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Abstract

In this article, we discuss the error analysis for a certain class of monotone finite
volume schemes approximating nonlocal scalar conservation laws, modeling traffic
flow and crowd dynamics, without any additional assumptions on monotonicity or
linearity of the kernel w or the flux f. We first prove a novel Kuznetsov-type lemma
for this class of PDEs and thereby show that the finite volume approximations converge
to the entropy solution at the rate of VAt in L! (R). To the best of our knowledge, this
is the first proof of any type of convergence rate for this class of conservation laws.
We also present numerical experiments to illustrate this result.

Mathematics Subject Classification 35165 - 65M25 - 35D30 - 65M12 - 65M15

1 Introduction
The celebrated Lighthill-Whitham—Richards (LWR) model [30, 32] given by
ur + (uv(u))x =0, (t,x) € (0,00) xR, (L.1)

with u being the mean traffic density and v the mean traffic speed, is one of the
widely used models in traffic flow modeling. However, being a non-linear hyperbolic
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conservation law, it can have solutions with discontinuities and infinite accelerations,
adversely impacting its capability to capture physical traffic phenomena effectively.
Thus, over last decade, the parallel class of conservation laws with nonlocal parts in
the flux is gaining particular interest in the modeling as well as mathematical com-
munity, where a convolution is introduced in the flux to produce Lipschitz-continuous
velocities ensuring bounded accelerations. The two most popular strategies are to eval-
uate the traffic speed, from either averaging the traffic density, or averaging over the
velocity, leading to the following two conservation laws,

" + (uv(u % ”)>x =0, (1.2)

" + (u(v(u) % “))x -0, (1.3)

where v, u € (C2 N W2®)(R), and

(wx u)(t,x) =/u(x—é) u(t, €) dé |
R

Such conservation laws have been studied in the recent literature, see [2, 7, 11, 13,
15, 18, 19, 25, 27], and the references therein. From the point of view of modeling,
this nonlocal nature is particularly suitable in describing the behavior of traffic, where
each vehicle moves according to its evaluation of the density and its variations within
its horizon.

The article studies a very general class of these nonlocal conservation laws, namely

Oru + 0x (f (v (p x B(u))) =0, (t,x) € Or :=(0,T) xR, (1.4
u(0, x) = ug(x), x € R, (1.5)

where

(H1) f e Lip(R) with £(0) =0,
(H2) B,v € (C2NBVNW2%)(R), with 8(0) = 0,
(H3) 1 € (C2NBVNW2®)(R),

with f being non-linear (in contrast to (1.2) or (1.3)). They serve as working models
for a variety of real life applications, for example, sedimentation models [6], crowd
dynamics models [13—15], vehicular traffic [7, 14], biological applications in struc-
tured population dynamics [31], supply chain models [14], granular material dynamics
[4], as well as conveyor belt dynamics [21].

The wellposedness of this class has been of interest in the last few years. The local
counterpart of (1.4)—(1.5) enjoys a rich literature, with [28] as one of the pioneering
papers to fix the wellposedness of the entropy solutions for such PDEs. Similar to
its local counterpart, since f can be possibly nonlinear, there can be multiple weak
solutions of IVP (1.4)—(1.5). Hence, an additional entropy condition is required to
single out a unique solution.
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Definition 1.1 A function u € C([0, T]; L' (R)) N L>(Q7) is an entropy solution of
the IVP (1.4)—(1.5), if for every k € R, and for all non-negative ¢ € C2°([0, T') x R),

/ lu(t, x) — k|¢, dt dx + / sgn(u(t, x) —k)UE, x)(f(m) — f(k))py dr dx
or or

— / fk)sgn(u(t, x) — k)Ux(t, x)¢ dt dx + / lug(x) — k| (0, x)dx > 0,
or R
(1.6)

where U(t, x) = v( * B(u())(x)).

With some appropriate modifications, the proof of [6] can be adapted to prove that
any two entropy solutions satisfying Definition 1.1 are equal, while existence of
these solutions has been proven in [1, 5] for non linear f and in [9] for linear f,
via the convergence of finite volume approximations. These articles dealing with
existence of solutions establish that the schemes converge to the entropy solution
u € C ([0, T]; L'(R)).

What remains unexplored is to analyze the rate of convergence, i.e., how fast the
error ||u®(T, -)—u(T, -)||.1®) made by the numerical solution «® in approximating
the exact solution u goes to zero as the mesh size Ax goes to zero. That is the precise
aim of this article. In other words, we look for an (optimal) « satisfying

u®(T, ) —u(T, g < CAxY, (1.7)

with C being an appropriate positive constant. To achieve this, we first prove a
Kuznetsov-type lemma using the entropy formulation (1.6). We further estimate the
relative entropy functional involving the solution u and numerical approximation 1
to obtain (1.7) with an optimal « = 1/2, same as the one obtained in [29, 33] for
local fluxes (homogeneous). To the best of our knowledge, this is the first result in this
direction for such nonlocal conservation laws. It is to be noted that the results of the
article hold under no additional assumptions on monotonicity/linearity of the kernel
w or the flux f or v.

The paper is organized as follows. In Sect. 2, we discuss the wellposedness of (1.4)—
(1.5) via convergence of a general class of monotone finite volume approximations.
In Sect. 3, we prove the Kuznetsov-type lemma for (1.4)—(1.5) and obtain the rate of
convergence as 1/2. In Sect.4, we also briefly comment on the extensions to higher
dimensions. In Sect.5, we present some numerical experiments which illustrate the
theory.
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2 Finite volume approximations and wellposedness

We now introduce the notations to be used in the article:

1. |“|L§’°BVX = sup TV(u(, -)).
t€[0,T]

.. H”(tls')_M(IZv')”Ll(R)
i |ulpy, g1 i=  sup — .
Pr Lx 0<t <tr<T [t1—12|
iii. K:={u:Q07r—>R: ||“”L°°(§T) + |ulpe By, < oo}
iv. y(u,0):= sup lu(r, ) —uz2, g w)-
lh—n|<o
0<tij<h<T

2.1 Uniqueness of the entropy solution

Any two entropy solutions of the IVP (1.4)—(1.5) are equal. More precisely, we have
the following result:

Theorem 2.1 (Uniqueness) Let u,v € C([0, T]; L'(R)) N (L BV,)(Q7) be two
entropy solutions of the IVP (1.4)—(1.5) corresponding to the initial data uy and vg
respectively. Then, there exists a constant

M = M(fv M, 77a v, ,Bv ”M”LI(QT)v ”v”Ll(QT)v |M|L;'>CBVX, |v|L?OBVx, T) > O
such that
e, ) = v(t, gy < luo — voll 1y (1 + M exp(MD), 1 € [0, T1.

In particular, if ug = vo, then u = v a.e. in Qy.

Proof Note that the nonlocal coefficient of the flux function considered in this article is
more general than the ones in all the previous results on the uniqueness of nonlinear-
nonlocal conservation laws. However, the continuous dependence estimates for the
entropy solution of the conservation laws (local) derived in [24, Thm. 1.3] can still
be invoked to prove the desired weighted contraction estimates as in [6, Thm. 4.1].
Alternatively, this can also be seen as a consequence of the Kuznetsov-type estimates
derived in the sequel (see Lemma 3.2), by sending ¢, g — O. O

2.2 Existence via numerical approximations

For Ax, At > 0, and X := At/Ax, consider equidistant spatial grid points x; := i Ax
fori € 7Z and temporal grid points t" := nAt for non-negative integers n < N, such
that T = NAt. Let x;(x) denote the indicator function of C; := [x;—1/2, Xi+1/2),
where x; 112 = %(x,- + x;+1) and let x"(¢) denote the indicator function of C" :=
[t", t"t1). We approximate the initial data according to:

u(?(x) = Zx,-(x)u? where u? = /uo(x)dx fori € Z. 2.1
i€Z C;
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We define a piecewise constant approximate solution u* to (1.4) by
ub(t,x) =u? for (1,x)eC"xC;, neN,iel,
through the following marching formula:

“?H = H(”(C;’—uz)v U(C;l+1/2)’ Uiy, Uy, Uiy y)
=uj — }‘[}—(V(C?Jr]ﬂ)’ i, Uiy — 7:(”(0?71/2)’ ui_y, ”?)]

l
= uf = M F ) = Fy p iy ud)], 2.2)

where the convolution term w * B(u) is computed through a standard quadrature
formula using the same space mesh, i.e.,

iy = Ax Y gt By ) A / wxipr — DB A () dy. (2.3)
pezZ R

with u’l',+l/2 being any convex combination of u’;, and ”r;a—&-l’ and piq1/2 = m(xiy1/2).
Further, F (v(c;lJrl /2), ul, ul! +1) denotes the numerical approximation of the flux
f@v(u * B(u)) at the interface x = x;41,2 fori € Z, with H being increasing
in the last three arguments. The approximations generated by the scheme, namely
u;‘ ~ u(t", x;) are extended to a function defined on Q7 via

N-1
W) =) D xiox" (u}. 2.4)

n=0 i€Z

In general, F can be defined as an appropriate nonlocal extension of any monotone
numerical flux, meant for local conservation laws. Here, we present examples of
celebrated Lax—Friedrichs flux and Godunov flux.

1. Lax—Friedrichs type flux: For any 6 € (0, %) , define

(c=b)
2

)

Fira.b.o) = 5(f®) + f(©) — 0

where At is chosen in order to satisfy the CFL condition

min(1, 4 — 60, 66)
T 160 flLipw) IVliLem

(2.5)

2. Godunov type flux:

FGodunov (@, b, ¢) = aFGodunov (b, €),

@ Springer



A. Aggarwal et al.

where the function Fgodunov 1S the Godunov flux for the corresponding local con-
servation law u; + f(u)y = 0, and Ar is chosen in order to satisfy the CFL
condition

1
M lLipmy Vi) = 3

Theorem 2.2 (Existence) Assume that (H1)—(H3) hold. For initial data ug € (L' N
BV)(R) and Ax > 0, there exist constants L;,i = 1,2, 3, independent of At such
that the sequence of approximations u" defined by (2.2) satisfies the following for all
i€eZ,neNand0O<n < N:

1. L®° estimate:

|u™ |, < exp(LiT)|u® Lo (2.6)
where L1 = L1 (ItlLip@)- luoll L1y |f ILip) - 1BlLip®) - [V ILip®)) -
2. L' estimate:
] o< ]| e @7
3. BV estimate:
TV@u") < exp(ﬁzT)(TV(uo) + L7), 2.8)
where Ly = £2(||M||W2,OO(R), ||V||W2,00(R), |f|Lip(R) ) ||M0||L1(]R))'
4. Time continuity:
Ax Y |ul —u}| < Lsjm —n|At,  m.n e NU{0}, (2.9)

i€eZ

where £3 = L3(Iluoll 1 y» | ILipe) » [4lLipG@y » 1Vl wioo gy, TVM).
5. Discrete entropy inequality: For any k € R we have

”7“ - k‘ - |“zn - k| + )‘(g?+1/2(”?» iy, k) — gin—l/z(”?—l’ u;, k)) (2.10)
+ asgn( ! — DI, ) = v ) <0, (2.11)

where g?+]/2(a, b, k) = .7:1-”“/2((1 vVk,bvk) — fin+1/2(a ANk,b A k) for all
i€Z,neN

Furthermore, the finite volume approximations converge to the unique entropy solution
u of the IVP (1.4)—(1.5).

Proof The proof follows by invoking the monotonicity of the scheme and writing it
in the incremental form. The details can be worked out exactly on the similar lines of
[1, Lem. 2.4-2.7] and [5, Lem. 2.2-2.8] with proper modification in the estimations
on the nonlocal coefficient. O
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The above theorem implies that the entropy solution satisfies the following regu-
larity estimates.

Corollary 2.3 (Regularity of the entropy solution) Assume that (H1)—(H3) hold. For
0 <t <Tanduy € (L' N BV)(R), the entropy solution u of the IVP (1.4)—(1.5)
satisfies the following:

lut, Hllpeom) < exp(L1T)luoll Lo (r)s
e, Hll ey <luollL1(w)
TV(u(t, -)) < exp(L2T)(TV(uo) + L2),
lu(rz, ) —ultr, Hlpw) < Lalta —til, where0 <11, < T.

Remark 2.4 In addition, if u? > 0, the numerical approximations defined by (2.2)
satisfy uf > 0, see [5, Lem. 2.2] for details of the proof. This further implies that
lu" |0 = Huo | L since the scheme is conservative. Consequently, if initial data is
non-negative, so is the entropy solution.

3 Error estimate
We define ¢ : §2T — Rby
O(t,x,5,y) = PO, x,5,¥) = we(x — y)wgy (t — ),

where w, (x) = 1w(2), a > 0and wisa standard symmetric mollifier with supp(w) <
[—1, 1]. Furthermore, we assume that [ w,(x)dx = I and [ |a)fl (x)‘ dx = % Now,
it is straight forward to see that ® is symmetric and @, = |, (x — y)wg,(t —5) =
-0y, &y = we(x — y)a)go (t — s) = — ;. Further, define the following functions.

Definition 3.1

G(a, b) :=sgn(a — b)(f(a) — f (b)),
Ar(u, b, k) = / (|u — Kl + U, )G, Kby — sgn(u — k) £ (k)Us (¢, x)¢) dr dx

or
— / lu(T, x) —kl¢(T, x)dx —I—/ lupg(x) — k|¢ (0, x) dx ,
R R
where ¢ € C2°(Qr),

AS,E()(us U) ::/ AT(M,CD(', '»Svy)s U(S,y))dyd5~
or
We now state and prove the Kuznetsov-type lemma for nonlocal conservation laws.

Lemma 3.2 Let u be the entropy solution of (1.4)—(1.5) and v € K. Then,

(T, ) = o(T, gy < K (—Aeeo (W, 1) + lluo — voll 1wy + ¥ (v, £0) + & + €0)
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where K is constant that depends on
K=K, wn,v, B, ullpicops 1Lt [uleesy,, [vlLe By, ulresy,, T)

and is independent of €, €.

Proof Consider the sum A ¢ (1, V) + Ag g (v, 1):

Ag g (u,v) + Aa,so(v’ u)
= /2 (|u(l,x) —v(s, V)|P, + U, x)G(u, v)CDx) drdxdyds
[0}

_/2 f)sgn(u(t, x) —v(s, y))U(t, x)Pdrdx dyds
o7
—/ /Iu(T,X)—v(s,y)|d>(T,x,s,y)dxdyds
or JR
+/ /Iuo(X)—v(S,y)|<I>((),x,s,y)dxdyds
or JR

+/2 (|u(t,x)—v(s,y)|<1>s+V(s,y)G(u,v)<I>y> dr dx dy ds

T

—fz fu)sgn(v(s, y) —u(t, x))Vy(s, y)®drdxdyds
o7
—f /|v(T,y)—u(t,x)lCD(t,x,T,y)dxdyds
or JR
+/ / lvo(y) —u(t, x)|P (¢, x,0, y)dx dyds,
or JR

where V(s, y) = v(u * B(v(s))(y)). Since &y = —P;, P, = —b,, we have

Ae,so (u, v) + Aa,so(v’ u)
= /2 G(u, V)P, U, x) — V(s,y))drdxdyds
Or

- /Qz sgn(u(t, x) — v(s,y))(f(v)ux(t,x) - f(u)Vy(s,y)>d>dt dxdyds
_/ / lu(T, x) —v(s, y)|P(T, x,s, y)dxdyds

or JR
+/ / luo(x) — v(s, )P0, x, s, y)dx dyds

or JR

—/ / [v(T,y) —u(t,x)|®@,x,T,y)dydrdx
or JR

+/ f|vo(y>—u(r,x>|d>(r,x,o,y>dydrdx.
or JR
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In other words, we have
As,so(u’ V) = _Aa,so(v, u) +le +Io + 1o — Ir,
with

lp = /2 G(u, v)P U, x) — V(s,y))dtdx dyds,

97

Ip = — /Q sgn(u(t, x) — v(s, y))(f(v)ux(r,n — [V (s, y>)<1> dxdrdyds,

T

1T=/ /(lu(T,x)—v(t,y)|+|U(T,y)—”(tvx)|>q)(t’x’T’y)dydtdx’
or JR
102[ [(|u0<x>_v(t,y)|+|vo<y>—u(t,x)|)<1><z,x,o,y)dydxdt-

or JR

Since u is the entropy solution of (1.4)—(1.5), we have that A, ¢, (4, v) > 0, and hence,
IT < —Agey(v,u) + o + Igp + Io. 3.1

The terms Iy and I7 appear in the local case as well so they can be estimated on the
similar lines of [20, 23] to get:

It > |u(T, -) = v(T, Hllpw) — Ki(e + 0+ v (v, £0)), (3.2)
Io < lluo — vollp1(wy + Ki(e + €0 + v (v, €0)), (3.3)

where 1 = K1 (Ju| L® BV, » [Vl By, ). Now, we estimate the other terms one by one.
Using integration by parts /¢’ can be written as,

lo = — / ) <I>[Gx(u, v)U(, x) = V(s,y)) + G(u, v)U(t, x)] dtdxdyds.
07

Consequently,

Iq:,/ + Iy

_ _/ ® (G (u, YU, x) — V(s, y))
Q2

T

+sgn(u — v)(f () — f()Ux(t, x))dt dx dyds
- /QZ sgn(u(t, x) — v(s, y))(f(v)ux(t, x) — fw)Vy(s, y))cbdx dtdyds

=~ [, G v]e. - i,y

T

+sgn(u — v) f () U (t, x) — Vy (s, y))] drdxdyds
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=Ty + Iy, -

Consider the term
Ly = /2 O[Gy(u, v)(V(s, y) —U(t, x))]dxdtdyds.
Or

Since |Gx(u, v)| < | flLipm) lux| (in the sense of measures, see [8, Lem. A2.1] for
details), we have,

Iy = 1/ Lipr) /‘Qz D |uy| | V(s,y) —U(t, x)|dx drdyds.
T

Note that the term

Vs, y) —U@, x)]
< V(s,y) = V(s, )|+ [V(s, x) — Uz, x)|
= v * B(s))) — v * B(s)) @)+ [v(p * Bv(s))(x) — v(p * Bu@)))(x)]
< WiLip) [ * B () (¥) — (u* B(v(s))(x)]
+ iLipm®) (1 * B($)))(x) — (1 * Bu(@)))(x)]

A;ﬂ(v@,zD(u(y-—z)—-u(x-—z))dz

= vILip®) (

+ ‘/}R(ﬂ(v(s, 2)) — Bu(r, 2)pux —z2)dz

= ViLipw) |BlLip®) [4ILipw) V(s Il piwy [y — xI
+ VILip®) [BlLipm®) Il ooy lvCs, <) —u(t, Hlpiw)-

Consequently we get:

Iy =1 fILipm) IVILip@®) |BILip®) sz D fuy| (|M|Lip(R) (s, D1y 1y — x|
T

el ooy l[0Gs, ) = ult, g1y ) dv dydrds

< IfILipm) VILip@®) |BILip(R) 4 ILip(R) /QZ @ Juxl llos, gy ly —xIdxdydtds
T

+ 1 fILip@®) IVILip) |BILip®) Il Lo ®) /QZ @ Jux luls, ) —ut, g1 g)drdydrds
T

+ 1 flLip@®) VILip@R) 1BILip®) 1]l Loow) /QZ @ Jux| lvs, -) —uls, g1 dxdydzds
T
7l 2 3
=L+ I+ I,
where IZ}{’ If{, and 15{ satisfy the following estimates.

1
Iy = 1 lLip®) VILip®) 1BlLip®) 141Lip®)
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X fz e (x — Y)wey (t = ) [uxlv(s, )lL1w) |y — xIdxdydrds

o7

= | flLipw VILip®) 1BlLip@®) I4ILip®)

X /2 we (X — Y)wey (t — ) [ux| lv(s, )1 ryedxdydrds

o7

= | flLipw) VILip®) 1BlLip@®) I41Lipw) 14122 BY, VIIL1 (08

2
I = 11 Lipmw) VILipw) 1BlLip@®) 1141l Lo (r)

X /2 e (X — y)weo (t = 5) |ux| luls, -) —ult, )l g dxdydtds
0

T

= IS lLip@®) IVILip®) 1BlLip@) 14 ILip, L1 11l oo (R)

X /2 We (X — Y)wey (t — ) |uy| [t —s|dxdydrds

or
T T
= I/ ILip@®) VILip®) IBlLip@) 14|13 BV, 1lLip, L1 ”M”LOC(R)/(; /0 e, (t — s)ep dt ds

= |flLip®) VILip®) |BlLipm) 4l Loy [l Lo BV, [lLip, 11T €0,

I = flLip@) v ILip®) 1BlLip®) lulpo gy, il (r)
T T
x/ / wey (t — $)|Jv(s, -) —u(s, ')”LI(R) dr ds
o Jo
T
= S lLip®) VILip) 1BlLipm®) 14122 BV, ||M||L<>C(R)/0 lvGs, -) —uls, HllLig ds.
Collectively, we have

Iy < 1flLipw) [VILip®) IBlLip®) 4l BV,

x (Ilipey 101121 cgrye + 1l ooy (] b, Teo
T
+f loGs. ) — s, g ds))
0
T
< KaCe o)+ [ oG, ) = s, i ds (3.4)
0
for some appropriate constants X, and K3. Now, we consider,
Iy, = /2 Dsgn(u —v) fu) U (t, x) — Vy(s,y))dtdx dyds
Or

< 1f Lip /Q e (x = ¥y (t = ) ] [Us (2, x) = V) (s, )| dr dr dy ds

T

Note that
Wy (s, y) = Ue(t, X)| < [Vy(s, y) = Vils, )| + [Viels, x) = Ue (1, %) .
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Now, adding and subtracting v'((u * BRENGNW * BRE))(X) to
‘Vy(sv y) — Vi (s, x)|, we get

[Vy (s, y) = Vi (s, x)| < v/ (% B, ) (1 % B)(s, y) — (1 * B0))(s, x))]
+ [0 (% BOEN D)) =V (1% BN @) (W x B()) ()]

Furthermore,

1" % B () = 1 % BRE) ] < 1BlLip) |1 |y 106 L1y Iy = x1,
V(1% BN =V (e x BN < V[ ) 1BlLip®) 4 lLipe) 100, iz [y = x1
which implies that
[Vy(s. y) = Vi(s, x)|
< lLip®) 1BILip@ |4 |Lipy 106 D1y 1y — 1

+ |v/‘Lip(R) |/3|Lip(R) |H|Lip(R) lvis, ‘)||LI(]R) ly — x| |M|Lip(R) |/3|Lip(]R)

X [lu(s, ')“Ll(R)-

Adding and subtracting v’ ((k * B(($))) () (W' B(u(1)))(x) to [Vi (s, x) — U (£, ),
we ge

Vx (s, %) = U (1, )] < V(1 % BQEND @)W % B($)))(x) = (1 * Bu())) ()|
+ O (o B ) = v (e B @) (1 Bu)(x)] .

Moreover,

(1" % B (s, x) — (W % Ba))(t, )| < |lLipm) IBlLipa 1V(s, ) —ut, @)
[V (1 % B)) (s, x) = V' (1 * B)) (2, X)| < |v/\Lip(R) IBlLip@) ltll oo w)

X (s, -) —ult, Hlpw)-
Collecting all terms, we have

Vi (s, x) — Us(t, x)|
= ”‘/HLOO(R) ”M/“LOO(R)HU(S’ D —ut, )l
+ |V/‘Lip(R) IBlLip@w)y Il Looryllvls, =) —u(t, Hllpiwyl1lLip®) 1BILipw®)
X v, IlL1w)-
Now, it can be observed that Iz, can be handled like (3.4), leading to the following
estimate:

T
i, = Kate b0+ Ks [ o, ) = uts, g1y ds. (3.5)
0

@ Springer
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for some appropriate constants K4 and Cs. Substituting the above estimates in (3.1),
we get

(T, ) = o(T, iy < —Aeeo (W, 1) + llo — voll 1y + Ko (e + 60+ ¥ (v, £0))

T
+IC7/0 lvis, -) —uls, Hllpg)ds.

Now, the result follows by Gronwall’s inequality. O

The remaining of this section is dedicated to estimating the relative entropy functional
Ag g (u®, u) for which we follow the following notations:
Fori e Z,n e Nk e R, (¢t,x) € Qr, define

Lot k) := |ul — k|,

2. C=C"xC,

3. pl(k) := Gl k) = sgn(u] — k)(f (u}) — f(k)),
4. UA(, x) == v * B (1)) (x).

Lemma 3.3 The relative entropy functional A; g (u®, u) satisfies:

A At
_Aa,so(uAv u) <C (_X + —) ,
& €0

where C is a constant independent of Ax, At.

Proof Let ), , denote the double summation } _, SN For the piecewise con-
stant function u® (cf. (2.2)-(2.4)) the relative entropy can be written as

- As,eo (MA’ i)

- _f Z/ n; (u(s, y) D (s, y, t,x)dr dx dsdy
or i,n ¢

—/ Z/ Py (s, YOUD (1, )@ (s, y, 1, x) dr dx ds dy
or S Jer

T in

+/ Z/ sgn(ul — u(s, ) f(us, Y)U(t, x)D(s, y, t, x) dt dx ds dy
QT in ‘n

[,z

1

o X

1

/ n?(u(s, y))P(s,y,0,x)dxdsdy
C,

i

/ nN (s, y)® (s, y, T,x)dxdsdy.
C

i

Applying the fundamental theorem of calculus, followed by summation by parts, we
get
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A
_As,so ®=,u

)
-/, Z(n;’“(u(s,y»—n?(u(s,y»)fd>(s,y,t"+1,x>dxdsdy

Ci

_/ Z/ P;’(u(&y))UA(l,x)q)x(S,y,t,x)dtdxdsdy
or i,n Cin

+/ Z/ sgn(ui —u(s, y)) f(u(s, y))Z/le(t,x)QD(s, v, t,x)drdxdsdy
QT i,n C,-n

= A1+ A+ A3 (3.6)

We have

2= _/ Z/ pi (u(s, yv(ciyy p)®Px(s, y, 1, x)drdxdsdy
0 cr

T in

_/ Z/ piu(s, y)Px(s, y, t,x) (L{A(t,x) — v(clf'ﬂ/z)) drdxdsdy
Or i,n Cin

=2+ & (3.7

For (n,i) € N x Z and (¢, x) € C} observe that

’L{A(t, x) — v(cf+1/2)‘
< U@, x) —URE" )| + [URE" x) —UAE", xi12)]

+ ‘UA(f", Xit1/2) — v(c?H/z)‘ .
Also for t € C", using (2.9), we have
A", x) = UB (1, x)| < lLip) |BlLipm) 1l pooqr) L3 AL (3.8)
Now using the Lipschitz continuity of Z/* in the space variable, we have
U@, x) —UR " xipa )| < [|uf ||L1(R) | ILipr) Ax.
Furthermore,

‘UA(t", Xiy1/2) — v(c?ﬂ/z)‘ (3.9)

< IvlLip@) 1BlLip) | Y / p(xip1j2 = Vulydy — Ax Y p(xivija = xp)ul,
pEZCp pEL

@ Springer
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= [VILip®) |1BILipr) Z u'y /M(Xi+1/2 =y dy — Axpu(xit12 — xp)
PEZ Co

= VILip®) |BILipw®) |ug ||L1(R) |ulLipr) Ax == CoAx. (3.10)

Finally, combining all the above estimates we get,

1] s/Q ZcoAx|f<u7)—f(u<s,y>>|fcn | (s, v, £, x)| i dx ds dy

T in

= [ Caoardsap|+ 15w [ 10600 00drdcdsdy

T in

=Zf coAx(|f(u;?)|f |®y (s, y, 7, x)| df dx ds dy
in C,'n QT

+/2 CoAx | £ (s, ¥)| [®x (s, v, £, )| di dx ds dy
o7

Ax Ax
A
< ColflLip) ||u ||L1(QT)T +Co | flLipr) ”u“Ll(QT)T-
Thus, we have
A
A =N2+(9<—x>. 3.11)
€

Now, we consider

Ay = /Q T%sgn(u;‘ s s MO, ) =)

x / D(s, y, 1, xj4+1/2) dt dsdy
CV!

+ / > sgn(ul — uls, y) fu(s, y))

T in

X / Z/IxA(t, X) (<I>(s, v, t,x) — D(s, y, t, xi+1/2)) dx drdyds
cr

+ /Q > sen@l! — u(s, y) f(uls, y))
T in

1
X /Cf’ (Z/le(t,x) — E(U(C?Jr%) — v(c;L%))> O (s, y, 1, xiy1/2) dx drdyds

i

= )L/3 + &31 + &30 (3.12)
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The error terms can be estimated as below,

31 5/ Z|f(u(s,y))|/ UL )| | @G, y.1.x) = D(s. v, 1, x141/2)| dr dx ds dy
QT i,n C?

< VILip(®) | BILip@®) |4 ILip®) luo |l L1 (g)
x [l [ 06yt = @G, vt ]| dedrdyds
T in c
< IVILip@®) | BILip@®) | ILip®) luo |l 1 ()

X/Q S Y [ ons =) = 00ty = xis12) e ds dy

i ¢

< [vILip@®) | BILip®) |4 |Lip®) ”uO”Ll(R)|w€|BV(R)Ax/ | f(u(s, y)|dsdy
or

Ax
< VILip®) | BILip@®) |4 |Lip(®) ”u()”Ll(R)”f(u)”Ll(QT)Ts

using Theorem 2.2, equation (2.7), and

U, )| = [V (B % 1), ) * B™)(t, x)|

< VILip@®) | BILipm®) | ILip@) 10l L1 (w)-

Furthermore, we have, by applying fundamental theorem of calculus and rearrange
the terms,

|l = ]fQ 3 senul —u(s,y»f(u(s,y))/<1><s,y,r,x,»+1/z>
T in cn
1
A N _ n
x/(ux (1,30 = O, ) v(ci_%)))dxdtdyds’
Ci

= ]/Q 3 sen(u) — uls, )£ w(s. y))

T in

X <Z/{A(t", Xit12) —UAE" xi1p2) — u(c:’+l) + v(c:‘_l)> / D (s, y,t,xi412) dsdt dy
2 2
o

+f > senu) —u(s,y».f(u(s,y))f@(s,y,r,x,-Hm
&

or iy

x UA (@, xig12) — U, xig12) —UB (@t xi12) FUA A", xi2172)) de ds dy‘~

Apply summation by parts in i to get,

il =[S sencey —uts, s v

T in

X (UA(I",le/z) - V(C;'Jr%)) /@(S, Vot Xit372) — P(s, ¥, 1, xi4172)) dr ds dy

cn
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#[f S sen —uts, e, v

T in

X / U2t xip12) —UA A" xig12)) (s, ¥, £, Xig172) — Ds, y. £, xi-12)) de ds dy
én
= &1 + E3.

Now, using (3.10), we have

|Ex21] < /Q (X1, D1 Wi Bluipeey 16 | 1gor, Weliipgey Ax
T

n

x [ 106y rxia) = Gyt ) drdsdy

cr !

< /Q | £ @uls, )] VILipar) 1BlLipa) [[#® ”Ll(Qr) |tlLipr) Ax|we |y (r) ds dy
T

1
< /Q | £ @ls, )] VILipr) 1BlLipa) [[4® ”Ll(Qr) | ILipar) Ax; dsdy
T

AXx
A
= lLipw) |BlLipe) |4 ”L](QT) llLipr) 1f ILipr) ||M||L1(QT)T'

Using (2.9), for t € C", we have
|UA(I, Xip1/2) —UR (", Xit1/2)]
< vILip@) 1BILip) 1141 Loo ()

x / A 0 i — D) — u @ xig12 — ()| dy
R
= VILipa) 1BlLip@) Il Looqy [u? @, ) —u @™, )] 11 g

< VILip®) |BlLip®) 1141l L) L3 AL

Consequently,

1l < | D 1 ls, Y vILipey 1BlLipery 14l ooy L3 A1
or ,

X /Z | @ (s, y, 1, xi41/2) — D(s, y. 1, xi—12)| dt ds dy

cn !

< / £ s YD IVlipce 1BlLipey 1l Loe ey L3 ATWF gy
or

T
X / |wg, (s — 1) dt ds dy
0

1
< / L @G, ] Vlaipey Bluipeey 12l ey £3A1 ds dy
or
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At
= iLip@®) 1BlLipa) 12l Loo®) L3 | f ILipar) ””“LI(QT)?'

Finally, combining the above estimates, we get:
)»3:)»’34—(9(%). (3.13)
Thus, so far we have proved
— Ay, 1) = +)J2—HJ3+O(%>. (3.14)
Recall A, cf. (3.6),

)»1=/
0

3 (s, 3 = s ) [ @Gy ) dxdsdy

T in C;
= _A/ Z (gi’lﬂ/z(”f” wiyys uls, y)) — gfl—l/z(”f'l—l» ui, u(s, y)))
QT in
x/¢(s,y,t”+l,x)dxdsdy
Ci
- )»/ ngn(u?H —u(s, y)) f(u(, y))(V(C;z+1) - V(C?_l))
Or i, 2 3
x/¢(s,y,t”+l,x)dxdsdy
Ci
= Ay + Aj,

by applying the discrete entropy inequality (2.11).
Furthermore, we can rewrite )Jz, cf. (3.7), as follows

)"/2 = _/Q Z'/;n p?(u(s» )’))V(C;l+1/2)q)x(s» ystsx)dthdey

T in

= f > / (Pl uts, V(1) = Py @ls, DV 1))
QT i,n Cn
X ®(s, y,t, xit172) dt dsdy
by using the fundamental theorem of calculus, followed by summation by parts.
£0

Claim 1 Az + 3, = O (25 4 &1),

@ Springer
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Adding and subtracting
A / D (P s, YDV} ) — Py s, MIV(E ) f ®(s, y, ", x) dx dyds
or in Fo
we have
Ay + )\.,2
=— L (gin+1/2(14?7 u?.,.l, u(s, y)) — gln_l/z(u?_l s M?y u(s, Y)))
T
X / D(s, v, "1 x)dx dyds
Ci
+ / D (o uls, YIS}y 0) = Pl (s, y)v(c]) )
QT in
X (/CID(s,y,t,xi+%)dt —A/Q(s,y,t"“,x)dx)dyds
cr Ci
+ )L/;h Z (P?(M(Sa y))U(c?+1/2) - P?_l(M(S, )’))V(C?_l/z))
i,n
X / (s, y, " x)dx dyds
Ci
= )‘/Q Z (p7 (us, V(1 2) = Gipr o s uiy s us, »))
T in
X / O (s, y, "1 x)dx dyds
Ci
- )‘/ Z (P?fl(“(sv Y))V(C;Ll/z) - ginfl/Z(“?fl’ ui, u(s, y)))
Or i,n
X / O(s, y, " x)dx dyds
Ci
+/ D (b uls, Y]y 0) = Pl (s, y)v(c] )
or in

X (/@(s,y,t,xi_i_%)dt—A/@(s,y,t"“,x)dx)dyds.
cn C;
(3.15)
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Apply summation by parts to get

Ay ) =1 , D (G} uf . uls, ¥)) = pf (s, Y}y )
T in

X / <I>(s,y,t”+l,x)dx —/CD(s,y,t"H,x) dx | dyds
Ci+1 Ci

4 f S (P, yvich 1) = Py s DV )

or in

X /CIJ(s,y,t,xl._’_%)dt—A/d)(s,y,t”"'l,x)dx dyds.
C" Ci

Note that from the definition of the numerical entropy flux G 12 (see Thm. 2.2(5)),
it follows that v(c}', /2) pik)y = G} /z(u?, u?!, k). Now, invoking the Lipschitz
continuity of G7, 2 in its second argument, we get

., (3.16)

g;l+]/2(u?’ u:'l+]7 u(s,y)) — V(C,ﬂ]/z)P?(M(S, )’))‘ =C |u?+1 - u?
for C1 = Ci(I fILip(r) » IVl (w))- Furthermore,
[Vt 2P s, ¥0) = V(e )Pl (s, )

= | )| [P, 3) = Py s )|+ [Py s, 3] vl ) = vy )

<G

V(Cl1y) = V()| + [ = uf]), (3.17)

where the last inequality follows from the Lipschitz continuity of the function u +—
sgn(u — k) (f (u) — f(k)) with C2 = Co (| flLip) » IVl o), ). Using
(3.16)—(3.17), we have

u® HLw(ET)

n n
Uip1 — % ‘

Ay + 2 56’1A/ >
QT in
><| / lD(s,y,t"'H,x)dx—/@(s,y,t”+1,x)dx|dyds

Cit1 Ci

+C2/ ZUV(C?+1/2) - V(Clﬂfl/z)‘ +
Or i,n
X ‘/CD(s,y,t,xH_l)dt—}»/d)(s,y,t"""],x)dx’dyds.
2
C}’l

Ci

n n
Uiy — U
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Now, since p has bounded variation, the claim follows because of the following
estimates,

Do) = v )| = Il Y AX|BWh ) Wii2-p = ic12-p)|
i i,p

< VILipw) Z Ax |BlLipmr) ‘”Zﬂ/z‘ / |/ ()] dx
i.p Ci*p

= VILipw) Z Ax |BlLipm) ’”ZH/Z’ / |/ (x)| dx
P R

< VILip®) 1BlLip@®) luoll 1wy 141 By Ry == C3, (3.18)

which is true because of (2.7) and the estimates

Ax?  Af?
/ (/@(s,y,f,xi+1)dt—A/@(s,y,t"“,x)dx)dyds =o(—x+—),
or 2 e £0

cn Ci
(3.19)
A 2
/ ( / O(s, y, " x)dx — / (s, y, ", x)dx)dyds =0 (_x) ,
3
or Citl Ci
(3.20)

the proofs of which can be found in [23, Ex. 3.17].
Claim 2 A3 425 =0 (%)
We find

Az +)»/3

=_A/Q

Dosen( T —uls ) f s ), ) =)

T in : :
X/d>(s,y,t"+l,x)dxdsdy

Ci

+ /QT gsgnw;’ — (s Y f s, DO, 1) = V(e 1)

X f@(s,y,t,xi+1/2)dtdsdy
Cn

D sen = uts, ) f s DO, ) = v )

T in

=_A/Q

xf®(s,y,t"+l,x)dxdsdy
Ci
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o
Q

> senuf —uls. »))f @ls. ), )
2

T in

—v(c:’ 1))/<I>(s,y,tn+l,x)dxdsdy
-2
Ci

— % /QT gsgn(u;’ — s, )@l MO, ) =)

X / ®(s, y, M ) dxds dy

Ci
n n n
+ /QT iZﬂjsgn(u,- — s, I s MO, ) =)
X /<I>(s,y,t,x,-+1/2)dtdsdy
Cl‘l

=/ D senul! —u(s, y)) fuls, )i ) —v(e’ )
or in i+5 i—5

X /<I>(s,y,t,x,~+1/2)dt)—X/¢(s,y,t”+1,x)dx dsdy
C" C;

- Af Z (sgn(u:"H —u(s, y)) — sgn(u —u(s, y)))

Or i,n

x f(u(s, y))(v(c:,l_’_l) - v(c:’_l)) / ®(s, y, "1, x)dx dsdy
2 T e
= 51 +52.

The terms & 1 and gg can be estimated as follows:

& sz DI Wl IV, ) = vl

T in

X /Q(S’yvtvxi+l/2)dt_)"/@(Svyvtn+lsx)dx dey
n C’

< f@llreocoq) Z ‘”(Cin+1/2) - V(C?—l/z)‘
in

x/ /@(s,y,t,xi+%)dt—A/@(s,y,t”“,x)dx dyds
or

Ci

<TIf@l Sy A
u 00 ’
TIf@l=@nC | 7 + o
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using (3.18)—(3.19). Furthermore,

N
£y =2 /Q DD sen(w] — uls, y) fw(s. ) (v (cj@‘i) —v (c‘1>>

i n=1

X / ®(s,y, 1", x)dxdsdy

Ci
N
+ AfQ DD sen@uf — uls, y) [ (us, y)) (v (c;.g%) —v (cf_é»
T i n=1
x/@(s,y,t"“,x) dxdsdy
Ci

+ A/Qr zj:sgn(u? —u(s,y)) fu(s,y)) (v (C?Jr%) —v (c?_%»
X / D (s, y,tl,x> dx dsdy
—A/QTIngn( —u(s, ) fluts, e 1)—v(cN2>)

X / CD(s,y,tNH,x)dxdsdy.

Ci

Adding and subtracting the term

N
—A/QTZngn(u?—u(s,y>)f<u(s y))( (;) —v(c;:;))

i n=1

x/¢(s,y,t”+],x)dxdsdy,

Ci

we have

= —x/ Zngn(u — u(s, Y) f (s, y)) (v (cﬁ) —v(c 1))

i n=1

X /(q)(sv )’Jn,x) - (D(S, y’tn+17x))dXdey

+A/Q Zngn(u —u(s, ) f(uls, y))

i n=l1
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n n n—1 n—1
X [v <Ci+;> —v<cl_%> —v<ci+é> +v<ci_£>]

X / D(s,y, ey x)dxdsdy
Ci

" A/Q 3 sentud = uts, s ) (v (e2,1) = v (2,))
T

X /GJ(s,y, tl,x) dxdsdy
Ci

_A/QTXi:sgn (ufv—u(s,y)) fu(s,y)) (v <C;}\-,i-£) —v<ci1\i£))

X / @ (s, y, " x)dx dsdy
Ci
= 5~21 + gzz + 523 + 524.

Now, let us estimate 521.

N
‘521‘ - ‘ - A/QT Xi:’;sgn(u? —u(s, ) fuls, y)) (v (c;t%l) —v (Cl"__%l»

X [ (<I>(s, v, ", x) — @ (s, ¥, t"“,x))dx dsdy ‘
Ci
<M f@lLe(op

(55

n—1y n—1
v ) v<ci—%>‘
></|<I>(s,y,t",X)—‘D(S,y,’n‘*'A[’x)}dx)dey
Ci
< AxAlf @)L or)

T N
></0 (ZZ v(c::l> —v(ct”:%l)‘ |a)€0(s—t”)—a)50(s—t” —At)‘)ds
i n=l1

2
N o .T
< At C3||f(u)||L00(QT) Z‘/O (‘a)go(s — tn) — wg (s — Pk Al‘)| ) ds

n=1

N
< At C3|If(“)”L°°(QT) Z |w80|BV(R) At
n=1
At
=Cq4—.
€0
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Now, let us estimate 522.

N
6| = ]AfQ 203 sen(ef —ute, ) f s, )
X [v(c::_%) - v(c:?_%) - v(c;:%l) + v(c:’:%l ]

X /dD(s, y, t"“,x) dxdsdy ‘
Ci

N

-1 -1

< M vluip 1f @lleor) /Q 22 ey ey e ey
r n=1

1 1
- i—5 i+5 i—x5
i

X / |D (s, y, 1 %) dx ds dy
C.

i

N
= At PLipw) I f @ llzo(op Z Z |C?+% —c

i n=l

n—1 n—1
—C. +c |
2 i+3 =2

Recall, cf. (2.3), that

Ciyrp = Ax Zﬁ(“%l/z)ﬂiﬂ/%w
P

which implies
-1 -1
Z |(C:‘1+1/2 - Cf‘l—l/z) - (C?H/z - 5?71/2)|
i
= Ax Z ‘(Zﬂ(”’;ﬁLuz)M:’—&-l/Z—p - Z,B(MZJrl/z)Mi—l/Z—p)
i P P
— (D BWi Dmivip—p — Y BT /z)m_l/z_p)|
P P
= Ax Y | Y B0 (Wis12—p = ic1/2-p)
i 14
=D B D Giia-p — ic12-p))|
P
-1
< Ax |BlLipm) Z }M'};Jr]/z - MZH/zHMiH/z—p — Wi—1/2—p

i.p

.
< Ax [BlLipmw) lnlBv®) Z |Mr,l;+1/2 - “Z+1/2|
p
< CsAt,

@ Springer



A. Aggarwal et al.

where Cs = |Blripmr) |48V ®) L3, by applying (2.9). Therefore,
En < CoAt,

where C6 = |vILipw) II.f (@)l L (g,)Cs- Finally, estimates on the remaining boundary
terms 523 and 524, easily follow from (3.18). Specifically,

& = A/QT Xi:sgn(u? s ) fats ) (v () = v ()

i=3

X / D(s, y,t],x)dxds dy
Ci
< C7At,

where C7 = C3|| f (u)ll oo (- Similarly, &y < CiAL Il f @)l Lo (- Substituting the
assertions of Claim 1 and Claim 2 in (3.14) we get

A At
_Ae,eo(uA, u) <C (_X + _) ,
& €0

where  C = C(T, [[vilw2.comys |BILipr) > | fILip®) » [l By @) s luoll L1 (w)s [0l v w) »
||M||W2-00(]R))'
O

Now, we state and prove the main result of this paper.

Theorem 3.4 (Rate of Convergence) Let u be the entropy solution of (1.4)—(1.5) and
u® be the numerical solution given by (2.2). Then we have the following convergence
rate:

|, ) = u(T, )| g = OWAD.

Proof The CFL condition implies that Ax = O(At). Furthermore, the initial approx-

imation (2.1) implies HuOA — U ||L1(R) = (O(At). Now, the desired error estimate
follows from Lemma 3.3 and Lemma 3.2 setting ¢ = g9 = +/At, as y(uA, VAL =
O Ap). O

4 Extension to multi dimensions

We consider the case of two space dimensions and denote the space variables by
(x,y) € R2, and consider the following PDE:

B+ 0 (fL v (B @)+ 1) + 8y (R (B2w) * 1?) =0.  (4.1)
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Further, for numerical scheme, fix a rectangular grid with sizes Ax and Ay in R? and
choose a time step Az. For later use, we also introduce the usual notation

" . . L. At At
", xi,y)) = nAt,iAx, jAy), neN,i,jeZ, i, = ~ Ay = A_y

Throughout, we fix initial data ug € (L*° N BV) (R2; R) and introduce

Xi+1/2 /y/+1/2
u?, up(x,y) dy dx fori,j e Z.
Y Ax Ay Xi—172 JYj-1/2

We define a piecewise constant approximate solution u2 by

u(txy)—u neN, i, jeZ,

ij X[ oty X [xi 1 2 Xig1 2) X [9 12, y;+1/2)(t X, ¥),

where x4 denotes the indicator function of a set A, through the following marching
formula based on dimensional splitting, (see [16, Sec. 3] and [22, Sec. 5] for details):

n+1/2 _ n xX,n n n X,
wi =l = M [F g ) = F iy gui)]s

+1 n+1/2 ¥, nH1/2 | )2 V. n+1/2 n+1/2
L=y []:]+1/2( )_7: 1/2( )]

uij ij lj-‘rl i,j—1>
4.2)

where F''| +1 2. and .7-' iit1)2 denote the numerical approximations of the fluxes

Frapvt (! = p1w)) and f2(u)v?(u? * B>(u)) at the interfaces (x;412,y;) and
(xi, yj+1/2), respectively, for i, j € Z. The convolution terms are computed through
quadrature formula, i.e.,

x n 1 1
iy = DAy Y ooy jopB Wiy ),
l,peZ

zy/n+1/2 = Ax Ay Z /~’L1+1/2 —1,j— pIB (u1+1/2 p) 4.3)
1, peZ

n . : : n n : 1 _
where, Ujyyp,, 18 any convex combination of uj and U[gy o with Riti0j =

ul(x,-H/z, ¥;) and “iz+1/2 i = /ﬂ(xH_l/z, y;) . Throughout, we require that At is
chosen in order to satisfy the CFL conditions

@ Springer



A. Aggarwal et al.

S < min(1, 4 — 60,, 66,)
X = )
1+6 |f1 |Lip(R) “”1 ” L®(R)

A, < —mind. 4 = 66y, 66y) 0y, 0 e<0 %> (4.4)
T 1+6|f2|Lip(R) Hv2||L°°(]R)’ o 3

and

1
£ >

IA

! ; ]
* 2’ Lip(R) L=(R)

IA

1
Lip(R) H H Lo(R)

with numerical fluxes F* or F” chosen as Lax—Friedrichs flux and Godunov flux,
respectively. Extension to other monotone fluxes and for higher dimensions is similar.
The numerical scheme can now be shown to converge to entropy solution, see, for
example, [1]. The Kuznetsov Lemma and the theorem on error estimate presented in
Sect.3 can now be extended to several space dimensions using dimension splitting
arguments (see [23, Sec. 4.3]) with appropriate modifications throughout the proof.

5 Numerical experiments

We now present some numerical experiments to illustrate the theory presented in the
previous section. We show the results for the Lax—Friedrichs scheme. The results
obtained by Godunov scheme are similar, and are not shown here. Throughout the
section, § = 0, = 6y is chosen to be 0.3333, and A and A, = A, are chosen to be
0.1286 and 0.2857, respectively, so as to satisfy the CFL condition (2.5) and (4.4),
respectively, in one and two dimensions, for any grid size Ax or Ay used in this
section.

5.1 One dimension

We employ the nonlocal version of the standard LWR model (1.1),1.e.,IVP (1.4)—(1.5),
with

p(x) = L(=x (7 + )’ Ly 0) (%),
where L is such that [ pu(x) dx = 1.

Further, B(r) = r and v(r) = 1 — r, f(u) = u. This PDE fits the hypothesis of
the article. Further, the domain of integration is chosen to be the interval [—1.5, 1.5]
with ¢t € [0, 0.5], and

up(x) = 0.251(—0.9,0.1y(x) +0.510.1,0.3) (x). 5.1
Figure 1 displays the numerical approximations of (1.4), (5.1) generated by the numer-

ical scheme (2.2), with decreasing grid size Ax, starting with Ax = 0.00625, and
n = 0.0625. It can be seen that the numerical scheme is able to capture both shocks and
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uatt=0.00 uatt=0.17
0.5 A )
0.5 1
0.4 4
0.4 4
0.3 1
0.3 1
0.2 4 0.2
0.1 0.1 4
0.0 T v T 0.0 T v T
-1 0 1 -1 0 1
uatt=0.33 uatt=0.50
0.5 1 L 0.5 1 i
r
0.4 4 0.4 A
0.3 1 0.3 A
0.2 1 0.2 A
0.14 J 0.1 A j
0.0 T v Sy 0.0 —s v >
-1 0 1 -1 0 1

Fig. 1 Solution to the nonlocal conservation law (1.4), (5.1) on the domain [—1.5, 1.5] at times ¢t =
0.00, 0.017, 0.33, 0.5, with decreasing mesh size Ax = 0.00625(—), Ax = 0.003125(------ ), Ax
0.0015625(- - -) and Ax = 0.00078125(----)

rarefactions well. To compute the observed convergence rate of the scheme (2.2) we
obtain numerical approximations to (1.4), (5.1) with decreasing grid sizes Ax, start-
ing with Ax = 0.00625. The observed convergence rate « is then calculated at time
T = 0.5 by computing the L! distance between the numerical solutions ua, (T, -)
and uax/2(T, -) obtained for the grid size Ax and 1/2Ax, for each grid size Ax.
Letea,(T) = || upax(T, =) —upx2(T, - )|| LR The observed convergence rate « is
given by log;(eax(T)/eax/2(T)). The results recorded in Fig.2 show that @ > 0.5.
The present numerical integration resonates well with the theoretical convergence rate
obtained in Theorem 3.4 in this article. It can be seen that the density # goes beyond the
maximal initial density 0.5, violating the maximum principle, a phenomenon observed
in non-local conservation laws with linear local part, see [6, Ex. 1]. It is to be noted
that, in general, for nonlocal conservation laws with linear local part, entropy solutions
do not satisfy the invariant region principle, i.e., the density may cross the value 1 even
for 0 < ug < 1 (see [6, Ex. 1]). On the other hand, for fluxes such as f(«) = u(1—u),
invariant region principle holds but not necessarily the maximum principle (see [6,
Ex. 2]). The numerical results for such fluxes can be computed analogously and we
do not present them here.

Figure 3 illustrates the nonlocal to local limit, see [ 10, 12, 26] and references therein,
namely that the entropy solutions of the nonlocal conservation laws converge to the
entropy solution of the corresponding local conservation law as the radius of the kernel
goes to zero.
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-2
Az/0.00625 | ear(T) a
1 0.0358 | 0.5354 e
1/2 0.0247 | 0.6355 513
1/4 0.0159 | 0.6124 F
1/8 0.0104 \
- ﬂ'_n_ Observed Convergence Rate
o~ = —==—-=Optimal Convergence Rate
. Reference Slope 0.6
i)5.5 -5 -4.5 -4 -3.5 -3 -2.5
In(Az)

Fig.2 Convergencerate « for the numerical scheme (2.2) for the approximate solutions to the problem (1.4),
(5.1) on the domain [—1.5, 1.5] at time T = 0.5

Fig.3 Domain uatt=0.50
[-1.5, 1.5], T = 0.5: Solution 0.6
to the local conservation law — N=1604x
(1.1), (5.1) (=---); Solution to 0.5 q|sssss n=40Ax I
the nonlocal conservation -—- n=10Ax ‘ \
law (1.4), (5.1) with decreasing 0.4 1 —-- Local '
convolution radii

0.3 -

0.2 4

0.1 1

0.0 T T T

~15 -1.0 05 0.0 05 1.0 15

5.2 Two dimensions

To illustrate our results in two dimensions, we employ the model introduced in [1],
modeling crowd dynamics in two dimensions, which fits in the framework of the article.
Assume that a group of pedestrians in a square room [—4, 4]2, can be described through
the density u = u(¢, x, y) that satisfies the nonlocal conservation law

u+V-wu(d—-u)(l—-—uxp) =0, (5.2)
where the smooth, non-negative and compactly supported function © models the way
in which each individual averages the density around her/his position to adjust her/his

speed.
We choose:

G, y) =016 — x> = 317 Xy y): x21y2<0.16) (X2 V),

-1
ulx,y) = (//Rzﬂdxdy) alx, y)dxdy,

(5.3)
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i uatt=0.00 4 uatt=0.00
2 2
0o 0
-2 -2
-4 -4
-4 -2 0 2 4 -4 -2 0 2 4
[ EEE— ] [ — ]
0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 X
uatt=0.17 uatt=0.17
4 4
2 2
0 0
E -2
-4 -4
-4 —2 0 2 4 -4 ~2 0 2 4

ﬂ

0.0 02 0.4 06 038 10 0.0 02 04 0.6 0.8
uatt=0.33 uatt=0.33
4 4
2 2
0 0
=2 -2
-4 -4
-4 -2 0 2 4 -4 —2 0 2 4
0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 .0
uatt=0.50 uatt=0.50
4 4
2 [
o 0
-2 -2
-4 -4
-4 —2 0 2 4 -4 =2 0 2 4
0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 .0

Fig. 4 Solution to (5.2), (5.4) (Left) and (5.2), (5.5) (Right) at times ¢+ = 0.00, 0.017, 0.33, 0.5 with

space mesh Ax = Ay = 0.00625
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1 Annular Initial Data 0.6 Circular Initial Data
.0

-0.5

In(ea,(0.5))

o ~EF Observed Convergence Rate > —@ Observed Convergence Rate
====Optimal Convergence Rate 1.2 ‘ ====Optimal Convergence Rate
——— Reference Slope 0.7 ——— Reference Slope 0.7

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -5.5 -5 -4.5 -4 -3.5 -3 -2.5
In(Az) In(Az)

Fig.5 Convergence rate « for the numerical scheme (2.2) on the domain [—4, 4]2 at time T = 0.5 for the
approximate solutions to the problem (5.2), (5.4) and (5.2), (5.5)

so that [fpo p(x, y)dxdy = 1.
As initial data, we consider two cases:

1. Annular initial data, where the crowd is concentrated in an annulus:

HO(X. Y) = Xi(e.y): a2 py2<9) (X Y. (5.4)

2. Circular initial data, where the crowd is concentrated in a circle:
U0 (X5 ¥) = X{(x,y): x24+y2<4) (X5 ¥).- (5.5
The system (5.2) fits into the setting of (4.2) with
ra)y=ud —w), Brw) =u, V') =1—u, Wf=pn, k=12

The numerical integrations of (5.2), (5.4) and (5.2), (5.5) are obtained by the the algo-
rithm described in Sect.4 and are shown in Fig.4. The figures depict that the density
does not cross the maximal density 1 and the numerical simulations are able to cap-
ture the physical properties well. To compute the convergence rate of the scheme (4.2)
with Lax—Friedrichs flux, we apply the algorithm to problem (5.2), (5.4) and (5.2),
(5.5) on the domain [—4, 4]? on the time interval [0, 0.5] with different grid sizes with
Ax = Ay = 0.2857. The convergence rate « is then calculated at time 7 = 0.5 by com-
puting the L! distance between the numerical solutions ua, (7, -) and uay 2, )
obtained for the grid size Ax and Ax/2, for each grid size Ax. The results recorded
in Table 1 and Fig. 5 show that the observed convergence rates lie strictly between 0.5
and 1. The present numerical integration resonate well with theoretical convergence
rate obtained in Theorem 3.4 in this article.
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Table 1 Cpnvergence rate « for Initial Data enr(T) o
the numerical scheme (2.2) on Ax/0.05
the domain [—4, 4]2 at time ’
T = 0.5 for the approximate

Annular Circular Annular Circular

solutions to the problem (5.2), 1 09314 03989  0.5406  0.5425

(5.4) and 3.2). (3-5) 1/2 0.6403 02677  0.6580  0.6704
1/4 04057  0.1682  0.6901  0.6954
1/8 02515  0.1039

6 Conclusions

In this article, we have established the convergence rate estimates for scalar nonlocal
nonlinear conservation laws, modeling traffic and crowd dynamics. Also, our analysis
is not case specific, and covers most of the kernels (irrespective of its monotonicity)
considered in traffic modelling such as forward, backward and central kernels.

The rate is shown to be 1/2 which is consistent with its local counterparts. It is
interesting to see that the obtained convergence rate of 1/2 is independent of the
radius of the convolution matrix and monotonicity of the kernel, with constant in the
estimate depending on the radius of the kernel n. For v(u) = 1 — u, B(u) = u, the
nonlocal conservation laws boil down to the local conservation law and hence the
convergence rate 1/2 is optimal due to [33].

The extensions of these results to a general coupled system of nonlocal conservation
laws, for the convergent finite volume schemes proposed in [1] and for nonlocal con-
servation laws with discontinuous flux (see [3]), are not straightforward and are works
in progress. Furthermore, using the Kuznetsov-type lemma proved in this article, the
rate at which the solutions of the nonlocal FTL (see [11, 17]) models converge to its
continuum limit, can be explored, which we aim to address in our upcoming article.
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