 Image Classification Models

Models which are used during the image classification within the scope of this
thesis are discussed in this section. We will examine the architecture or key fea-
tures of each of the image classification models.

2.3.1 Mobilenet V2

Mobilenet V2 is a convolutional neural network architecture designed by Sandler
et. al.[10] to build highly efficient mobile models for image classification and ob-
ject detection. It is a memory-efficient predecessor over MobileNet[11] that aims
to achieve better accuracy and lower the computational cost all while reducing the
model size. It introduced the concept of inverted residuals, where a lightweight
depthwise separable convolutions is followed by a linear bottleneck. It uses depth-
wise separable convolution of size 3X3 to decrease the computational cost by 8 to
9 times.

Figures 2.4 and 2.5 shows the difference between residual block and inverted
residual block. The thickness of each block represents its proportionate number
of channels. We can see that classical residuals links layers with a high number of
channels, while inverted residuals connect the bottlenecks. By adopting an inver-
ted residual block, the model’s efficiency is increased and the computational load
is reduced due to improved knowledge flow across layers.
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Figure 2.4: Residual block [10] Figure 2.5: Inverted residual block [10]

2.3.2 Resnet-50

ResNet-50[12] is a deep convolutional neural network that is 50 layers deep. The
one problem that is faced when increasing the depth of a neural network is that it
leads to the degradation in performance caused by the training difficulties. Hence
to overcome the degradation problem ResNet-50 was introduced. The main in-
novation in Resnet-50 is the residual blocks which consist of skip connections that
can skip one or more layers. The skip connections allows the gradient to flow more
easily during backpropagation hence diminishing the vanishing gradient problem.

Figure 2.6: Building block of ResNet[12]

The building block for residual learning is represented as:

y = F(x , {Wi}) + x

Here, x is the input vector, y is the output vector and F(x , Wi) is the residual
mapping to be learned. The output of the block in figure 2.6 is represented as
F(x)+x . Stating the block’s output as F(x)+x , rather than solely F(x), enables the
network to skip the contributions of a convolutional block if it doesn’t contribute
additional information to the network.

2.3.3 Efficient Net

In 2019 Tan et. al.[13], proposed a solution called compound scaling to tackle
the challenge of finding the balanced network width, depth and resolution that
has better accuracy and efficiency instead of manual tuning these parameters.
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Compound scaling suggests that the depth, width and the resolution of should be
scaled in a constant way which is represented as follows:

Depth: d = αφ

Width: w= βφ

Resolution: r = γφ

s.t. α.β2.γ2 ≈ 2,

α≥ 1, β ≥ 1, γ≥ 1

Through the experiment, it was found that the best values of α=1.2, β=1.1
and γ=1.15, considering a certain condition. Using these values as constants and
scaling up the baseline network of EfficentNet-B0 with different value of φ using
the equations above, it was possible to obtain the improved EfficientNets.

2.4 Object Detection Models

In this section, we will take a look at the various models employed for object
detection within the scope of this project. We will also have a genral overview
regarding the architecture and the key characteristics of the selected models used
for object detection.

2.4.1 Detectron2

Detectron2[14] is the state-of-the-art next generation library developed by Face-
book AI Research for object detection and object segmentation. It features a mod-
ular architecture that allows users to effortlessly customize and expand the func-
tionality of the library. Detectron2 includes implementation of state-of-the-art ob-
ject detection algorithms such as Faster R-CNN, Mask R-CNN and RetinaNet. It is
renowned for its high performance in terms of both speed and accuracy.

Figure 2.7 represents the architecture of the Detectron2 model. It primarily
comprises of three main blocks. The initial block, known as the backbone network,
uses Feature Pyramid Network (FPN) with Resnet50 for FPN implementation. The
role of this block is to extract feature maps from the input image. The output of
this block is multi-scale feature maps which are then utilized as an input for the
subsequent block. The second block of the architecture is called Region Proposal
Network (RPN). Besides, the feature maps, the ground truth of the data is also
fed into this block. The output of the block is proposal boxes. The third and final
block is the Region of Interest (Box) Head, which receives feature maps from FPN,
proposal boxes from RPN, and ground truth boxes. Utilizing proposal boxes for
cropping, the Box Head processes ROI from the feature maps using ROIAlignV2,
a precise pooling method for floating-point coordinate proposal boxes. The clas-
sification loss employs Softmax cross-entropy, while the localization loss uses L1
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Figure 2.7: Detectron2 architecture (Base RCNN-FPN)[14]

loss. During testing, inference occurs by applying prediction deltas to proposal
boxes, filtering them by score, performing non-maximum suppression to elimin-
ate overlapping boxes, and ultimately selecting the top-k results.

2.4.2 RTMDet using MMDetection

RTMDet[15], an efficient Real-Time one stage detector, is used for detecting ob-
jects. An open source detection toolbox built by OpenMMLab called MMDetec-
tion[16] is used for utilizing the implementation of Real Time Models for Object
Detection (RTMDet). Figure 2.8 illustrates the macro architecture of the RTMDet
which consists of three components: the backbone, the neck, and the head.

Figure 2.8: RTM-Det architecture[15]

1. Backbone: The backbone is responsible for extracting input image features.
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Cross Stage Partial (CSP) blocks with large-kernel depth-wise convolution
layers are used to build the backbone. CSP-blocks refer to Cross Stage Partial
networks which are used to improve feature representation. The backbone
of the model extracts multi-level features which are denoted as C3, C4 and
C5.

2. Neck(Path Aggregation Feature Pyramid Network (PAFPN): The output
of the backbone, which is multi-scale features are passed into the neck and
enhances them using a technique called PAFPN. To enhance the feature pyr-
amid, the PAFPN block uses both top-down and bottom-up feature propaga-
tion techniques. The function of the neck is to guarantee that the model can
recognise objects at different scales with accuracy, which helps with multi-
scale feature representation.

3. Head: Using the feature maps derived from each scale, the detection head
is responsible for predicting item bounding boxes and the categories which
relate to them. RTMDet uses separate Batch Normalisation (BN) layers for
every scale, while it uses shared convolution weights for the detection head
across scales. This maintains precision while enabling parameter sharing
between scales.

A strategy for dynamic soft label assignment, which is based on SimOTA [17], has
been introduced, and the corresponding cost function can be presented as follows:

C = λ1Ccls +λ2Creg +λ3Ccenter

Here Ccls, Ccenter and Creg represents classification cost, region prior cost and
regression cost respectively. λ1, λ2 and λ3 are the default weights of these three
costs.

Ccls = CE(P, Ysoft)× (Ysoft − P)2

Earlier methods often use binary labels to calculate classification cost. This
method enables a prediction with a high classification score but an inaccurate
bounding box to produce a low classification cost, and vice versa. To address this
challenge, RTMDet proposes incorporating soft labels into Ccls as shown in the
above equation. In conclusion, RTMDet showcases a superior balance between
accuracy and speed for object recognition tasks of different model sizes.

2.4.3 YOLOv8

Developed in 2015 at the University of Washington, You Only Look Once (YOLO)[18]
has become a widely recognized model for object detection and image segment-
ation. It has been recognized for its exceptional speed and accuracy. Over the
years, its popularity has led to continuous enhancements, striving to improve
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performance and efficiency. Multiple iterations have been introduced, including
YOLOv2[19], YOLOv3[20], YOLOv4[21], YOLOv5[22], YOLOv6[23], YOLOv7[24],
and the most recent, YOLOv8[25].

The company that created YOLOv8, Ultralytics, has expanded on the achieve-
ments of its predecessors. YOLOv8 incorporates advancements aimed at enhan-
cing overall performance, flexibility, and efficiency. This most recent version can
handle a wide range of AI vision tasks with ease, including tracking, segmentation,
pose estimation, detection, and image classification.

Figure 2.9: YOLOv8 architecture[26]

The YOLOv8 architecture comprises three main components: the backbone,
neck, and head. The backbone generates a feature pyramid facilitating multi-scale
object detection. YOLOv8 adopts the C2F model, based on CSP, in contrast to
the YOLOv5’s C3 module. The C2F block enhances CNN learning capacity while
reducing computational demands. YOLOv8 introduces a decoupling structure in
the head, deviating from the original coupling structure in YOLOv5.

YOLOv8 employed Binary Cross Entropy (BCE) loss for classification, while
utilizing CIoU loss and Distribution Focal Loss (DFL) for regression[27]. The com-
putation of DFL values was determined by the expression presented in equation
2.4.3.

DFL(si , si+1) = −((yi+1 − y) log(si) + (y − yi) log(si+1))

The output si represents the sigmoid result for the network, yi and yi+1 denote
interval orders, and y is a label.

t = sα × uβ
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Notably, YOLOv8 is an anchor-free model, directly predicting object centers
rather than anchor boxes. This results in fewer box predictions, leading to faster
Non-Maximum Suppression (NMS). The alignment degree of Anchor level for
each instance is calculated using an equation 2.4.3 where s represents the classi-
fication score, u is the IoU value, and α and β are the weight hyperparameters.
Negative samples include the remaining anchors, but positive samples include m
anchors with the greatest value (t) in each instance.

2.5 Evaluation metrics

2.5.1 Intersection over Union(IoU)

IoU is the metrics used to evaluate the overlap between two bounding boxes which
are the bounding box of a ground truth and the bounding box of a predicted box.
With the help of IoU we can tell if an detected object is True Positive or False
Positive. The IoU can have values between 0 and 1. Having IoU value 0 indicates
that the two boxes do not intersect and having IoU value 1 indicates the two boxes
completely overlap.

Figure 2.10: IoU[28]

2.5.2 True Positive, False Positive, False negative and True Negative

• True Positive (TP): It is a case when a model predicts that a bounding box
exists at a certain position (true) and it is actually correct (true).

• False Positive (FP): It is a case when a model predicts that a bounding box
exists at a certain position (true) but it is wrong (false).

• False Negative (FN): It is a case when the model does not predict the ex-
istence of a bounding box at a certain position (negative) and it is wrong
(false).
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• True Negative (TN): It is the case when the model does not predict the
existence of a bounding box (negative) and it is correct (true).

2.5.3 Precision, Recall

• Precision: It is the ratio of TP predictions to the total predicted positives. It
gives the indication of how precise our model is.

Precision=
CorrectPredic t ions

TotalPredic t ions
=

T P
T P + F P

• Recall: It is the ratio of TP prediction to the total actual positives. It gives
the indication of how good the model is at recalling classes from images.

Recal l =
CorrectPredic t ions
TotalGroundTruth

=
T P

T P + FN

2.5.4 Average Precision (AP)

It is the one of the most popular metrics used for evaluating object detection mod-
els. From AP we can derive other metrics such as Mean Average Precision mAP,
AP50, AP75 and AP[.5:.5:.95]. The AP is determined by computing the area under
the Precision-Recall curve (AUC-PR). In practical applications, the AP is computed
as an average across all recall values within the range of 0 to 1. The value of AP
is calculated as follows:

AP=
1
R

R
∑

k=1

(P(k) · rel(k)),

In the above equation, R is the number of recall values, P(k) denotes the pre-
cision at k-th recall , and rel(k) is an indicator function that is equal to 1 if the
k-th retrieved item is a relevant item and 0 otherwise.

2.5.5 Accuracy

It is the ratio of number of correctly predicted bounding boxes to total number
of bounding boxes which are presented as a percentage.The degree to which a
model accurately locates and detects items in an image is measured by the object
detection accuracy. The formula for calculation accuracy is presented below:
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Accuracy=
Number of Correctly Predicted Bounding Boxes

Total Number of Bounding Boxes
× 100%

2.6 Optimizers

Optimizers are the algorithms that minimize the loss function by updating the
parameter of the models. It helps to improve the performance of the deep learn-
ing models by updating its weight and biases in such a way that the model’s rep-
resentation gets closely aligned with the characteristics of the training data. The
accuracy and performance of various models are impacted by different optim-
izers. While there isn’t a universally applicable method for selecting the optimal
optimizers for a deep learning model, experimenting with several optimizers and
evaluating the outcomes can assist in determining which optimizer is best suited
for a certain task.

2.6.1 Stochastic Gradient Descent(SGD) Optimizer

The term stochastic means “randomness”, which is exactly what the optimizer is
based upon. In SGD, random mini batches of training data are selected instead of
the entire dataset, in order to improve the model’s performance. In comparison
with gradient descent, SGD needs more iterations to attain local minima. The
computational expense is still lower than that of gradient descent, though. The
formula for calculating SGD is given below.

θt+1 = θt −η∇J(θt , x i , yi)

Here, θt represents the parameters of the model at t iteration, η is the learning
rate and ∇J(θt , x i , yi) represents the gradient of the loss function J where x i , yi
is mini-batch of data.

SGD iteratively adjusts the model parameter based on the gradient computed
from the formula. As a result, the parameters converge and eventually reach the
lowest loss across the training data set.

2.6.2 Adam Optimizer

ADAM stands for Adaptive Moment Estimation Optimizer. It is able to adaptively
adjust the learning rate for each network weight individually. It combines the ideas
from RMSprop and Momentum, which are the two other optimization algorithms.
Adam has two moving averages for each parameter of the model: a moving aver-
age of the gradients(Momentum) and of the squared gradients(RMSprop).
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mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− β t
1

v̂t =
vt

1− β t
2

θt+1 = θt −
α
p

v̂t + ε
m̂t ,

(2.1)

The updated formula for Adam optimizer[29] relies on the first moment es-
timate and second moment estimate mt and vt . At time t, the gradient is denoted
by gt , θt represents model parameters, m̂t and v̂t are bias correctness estimate.
α is the learning rate and β1 and β2 are the decay rates. A small number ε is
included to prevent the issue of division by zero.
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Related Work

Deep learning networks have become the fundamental part of today’s artificial
intelligence system [30]. There are various types of deep learning networks, each
designed for a specific task and purpose. For example, Convolutional Neural Net-
works(CNN) are used for image classification, object detection and other com-
puter vision tasks. Recurrent Neural Networks are used for sequence modeling,
natural language process, speech recognition and time series analysis. Transformer
networks were first applied by Vaswani et al [31] to natural language processing
tasks. Initial applications of transformer included machine translation, but they
were later expanded to incorporate text generation [32], sentiment analysis [33],
and question-answering [33].

3.1 Medical Image segmentation

Medical image segmentation is the process of separating organs or lesions from
the background of images such as X-rays, MRIs, and so on. Hesamian et al. [6]
have stated that it is one of the most difficult tasks in medical image analysis. Its
usage can significantly reduce doctors’ workload by assisting them in quantifying
the effects of treatment and by verifying the size of diseased tumors [6]. It is a
vital component of medical image analysis which also serves as the foundation for
various clinical applications.

Early methods of medical image segmentation were based on classical image
processing techniques such as the edge detection, thresholding and active con-
tour[34]. These methods however, have their own limitations when it comes to
handling varying image quality and complex anatomical structures.

Medical image segmentation has undergone a revolution as a result of the
development of deep learning techniques, particularly convolutional neural net-
works (CNNs). Various ground breaking deep learning based techniques have
been developed so far and have achieved state of the art in the field of medical
image segmentation. Some of them are discussed below.

17
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3.1.1 Fully Convolutional Neural Networks

CNN serves as the standard network model for computer vision. The efficient
and cutting-edge deep learning system for semantic segmentation started from
FCN [35]. But with the introduction of AlexNet[36], CNN truly took off and
became mainstream. Since then, a large number of powerful and efficient con-
volutional neural networks have been proposed and have been able to obtain
state-of-the art performance for image classification, segmentation and detection.
VGG[37], GoogleNet[38], ResNet[12], DenseNet[39] and EfficientNet[13] are a
few of them. One of the main issues with these models, in the context of medical
imaging, is that these models were trained using a big dataset, which is not always
feasible when dealing with medical images like chest X-Rays due to the limited
quantity of the accessible data[rpp].

To address the problem along with the other specific challenges such as re-
duced feature resolution, existence of objects at multiple scales and reduced loc-
alisation accuracy compactness which were not addressed by previous models like
Imagenet and VGG, DeepLab[40] was introduced. DeepLab was able to improve
the performance of accurately segmenting objects of various sizes. Different iter-
ations of DeepLab which are DeepLabV1[40], DeepLabV2[41], DeepLabv3[42],
DeepLabV3+[43], DeepLabV4[44], DeepLabV5 [45] and DeepLabV6[46] were
able to achieve state-of-the-art results in semantic image segmentation tasks while
also being more efficient in computation and memory requirements.

3.1.2 U-Net

Ronneberger et al. [47] designed U-net for biomedical image segmentation, which
has been extensively used in medical image segmentation. Many variants of the
U-net such as Residual and Attention U-Net along with encoder-decoder architec-
tures such as ResNet and DenseNet have been able to achieve state of the art. All
these architectures share a key similarity which is the presence of skip connec-
tions. Skip connection along with the attention block allows the model to provide
focus on the key semantic features and dependencies. This inturn helps in the
detection of the finer details.

All these aforementioned models have undoubtedly achieved state of the art
in medical image segmentation but most of the work has been focused on MRI,
positron emission tomography (PET) and X-ray scan images of brain, breast, liver
and chest for anomaly and cancer detection. They have outperformed almost all
previously known deep-learning models for lesion segmentation but it still has sev-
eral limitations. One of the limitations is that it cannot accurately predict small
objects and display anatomical characters in regions of interest in the predicted
images. This limit should be taken into account in chest xray segmentation be-
cause the size of the abnormalities present in the image can vary dramatically
depending on the age of the person [48].

To overcome the limitation of U-Net architecture and the presence of a gen-
eralized model in the domain of chest X-ray, Pal et al [48] proposed a modified
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version of the U-Net model called UW net. Attention gates were implemented in
the UW net model to improve the prediction accuracy of small lesion segmenta-
tion.

3.1.3 Transformer

Vaswani et al.[31] first proposed the idea that transformers may be utilized for
tasks other than natural language processing. The idea that it can also be used for
other tasks has resulted in the development of many new versions of transformers.
In computer vision alone, it has been used for object detection [49], image res-
toration [50], medical image segmentation [51] and many more [52].

In 2020 Dosovitskiy et al. [53] presented a novel approach of applying a trans-
former model to image recognition, called as Vision Transformer, demonstrating
excellent results in comparison to the state-of-the-art CNN while using fewer com-
putational resources. The success of Vision Transformer was followed by several
variants based on the transformer architecture. Both the medical[54][55][56] and
non-medical [57][58][59] fields have shown success with its variation.

In 2021, Liu et al. [54] created the Swin transformer, a revolutionary archi-
tecture for computer vision tasks that demonstrated excellent performance in in-
stance segmentation and semantic image segmentation. It uses a hierarchical ap-
proach that enables the model to capture both local and global information effi-
ciently and also shifted windows which in turns reduces the computational com-
plexity. In another study conducted by Ma et al.[60], Swin transformer has been
shown to perform better than vision transformers in object detection and medical
image segmentation. Furthermore, the pre-trained Swin transformer model on
ImageNet was able to outperform CNN based models such as Resnet-50 in terms
of the computer vision tasks.

In-depth studies on five different transformer-based models for identifying
and segmenting lung areas were conducted by Ghali et al. [61]. The five mod-
els were ARSeg[62], TransM, Medical Transformer(MedT)[4], TransUNet[3] and
UNeXt[5]. Upon evaluating the performance of the models using two loss func-
tions (Dice loss and Combo loss) and using two evaluation metrics(F1 score and
accuracy), it showed that all five of the models were able to achieve good per-
formance in segmenting lung areas. But based on the F1 score, TransM was able
to achieve the best score among all the other models. It was due to its ability in
extracting rich feature maps using global and local branches. It was also able to
outperform the U-Net model. All these five models were able to separate lungs ir-
respective of the varying lung shape which depended on age and gender showing
great potential in future for medical image segmentation.

Besides having the aforementioned approaches of detecting objects–FCNN,
U-Net and Transformer based approaches, there are many other models which
follow their own unique approach for object detection. Yolo[18] for instance uses
object detection as a single regression problem. It uses a single convolutional net-
work which simultaneously predicts numerous bounding boxes and potential class
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for those boxes. This unified approach of detecting objects makes the model ex-
tremely fast, with the ability to incorporate contextual information and has the
generalization capacity.

Another model deviating from the aforementioned approaches is Detectron 2.
Despite being primarily designed on R-CNN-based architectures, it is a modular
and flexible framework that supports a number of backbone architectures such as
ResNet[12], ResNetXt[63], and many other CNN variants. By default, Detectron2
includes the implementation of both Faster R-CNN [64] and Mask R-CNN [65].
The primary difference between Faster R-CNN and Mask R-CNN is that Faster
R-CNN is used for predicting the coordinates of the bounding box and class prob-
abilities whereas Mask R-CNN is used for predicting the segmentation masks for
each detected object.

Faster R-CNN which was proposed by Ren et. al. in 2015 [64], comprises of
two essential components: a Region Proposal Network(RPN) and a Fast R-CNN
network. The RPN is responsible for generating proposals for regions that may
contain objects within the images. The Fast R-CNN network which was proposed
by Girshick et. al. [66] , takes the images and proposes candidate regions, then
these candidate regions are passed through a popular pre-trained image classi-
fication model such as ResNet, VGG-16 to extract features. Once the features are
extracted, it undergoes a Region of Interest(RoI) following layer which is then
followed by label classification. Faster R-CNN is one of the best ways for object
detection based on R-CNN series[67].



Chapter 4

Dataset Acquisition and
Preprocessing

This chapter focuses on all the crucial elements of acquiring the dataset to identify
deformities in chest x-rays. A diverse and quality dataset is essential for the pur-
pose of training robust and accurate deep learning models for medical imaging.
Since the success of deep learning models are heavily dependent on the dataset,
lots of considerations were taken into account while selecting the chest X ray data-
set for training. All those considerations along with the various challenges faced
during the dataset acquisition are discussed in this chapter.

4.1 Dataset acquisition

In a real world scenario, obtaining dataset for medical imaging can involve sourcing
data from various channels, including hospital records, public databases, or from
various private collections through collaborations with healthcare institutes or
organizations. However, this master thesis has an extremely specific focus, so it
was decided to make use of an already existing, publicly accessible dataset that
has already been annotated. In order to obtain the dataset that was ultimately
chosen, the following procedures were taken.

4.2 Database search

To compile a list of all the publicly accessible datasets for chest X-rays, a thorough
search of online sources was conducted. In order to find the dataset, relevant
keywords such as “Chest X-rays”, “chest medical images”, “pulmonary images”,
etc were used in well-known search engines and specialized dataset repositories.
Some of them include Kaggle datasets, Google dataset search and publicly avail-
able domain-specific repositories. Table 4.1 presents the list of collected datasets.

21



22 R.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

Name
Number of

Images
Image
Size

Dataset
Descriptions

JSRT 247 2048×2048
Annotated images

for nodules

Montgomery 138 4020×4892×12
Tuberculosis

diagnosis

NIH Chest-Xray Dataset 112,120 1024×1024
Limited images

annotated with multiple
thoracic diseases

Shenzhen 652 -
Tuberculosis

diagnosis

Candid-PTX 19,237 1024×1024

Annotation available
for pneumothoraces,

acute rib fractures, and
intercostal chest tubes

CheXpert 224,316 -

Multiple Diseases with
detailed annotations

including uncertainty labels;
No bounding box

Vindr-CXR 18,000 Variable

14 types of thoracic
abnormalities; each finding

is localized with a bounding box;
No radiologist report

Indiana State University 7,470 Variable
15 different abnormalities

with bounding box; Contains
radiologist report

MIMIC-CXR V2.0.0 377,110 Variable
Have annotations which
describes the presence or
absence of abnormalities

RSNA Pneumonia
Detection Challenge

30,000 Variable
Labelled to indicated
presence or absence

of pneumonia

Table 4.1: Chest X-rays dataset

4.3 Dataset Selection

After enumerating the readily available chest X-ray datasets that are suitable for
detecting abnormalities, the subsequent step is to filter out the dataset that is
not required and select one dataset for training. During the meticulous process of
selecting the dataset for training, various factors were taken into account. Among
these considerations were:
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4.3.1 Dataset Size

The size of the dataset is very crucial for training the deep learning model with lar-
ger datasets leading to better model performance and generalization. Therefore,
datasets with less than one thousand images were excluded from consideration.

4.3.2 Data Diversity

Diverse dataset is essential to make sure that the deep learning model general-
izes well across a range of diseases and diverse population. As a result, datasets
focused exclusively on a single specific disease are excluded during this phase.

4.3.3 Domain of the dataset

A training dataset should not only include images and the corresponding labels
but it should also incorporate bounding boxes along with the coordinates that
specifies the problem of the image or the target area. Consequently, the datasets
which do not contain annotations with bounding are removed. This step resulted
in the exclusion of most of the datasets that were initially listed.

After going through all the dataset filtration process, it became evident that
the Vindr Chest-Xray dataset aligns most closely with all the essential criteria man-
dated by the project. As a result of this, it was selected as the dataset for the
project.

4.4 Dataset overview

Vindr-CXR is an open dataset of chest X-rays which are manually annotated by
a group of 17 radiologists with at least 8 years of experience. The dataset is di-
vided into two sets: 15,000 images of training set and 3,000 images of testing set.
This dataset is made public by Vingroup Big Data Institute(VingBigData). All the
images are in DICOM format and belong to one of the following 15 classes.
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Class ID Findings

0 Aortic enlargement

1 Atelectasis

2 Calcification

3 Cardiomegaly

4 Consolidation

5 ILD

6 Infiltration

7 Lung Opacity

8 Nodule/Mass

9 Other lesion

10 Pleural effusion

11 Pleural thickening

12 Pneumothorax

13 Pulmonary fibrosis

14 No finding

Table 4.2: Data classes in VinDR

In addition to the images, there is a file named “train.csv” that includes the
metadata associated with the images. The file provides the following information:

• image_id: A unique identifier for the image
• class_name: The name of the class or the deformities found. In case of ab-

sence of deformities, it is labeled as "no findings"
• class_id: the ID of the identified object’s class
• rad_id: a radiologist’s ID who made the observation
• x_min: Minimum X coordinate of the bounding box of the detected object
• y_min: Minimum Y coordinate of the bounding box of the detected object
• x_max: Maximum X coordinate of the bounding box of the detected object
• y_max: Maximum Y coordinate of the bounding box of the detected object
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Figure 4.1: Class Distribution

The dataset “train.csv” represents a considerable amount of information, with
a total of 67,900 rows of data. This indicates that each medical image within the
dataset consists of approximately 4.5 findings. When analyzing the distribution
of image classes, an interesting finding emerges: 31,818 rows are labeled as “No
finding”. This category represents instances where no abnormal medical condi-
tions are detected in the image. This class accounts for a substantial 47% of the
total row count in the “train.csv” file.

Among the various abnormalities present in the dataset, Aortic enlargement
has the maximum number of data with a total of 7,162 instances in the dataset.
This number is closely followed by Cardiomegaly and Pleural thickening with the
respective counts of 5,427 and 4,842 instances. On the other hand, there are ab-
normalities with considerably fewer instances in the dataset. Pneumothorax has
the least amount of occurrence with only 226 instances. Similarly, other abnor-
malities such as Atelectasis and Consolidation also have relatively small numbers
with 279 and 556 instances respectively.

4.4.1 Dataset Visualization

The images presented in 4.2 depict a subset of four random images selected from
VinDr dataset. The images are plotted with regions of interest and the disease
which is diagnosed for each region of interest is also plotted on the images. The
information regarding the region of interest and the corresponding disease is ob-
tained from the train.csv file. It is evident that the number of abnormalities present
on the images vary from image to image. Some X-ray images exhibit only a couple
of issues while others consist of more than four issues within a single image. This
diversity highlights the intricate nature of medical imaging, where the condition
of the presence of defects can range from straightforward to highly complex solu-
tions.
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Figure 4.2: Annotated sample image from VinDr

Furthermore, the images also show a number of possibilities regarding the
overlap between ROIs. In some cases, there is minimum to no overlapping between
the regions of interest within a single image. However, in other images, a substan-
tial portion of a ROI is overlapped by another ROI. Even though the abnormalities
are completely different, overlapping between the ROI is observed. This intro-
duces a layer of complexity as it becomes more difficult for machines to correctly
identify between these defects.

As a result of these complexities, it poses a considerable challenge, especially
while training the model. The presence of varying number of deformities, coupled
with overlapping the ROI can impede the model’s ability to generalize effectively.
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Experiment

In this chapter, you will find details about all the experiments conducted during
this period, along with their respective results and conclusions. The process for
experiment is thoroughly explained, covering the methods and results. The aim for
this chapter is to provide a clear picture of what was done, what was found, and
what the outcomes imply. This chapter serves as a thorough record of the research
activities, providing insights and data in a comprehensible and straightforward
way.

5.1 Image Classification

As mentioned in the dataset overview, the vindr dataset exhibits a certain degree
of complexity. Image classification is chosen as the initial step for the research to
effectively tackle this complexity. The motivation for performing image classifica-
tion are listed below:

1. It helps in contextual understanding of the dataset, which facilitates in inter-
preting the image and provides direction for the subsequent segmentation
efforts.

2. Image classification is computationally less expensive than image segment-
ation. Hence by performing image classification first, we can narrow down
the focus of the project to only a handful of classes.

3. Additionally, image classification helps in filtering out the irrelevant data.
When we examine the classification accuracy for each class, it provides a
convincing argument for eliminating data that might not significantly con-
tribute to the research.

4. Gradually increasing the level of complexity of the research in order to de-
velop the expertise and improve methods.

27
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5.1.1 Binary Image Classification

Binary image classification is carried out before carrying out multi class classific-
ation. It is because it is much simpler than multi class classification and under-
standing the output from this can help in getting a better understanding of what
should be done in the future. The performance of binary image classification can
also serve as the benchmark performance when the project moves to the multi
class classification and what expectations we can have when the project reaches
a more complicated step. In order to carry out binary image classification, the
dataset has been meticulously separated into two distinct classes, which are im-
ages which consist of 1 or more abnormalities and images that do not consist of
any abnormalities. This dataset serves as the backbone for carrying out the binary
image classification which strives to differentiate between two different classes.
Once the dataset has been prepared, three cutting-edge models were selected in
the domain of image classification. The models chosen for this task are MobileNet-
ve, Resnet-50 and EfficientNet. The reason behind selecting these 3 models was,
during the course of the experiment, the performance of the models seemed to
be better than other models and also due to their simple implementation. These
models were trained for 50 iterations.

Model Acc Loss
Val
acc

Val
loss

Test
acc

Test
loss

Recall
0.90

Mobilenet v2 0.8622 0.2188 0.9093 0.0.4247 0.8786 0.4768 0.3943

Resnet-50 0.9175 0.1779 0.8754 1.0263 0.8555 1.911 0.4985

EfficientNet 0.5020 0.6931 0.5014 0.6931 0.5312 0.6928 0

Table 5.1: Ablation study for binary image classification

Overall, the performance of the binary image classification models was quite
satisfactory. Among the three selected models, EfficientNet displayed the lowest
accuracy, which was only 0.502. In comparison, MobileNet V2 obtained an ac-
curacy of 0.8622 and a loss of 0.2188, outperforming EfficientNet. ResNet-50, on
the other hand, produced the most astounding outcomes, having an accuracy of
0.9175 and a loss of 0.177.

Additionally, ResNet-50 exhibited better training accuracy and loss than Mo-
bileNet V2, but exhibited lower accuracy and loss during testing and validation,
which may indicate overfitting. This is caused by the fact that ResNet-50 is inher-
ently more sophisticated than MobileNet V2, which is comparatively lighter. Be-
cause ResNet-50 is more complicated, there are more parameters to learn, which
means that a larger dataset is needed to get the best results. On the other hand,
MobileNet V2 is more appropriate for situations with smaller datasets due to its
lightweight design.
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5.1.2 Eight class Image Classification

Following the completion of binary image classification, eight classes with the
highest number of data have been selected to carry out image classification. The
primary reason for carrying out eight class classification is to evaluate the model’s
ability to learn and understand the subtle complexities associated with different
diseases that are presented in the images. Since all the defects are located in such
a close proximity, conducting multi class classification becomes crucial. The un-
derlying rationale behind incorporating a broader range of data is that by adding
so the model is exposed to more complex features and patterns associated with
diverse diseases. Achieving a good result through this process affirms that the
dataset contains the depth and diversity necessary to train a model for sophistic-
ated tasks such as object detection.

Table 5.2 illustrates the distribution of dataset for 8 class image classification.
From the table, it is evident that the Nodule/Mass has the lowest data count at
826, while Aortic enlargement exhibits the highest data count of 3067. Follow-
ing the meticulous preparation of the dataset for image classification, the dataset
undergoes training for image classification. This database is also trained on three
models which are used for training binary image classifications which are Mobile-
net v2, Resnet-50 and EfficientNet. All these models were trained for 50 iterations.
The outcome of the training process is summarized and presented in the Table 5.3

Class ID Findings Count

0 Aortic enlargement 3067

3 Cardiomegaly 2300

7 Lung Opacity 1322

8 Nodule/Mass 826

9 Other lesion 1134

10 Pleural effusion 1032

11 Pleural thickening 1981

13 Pulmonary fibrosis 1617

Table 5.2: Dataset count per class
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Model Acc Loss
Val
acc

Val
loss

Test
acc

Test
loss

Mobilenet v2 0.2927 1.7319 0.3079 1.7490 0.3208 1.7364

Resnet-50 0.2984 1.7333 0.3009 1.7603 0.3009 1.7603

EfficientNet 0.2318 1.9944 0.2372 1.9828 - -

Table 5.3: Ablation study for 8 classes image classification

Assessing the performance of these three distinct models reveals that Resnet-
50 achieved the highest accuracy at 0.2984. Following closely to Resnet-50 is Mo-
bileNet v2 with an accuracy of 0.2927, while EfficientNet exhibits the least favor-
able performance among the three models, recording an accuracy of 0.2318. In
terms of loss, Resnet-50 and MobileNet show comparable values of 1.7319 and
1.7333, respectively, while EfficientNet lags slightly behind with a value of 1.9944.

For these models, validation loss and accuracy roughly resemble those of their
training counterparts. Similarly, the test accuracy and test loss align with training
accuracy and training loss for Resnet-50 and MobileNet. However, for Efficient-
Net, a notable deviation occurs as it fails to converge. This divergence may stem
from potential overfitting to the training data, capturing noise or specific patterns
absent in the test dataset. Additionally, as discussed in the context of binary image
classification, the inherent complex architecture of Resnet-50 which is favorable
only when there is a large number of dataset, might be the cause for the failure
in convergence of the output.

Analyzing the results of image classification shows that the model’s perform-
ance on correctly identifying and classifying images is relatively limited. This sug-
gests potential issues within the dataset possibly related to dataset complexity,
insufficient training data, imbalanced data and model complexity. Despite the
subpar accuracy in image classification accuracy, object detection is carried out
on these dataset. This undertaking holds significance as it provides the exact loc-
ation of the objects, can handle multiple objects in a single image and provides
more fine-grained analysis of the image. Object detection can prove beneficial in
identifying and addressing specific challenges associated with image classification.
For instance, it aids in finding out which regions of the image are challenging for
the model to identify. This additional information can be crucial in applications
where a detailed analysis of image is necessary.

5.2 Object Detection

After completing the image classification phase and gaining insights into the ex-
pected outcomes of the subsequent experiment, the focus shifts to object detec-
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Figure 5.1: Class Distribution for all the classes except No findings

tion. Three different models were chosen for carrying out object detection. These
includes detectron2, MM detection and YOLOv8 models. These models are recog-
nized for its ease of implementation and adaptability for fine-tuning, and is there-
fore chosen as the state-of-the-art model for object detection. To obtain a compre-
hensive understanding of the dataset’s overall performance, training is conducted
using the entire dataset. This method strives to evaluate the model’s performance
over the entire dataset and provide a comprehensive overview of its object detec-
tion abilities.

5.2.1 Object Detection for 8 classes

Upon analyzing the experiment, it became evident that the outcomes of object
detection across all classes were suboptimal. To gain a more nuanced comprehen-
sion of the dataset, a strategic split is implemented, selecting images that contain
approximately two thousand five hundred instances of the reports for subsequent
defects. This filtering process is applied independently to each class, resulting in a
curated dataset consisting of images from eight different classes. The distribution
of classes within this refined training dataset is visually presented in Figure 5.2,
representing eighty percent of the total dataset post-filtration which totals to fif-
teen thousand seven hundred and twenty nine images. Subsequently, this tailored
dataset undergoes training using the Detectron2 model.
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Figure 5.2: Class Distribution for eight classes

Method and Backbone AP AP50 AP75

Detectron 2 (MaskRCNN) 0.037 0.097 0.018

MmEngine(RTM Det) 0.176 0.332 0.178

Yolov8(CSP Net) 0.208 0.377 0.210

Table 5.4: Ablation study on different models

Table 5.4 presents the comprehensive findings from an ablation study con-
ducted on three distinct object detection models. The study focused on evaluating
the models’ performance, specifically looking at their AP values in the context of
object detection output. Among the models examined, Yolov8 emerged as the top
performer, showcasing a notably superior average precision of 0.208, 0.377 and
0.210 for AP, AP50 and AP75 consecutively. Following closely is MMEngine, util-
izing RTM Det as its backbone, with a commendable AP, AP50 and AP75 value of
0.176, 0.332 and 0.178 respectively. In contrast, Detectron2 exhibited the least fa-
vorable results among the models, registering a modest AP, AP50 and AP75 values
of only 0.037, 0.097 and 0.018 respectively.

This observable performance disparity motivates a more thorough investiga-
tion to determine the fundamental causes of the accuracy variance. In order to
fully understand the reasons behind the observed mediocre accuracy, one of the
models will be chosen for a more thorough examination in later phases of the re-
search. This focused study intends to improve our comprehension of the complex
dynamics underlying object detection accuracy and shed light on the particular
factors impacting the model’s performance.

To obtain this objective, Detectron2 is selected as the preferred model. The
initial phase of the analysis involves exploring different output scenarios by mak-
ing systematic adjustments to the optimizer. This involves evaluating how various
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optimizer configurations affect the model’s performance in order to obtain an un-
derstanding of how these differences affect the object detection process’s overall
outcomes.

Number of Classes Optimizer Accuracy Total Loss AP iou = 0.5

8 SGD 0.875 0.9781 0.097

8 Adam 0.8574 1.153 0.091

Table 5.5: 8 classes object detection in Detectron 2

The results of training the dataset in Detectron 2 model with different op-
timizers are depicted in Table 5.5. The experiment involved the comparison of
two different optimizers, namely SGD and Adam. Notably, when compared to the
Adam optimizer, the SGD optimizer performed better in both of the scenarios.
More specifically, SGD achieved an accuracy of 0.875, surpassing Adam’s accur-
acy of 0.8574. Additionally, Detectron 2 models trained using SGD showcased a
lower total loss of 0.9781, contrasting with Adam’s total loss of 1.153.

Most importantly, in the context of object detection, where average precision
is a crucial metric, SGD once again demonstrated a slightly better outcome with a
score of 0.097, compared to Adam’s score of 0.091. Despite Adam’s reputation as
a default choice for various applications due to its adaptive learning rate and user-
friendly characteristics, the results of disease detection in chest X-rays suggest that
SGD outperformed Adam in this specific application.

Class AP for SGD AP for Adam

Aortic enlargement 10.221 8.757

Cardiomegaly 13.498 14.335

Lung Opacity 1.084 1.029

Nodule/Mass 1.541 1.191

Other lesion 0.051 0.077

Pleural effusion 2.559 2.347

Pleural thickening 0.271 0.232

Pulmonary fibrosis 0.506 0.513

Table 5.6: Classwise AP for 8 classes using SGD and Adam Optimizer

Table 5.6 illustrates the class-wise average precision across various classes.
Among the eight classes, cardiomegaly achieved the highest average precision
for both SGD and Adam optimizers in Detectron2 model, registering values of
13.498 and 14.335, respectively. Aortic enlargement followed closely with average
precision scores of 10.221 and 8.757 for SGD and Adam optimizers, respectively.
The average precision then dropped significantly to 2.559 and 2.347 for pleural
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effusion, respectively. The other lesions exhibited the lowest average precision,
recording values of 0.051 and 0.077 for the two optimizers.

SGD optimizer demonstrated superior performance in six out of the eight
classes, whereas Adam optimizer outperformed in only two classes. The most sub-
stantial difference in average precision metrics was observed for aortic enlarge-
ment, with a margin of 1.464, while the minimum difference was a slight 0.007
for pulmonary fibrosis. Consequently, due to the enhanced performance of SGD
over the Adam optimizer, the decision was made to opt for SGD in the subsequent
experiments.

Figure 5.3: Class Accuracy for
SGD Optimizer

Figure 5.4: Total Loss for SGD Optim-
izer

Figure 5.5: Class Accuracy for
Adam Optimizer

Figure 5.6: Total Loss for Adam
Optimizer

The comparison of class accuracy curves for the Detectron 2 model also reveals
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a nuanced distinction between the performance of the SGD optimizer and the
Adam optimizer in the task of recognizing and classifying objects, as illustrated in
Figure 5.3 and 5.5.

Both curves demonstrate rapid increases in class accuracy that plateau around
400 iterations. However, upon closer examination, a subtle yet noteworthy trend
can be recognized. Despite marginal improvements in class accuracy for both op-
timizers beyond the 400th iteration, it is noteworthy that SGD continues to exhibit
gradual enhancement until 600 iterations, whereas such progress is very very less
in the case of the Adam optimizer. This nuanced difference implies that, in the con-
text of the Detectron 2 model and its object recognition task, the SGD optimizer
exhibits a more sustained ability to refine and enhance class accuracy, especially
in the later stages of training.

The trajectory of the total loss curve also shows a comparable pattern, charac-
terized by a significant decrease up to the 400th epoch. This tendency is consistent
with the behavior in class accuracy that has been seen, indicating a phase of sig-
nificant model performance improvement. But the behavior disparity that occurs
beyond this tipping point becomes really interesting.

Upon reaching the 400th epoch, a distinct contrast emerges between the SGD
and Adam optimizers. The SGD optimizer showcases a continued and measured
decline in the total loss, suggesting a sustained refinement in the model’s predict-
ive capabilities. In contrast, the Adam optimizer demonstrates a plateau in total
loss reduction during the subsequent 200 epochs, with only a marginal decrease
observed.The subtle differences between the two optimizers are shown by this di-
vergence in the loss curves, which also emphasizes the SGD optimizer’s capacity to
maintain improvement in total loss even during the later phases of training. Gain-
ing an understanding of these differences in optimizer behavior can help boost
training efficiency and improve object detection performance.

To sum up, the analysis of Detectron2’s performance in the selected eight
classes has shown some interesting differences. Particularly, the average precision
for two classes, namely aortic enlargement and cardiomegaly, outshone the re-
maining classes. Additionally, employing the SGD optimizer demonstrated super-
ior results. Consequently, these two classes will undergo further experimentation
to assess how the model’s performance evolves when subjected to more focused
analysis.

5.2.2 Object Detection for 2 and 3 classes

To deepen our comprehension of object detection model behavior in context of
finding deformities in chest X-rays, the model is trained specifically on two classes
that exhibited superior performance in the prior experiment: Cardiomegaly and
Aortic enlargement. Initially, the model undergoes training exclusively on these
two classes. After that, an interesting experiment will be discussed to assess the
effect of additional data. An additional dataset that has been selected to include
just those cases devoid of defects is added to the training dataset. The object is
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to determine whether the inclusion of no disease images influences the model’s
performance positively or if the focused training on specific classes remains the
more effective strategy.

Number of Classes Accuracy Total loss AP iou = 0.5

2 0.9355 0.5678 0.519

3 0.9414 0.3773 0.571

Table 5.7: Result for 3 classs vs 3 classes

Upon examination of Table 5.7, a noticeable distinction emerges in the class
accuracy of the Detectron 2 model when trained exclusively with two classes. In
contrast, its performance is compared when the dataset is added with an addi-
tional dataset containing no findings, leading to accuracy scores of 0.9355 and
0.9414, respectively. Simultaneously, the total loss undergoes a decrease from
0.5678 to 0.3773. Notably, the average precision over AP iou = 0.5 shows im-
provement, advancing from 0.519 to 0.571 when incorporating a dataset without
findings for the two classes.

This data suggests that, at least for the current analysis, the augmentation
with extra data has contributed positively to enhancing the model’s performance.
However, to get a better understanding of what is happening, a deep study is
required.

Class AP for 2 class training AP for 3 class training

Aortic Enlargement 21.354 18.108

Cardiomegaly 24.497 21.922

No findings - 76.739

Table 5.8: Classwise AP for 2 and 3 classes

Observing Table 5.8, which presents class-wise Average Precision, reveals that
the average precision for Aortic Enlargement and Cardiomegaly is notably higher
at 21.354 and 24.497, respectively, in comparison to the model trained with a
dataset containing no findings. However, when the model is trained with three
classes (Aortic Enlargement, Cardiomegaly, and No Findings), the average preci-
sion values change to 18.108, 21.922, and 76.739, respectively.

This finding demonstrates a direct correlation between the higher average
precision for images classified as "No Findings" and an increase in the average
precision for all classes as a whole. However, in the context of this thesis, the
primary emphasis lies in accurately detecting and diagnosing diseases rather than
determining the absence of findings. Therefore, considering the specific goal of
identifying two particular deformities, prioritizing a dataset exclusively consisting
of instances of these deformities proves to be more advantageous than relying on
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a model trained with a dataset containing images labeled as having no findings.





Chapter 6

Results and Discussion

This chapter is dedicated to examining the results obtained from a series of experi-
ments focused on image classification and object detection applied to chest X-rays,
as conducted within the scope of this thesis. Through rigorous investigation and
analysis, we aim to uncover valuable insights into the capabilities, strengths, and
potential areas of improvement of the models deployed for finding out deformit-
ies in chest xrays. The information provided in this chapter will contribute to the
collective understanding of how well object detection and image classification
techniques perform in real-world settings.

6.1 Object Detection for 8 classes

Figures 6.1, 6.3 and 6.5 illustrate the ground truths, that provide an accurate de-
piction of the actual defects present in the images. On the other hand, Figures
6.2, 6.4 and 6.6 present the outputs generated by the RTMDet model, displaying
its predictions based on the given input. It is apparent from looking at Figures
6.2 and 6.4 that the model had difficulty correctly predicting any of the classes,
indicating a notable discrepancy in the model’s performance. It only accurately
predicts one class (pleural thickening) in Figure 6.4. There are instances where
it erroneously predicts Pleural effusion, showcasing areas where improvement is
needed. Moving on to Figure 6.6, the model correctly predicts Cardiomegaly but
incorrectly predicts Aortic Enlargement, a feature which is absent in the ground
truth data. In summary, the overall performance of the RTMDet model falls be-
low expectations, emphasising the need for further refinement and enhancement
mainly in terms of training dataset to achieve better result.

39
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Figure 6.1: Ground truth 1 Figure 6.2: RTMDet Output 1

Figure 6.3: Ground truth 2 Figure 6.4: RTMDet Output 2

Figure 6.5: Ground truth 3 Figure 6.6: RTMDet Output 3
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Figure 6.7: Ground truth 4 Figure 6.8: YOLOv8 Output 1

Figure 6.9: Ground truth 5 Figure 6.10: YOLOv8 Output 2

Figure 6.11: Ground truth 6 Figure 6.12: YOLOv8 Output 3
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The ground truths of the data used during the evaluation of YOLOv8 model are
shown in Figures 6.7, 6.9, and 6.11, which consists of the actual defects present
in the images. Upon comparing images 6.7 and 6.8, it’s evident that the model’s
detection capabilities fell short, as it failed to detect the two defects present in the
images. Figure 6.10 shows correct predictions for lung opacity but inaccurately
predicts the other three defects. Finally, in Figure 6.12, it correctly predicted cardi-
omegaly but also made an erroneous additional prediction of aortic enlargement.
Examining these outputs, it becomes apparent that the performance of YOLOv8 is
subpar in case of finding deformities in chest x-rays using vindr dataset, indicating
the need for further refinement and enhancement to improve model performance.

Figure 6.13: SGD optimizer ground truth and output 1

Figure 6.14: SGD optimizer ground truth and output 2

Analysing the SGD optimizer results 6.13 and 6.14, it is clear that the De-
tectron2 model—which was trained using eight classes—showed a remarkable
capacity for cardiomegaly detection, closely matching the expected result for the
images. Remarkably, aortic enlargement was detected in both images, even though
the ground truth annotations did not provide this information. This disparity could
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be caused by a number of things, including possible overfitting to the image data
or the existence of a complicated background. Due to these complexity, the model
could mistakenly detect patterns in the noise or background that resemble aortic
enlargement.

Figure 6.15: Adam optimizer ground truth and output 1

Figure 6.16: Adam optimizer ground truth and output 2

Examining the outcomes achieved with the Adam optimizer 6.15 and 6.16,
the consistent trend persists in the detection of diseases not present in the ground
truth images. The underlying reasons for this behavior align with those previously
discussed. However, a noteworthy observation emerges when examining image
6.16: the model demonstrates the capability to identify the presence of additional
diseases, which is pleural effusion.
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6.2 Object Detection for 2 and 3 classes

Figure 6.17: 2 classes object detection output 1

Figure 6.18: 2 classes object detection output 2

When 2-class object detection is carried out, as shown in Figure 6.17, the
model successfully recognised both of the defects seen in the picture. On the other
hand, Figure 6.18 makes it clear that the model only correctly identified one of
the defects. Interestingly, the model detects aortic enlargement in this image even
if the ground truth does not support the occurrence of such enlargement.
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Figure 6.19: 3 classes object detection output 1

Figure 6.20: 3 classes object detection output 2

As the ground truth indicates that there are no deformities in Figure 6.19, the
model unexpectedly predicts the presence of cardiomegaly. On the other hand,
in the figure 6.20 when aortic enlargement is the only defects, the model does a
very good job of identifying the particular abnormality. In spite of this success, a
noteworthy finding is that the model also detects an additional disease, which is
not consistent with the ground truth. This suggests that the model may be vul-
nerable to false positives or over interpretation in some situations. This disparity
calls into question the robustness of the model and requires more research into
its generalisation potential.

After examining the training models with both two and three classes, it is ap-
parent that there is significant potential for improvement to achieve better results.





Chapter 7

Conclusion

In conclusion, this thesis has worked on training and evaluating 3 state-of-the-art
object recognition models for abnormality detection in chest x-ray. Various exper-
imentation have been carried out in models-Detectron2, RTMDet and YOLOv3,
in order to find deformities in chest x-rays. The evaluation showed that YOLOv8
outperforms all the selected object detection models.

Using Detectron2, object detections with different number of classes i.e. 8,3
and 2 were also carried out to study the impact of altering the class size on the
performance of the model. These experimentations revealed notable variations in
accuracy where it was found out the average precision of the model improved
significantly when the model is trained on a small number of classes.

Beside this, the training and evaluation of 3 different image classification mod-
els called Mobilenet v2, Resnet-50 and EfficientNet was also carried out. Resnet-
50, which is known for its deep architecture, performed best among all three of
the selected models. Analysis of these models not only clarifies the efficiency of
medical image classification tasks, but also provides information about how to
obtain appropriate balance in between accuracy and model complexity.

The evaluation criteria and visual evaluation of the model outcomes provided
valuable insights into the effectiveness of the model. Although all models demon-
strated proficiency in some areas, it was also recognized that continuous im-
provement and refinement was needed to improve the overall performance of
the model.

7.1 Further Work

Although state-of-the-art models were used in the thesis to investigate ROI de-
tection in chest X-rays, there is still plenty of room for improvement to achieve
better results. The existing models were exclusively trained on Vindr Chest-Xray
images. To broaden the dataset and potentially enhance model performance, the
integration of datasets from diverse sources could be explored during the training
process. If ethical constraints prohibit such integration, using transfer learning
could be a good substitute to bolster the robustness of the model.

47
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Furthermore, a multi-modal approach of training a machine learning model
that uses chest x-rays and medical reports could also be used in order to train
a machine learning model and improve the accuracy of the model. Collabora-
tions with healthcare professionals could also be carried out in order to obtain
domain-specific knowledge and to guarantee that the model aligns with the prac-
tical clinical needs.
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A video vision transformer,’ in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2021, pp. 6836–6846.

https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106083
https://www.sciencedirect.com/science/article/pii/S0010482522007910
https://www.sciencedirect.com/science/article/pii/S0010482522007910
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2106.03106
https://arxiv.org/abs/2107.00781
https://arxiv.org/abs/2203.01536
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2203.15380


54 R.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

[59] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen and B. Guo,
‘Cswin transformer: A general vision transformer backbone with cross-shaped
windows,’ in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2022, pp. 12 124–12 134.

[60] D. Ma, M. R. Hosseinzadeh Taher, J. Pang, N. U. Islam, F. Haghighi, M. B.
Gotway and J. Liang, ‘Benchmarking and boosting transformers for medical
image classification,’ in Domain Adaptation and Representation Transfer, K.
Kamnitsas, L. Koch, M. Islam, Z. Xu, J. Cardoso, Q. Dou, N. Rieke and S.
Tsaftaris, Eds., Cham: Springer Nature Switzerland, 2022, pp. 12–22, ISBN:
978-3-031-16852-9.

[61] R. Ghali and M. A. Akhloufi, ‘Vision transformers for lung segmentation on
cxr images,’ SN Computer Science, vol. 4, no. 4, p. 414, May 2023, ISSN:
2661-8907. DOI: 10.1007/s42979- 023- 01848- 4. [Online]. Available:
https://doi.org/10.1007/s42979-023-01848-4.

[62] R. Ghali and M. A. Akhloufi, ‘Arseg: An attention regseg architecture for
cxr lung segmentation,’ in 2022 IEEE 23rd International Conference on In-
formation Reuse and Integration for Data Science (IRI), IEEE, 2022, pp. 291–
296.

[63] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, ‘Aggregated residual trans-
formations for deep neural networks,’ in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 1492–1500.

[64] S. Ren, K. He, R. Girshick and J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, 2016. arXiv: 1506.01497 [cs.CV].

[65] K. He, G. Gkioxari, P. Dollár and R. Girshick, ‘Mask r-cnn,’ in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 2961–2969.

[66] R. Girshick, Fast r-cnn, 2015. arXiv: 1504.08083 [cs.CV].

[67] P. K. Das and S. Meher, ‘Transfer learning-based automatic detection of
acute lymphocytic leukemia,’ in 2021 National Conference on Communic-
ations (NCC), 2021, pp. 1–6. DOI: 10.1109/NCC52529.2021.9530010.

https://doi.org/10.1007/s42979-023-01848-4
https://doi.org/10.1007/s42979-023-01848-4
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://doi.org/10.1109/NCC52529.2021.9530010


Appendix A

Additional Material

A.1 Code to convert Vindr dataset into COCO dataset Format

def get_classId(val):
for key, value in category_name_to_id.items():

if str(val)==str(key):
return value

return "key␣doesn’t␣exist"

def get_className(val):
for key, value in category_name_to_id.items():

if str(val)==str(value):
return key

return "key␣doesn’t␣exist"

thing_classes = [
"Aortic␣enlargement",
"Atelectasis",
"Calcification",
"Cardiomegaly",
"Consolidation",
"ILD",
"Infiltration",
"Lung␣Opacity",
"Nodule/Mass",
"Other␣lesion",
"Pleural␣effusion",
"Pleural␣thickening",
"Pneumothorax",
"Pulmonary␣fibrosis",
"No␣findings"

]
category_name_to_id = {class_name: index for index, class_name in enumerate(thing_classes)}

imageIds=[]
nofindingsImgIds=[]
with open(’train.csv’, ’r’) as csvfile:

reader = csv.reader(csvfile)
next(reader)

annotations=[]
images=[]

55



56 R.Rajbhandari: AI Driven Healthcare: Automated detection of Chest-Xray Abnormalities

for row in reader:
newId = row[9]
imgId = int(newId)
classId = int(row[3])

if(classId == 14 and checkIfImgAvailable(imgId)):
bbox=[0, 0, IMG_SIZE, IMG_SIZE]
annotation = {

"iscrowd": 0,
"image_id": int(newId),
"bbox": bbox,
"category_id": classId,
"id": imgId

}
annotations.append(annotation)
if imgId not in nofindingsImgIds:

nofindingsImgIds.append(imgId)

elif(checkIfImgAvailable(imgId)):

height=int(row[10])
width=int(row[11])
className = row[2]

xMin=float(row[5])
yMin=float(row[6])
xMax=float(row[7])
yMax=float(row[8])

xmin = xMin/width*IMG_SIZE
ymin = yMin/height*IMG_SIZE
xmax = xMax/width*IMG_SIZE
ymax = yMax/height*IMG_SIZE

w = xmax-xmin
h=ymax-ymin

bbox=[xmin, ymin, w, h]
annotation = {

"iscrowd": 0,
"image_id": int(newId),
"bbox": bbox,
"category_id": classId,
"id": imgId

}
annotations.append(annotation)

if imgId not in imageIds:
imageIds.append(imgId)

for id in imageIds:
img={

"id": int(id),
"file_name": str(id)+".png"

}
images.append(img)

jsonData = {
"images": images,
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"annotations": annotations,
"categories": getCategories()

}

with open("annotations/instances_train2017.json", "w") as outfile:
json.dump(jsonData, outfile)

A.2 Visualization of input images

Figure A.1: Respective classes
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Figure A.2: Input data visualization 1
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Figure A.3: Input data visualization 2
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