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Abstract—This article introduces a method utilizing deep
learning in typical Multiple Hypothesis Solution Separation
(MHSS)-based Integrity Monitors (IMs) of autonomous vehicle
navigation systems, when conventional sensors, such as GNSS
and Inertial Measurement Unit (IMU), are integrated with a
camera. It is an innovative methodology to reduce the hypothesis
space of sensor faults. In the proposed method, the measurement
subsets to evaluate in MHSS are generated from the IMU/GNSS
measurement set only, so that Fault Detection and Exclusion
(FDE) in camera measurements takes place separately. In the
investigated approach, anomaly prediction in state estimate error
due to camera faults is performed based on raw images with a
Deep Neural Network (DNN), and IM input is required only
during the online refinement of predicted anomaly locations to
reflect anomalies in the IM test statistic. This opens for the
possibility to evaluate environment features and conditions that
cause specific detected or undetected sensor faults. Experiments
on the IMU/GNSS/Camera integration demonstrated that Pro-
tection Level (PL) bounding performance of the proposed IM,
with limited hypothesis space and the individual camera FDE,
is comparable to the MHSS IM informed by the full set of fault
hypotheses. Despite the use case of the camera, the method can be
directly extended to integrations with multiple auxiliary sensors,
where each auxiliary sensor is evaluated individually for faults.

Index Terms—Integrity Monitor, Solution Separation, Deep
Learning, Camera Navigation, Visual SLAM

I. INTRODUCTION

Multi-sensor navigation systems that combine traditional

GNSS/IMU integration with auxiliary sensors, like cameras,

The work is funded by the Research Council of Norway and Centre for
Autonomous Marine Operations and Systems (RCN grant number: 305051).

are prominent today. However, the development of IMs has

mostly been limited to specific navigation algorithms or sen-

sors [1], whereas MHSS has been used in a few cases for

sensor-agnostic [2], [3], or even for navigation algorithm-

agnostic IM [4]. Such approaches rely on the monitored

navigation algorithm itself for estimation of consistent position

error covariance due to each sensor in the fault-free case. How-

ever, covariances are often not readily available, and someone

would need to undergo complex internal modifications in the

navigation algorithm. Furthermore, the extension of traditional

MHSS-based IMs to the examined multi-sensor systems might

be unrealizable due to a large and intractable number of fault

sources, resulting in many fault-tolerant hypotheses to evalu-

ate, or in the development of IMs that are undertested under

challenging environmental conditions. In fact, the reliability

of Visual Navigation (VN) algorithms in non-ideal situations

is a topic which is researched very sparsely. One work from

Bednář, Petrlı́k, Vivaldini and Saska [5] concluded that differ-

ent algorithms perform very differently in real environments

depending on the orientation of the camera, the presence of

sunlight and the type of vehicle motion. Yet, an extensive set

of conditions that characterize camera performance is still not

available.

A possible solution to overcome the above mentioned

limitations is to limit the hypothesis space of assumed fault-

free sensor measurement subsets in MHSS, by evaluating the

navigation faults that each auxiliary sensor causes, indepen-

dently from other sensors. We refer to a navigation fault or

anomaly as the event where the true error of a navigation



solution is not drawn from the typical distribution of errors.

We denote as IM anomaly the event that the true error of

a navigation solution exceeds a calculated PL. IM anomalies

are usually happening due to violation of assumptions during

PL computation, e.g. the presence of non-linearities, or due to

insufficient compensation for every sensor’s noise and faults.

The main objective of the presented method is to prevent

IM anomalies originating from insufficient compensation due

to unknown noise of some sensors or due to the limited

fault hypothesis space. The method proves that navigation

anomaly prediction, based on individual auxiliary sensor’s

measurements, can be applied for this purpose.

A. Prior work

The utilization of deep learning for anomaly detection in

multivariate time-series data has shown impressive results in

past works [6]. Specifically, Deep Neural Networks are more

appropriate than previous methods to capture temporal depen-

dencies as well as correlations between observations in the

data. Zhang, Chen, Wang and Pan [7] highlighted that this can

be achieved with a combination of Long Short Term Memory

(LSTM) and convolutional layers, where in their work they

introduced this architecture in an auto encoder-based approach

for anomaly detection. Sun [8] utilized multi-layer LSTM to

classify an input sequence of GNSS measurements as faulty

or fault-free, based on irregularities in the distribution of

observations of an IM test statistic. The model is trained with

labeled data which consist of raw GNSS measurements and

the fault-alarm or fault-free label. Kim and Cho [9] utilized

a Time Delayed Neural Network to detect dissimilarities of

the trend of an IM statistic compared to a past trend, where

the system was operating under normal conditions. Gupta and

Gao [10] utilized deep learning to produce position error and

error covariance estimates, that can be used in Protection

Level calculation, for a camera + LiDAR navigation system.

This is done by comparing static images with a local depth

map produced around the current state estimate and given

the LiDAR map. A shortcoming of the mentioned research

is that they are very specific to the sensors or the IM used.

In addition they do not focus on understanding the direct

effect that environmental conditions have on navigation and

IM anomalies due to sensory faults.

It is worth noting that the majority of existing anomaly

detection methods are trained to find the best representation of

normal data, requiring the availability of large datasets that are

free from anomalies. Methods that try to learn representations

of normal data might ignore the important features that dif-

ferentiate normal from anomalous samples, especially when

learned features are redundant, noisy or refer to a specific

subset of the training set [11]. Research on supervised learning

of anomalies are very few, due to the difficulty of obtaining

enough anomaly examples for training, and even in those cases

learning of anomalies would be limited to the already labeled

anomalies. Here, we build the presented IM method upon our

previous work [12], where training data was labeled in few

trajectories as normal or anomalous using statistical methods.

We leave as future work the automatic detection of more

unseen anomalies in presently unlabeled data [13].

B. Contribution

At the start, the method utilizes a supervised Deep Convo-

lution Neural Network model with a Time Distributed Layer,

which is trained offline, for the prediction of anomalies in the

state estimate error, based on features in the raw sensor input.

Then, the method refines the predicted anomalies based on

an IM test statistic, which is directly related to the sensor of

concern, without the need to consider other auxiliary sensor

measurements.

The first main contribution of the presented work is that,

despite the extension to auxiliary sensors, the MHSS module

computes the PLs informed solely by conventional sensor

measurements as before. In this way the IM scales to auxiliary

sensor measurements, without modification of existing IM

methods and without important computation burdens. An as-

sumption is that the integration of more sensors in a navigation

system results in smaller estimation uncertainty, with the latter

being consistent in case of absence of sensor faults. Then, the

PL will reliably bound the estimate error of the monitored

algorithm, which is informed by the full IMU/GNSS/Auxiliary

sensor measurement set. The second contribution is that the

method can directly capture the relation of anomalies in IM

to raw inputs of individual sensors. This allows the evaluation

of environment features and conditions, including dynamic

changes, that cause specific sensor faults. At the same time,

the initial prediction quality is independent from the quality

of the IM, allowing a more objective evaluation of different

IMs. The eventual fault exclusion is informed by the IM and,

therefore, the DNN training can tolerate the presence of certain

amount of image noise and incorrect anomaly labels.

We use the proposed method to monitor the integrity

of a navigation system that integrates the GNSS and IMU

sensors with a camera. It uses car sensor data collected in

urban environments. Figure 1 shows example images from

the evaluated environments. The method employs a camera-

only navigation algorithm to estimate camera poses that are

used in a loose integration with the other sensors. The results

show that, in the absence of faults in GNSS/IMU, for a system

where the PL computation is informed from GNSS and IMU

noise only, the detected anomalies in camera-only navigation

correlate with IM anomalies. In addition, the results confirm an

improvement of the performance of the IM system in terms of

the Relaxed Bound Tightness (RBT) metric, when comparing

it to the method that does not use camera FDE. Also, it remains

computationally efficient.

C. Paper organization

The paper is organized as follows. In section II we present

the methodology of predicting the IM anomaly due to camera

faults. It describes briefly the DNN model and the IM for

collaborative learning of anomalies (II-A), introduces the

camera measurement samples tested for faults (II-B), defines

the hypotheses tailored to test for camera-faults (II-C) and,



Fig. 1: Example images from the urban navigation datasets

examined here. The locations are San Francisco (USA), Ox-

ford (UK) and Dongtan (South Korea). The images are from

the UrbanLoco [14], Robotcar [15] and KAIST [16] datasets.

finally, defines the ordinary distribution of IM test statistics

and the ordinality tests (II-D and II-E). The evaluated datasets

are presented in section III-A, section III-B presents the

anomaly prediction results for multiple real trajectories in

those datasets, and section III-C discusses the performance of

the anomaly prediction and exclusion method with numerical

results of how it affects the performance of the IM in bounding

the true position errors. Section IV is the conclusion and a

discussion of future works.

II. HYPOTHESIS TESTING FOR ANOMALY DETECTION IN

VN, INFORMED BY IM

A. Detection of anomalies in the uncertainty of visual SLAM
and in the IM test statistic

Hazardous Misleading Information, which is quantified by

an IM, refers to the event where an undetected state estimation

error deviates from the true value by more than an alert limit.

Here the interest is to monitor state estimation faults that

are caused by measurement faults beyond the nominal sensor

noise. Usually, there is no knowledge of the magnitude or the

direction of a potential fault fff in a measurement set and we

pursue the computation of the worst-case fault. This is done

by employing the concept of fault slope:

SlopeSlopeSlopef =
effect of fff on state estimation error

effect of fff on the IM test statistic
(1)

Using that definition, in the specific investigated case,

the fault slope for camera measurements can be computed

as the ratio of the state estimate error caused by camera

measurement faults to the IM test statistic measure affected

by the camera measurement faults. In MHSS-based IM, the

test statistic to detect faults in sensor measurements is the

difference in the state estimate under all-source hypothesis

H0 and under hypothesis Hj , which is fault-tolerant to the

sensor’s measurements:

|xxx(j)
p − xxx(0)

p | ≤ TTT p,Δj
(2)

with xxx
(j)
p and xxx

(0)
p denoting the position state under fault

hypothesis Hj and fault-free hypothesis H0, respectively. We

use the subscript p to highlight that the vectors refer to the

elements of the position state and we drop the subscript when

the quantities refer to one direction of interest in the position

state. TTT p,Δj
is the detection threshold, which takes into

account the continuity risk assigned to Hj . In one direction

of interest, the equation for the fault slope in SS RAIM can

be simplified to [17]:

Slopefj = σ2
Δj

(3)

where σ2
Δj

= σ2
j − σ2

0 , σ2
j and σ2

0 are the estimated error

covariances under Hj and H0, respectively.

So:

TΔj
= Kfa,jσ

2
Δj

(4)

where Kfa,j a factor that accounts for the false alarm rate.

For clarity, let AU be the set of indices for hypotheses under

which the measurement set excludes the measurements from

one sensor, auxiliary or conventional, but contains measure-

ments from other auxiliary sensors. In this work we consider

that estimation under hypotheses Hj , for all j ∈ AU is

computationally inefficient, at least when the sensor fusion

algorithm of such integrations has a high computational load.

In addition, we do not assume anything of the internal structure

of the monitored navigation algorithm which is informed by

the measurement set under the all-source hypothesis H0. In

this case, the covariance of position estimates is assumed

unavailable, something that prevents the calculation of the de-

tection threshold in (4). Therefore, the method performs fault

detection in each auxiliary sensor’s measurements individually.

This is done via anomaly prediction in the estimate error with

a sensor-specific DNN model and refinement based on an IM

test statistic which is computed for a specialized measurement

set for the sensor of concern, that excludes all other auxiliary

sensor measurements. The latter procedure is implemented in a

new module called Deep Hypothesis Testing (DHT). The next

part of this section describes briefly the DNN model, while

section II-C describes the hypotheses that are directly related

to the camera and how they are used in the DHT module to

detect IM anomalies.

Our previous work [12] described the DNN model for

anomaly prediction in the distribution of SLAM state estimate

errors. Any VN algorithm can be used instead of SLAM.

According to that work, an input sample consists of M se-

quential images. During training, the SLAM position estimate

errors are assumed to be normally distributed around 0 with

a covariance matrix R, in the nominal case. Then, the DNN

model parameters are optimized to predict that specific low-

dimensional image features and dynamic changes within the



image sequence will cause the SLAM position estimate error at

the end of the sequence to fall outside the normal distribution

of errors.

The DNN combines the Time Distributed Layer with convo-

lutional and max pooling layers, and the LSTM layer. In this

way the network learns the effect of non-recurrent features

as well as of transient changes to the predicted class output,

via the extraction of features from all images in a sample

and by associating them chronologically. This is an important

characteristic in the context of IM as the model is powerful

in capturing fault dynamics.

A diagram of the overall method is shown in figure 2. The

figure and the text uses the term Common Sensor Set (CSS)

to refer to the set of conventional sensors, i.e. GNSS/IMU.

In hypothesis HCSS , all CSS sensors are assumed fault free,

while the remaining non-CSS sensors are assumed faulty and

are excluded, allowing the execution of standard Error State

Kalman Filter (ESKF), as detailed in [4]. The “All-source”

hypothesis H0 assumes the whole set of sensors in CSS and

auxiliary sensors as fault-free. In the new method proposed

here, the monitored navigation algorithm needs to be executed

only once, for that sensor set. The new DHT module is

introduced in the general IM architecture, runs in parallel

with the IM of CSS sensors, and executes one instance of

a specific navigation algorithm for each auxiliary sensor. For

example, this is a visual SLAM algorithm in the case of the

camera. Although the diagram in figure 2 illustrates the general

architecture, where many auxiliary sensors may be integrated

with GNSS/IMU, the rest of the article refers specifically

to fault detection of camera measurements, as the camera

is the only auxiliary sensor evaluated herein. The detailed

explanation of the DHT module follows.

B. Hypotheses fault-tolerant to image frames

A predicted navigation anomaly from the previously de-

scribed DNN model will initiate DHT to detect the specific

anomalous frames that cause IM hazards due to the camera.

This and the next section describe the new hypothesis set.

Consider that a navigation anomaly is predicted by the DNN

at a step k∗. The method searches for IM anomalies around

k∗ in a horizon with pre-selected size Nvis. Let us denote the

full set of image frames around the anomaly as Y k∗+a
cam,k∗−b,

with a − b = Nvis. Then, we will denote each image frame

obtained in the horizon in any step k as ck ∈ Y k∗+a
cam,k∗−b. In a

typical VN algorithm, the estimation of the camera pose w.r.t.

to the first frame is achieved by tracking features observed in

subsequent frames. Let us denote the camera pose:

xxx =

[
ppp
(W )
C

rrr

]
∈ R

3+rm (5)

with ppp
(W )
C ∈ R

3 being the camera position in the global

reference frame (W ) and rrr being the camera attitude vector

parametrized with rm = 3 or 4 elements, depending on

the representation used. A 2D projection of a feature l with

coordinates ppp
(W )
l to the image plane is symbolized as πl(xxx)

and the pinhole camera model can be used for the formula

of πl(xxx) [18]. It is worth noting that the variable xxx is there

because the projection depends on ppp
(W )
C and the rotation

matrix between camera body frame and global frame. Then

the noisy measurement of a feature point extracted from the

measurement image is given as:

zzzl = πl(xxx) + vvvl + bbbl (6)

where vvvl is zero-mean Gaussian noise, and bbbl is a bias in the

feature location. Given NL feature correspondences, in total,

tracked in Nvis subsequent frames, the camera pose estimate

x̂xx can be found by solving the nonlinear optimization problem:

x̂xx = argmin
xxx

||zzz − π(xxx)||2
ΣΣΣ−1

vvv
(7)

where zzz =

⎡
⎢⎣
zzz1
...

zzzL

⎤
⎥⎦, π(xxx) =

⎡
⎢⎣
π1(xxx)

...

πL(xxx)

⎤
⎥⎦, and ΣΣΣvvv is the

covariance matrix of the stacked noise vector vvv =

⎡
⎢⎣
vvv1
...

vvvL

⎤
⎥⎦.

For simplicity, by grouping the features into their image

frames, the measurement vector can be stacked as

ZZZ =

⎡
⎢⎣

ZZZ1

...

ZZZNvis

⎤
⎥⎦ (8)

where ZZZk, k = 1, ..., Nvis is a vector with feature points

found in image frame ccck. This notation will help us define the

hypotheses with clear association to image frames (i.e. groups

of feature correspondences that might contain faults due to

faults in the respective image frame) instead of individual

features.

C. Hypotheses definition
The input measurement set to the ”DHT for camera” module

in figure 2 consists of camera and CSS measurements only.

As the DHT module is part of the overall IM, let us define

as HCC the hypothesis that is associated with the all-source

measurement set in the DHT module, i.e. HCC is the hypoth-

esis that all auxiliary sensors other than the camera are faulty.

In DHT, a VN system utilizes the image frames to estimate

camera poses, and those are compared with CSS measurements

to detect inconsistencies. Such inconsistencies guide the IM

anomaly detection process.
For IM anomaly detection due to camera measurements, the

method utilizes Nvis + 1 hypotheses, where under hypothesis

HCC,j(j = 0, 1, . . . , Nvis) from 0 to Nvis image frames are

assumed to be associated with an IM anomaly. Hypothesis

testing is initiated if an image frame ccck is associated with

an anomaly in the true error (after employing the DNN pre-

dictor) with high probability. Then, under hypothesis HCC,j ,

the subset of frames that inform the navigation solution is

Yvis = {yk|1k = 1, ∀k ∈ [1, Nvis]} with 1k defined as:

1k =

{
0 if (j + k −Nvis) ≤ 0

1, otherwise
(9)



Fig. 2: Diagram of the proposed IM architecture for integration of GNSS/IMU with auxiliary sensors. Although this paper

investigates only the case of the camera, the diagram shows the general case, where the parts that refer to other auxiliary

sensors are visualized with higher transparency.

For example, under HCC,0 zero frames are included, as 0 +
k − Nvis ≤ 0 for any k = 1, . . . , Nvis. Under HCC,1 only

the Nvis-th image frame is included, while under HCC,Nvis

all image frames from indexes 1 to Nvis are included. This

hypothesis is identical to HCC .

Figure 3 shows the diagram of the DHT module for camera

measurements. Importantly, when developing the DHT module

for other auxiliary sensors, only the VN algorithm needs to

change to another sensor-specific algorithm.

Each hypothesis HCC,j is associated with a sequence with

Nvis observations yyy(CC,j) = (y
(CC,j)
1 , . . . , y

(CC,j)
Nvis

), j =
0, . . . , Nvis of the values of an IM test statistic, which we

denote as a process under hypothesis HCC,j . A new child

process is possibly created after Nvis steps, if the system has

not returned to ordinality (section II-D).

A subset of observations does not include a fault when

the observations follow the ordinary distribution λ of IM test

statistics, while, if there is one or more faults, the observation

at any step k ∈ [1, Nvis] cannot be drawn from the ordinary

distribution with large likelihood. The next section introduces

the ordinary distribution and the ordinality test for the process

under each hypothesis.

D. Ordinary distribution

According to equation (2), for the new hypothesis set

tailored to camera measurements, at each step k we define

as test statistic the difference between the position solution

under HCC and hypotheses HCC,j :

τττpCC,j = |xxx(CC,j)
p − xxx(CC)

p | (10)

Zhang, Wang and Gao [19] analyzed the distributions of

the MHSS test statistic for different fault hypotheses and sug-

gested that they vary due to the differences in the underlying

measurement subsets. The MHSS test statistics under each

fault hypothesis are normally distributed [20]. For one position

direction of interest the distribution of the IM test statistic is:

τCC,j = N (fΔCC,j
, σ2

ΔCC,j
) (11)

Here

σ2
ΔCC,j

= σ2
CC,j − σ2

CC

where

σ2
CC,j , σ2

CC are the estimated variances in the direction of

interest for the solutions under HCC,j and HCC respectively,

and

fΔCC,j
= fCC − fCC,j

where

fCC is the contribution of measurement faults to the

position state of interest estimated under HCC , and

fCC,j is the contribution of faults of non-excluded measure-

ments under hypothesis HCC,j to the corresponding position

state of interest.

This paper deals with a set of processes, where the mea-

surement set informing each process is different among the

simultaneous processes running at each step as well as between

a parent and a child process possibly created after the test of



Fig. 3: Diagram of the DHT module for fault detection in camera measurements. Different instances of ESKF are running for

each hypothesis, although the implementation of the filter is always the same.

* Anomaly testing runs if either the DNN predicted a navigation anomaly or if the DHT is still evaluating a previous anomaly.

ordinality in equation (13). This means that a test statistic

distribution determined to fit the samples of a process does

not necessarily represent a distribution of ordinality that can be

used for reliably testing the samples of any other new process.

However, under fault-free conditions, the distributions for all-

hypotheses are expected to have zero mean (according to

equation (11), although with different variances. In this paper,

only one distribution of ordinality is utilized per direction,

computed with samples from all processes. This distribution

is found to follow a zero-mean normal distribution:

λ ∼ N (0, σ2
λa
) (12)

where the subscript a refers to the direction of interest. The

experimentation in this work is for 2D navigation and uses

North-East-Down (NED) as frame of reference for the vehicle

positions, so the two directions of interest are North and East.

To obtain the ordinary samples and the ordinary distribution

in the case study, the complete IM system with the monitored

navigation algorithm is run for driving road vehicle trajectories

with labeled sections where the outputs appear ordinary, after

utilizing statistical methods. The labeling of ordinary sections

is accomplished offline based on a sliding Z-score metric

Z = (êS − μS)/σS of the SLAM error estimates ˆ̂eS in one

direction to a known reference trajectory. The mean μS and

standard deviation σS refer to the normal distribution of errors

computed in a horizon around the sample. The difference of

an error to the mean is compared with a given number of

standard deviations to decide if the corresponding sample is

ordinary. This is a statistical method to detect anomalies that

was also used to label anomalies in the training set in [12].

Understandably from the above, the definition of the ordinary

distribution is an open topic for more research in the future.

Figure 4 depicts the computed ordinary distribution that was

utilized in the experiments to decide anomalous samples.

E. Test for anomalies

The method identifies the end of an anomaly by executing

a test at the finishing step k1,κ = κNvis of the current running

processes, with κ ∈ Z+ a positive integer. Starting from the

hypothesis HCC,Nvis−1, that assumes that only the 0th image

frame is faulty, until hypothesis HCC,0, that assumes all Nvis

image frames are faulty, the test is:

y
(CC,j)
i ∈ [F−1

λ (0.05), F−1
λ (0.95)]

∀i ∈ [1, Nvis], ∀j ∈ [0, Nvis − 1]
(13)

where:

F−1
λ , F−1

λ the inverse of the Cumulative Distribution Func-

tion (CDF) of the ordinarily distributed variable λ.

f(y
(CC,j)
i ;λ) the probability density function of sample

y
(CC,j)
i drawn from the ordinary distribution λ.

A new set of processes is created at time k1,κ, until the

ordinality test in equation (13) holds.

III. EVALUATION

A. Trajectories and system setup

The performance of the proposed method is evaluated by

utilizing datasets from the UrbanLoco [14], Robotcar [15]

and KAIST [16]. The datasets provide camera, GNSS, IMU

and other sensor data collected during car drives in urban

environments with dynamic objects, illumination changes and



North axis

East axis

Fig. 4: Ordinary distribution of IM test statistics, on each axis.

It is computed from samples of the metric that were selected as

ordinary based on statistical tests. The samples were obtained

during IM of real trajectories in the case study.

repetitive patterns. In each dataset, the car completes one

trajectory. We selected two datasets from UrbanLoco, referred

to as UrbanLoco1 and UrbanLoco2 in the text, one dataset

from Robotcar and one dataset from KAIST. The trajectories

in the datasets are split into sections of around 1500 to 2250

steps (150s - 225s) and the evaluation is done for one section

from each trajectory, excluding some steps at the beginning to

allow initialization. The sections are:

• UrbanLoco1: Steps 0-1500 in the dataset CAColi-

Tower20190828184706, collected near Coit Tower, San

Francisco: Very busy area at the beginning, many pedes-

trians and pedestrian crossings, illumination challenges.

• UrbanLoco2: Steps 0-1500 in the dataset CALombard-

Street2019082819041, collected near Lombard street, San

Francisco: Not that busy area, a lot of shadows / dark

areas, hilly terrain.

• Robotcar: Steps 1000-3000 in the dataset 2015-08-14-14-

54-57, collected in Oxford, UK: not busy area, roadworks,

severe illumination challenges.

• KAIST: Steps 4500-6750 Suburban area, a lot of car

traffic, High rising buildings with repetitive patterns,

severe illumination challenges.

The datasets provide reference trajectories; UrbanLoco pro-

vides data from a SPAN-CPT module. Robotcar provides a

ground truth generated using post-processed raw GPS, IMU,

and static GNSS base station recordings [21]. KAIST provides

data from a pose-graph SLAM solution that fuses various

sensors. Although we use the provided reference data for

all trajectories, the accuracy of the reference for the KAIST

trajectory might vary and be significantly deteriorated under

conditions with GNSS unavailability [16]. In addition, we

found out that the reference does not cover the whole trajec-

tory, and we filled those gaps by the estimates from a simple

integration of GNSS/IMU in ESKF. Therefore, the reference

for that trajectory is inaccurate in some parts.

We utilize the ORBSLAM2 algorithm [22] for camera pose

estimation for the UrbanLoco and KAIST trajectories. For the

Robotcar trajectory we use estimation data that are already

provided with the dataset and were obtained using a Visual

Odometry solution. In all cases, the Umeyama method [23]

is utilized to find the optimal transformation between the

reference and the corresponding camera pose estimates. In the

following, the text uses the same term VN for both camera

pose estimation algorithms.

At this stage, splitting of the trajectories was important to

limit learning navigation anomalies occurring due to previous

drifts induced by visual-only navigation. There is future work

to do to label the exact frames that associate with anomalies.

This will require to go from statistical methods in the overall

trajectory error to relative error methods and handling of the

drift.

The number of frames to test each time was selected Nvis =
10. This number should be selected to be at least equal to the

number of image frames M per input sample that is fed to

DNN. That number is 7, as can be seen in our previous work

[12]. A key finding of that work was that larger samples lead

to better anomaly learning than smaller ones, although there

is an upper limit for the sample size due to limited hardware

resources. A selection Nvis > M , as in this work, is done

to account for probably anomalous segment that begins a bit

before a predicted anomaly from the DNN.

Figure 5 shows the reference trajectories, the evaluated

sections and the aligned estimated sections from the VN

system.

The IM for CSS, informed by the IMU and GNSS noise,

computes the PLs based on an integrity requirement IREQ that

was preselected to be in the order of 10−8.The experiments

employ a formula for the computation of PLs that was previ-

ously utilized for Receiver Autonomous Integrity Monitoring

(RAIM) [17]. The PL in each direction, for the fault-free case,

is computed as:

pL = Q−1{IREQ/2}σCSS (14)



UrbanLoco1 UrbanLoco2

Robotcar KAIST

Fig. 5: Evaluated trajectories. The figures show the full reference trajectories,

the evaluated sections of each trajectory and the aligned camera poses for those

sections, estimated from the VN system.

Fig. 6: PLs, informed by IMU and GNSS

nominal noise, and residual errors before and

after integrating IMU/GNSS with the VN

system, for UrbanLoco1.

where σCSS is the estimated variance of the state error under

HCSS in the respective direction, and Q−1 is the inverse tail

probability of the standard normal distribution. As there is no

redundancy of the measurements in the utilized CSS, the PLs

do not compensate for possible faults in the measurements of

those sensors. Nevertheless, we tuned their noise parameters

and confirmed that there are no significant faults by utilizing

consistency checks and IM.

B. Anomaly detection results

Here, we analyze the performance of IM anomaly detection

after executing the DHT module, with or without utilization

of the DNN. If the DNN is not utilized, the DHT runs

uninterrupted for the detection of anomalies. Uninterrupted

execution means that:

a Anomaly testing does not stop even if the ordinality test

in equation (13) succeeds.

b Camera measurements are not excluded even after the

detection of anomaly.

For UrbanLoco1, figure 6 shows the result of the IM for the

integrations IMU/GNSS and IMU/GNSS/VN. In both cases,

the PLs are only informed from GNSS and IMU nominal

noise, and are computed based on equation (14). We observe

an increase of the error at the North direction after the

integration with VN, especially after step 180. This results

in many IM anomalies that last until approximately step

500. For the same trajectory, figure 7 shows the minimum

log Probability Density Function (log PDF), as defined in

equation (15) below. It also shows the DHT processes, that the

ordinality test in equation (13) identifies as anomalous, under

hypotheses HCC,0, HCC,4 and HCC,9. In this evaluation, the

DHT module runs uninterrupted.

The experiments use the minimum log PDF metric, that is

defined here, to visualize the likelihood that the various DHT

processes under different hypotheses are ordinary. Previously,

we used the symbol yyy(CC,j) to denote the sequence of IM test

statistics that are obtained during a process executed under

hypothesis HCC,j . The minimum log PDF of the samples in

yyy(CC,j), given the ordinary distribution λ, is:

lCC,j(yyy
(CC,j);λ) = min {ln(f(y(CC,j)

1 ;λ)), ...,

ln(f(y
(CC,j)
Nvis

;λ))}
(15)

with f(y
(CC,j)
i ;λ), i = 1, ..., Nvis being the PDF around

the sample y
(CC,j)
i when it is drawn from the ordinary

distribution λ.

By comparing with figure 6, we observe that the sharp drops

of the minimum log PDF in the plots are quite precise in

indicating the location of IM anomalies. In addition, processes

that do not include any or include few image frames (i.e.

processes under HCC,0 and HCC,4) appear anomalous more

often than HCC,9, that includes most of the image frames in

the sequence. This is expected as for processes, like HCC,9,

where the fault-free measurement set is very similar to that

under HCC , the IM test statistic (equation (10)) is generally

closer to zero. Additionally, the plots indicate that the effect of

individual image frames on the build-up of an anomaly may

vary. An example is around step 450, where the plot for HCC,9



HCC,0 HCC,4 HCC,9

Fig. 7: For UrbanLoco1, the plots show the values lCC,j(yyy
(CC,j);λ) for j = 0, 4, 9 over time and the processes that are detected

anomalous (red) or pass the ordinality test (light blue). Processes are shown as subsequent segments separated by a vertical

line at the bottom of each plot.

in North direction shows that one of the tested processes is

anomalous. The sharp decrease in the min log PDF is likely

caused by the only image frame assumed non-faulty in the

anomalous process. This is not the case for the anomaly at

around step 850. The anomaly is clearly visible in the plots

for HCC,0 and HCC,4 but not in the plot for HCC,9. The

anomaly seems to build up over more than one image frames

in the processes.

The next experiment introduces the DNN in the anomaly

detection procedure. This means that DHT initiates testing

only after receiving a navigation anomaly alarm from the

DNN. Anomaly testing stops when the ordinality test succeeds.

No fault exclusion is implemented at this experiment. Figure 8

shows, for all evaluated trajectory sections, the PLs per axis as

computed in equation (14). Additionally, it plots the residual

of position state estimates under H0 to reference positions.

These may be compared with the PLs for bounding issues.

The figure also annotates the VN anomalies detected by the

DNN. The detected IM anomalous segments are marked on the

residual. The DNN does not differentiate between anomalies

in the North and East direction, as training was done based on

the maximum of the VN system’s estimate errors in the two

directions. Therefore, the VN anomalies are the same in both

directions. The y-axis location of VN anomalies indicates the

magnitude of the VN estimate error (maximum between the

two axes). Lastly, a detection for IM anomaly may happen for

any of the two directions, but the method will alarm for an

anomalous segment regardless.

Figure 9 shows, for UrbanLoco1, the result of fault exclu-

sion using the proposed method. The PLs and the residual

can be compared with figure 6. The fault exclusion leads to a

reduction of the residual error and the prevention of some IM

anomalies. However, the exclusion is insufficient to prevent all

anomalies.
A general conclusion from the figures is that the pro-

posed method performs well in identifying navigation and

IM anomalies, in the vast majority of cases where there is

anomaly present. The DHT module was able to mitigate for

false alarms from the DNN, although there were also few cases

where it falsely ignored them. The method was unsuccessful

to exclude enough camera measurements and prevent all IM

anomalies, as we observed in the experimentation with fault

exclusion. Therefore, despite the very promising results, we

observe that further tuning is required to adequately prevent

all anomalies, and limit false positives, i.e. detection alarms

for camera measurements that do not actually cause anomalies.

The quantitative evaluation of the method follows in the next

section.

C. Numerical evaluation of the IM performance
This section evaluates the performance of the proposed

camera FDE when monitoring the GNSS/IMU/VN system and

PLs are only informed by GNSS and IMU noise. Four metrics

are evaluated and these are:

1) The RBT metric, proposed by Li and Waslander [24] to

quantify how much of the time the error is sufficiently

bounded, as well as the tightness of the bound. This

metric is calculated as follows:

RBT =

√∑N
i=1 ρ(

pLi
−|ei|
σi

)2

N
(16)



Fig. 8: Detected anomalies, true position error of GNSS/IMU/VN integration and PLs informed by the GNSS/IMU only. Each

column shows the results for one trajectory. The top row shows results for the North direction and the bottom row shows

results for the East direction.

Fig. 9: Results of IM for the IMU/GNSS/VN integration after

utilizing the DHT module for VN fault exclusion. The results

are for the UrbanLoco1 trajectory.

where pLi
and |ei| are respectively the PL and the error

for a sample time i in one direction, N is the number

of samples, σi is the error variance for the sample. ρ is

a weight function that should penalize bounding failures

more than loose bounds. In the experiments ρ = 64.

2) The percentage of time that the errors are bounded by the

PLs.

3) The minimum position alert limit for 100% availability

of the system (it is the maximum protection level).

4) The average execution time.

As described in section II-E, DHT runs until the process

under HCC,0 is found ordinary. In the experiment, new anoma-

lies are ignored if DHT is already running by the time of their

detection.

Table I summarizes the results for the various trajectory

sections. As the table compares the performance of our

method against different IM setups, it is worth noting that

the table and the text symbolizes as “IM for CSS” the IM

that is informed only by GNSS and IMU noise, while it

symbolizes as “GNSS/IMU/VN MHSS” the MHSS-based IM

that is informed by GNSS + IMU + VN noise and faults.

In the latter case, the IM does a simplistic assumption of

white noise in the VN estimates. The IM compensates for



the contributions of failures in the GNSS measurements or

VN estimates by defining the NSS = 2 fault hypotheses Hj

(j = 1, 2), respectively fault tolerant to GNSS measurements

or VN estimates. It assumes equal distribution of the integrity

risk IREQ and continuity risk to the fault-free hypothesis

H0 and the two fault hypotheses. The PL under each fault

hypothesis, in each direction, is computed as:

pLj
= Q−1{ IREQ

P (Hj)(NSS + 1)
}σj + TΔj

(17)

where σj is the estimated variance of the state error under

hypothesis j and TΔj is given in equation (4). Under fault-

free hypothesis H0 the PL compensates for the nominal noise

of all three inputs:

pL0
= Q−1{ IREQ

2(NSS + 1)
}σ0 (18)

The IM selects the maximum of the three PL bounds as the

final PL.

The first row in the table for each trajectory shows the

performance of our method, which utilizes IM for CSS and

the DHT module for camera FDE. It compares it against the

method where the DHT module runs continuously to find IM

anomalies and performs fault exclusion, independently if the

DNN predicts anomalies (“DHT, no DNN” at second row),

as well as against the method which does not use the DHT

module (“IM for CSS” method at third row). The last row

shows the performance of the MHSS where PLs are also

informed from camera faults (“GNSS/IMU/Camera MHSS”).

The table shows the average metrics across both North and

East axes.

The method based on IM for CSS without camera FDE

(third row) shows the worst performance in terms of bounding

the error, while, by using the IM for CSS + DHT (our method),

we obtain comparable results to the GNSS/IMU/VN MHSS

(fourth row) in terms of the execution time and the percentage

of time with bounded error. The integration of more sensors

results in lower uncertainty which is consistent when the

sensors do not contain faults. The results are even better,

in terms of prevention of IM anomalies, when the method

runs DHT and fault exclusion, without using alarms from

the DNN (second row), although with significantly higher

computation time than when using the DNN (our method).

The GNSS/IMU/VN MHSS shows the worst performance on

the RBT metric due to very loose PLs. However, one should

pay attention when interpreting the differences in the RBT

metrics obtained for the IM setups compared here; The RBT

metric rewards tighter PLs. It might be that the exclusion of

the camera, due to a false alarm, results in larger estimate

error, still bounded by the PL, and the estimated uncertainty

increases too. RBT will indicate that the result is better,

although the navigation algorithm is less accurate.

We believe that the results are motivating, since, compared

to the GNSS/IMU/VN MHSS method, the proposed method

scales better to integrations with more auxiliary sensors. Also,

it does not assume knowledge of the noise of auxiliary sensor

measurements. Finally, it achieves 100% availability for a

lower Alert Limit, as it does not compensate for noise and

faults of the auxiliary sensors. Therefore, the proposed method

should be considered during the development of computation-

ally efficient and sensor-agnostic IMs, although further tuning

is required to prevent anomaly misdetections and insufficient

camera measurement exclusion. A possible further research

will be around PL inflation, in order to compensate for camera

faults, still based on the presented limited hypothesis space of

measurement faults.

IV. CONCLUSION

The presented method constrains the space of sensor fault

hypotheses in MHSS-based IMs for multi-sensor navigation

systems and is suitable for integrations of the conventional

GNSS and IMU sensors with auxiliary sensors. There are two

important modifications in the MHSS-based IM architecture

of previous works. PL computation is only informed from

the conventional sensors IMU/GNSS as before, while the IM

evaluates each auxiliary sensor for FDE individually, assisted

by a DNN. In this work the evaluated system is, specifically,

the integration IMU/GNSS/Camera. The method is able to

detect the vast majority of IM anomalies, although there are

some misdetections and fault alarms. It shows comparable

results, in terms of PL bounding performance, to the typical

MHSS-based IM, that is informed by the noise and faults of all

sensors. In contrast to that IM, the proposed method is scalable

to integrations with multiple auxiliary sensors and does not

rely on the availability of a noise model for each auxiliary

sensor. An additional contribution is that the initial anomaly

prediction in the distribution of navigation faults caused by

the camera is done based on raw measurements. Hence, the

method can facilitate future researches to quantify the direct

effect of various environmental conditions on the performance

of IM, via the effect on individual sensors. This may allow the

development of robust IMs that are tested in a predetermined

set of challenging simulated or real environmental conditions.
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