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Abstract: With the ongoing global drive towards renewable energy, several potential offshore wind
energy lease areas worldwide have come into focus. This study aims to estimate the extreme
wind and wave conditions across several newly designated offshore wind lease sites spanning six
continents that are crucial for risk assessment and the design of offshore wind turbines. Firstly, the
raw data of wind speeds and wave heights prevailing in these different lease areas were obtained.
Following this, an in-depth extreme value analysis was performed over different return periods.
Two principal methodologies were applied for this comparative study: the block-maxima and the
peaks-over-threshold (POT) approaches. Various statistical techniques, including the Gumbel method
of moments, Gumbel maximum likelihood, Gumbel least-squares, and the three-parameter GEV, were
employed under the block-maxima approach to obtain the distribution parameters. The threshold for
the POT approach was defined using the mean residual life method, and the distribution parameters
were obtained using the maximum likelihood method. The Gumbel least-squares method emerged as
the most conservative estimator of extreme values in the majority of cases, while the POT approach
generally yielded lower extreme values compared to the block-maxima approach. However, the
results from the POT approach showed large variations based on the selected threshold. This
comprehensive study’s findings will provide valuable input for the efficient planning, design, and
construction of future offshore wind farms.

Keywords: offshore wind turbines; extreme value analysis; block maxima; peaks-over-threshold

1. Introduction
1.1. Background and Motivation

The offshore wind energy market is expanding rapidly in recent years, with a global
installed capacity of 64.3 GW at the end of 2022 [1]. It is reported that 8.8 GW of offshore
wind energy were newly added to the grid during the calendar year 2022 [1]. Figure 1
shows the offshore wind installed capacity targets set by various countries for 2030. It is
notable that China’s target of 200 GW of installed capacity by 2030 is far higher than all
the other countries in the world. The USA has the highest potential for offshore wind
energy in North America, with more than 26 GW worth of projects in the pipeline [2]. The
International Renewable Energy Agency (IRENA) expects that that total installed capacity
of offshore wind will be 2000 GW by 2050 [3].
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Figure 1. Offshore wind targets for different markets [1].

This means that at least 70 GW of offshore energy needs to be installed every year to
achieve that target. This would require more than 5000 new turbines to be installed yearly,
thereby occupying around 500,000 km2 of space in the world’s oceans [4]. As a result,
new offshore wind lease areas are being designated in the territorial waters of countries
worldwide to meet their respective targets. Furthermore, the size of wind turbines has been
increasing steadily to maximize the use of the available wind energy potential. Large wind
turbines can have a rotor diameter reaching up to 260 m and correspondingly large hub
heights [4], thus posing new design challenges [5].

Offshore wind turbines (OWTs) typically have an operational lifetime of 20–25 years [6]
and are subjected to extreme wind and waves during their service lives. As a result, when
designing offshore wind turbines (OWTs), accurately estimating extreme wind and wave
conditions is crucial to ensure that the OWT structure can survive these loads. The 50-year
wind speed is one of the important environmental inputs, which is required during the
selection of wind turbine classes as specified by the International Electrotechnical Commis-
sion (IEC) [7]. There are several methods in the literature that can be used to estimate sea
states corresponding to different return periods. For instance, the traditional method of us-
ing reference wind speed (Ure f ) in wind turbine standards, which is taken as five times the
mean wind speed, tends to result in conservative designs, thus leading to larger and more
expensive structures [8]. To mitigate this, more sophisticated statistical approaches such
as block maxima and peak over thresholds can be used. However, these methods require
long periods of metocean data, which may not be readily available for newly designated
offshore lease areas. Another major issue is that estimating extreme values using these
sophisticated methods is associated with high uncertainty. Some major causes include
the following: (1) extrapolating wave heights and wind speeds to large return periods
with limited durations of metocean data, (2) the chosen data set can have varying levels
of accuracy, time duration, and inhomogeneities, (3) the probability distribution which is
used to model the extreme value populations can vary, and (4) the method used to estimate
the distribution parameters can be different. The sound understanding and judgment of
risk are required to develop offshore wind energy in new locations around the world.

1.2. Literature Review

Several studies have been conducted on the estimation of extreme wind and waves.
Barthelmie et al. [2] estimated the extreme wind and waves along the east coast of the USA
using the ERA5 dataset. This study compared several different block-maxima methods,
including the Gumbel graphical method, Gumbel–Weibull method, Gumbel method of
moments (MOM), Gumbel maximum likelihood (ML) and three-parameter generalized
extreme value distribution (GEVD) using the ML method. The study found that the 50-year
wind speeds at 100 m above sea level were ranging between 30 ms−1 and 40 ms−1 along
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the east coast of the US. The three-parameter GEVD provided the highest estimate among
all of the methods used in this paper. However, these results cannot be extrapolated to
longer return periods, since the distribution parameters were not provided. Pryor et al. [8]
performed an assessment of extreme wind speeds specifically for applications related to
wind energy. This study concentrated only on 50-year wind speeds obtained from the ERA5
dataset using four different methods. This paper provides a digital atlas of 50-year wind
speeds at specific grid points around the world. The results for the 50-year wind speeds
were within 9–13% of the buoy measurements. This paper is limited to the block-maxima
approach only. Izaguirre et al. [9] presented the variability in global extreme significant
wave height to spatial and temporal factors based on satellite data. This study used the
GEV distribution with a block period of one month. Lee et al. [10] estimated the extreme
wind speeds in fifteen wind farm locations in South Korea using the Gumbel and Weibull
methods. This paper also compared the predicted values with numerical analysis and field
measurement data for verification. Sacre [11] assessed the extreme wind speeds in France
with a special focus on the 1999 storms. Torrielli et al. [12] focused exclusively on predicting
the number of independent extreme wind events in a year, which is particularly useful in the
block-maxima approach. Palutikof et al. [13] published a review of the methods available
for extreme wind speed estimation. The paper also presented the strategies available for
generating synthetic wind speed datasets. Wang et al. [14] proposed the R2 and proper
error (PE) criteria for evaluating the goodness of fit of various block-maxima methods
for extreme wind estimation. Hong et al. [15] analyzed the performance of different
fitting methods for the Gumbel distribution. This paper compared the 50-year wind
speeds obtained at different meteorological stations in Canada. The Gumbel maximum
likelihood, Gumbel method of moments, Gumbel method of L-moments, and Gumbel
generalized least-squares methods were used for estimating the extreme wind speed. Based
on efficiency, the maximum likelihood was rated as the best method, followed by the least-
squares method. Lombardo [16] provided an improved method for estimating extreme
wind speeds, which takes into account the spatial data resolution and micrometeorological
characteristics. Afzal et al. [17] developed a novel method for the prediction of extreme
significant wave height using a machine learning algorithm based on the GEV parameters.

Simiu et al. [18] developed a peaks-over-threshold (POT) approach for modeling ex-
treme wind distribution tails, which has been widely used in subsequent studies.
Viselli et al. [19] estimated the extreme wind and wave design parameters in the Gulf
of Maine using a POT approach. An et al. [20] presented a comparison between four
methods for the estimation of extreme wind speeds. Two of the methods used the block-
maxima approach, while the other two methods used the POT approach. Kang et al. [21]
conducted an extreme wind assessment on Jeju Island, South Korea. This study compared
the block-maxima and POT approaches and the suitability of the Gumbel distribution
regarding both the approaches. Rivas et al. [22] made a comparison between the block-
maxima and POT approaches applied to the pitting corrosion of low carbon steel. This
study found that the POT approach to be more suitable for pitting corrosion experiments
provided that enough data are available. Vinoth and Young [23] provided global extreme
wind speed and wave height data for a 1◦ × 1◦ grid. This paper used the initial distribu-
tion and POT approaches for estimating the 100-year extreme values. The results were
found to agree well with buoy measurements. Jonathan and Ewans [24] investigated the
uncertainties associated with extreme wave height estimates due to hurricanes using the
POT approach. Pandey et al. [25] estimated the extreme wind speeds using L-moments
in the POT approach. This study found that the estimates of the shape parameter using
the L-skewness of the values exceeding the threshold and provided a stable upper bound
for the quantiles of the wind speed. Karpa and Naess [26] developed a novel average
conditional exceedance rate (ACER) method for estimating extreme wind speeds. The main
advantage of the ACER method is that it represents the exact extreme value distribution in
a nonparametric form. The ACER method also does not require any initial declustering,
as there is no requirement for independent data. Some nontraditional methods have also
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been developed for extreme wind speed prediction, which do not involve the use of any
statistical distribution. Gaidai et al., proposed an innovative method for extreme wind
speed prediction using deconvolution [27]. The main advantage of this method is that it
does not involve any extrapolation, which helps in reducing the associated errors. This
paper also compared the predicted results with the Naess–Gaidai extrapolation method to
determine the efficacy of the proposed method.

It is evident that plenty of work has been accomplished regarding the estimation of
extreme wind and waves in general, but their applications in the context of offshore wind
energy are quite limited. Since the offshore wind industry has recently emerged in several
countries, newer studies are required to provide the relevant information. There is currently
only one paper on the estimation of extreme wind and waves for new offshore wind lease
areas, which is limited to the east coast of the US. This paper also does not consider the
POT approach. Hence, there is a scope for more research to be performed on this topic.

1.3. Research Objectives and Novelties

The primary aim of this study is to estimate extreme wind speeds and wave heights
using different statistical methods for several new offshore wind lease areas around the
world as of August 2023. There are two traditional approaches for extreme value analysis,
namely, the block-maxima approach and the POT approach. Both approaches have been
used in this study for comparative analysis. Further, the extreme values were estimated
using five different methods, namely, The Gumbel least-squares (LS), Gumbel ML, Gumbel
MOM, GEVD, and the generalized Pareto distribution (GPD) methods. A sensitivity
analysis has also been carried out to study the effect of different input parameters on the
results from the POT approach. The final objective is to obtain the extreme wind speeds
and wave heights for different return periods, as well as their corresponding distribution
parameters for all the sites.

1.4. Novelties

This paper presents three novelties in the domain of OWT design and extreme value
analysis: (a) First, it offers a comprehensive estimation of extreme wind and wave condi-
tions tailored specifically to newly designated offshore wind lease areas. This approach
serves as a vital tool in understanding and preparing for the unique challenges presented
by these novel regions. This would be crucial for risk assessment and the design of offshore
wind turbines at these new sites; (b) Second, the paper underscores the disparities among
various statistical methods by conducting comparative studies. In addition, by utilizing a
new Waveclimate dataset, it aims to substantially reduce the uncertainties that typically
arise due to variations in datasets and analysis techniques. This integrated approach
enhances the reliability and accuracy of the estimations; and (c) Last, to encourage trans-
parency and foster further research in the field, the distribution parameters for the extreme
values for the analyzed offshore lease areas are meticulously detailed. Such provision
not only ensures the easy reproduction of our findings, but also facilitates the broader
application and reuse of the results by the scientific community. It is expected that the
extreme values provided in this paper will serve as crucial input during the design of OWTs
for new offshore wind lease areas.

2. Methodology
2.1. Criteria for Choosing Offshore Wind Lease Areas

Table 1 shows the offshore wind lease areas selected for this study, along with their
geographical coordinates and the water depths prevalent in those locations. Firstly, the
offshore wind lease areas which are in the concept or early planning stage were selected
from different continents around the world. There are some sites where the consent
application has been authorized and construction is about to begin. All the names of the
wind lease areas and their corresponding geographical coordinates were obtained from the
global offshore wind map provided by the marine consultancy company 4C Offshore [28],
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which is located in the United Kingdom. It can be noted that there is only one site chosen
from the African continent due to a lack of information on sites in this region. There is also
a scarcity of information on sites in the Middle East and South Asia. There are a total of
9 sites where the average water depth is greater than 50 m where floating wind turbines
are to be installed. This indicates that the majority of the planned offshore wind farms in
the near future are still in shallow water depths under 50 m, where bottom-fixed turbines
are to be installed.

Table 1. Offshore wind lease areas selected for this study [28,29].

Lease Area # Name Country GPS Coordinates Water Depth (m)

1 Maine research array USA 43◦23′ N, 69◦21′ W ≈175
2 Revolution wind USA 41◦8′ N,71◦4′ W ≈35
3 Ocean wind USA 39◦6′ N, 74◦17′ W ≈37.5
4 Garden State offshore energy USA 38◦40′ N, 74◦42′ W ≈20
5 Empire wind USA 40◦17′ N, 73◦19′ W 21.9–41.14
6 OCS-A 0545 USA 33◦27′ N, 77◦58′ W ≈26
7 CVOW Commercial Project USA 36◦54′ N, 75◦20′ W 21.9–38.1
8 Cascadia wind USA 46◦46′ N, 124◦39′ W ≈150
9 Morro Bay E USA 35◦31′ N, 121◦41′ W ≈150

10 Allan array Canada 51◦37′ N, 128◦43′ W ≈35
11 Sea-Breeze Tech Canada 46◦2′ N, 61◦49′ W ≈50

12 UY01 Uruguay 34◦14′ S, 51◦40′ W ≈50
13 Projeto Acu Brazil 22◦8′ S, 40◦44′ W ≈50
14 Farol wind Brazil 28◦51′ S, 48◦41′ W ≈50
15 Sopros do RJ Brazil 21◦37′ S, 40◦25′ W ≈27
16 Projeto Ubu Brazil 20◦51′ S, 40◦23′ W ≈27

17 Voyage Ireland 51◦21′ N, 7◦21′ W ≈85
18 Inch Cape United Kingdom 56◦29′ N, 2◦11′ W ≈25
19 Nordlicht I Germany 54◦17′ N, 6◦13′ E ≈35
20 Baltic offshore alpha Sweden 58◦17′ N, 18◦21′ E ≈36
21 Bornholm bassin syd Denmark 54◦50′ N, 15◦34′ E ≈57
22 Vigso bay Denmark 57◦10′ N, 8◦39′ E ≈14
23 Calabria Italy 38◦26′ N, 16◦52′ E ≈475
24 Normandie France 49◦52′ N, 0◦49′ W ≈45
25 GoliatVIND Norway 71◦49′ N, 22◦34′ E 300–400
26 Nao Victoria Spain 36◦17′ N, 4◦43′ W ≈300

27 Genesis Hexicon South Africa 30◦2′ S, 31◦38′ E ≈500

28 E3 India 7◦50′ N, 77◦49′ E ≈50
29 Miaoli Taiwan 24◦39′ N, 120◦38′ E ≈50
30 Huaneng Hainan Wenchang 1 China 19◦58′ N, 111◦3′ E ≈120
31 Huaneng Daishan I China 30◦18′ N, 121◦42′ E ≈10
32 Minyang Jieyang Qianzhan III China 22◦38′ N, 116◦27′ E ≈40
33 Boryeong South Korea 36◦14′ N, 126◦4′ E ≈6
34 Satsuma Japan 31◦49′ N, 130◦8′ E ≈40
35 Southern Mindoro Philippines 11◦52′ N, 121◦28′ E ≈26

36 Leeuwin Australia 33◦1′ S, 115◦17′ E ≈40
37 Mid West Australia 29◦32′ S, 114◦35′ E ≈50
38 Southern winds Australia 38◦9′ S, 140◦47′ E ≈35
39 Barwon Australia 38◦44′ S, 142◦18′ E ≈78
40 South Taranaki New Zealand 39◦32′ S, 173◦40′ E ≈36

2.2. Source of Raw Data

The raw time series of wind and wave data were then obtained for each location
using WaveClimate infoplaza [30]. Waveclimate infoplaza is a third party web-based portal
developed to provide offshore operators with quick and easy access to wind and wave
statistics data. The portal provides instant access to wind and wave statistics and is designed
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to support exploration studies and to assess operability for marine sites globally. The portal
offers point-oriented data based on the wave model WaveWatchIII for offshore and a wave-
ray models (SWRT) for nearshore translations [31]. The model has data calibrated with
satellites, and the satellites have been calibrated with buoy measurements. The quality of
the data has been validated and compared in previous studies [31]. The raw data were
obtained for an area of 50 km × 50 km. The Waveclimate data set has a latitude/longitude
grid with a resolution of 30′ × 30′. The latitude and longitude coordinates were rounded
off to ±0.5◦ (30′) by the website, since the raw data are not available at all coordinates.
The raw data contain the mean wind speed (UW) and significant wave height (HS) data,
among others, for every 3 h starting from 1 January 1992 to 31 December 2022. The wind
data contain the one-hour mean wind speed (UW) at 10 m above sea level. The significant
wave height (UW) data were obtained from the average of the highest one-third of the
measured wave heights within a three-hour period.

2.3. Block-Maxima Approach

Figure 2 shows the methodology used in the block-maxima approach. The block-
maxima approach consists of dividing the raw data into block periods, which are nonover-
lapping periods of equal size, and the maximum observation in each block period is
recorded. The block period was taken as one year in this study. Figure 3a,b show a sample
of HS and UW data recorded, respectively, for 1 year, along with the selected annual maxi-
mum values. It can be noted that the maximum UW and HS occurred at around the same
time during the year. The annual maximum UW and Hs were extracted for each calendar
year from the raw data and were fitted to the GEVD and Gumbel distributions to obtain
the corresponding distribution parameters.

Figure 2. Methodology used in the block-maxima approach.

Figure 3. Sample annual maximum selection for the block-maxima approach: (a) HS. (b) UW .
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The cumulative distribution function (CDF) of the GEVD is given by the following [32]:

F(x) = e−(1−k x−µ
σ )1/k

(1)

where k is the shape parameter, µ is the location parameter, and σ is the scale parameter.
The GEVD parameters are estimated using the ML method. The Gumbel distribution is
also known as the type I GEVD. The Gumbel distribution is a special case of the GEVD,
with the shape parameter being zero. The CDF of the Gumbel distribution is given the
following by [33]:

F(x) = e−e−(x−µ)/β
(2)

where µ is the location parameter, and β is the scale parameter. Firstly, the Gumbel
parameters are estimated using the least-squares (LS) method. The least-squares method
is a mathematical regression technique in which the sum of the squares of the difference
between the observed values and the fitted values from the Gumbel distribution are
minimized. The second method which is used to estimate the Gumbel parameters is the
ML method, in which the joint probability density for obtaining the actual data points
from the Gumbel distribution is maximized. The Gumbel LS, Gumbel ML, and GEVD
(ML) methods were implemented using the WAFO toolbox [34] in MATLAB. The Gumbel
parameters were also estimated using the empirical relations obtained by the MOM. This
method involves equating sample moments with theoretical moments. In this method, the
Gumbel parameters are estimated using the mean (Ū) and standard deviation (σ) of the
annual maximum UW using the following relations [35]:

β =

√
6

π
σ (3)

µ = Ū − 0.577β (4)

where µ is the location parameter, and β is the scale parameter. Once the Gumbel parameters
are obtained, the extreme values of UW and wave heights are obtained using the inverse
Gumbel CDF, which is given by the following formula [33]:

xq = µ + β(−ln(−ln(1− p))) (5)

where xq is the required observation, and p is the probability of exceedance. Similarly, the
extreme values are also obtained by using the inverse of the GEVD CDF, which is given
by [32]

xq = µ− σ

k
[(ln p)k − 1] (6)

where xq is the required observation, and p is the probability of exceedance. A verification
study is also performed using probability paper and empirical CDF, which are detailed in
Section 2.5.

2.4. POT Approach

Figure 4 shows the methodology used in the POT approach. The POT approach uses a
threshold to seclude values considered extreme to the rest of the data and creates a model
for the extreme values by modeling the tail of all the values that exceed this threshold.
The optimal threshold is found using the mean residual life method in this study. In this
approach, the mean of the excesses over a range of a range of thresholds is plotted as
shown in Figure 5. The red lines in the figure show the 95% confidence interval values.
The confidence interval denotes the probability that the mean excess will fall within the
specified lower and upper bounds. The optimal threshold is chosen as the maximum of the
region where the mean excess varies linearly with the change in the threshold.
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Figure 4. Methodology used in the peaks over threshold approach.

Figure 5. Sample HS threshold selection using the mean residual life approach.

Once the threshold is obtained, the UW and HS exceeding values are located along
with the corresponding times at which they occurred. Figure 6a,b shows a sample of HS and
UW data recorded for 1 year, along with the selected values. The zoomed-in view shows
the selected values from the first 30 days. The circled area shows two peaks exceeding the
threshold within a time window of 4 days. In such cases, only the highest peak within the
time window is chosen, and other peaks are neglected. This declustering process is carried
out in order to avoid bias in the selected data points [36]. The exceeding values are then fit
to the generalized Pareto distribution (GPD). The CDF of the GPD is given by [37]

F(x) = 1− (1− kx/σ)1/k (7)

where k is the shape parameter, and σ is the scale parameter. The ML method was used for
the GPD parameter estimation. The extreme values are then found by using the inverse of
GPD CDF, which is given by [37]

xq =
−σ

k
[(1− p)k − 1] (8)

where xq is the required observation, and p is the probability of exceedance.
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Figure 6. Sample annual maximum selection for the peaks over threshold approach: (a) HS. (b) UW .

2.5. Verification

The verification study for the block-maxima approach is aimed at ensuring that the
yearly maximum values are true to the Gumbel distribution. The goodness of fit of the
data to the Gumbel distribution was verified by performing a Pearson’s χ2 test. The χ2 test
statistic is given by the following equation [38]:

χ2 =
N

∑
i=1

(Oi − Ei)
2

Ei
(9)

where N is the number of samples, Oi is the observed value, and Ei is the expected
value. The χ2 value is compared with the χ2

critical value, which is obtained from the
standard χ2 curve. The χ2 curve is dependent on the significance level, which is assumed
to 0.05 and the number of degrees of freedom, which are determined using the expression
n− 1−m. The number of bins is denoted by n, while m refers to the number of distribution
parameters, which is 2 for the Gumbel distribution. The null hypothesis that the observed
data follows the Gumbel distribution cannot be rejected when χ2 is less than χ2

critical .
A visual comparison of the fitted Gumbel CDF with an empirical CDF was also performed
as an additional check for the goodness of fit. The empirical CDF is defined as [39]

F n(x) =
#(xj <= x)

n
(10)

where xn is a random sample, which is drawn from a distribution with a CDF of F.
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Similarly, the UW and HS excess values were fit to the GPD distribution, and the
goodness of fit to the GPD was verified using the Anderson–Darling test. The Anderson–
Darling test statistic is obtained using the folloeing expression [40]:

A2
n = n

∫ ∞

−∞

[F(x)− Fn(x)]2

F(x)[1− F(x)]
dF(x) (11)

where n is the number of samples, F is the CDF of hypothesized GPD, and Fn is the
empirical CDF. This test measures the distance between F and Fn while giving a higher
weight to the tail of the distribution [41]. A smaller value of the statistic means that the
data follows the GPD closely. In this study, the significance level was chosen as 0.05, and
the p value must be less than this value to fulfil the criteria for goodness of fit. The fitted
GPD CDF was also compared with the empirical CDF for additional verification.

2.6. Assumptions and Limitations

The Waveclimate dataset contains spectral smoothing and variance underestimation,
which are a characteristic features of numerical models for wind and wave data [31].
The Waveclimate dataset does not account for hurricanes or tropical storms, which are
known to occur at some of the sites selected in this study. These effects must be accounted
for separately using storm tracks and intensity. The 1-hour mean wind speed was used in
this study instead of the IEC standard of the 10-minute mean wind speed, which leads to
an underestimation of the maximum wind speed [2]. The extreme wind speeds provided
in this study were at a reference height of 10 m above the sea level. Therefore, appropriate
wind shear must be taken into account in order to find the wind speeds at the hub heights
of OWTs. This study does not consider the statistical implications of comparison between a
two-parameter distribution and a three-parameter distribution. The relative error between
the different methods used in this study has not been considered. The goodness-of-fit tests
used in study do not necessarily confirm to the selected data following the hypothesized
distribution. They simply imply that the hypothesis cannot be rejected at the chosen
significance level. The suitability of the methods used and associated error involved must
be evaluated separately for each site. In addition, the extreme values provided in this study
have not been validated by buoy measurements. The methods used in this study are not
exhaustive. Other distributions, as well as parameter estimation methods, are available for
the estimation of extreme values.

3. Results and Discussion

The results section consists of the following parts: (1) the block-maxima approach,
(2) the POT approach, (3) verification, and (4) the comparison of extreme values. Firstly,
the annual maximum values are presented, which are then fitted to the GEV and Gumbel
distributions. Next, the number of data points available for different thresholds is shown
for the POT approach. The sensitivity of the extreme UW and HS to the chosen threshold is
then demonstrated. In the verification study, the GPD CDF and Gumbel CDF are compared
to the empirical CDF. Finally, the comparison of the extreme values obtained from both
approaches is discussed for several new offshore lease areas.

3.1. Block-Maxima Approach

The annual maximum UW and HS were extracted from the raw data in order to be
used in the block-maxima approach. Figure 7 shows the annual maximum UW at 10 m
above the sea level for different lease areas around the world.
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Figure 7. Annual maximum UW at 10 m above the sea level in different lease areas around the
world: (a) LA1–5. (b) LA6–10. (c) LA11–15. (d) LA16–20. (e) LA21–25. (f) LA26–30. (g) LA31–35.
(h) LA36–40.

It is worth remembering that that the maximum UW will be higher at the hub heights,
and appropriate wind shear must be considered. It is noted that for LA10 (Allan array,
Canada), the research has recorded the highest mean annual maximum UW of 25.2 m/s.
However, the outright highest UW recorded between 1992 and 2022 is 36.4 m/s, which
occurred in LA30 (Huaneng Hainan Wenchang I, China) in the year 2014. LA3 (Ocean
wind, USA) has recorded the highest wind speed off the East Coast of USA, with 30.4 m/s
in the year 2012. UW values greater than 33 m/s are classified as hurricanes [42]. From
Figure 7c (South America) and Figure 7h (Australia), it is visible that there was only one
hurricane level wind speed recorded in the Southern hemisphere. Hurricanes are much
more common in the Northern hemisphere than the Southern hemisphere due to low wind
shear and warmer oceans [43]. Figure 8 shows the annual maximum HS values for different
lease areas around the world.
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Figure 8. Annual maximum HS in different lease areas around the world: (a) LA1–5. (b) LA6–10.
(c) LA11–15. (d) LA16–20. (e) LA21–25. (f) LA26–30. (g) LA31–35. (h) LA36–40.

The highest mean annual maximum HS of 9.85 m and the outright highest HS of 14.2 m
were recorded in LA25 (GoliatVIND, Norway). The North Sea off the coast of Norway is
known for its large waves and rough weather in general [44]. LA16 (Projeto Ubu, Brazil)
had the least mean annual maximum HS of 2.27 m.

The annual maximum UW and HS were fitted to the Gumbel distribution for the
block-maxima approach. The χ2 test was performed for all of the annual maximum values
selected from each site. The value of χ2 was found to be less than the χ2

critical in all the cases.
Hence, the null hypothesis that the annual maximum values follow the Gumbel distribution
cannot be rejected at the chosen significance level of 5%. Figure 9a,b show the comparison
between the Gumbel and empirical CDF for the LA1 UW and HS, respectively. It is visible
that both the annual maximum UW and HS followed the Gumbel distribution. Figure 10a,b
show the annual maximum UW and HS, respectively, fitted to the Gumbel probability paper.
The data aligns closely with the straight line, thus indicating a good fit with the Gumbel
distribution. The Gumbel distribution parameters were then obtained for each lease area
for both the UW and HS, which are shown in Table 2 and Table 3, respectively.
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Figure 9. Comparison of Gumbel and empirical CDF for LA1: (a) UW . (b) HS.

Figure 10. Gumbel probability paper for LA1: (a) UW . (b) HS.

Table 2. Parameters obtained for UW for each lease area.

Lease Area #
Gumbel LS Gumbel ML Gumbel MOM GEVD POT

µ β µ β µ β k σ µ k σ

1 22.97 1.98 22.98 1.89 23.03 1.74 −0.16 1.98 23.14 0.21 3.31
2 22.24 2.19 22.27 2.04 22.31 1.92 −0.11 2.12 22.39 0.15 3.13
3 21.26 2.32 21.34 2.03 21.34 2.03 −0.02 2.04 21.36 0.05 2.73
4 20.90 2.06 20.93 1.96 20.97 1.79 −0.15 2.02 21.08 0.13 2.81
5 20.01 2.40 20.12 2.02 20.10 2.09 0.02 2.01 20.10 0.12 2.90
6 20.82 3.42 20.87 3.06 20.92 3.00 −0.02 3.08 20.90 0.02 2.70
7 19.28 2.11 19.28 2.14 19.37 1.82 −0.36 2.33 19.69 0.16 2.99
8 21.49 2.03 21.50 2.05 21.56 1.78 −0.19 2.10 21.71 0.23 3.62
9 18.12 2.06 18.19 1.77 18.19 1.81 0.03 1.74 18.16 0.001 1.73

10 24.28 1.75 24.30 1.69 24.34 1.52 −0.14 0.65 24.43 0.22 3.11
11 22.34 2.55 22.48 2.07 22.43 2.21 0.06 2.02 22.42 0.12 3.12
12 21.16 2.15 21.20 1.90 21.23 1.89 0.020 1.88 21.18 0.14 2.94
13 13.97 0.92 13.96 0.98 14.01 0.78 −0.41 1.04 14.18 0.17 1.15
14 17.55 1.47 17.60 1.29 17.60 1.28 −0.02 1.30 17.61 0.12 1.62
15 14.46 1.23 14.49 1.08 14.52 1.05 −0.05 1.11 14.52 0.24 1.50
16 14.83 1.86 14.86 1.63 14.89 1.61 0.08 1.56 14.79 0.14 1.68
17 21.74 1.62 21.81 1.30 21.79 1.41 0.12 1.24 21.73 0.20 2.70
18 21.48 2.29 21.55 1.96 21.55 2.01 0.06 1.90 21.49 0.15 3.20
19 22.13 1.90 22.21 1.63 22.20 1.66 −0.005 1.64 22.22 0.16 2.90
20 19.18 1.54 19.23 1.37 19.24 1.35 −0.03 1.38 19.25 0.20 2.62
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Table 2. Cont.

Lease Area #
Gumbel LS Gumbel ML Gumbel MOM GEVD POT

µ β µ β µ β k σ µ k σ

21 20.33 1.84 20.43 1.59 20.42 1.56 −0.04 1.61 20.47 0.17 2.90
22 22.18 2.40 22.25 2.03 22.25 2.10 0.08 1.97 22.17 0.09 2.76
23 21.42 2.24 21.46 2.30 21.51 1.93 −0.16 2.29 21.66 0.20 3.89
24 19.93 1.52 19.92 1.57 19.99 1.32 −0.26 1.63 20.15 0.25 2.67
25 22.20 2.42 22.33 1.93 22.28 2.10 0.12 1.83 22.20 0.14 2.92
26 18.46 2.10 18.46 2.03 18.54 1.83 −0.29 2.25 18.78 0.07 2.49
27 21.98 2.05 21.98 1.97 22.06 1.76 −0.23 2.12 22.24 0.19 2.45
28 14.54 1.38 14.70 0.98 14.64 1.12 0.08 0.95 14.66 −0.06 0.84
29 21.54 3.16 21.61 2.86 21.64 2.77 −0.05 2.91 21.69 0.11 2.87
30 17.83 4.44 18.10 3.46 17.99 3.85 0.15 3.23 17.83 0.03 3.04
31 15.98 2.78 16.03 2.43 16.08 2.42 0.05 2.37 15.97 −0.01 1.95
32 20.68 4.08 20.87 3.32 20.82 3.55 0.12 3.15 20.66 0.02 2.57
33 18.17 3.22 18.51 2.16 18.33 2.72 0.28 1.86 18.20 0.02 2.08
34 18.89 2.89 18.95 2.53 18.99 2.53 0.02 2.51 18.92 0.04 2.65
35 15.62 3.66 16.33 1.97 15.97 2.80 0.16 1.82 16.15 0.03 2.16
36 20.13 1.44 20.12 1.47 20.19 1.23 −0.30 1.56 20.36 0.33 3.38
37 19.11 1.90 19.11 1.90 19.18 1.65 −0.20 1.98 19.32 0.16 2.09
38 18.25 1.62 18.23 1.83 18.33 1.37 −0.44 1.84 18.64 0.28 2.42
39 16.89 1.75 16.87 2.11 17.00 1.45 −0.40 1.95 17.30 0.25 2.36
40 22.04 1.64 22.03 1.64 22.10 1.42 −0.30 1.78 22.31 0.16 2.36

Table 3. Parameters obtained for HS for each lease area.

Lease Area #
Gumbel LS Gumbel ML Gumbel MOM GEVD POT

µ β µ β µ β k σ µ k σ

1 5.09 0.67 5.11 0.57 5.11 0.58 0.05 0.56 5.10 0.13 1.22
2 5.76 1.22 5.84 0.94 5.81 1.05 0.11 0.90 5.79 0.09 1.19
3 3.68 0.58 3.68 0.54 3.70 0.51 −0.12 0.56 3.72 0.08 0.74
4 5.43 1.01 5.44 1.01 5.47 0.87 −0.22 1.05 5.56 0.07 1.13
5 3.39 0.79 3.45 0.58 3.43 0.68 0.16 0.54 3.41 0.05 0.71
6 4.96 1.10 4.99 0.91 5.00 0.94 0.20 0.82 4.90 0.02 0.89
7 3.98 0.79 4.04 0.63 4.02 0.67 0.09 0.63 4.04 0.07 0.80
8 7.18 0.78 7.17 0.83 7.20 0.67 −0.24 0.83 7.28 0.22 1.48
9 4.74 0.92 4.75 0.85 4.79 0.78 −0.36 1.00 4.93 0.03 0.83

10 6.35 0.69 6.37 0.64 6.38 0.60 −0.08 0.65 6.40 0.18 1.21
11 4.45 0.73 4.46 0.73 4.48 0.64 −0.17 0.75 4.52 0.10 0.88
12 6.80 0.71 6.83 0.57 6.82 0.62 0.08 0.56 6.81 0.15 1.21
13 3.68 0.40 3.68 0.38 3.69 0.35 −0.14 0.40 3.71 0.11 0.47
14 5.10 0.59 5.12 0.51 5.12 0.52 0.02 0.51 5.11 0.13 0.79
15 2.84 0.26 2.85 0.24 2.85 0.23 −0.05 0.24 2.85 0.13 0.30
16 2.16 0.22 2.17 0.18 2.17 0.19 0.09 0.17 2.16 0.15 0.27
17 7.56 1.06 7.60 0.93 7.60 0.91 −0.04 0.94 7.62 0.17 1.71
18 5.43 1.03 5.42 1.04 5.47 0.88 −0.36 1.13 5.63 0.06 1.13
19 6.40 0.71 6.41 0.64 6.42 0.62 −0.07 0.66 6.43 0.23 1.33
20 4.49 0.53 4.50 0.44 4.50 0.46 0.07 0.43 4.49 0.15 0.88
21 4.40 0.67 4.43 0.55 4.42 0.58 0.05 0.54 4.42 0.12 0.87
22 6.15 0.87 6.15 0.88 6.20 0.73 −0.59 1.04 6.43 0.13 1.31
23 4.69 0.80 4.69 0.82 4.73 0.68 −0.32 0.87 4.84 0.09 1.00
24 4.32 0.56 4.33 0.53 4.34 0.48 −0.15 0.55 4.38 0.20 0.90
25 9.02 1.56 9.03 1.51 9.07 1.37 −0.16 1.58 9.16 0.10 1.82
26 4.00 0.67 4.00 0.64 4.03 0.58 −0.23 0.69 4.09 0.10 0.90
27 7.49 0.93 7.51 0.84 7.52 0.80 −0.07 0.86 7.54 0.18 1.41
28 2.60 0.47 2.66 0.29 2.63 0.38 0.14 0.27 2.64 0.06 0.36
29 4.01 0.84 4.05 0.71 4.05 0.72 −0.003 0.72 4.05 0.09 0.72
30 4.49 1.01 4.52 0.87 4.53 0.89 0.11 0.83 4.47 −0.001 0.70
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Table 3. Cont.

Lease Area #
Gumbel LS Gumbel ML Gumbel MOM GEVD POT

µ β µ β µ β k σ µ k σ

31 2.08 0.45 2.09 0.41 2.10 0.39 −0.09 0.42 2.11 0.01 0.32
32 6.14 1.77 6.25 1.44 6.21 1.51 0.01 1.44 6.24 −0.04 0.86
33 3.19 0.59 3.24 0.42 3.21 0.51 0.24 0.37 3.19 0.07 0.55
34 4.00 0.82 4.02 0.75 4.03 0.71 −0.09 0.77 4.06 0.06 0.79
35 2.40 0.58 2.46 0.42 2.43 0.49 0.15 0.39 2.42 0.07 0.55
36 4.70 0.61 4.69 0.67 4.73 0.52 −0.35 0.68 4.82 0.22 1.05
37 6.73 0.69 6.74 0.65 6.75 0.60 −0.12 0.67 6.78 0.14 1.12
38 7.52 0.80 7.51 0.84 7.56 0.68 −0.31 0.88 7.66 0.20 1.34
39 5.28 0.54 5.28 0.52 5.30 0.47 −0.17 0.54 5.33 0.19 0.86
40 6.54 0.72 6.55 0.69 6.57 0.63 −0.14 0.71 6.60 0.17 1.19

3.2. POT Approach

The peaks over the threshold approach involve various parameters such as the min-
imum number of extremes, the minimum time window between the extremes, and the
block period. The minimum number of extremes was set to 10, as fewer points would lead
to a bad fit to the GPD [18]. The minimum time window between extremes is required
in order to decluster the extreme values and is usually in the range of 2 to 14 days [18].
The minimum time window between extremes was set to 4 days, as it provided a tighter
confidence interval compared to 8 or 12 days [19]. The block period was set to 1 year
(8760 h). Figure 11a shows the HS threshold selection using the mean residual life method
for LA1. An HS threshold of 4.31 m was chosen for LA1. Figure 11c shows the UW threshold
selection using the mean residual life method for LA1. A UW threshold of 20.91 m/s was
chosen for LA1. Figure 11b,d show a sample of HS and UW data, respectively, for 30 days
from LA1, with one selected observation which exceeded the chosen threshold. It should
be kept in mind that one value of UW or HS which is exceeding the threshold in one month
will lead to roughly 372 data points over a period of 31 years. The data points exceeding
higher thresholds are known to have a better fit to the GPD than those exceeding lower
thresholds. Hence, it is recommended to choose a threshold that is as high as possible while
ensuring that a minimum number of data points is available for analysis [19].

Similarly, Figure 12a shows the HS threshold selection using the mean residual life
method for LA22. An HS threshold of 4.60 m was chosen for LA22. Figure 12c shows the
UW threshold selection using the mean residual life method for LA22. A UW threshold of
17.95 m/s was chosen for LA1. Figure 12b,d show a sample of HS and UW data, respectively,
for 30 days from LA22, with one selected observation that exceeded the chosen threshold.

A sensitivity study was performed in order to study the effect of the selected threshold
and time window on the extreme values obtained from the POT approach. Figure 13a,b
show the effect of the threshold on the number of data points for UW for ten selected
sites. It should be noted that UW thresholds ranging between 14 to 24 m/s will provide a
sufficient number of data points for all of the sites. It is desirable to select the threshold in
such a way that the number of data points extracted is close to the minimum requirement
of 10. Figure 13c,d show the effect of the threshold on the number of data points for HS for
ten selected sites. The HS threshold is expected to lie between between 2 to 5 m based on
the number of data points available. The requirement set for a minimum number of data
points ensures that thresholds providing too few points are not considered for analysis.



Energies 2023, 16, 6935 16 of 26

Figure 11. Threshold selection for LA1: (a) HS threshold selection using mean residual life method.
(b) Sample data reduction using the selected threshold for UW . (c) Wind speed threshold selection
using mean residual life method. (d) Sample data reduction using the selected threshold for UW .

Figure 14a,b show the effects of the threshold and the time window between extremes
on the 50-year Hs and the 50-year wind speed for LA1, respectively. In both the cases, there
is a slight variation for smaller values of the threshold. However, above a certain limit, the
time window between extremes did not have any effect on the predicted extreme values of
HS for LA1. Figure 14c,d show the effects of the threshold and the time window between
extremes on the 50-year Hs and 50-year wind speed for LA22, respectively. There was no
variation in the results for different time windows for the selected threshold in all of the
cases. The Anderson–Darling test was performed for all of the excesses selected from each
site. The p value was found was found to be less than 0.05 in all the cases. Hence, the null
hypothesis that the excesses follow the GPD cannot be rejected at the chosen significance
level of 5%. Figure 15a,b show the comparison of the UW and HS excesses, respectively,
which are fitted to the GPD CDF and compared with the empirical CDF for LA1. It is clearly
evident that the data closely followed the GPD distribution. The same trend was observed
for all of the sites. Thus, the data points extracted were fit for the POT analysis. The GPD
parameters were then obtained for each lease area for UW and HS, respectively.
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Figure 12. Threshold selection for LA22: (a) HS threshold selection using mean residual life method.
(b) Sample data reduction using the selected threshold for HS. (c) UW threshold selection using mean
residual life method. (d) Sample data reduction using the selected threshold for UW .

Figure 13. Effect of threshold on the number of data points for (a) UW LA1–20; (b) UW for LA21–40;
(c) HS for LA1–20; and (d) HS for LA21–40.
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Figure 14. Sensitivity analysis: Effects of threshold and time window on (a) 50-year HS for LA1;
(b) 50-year wind speed for LA1; (c) 50-year HS for LA22; and (d) 50-year wind speed for LA22.

Figure 15. Comparison of GPD and empirical CDF for LA1: (a) UW . (b) HS.
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3.3. Comparison of Extreme Values from the Block-Maxima and POT Approaches

The extreme values were obtained for UW and HS using a total of five different meth-
ods. Table 2 shows the parameters obtained for UW for all of the lease areas. The location
parameter, µ, for the POT approach was found to be zero for all of the sites and is not
considered in the table. It was observed that several sites had a location parameter in the
range of 20–23. However, LA32 (Minyang Jieyang Qianzhan III, China) had the highest
scale parameter from all of the methods. This indicates that LA32 has the highest number
of occurrences of extreme UW . Table 3 shows the parameters obtained for HS for all of the
lease areas. It is observed that the location and scale parameters of LA25 (GoliatVIND,
Norway) were comparatively very large for all of the methods. This indicates that this site
possesses the highest average wave height, as well as a large number of occurrences of
extreme wave heights.

Figure 16a,b show the comparison of 50-year Hs and 500-year Hs, respectively, ob-
tained from the block-maxima and POT approaches for LA1. It is observed that a threshold
of around of 2 m for the HS produced extreme values, which are in the same range as the
block-maxima methods. However, it is important to note that such a low threshold was
not optimal according to the mean residual life method. Figure 16c,d show the comparison
of 50-year UW and 500-year UW , respectively, obtained from the block-maxima and POT
approaches for LA1. It is observed that the POT approach largely provided low estimates
for the 50 and 500-year extreme UW values, which has also been observed in previous
studies [20]. Figure 17a,b show the comparison of 50-year Hs and 500-year Hs, respectively,
obtained from the block-maxima and POT approaches for LA22. It is once again noted that
the POT approach provided slightly lower estimates for extreme Hs values. Figure 17c,d
show the comparison of 50-year UW and 500-year UW , respectively, obtained from the
block-maxima and POT approaches for LA22. For LA22, the POT approach provided
very high estimates for higher thresholds. However, it is worth remembering that when
very large threshold values are selected, there might not be enough data points exceeding
the threshold. This would result in a bad fit to the GPD distribution and ultimately to
erroneous results. For the selected threshold, the estimates from the POT approach were
very close to the lower bound of the estimates from the block-maxima methods.

Figure 18a,b show the comparison of the hazard curves obtained from different meth-
ods for the UW and HS, respectively, for LA1 (Maine research array, USA). It is observed
that the results from the POT approach showed very little variation with increasing return
periods. Figure 18c,d show the comparison of the hazard curves obtained from different
methods for the UW and HS, respectively, for LA22 (Vigso bay, Denmark). The shape of
the hazard curve was dependent on the distribution parameters obtained. It is observed
that the wave height hazard curve obtained using the GEVD method for LA22 showed
less variation (i.e., it was flat) with the return periods compared to other methods. The UW
hazard curve obtained using the GEVD method for LA22 was exceeding the Gumbel LS for
large return periods. Figure 19a,b show the comparison of hazard curves obtained from
different methods for the UW and HS, respectively, for LA25. It is evident that LA25 (Goli-
atVIND, Norway) is prone extremely large wave heights. This site also has a considerably
high extreme UW . Figure 19c,d show the comparison of the hazard curves obtained from
different methods for the UW and HS respectively for LA32 (Minyang Jieyang Qianzhan III,
China). The 500-year UW at 10 m above sea level was found to be close to 50 m/s using the
GEVD method for LA32. Both the GEVD method and the Gumbel LS method provided
conservatively high estimates for all of the four sites.
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Figure 16. Comparison between block-maxima and POT approaches for LA1: (a) 50-year HS.
(b) 500-year HS. (c) 50-year UW . (d) 500-year UW .

Figure 17. Comparison between block-maxima and POT approaches for LA22: (a) 50-year UW .
(b) 500-year UW . (c) 50-year HS. (d) 500-year HS.
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Figure 18. Comparison of hazard curves: (a) LA1 Extreme UW . (b) LA1 Extreme HS. (c) LA22
Extreme UW . (d) LA22 Extreme HS.

Figure 19. Comparison of hazard curves: (a) LA25 Extreme UW . (b) LA25 Extreme HS. (c) LA32
Extreme UW . (d) LA32 Extreme HS.
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Figure 20a,b show the comparison of the 50- and 500-year UW values, respectively.
The sites are demarcated based on the continent in which they are located. It is observed
that Asian sites, especially those in China, were more prone to the highest UW . For
certain sites such as LA32 (Minyang Jieyang Qianzhan III, China), the upper bounds of
the 50- and 500-year UW values were obtained from different methods. They were once
again dependent on the distribution parameters, as seen in the hazard curve of the same
site earlier. LA32 also had the highest 50- and 500-year UW values among all the sites.
Figure 21a,b show the comparison of 50- and 500-year HS values, respectively. It is noted
that the extreme Hs was comparatively lower in South American and Asian sites. LA16
(Projeto Ubu) had the lowest 50- and 500-year Hs values, and LA25 (GoliatVIND, Norway)
had the highest 50- and 500-year Hs values, which is consistent with the findings in the
annual maximum values. LA31 (Huaneng Daishan I, China) has a relative high wind
potential, but low wave heights are prevailing in this area. Once again, the Gumbel LS and
the GEVD methods provided the highest estimates for the extreme values for all of the sites.
The results from the POT approach were less than the lower bound of the block-maxima
results by around 3% on average. However, there were some sites where the results from
the POT were significantly lower, which is due to the selected threshold.

Figure 20. Comparison of extreme UW values obtained from different statistical methods: (a) 50-year
UW . (b) 500-year UW .
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Figure 21. Comparison of extreme HS values obtained from different statistical methods: (a) 50-year
HS. (b) 500-year HS.

4. Conclusions

A comparison of five different statistical techniques for estimating the extreme UW
and wave heights is presented in this paper. The Gumbel LS, Gumbel ML, Gumbel MOM,
and the GEVD methods employed the block-maxima approach to estimate the extreme
values. Additionally, the extreme values were also estimated using the peaks-over-threshold
method. Verification studies for the block-maxima approach were carried out by fitting
the annual maximum values to the Gumbel probability paper, as well as by comparing
them with the empirical CDF. Verification for the POT approach was done by fitting the
excesses to the GPD distribution. The visual goodness of fit was found to be satisfactory
in all the cases. All of the distribution parameters obtained for the forty sites have been
presented. The extreme UW and HS values for different return periods have been presented.
The results obtained from this study will aid in the planning, design, and risk assessment of
new offshore wind farms around the world. The following conclusions were drawn from
the results:

• LA30 (Huaneng Hainan Wenchang I, China) recorded the outright highest annual
maximum UW of 36.2 m/s, while LA10 (Allan array, Canada) recorded the highest
mean annual maximum UW of 25.2 m/s.

• LA25 (GoliatVIND, Norway) recorded the highest mean annual maximum HS of
9.85 m, as well as the outright highest annual maximum HS of 14.2 m.

• The GPD CDF and Gumbel CDF showed good agreement with the empirical CDF for
both the UW and HS values for all of the sites.

• The results from the POT approach varied significantly based on the chosen threshold.
• For smaller thresholds, the results from the POT approach were sensitive to the time

window chosen. However, the time window did not have an impact on the results for
larger thresholds, which were generally obtained from the mean residual life method.
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• The POT approach is only effective for a small range of thresholds. Smaller thresholds
lead to a poor fit to the GPD, while larger thresholds may not provide sufficient
data points.

• The 50-year UW at 10 m above the sea level ranged between 16.5 m/s and 36.5 m/s.
The 500-year UW ranged from 18.1 m/s to 49.5 m/s.

• The 50-year HS lay between 2.8 m and 15.1 m. The 500-year HS varied from 3.2 m to
18.7 m.

• It is found that the block-maxima approach using the Gumbel LS and GEV distribu-
tions provides upper bound estimates for the 50- and 500-year extreme values for both
the UW and HS.

• The estimates from the POT approach were generally lower by around 3% on average,
although there were some outliers.

• European sites are more prone to extreme HS values in general. LA25 (GoliatVIND,
Norway) produced the highest 50- and 500-year HS values of 15.1 m (Gumbel LS) and
18.7 m (Gumbel LS), respectively.

• Sites along the east coast of China have high estimates of extreme UW values. LA32
(Minyang Jieyang Qianzhan III, China) was prone to the highest 50- and 500-year UW
values of 36.5 m/s (Gumbel LS) and 49.5 m/s (GEVD), respectively.

• The distribution parameters were provided for all of the methods, which would be
helpful for extrapolating the extreme values to longer return periods.

• The mean residual life method used for estimating the optimal threshold has yielded results
that lie close to or within the bounds of the estimates from the block-maxima approach.

Future Work

Since the extreme values obtained using the POT approach were highly sensitive to
the chosen threshold, it is worth investigating the dispersion index method for finding
the optimal threshold. A comparison between the results from the mean residual life
method and the dispersion index method would add more insights to the POT approach.
The extreme values obtained using the Waveclimate and ERA5 datasets can be compared
for verification. It is also recommended to include other statistical methods such as the
ACER method and other parameter estimation methods such as the methods of L-moments
in these comparative studies. In addition, the statistical methods used in this study need
to be investigated more rigorously in order to find the most suitable distribution and
parameter estimation method for the prediction of extreme wind and waves. Novel
statistical methods can be developed to provide more accurate extreme values. New
metrics can also be developed to quantify the error and compare each of the methods.
The extreme wind and wave predictions must be validated with buoy measurements
for at least a few sites. It would also be interesting to study the response of the OWTs
subjected to extreme conditions obtained through different statistical methods. The effect of
hurricanes on offshore wind turbines is an area of particular interest, especially in countries
such as the USA. Such studies will help in identifying the bottlenecks associated with
extreme environmental conditions. More offshore wind lease areas can also be included in
future studies.
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