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Nerve cells in a dog’s olfactory bulb (detail), from Canullo Golgt’s Sulla fina anatonua degli organr
centrall del Sistema nervosa (1885) - Source: The Public Domain Review

“We cannot reject, a priori, the possibility that the mextricable forest of the brain, the last branches and
leaves of 'which we imagine ourselves to have discerned, does not still possess some enigmatic system ol
filaments binding the neuronal whole, as creepers attach the trees of tropical forests. This is an 1dea which,
appearing to us with the prestige of unity and of simplicity, has exerted and still exerts, a powerful attraction
for even the most serene of spirits. True, it would be very convenient and very economucal ... if all the
nerve centers were made up of a continuous intermediary network [...J. Unlortunately, nature seems
unaware of our mtellectual need for convenience and unity, and very ofien takes delight in complication

and diversity”.

Santiago Ramon y Cajal, Nobel Lecture - December 12, 1906.






Norsk Sammendrag: Motiv av Orden

Den normale funksjonen av nevrale nettverk avhenger av den koordinerte interaksjonen mellom ulike
elementer imnenfor informasjonsbehandlingshierarkiet. Disse elementene spenner fra enkeltceller pa
mikroniva, til nevrale ansamlinger pa mesoniva og til hele nettverk pa makroniva. Selv om mye fortsatt er
usikkert om hvordan grupper av celler 1 hjernen organiserer seg 1 funksjonelle hierarkier og hvordan
mteraksjoner mellom ulike kretsnivier stotter hjernefunksjon, gir siste fremskritt innen metodikk og
modelleringsteknikker lovende muligheter for & utforske disse prosessene 1 mer detalj. I dette doktorgrads
prosjektet brukte jeg en tverrfaglig tilnserming for & fa en mer omfattende forstaelse av disse prosessene;
avanserte modellering av biologiske nevrale nettverk m vitro, analyse av nettverkets selvorganisering og
utvikling av funksjon gjennom teorien om komplekse systemer, samt definering og analyse av strukturelle

og funksjonelle forhold mellom ulike nettverks elementer ved bruk av nettverksteori.

Gjennom hele denne avhandlingen legger jeg vekt pa den uadskillelige sammenhengen mellom struktur,
funksjon og selvorganisering 1 nevrale nettverk, samtidig som jeg fremhever relevansen av en
reduksjonistisk tilngerming for & forbedre vér forstaelse av disse komplekse mikro-mesonivafenomenene.
Ved 4 strippe hjernen ned tl sine bestanddeler, nevroner og nevrale forsamlinger, kan vi fa en dypere
forstaelse av hvordan den fungerer som en helhet. Dette reduksjonistiske perspektivet blir ogsa
komplementert av en mer helhetlig tilneerming som tar hensyn til de fremskapte egenskapene til
komplekse systemer, det vil si at funksjonalitet oppstar fra interaksjoner og kollektive atferder fra de ulike
elementene. Dette betyr at for a virkelig forstd komplekse systemer, ma vi undersgke interaksjonene
mellom elementer pé ulike nivier av nettverksorganiseringen slik at vi kan fi mnsikt 1 hvordan endringer
1 deres interaksjoner kan pavirke den overordnede nettverksfunksjonen. For & gjore dette ble
eksperimentene 1 dette prosjektet utviklet for & pavirke den komplekse nettverksdynamikken pa ulike
nivaer (hemming av synaptisk overfgring pa mikroniva ved bruk av DREADDs, og forstyrrelse av axon
forbindelser mellom nevrale nettverk pd mesonivd ved bruk av mutert tau) for & undersgke det

overordnede nettverksvaret og om responsen kan fremme fremme eller hindre funksjonelle adaptive

prosesser.
Navn kandidat: Janelle Shari Weir

Institutt: Nevromedisin og Bevegelsesvitenskap

Veiledere: Professor Ioanna Sandvig PhD, Professor Axel Sandvig MD, PhD
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Motifs of Order: Emergent Self-organization and Complex Dynamics in
Biological Neural Networks

The normal function of neural networks hinges on the coordinated interaction among various elements
within the information processing hierarchy. These elements range from single cells at the microscale,
neural assemblies at the mesoscale, to entire networks at the macroscale. Though much remains uncertain
about how cell assemblies in the brain self-organize into functional hierarchies and how interactions
between different circuit levels elicit behavior, advances in methodologies and modelling techniques offer
promising avenues for exploring these processes in greater depth. In this PhD research project, I applied
amultidisciplinary approach to obtain a more comprehensive understanding of these processes; modelling
biological neural networks i vitro, analyzing the networks” self-organization and the emergence of
function through complex systems theory, and defining and analyzing the structural and functional

relationships between elements using network theory.

Throughout this thesis, I emphasize the inextricable relationship between structure, function, and self-
organization in neural networks, while highlighting the relevance of a reductionist approach to enhance
our understanding of these complex micro-mesoscale phenomena. By scaling down the brain to its
constituent parts, neurons, and neural assemblies, we can gain a deeper understanding of how it functions.
This reductionist perspective is also complemented by a more holistic one that considers the emergent
properties of complex systems, 1.e., functionality arises from the interactions and collective behaviors of
the different elements. This means that to truly understand complex systems, we need to investigate the
interactions between elements at different levels of network organization so we can gain insight into how
changes in these interactions may affect overall network behavior. To do so, the experiments in this project
were developed to perturb complex network dynamics at different scales (inhibition of synaptic
transmission at the microscale using DREADDs, and disruption of axonal connections at the mesoscale
using mutated tau) to investigate the overall network response and whether the response may be adaptive
or maladaptive. I firmly believe that these studies can provide us with a deeper understanding of the
underlying mechanisms of network response in varying conditions and help us determine whether we can
leverage them to facilitate functional recovery in damaged networks or treat neuropathological conditions.

I hope that this 1s effectively conveyed in this thesis.

Name of candidate: Janelle Shari Weir

Institute: Neuromedicine and Movement Science
Supervisors: Prof. Ioanna Sandvig PhD, Prof., Axel Sandvig MD, PhD
Funding source: Research Council of Norway (RCN) IKT Plus; Self-Organizing Computational

Substrates (SOCRATES) Grant number: 270961
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Preface

The theory of the independent neuron - which Spanish neuroanatomist Santiago Ramon y Cajal deduced
as the building block of the nervous system - challenged the concept of the brain as a continuous nerve
network in the 1890s. In the decades that followed, an explosion of research confirmed an itricate
neuroanatomy, structure, and function derived from the dynamic mteractions of diverse neuron types in
a bottom-up sequence. This evidence has firmly established the brain’s network as an extraordinarily

complex self-organizing system.

Brain network complexity arises from several factors including:

1. Structural complexity - Billions of neurons
and trillions of synapses coordinate to form

highly interconnected networks.

2. Functional complexity - Different regions
of the brain carry out different functions that
are  nterconnected and  functionally

specialized.

3. Temporal complexity - Neural activity is
highly dynamic and changes over time. The
activity that arises 1s also highly unique to the
structural and functional layout of the
network, with various rhythmic patterns

associated with specific cognitive processing.

Coupe de la corne d’Ammon du lapin dgé de 8 jours

4. Neuroplasticity - Neural networks can
adapt and change in response to experience. Figure 1. Tllustration from Santiago Ramon y Cajal's Les
This allows for reorganization of neural nouvelles idées sur la structure du systéme nerveux: chez
connections to modify function in response ~ /homme et chez les vertébrés (1894) Source : The Public

to environmental stimuli. Domain Review.

5. Heterogeneity - Neurons and synapses in the brain are highly diverse in terms of their properties
and function. Each neuron type has several hundred connections, creating local circuits that

connect to larger circuits.

My motivation for undertaking this neuroscientific enquiry was to investigate self-organizing neural
network behavior at the mesoscale neuronal assembly level and understand the interrelationship among
these complex processes in healthy and perturbed conditions. There is still a great deal of uncertainty
surrounding many of these mechanisms, so the best thing we can do is approach them with an open mind,

knowing that the answers may still be light years away.

Janelle Sharit Weir - July 2023 - Trondheim

Vil



Table of Contents

Norsk Sammendrag: Motiv av Orden..... . . . . . . . . il

Motifs of Order: Emergent Self-organization and Complex Dynamics in Biological Neural
Networks... . . . . . . . . . . “ . “ .V

Acknowledgments........ . . . . . . . . . . vi
Preface ...... . . . . . . . . . . . . . vil
List of Papers...... . . . . . . . . . . . . X
List of Figures ..... . . . . . . . . . . . . xi
Abbreviations (i order of appearance)... . . . . . . . . xii
1  Introduction . .- . . . . . . . . ceereenensnenns -1-
1.1 Overview of early brain organization and network formation ..........cecceeevercvervvervnennnen. -1-
1.1.1 Neuroplasticity and self-organization in neural networks .........ccceeeveveneenecnenienene -3-
1.2 Small worlds and r1ch ClUDS.....coviiriiniiiittcecceectce et -7 -
1.2.1 Small-world communication and Information ProCessing .........ceevveerrerrrerrversverssersuens -9-
1.3 Does neural network structure dictate function? .........ceceeeeeveenersersennensensenseennees -12-
1.3.1Excitatory - inhibitory neurons: backbone of neural network function..................... -13-
1.3.2Collective dynamics of E-I interactions shape spontaneous neural activity ............... -14 -
1.3.3Neural network robustness and resilience to damage or perturbation..........c.cco...... -16 -
2. Aims and Objectives..... . . . . . . . . crensenernnes -18-
3. Overview of main methods..... . . . . . . . rrensenessne -19-

3.1 In vitro neural networks as a reductionist model for studying complex and dynamic

DIALIL PIOCESSES. veuvenrerueeniereriensertetentestesstetetessesse et etessessesseestessessessesseentensensessesneensensessesns -19-
3.2 Capturing neural network spontaneous activity using multi-clectrode arrays............ -21 -
3.3 Selective in vitro manipulation using adeno-associated VIFUSES......cuevverrererreereerrennenne -22-
3.3.1AAV2/1 - hM4Di - mCherry - CaMKIIa - DREADDS ....coccovevieirenieinenieieennenes -23-

Vil



3.3.2AAV8 = GFP - 22 - PSOILT AU c.cviiiiiiiiciiiciccns -24 -

4. Synopses of Papers: Methods. . . . . . . . cereeerennnes -25-

Paper I | Selective inhibition of excitatory synaptic transmission alters the emergent bursting

dynamics of In VItro neural EtWOTKS. ....ocververiririieriienieneeeiteesieereeesiessresaessseessessaessseesseennes -25-

Paper II |Selective inhibition of excitatory synaptic transmission alters functional

organization and efficiency in cortical in vitro neural networks. .......cecceceverenenneererenenne -26 -

Paper IIT | Altered structural organization and [unctional connectivity in feedforward neural

networks after iInduced perturbation. ........cceeerirniesiereneninneeeeeeeeeeeeeeeeee e -27 -

5. Synopses of Papers: Results.... . . . . . . . weseesseaanes -28-
Paper I | Selective mhibition of excitatory synaptic transmission alters the emergent bursting
dynamics of In Vitro neural NEtWOTKS. c..c..ceveviireririiiieeneneeteseeeeeeeee et -28 -
Paper II | Selective inhibition of excitatory synaptic transmission alters functional

organization and efficiency in cortical in vitro neural networks. .......cocceeeveverenneienenene -29-

Paper III | Altered structural organization and functional connectivity in feedforward neural

networks after nduced perturbation. c.......coceeceeseereerinrenseeeeeesee e - 30 -
6 Discussion... . . . . . . . . . ceensenernnes -31-
6.1 Emergence of electrophysiological activities in neural networks .........coeeeevervveenuennne. -31-

6.2 Embracing unpredictability: Unraveling non-linear dynamics of neural interactions - 33 -

6.3 All Hands-on Deck! Adaptability and resilience in the face of perturbation ............ -34 -
6.4 Never function Without StrUCIUIE ....cvivviviiiiiniiiiinctcteeereere e - 36 -
Considerations and future directions....... . . . . . . reresreatenes -38-
Conclusion . . . . . . . . . . . reresusatenes -39 -
References: . . . . . . . . . . . e -40 -
PAPERS I-IIL . . . . . . . . . . veeereansaes -58 -

IX



List of Papers

Paper 1

*Wetr, Janelle S., *Christiansen, Nicholas., Sandvig, Axel., Sandvig Ioanna.
(" Shared first authorship)

Selective mhibition of excitatory synaptic transmission alters the emergent bursting dynamics of i1 vitro
neural network.

(Published i Frontiers in Neural Circuits, February 2023, doi: 10.3389/fncir.2023.1020487)

Paper I

Weir, Janelle S., Huse Ramstad, Ola., Sandvig, Axel., Sandvig, Ioanna.

Selective inhibition of excitatory synaptic transmission alters functional organization and efficiency in
cortical neural networks.

(Preprint, BioRxiv, July 2023, doi: https://doi.org/10.1101/2023.07.05.547785)

Paper 111

*Wetr, Janelle S., “IHanssen, Katrine S., Winter-Hjelm, Nicolai., Sandvig, Axel., Sandvig, Ioanna.
(*Shared first authorship)

Altered structural organization and functional connectivity in feedforward neural networks after induced
perturbation.

(Preprint, BioRxiv, September 2023, doti: https://doi.org/10.1101/2023.09.12.557339)




List of Figures

Figure 1: Illustration from Santiago Ramon y Cajal

Figure 2: Development of the human cortex and early neural network formation

Figure 3: Schematic representation of the bottom-up process of self-organization in the brain
Figure 4: Mechanisms of neuroplasticity in neural networks

Figure 5: Structural segregation and functional organization in the brain

Figure 6: Graph theoretical schematic of complex neural network structural and functional
organization

Figure 7: The reciprocity of structure, function, and organization in the brain

Figure 8: Typical experimental procedures imvolved in neuronal culturing

Figure 9: Schematic of MEAs and microfluidics for recording neural network activity

Figure 10: DREADDs in neural networks

Figure 11: Schematic of workflow (Paper I methods)

Figure 12: Schematic of experimental methods (Paper IT methods)

Figure 13: Timeline of experimental process (Paper IIT methods)

Xl



Abbreviations (in order of appearance)

TCA Thalamocortical axon

LGN Lateral geniculate nucleus

LTP Long-term potentiation

LTD Long-term depression

DTI Diffusion tensor imaging

DSI Diftusion spectrum imaging
MRI Magnetic resonance imaging
fMRI Functional magnetic resonance imaging
EEG Electroencephalography

MEG Magnetoencephalography

E-1 Excitatory - Inhibitory

GABA y-Aminobutyric acid

NMDA N-methyl-d-aspartate

GDP Giant depolarizing potentials
IBI Interburst interval

ISI Interspike interval

PSP Postsynaptic potential

AD Alzheimer’s disease

TBI Traumatic brain imjury

SD Spreading depolarization

ESCs Embryonic stem cells

1PSCs Induced pluripotent stem cells
PDLO Poly-dl-ornithine

PLO Poly-l-ornithine

PEI Poly-ethylenimine

ECM Extracellular matrix

MEA Micro-electrode arrays

mMEA Multwell micro electrode arrays
HD CMOS High density complementary metal-oxide semi-conductor
AAV Adeno-associated virus
DREADD Designer Receptors Exclusively Activated by Designer Drugs

poit



GPCR
GIRK
CaMKIIa
CNO
DCZ
GFP
DIV
PBS
STDP
BG
CB

G-protein coupled receptors

G-protein inward rectifying potassium channels
Calcium calmodulin dependent protein kinase II Alpha
Clozapine-N-oxide

Deschloroclozapine

Green fluorescent protein

Days in vitro

Phosphate-buftered saline

Spike-timing dependent plasticity

Basal Ganglia

Cerebellum

X1l



1 Introduction

Can we ever fully unravel the complexities of the human brain? This is one of the prevailing questions in
modern neuroscience, and a recursive problem since the researcher is the brain, studying itself. While
advances in research methodology have allowed us to explore the brain in more depth than ever before,
there 1s still a lot we may unfortunately, never fully understand. Its sheer scale, uniqueness and constantly
cvolving nature make it challenging to establish general principles that fully capture the diverse range of

functionalities that gives rise to intricate human experiences.

To combat the challenge of scale, we can approach the brain from a viewpoint which scales it down to its
basic components i.e., neurons, and elucidate their interactions that create the more complex architectures
of the brain. Appropriately, the key principles of emergence 1.e., that at any level or across levels, the
behavior and function of a system are greater than the sum of its parts (Gazzaniga 2010), can provide an
appropriate theory to describe how the brain and other complex systems operate. The brain evolved from
a natural process of self-assembly, where the behavior of lower-level neural processes influence the
behavior of higher-level units through hierarchical connections between them (Newsome 2009). Thus, to
begin to understand complex behavior of the whole, we must consider its multiscale organization, and
how multiscale interactions contribute to functional output. In the following sections, I will give an
overview of complexity in brain networks from a rudimentary level of cellular organization, to how this

organization ultimately drives complex function and behavior.

1.1 Overview of early brain orgamzation and network formation

In the human brain, dynamic changes take place beginning during the embryonic stage of development,
lasting well into adulthood, and arguably continuing throughout life. By embryonic day 42, neurogenesis
commences, and neuroblasts begin their migration from proliferative regions near the cerebral ventricle
along radial pathways towards the pia (Sidman and Rakic 1973) (Figure 2). As cerebral expansion
continues with cellular proliferation in the ventricular and subventricular zones, newly born neuroblasts
migrate towards the cortical plate and pia along radial processes and the surfaces of earlier arrived neurons
to take their position in the cerebral cortex in an ‘inside-out’ sequence (Angevine and Sidman 1961,
Angevine 1965, Berry and Rogers 1965). In this ‘inside-out’ organization, the deeper layer of the cortex is
composed of older neurons, while younger neurons settle sequentially to make up laminae VI, V, IV, 111
and II. The outermost layer, the marginal zone, goes on to become layer I (Bystron, Blakemore et al.

2008).

With the exception of the striatum granulosum, where development seems to take place in an ‘outside-in’
sequence (Angevine 1965), the rest of the cortex has an ‘inside-out” formation which suggests that the later
neurons must migrate through differentiated neurons that are already elaborating their dendrites and
axons. This reverse order of cell migration is crucial for the attainment of intracortical synaptic

-1-



connections; the axons of migrating immature neurons are directed inwards towards the deep layers
making up the white matter, and make contact with the somata or developing dendritic trees of the cells
that arrived previously forming axo-dendritic connections (Angevine and Sidman 1961, Molliver,

Kostovic” et al. 1973).

-

Formation of the
upper cortical layers/

cortical plate (CP) Pia

NPs from the SVZ . Mz
migrate along RG
processes and
differentiate into
Human embryonic brain development neurons forming the
deep cell layers / A
Subplate neurons [ |
i cP
IPs terminally divides :
into neuro-precursor 'y %
(NPs) and migrate on : . IPs use astrocytic
radial processes out of 1 ; processes for long
the SVZ : distance migration —
A ok : sp
Short distance ‘ H cell
migration of : . migration
intermediate i y ' A
. “ strocytes
progenitors (IPs) : Cell ~ 1z
H migration H
Cell ‘
mlgllauon 7 et svz
-G vz
COL ‘?E. *
Neural epithelial Radial glial Outer radial glial
stem cells (NESCs)  progenitors (RGPCs) progenitors (ORCPC)
Time
( Proliferation & Expansion )
[ Neurogenesis & Migration ]
( Gliogenesis & Maturation )

Postnatal

Figure 2. Development of the human cortex and early neural network formation. The processes involved in the
formation of the brain are diverse, operate on precise spatial scales and may overlap considerably in their timing.
The genetic coding that initiates a developmental process only needs to provide enough information to move the
process along to a point where new cues can specify further steps. Thus, there is a clear hierarchical interaction where
cach level is constrained by the specilications dictated by the level below it (Ackerman 1992). These processes are
ongoing, with each developmental stage characterized by a meticulous process of cellular organization and
relinement. This implies that the brain is also both structurally and functionally dissimilar at different imepoints
throughout life. Nonetheless, a dynamically complex and ordered system emerges from the independent actions of
transcription factors, growth factors, guidance molecules, cellular interactions and perhaps others that are not yet
identified. Any small disruption, defliciency, or perturbation to any of these underlying processes can have adverse
consequences for the entire system. Abbreviations: MZ, Marginal Zone; CP, Cortical Plate; SP, Subplate; 17,

Intermediate Zone; SVZ, Sub-ventricular Zone; VZ, Ventricular Zone. © Janclle S. Weir. Created in Biorender.com



The carlier arrived neurons go on to establish simple connections with each other to create a coarse
scaffolding of a neural network. They also aid in thalamocortical axon (T'CA) pathfinding connectivity and
play an essential role in the formation of the first neural circuits from the thalamus towards the cortical
layer IV (Ohtaka-Maruyama 2020). While most of these early processes including cell division, migration,
differentiation and early network formation are often described as ‘activity-independent’ due to the
absence of neurotransmission, recent research suggests that subplate neurons may be neuronally active in
carly development and send signals to migrating new-born neurons via synapse-like interactions (Ohtaka-
Maruyama, Okamoto et al. 2018). These mteractions cause an increase in intracellular calclum
concentration i new-born neurons as they pass through the subplate layer, and triggers a switch in the
mode of migration from radial neuronal migration into locomotion (Ohtaka-Maruyama 2020). However,
though subplate neurons may exhibit some spontaneous activity in early development to aid in cerebral
organization, the mechanisms of cell migration, neuronal and regional differentiation, axon guidance and
connectivity are chiefly directed by patterns of genetically specified molecular cues, growth and
transcription factors (Goodman and Shatz 1993, Bystron, Blakemore et al. 2008). The discussion of these
factors, pathways and guidance cues 1s beyond the scope of this research however relevant studies and
reviews exist (Goodman and Shatz 1993, Tessier-Lavigne and Goodman 1996, Hirabayashi, Itoh et al.
2004, Plachez and Richards 2005, Wolman, Sittaramane et al. 2008, Munji, Choe et al. 2011, Namba,
Kibe et al. 2014, McCormick and Gupton 2020).

Ultimately, the very early formation of neural networks requires that developing neurons (and axonal
projections) navigate a dynamic microenvironment to make the correct connections at their target regions
while avoiding navigational errors. Prenatal growth enhancing factors promote an overproduction of
neurons and synapses with low precision connections; many of which will be eliminated over time and
thus provide an opportunity to correct any wiring errors (Ackerman 1992). These early connections are
extremely malleable, and are amended by experience-expectant synaptogenesis (Munji, Choe et al. 2011)
and by ongoing spontaneous neuronal activity (Shatz 1990). This makes the early brain network a basic,
rudimentary connected structure with crude cortical maps of the core compartments of the cerebral and
cerebellar cortex on which subsequent experience-driven refinements can be made (Goodman and Shatz

1993).

1.1.1 Neuroplasticity and self-orgamzation in neural networks

After the activity-independent phase of early brain development, the next major stage 1s a dynamic process
of interaction among maturing neurons - the building blocks of the whole system - to form complex self-
guided scaffolds of neural networks. This dynamic process describes the inherent capacity of the system
to self-organize in a bottom-up manner (Karsenti 2008), in which structure and function evolve

concomitantly with an increase in complexity and efficiency (Figure 8). Neuroplasticity mechanisms are



heavily involved in self-organization, and there 1s a very active and ongoing interaction among elements

across multiple organizational scales in the brain, which coordinate to form ordered neural structures.

Brain Organization by scales i Inhibitory N

neuron

Tripartite vl
astrocyte

neuron \

Post synaptic Glial cells
neuron

\
:' @ Microscale Mesoscale E
| — I

Occipital lobe

S~ @ Macroscale .~

Figure 3. Schematic representation of the bottom-up process of self-organization in the brain. (A) Microscale
organization where the synapse serves as a specialized junction for expediting fast point-to-pomt communication
between presynaptic and postsynaptic neurons in intercellular interactions (Siidhof 2018). Astrocytes are also active
partners in the synaptic process and play a crucial role in brain function. (B) Mesoscale organization involves the
mteraction between diverse neuronal assemblies, or cell-type specific architectures with both local and long-range
connections. These mesoscale structures also involve recurring motifs of interconnected neurons with distinct types
of connections between them e.g., feedforward or feedback motifs. (C) Macroscale organization involve whole
cortical areas and associated connections. @ Janelle S. Weir. Created in Biorender.con.

Previous paragraphs have elucidated that prenatal neurogenesis and the formation of a functional brain
foundation are regulated by patterns of genetic expression that dictate everything from mitotic activity to
the differentiation of neurons. Postnatal development, however, is largely dependent on exogeneous
sensory experience to refine neural structures and create those specific patterns of connectivity that
characterize different neural networks in the mature brain. During early developmental progress, there is
a comparatively short period termed the “critical development period” where sensory circuits are
mcredibly sensitive to both positive and negative stimuli (Knudsen 2004). During this period, adequate
stimuli are needed for growing and differentiating various systems, and inadequate stimuli may
permanently alter these structures (Trojan and Pokorny 1999). Interestingly, internally generated
spontancous activity has been shown to drive activity dependent synaptic modelling in some of these
systems well before the onset of sensory responsiveness (Katz and Shatz 1996). For example, evidence
showed that spontaneous electrical activity 1s needed for the refinement of ganglion cell axon connections
within the lateral geniculate nucleus (LGN) before the onset of visual perception (Shatz and Stryker 1988,
Wong, Meister et al. 1993). Conversely, blocking this activity hinders the process of segregating
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retinogeniculate afferents into eye-specific layers (Shatz and Stryker 1988) and may block visual
responsivity. Internally generated spontaneous activity may be critical for some processes, however,
sensory development at critical periods is mostly dictated by sensory input. This has been widely studied
and confirmed in systems for ocular representation in mammals (Hubel, Wiesel et al. 1977, Antonini and
Stryker 1993), filial imprinting in precocial birds (Ramsay and Hess 1954, Bolhuis and Honey 1998) and
song learning in the forebrain of songbirds (Doupe and Solis 1997) among others. Similarly, sensory
deprivation during the development of the circuits responsible for these functions can result in the
withdrawal of synaptic branches and rapid axonal rearrangements (Antonini and Stryker 1993) leading to

potentially adverse behavioral outcomes.

Although stimuli during early development have a umquely potent role in shaping the patterns of
connectivity in neural networks, subsequent experience and learning throughout lifetime cause further
structural and functional changes - within the enduring constraints established by critical period
modifications (Knudsen 2004) - which can reinforce or nullify initial connectivity patterns. This involves
a broad spectrum of changes governed by activity-dependent mechanisms (Figure 4) consistent with the
Hebbian-based model of learning and plasticity (Ilebb 1949, Bliss and Lomo 1973, Turrigiano, Abbott
et al. 1994, Holtmaat and Svoboda 2009, Collingridge, Peineau et al. 2010, Fauth and Tetzlaft 2016,
Jackman and Regehr 2017).

The Hebbian theory posits that repeated and enduring post-synaptic activation by the pre-synaptic neuron
induces Long Term Potentiation (L'TP), thereby strengthening those connections (Hebb 1949, Bliss and
Lomo 1973, Komatsu and Iwakiri 1992). Synaptic connections that are not reinforced will experience
Long Term Depression (TD) and a reduction in their synaptic efficacy (Artola and Singer 1993, Bear
and Malenka 1994, Artola, Hensch et al. 1996, Collingridge, Peineau et al. 2010). These mechanisms
must also be gated to prevent urelevant activity from inducing mappropriate modifications. Thus,
homeostatic plasticity exists as a counterbalance to provide a negative feedback response to sustained
alterations in network activity, and stabilize changes to preserve synaptic strengths and the overall dynamic
range of activity (Turrigiano 1999, Turrigiano 2017, Ma, Turrigiano et al. 2019, Harrell, Pimentel et al.
2021, Kavalali and Monteggia 2023).

In addition, changes in synaptic activity and network function are also driven by activity dependent
morphological modifications of dendritic spines. Strong lines of evidence indicate that learning and novel
sensory experiences induce the rapid formation of new dendritic spines, while also resulting in the pruning
of some existing spines that were formed during early development (Yang, Pan et al. 2009). Despite
ongoing plasticity, new spines formed by novel experiences and those formed during early development
which survived experience-dependent elimination are preserved, and provide an integral and stable

structural basts for lifelong learning and memory retention (Yang, Pan et al. 2009).
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Figure 4. Mechanisms of neuroplasticity in neural networks. (A) Schematic representation ol synaptic plasticity
occurring between the transmitting (pre-synaptic) and receiving (post-synaptic) neuron to induce either the
strengthening (potentiation) or weakening (depression) of synaptic efficacy (indicated by arrows) (Hebb 1949, Bliss
and Lomo 19738, Jackman and Regehr 2017). The efficiency of mformation propagation between connections is also
sell-reinforcing such that more stimulation correlates to more effective information flow, resulting in LTP.
Inadequate stimulation and no self-reinforcement reduce imformation propagation efficiency and result in LTD
(Gilson, Burkitt et al. 2009, Henderson and Gong 2018). Concurrently, as recurrent activity-dependent positive
feedback works to strengthen or weaken connections mn the developing network, network activity is stabilized in a
homeostatic manner to maintain activity within an optimal dynamic range (Bliss and Lomo 1973, Turrigiano and
Nelson 2000). (B) Schematic illustration showing some dendritic changes due to neuroplasticity. Dendritic spines
change dynamically throughout life and are either pruned, stabilized or new spines added (dotted circles) in response
to levels of synaptic activation. While dendritic structures remain stable, the lifetime of spines can vary greatly and
there is a prominent relationship between spine turnover and sensory-dependent synaptic formation and elimination
(Trachtenberg, Chen et al. 2002). The dynamic changes in dendritic spine density, appearance and disappearance
play a significant role in learning and memory formation in neural networks (Holtmaat and Svoboda 2009, Baltaci,
Mogulkoc et al. 2019). (C) Schematic representation showing one axonal mechanism of neuroplasticity and repair.
Collateral sprouting from healthy axons is an important rerouting mechanism to re-establish synaptic communication
with other healthy regions of the network after neuron loss, injury, or lesion (Dancause, Barbay et al. 2005, Gatto
2020). Neuroplastic axonal reorganization alter network damage contribute significantly to the restitution of network
function. Abbreviations: L'TP, Long-Term potentiation, LTD, Long-Term depression. Figure adapted from (Gatto
2020). © Janelle S. Weir. Created in Biorender.con.

‘While the previous paragraphs expounded on neuroplasticity at the microscale between synapses, the
same processes are also continually active at the meso-and macroscale levels as well. The bran 1s
dominated by hierarchical multi-layered sub- and supra-networks distributed within macroscopic regions,
and both Hebbian and homeostatic plasticity are needed to establish and maintain synaptic connections
within and between these layered networks. For many parts of the brain, the emergence of local network
structure depends on correlation-sensitive plasticity mechanisms to stabilize recurrent and reciprocal
connections (Gilson, Burkitt et al. 2009, Singer 2021). For mstance, neighboring cells that are tuned to
respond to similar stimuli and are represented by adjacent neurons are interconnected to form
topographic orilentation maps in the visual cortex (Hubel and Wiesel 1962, von der Malsburg 1973), and
tonotopic maps in the auditory cortex (Jahan, Pan et al. 2015, Jahan, Elliott et al. 2018). These maps or

functional modules are interconnected with each other such that cellular activity promotes robust activity-
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dependent synaptic modifications within and between them. Disrupting synaptic activity during their wiring
can alter their formation (Shatz and Stryker 1988, Ruthazer and Stryker 1996), indicating that activity-
dependent mechanisms are vital for self-organization at the different scales (Erdi and Barna 1984, Kaiser
and Hilgetag 2010). It is also suggested that the modular connectivity and self-organization capacity of
neural networks are ndependent of each other but are mutually reinforcing in a way that ensures that both
structural and functional capacity are developed simultaneously (Okujeni and Fgert 2019, Dresp-Langley
2020). Thus, the more that the network learns, the more active connections will be established, effectively
increasing its learning capabilities as well (Dresp-Langley 2020). These organizational and connectivity
rules are evolutionarily conserved mechanisms that enhance efficiency and effective mformation

processing in neural networks.

1.2 Small worlds and rich clubs

An emerging field of human brain mapping and network neuroscience makes use of complex network
theory to analyze large-scale neurophysiological data to create structural and functional network graphs.
Structural network graphs represent physical anatomical structures and connections and are constructed
from diffusion tensor imaging (D'TT) (van den Heuvel and Sporns 2013, Misic and Sporns 2016), diffusion
spectrum imaging (DSI) (Lohse, Bassett et al. 2014), or conventional magnetic resonance imaging (MRI)
data (Scholtens, Schmidt et al. 2014). Functional network graphs are derived from statistical descriptions
of time series data obtained from functional MRI (fMRI) (Kaiser and Hilgetag 2010, Meunier, Lambiotte
etal. 2010), electroencephalography (EEG) (Li, Li et al. 2023) and magnetoencephalography (MEG) data
(Bullmore and Sporns 2009, Sato, Safar et al. 2023). The results of these high-resolution anatomical maps
show that different brain regions are grouped mto semiautonomous modules that are highly correlated

with a core cortical processing (Figure 5).

These modules interact through dense intra-modular neurite connections and sparse long-distance inter-
modular axonal connections (van den Heuvel and Sporns 2013, Misic and Sporns 2016). Similarly,
network graphs constructed from electrophysiological recordings from neurons in vitro also reveal a
similar topology with distinct modules, dense intra-modular connections, and sparse inter-modular
connections (Bettencourt, Stephens et al. 2007, Downes, Hammond et al. 2012, Poli, Pastore et al. 2015,
Poli, Pastore et al. 2016, Antonello, Varley et al. 2022). The modular organization in networks facilitates
a balance between network structural segregation of specialized processing and functional integration of
rapid and efficient global information transmission (Singer 1986, Watts and Strogatz 1998, Singer 2009,
van den Heuvel and Sporns 2013), which are core features of complex systems with a small-world topology

(Scholtens, Schmidt et al. 2014).
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Figure 5. Structural segregation and functional organization in the brain. The earliest evidence indicating a non-
random structural - functional organization i the brain comes from pioneering work by German anatomist
Korbinian Brodmann, who in 1909 presented maps of cortical areas, showing distinguishable brain
subdivisions based on cytoarchitectonic patterns derived from the original primitive six-layered cytoarchitecture
(Garey 1999). Brodmann’s parcellation of the brain into 52 distinguishable areas based on regional variations and
consistent homologous distribution of cells and complex internal structures (Strotzer 2009), are still widely regarded
more than 100 years later. Fach of these areas is shown to correlate highly with a core cortical processing e.g.
Brodmann’s Areas 3, 1 and 2 (Intermediate, Caudal and Rostral Postcentral Areas) represent the primary
somatosensory projection cortex and are responsible for somatosensory perception (Strotzer 2009) (represented in
the figure as number 6). Since then, modern technology has enabled further parcellation of major brain areas to
include more locally distributed clusters of functionally related cortical regions. Network-based analyses of MRI
brain imaging data reveal dense meshwork of mterconnected neurons that share common inputs and targets (Bassett
and Sporns 2017, Faber, Antoneli et al. 2019) and provide information about the structural organization in local
networks. Furthermore, fMRI is used to estimate functional connectivity between regions by assessing whether the
perceived relationship between areas is statistically related or not, or if there are statistical dependence between them.
Such analyses have concluded a strong correspondence for example, between cognitive function and structural
discreet and functionally related brain modules (Bertolero, Yeo et al. 2015). Abbreviations: MRI, magnetic
resonance imaging, fMRI, functional magnetic resonance imaging. © Janelle S. Weir. Created in Biorender.com.

These network graphs represent simple models of the real underlying connectome where the neural
networks are delineated into a series of measurable nodes (neurons or regions) and connecting edges
(white matter tracts or axons) (Sporns and Honey 2006, Downes, Hammond et al. 2012) (Figure 6).
Though structural connections are highly predictive of functional connections (Bullmore and Sporns
2009), edges in functional networks do not necessarily represent anatomical connectivity, and thus, there
are functional connections between structurally unconnected node pairs (van den Heuvel and Sporns
2013). Of course, there are other important caveats to consider about these graphs. For example, the use

of a single edge to describe an entire axonal pathway may overlook how information is distributed via the
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convergence/divergence of presynaptic axons, as identified, for example, in the vertebrate retina (Gamlin,
Zhang et al. 2020). Notwithstanding, defining nodes and edges in structural and functional networks
enables us to determine dynamics of communication and information transfer, information processing,

and the reciprocity of structure-function relations in neural networks.

1.2.1 Small-world communication and information processing

In previous paragraphs, I stated that neural network topology assumes a hierarchical organization over
multiple spatial scales (Bullmore and Sporns 2009, Poli, Pastore et al. 2016); a hierarchy I have also

illustrated in Figure 6 to convey the interconnected nature between levels.

In small world complex networks, the hierarchical manner in which information flows and is processed is
closely linked to mherent principles that govern the organization of connections. The majority of
connections i the network are short-range edges, which represent the dense connectivity between
neighboring nodes within a module. Nodes that are not otherwise edge-linked to each other are connected
via hubs at higher levels in the hierarchy. For example, provincial hubs have greater intra-module
connections and play a pivotal role in the function realized by its module, while connector hubs will play
a central role i transferring information from its module to the rest of the network via long-range edges
(Bettencourt, Stephens et al. 2007) (Figure 6). Longrange edges preferentially link to hub regions and
greatly reduce pathlengths for faster, more direct global information transfers between modules, though
they are expensive in terms of energy and volume (Bullmore and Sporns 2012). This hierarchical
organization dictates that information propagates in a bottom-up manner through the different processing
stages i.e., nodes = hubs = rich-clubs = rest of network, with each level of the hierarchy providing

responses of increasing complexity.
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Figure 6. Graph theoretical schematic of complex neural network structural and functional organization. The
convergence of neuroscience with the theoretical perspectives of mathematics and computational tools of network
science, has made it possible to generate structural connective maps of brain networks across multiple spatial scales
and 1n parallel, shed new light on neural network dynamics (Sporns, Tononi et al. 2005, Boccaletti, Latora et al.
2006). High clustering of nodes in modules signfy high intra-modular connectivity with relatively sparse connections
with the nodes of other modules. Long range connections are constrained by Euclidean distance and the number of
connections linking two nodes 1s limited by the physical space available to accommodate axons and neurites (Sporns
2013, Bertolero, Yeo et al. 2015, Cohen and D'Esposito 2016). Thus, rapid information transmission between
modules 1s achieved by few long distant connections, or via hubs (as illustrated by the numbered edges (n = 4)
connecting nodes A and B in Modules 3 and 5 respectively). As hubs typically have very high degree 1.c., having
larger than average number of edges than other nodes, they receive information from various parts of the network.
Structural segregation is mediated by modules and provineial hubs; which are high degree nodes primarily connected
to other nodes in the same module (Hagmann, Cammoun et al. 2008, van den Heuvel and Sporns 2011, van den
Heuvel, Kahn et al. 2012, Alstott, Panzarasa et al. 2014, de Lange, Ardesch et al. 2019). Functional integration is
typically mediated by connector hubs and rich clubs (van den Heuvel and Sporns 2011, van den Heuvel, Kahn et al.
2012, Alstott, Panzarasa et al. 2014, de Lange, Ardesch et al. 2019). © Janelle S. Weir. Created in Biorender.com.

The idealized construction I described is biologically adapted for the conservation of energy and the
maximization of efficiency. Anatomically localized and functionally specialized modules conserve space
and biological material by reducing the average length of axonal projections, while functionally integrative
hubs conserve conduction time by reducing the average axonal delay (Rubinov, Ypma et al. 2015). By
minimizing the average length of projections and mter-neuronal communication delay, networks are
adapted for faster and more efficient transmission of information throughout the brain. These conserved
principles across information-processing complex systems unequivocally satisfy optimization criteria
necessary for maximizing communication efficiency and minimizing wiring cost in the brain (Bullmore

and Bassett 2011).
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In general, the metabolic cost for establishing and maintaining axons, plus neural communication via
synaptic transmission increases with wiring volume (Raichle and Mintun 2006, Bullmore and Sporns 2012,
Tomasi, Wang et al. 2013), so there are functional advantages for minimizing the connection distances of
mtra- and inter-modular edges (Raichle and Mintun 2006, Tomasi, Wang et al. 2013). Furthermore, since
living organisms are designed according to the guiding principles of economy and efficiency - possessing
remarkable abilities to conserve energy thus enabling us to function at optimal levels without expending
unnecessary effort - communication dynamics within neural networks are also shaped by a trade-off
between energy conservation in terms of metabolic cost and wiring optimization, and the ability to
maximize communication efficiency through a specific topology (Chen, Hall et al. 2006, Achard and
Bullmore 2007, Bullmore and Sporns 2012, Avena-Koenigsberger, Yan et al. 2019). Hubs and rich clubs
perform the bulk of computation in the network and are crucial for global communication (Hilgetag,
Burns et al. 2000, Hilgetag and Goulas 2020) because of their strategic position in the hierarchy above
nodes. This also implies that communication efficiency in neural networks is inversely proportional to the
distance between processing nodes (Chen, Hall et al. 2006, Bullmore and Sporns 2012) since traversing
hubs greatly reduces path lengths. Results from large-scale statistical analyses of connectivity datasets
support that communication efficiency between different areas of different modalities and information
mtegration 1s largely mediated by few, highly connected hubs (Zamora-Lopez, Zhou et al. 2009, Liang,
Hsu et al. 2018, Faber, Timme et al. 2019). Also, recordings from neural assemblies found that rich clubs
tend to transfer much more information than other nodes in the network (Nigam, Shimono et al. 2016)
and are often traversed by a majority of short paths between areas of the network (Schroeter, Charlesworth

et al. 2015).

These findings also have significant relevance for information processing; as studies suggest an association
between higher intelligence and higher brain network efficiency (L, Liu et al. 2009, van den Heuvel, Stam
et al. 2009, Langer, Pedroni et al. 2012, Hilger, Ekman et al. 2017, Koenis, Brouwer et al. 2018). If high
global efficiency 1s beneficial for information processing and increases cognitive abilities, then it seems
logical that low global efficiency would also be correlated with low processing and cognition. This theory
1s supported by evidence that showed that low cognitive performance 1s correlated with decreased global
mtegration and efficiency in individuals with alcohol use disorder (Wang, Zhao et al. 2018), small vessel
disease (Schroeter, Charlesworth et al. 2015), multiple sclerosis (Shu, Liu et al. 2011) and mild cognitive
impairment (Berlot, Metzler-Baddeley et al. 2016). Thus, the high correlation between cognitive
performance and anatomical network organization (McColgan, Seunarine et al. 2015) signifies an

important relationship between neural network structure and function.
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1.3 Does neural network structure dictate function?

A key question of intense neuroscience research intrigue remains: To what extent does network structure
imfluence its distributed functional properties? While empirical studies using large data sets of whole brain
recordings provide fascinating msights mto this structure - function relationship, a refined answer remains
clusive. In the next sections and throughout the rest of this thesis, I will regard function as the
electrophysiological dynamics exhibited by the active network, rather than the set of behaviors subserved
by a particular brain region (Honey, Thivierge et al. 2010). One of the key insights from the study of
complex systems is that neural network function emerges from specific arrangements of heterogeneous
neuron populations making up multi-level micro-and mesoscale hierarchical local circuits embedded
within the macroscale system. Fach local circuit exhibits precise and patterned spontaneous and task-
evoked physiological activity that changes over time and with temporal resolution. By investigating the
underlying structural interactions that produce the repertoire of activity displayed by networks, we may

come closer to answering our question at the top of this paragraph.

Action potential

Membrane potential (mV)

ORGANIZATION

Figure 7. The reciprocity of structure, function, and organization in the brain. Network structure is composed of
diverse cell types interacting to create micro-network motifs. These motifs iterconnect to form large scale
topographic maps (Luo 2021), and enable specialized functions through convergent and divergent signal processing.
Neurons hyperpolarize or depolarize in response to neurotransmitters binding to postsynaptic receptors, causing
repeated patterns of I-I innervations throughout the network. These different patterns of activation and suppression
in motifs drive the initiation and execution of function. Motifs of different function self-organize to create large
hierarchical networks that make up the bram. Structure, function, and organization are thus self-reinforced through

neuroplasticity and learning beginning from prenatal development and continuing throughout adulthood. © anelle S.

Werr. Created in Biorender.con.
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1.3.1 Excitatory - inhibitory neurons: backbone of neural network function

During network development, diverse ensembles of neural cells — including principal cells and an array
of interneurons (McColgan, Seunarine et al. 2015) — are established in functionally relevant neural circuits
that form the foundation of network structure. The coordinated activity between these two cell types 1s
vital in shaping neural activity and drives network function (Figure 7). The concept that network function
is driven by glutamatergic excitation (E) and GABAergic inhibition (I) is not new. One early paper pointed
out that the fundamental tenet of neural networks is that “all nervous processes of any complexity are
dependent upon the mteractions of excitatory and mhibitory cells” (Wilson and Cowan 1972). This is
evidenced by the highly non-random organization of E-I neuron types that can be found all over the brain
mcluding in the cerebellum (Ohtaka-Maruyama, Okamoto et al. 2018), the striatum (Markram, Toledo-
Rodriguez ct al. 2004, Booker and Vida 2018), the hippocampus (McKenzie 2018), and the neocortex
(DeFelipe, Alonso-Nanclares et al. 2002).

In the context of emergence and network organization, spontaneous interactions between E-I neuron types
create heterogenous topologies of recurring subnetworks or motifs throughout the neural network (Milo,
Shen-Orr et al. 2002) that have incredible influence on function. These motifs are characterized by specific
patterns of connectivity (Milo, Shen-Orr et al. 2002) (Figure 7) and result in different information
processing streams that can create feedforward, feedback, diverging, converging or recurrent activity (Jiang,
Wang et al. 2013) that produce different functional outcomes for the network. A number of studies,
particularly in the neocortex, have investigated the organization of diverse classes of E-I neurons and found
that there 1s significant functional and organizational diversity in their connectivity (Rieubland, Roth et al.
2014, Straub, Saulnier et al. 2016). The functional outcomes achieved by such diverse patterns of neuron

connections are a testament to the complexity and sophistication of the brain. For instance, interneurons

i the neocortex 1.2/3 selectively make synapses at various parts of L5 pyramidal neurons and drive
nactivation in one area of the circuit whilst the connections in other areas facilitate signal amplification,
depending on which stream of connectivity is activated (Jiang, Wang et al. 2013). Similarly, zn2 vivo initiation
or suppression of dendritic complex spiking in L5 pyramidal neurons has been found to be mediated by
upstream feedback inhibitory to inhibitory mmnervation between L1 interneurons connecting to 1.2/3

mterneurons (Jiang, Wang et al. 2013).

Analyzing E-I interactions through the application of complex network theory implies that distinct
functional subclasses of nodes located at various points along the information processing stream in motifs
play a crucial role in maintaining balanced E-I neural activity. Research has demonstrated that there exists
spontaneous segregation of excitation and inhibition in networks within cortical columns, with the average
activity of nodes being strongly correlated with their degree (Markram, Toledo-Rodriguez et al. 2004,
Jiang, Wang et al. 2013, Neske, Patrick et al. 2015). For hubs, their influence on the overall network is

determined by the ratio of inhibitory or excitatory inputs they receive. If input is predominantly excitatory,

-13-



the resulting activity will be strongly excitatory and if mput 1s predominantly inhibitory, there will be a
strong inhibitory influence on the network (Rieubland, Roth et al. 2014). Taking all of these into account,
we can agree that the structural organization of I-I neurons creates the dynamics necessary for complex
processing, defines signal propagation rules at the circuit level, and determines network performance.
These constraints also shape the repertoire of collective activities, from single spikes to bursts and
synchrony, that give rise to network functions. I will elaborate on these complex activities in the following

section.

1.3.2 Collective dynamics of E-I interactions shape spontaneous neural activity

Diverse patterns of E-I connections and balance between E-I synaptic transmission play a crucial role in
the stability of neural networks. Also, network topology and network activity are mutually dependent in a
reciprocal relationship with activity-dependent neuroplasticity (Rubinov, Sporns et al. 2009). Neurons
communicate with each other via spikes, which are action potentials generated through depolarizing action
of 1on channels and the release of neurotransmitters. In the immature brain, y-aminobutyric acid (GABA),
the main inhibitory neurotransmitter in the mature brain, along with GABA. receptors (GABA4R) are
depolarizing (Malagarriga, Villa et al. 2015). GABA operates in synergy with functional /N-methyl d-
aspartate receptors (NMDARs) that are present even before synapses are established (Tremblay, Lee et
al. 2016, Booker and Vida 2018). The depolarizing effects of GABA, GABA.Rs and NMDARs produce
primitive network-driven patterns of electrical activity - the giant depolarizing potentials (GDP) (Ben-Ari
2001) - which underly activity-dependent development and wiring of the immature neural network (Ben-
Ari 2002). GABA exerts its conventional mhibitory action after sufficient excitatory and inhibitory
synapses are formed, thus replacing the primitive patterns of network activity with more diverse and

elaborate ones.

The maturity of mhibitory control coincides with the emergence of spontaneous network bursts both 2
vivo (Khazipov, Sirota et al. 2004, Khazipov and Luhmann 2006, Minlebaev, Ben-Ari et al. 2007, Egorov
and Draguhn 2013, Luhmann and Khazipov 2018, Graf, Rahmati et al. 2022) and 2 vitro (Mooney, Penn
etal. 1996, Ben-An 2001, Wagenaar, Nadasdy et al. 2006, Wagenaar, Pine et al. 2006). These early bursts
- events of ~0.5s long period of extensive spiking across the network interspersed by ~7s long quiescent
mterburst intervals (IBIs) (Teppola, Acimovic et al. 2019) - are fundamental for Hebbian refinement of
the neural network during development. Since the activiy 1s self-reinforcing, mmformation propagation
efficiency increases through L'TP while non-self-reinforced, inefficient pathways are restructured through

LTD (Dresp-Langley 2020), as been shown with memory reinforcement (Fauth and van Rossum 2019).

‘With maturity, complexity in both structural and functional dynamics also increases in neural networks in
ways that facilitate learning, memory encoding and cognition. In other words, the adult network will exhibit
more complexity in spikes and burst patterns compared with the immature network (Sadeh, Silver et al.
2017, Sadeh and Clopath 2020). As such, bursts occur across various brain regions in complex processing

-14 -



(Llinas and Steriade 2006, Leleo and Segev 2021, Kim, Kim et al. 2023) and their features are often
characteristic electrophysiological indicators of maturity in neural networks. Bursts create larger and
stronger electrical signals that can be more reliable than single spikes in transferring information (Lisman
1997). It has been proposed that sending short bursts instead of single spikes circumvents the probability
of synaptic transmission failure and ensures that at least one spike reaches its target (Lisman 1997).
Furthermore, shorter imterspike intervals (ISIs) increase the chance of multiple spikes occurring within a
burst, thereby triggering synaptic transmission that can create larger postsynaptic potentials (PSPs) than
single spikes (Izhikevich, Desai et al. 2003). Bursts can also facilitate selective communication without
mvolving long term synaptic modifications. Complementing Lisman’s theory (Lisman 1997), Izhikevich
ct.al proposed that because different postsynaptic neurons possess distinct resonance frequencies, utilizing
bursts with varying interspike frequencies allows the presynaptic neuron to selectively influence some
postsynaptic targets and not others (Izhikevich, Desai et al. 2003). Therefore, although bursts are
characterized by stereotypical trains of action potentials, they can also exhibit different interspike
frequencies based on the properties of the neurons and the overall network activity. This makes them a

more efficient means of communicating information in mature neural networks.

In addition to bursts, neural networks also exhibit highly complex temporal dynamics, which include but
are not limited to the correlated firing between two or more neurons that creates synchronized activity
(Singer 1999, Salinas and Sejnowski 2001). Several studies support the hypothesis that synchrony plays an
essential role in the emergence of function within complex systems (Jackson, Gee et al. 2003, Uhlhaas,
Pipa et al. 2009, Nowak, Vallacher et al. 2017). Much like bursts, previous studies noted that synchronous
mputs can be more effective than single inputs at conveying information (Softky and Koch 1993, Usrey,
Reppas et al. 1998). In addition, one group of neurons can affect another group in a range of different
ways; either by modifying the firing rate or through correlations between local neurons in a postsynaptic
group, depending on the mput received from a presynaptic group (Salinas and Sejnowski 2001). The
impact of input correlations on postsynaptic neurons is often dependent on E-I signals arriving in balanced
or unbalanced neurons (Salinas and Sejnowski 2000). In all cases, correlation of activity can increase the
variability of network output and contributes to the complex functional properties of neural networks. On
the one hand, synchrony is suggested to be associated with cognitive functions that require large-scale
mtegration of distributed neural activity (Schnitzler and Gross 2005). For example, they play a salient role
m short-term memory (Lisman and Idiart 1995, Siegel, Warden et al. 2009), attention (Fries, Reynolds et
al. 2001) and the encoding of sensory inputs (Gray, Konig et al. 1989). On the other hand, abnormal
synchrony is implicated in some cognitive disorders including schizophrenia, autism and Alzheimer’s
disease (AD) (Uhlhaas and Singer 2006). Therefore, networks develop specific patterns of synchronous
and asynchronous activity that can be correlated with both distinct cognitive processing or network
pathology (Sadeh and Clopath 2020, Sanzem, Akitake et al. 2020). Also, the ability of neurons to
synchronize and propagate information is inextricably linked to the topological organization of their long

- and short - range structural connections (Buzsdki, Geisler et al. 2004). As a result, small-world
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architectures can increase synaptic transmission cfficiency for both functional and dysfunctional network

behaviours.

1.3.3 Neural network robustness and resilience to damage or perturbation

In healthy conditions, neural network structural organization is beneficial for fast integrative processing
and high communication efficiency. However, this organization also acts as a convenient highway for
spreading perturbations by providing direct pathways and integration among brain regions. For example,
in focal epilepsy, seizures may start and remain localized, or spread to other nodes in the network via
connections (Moosavi, Jirsa et al. 2022). In conditions such as severe traumatic brain injury (ITBI) or
ischemic stroke, a class of pathological waves called “spreading depolarizations” (SD) propagate slowly
through cerebral gray matter (1 to 9 mm/min)(Hinzman, Wilson et al. 2016) and result in subsequent
suppression of synaptic activity (Somjen 2001, Johann, Ashlyn et al. 2019). The propagation of these
aberrant activations cause widespread metabolic crises in the network with increased intracellular calcium,

and can cause lasting loss of neuron function (Somjen 2001).

Small-world organization also renders neural networks vulnerable in the event of structural damage or
targeted attacks (Kaiser and Hilgetag 2004). For example, damage to network hub regions can cause large
disturbances in the overall network function (van den Heuvel and Sporns 2011, Crossley, Mechelli et al.
2014, de Reus and van den Heuvel 2014, Li, Liao et al. 2016, Tu, Ma et al. 2021). In addition, lesions to
functional hubs rather than an anatomical area can produce severe behavioral deficits (Warren, Power et
al. 2014, Osada, Adachi et al. 2015, Gordon, Lynch et al. 2018) and disrupt inter-regional information
mtegration (Honey and Sporns 2008). Because these central nodes are so crucial for the performance of
all cognitive tasks and functions, neuropathological conditions with distributed, aberrant effects including
schizophrenia (van den Heuvel, Sporns et al. 2013), major depressive disorder (Zhao, Swati et al. 2019)
and autism spectrum disorder (Benkarim, Paquola et al. 2021) are all typically accompanied by disruptions
i functional connectivity among core brain nuclei (or hubs). In many other neural disorders, dysfunction
1s highly correlated with severe anatomical impairments in specific brain modules as in Parkinson’s disease
with degeneration of dopaminergic neurons in the substantia nigra (Giguere, Burke Nanni et al. 2018,
Aman 2022), AD with progressive degeneration in the entorhinal cortex (de Haan, Mott et al. 2012),
expressive aphasia with Broca's area damage (Sreedharan, Chandran et al. 2020) and cognitive impairment
or personality changes resulting from frontal lobe damage (Janowsky, Shimamura et al. 1989, Van Horn,

Irimia et al. 2012).

Despite the adverse effects of perturbations, neural networks can exhibit remarkable resilient in the face
of changing conditions. Although the process of network resilience during a metabolic crisis remains
unclear, as it often results in secondary brain injury due to neuron death, neural networks still possess the
ability to reorganize functions to compensate for structural damage. One reason for this is that although

modular organization enables specialized processing in separate brain areas, function 1s widely distributed
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across network levels and not centralized to a specific subnetwork or module. According to John’s theory
of multipotentiality, any brain region can contribute to the mediation of a diversity of function, such that
if the structural integrity of an area is compromised, the function can also reorganize within intact areas
(John 1980). Furthermore, functional plasticity allows subnetworks with an initial function to
spontaneously adapt to perform a different function to compensate for network damage (Dresp-Langley
2020). Such reorganization strategies are largely mediated by plasticity of synaptic efficacies, and ensure
that the network can often withstand attacks or failures without losing its overall performance and can

quickly recover, adapt or return to its initial functional state after perturbation (Dresp-Langley 2020).

Importantly, neural systems also are characterized by redundancy so that different patterns of interactions
between network components can produce similar circuit performance (Prinz, Bucher et al. 2004, Marder
2011). In neural network studies, the shortest path represents one possible communication route between
processing nodes in the functional subnetwork. However, there are alternative anatomical and functional
pathways (De Vico Fallani, Rodrigues et al. 2011, Di Lanzo, Marzetti et al. 2012) that allow neural
networks to reconfigure to compensate for the critical consequences of perturbations. This is evidenced
by electrical simulation studies that revealed that neural networks can evolve towards a new dynamic state
by moditying their underlying functional connectivity both i1 vitro (Poli, Pastore et al. 2015) and 12 vivo
(Teskey, Montils et al. 2002, Huang, Hajnal et al. 2019, Bloch, Greaves-Tunnell et al. 2022). Similarly,
large-scale brain reorganization, for example of the somatosensory cortex, has been reported to result
from deafferentation following spinal cord injury (Tandon, Kambi et al. 2009, Kambi, Halder et al. 2014)
and amputation (Simoes, Bramati et al. 2012). Considering all this, it will remain crucial for researchers
to investigate the adaptive capacity of neural networks to better understand how we can harness these

mechanisms to improve functional outcomes and facilitate recovery after neural network damage.
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2. Aims and Objectives

Neural networks respond differently under changing conditions, thus, understanding the underlying

mechanisms of network function can be crucial for making informed predictions about future behavior.

The goal of this PhD project was to characterize emergent properties of neural networks and elucidate

complex network dynamics at the micro-mesoscale level of network organization in healthy and perturbed

conditions.

Key research questions:

IL.

I1I.

IV.

V.

VL

How do neural networks exhibit emergent properties at the micro-mesoscale level of network

organization?

What are the key characteristics of complex network dynamics observed in healthy neural
networks?

How do perturbations affect emergent properties and network dynamics?

What are the specific changes in network structural and functional organization that occur under
perturbed conditions?

How do perturbations aftect the stability and resilience of neural networks?

‘What insights can be gained from studying the complex dynamics of healthy and perturbed neural
networks and how can their emergent properties help us predict future behavior?

The key objectives included:

IL.

1II.

Establish and optimize a robust i wvitro model that recapitulates the micro-mesoscale

development and organization of neural networks.
Characterize the emergent properties and network dynamics of healthy neural networks.

Develop optimized protocols to selectively perturb neural networks using controlled experimental
conditions to simulate pathophysiological scenarios.

Quantify and analyze the changes in emergent dynamics of perturbed neural networks compared

to healthy baseline to understand the effects of perturbation on network structural and functional

processes.
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3. Overview of main methods

3.1 In vitro neural networks as a reductionist model for studying complex and
dynamic brain processes.

Considering the complexity of the brain and the difficulty of accessing it, studying neural networks is a
major challenge for researchers, who are still attempting to understand neurological behavior and how the
brain develops strategies to either repair damaged neural circuits or arrest neurodegeneration. A well-
tested approach to overcome accessibility is to use m vitro cell cultures of amimal-derived primary neurons,
embryonic stem cells (ESCs) or healthy human and patient-derived induced pluripotent stem cells
(1IPSCs) (Takahashi, Tanabe et al. 2007, Vazin and Freed 2010, Amin, Maccione et al. 2016, Wang, Kong
et al. 2018, Valderhaug, Heiney et al. 2021, van Niekerk, Kawaguchi et al. 2022) to examine mechanisms

mvolved in neural network connectivity, communication, function, and dysfunction.

Protocols for preparing, culturing, and mamtaining n vitro neural networks vary depending on the cell
types mvolved. Hence, to determine highly reproducible procedures to routinely culture different cell
types, numerous assays are often required. In the studies presented in this thesis, primary neurons were
obtained from commercially available sources along with their recommended protocols (ThermoFisher
Scientific, AS), which greatly reduced optimization time. Based on previous i vitro experiments (Fiskum,
Sandvig et al. 2021, Hanssen, Witter et al. 2023, Weir, Christiansen et al. 2023), a combination of
biochemical substrates such as poly-dl-ornithine (PDLO), poly-l-ornithine (PLO), or poly-ethylenimine
(PEI), together with extra-cellular matrix (ECM) glycoproteins such as Matrigel, Geltrex and Laminin,
were determined as the best cell adhesion promoters on both micro-electrode arrays (MEAs) and multi-
nodal MEAs (mMEAs). In addition, primary neurons survive best when established as co-cultures with
primary astrocytes, as astrocytes are consistently found to increase neuron attachment, viability, and
maturity (Wang and Cynader 1999, Aebersold, Thompson-Steckel et al. 2018). Good handling routines
are also essential to increasing survivability and maturity. Therefore, primary cell cultures require nutrient
rich media, routine media changes in a sterile environment to prevent contamination, and maintenance

in a stable external environment achieved by keeping them at 37°C in a CO: incubator (Figure 8).

Despite the limited functional complexity and dissociation from sensory inputs, networks of cultured
neurons can provide robust recapitulaion of i vivo processes. A core feature is that the i vitro
architecture of densely innervated neurons allows for self-generated and self-sustained network activation
(Braitenburg and Shuz 1998). Moreover, cultured primary neurons maintain their intrinsic morphological
and electrophysiological properties: they form neurites and synapses, self-organize mto complex
mterconnected topologies, and exhibit emergent network-driven activity which serves to establish long
term synaptic and structural connections necessary for function, and survival (Katz and Shatz 1996, Ben-

Ari 2001).
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Figure 8. Typical experimental procedures involved in neuronal culturing. Depending on the cell type protocol,
coating procedures for the culture vessel may take anywhere from 2 hours to 3 days to complete. Next, cells derived
from commercial sources are thawed and seeded along with astrocytes on the pre-coated surfaces. Cultures are
maintained in sterile conditions, with regular media changes to enhance survival and maturity. © Janelle S. Weir. Created
1n Biorender.com.

‘Within hours of seeding dissociated primary neurons, cells begin to form a rudimentary scatfold of the
neural network (Goodman and Shatz 1993), which is subsequently refined to strengthen some connections
and pathways, while pruning others (Piochon, Kano et al. 2016, Millan, Torres et al. 2018). Within a few
days, neurons start to exhibit a range of age-dependent electrophysiological activity - including primitive
spikes, bursts and network wide synchronous activation - that dynamically changes as the network
develops (Ben-Ari 2001, Opitz, De Lima et al. 2002, Chiappalone, Bove et al. 2006, Wagenaar, Pine et
al. 2006), similar to inn vivo neural networks (Ben-Ari 2001, Simao, Silva et al. 2018). This spontaneous
electrophysiological activity directs network configuration towards a small-world topology (Poli, Pastore et

al. 2015), enabling the network to follow similar communication efficiency rules as 12 vivo networks.

Together, these features make 1 vitro neural networks an attractive modelling approach to capture some
fundamental aspects of self-organization and dynamic structural and functional behaviors of brain
networks at a reductionist level. Most importantly, these model systems give us easy access to network
mechanisms and allow us to selectively manipulate neural processes to induce perturbation, study
neuropathology, and enable us to make better assumptions about grand and subtle changes in complex

network dynamics.
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8.2  Capturing neural network spontaneous activity using multi-electrode arrays

To fully capitalize on the advantages of in vitro neural network modelling, planar multi-electrode arrays
(MEAs) systems are used to capture extracellular electrophysiological information about biological
networks at high spatial and temporal resolutions (Jones, Livi et al. 2011). Neurons are seeded and grown
directly on top of pre-coated glass substrates embedded with electrically independent metal micro
clectrodes. The microelectrodes in these devices detect fluctuations in the extracellular ionic
concentration in their measurable vicinity upon the occurrence of an action potential (Jones, Livi et al.

2011).

Conventional MEAs provided a few tens of electrode sites (Pine 1980), however, new generations of high-
density complementary metal-oxide semi-conductor (HD CMOS) arrays with thousands of electrodes
covering a few square millimeters (Figure 9) provide the capacity to simultaneously record from several
thousands of neurons (Berdondini, Overstolz et al. 2001, Malerba, Amin et al. 2018, Lonardoni, Amin et
al. 2019, Miccoli, Lopez et al. 2019) with excellent signal to noise characteristics. This has significantly
mcreased the spatiotemporal recording resolution and facilitated monitoring of dynamic changes in
electrophysiological behavior. We can capture the rate of action potentials (spikes), groups of closely
occurring spikes (bursts) (Wagenaar, Pine et al. 2006, Weir, Christiansen et al. 2023), signal propagation

and avalanches (Beggs and Plenz 2008) in real-time and over long term (Potter and DeMarse 2001).
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Figure 9. Schematic of MEAs and microfluidics for recording neural network activity. The ITD MEAs and head-
stage used in the studies were purchased from 3Brain AG, (Switzerland). The mMEAs were manufactured in house
with custom developed protocols (van de Wiydeven, Ramstad et al. 2018) and designed to segregate neuron
populations within different nodes. In the design used here, the presynaptic axons (red) enter the tunnels from the
presynaptic node and exit in the post synaptic node. The postsynaptic axons (blue) are looped back, effectively
preventing them from exiting in the presynaptic node (Winter-Ijelm, Tomren et al. 2022). © Janclle S. Weir. Created in
Biorender.con.
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‘While it 1s important to passively record the activity of neurons, certain aspects of neural network behavior
such as learning and memory require external stimuli (Jones, Livi et al. 2011) in order to fully appreciate
network dynamics. Thus, MEAs may have dual functionalities to both record activity and selectively
deliver an electrical stimulus that can evoke response (Wagenaar, Pine et al. 2004, Wagenaar, Madhavan
ctal. 2005, Takayama and Kida 2016). However, despite their many advantages, limitations do also exist.
For example, extracellular signal amplitudes tend to be small ~80-100 uV (Lonardoni, Amin et al. 2019),
or may come from multiple cells within the recording vicinity rather than from a single neuron. This in
turn may require high and low frequency filtering of the data, event detection, and spike sorting (Rey,
Pedreira et al. 2015) to differentiate the activity of different neurons. Nevertheless, high density MEAs
offer an unprecedented spatiotemporal resolution capable of capturing single cell or subcellular
bioelectrical activity (Frey, Egert et al. 2009, Lonardoni, Amin et al. 2019), and thus provide solutions for

these limitations.

A second type of device, the multi-nodal microfluidic interfaced with MEA (mMFEA) (Figure 9), has also
emerged as useful tools for modelling hierarchical modular networks in vitro by segregating neural
populations using microchannels only permissible by axons (Taylor, Rhee et al. 2003, Gladkov, Pigareva
et al. 2017, van de Wijdeven, Ramstad et al. 2018, Winter-Hjelm, Tomren et al. 2022). These devices
provide unique advantages to control afferent and efferent connections within neural networks, thereby
recapitulating aspects of the modular topological organization found in the brain. mMEA platforms are
necessary and powerful 2 vitro tools for acquiring a comprehensive view of healthy network development,
as well as pathology and disease progression between different parts of the network. Application is
widespread from being used for localized drug delivery (Bruno, Colistra et al. 2020), investigating the
effects of pharmacologically active substances (Takayama, Ostuni et al. 2001, Peterman, Noolandi et al.
2004), to modelling neuropathy and neurodegeneration (Kunze, Meissner et al. 2011, Hallinan, Vargas-
Caballero et al. 2019). Neural networks modelled on both MEAs and mMEAs, are also widely used to
study small-world structural and functional connectivity, and communication efficiency in different
contexts (Pastore, Massobrio et al. 2018, van de Wideven, Ramstad et al. 2018, Shen, Wu et al. 2019,
van de Wideven, Ramstad et al. 2019).

3.3  Selective in vitro manipulation using adeno-associated viruses

As mentioned in previous paragraphs, to adequately study specific aspects of network behavior in vitro,
some degree of external input or perturbation is required in addition to recording spontaneous activity.
To target the specific mechanisms at the cellular and sub-cellular levels that drive neural activity and
network behavior, the application of advanced and revolutionary methods is needed. While there are
many viral and non-viral tools available for these purposes, in staying within the scope of this thesis, I will

only discuss adeno-associated viruses (AAV).
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AAV is a group of small, simple, helper dependent, non-pathogenic and single stranded DNA viruses
(Wang and Gao 2014) used as a standard tool for the delivery of genes in classes of cells in neural systems
(Betley and Sternson 2011). The distinct gene expression patterns of neuron types can be exploited to
deliver genetically encoded molecular tools via their specific promoter regions, that can drive transgene
expression in the corresponding genes (Betley and Sternson 2011, Wiebe, Huang et al. 2023). For neural
network manipulation, transgenes that permit visualization and perturbation of neurons are ubiquitously
used. The promoter and transgene of interest are packaged within the capsid of a serotype (Au, Isalan et
al. 2022). Different AAV serotypes interact with cellular proteins in different ways, and thus the final
transduction efficiency can vary significantly among them (Wu, Asokan et al. 2006). Therefore, rigorous
testing of viral vectors 1s necessary to identify the most suitable variant. As AAV transduction in primary
neurons i1 vitro has not been widely applied, labor intensive pilot tests and protocol optimization were
conducted to establish the appropriate viral concentration for high transduction efficiency (Malik,

Maronski et al. 2012) and minimal cytotoxic effects in our research.

3.3.1 AAV2/1 - hM4Di - mCherry - CaMKIIa - DREADDs

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered G-protein
coupled receptors (GPCRs) based on human muscarinic (hM) acetylcholine receptors. In neurons, G-
proteins couple to various downstream effectors to modulate second messengers and regulate neuronal
excitability (Roth 2019). The perturbation objective in Papers I and II was to selectively inhibit excitatory
signal transmission within networks, therefore, I used the human M4 receptor - which activates Gi-family
protein inwardly rectifying potassium channels (GIRKs), thereby attenuating neuronal signal transmission
(Urban and Roth 2015) (Figure 10). AAV vectors were constructed with the excitatory cell type specific
promoter calcium calmodulin dependent protein kinase IT alpha (CaMKIlIa). As CaMKlla is selectively
expressed at excitatory synapses on excitatory neurons (Liu and Murray 2012), this promoter ensured
selective viral infectivity in excitatory neurons only. Human muscarinic DREADDs are also engineered to
be physiologically mert to their endogenous higand acetylcholine, have minimal basal activity and are only
activated by a designer exogeneous ligand such as clozapine-N-oxide (CNO) (Stachmiak, Ghosh et al.
2014), and more recently deschloroclozapine (DCZ) - which has a higher affinity to DREADDs and lower

off target effects compared to CNO (Nagai, Miyakawa et al. 2020).

Several tests were conducted to deduce the optimal concentration of DCZ for m witro use, onset of
network response, length of exposure before cytotoxicity, and effects of repeated exposure. I found that
10uM was sutficient to induce silencing within 1 hour, however, higher concentrations resulted in cytotoxic
cell death after 48 hours. I also noted that chronic DCZ exposure for > 4 hours resulted in faster network
deterioration over time due to increased cell death. Thus, 10uM for 2 hours was the most effective
exposure time to capture network changes while still preserving the integrity of the network for long-term

monitoring (Paper II).
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Figure 10. DREADDs in neural networks. The receptor is a genetically modified version of the muscarinic
acetylcholine receptor. The receptor is nert to acetylcholine, and only becomes activated by a designer drug such as
DCZ. This unique feature of DREADDs make it an invaluable tool for researchers to manipulate the activity of
SpC(‘iﬁ(‘ neurons. @ Janelle S. Werr. Created m Biorender.con..

In Paper 11, I wanted to cause more enduring structural and functional changes to the network, so 10uM
for 2 hours repeated over 3 consecutive days was done instead of increasing the DCZ concentration or
exposure time per application. This ensured that I could induce changes while preserving the health of
the network for long term monitoring. One obvious limitation here is that this combination of DREADDs

and DCZ, to our knowledge, has not been used in in vitro neural networks, and thus, saturation due to

prolonged ligand binding has not been clearly evaluated.

3.3.2 AAVS8 - GFP - 2a - P301LTau

For Paper III, a mutated form of human tau was used to induce perturbation in healthy 2-nodal i vitro
neural networks with unidirectional, feedforward afferent - efferent connections (presynaptic and
postsynaptic nodes respectively) (Figure 9). The viral vector production and purification was performed
i house at the Viral Vector Core Facility at the Kavli Institute for Systems Neuroscience (NTNU), and
kindly gifted to us by Dr. Christiana Bjerkli. The human mutated tau was mtroduced to the healthy
network in the presynaptic node (Figure 9) after the network had reached structural and
clectrophysiological maturity at 28 DIV. Rigorous tests were conducted to optimize the transduction
efficiency and viral sequestering in the presynaptic node. This was achieved by maintaining a higher
volume of media in the postsynaptic node, such that the valvular design of the mMEA axonal tunnels
restricted backwards media flow and effectively created an impenetrable barrier (Forster, Bardell et al.

1995, Winter-Hjelm, Tomren et al. 2022).
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4. Synopses of Papers: Methods

This section describes the key methodology mnvolved 1n each of the papers that comprise this thesis.

Detailed experimental method is described in each of the papers.

Paper I | Selective inhibition of excitatory synaptic transmission alters the emergent
bursting dynamics of in vitro neural networks.

In Paper I, rat cortical neurons were seeded as co-cultures with 15% rat cortical astrocytes (both obtained
from ThermoFisher) on AXION multiwell MEAs and maintained in a 5% CO: incubator at 37°C with
regular media changes done every 2 - 3 days. At 7 DIV, networks were transduced using AAV2/1 vector
encoding inhibitory hM4Di-CaMKlla-DREADDs.  Following transduction, hM4Di DREADDs
expression was confirmed within 4 days by the mCherry fluorescent tag encoded in the vector that allowed
for visualization early after transduction. Electrophysiological recordings of spontaneous network activity
commenced on 9 DIV. At 14 DIV, transduced networks were treated with the designer synthetic ligand
DCZ. The experimental protocol is illustrated in Figure 11. Briefly, 20 minutes baseline recordings were
conducted for all networks, then then either PBS (vehicle) or DCZ (drug) diluted in cell media was added
directly to the networks for a final concentration of 10 uM (at 14 DIV, 21 DIV and 28 DIV). The networks
were incubated for 1, then, network activity was recorded for 1-hour with PBS or DCZ to capture network
response to the perturbation. After this recording, 3 x 509 media changes were carried out to remove the
PBS or DCZ from the networks before returning them to the incubator. Recordings were done at 12
hours and 24 hours after the wash out to assess network recovery. Control networks did not receive any
treatment, so 1 x 1009 media change was done to maintain similar conditions in media concentration.

The bursting profile and network synchrony were analyzed offline using custom protocols.
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Figure 11. Schematic of the workflow. Figure from: (Weir, Christiansen et al. 2023).
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Paper II |Selective inhibition of excitatory synaptic transmission alters functional
organization and efficiency in cortical in vitro neural networks.

In Paper I, rat cortical neurons were seeded as co-cultures with 15% rat cortical astrocytes (both obtained
from ThermoFisher) on high density CMOS MEAs and maintained in a 5% CO: incubator at 37°C with
regular media changes done every 2 - 3 days. The networks were transduced at 7 DIV with AAV2/1-
hM4Di-CaMKIIa-DREADD:s using the protocol developed from Paper 1. After transduction, DREADDs
expression was confirmed using parallel immunocytochemistry to assess mCherry expression in the
networks at 14 DIV. Electrophysiological recordings commenced on 14 DIV. At 25 DIV, the networks
showed dense neurite interconnectivity based on assessments made by microscopy evaluations. They also
exhibited robust and widespread bursts that originated at distinctive areas and propagated throughout the
rest of the network. This behavior further supported that the network was highly interconnected. Baseline
recordings of 15 minutes were made of all networks, then the experimental networks were treated with
DCZ. diluted mn cell media at a final concentration of 10 pM and incubated for 2 hours. This concentration
and time of exposure to DCZ was determined from previously optimized protocol for Paper 1. After the
incubation period, 3 x 50% media changes were done to wash out the DCZ and the networks were
returned to the mcubator to recover. This experimental protocol with DCZ mhibition was repeated for 3
days at 25, 26 and 27 DIV. Electrophysiological data to assess network recovery from acute perturbation
was captured at 28, 32, 36, 40 and 42 DIV. Data analyses was conducted offline using custom protocols.
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Figure 12. Schematic of experiment methods. Figure from: (Weir, Huse Ramstad et al. 2023).
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Paper IIT | Altered structural organization and functional connectivity in feedforward
neural networks after induced perturbation.

In Paper III, rat cortical neurons were seeded as co-cultures with 15% rat cortical astrocytes (both obtained
from ThermoFisher) on unidirectional 2-nodal microfluidic chips interfaced with MEAs (created in-house
at the Nanolab, NTNU). The networks were maintained in a 5% CO: incubator at 37°C with regular media
changes done every other day. Electrophysiological recordings commenced on 14 DIV and 15 minutes
recordings were done every other day until 28 DIV, at which point networks were determined to be both
structurally and functionally mature. Structural maturity was confirmed at 21 DIV via microscopy
assessment and parallel immunocytochemistry. AT 28 DIV, the networks were transduced using AAVS
vector encoding experimental GFP-2A-P301L tau protein to overexpress human mutated tau in the
presynaptic network / node on the microfluidic chips. The titer for i vitro transduction was determined
at 3 x 107 viral particles per neuron based on previous protocol tests. After transduction, mutated tau
protein expression was confirmed within 2 days by the GFP fluorescent tag encoded in the vector that
allowed for visualization early after transduction. Structural changes in the networks were monitored by
microscopy visualization and imaging over the lifetime of the network. The network behavior was
monitored after transduction by recording spontancous electrophysiological activity every other day from
31 DIV until 47 DIV. Additionally, from 31 DIV, electrical stimulations of 800mV for 1 minute was
applied at the most active electrode (detected during the spontaneous activity recording) and the evoked
activity was captured. Network firing rate, bursting profile within each node, and signal propagation

between nodes were analyzed offline in Matlab (R2021b) using adapted and custom scripts.
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Figure 13. Timeline of experimental process. Figure from: (Weir, JS., Hanssen, K., et.al. 2023).
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5. Synopses of Papers: Results

Paper 1 | Selective mhibition of excitatory synaptic transmission alters the emergent
bursting dynamics of in vitro neural networks.

Janelle Shari Weir*, Nicholas Christiansen*, Axel Sandvig, Ioanna Sandvig
Published in Frontiers in Neural Circuits, February 2023, doi: 10.3389/fncir.2023.1020487
*Shared first authorship

The aim of this study was to investigate changes in neural network dynamics, i.e., network bursting
behavior and synchrony, in response to sclective mbhibition of excitatory synaptic transmission using
DREADD:s. In this study, we conducted recordings of up to 2 hours each session over a period of 5 weeks.
Our results demonstrated that all 2 vzitro neural networks follow a trend of gradually increasing firing rate,
burst rate and network burst rate as the network reach maturity between 28 DIV and 32 DIV, and gradual
decline i synchrony between 9 DIV and 18 DIV. We also successfully transduced hM4Di-DREADDs
in /12 vitro neural networks, induced transient silencing of network activity (at 14 DIV, 21 DIV and 28
DIV) using the novel ligand DCZ (for 2 hours), and recorded the network response both during and

following wash out.

Our results showed that during perturbation, the inhibited networks exhibited significantly lower firing
and burst activity compared to PBS treated and control unperturbed networks, which maintained robust
spiking and bursting activity. We also demonstrated that inhibited networks were able to recover bursting
activity within 1 hour of DCZ exposure. This activity was significantly higher than what was observed prior
to inhibition. We also showed that in the PBS treated and control unperturbed networks, there was a
general decline in network synchrony between 9 DIV and 28 DIV, however following DCZ treatment at
14 DIV, inhibited networks began exhibiting significant increases in overall network synchrony that lasted
between 18 DIV and 32 DIV. Similarly, inhibited networks also exhibited significantly higher burstiness
between 21 DIV and 28 DIV compared to PBS treated and control unperturbed networks. We also
recorded network activity 12 hours and 24 hours after inhibition and found that across all 3 perturbation
days, mhibited networks reduced the level of bursts and synchronization, indicating active adaptive

mechanisms in the networks.

This study provides valuable insights into how the characteristics of network activity, particularly network
bursts and synchrony, may change in response to selective inhibition of excitatory transmission; and how

these dynamics change as the network adapt and restore normal dynamics.
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Paper II | Selective inhibition of excitatory synaptic transmission alters functional
organization and efficiency in cortical in vitro neural networks.

Janelle Shari Weir, Ola Huse Ramstad, Axel Sandvig, Ioanna Sandvig
Preprint, BioRxiv 2023, doi: https://doi.org/10.1101/2028.07.05.547785

As a follow up from Paper I, the aim of this study was to investigate network responses at the structural
and functional organization level to transient disruption of excitatory synaptic transmission. Neural
networks were transduced with hM4Di1-DREADDs and we induced transient silencing of network activity
using DCZ. Networks were silenced for 2 hours at 25 DIV, 26 DIV and 27 DIV, with wash out done after

cach treatment.

Our results showed that at 26 DIV and prior to inhibition, neural networks had self-organized into a
modular topology on the CMOS MFEAs, with each recording electrode signifying a single node belonging
to a specific module. Following inhibition at 26 DIV, neural networks experienced transient disruption in
segregated processing, which manifested as modular de-clustering, and decreases in clustering coefficient
and participation coefficient. In addition, network integration capabilities appeared to decrease, indicated
by a decline in the average number of connections that each node had with other nodes in the network.
Furthermore, we found that perturbation also resulted in an increase in path lengths suggesting an overall

less efficient network as signal transmission would traverse more edges.

Following perturbation and between 32 DIV and 40 DIV, we found that neural networks recovered the
modular structure with nodes having higher spatial distance compared to being positioned closer together
at 21 and 26 DIV. In addition, both mean degree and path lengths were restored by 40 DIV i.e., >300
connections on average, and <0.2 intermodular path length. This indicates that the networks reconfigured

towards high mtegration of signals, with reduced path lengths to achieve higher efficiency.

The current findings of this paper compliment the findings of Paper I and suggest that the changes
observed in structural and functional organization may be directly linked to changes in network bursting
activity and network synchrony. De-clustering of modules allows for more flexible and efficient network
communication in various contexts, including perturbation. This suggests that global activation increases
as mhibited networks lose their structural boundaries, possibly to restore synaptic drive with and across
the perturbed areas of the network. Induced inhibition may trigger compensatory increases in global
synaptic transmission that would contribute to increased synchronization in the network. These findings
contribute to our understanding of structural adaptability and the dynamic nature of neural network

reorganization capacity following perturbation.



Paper IIT | Altered structural organization and functional connectivity in feedforward
neural networks after induced perturbation.

Janelle Shari Weir*, Katrine Sjaastad Hanssen*, Axel Sandvig, [oanna Sandvig
Preprint, BioRxiv, September 2023, doi: https://doi.org/10.1101/2023.09.12.557339
*Shared first authorship

The key aims of this study was to monitor and record dynamic changes in structural organization of neural
connections, and electrophysiological activity in neural networks with evolving perturbation. We
engineered neural networks as two-nodal unidirectional feedforward assemblies and selectively induced
expression of human mutated tau in the presynaptic nodes at 28 DIV. Our results showed that prior to
induced expression of human mutated tau, neural networks exhibited a diverse range of
electrophysiological behavior including gradually increasing imtranodal spikes, bursts, and network bursts
between 16 DIV and 28 DIV. They had also achieved dense intranodal neurite connectivity, as well as
both structural and functional internodal connectivity between the pre- and postsynaptic nodes. We found
that electrical stimulation of one electrode in the presynaptic node elicited a spike response with a delay
i the postsynaptic node, and that the networks exhibited spontaneous burst propagation between the
nodes. These findings validated that our networks had achieved a feedforward functional connectivity

mode with the presynaptic node providing input to the postsynaptic node.

Perturbation by induced human mutated tau protein to the presynaptic node resulted in extensive neurite
retraction from the entry zone close to the microtunnels within 4 days, followed by subsequent neurite
retraction from the exit zone close to the microtunnels in the postsynaptic node within a week. This
indicates that the loss of synaptic input from the presynaptic node triggered intranodal reorganization
within the postsynaptic node. No neurite retraction was observed in healthy control networks during the
same observation period. Furthermore, induced perturbation also resulted in changes in intranodal
electrophysiological activity, which manifested as an overall decrease in both firing rate and burst rate in
the perturbed networks from 31 DIV onwards, contrary to increases observed in the control unperturbed
networks during the same period. Also, during the same period there was an increase in both network

burst size and synchrony in the perturbed networks, but not in the healthy control networks.

We also demonstrated that electrical simulation within the presynaptic node of perturbed networks failed
to elicit a spike response in the postsynaptic node between 31 and 47 DIV. There was no spike response
to stimulation by 40 DIV in the perturbed presynaptic node. By contrast, in the healthy control networks,
there were spike responses in the presynaptic node for all days of stimulation, with gradually lower
responses over time in the postsynaptic nodes. Together, the {indings of this study are highly significant as
they highlight the concomitant occurrence of structural reorganization and functional activity changes in
neural networks with ongoing perturbations. Most importantly, we’ve modelled and captured mechanisms

that are challenging to detect using 12 vivo methods.
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6 Discussion

“If future science reserves big surprises and wonderful conquests for us, it must be supposed that she will

complete and develop our knowledge mdefinttely, while still starting from the present facts”.
Santiago Ramon y Cajal, Nobel Lecture - December 12, 1906

6.1  Emergence of electrophysiological activities in neural networks

Emergent self-organization is a fascinating phenomenon observed in biological systems, including neural
networks 1 vitro. As stated in the introductory section, this is the ability of the system to spontaneously
acquire high order organization through the interactions among lower-level components without any
external input or control. In the brain, early network organization and neural network formation emerges
through a well-orchestrated spatio-temporal manner that relies heavily on activity-independent processes
i the absence of neurotransmission (Ohtaka-Maruyama 2020). Later, the network is shaped through
sensory-evoked activity-dependent mechanisms. The transcription factors and growth molecules that
guide and support the initial network formation are largely absent i vitro, and thus must be substituted
via exogeneous sources (Hanssen, Witter et al. 2023) in order to recapitulate network developmental
processes. Still, one could argue that the initial stages of inn wvitro network development is somewhat
analogous to that of 2 vivo networks as both are characterized by immature neurite connections and very

little spontancous neural activity (Tierney and Nelson 2009, Luhmann and Khazipov 2018).

Only through the interconnectedness of neurons do we see the emergence of network level phenomena.
This phenomenon is similar to how individual cells in the human body work together to perform complex
tasks. Just as a single cell cannot carry out all the functions necessary for the body to operate, a single
neuron cannot generate the complexity observed at the network level. Moreover, for neurons to avoid
pruning and remain part of the functional network, it is crucial that they generate some bioelectrical activity
and establish connections early. We already know that early spontaneous activity is a crucial part of the
overall network development, but it also significantly reduces the probability of single neuron cell death,
while also facilitating coordinated integration of immature neurons into the emerging network (Warm,
Bassetti et al. 2022). The catalytic impact of early bioelectrical activity leads to the establishment of more
cvolved connection patterns via the formation of mesoscale motifs composed of neuron aggregates with
improved synaptic strengths. These motifs also spontancously generate activity among them, thus creating
more complex topologies. High levels and complex patterns of innervation is associated with the
mterconnectivity of different motifs (Luo 2021), leading to the diverse spatial and temporal patterns of
activation that includes bursts, network bursts and network synchronization (Wagenaar, Pine et al. 2006,

Li, Zhou et al. 2007, Huang, Chang et al. 2017), that we observe in our n vitro neural network.
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Our findings from Paper I and Paper III align with these previous studies by showing that neural networks
begin to generate spontaneous activity shortly after seeding neurons, starting with low levels of activity
during early development and gradually progressing to more robust patterns over the course of maturity.
Interestingly, our results in Paper I prior to any perturbation also revealed a gradual decrease in synchrony
between 9 DIV and 21 DIV, which persisted until approximately 21 DIV, with a slight increase at 32 DIV
(Weir, Christiansen et al. 2023). Similarly, in Paper III prior to perturbation, we observed a decrease in
synchrony between 16 DIV and 28 DIV, followed by a slight increase at 33 DIV, which then remained
relatively stable until 47 DIV. These findings highlight a consistent decline in network synchrony during
early development and before any perturbation, followed by a slight increase and stabilization after 32
DIV. This pattern stands in contrast to perturbed conditions, where significantly higher synchrony was
evident within 36 to 48 hours of perturbation and persisted throughout the course of the study. This
distinction 1s significant because it sheds light on the various conditions under which neural networks may

exhibit synchronous activity.

One implication of these observations is that during early development, lower synchrony might be
required for the selective strengthening of synapses for promoting diversity in postsynaptic resonance
frequencies and enabling more complex processing later (Izhikevich, Desai et al. 2003). This notion aligns
with studies in sensory systems, where information processing and performance (Beaman, Fagleman et
al. 2017, Waschke, Tune et al. 2019) and the fidelity of novel information encoding (Hirata and Castro-
Alamancos 2011, Pachitariu, Lyamzin et al. 2015) were improved in lower synchronous network states.
Furthermore, synchrony appears to increase in more mature networks, potentially playing an integrative
role n the processing of more complex information. Processes such as spike-iming dependent plasticity
(STDP) for example, which are associated with more mature and intricate regulation of NMDAR and ion
channels (Dan and Poo 2004), benefit from some level of synchrony (Anisimova, van Bommel et al.
2023). Thus, synchrony likely serves multiple specific functions in neural networks, which may be
mfluenced by the developmental stage of the network and its specific goals. Intuitively, one might think
that high synchrony in the early development would play a more salient role for the integration of
immature neurons into the network, given its involvement in widespread correlated activation of multiple
neurons. However, the observed decrease in synchrony alongside the dramatic increase in bursts in both
Paper I and Paper III indicates that these dynamics serve distinct roles at different developmental stages,

rather than merely representing different types of neuron or network activations.

Another noteworthy observation in these findings pertains to the relationship between electrophysiological
activity and the structural - functional organization of the networks. This aspect is particularly interesting
i the context of our results from Paper III, where we observed the progressive development of a
feedforward network in the two-nodal unidirectional mMEAs. This was evident through the significant
propagation of bursts from the presynaptic node, which provided mput to the postsynaptic node. The

evidence of burst propagation also indicated a corresponding increase in structural / synaptic maturity
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since signal transmission relies on robust synaptic connections between different components of the neural
network, with the activity itself reinforcing the strength of these connections. These findings provide
compelling evidence for the dynamic and intricate connection between the structural properties of neural
networks and their functional properties, underscoring the significant correlation between self-organization
and emergence. However, it is important to reiterate that self-organization emphasizes the network’s
structure arising from the interactions among its components, whereas the concept of emergence
emphasizes that higher-level properties or behaviors cannot be solely deduced or predicted from the
properties of individual components or their interactions (Mainzer 2008). This crucial distinction is
essential for understanding the behavior of biological neural networks, as it highlights the non-linearity of

complex systems.

6.2  Embracing unpredictability: Unraveling non-linear dynamics of neural
interactions

While there are certain aspects of neural network behavior that can be predicted - such as the age-
dependent developmental trajectory of network activity described in previous paragraphs - the formation
of motifs within each network can create unexpected patterns of activity at higher levels of organization.
Though individual neurons may either depolarize or hyperpolarize in response to neurotransmission,
their collective behavior is highly non-linear, which makes complex phenomena intrinsically unpredictable
i character (Roberts and Robinson 2012, Yang, Solis-Escalante et al. 2016). The overall behavior of each
network is then greatly influenced by factors such as the distinctive patterns of connectivity between
excitatory and inhibitory neurons (Jang, Chung et al. 2020), the firing rates and timing of firing of individual
neurons and the strength of connections between neurons. These factors combine to create complex
spatiotemporal patterns of neural activity that underlie network function. Furthermore, nonlinearity is a
prominent feature during learning, especially in the refinement of functional connectivity in motor skill
learning. Researchers have established specific loop circuits between the frontoparietal cortices and the
associative region of the Basal Ganglia (BG) and Cerebellum (CB), and the motor cortices with the motor
region of the BG and CB that function in parallel (Hikosaka, Nakamura et al. 2002, Chen, Wang et al.
2022). Interestingly, Chen et. al. also found that activation patterns in these circuits may change depending
on the stage of motor learning associated with skilled performance 1.e., expert vs amateur vs novice (Chen,
Wang et al. 2022). These dynamic interactions and diverse processing in motifs contribute to the

emergence of higher-order cognitive functions and the brain’s remarkable computational capabilities.

In a linear system, the output or behavior is typically directly proportional to the input. However, in the
context of i vitro neural networks, the intricacy of the relationship between inputs and outputs stems from
random, self-driven interactions within the network, leading to unpredictable behavior that go beyond the
mtrinsic characteristics of its constituents. The overall development and bottom-up process remains the
same for all networks, but the underlying neural network structure does not adhere strictly to linear

relationships. Unique local connectivity patterns exert significant influence on the inputs received by
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different regions of the network. This observation provides valuable insights into the wide-ranging activity
profiles exhibited by in vitro neural networks, even when they are maintained under comparable recording
and microenvironmental contexts. It is essential to recognize that although 2 vitro neural networks serve
as a reductionist model of brain networks, they still consist of tens of thousands of neurons that, to a large
extent, retain much of the intrinsic programming rules governing network development m vivo. These
rules encompass various aspects such as diversity in synapse development and modulation, and the
formation of motifs and their interconnectedness. Consequently, these networks exhibit high level of
complexity, similar to the brain where we can establish general principles of development and processing,
while still allowing for mdividual variability. Therefore, it is not surprising that iz vitro neural networks
also exhibit inherent variability. This observation 1s commonly reported across studies when 2 vitroneural
networks are recorded for extended timeframes and study periods (van Pelt, Wolters et al. 2004, Gal,
Eytan et al. 2010). Variability 1s often apparent through differences in firing rates, burst frequency and size,
and burst duration (van Pelt, Wolters et al. 2004) due to the non-linear interactions that regulate neuron
sensitivity to different levels of input (Channell, Fuwape et al. 2009, Mensi, Hagens et al. 2016), or activity

history based on the activity of neighboring neurons (Schiff, So et al. 1996).

Therefore, the onus 1s on researchers to devise suitable approaches for capturing network dynamics
effectively, if any meaningful inferences are to be drawn regarding network function. As shown in Papers
I and III, individual networks exhibit differing activity ranges, with varying firing rates and bursts rates at
different days of recordings. Notably, by conducting recordings spanning up to 30 minutes each and
monitoring networks over several weeks, we were able to 1dentify significant trends in average activity
notwithstanding variability. Moreover, the convergence of our findings with those of others who have also
conducted longitudinal recordings (Habibey, Striebel et al. 2022) further strengthens the validity and
reliability of our results. Consequently, we can confidently use these 2 vitro models to draw comparisons

and establish general assumptions about neural network behavior.

6.3  All Hands-on Deck! Adaptability and resilience in the face of perturbation

Understanding that complex and dynamic behaviors arise from self-driven interactions between micro and
mesoscale components within the network enables us to intervene in the system and study its responses.
We also know that in nonlinear systems, small changes in initial conditions - such as variations in
excitation or inhibition - can have significant impacts on neural network behavior (Roberts and Robinson
2012). Furthermore, the ability of neural networks to respond to perturbations is contingent on
nonlinearity, which creates possibilities for adaptability and computational {lexibility (He and Yang 2021).
For instance, non-linear E-I interactions contribute to information processing by either amplifying or
suppressing signals based on their relative strengths (Murphy-Baum and Taylor 2018, Kastner, Ozuysal et
al. 2019). When this balance is disrupted, i.e., by transient inhibition of excitatory synaptic transmission

as in Paper I, the dynamic adjustment of neural responses allows for optimal processing by appropriately

-34 -



regulating the subsequent activity. This manifested i our networks as an increase in burstiness and
synchrony, possibly related to decreased inhibitory drive due to modified pre and postsynaptic inhibitory
responses (Maffei 2011, Rozov, Valiullina et al. 2017, Chiu, Barberis et al. 2019). Studies of sensory
neurons in the retina yielded dramatic parallels where strong presynaptic inhibition decreased synaptic
depression whilst concurrently increasing excitatory activity with low IST (Sagdullaev, Eggers et al. 2011),

so as to suggest the possibility of burst-like activity as was observed in our study.

These compensatory responses to perturbation signify active homeostatic plasticity processes playing a
critical role in maintaining the stability and functionality of the networks. One key aspect 1s the scaling of
synaptic physiology, which helps to regulate the strength of synaptic connections by ensuring that the
overall activity levels remam within an optimal range, and prevents firing rates from becoming overly
saturated or suppressed during environmental changes (Turrigiano, Leslie et al. 1998, Pozo and Goda
2010). The ability to regulate synaptic function also ensures that during periods of reduced neural activity
the network will not reach extremes of hypo- excitability. In addition to adjusting synaptic function, there
may also be an active process controlling the temporal patterning of neural activity, causing an increase in
synchronization m response to perturbation. Our results from Papers I and III revealed an intriguing
contrast in terms of synchronization trends. Perturbed networks displayed an increased synchrony
following perturbation, while control networks exhibited decreased synchronization overtime. This
observation was particularly interesting in Paper III, where the overall firing and burst rates of the
perturbed network decreased over time, but not those of healthy controls. This suggested a direct
correlation between the increase in synchrony and functional impairment within the networks. Specifically,
because the heightened synchrony coincided with progressive neurite retractions and disconnected
mternodal connectivity. As mentioned in previous paragraphs, the presence of synchrony in the network
and its impact on overall network function appear to be influenced by factors beyond the functional level

alone, but also take into account the structural aspects of the network.

The relationship between network synchrony and structure 1s two-fold; first, synchronized activity co-
evolve with network topology creating a feedback loop between structure and dynamics (Assenza,
Gutiérrez et al. 2011). Second, the network’s structural features can modulate synchronization levels as
elements adjust input processing based on aggregate information available to them (Sorrentino and Ott
2008). Interconnected neurons receive inputs from many neighbors about the state of the network, and
this collective information can guide decision-making and influence synchronization levels. For example,
m Paper III, prolonged exposure to induced human mutated tau resulted in extensive axonal retraction
from microtunnels and subsequent reorganization within nodes concomitantly with increased
synchronization. This in conjunction with the overall low firing rates suggested a compensatory tactic by
the perturbed networks to sustain inter-neuronal interactions and possibly functional mtegration. This
theory is logical since hyperphosphorylated tau has the potential to interfere with the structural integrity of

the affected network, subsequently leading to heightened neuron stress and mflammation, which in turn
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can trigger apoptotic or neurotic call death (Dong, Yu et al. 2022, Thal and Tomé 2022). Therefore, if
extensive neuron death contributed to the decrease in overall firing and bursts, then the network would
need to increase synchrony in response low network levels to counteract potential hypoactivity
(Chowdhury and Hell 2018). Also, in addition to improving information processing (Bernardo, Clara et
al. 2011) and enhancing the signal-to-noise ratio of neural signals (Jang, Chung et al. 2020), increasing
synchrony can enable networks to integrate information more easily (Buehlmann and Deco 2010, Li, M1
et al. 2018) by promoting mutual influence throughout the network. This means that by synchronizing
activity, neurons in the perturbed networks can collectively process information in a more coherent and

collaborative manner.

6.4 Never function without structure

It remains imperative to understand the interaction between structure, function, and the unpredictable
dynamics created by nonlinearity in order to unravel the mtrinsic adaptability of neural networks to
respond to changes in their conditions. Combined, the findings from Papers I and II demonstrated that
when neural networks are subjected to perturbation such as the interference with synaptic processes, the
underlying structural features can change and influence the ability of the network to maintain its functional
itegrity. Robust structural network properties such as modular organization and distributed paths, can
exhibit resilience by redistributing the information flow and adapting their functioning. This aligns with
perturbation studies using external stimulation to show that neural networks can evolve towards new
dynamic states by modifying their underlying connectivity (Poli, Pastore et al. 2015, Bloch, Greaves-
Tunnell et al. 2022). In Paper II, networks responded to perturbation by transiently de-clustering modules
and increasing the path lengths between them, which occurred within the same time frame as increased
network bursting and synchronization (as presented in Paper I). These network changes are not random.
Previous studies have demonstrated that de-clustering of specialized modules enables more efficient
mformation transmission and increases network mtegration (Park and Friston 2013, Joanna Su Xian,
Kwun Kei et al. 2019). Furthermore, this increase in efficiency and integration is also associated with
increased synchrony (Buehlmann and Deco 2010, Palmigiano, Geisel et al. 2017, Li, Mi et al. 2018),

further highlighting how structure and function are mutually reinforcing even in perturbation.

The interrelationship between structure and function is not solely limited to the network’s ability to
withstand perturbations. Adaptive processes such as plasticity mechanisms within the network, can be
guided by the underlying structural properties to determine the network’s capacity to recover and re-
establish its functionality. For example, when the function of nodes or connections are disrupted, the
structural features of the network can guide the rewiring of connections or the activation of latent pathways
to restore functional connectivity. This may account for the connectivity changes observed, for example,
after a stroke (Blaschke, Hensel et al. 2021) where functional recovery processes are often accompanied

by an increase in path lengths (Park, Chang et al. 2011, Zhang, Zhang et al. 2017) and/or a decrease in
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clustering (Wang, Yu et al. 2010); both phenomena have also been reported in Paper II. Based on
topological considerations, this also implies a shift from small-worldness to random network organization
i the brain (Wang, Yu et al. 2010) suggesting a less optimized reorganization mvolved in regaining
function. It 1s important to note that in our i vitro neural networks, this less optimized topology was
transient since the network was able to reconfigure by resuming modular organization and short paths.
This could reflect the differences between the in vitro and the m vivo conditions where the latter are
significantly larger systems, have more pathways, and are associated with more complex processing and
behaviors. Other factors such as widespread inflammatory responses (Golia, Poggini et al. 2019, Lecca,
Jung et al. 2022) can also make it harder for these neural plasticity mechanisms to mitigate functional
mmpairment 12 vivo. Notwithstanding, the key takeaway 1s that adaptive response is intricately mtertwined
with the network’s structural characteristics and flexibility which allows it to contingently reorganize to

compensate for disturbances.

Finally, the topology of small-world complex networks with high clustering and hierarchical organization
can have a profound impact on the spread of perturbations and their influence on overall network
function. For one, network hubs which serve as the focal pomts for information exchange, enhance the
potential for synchronization to emerge within the network (Senden, Deco et al. 2014, Schmidt, LaFleur
et al. 2015, Kim, Harris et al. 2022). Their dense interconnectivity facilitates mutuality - where the flow
of information among areas with direct connections influence each other - and can shape synchrony in
the network (Wang and Chen 2002, Senden, Deco et al. 2014, Vlasov and Bifone 2017). This can have
adverse ramifications for brain function, for example, driving certain neuropathology characterized by high
synchrony such as epilepsy (Xin, Anastasia et al. 2021) and schizophrenia (de la Iglesia-Vaya, Escarti et al.
2014). Therefore, we must consider whether an increase in synchronization arises from adaptive
mechanisms in the perturbed networks (as suggested by Papers I and II) or whether the network structure
merely promoted the propagation of perturbation effects (implied by Paper III with concomitant

synchrony increase and functional impairment).

T'o determine which explanation i1s more likely, further investigation and analyses are required. This may
mvolve examining additional data, conducting more experiments with higher samples sizes, or employing
computational models to simulate the network dynamics and observe how perturbations affect
synchronization patterns. Understanding the origin of increased synchronization may be crucial, as it can
mform interventions and therapeutic strategies towards restoring network function. If synchronization is
found to be adaptive, it might be leveraged to promote recovery or enhance network resilience. On the
other hand, if it is maladaptive, efforts can be directed towards mitigating or disrupting the synchronization
to restore normal network functioning. The ultimate goal would be to gain a deeper understanding of the
underlying mechanisms at play and distinguish between adaptive and maladaptive responses in perturbed

networks.
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Considerations and future directions

A multidisciplinary approach to studying complex network dynamics is challenging but holds great
promise for advancing our understanding of the brain and its functions. Modelling neural networks
vitro offers a way to study and understand the mner working of neural networks without causing harm or
violating ethical boundaries regarding the extent to which we can probe the network or alter structural and
functional processes. This allows researchers with study certain isolated aspects of cellular and circuit
behavior, without the constraints and potential risks associated with studying them directly iz vivo. These
advantages create a wide array of research questions that we can explored to fully comprehend various

aspects of brain complexity.

Despite these incredible advantages, it is important to reiterate that 12 vitro neural networks only represent
a small circuit of biological components, thereby being a reductionist approach to studying the brain.
Widely used i vitro models lack insights into multicellular interactions, as other cell types such as
oligodendrocytes, vascular cells, and immune cells with vital roles in brain function tend to be absent in
such models. Nevertheless, neurons form mtricate networks based on the mtrinsic rules governing self-
organization, synaptic plasticity and synaptic transmission thus making 2 vitro neural networks highly
complex systems. Therefore, such models serve as valuable and robust complementary or alternative
approaches to 1 vivomodels. They provide a means to delve into the fundamental micro- and mesoscale
mteractions that underly complex phenomena at the macroscale level. Understanding these interactions

1s of paramount importance for gaining insights into the grander picture of neural functioning.

A promising outlook lies i the diligent focus on network data analysis. By developing robust tools and
more standardized methods, researchers can attain a more comprehensive understanding of complex
biological data (Milano, Agapito et al. 2022). This may necessitate the use of innovative algorithms and a
sophisticated understanding of how complex systems operate. The key 1s to ensure that these methods
build upon each other, so that we can capture nuances in neural activity, investigate more deeply, and
extract more information about neural behavior in healthy and perturbed conditions (Guo, Sosa et al.
2022). Future research can also greatly benefit from a continued multidisciplinary approach that integrates
theoretical modelling, empirical studies of biological networks, and computational simulations. This
holistic approach enables the discovery of hidden patterns, relationships, and subtle correlations within
neural data that may otherwise remain undetectable. This combined approach can accelerate progress in
the development of predictive models capable of discerning dynamics associated with specific stimuli or
behaviors and empower us to make accurate predictions about how neural networks might respond under
varying conditions. The latter i1s important for our ability to understand and selectively engage
neuroplasticity to promote functional recovery after perturbation and is of paramount importance for

clinical translation of preclinical findings.
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Conclusion

The field of network neuroscience offers complex and exciting opportunities to deepen our
comprehension of the brain and its functionalities. By employing a meticulous and systematic approach
to modelling biological neural networks, we can obtain invaluable insights mto network emergent self-
organization and devise novel strategies to enhance network functionality during and after perturbations.
The enigmatic nature of self-organization, non-linear excitatory-inhibitory interactions, and their
contributions to emergence in the brain pose significant obstacles to neuroscientists. Nevertheless,
unravelling the intricacies of these complex dynamics stands as a pivotal task that can benefit greatly from
the use of 1 vitro modelling and the exploration of complex micro-mesoscale interactions. Therefore, the
goal of this PhD project was to characterize self-organizing and emergent properties of biological neural

networks and elucidate complex micro-mesoscale network dynamics in healthy and perturbed conditions.

The key findings of my PhD project can be summarised as follows:

1. In witro neural networks of dissociated cortical neurons exhibit highly intricate behaviors that
adhere to the inherent programs of age-dependent network development and self-organization
found in the bram.

2. Our protocols for monitoring and recording long timeframes of network electrophysiological
activity over several weeks enabled us to capture subtle and ongoing changes in perturbed
networks that would otherwise be difficult to observe i vivo.

3. Both increased synchronization (functional response) and de-clustering of modules (structural
response) emerged as compensatory mechanisms to restore function in neural networks after
selectively silencing excitatory synaptic transmission (Papers I and II). Both responses seemed to
be self-reinforcing.

4. When mesoscale structural components (mutated tau affecting axons) were perturbed for a
prolonged period, synchronization increased concomitantly with impaired function (bursts and

propagation between nodes) and structure (axonal retraction) (Paper III).

Opverall, these findings demonstrate that disrupting functional network dynamics affects structural
dynamics and vice versa at different scales of network organization. It is therefore imperative to conduct
further investigation into the underlying mechanisms of network response in these changing conditions to
determine whether we can leverage them to aid functional recovery in damaged networks or treat
neuropathological phenomena. These findings also provide meammngful insights mto my research

questions and meet the objectives outlined for this research project.
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Neurons in vitro connect to each other and form neural networks that display
emergent electrophysiological activity. This activity begins as spontaneous
uncorrelated firing in the early phase of development, and as functional
excitatory and inhibitory synapses mature, the activity typically emerges as
spontaneous network bursts. Network bursts are events of coordinated global
activation among many neurons interspersed with periods of silencing and are
important for synaptic plasticity, neural information processing, and network
computation. While bursting is the consequence of balanced excitatory-inhibitory
(E/I) interactions, the functional mechanisms underlying their evolution from
physiological to potentially pathophysiological states, such as decreasing or
increasing in synchrony, are still poorly understood. Synaptic activity, especially
that related to maturity of E/I synaptic transmission, is known to strongly influence
these processes. In this study, we used selective chemogenetic inhibition to
target and disrupt excitatory synaptic transmission in in vitro neural networks
to study functional response and recovery of spontaneous network bursts over
time. We found that over time, inhibition resulted in increases in both network
burstiness and synchrony. Our results indicate that the disruption in excitatory
synaptic transmission during early network development likely affected inhibitory
synaptic maturity which resulted in an overall decrease in network inhibition
at later stages. These findings lend support to the importance of E/I balance
in maintaining physiological bursting dynamics and, conceivably, information
processing capacity in neural networks.

KEYWORDS

excitatory-inhibitory balance, network bursts, electrophysiology, designer receptors
exclusively activated by designer drugs (DREADDs), synchrony, chemogenetic approach,
cortical network, network activity

1. Introduction

Neural network dynamics emerge over the course of development in vitro.
Spontaneous network activity starts as immature tonic spiking and primitive patterns
of synchronized activity in the early phases of development (Ben-Ari, 2001) which then
progresses toward more complex behavior characterized by bursts (van Pelt et al., 2004;
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Fardetetal, 2018). Typically, in vitro neural networks start
exhibiting bursts between 6 and 14 DIV (Chiappalone et al., 2006;
Wagenaar et al., 2006). Such early bursts, described as “superbursts”
(Stephens et al,, 2012), are posited to be driven by depolarizing
gamma—aminobutyric acid type A (GABA,) receptors and are
hallmarks of early network development. At this stage, neuronal
interactions are strengthened leading to recurrent coactivation
among several neurons, which manifest as network bursts. These
network bursts become more recurring as the neural network
reaches maturity around 21 DIV and onward, with burst profile
of higher frequency, shorter burst onset and offset, and shorter
duration (Chiappalone et al., 2006; Bisio et al., 2014).

Network bursts are shown to be driven by excitatory synaptic
transmission (Robinson et al., 1993; Kudela et al., 2003; Teppola
et al, 2019), primarily mediated by glutamatergic ionotropic
N-methyl-D-aspartate (NMDA) receptors and alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Fast inhibition by GABA receptors also mediates network activity
and burst emergence by maintaining a balance in excitatory-
inhibitory (E/I) synaptic transmission (Teppola et al,, 2019). Early
in vitro studies reported that the relationship between network
age, structure and the resulting activity is due to variations in
synaptic connections and the differential developmental periods
of excitatory and inhibitory synaptic transmission (Burgard and
Hablitz, 1994; Kamioka et al,, 1996). As the network achieves
adequate interconnectivity and inhibitory synapses become more
functionally mature during the later stages of development,
network dynamics are reported to progress from spontaneous
uncorrelated firing to more complex patterns of synchronized
network bursts (Kamioka et al., 1996; Opitz et al., 2002; Wagenaar
et al, 2006; Baltz et al, 2010). It has been suggested that the
propagation of synchronized bursts plays an important role in
shifting the network from immaturity into a stage characterized
by a highly diversified range of electrical signaling (Ben-Ari, 2001),
rendering the network capable of complex information processing
and encoding. Several in vivo studies have reported similar age
specific correlation of the emergence of network bursts with
functional circuit development in various parts of the nervous
system including the hippocampus (Blankenship and Feller, 2010;
Raus Balind et al., 2019), cerebellar cortex (Dizon and Khodakhah,
2011; Hoehne et al, 2020), visual cortex (Chiu and Weliky,
2001), medulla (Pena and Ramirez, 2004; Magalhaes et al., 2021),
and spinal cord (Darbon et al, 2004). These findings suggest
that excitatory and inhibitory synaptic maturity are important
drivers of network bursts, burst characteristics and subsequent
network function. The effect of selective disruption of E/I balance
on bursting dynamics in neural networks may therefore reveal
substantial biological insights into network function, adaptability,
and robustness.

Investigating inhibitory—excitatory synaptic contribution to
network burst evolution in vivo is challenging. This is in part
because the brain comprises numerous complex multi-layered
neural networks, with heterogeneous synaptic connectivity among
subsets of burst-generating neurons that contribute to the dynamics
of the network (Zeldenrust et al, 2018). The interweaving
of different neurons and synapses at various topological and
temporal scales makes it challenging to determine the relative
impact of synaptic activity on physiological and pathophysiological
bursting activity. Since in vitro neural networks represent a
reductionist model of a brain network—while still maintaining
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salient age dependent electrophysiological dynamics (Ben-Ari,
2001; Chiappalone et al., 2006, 2007; Sun et al., 2010; Schroeter
etal,, 2015)—the complexity is markedly reduced, and thus enables
study and selective manipulation in a controlled manner (Marom
and Shahaf, 2002). Many studies have taken advantage of such
reductionist in vitro models to investigate network burst dynamics
at the synaptic level via manipulation that changes the balance
between excitatory and inhibitory synaptic transmission. Methods
such as pharmacological blockade of NMDA and AMPA receptors
(Chub and O’Donovan, 1998; Li et al., 2007; Suresh et al., 2016)
and membrane current blockers (Ramakers et al., 1990, 1994; van
Drongelen et al,, 2006) have provided significant insights into
the functional contribution of synaptic receptors and intrinsic
membrane currents to the generation, maintenance, duration,
and propagation of network bursts. However, these approaches
indiscriminately block NMDA and AMPA receptors potentially
expressed in inhibitory interneurons and some glia cells (Hestrin,
1993; Geiger et al., 1995; Verkhratsky and Kirchhoff, 2007; Perez-
Rando et al, 2017). In this study, we utilized hM4Di designer
receptors exclusively activated by designer drugs (DREADDs)
(Armbruster et al., 2007; Alexander et al., 2009; Urban and
Roth, 2015; Khambhati and Bassett, 2016; Whissell et al., 2016;
Panthi and Leitch, 2019; Haaranen et al., 2020a,b; Lebonville
et al, 2020; Ozawa and Arakawa, 2021) to selectively inhibit
excitatory synaptic transmission—via G-protein coupled receptors
(GPCRs) in calcium/calmodulin-dependent protein kinase alpha
(CaMKIla) expressing neurons—in neural networks interfaced
with microelectrode arrays (MEAs). This method allows us to
target and manipulate excitatory synaptic transmission with greater
selectivity while minimizing unintended off-target effects. Here,
networks were chemogenetically inhibited at 14, 21, and 28 DIV
and their dynamics characterized in comparison to their baseline
activity and to phosphate-buffered saline (PBS) vehicle and control,
unperturbed networks. The internal characteristics of network
bursts both during treatment (functional response to perturbation)
and post-treatment (recovery of the network) were analyzed. We
found that inhibition of excitatory synaptic transmission increased
bursting activity, as well as increased network synchronization
within the chemogenetically inhibited networks by 28 DIV.
Our results suggest that the long-term maintenance of the E/I
balance depends on ongoing excitatory synaptic activity, and that
disruption impairs physiological processes involved in modulating
synchrony in maturing neural networks.

2. Materials and methods

2.1. Culture of cortical networks on
microelectrode arrays

Primary rat (Sprague Dawley) cortex neurons were obtained
from ThermoFisher Scientific, USA (Cat. No: A36511). Cells were
thawed and seeded as a co-culture with 15% rat primary cortical
astrocytes also from ThermoFisher Scientific (Cat. No: N7745100).
The cells were plated at a density of approximately 1,000 cells/mm?
on Nunc™ Lab -Tek™ chamber slides (Cat. No. 177380)
coated with Geltrex matrix (cat. No. A1413201) at a working
concentration of 0.5 ug/cm? for 1:100 dilution, both obtained
from ThermoFisher Scientific. Pre-sterilized 6-well CytoView MEA
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plates were purchased from Axion BioSystems and coated with
0.5% polyethyleneimine diluted in HEPES (both from Sigma-
Aldrich, USA) and 20 pg/ml natural mouse laminin (ThermoFisher
Scientific) diluted in Dulbecco’s phosphate-buffered saline (DPBS)
according to the Axion coating protocol (Axion BioSystems, GA,
USA). Cells were plated directly over the electrodes on Axion MEA
plates at a density of approximately 1,500 cells/mm? and incubated
for 4 h before topping up wells to 1 ml with media. Cells were plated
and maintained in Neurobasal™ Plus Medium supplemented
with 2% B-27 Plus Supplement and 0.5% GlutaMAX™ all from
ThermoFisher Scientific. The culture media was also supplemented
with 0.2% (1:500 dilution from a 5 pg/ml working concentration)
Plasmocin™ Prophylactic (ant. mpp; InvivoGen, USA). The day
of plating from cryopreservation was allocated as day 0 and
50% media changes were carried out every 2-3 days. Cells were
always kept in a 5% CO, incubator at 37°C except during
media changes and imaging. All the wells on a single Axion
MEA plate were allocated to one experimental condition. This
ensured that networks that received the DREADDs virus were
handled separately from the control networks, which did not
receive the virus.

2.2. Adeno-associated virus 2/1 hM4Di
CaMKlla-DREADDs production and
in vitro transduction

Vector production and purification was performed in-house at
the Viral Vector Core Facility (Kavli Institute, NTNU). Tittering
of the viral stock was determined as approximately 10! vg/ml.
High viral stocks were aliquoted into 20 ul volumes and stored
at —80°C. Aliquots for use were thawed on ice and remaining
virus aliquoted at store at —80°C. The maximum number of thaws
for any aliquot used was 3 times. At 7 DIV, the neurons were
transduced by removing 80% of the cell media from the culture
and directly adding a dilution of adeno-associated virus (AAV) viral
particles encoding experimental hM4Di -CaMKlla-DREADDs to
the neurons (Figure 1A). The titer of the viral dilution used for
each well was 1 x 103 viral units per neuron based on tests at
different viral concentrations (results not included). The cultures
were gently agitated for 30 s to ensure proper distribution of the
viral particles and then incubated for 8 h. Afterward, each well
was topped up to 1 ml with fresh media without Plasmocin™
Prophylactic and incubated for an additional 40 h in 5% CO,, 37°C
incubator. After the incubation period, 50% media changes were
carried out as scheduled. The vector encodes mCherry which is a
bright red fluorescent protein tag that makes it possible to visualize
results soon after transduction (Figure 1B).

2.3. Immunocytochemistry

At 14 DIV, paralll hM4Di DREADD networks were
immunolabeled to investigate the specificity for vector mediated
hM4Di expression in the CaMKlla positive neurons. The cultures
were fixed with 4% Paraformaldehyde (PFA) for 20 min and
washed with DPBS before cultures were permeabilized with a
blocking solution of 0.03% Triton X-100 and 5% goat serum in
DPBS for 2 h at room temperature. Following blocking, antibodies
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at the indicated solutions (Table 1) were added in a buffer of
0.01% Triton X-100 and 1% goat serum in DPBS. Nuclei were
stained with Hoechst (bisbenzimide H 33342 trihydrochloride,
14533, Sigma-Aldrich, USA, 1: 5,000 dilution). Samples were
washed, mounted on glass cover slides with anti-fade fluorescence
mounting medium (ab104135, Abcam) and imaged. All sample
images were acquired using the EVOS M5000 imaging system
(Invitrogen, ThermoFisher Scientific). Images were processed
using Fiji/Image] and Adobe Illustrator 2020 version: 24.0.0.

2.4. Extracellular electrophysiological
recordings

Neural activity was recorded on the Axion Maestro Pro
MEA system (Axion BioSystems, GA, USA) with an integrated
temperature-controlled CO, incubator (temperature 37°C and 5%
CO,). Data acquisition was done through the AxIS Navigator
Software version 3.1.1. Spontaneous neuronal activity was recorded
across 5 weeks between 9 and 32 DIV. Spiking data was captured
using the AXIS spike detector with an adaptive threshold crossing.
Spikes were defined by a threshold of seven standard deviations
of the internal noise level with a post/pre-spike duration of
2.16/2.84 ms of each individual electrode, and with frequency limits
of 200Hz-3kHz. Spike sorting was not attempted due to high
clustering of the neurons on each electrode making it challenging
to reliably discern which spikes correspond to individual neurons
on the electrode. Furthermore, we were interested in the network
wide activity rather than the activity of individual neurons.

2.5. Chemogenetic manipulation

To investigate the network response to chemogenetic
manipulation, the novel synthetic ligand DCZ (MedChemExpress)
was used to activate the DREADDs receptors (Nagai et al., 2020;
Bjorkli et al,, 2022) to induce synaptic silencing in excitatory
neurons (see Figure 2 for workflow). In summary, MEA plates
were incubated for 15 min in the Maestro Pro chamber to
allow the activity to stabilize before commencing the recording.
Then, baseline activity was recorded for 20 min to capture the
spontaneous activity of the networks before either PBS or DCZ
was added. Afterward, either PBS (vehicle) or DCZ diluted in cell
media (treatment) was added to 45% media volume in the wells
at a final DCZ concentration of 10 WM. Networks were incubated
for 1 h and then recorded for 1 h. This 1 h recording was divided
into 3 phases of 20 min recordings denoted as 1st Treatment phase,
2nd Treatment phase and 3rd Treatment phase. The recording was
continuous, and the division was done offline during the analysis.
After treatment, 3 x 50% media changes were performed to wash
out DCZ in the inhibited networks, and 3 x 50% media changes
done in the PBS treated networks. To keep all conditions similar, a
full media change was carried out on the Control (CTRL) networks.
Networks were recorded after washout at 12 and 24 h (see Table 2
for overview of networks recordings and analysis done). We looked
at a total of 23 networks across repeated experiments, and 17
networks from the same experiment are presented here in the main
results. Six networks were excluded from the main results due to
missing data points.
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>

Deschloroclozapine (DCZ)

7 DIV network

hM4Di DREADD type
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Loss of funtion

FIGURE 1

Illustration of the workflow of the study. (A) Cryopreserved cortical neurons were thawed and seeded on precoated microelectrode arrays (MEAs)
until 7 DIV (scale bar = 200 pm). Neurons grow on top of the electrodes (black) and connect with each other across the surface. The designer
receptors exclusively activated by designer drug (DREADD) protein is encoded in a replication deficient adeno-associated viral vector (AAV2/1) that is
targeted for cytoplasmic gene delivery, thus circumventing genomic integration. The vector was added directly to the neurons in culture (on the
MEA). The vector codes for the cell-specific promoter CaMKlla so that mRNA transcription is targeted specifically at excitatory neurons which will be
the cells that express the designer receptors. The designed DREADD hM4Di receptor has mutations at two points, which results in the receptor
being insensitive to its endogenous agonist and neurotransmitter acetylcholine and instead respond only to a physiologically inert exogenous
molecule (designer drug) such as deschloroclozapine (DCZ). When DCZ binds, the hM4DiR preferentially signals through the Gai/o subset of
G-protein to inhibit adenylate cyclase and downstream cyclic adenosine monophosphate (CAMP) production, causing neuronal hyperpolarization
and induces loss of cellular activity. (B) In vitro neural network on MEA at 12 days post adding the virus. DREADDs expression was confirmed without
immunocytochemistry based on strong mCherry fluorescent expression in the network. Scale bar = 1250 pm.

TABLE 1 Overview of primary and secondary antibodies, species, and concentration.

Primaries Secondaries
Catalog number Concentration Fluorescent Catalog number = Concentration
Ck mCherry Ab205402 (Abcam) 1:1,000 Goat-anti-chicken AlexaFluor 568 Ab175477 (Abcam) 1:1,000
Ms calmodulin (CaMKlla) MA3-918 (Invitrogen) 1:250 Goat-anti-mouse AlexaFluor 568 A11019 (Invitrogen) 1:1,000
Ms NMDAR1 32-0500 (Invitrogen) 1:100 Goat-anti-mouse AlexaFluor 647 A21236 (Invitrogen) 1:1,000
Ms GABA BR1 Ab55051 (Abcam) 1:250 Goat-anti-mouse AlexaFluor 488 A11001 (Invitrogen) 1:1,000
Rb calmodulin (CaMKlla) Ab134041 (Abcam) 1:200 Goat-anti-rabbit AlexaFluor 568 A11011 (Invitrogen) 1:1,000
Rb glutamate decarboxylase Ab183999 (Abcam) 1:100 Goat-anti-rabbit AlexaFluor 647 A21244 (Invitrogen) 1:1,000
(GADG65/67)
Rb Map2 Ab32454 (Abcam) 1:250 Goat-anti-rabbit AlexaFluor 488 A11008 (Invitrogen) 1:1,000
Rb glial fibrillary acidic Ab278054 (Abcam) 1:500
protein (GFAP)
2.6. Network dynamics ana[ysis and where spikes are the total number of spikes for a recording channel
network burst detection and At is the time difference between the first and last spike
included in spikes.

The recording spike frequency was computed using the For shorter windows we define the instantaneous spike

equation: f = %, frequency of the window, fyindow» a5 fvindow = S‘ziﬁ?.
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TABLE 2 Overview of networks analyzed, conditions, treatments received, and recordings done.

Neuronal networks analyzed Conditions Protocol Electrophysiology recording
Control x seven networks (six included in main No DREADDs, no DCZ Baseline

results) treatment, no PBS vehicle

Control x seven networks (five included in main DREADDs + PBS vehicle 10% PBS in cell media Baseline

results) During PBS vehicle
Recoveryat 12 h
Recovery at 24 h

Treatment x nine networks (six included in main DREADDs + DCZ treatment 10 uM DCZ diluted in cell media Baseline

results) During DCZ treatment

Recoveryat 12 h

Recovery at 24 h

Here, spikes are the spikes in the given window, n is the
number of active electrodes in the recording, and At is the width
of the window of interest. The instantaneous spike frequency was
computed using a moving window of 1 s with a step size of 0.1 s,
resulting in an overlap of windows for instantaneous measures.

Bursts were defined as sequences of at least four spikes with an
inter spike interval (ISI) lower than a threshold of 100 ms for all

TABLE 3 Burst and network burst detection parameters on the
cumulative spike train over all electrodes.

Network burst
detection parameters

Burst detection parameters

ISI threshold 100 ms Minimum ISIg 12 ms
threshold
Minimum spikes in 4 spikes Maximum ISIg 300 ms
burst threshold
Minimum spikes 6 spikes
in network burst
Frontiers in Neural Circuits 05

electrodes (Table 3). The ISI was defined as the quiescent period
between two consecutive spikes. Network bursts were defined as the
collective sequences of synchronized bursts within an automatically
detected ISI threshold for each well at every recording time
(Bakkum et al., 2013). First, the ISI between six consecutive spikes
(ISIs) on the flattened spike train were binned on a logarithmic
scale, and the peaks of the binned histograms were detected. The
thresholds were centered between these two peaks on a logarithmic
scale and limited to the range between at minimum 12 ms and
at maximum 300 ms (Gandolfo et al,, 2010; Obien et al., 2015).
A network burst was detected for spikes where the interval between
six consecutive spikes was below the found threshold. Please see
(Chiappalone et al., 2005; Pasquale et al,, 2010) for details of
standard burst detection methods, also reviewed in Cotterill et al.
(2016). The inter burst interval (IBI) was detected as the quiescent
period between two bursts or two network bursts (NIBI). Burst
analyses were also performed to identify the number of spikes in
each network burst (spikes in network burst) and the count of the
number of network bursts generated with the number of spikes
(number of occurrence). The burstiness index of a recording was
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defined as the amount of activity contained in the 15% most active
windows of the computed instantaneous spike frequencies and
provides an indication of synchronized neuronal participation in
global network bursts (Wagenaar et al., 2005).

The coherence index was calculated as the standard deviation
divided by the mean of the instantaneous spike frequencies. A high
coherence index indicated more activity was contained in co-
occurring bursts on multiple electrodes. Each parameter of all
recording groups was assessed for normality using the Shapiro-
Wilk test. Comparisons between groups were evaluated using the
Welch’s t-test or the Conover test in the case of normality and non-
normality, respectively. Both tests were corrected with Bonferroni
corrections for multiple comparisons. Statistical significance was
determined if the p-value falls below the significance level
(p < 0.05).

3. Results

3.1. AAV2/1 Gi-DREADD is expressed
exclusively in CaMKlla positive neurons

AAV mediated-DREADDs expression was confirmed with
immunolabeling to amplify mCherry expression in target
CaMKlla positive neurons (Figure 3A). Neither inhibitory
neurons (GAD65/67) (Figure 3B), nor astrocytes glial fibrillary
acidic protein (GFAP) (Figure 3C) showed co-labeling with
mCherry. This confirmed that there was cell specific expression
of the AAV-DREADDs. Furthermore, networks at 14 DIV
positively expressed GABA (Figure 4A), GABA B receptors
(Figure 4B) and NMDA receptors (Figure 4C) confirming
network capacity for excitatory and inhibitory signaling at this
age.

In the sections that follow, we provide a detailed report
of the main findings of our electrophysiological investigations
and relevant analyses. Notwithstanding variability in our data, as
discussed in subsequent sections, we present statistically significant
results that support the hypothesis that selective inhibition alters
the bursting dynamics in in vitro cortical networks.

3.2. Spontaneous activity and burst
characteristics at baseline

Spontaneous network activity was recorded at different
timepoints during the experiment for the chemogenetically
inhibited networks, PBS vehicle networks and Control networks,
which did not receive any treatment (hereafter referred to as
DCZ networks, PBS networks and CTRL networks, respectively).
The spontaneous baseline network profile before the addition
of either PBS or DCZ (Step 1, in Figure 2) captured across
5 weeks is presented in Figure 5. The networks in each condition
showed some variations in their activity and bursting characteristics
between each recording from 9 to 32 DIV, nonetheless, the
mean spontaneous network activity of all networks followed a
typical trajectory of development, with increasingly more bursts
as the networks reached maturity, according to previous work
(Kamioka et al, 1996; Wagenaar et al., 2006). The CTRL
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networks exhibited more robust electrophysiological activity across
several of the parameters, especially in the mean firing rate
from 21 DIV onward when compared to the other networks
(Figure 5A). Nonetheless, all networks had a trend of increasing
mean firing rate between 9 and 28 DIV with a decrease at
32 DIV (Figure 5A), and an opposite trend in the ISI, which
decreased over time until 28 DIV, then increased again by 32 DIV
(Figure 5B). All networks exhibited bursting activity at 9 DIV
and continued to exhibit varying degrees of bursting throughout
network lifetime.

We found that the mean burstiness steadily decreased
between 14 and 26 DIV for CTRL networks and between
9 and 28 DIV for PBS networks (Figure 5C). From then
onward, until 32 DIV, both PBS and CTRL networks increased
drastically in burstiness. Interestingly, while the DCZ networks
also exhibited a decrease in burstiness between 9 and 18 DIV,
these networks had a significantly higher burstiness at 21 DIV
when compared to PBS (p < 0.02) and CTRL (p < 0.02)
networks, and at 28 DIV compared to PBS (p < 0.0006) and
CTRL (p < 0.002) networks (Figure 5C). Furthermore, the mean
burst duration for all networks across the 3 conditions decreased
similarly between 9 and 18 DIV, after which point the DCZ
networks started to display increasingly longer bursts, which
was significant at 28 DIV when compared to PBS networks
(p < 0.003), but not CTRL networks (p > 0.05) (Figure 5D).
The CTRL networks also displayed increasingly longer bursts
during this time, while PBS networks maintained a stable burst
duration between 18 and 32 DIV (Figure 5D). All networks
maintained a similar trend in mean IBI and mean NIBI, with
both decreased steadily between 9 and 28 DIV, with a slight
increase at 32 DIV for both DCZ and CTRL networks (Figures 5E,
H).

We also noticed that there was a lot of variation between
day-to-day recordings in the PBS and DCZ networks for both
fraction of spikes in bursts (Figure 5F) and fraction of spikes
in network bursts (Figure 5G). The CTRL networks, however,
maintained a very constant burst composition with > 90% spikes
occurring in both isolated bursts (Figure 5F) and network bursts
(Figure 5G) from 14 DIV onward. However, when we looked at
network synchrony, which was measured by the coherence index,
we noticed that after 18 DIV there was an overall increase in
synchrony in DCZ networks at baseline, with a slight decrease
between 21 and 28 DIV. Both PBS and CTRL networks exhibited
decreased synchrony, with PBS networks decreasing between 9 and
28 DIV and CTRL networks between 14 and 28 DIV (Figure 5I),
even though both had > 90% spikes occurring in network bursts
from 18 DIV onward (Figure 5G). The increase observed in DCZ
networks at 21 DIV did not differ significantly when compared
to the other networks, but there were significant changes at
26 DIV compared to CTRL (p < 0.0007) and PBS (p < 0.002)
networks, and at 28 DIV compared to CTRL networks (p < 0.004)
and PBS networks (p < 0.0004). This increase in synchrony in
DCZ networks from 18 DIV also corresponded to the observed
increase in burstiness and burst durations at the same timepoint
(Figures 5C, D). At 32 DIV, all networks including PBS and
CTRL networks showed an increase in synchrony (Figure 5I), with
only a significant difference between DCZ and CTRL networks
(p < 0.003).
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GAD65/67
GAD65/67

FIGURE 3

AAV2/1 hM4Di designer receptors exclusively activated by designer drugs (DREADDs) expression in neurons in vitro. (A) The mCherry antibody was
used to enhance the fluorescent of the hM4Di receptors, which were positively colocalized with the somata of CaMKlla positive neurons. (B)
GAD65/67 expression indicated the presence of inhibitory neurons and showed no soma colocalization mCherry hM4Di expression. (C) Glial
fibrillary acidic protein (GFAP) antibody was used to label astrocytes in the culture which also showed no soma colocalization with mCherry hM4Di
expression. Scale bar = 125 pm

- GABA BR
GABA BR

GABA BR

FIGURE 4
Immunocytochemistry for GABA (A), GABAB receptors (B) and NMDA receptors (C) along with MAP2 neuronal cytoskeletal marker at 14 DIV. Scale
bar =200 pm
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Activity and burst composition at baseline across 5 weeks of recording. Each plot presents the mean activity for all the networks in each condition
[DCZ treated (n = 6), PBS vehicle (n = 5) or CTRL (n = 6)]. Network behavior for each condition is described in terms of mean firing rate (A), mean
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one group, the shaded bars show the standard error of the mean, and the shaded circles show the individual data points (the mean activity obtained
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3.3. Analysis of network response and
network recovery due to selective
inhibition

To identify the changes in activity in the neural networks,
we compared spontaneous baseline activity with activity during
either DCZ treatment or PBS vehicle, as well as the network
activity after DCZ removal at different time intervals. Hereafter,
we refer to the recordings during DCZ treatment or PBS vehicle
as “response.” In these results, we have only included the analysis
of the recordings done at 12 and 24 h post-washout as we were
interested in the network’s recovery over a longer timeframe after
perturbation. These recordings will be subsequently referred to
as “recovery.” The response activity was analyzed in 3 phases
of 20 min recordings—1st phase, 2nd phase, and 3rd phase—to
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better characterize dynamic network changes. The baseline activity
and inhibited activity of one DCZ treated network are shown
as the recording trace generated from 64 channels on the MEA
(Figure 6A). Prior to DCZ application, the spontaneous firing rate
at baseline was stable for the entirety of the recording, observed
as regular spikes and a high occurrence of bursts containing
< 10 spikes per bursts (Figure 6A, first panel labeled “Baseline”;
Figures 6B, C). As expected, the application of DCZ caused a
decrease in network activity and ablation of networks bursts,
which was captured during the Ist phase response (Figure 6A,
second panel labeled “Treatment 1st phase”). The network started
exhibiting intermittent spikes and isolated bursts that gradually
increased as the recording progressed (Figure 6A, third and fourth
panels labeled “Treatment 2nd phase” and “Treatment 3rd phase”),
indicating that network activity recovered in the presence of DCZ.
We also noticed that during the 1st phase response, the DCZ
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networks exhibited very low occurrences of bursts (< 2 occurrences
of bursts at any timepoint during the recording period), and the
occasional burst had up to 150 spikes per bursts for individual
bursts (Figure 6B) and up to 800 spikes per bursts for network
bursts (Figure 6C). There was also an increase in the number
of burst occurrences for the 2nd and 3rd phase responses for
both individual bursts and network bursts for the DCZ networks,
exceeding 600 occurrences of bursts with < 10 spikes in bursts for
the 3rd phase response (Figure 6B) and up to 200 occurrences of
bursts with < 10 spikes in network bursts (Figure 6C). The PBS
networks depicted here maintained some bursting activity during
the 1st phase response, though there were lower occurrences of
bursts and fewer spikes in both individual bursts and network
bursts when compared to the DCZ networks (Figures 6B, C). There
was, however, a gradual increase in the number of spikes in bursts
at the 2nd and 3rd phase response for both individual bursts and
network bursts (Figures 6B, C). The PBS networks also maintained
a trend similar to DCZ networks where the most occurrences of
bursts had < 10 spikes, and there were some bursts with up to 100
spikes per burst by the 3rd phase response for both individual bursts
and network bursts. Unlike the inhibited networks though, which
had up to 1,000 spikes per network burst by the 2nd phase response,
PBS networks did not exceed 100 spikes in bursts or network bursts
(Figures 6B, C).

We performed further analyses to look at both the fraction
of spikes in bursts and the burstiness index for the networks at
baseline, during response, and during recovery on the days that
they were manipulated (14, 21, and 28 DIV). These results revealed
that the CTRL networks maintained their characteristic of having
> 90% of spikes located in bursts across all the recordings (baseline,
response, and recovery) at 14, 21, and 28 DIV (Figures 6D-F).
There were no significant changes in the fraction of spikes in
bursts for CTRL networks at recovery. We noticed that there was
a decrease in the fraction of spikes in bursts between baseline and
1st phase response across all the days for the PBS networks, and a
slight increase during the 1 h response recording (Figures 6D-F),
however, these changes were not found to be significantly different
from baseline (p > 0.05). At 14 DIV, the PBS networks had a
very quick recovery at 12 h, exhibiting > 80% of spikes in bursts
which was maintained for at least 24 h. However, recovery at
12 h appeared impaired at 21 DIV, at which time point the PBS
networks decreased significantly below baseline in the fraction of
spikes in bursts (p < 0.05) (Figure 6E). Interestingly, although
DCZ networks had a nonsignificant decrease in the fraction of
spikes between baseline and the 1st phase response at 21 DIV, these
networks stably maintained > 80% of spikes in bursts between
baseline and during the 1 h response recording for all 3 days
(Figures 6D-F). As expected, there was a significant decrease in the
fraction of spikes in bursts after DCZ washout at 12 h compared
to baseline across the 3 perturbation days. This change, however,
was only significant at 21 DIV (p < 0.005) and 28 DIV (p < 0.006)
(Figures 6D-F). While the CTRL networks maintained a high
bursting profile at 14 DIV across all the recordings (Figure 6G),
this steadily decreased until burstiness had diminished significantly
by 28 DIV when compared to DCZ networks. PBS networks also
had lower burstiness profiles across all the recording sessions at
28 DIV where we saw a distinct difference in burstiness at 2nd
and 3rd phase responses compared to DCZ networks (p < 0.00005;
p < 0.00003, respectively). The DCZ networks maintained a high
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burstiness especially noticeable during the 1 h response recording
at 14 and 28 DIV (Figures 6G-I). However, at 21 DIV, there was
a significant decrease in burstiness between baseline and the 1st
phase response (p < 0.00001), and although there was a significant
increase between 1st and 3rd phase response (p < 0.006), this was
still significantly lower than baseline (p < 0.05). In addition, as
can be observed in (Figures 6D-F), across all the perturbation
days burstiness decreased to significant levels after washout at
12 h recovery when compared to baseline at 14 DIV (p < 0.002),
21 DIV (p < 0.0000005) and 28 DIV (p < 0.005). Activity in
the DCZ networks did not recover to baseline levels within 24 h
(Figures 6G-I).

We also found that during response at 14 DIV, the PBS and
DCZ networks had overall shorter mean burst duration, and
shorter mean IBI than the CTRL networks (Figures 7A, B). These
differences were found to be significant when comparing DCZ
with CTRL networks at 1st (p < 0.04), 2nd (p < 0.04) and 3rd
(p < 0.03) phase responses, and PBS and CTRL networks only at
2nd (p < 0.005) and 3rd (p < 0.002) phase responses. There were
no significant differences in the responses between DCZ and PBS
networks. There was also a decrease in both mean burst duration
and mean IBI for CTRL networks at 24 h recovery, while both DCZ
and PBS networks increased in both parameters (Figures 7A, B).
At 28 DIV, consistent with what was seen with the burstiness index
in Figure 61, the DCZ networks had an overall steady increase
in mean burst duration during the 1 h response recording, with
correspondingly longer intervals between each burst (Figures 7E,
F). DCZ networks also had a decrease in both mean burst duration
and mean IBI between 3rd phase response and 12 h recovery, with
a slight increase in mean IBI at 24 h recovery (Figures 7E, F).
Interestingly though, there was variability in the responses across
the networks, especially observed at 14 and 21 DIV (Figures 7A-
D). Both days showed an increase in mean burst duration at 12 h
recovery for all networks, but this was sustained until 24 h only at
14 DIV (Figures 7A, C). Similarly, for both mean burst duration
and mean IBI at 21 DIV, there were no significant differences in
the response between any of the networks across the recordings,
though there was an overall decrease in the CTRL networks
compared to what was observed at 14 DIV.

3.4. Analysis of network bursts and
synchrony

Since we observed that the increase in bursting activity in
DCZ networks during response seemed to be a result of selective
silencing, we wanted to investigate how synchronous the networks
were across the different recording phases in comparison to the
PBS and CTRL networks. Again, we observed that the CTRL
networks exhibited between 90 and 98% of spikes consistently in
network bursts across the different recording sessions and for all
perturbation days (Figures 8A, C, E). However, there was notable
variability in the coherence index between the networks at 14
and 21 DIV, with CTRL networks having highest values across
the response phases at 14 DIV (Figure 8B). However, synchrony
gradually decreased for both CTRL and PBS networks until 28 DIV,
but increased for DCZ networks (Figures 8B, D, F). Though the
fraction of spikes in network bursts for PBS networks decreased
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FIGURE 6
Neural network activity at baseline and in response to designer receptors exclusively activated by designer drugs (DREADDs)-mediated inhibition of
excitatory synaptic transmission. Each panel in (A) show a trace generated from 64 recording channels of spontaneous activity of one DCZ treated
network at 28 DIV. The first panel shows the 20 min recording of the spontaneous firing rate at baseline, the second, third and fourth panels show
the 1st, 2nd, and 3rd phases of 20 min recordings of spontaneous activity during DCZ treatment. The x-axis denotes time in seconds and the y-axis
denotes firing rate in Hz. (B) The spikes in bursts and (C) network bursts for the baseline, 1st, 2nd, and 3rd phase recordings are shown for sample
DCZ treated networks (n = 3) and for sample PBS vehicle networks (n = 2). The x-axis denotes the number of spikes, and the y-axis denotes the
number of burst occurrences of a given number of spikes. (D—F) Plots of the fraction of spikes in bursts across baseline, treatment and recovery
recordings at 14, 21, and 28 DIV for all network groups (n = 6 for CTRL and DCZ, and n = 5 for PBS). The x-axis denotes the recording condition, and
the y-axis denotes the percentage of spikes located in bursts. (G—I) Plots depicting burstiness of each network group across the baseline, treatment
and recovery recordings at 14, 21, and 28 DIV. The x-axis denotes the recording condition, and the y-axis denotes the burstiness index as the
fraction of activity in the 15% most active time windows. The solid lines and solid circles plot the mean values for all networks in one group, the
shaded bars show the standard error of the mean, and the shaded circles show the individual data points.

between the baseline recording and the 1st phase response on all
days, this was only found to be significant at 21 DIV (p < 0.02)
(Figures 8A, C, E). The PBS networks also maintained lower
synchrony than the DCZ networks during response across all days
(Figures 8B, D, F). Additionally, for all the perturbation days,
the DCZ networks maintained > 90% spikes in network bursts
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during the 1 h response recording but they did not fully recover
to baseline after the media changes at 12 or 24 h (Figures 8A, C, E).
Similarly, the DCZ networks also had sustained synchrony during
the 1 h response recording, but reduced synchrony at 12- and 24-
h recovery for all 3 perturbation days (Figures 8B, D, F). Overall,
these results indicate that the inhibited networks steadily began
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Neural network mean burst duration and mean inter burst intervals. (A,C,E) Plots showing the mean burst duration and (B,D,F) showing the mean
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28 DIV. The solid lines and solid circles plot the mean values for all networks in one group, the shaded bars show the standard error of the mean,
and the shaded circles show the individual data points.

developing more synchronous activity after the first perturbation
session at 14 DIV but failed to recover baseline dynamics within
24 h after the perturbation.

4, Discussion

Over the last decades, an increasing amount of research is
conducted to answer questions related to in vitro neural network
development, E/I interaction, and observed spontaneous dynamic
network properties in the absence of external stimuli (Latham
et al, 2000). Cortical neurons in vitro tend to form densely
connected networks by 7 DIV, as observed in this study (Figure 1),
and by 14 DIV, the neurons had formed distinct structural
organization with prominent axon fasciculation, and dendritic
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connections across the entire network, as well as mature excitatory
and inhibitory receptors as seen in Figure 3. A recent study has
shown that functional interactions between maturing excitatory
and inhibitory synapses result in dynamic spiking activity and the
emergence of network bursts (Teppola et al,, 2019). Increasing
either excitation or inhibition can therefore be expected to result
in aberrant bursting dynamics in neural networks, thus we set
out to investigate how bursting dynamics are affected and how
neural networks recover when excitatory synaptic transmission
is transiently inhibited. To do this, we took advantage of the
unique opportunity that DREADDs provide to selectively target
excitatory activity, and after transducing the networks with AAV
2/1 hM4Di CaMKlla-DREADDs, we proceeded to activate the
DREADDs with DCZ at 14, 21 and 28 DIV. Our primary findings
are: (1) inhibition of excitatory synaptic transmission resulted
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in an increase in network burstiness by 28 DIV; (2) inhibited
networks recovered activity in the presence of DCZ indicating rapid
homeostatic response to network silencing; (3) by 28 DIV, inhibited
networks exhibited higher synchrony and burstiness during and
following selective inhibition contrary to PBS and CTRL networks
that had diminished levels.

Network activity and bursting dynamics are inherently unique
to each network in vitro, nonetheless, in our study all networks
exhibited some degree of network bursting activity by 9 DIV.
Early network bursts are significant for network development and
maturity and are deemed to be physiologically relevant for neural
information processing and synaptic plasticity (Lisman, 1997). In
developing networks, bursts act as more reliable determinants
of neurotransmitter release than single spikes (Lisman, 1997;
Delattre et al,, 2015), thus synaptic efficacy and facilitation rely on
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network bursts to increase the probability of postsynaptic response
to presynaptic inputs. While others (Marom and Shahaf, 2002;
Chiappalone et al., 2006; Wagenaar et al., 2006; Bisio et al., 2014)
reported increase in network bursts toward more mature stages
in vitro (21-28 DIV), our networks showed a propensity toward
high, regular bursting activity—as can be seen in Figures 5F,
G where over 70% of spikes occurred in bursts and network
bursts—for all networks from as early as 9 DIV. Due to their
early appearance, these bursts appeared to be akin to “superbursts”
typically observed at earlier development, before the network
establishes more mature neuronal phenotypes and before GABA
receptors mature (Stephens et al., 2012) and may be driven by the
early evolution of the network morphology (Kim and Lee, 2022).
Evolving network morphology plays a significant role in
the electrophysiological dynamics of the networks throughout
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development. Neural networks develop and mature through a
bottom-up process of self-organization which can be observed
everywhere in nature, from the microscopic to the macroscopic
level (Turing, 1990; Kondo and Asal, 1995; Arango-Restrepo
et al, 2021). The process of self-organization involves the
dynamic interaction between constituent elements of a system and
implies that there is a reciprocal relationship between structural
organization and function (Karsenti, 2008). In physical and
biological systems, self-organization is part of emergence, i.e.,
unpredictable interactions between known constituent elements,
and drives morphogenesis (Chialvo, 2010; Dobrescu and Purcarea,
2011). Inherent to the process of self-organization of neural
networks is the gradual development of complex hierarchies
through local interactions (Karsenti, 2008; Sasai, 2013). Thus, each
neural network can be expected to self-organize in a different
way. This may explain the observed variability in the baseline
activity between each experimental group, as well as between
recordings from the same group as shown in Figure 5. It is
reasonable to assume that each in vitro neural network will
have unique mesoscale structural and functional features, such
as dendritic-axonal topological arrangement, cell clustering and
synaptic connections which will shape the pattern of network
activity (Kaiser and Hilgetag, 2010; Klinshov et al., 2014). Neurons
within clusters may receive stronger inputs, exhibit more intense
activity, and contribute more to the initiation, propagation and
maintenance of activity (Okujeni et al, 2017). We can still,
however, confidently draw comparisons between networks given
that intrinsic developmental programs, such as E/I synaptic
development, govern their self-organization and emergent activity
over time (Ben-Ari, 2001; Tetzlaff et al, 2010). As a result, all
networks reliably exhibit consistent patterns of age dependent
bursting behavior, rendering the latter a reliable measure of
network development and maturity, and also network function and
potential dysfunction.

It is hardly surprising that the developmental profile of
total network firing and bursting activity vary from recording
to recording between the networks. It should be noted that
because neural activity is spontaneous and unpredictable,
electrophysiological data obtained within narrow study timeframes
for example < 28 DIV (Weir et al, 2015; Passaro et al,, 2021),
and recording time frames for example < 10 min recordings
(Jimbo et al,, 1999; Eytan et al.,, 2003; Passaro et al., 2021) may
present more uniform behavior and not adequately reflect dynamic
network changes. In fact, studies that monitor network activity
over extended time frames have verified that neuronal dynamics
can be very unstable (van Pelt et al, 2004; Gal et al, 2010).
Still, variability in electrophysiological profiles may currently be
underreported in the relevant literature creating a necessity for
long-term investigations. In our study we monitored network
activity from early development, until 32 DIV, a time frame widely
accepted as a period of network maturity (Wagenaar et al., 2006).
In addition, we recorded continuous spontaneous baseline activity
for 20 min and, response activity for 1 h as opposed to 3-10 min
recordings often reported in the literature. Our longer recordings
make it easier to capture variable profiles in network activity.

Notwithstanding the variability in network activity profiles,
the responses of the DCZ networks were consistent and distinct
from the CTRL and PBS networks and demonstrate that selective
inhibition of excitatory synaptic transmission can modulate long
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term network dynamics. We found that network burstiness began
increasing steadily between the first and second perturbation
session in DCZ networks and remained high while the PBS and
CTRL networks decreased in burstiness as shown in Figure 5C,
suggesting that selective inhibition affected the maintenance
of endogenous network excitation and inhibition, and affected
network bursting. Importantly, both PBS and CTRL networks
showed a sustained decrease in baseline burstiness over time, as
well as an overall decrease in baseline synchrony. This indicated
that while bursting may be the dominant activity profile for these
networks, there was still a dynamic balance being maintained
between E/I, such that global inhibition may have played a role
in desynchronizing the network, which may be a fundamental
process in neural network development. According to studies
investigating sensory coding, desynchronization in neural networks
optimizes information processing and performance (Waschke
et al,, 2019) and may strongly improve the fidelity with which
novel information is encoded (Pachitariu et al., 2015). Increased
synchronization is implicated in several neurological disorders
including but not limited to epilepsy and Parkinson’s disease, where
inhibition becomes severely impaired (Calcagnotto et al., 2005;
Harrington et al,, 2018). Thus, it follows that the uninhibited
networks would mature and develop the appropriate excitatory
and inhibitory processes necessary to maintain network activity
within a healthy dynamic range and achieve desynchronization
in order to optimize network information processing capabilities.
The observed decrease in coherence in the DCZ networks between
9 and 18 DIV reflected what was observed in the uninhibited
networks as part of the normal process of development. It is
plausible that inhibition at 14 DIV may have triggered the slow
synaptic plasticity process mediated by G-protein coupled signaling
systems to, for example, induce long term modification of pre and
postsynaptic inhibitory response (Chiu and Weliky, 2001; Rozov
etal, 2017; Chiu et al,, 2019). Therefore, we conclude that transient
external inhibition may trigger the network to decrease endogenous
inhibitory mechanisms leading to an overall increase in global
activation of the neural network.

While there may be different explanations as to the cause of
an increase in synchronization and a decrease in inhibition, the
most plausible one may be linked to our experimental set up and
methods used. In our study, the activation of hM4Di DREADDs
blocks cyclic adenosine monophosphate (cAMP) production (by
Gai protein blockade of adenylate cyclase), which results in neurons
being unable to detect and respond to extracellular signals. Thus,
DREADDs expression and activation on excitatory neurons likely
prevents neurons from reliably responding to excitatory post-
synaptic potentials, thereby causing disruption in activity, and the
potential development of inhibitory synapses. It is well documented
that excitatory synaptic activity regulates the development and
maintenance of inhibitory synapses on excitatory neurons (Lin
et al,, 2008), and that deprivation of excitatory synaptic activity
reduces the density of synaptic GABA receptors, and the number
of functional inhibitory synapses in cortical cultures (Kilman
et al, 2002) and hippocampal slices (Ramakers et al, 1994;
Muramoto et al., 1996; Chub and O’Donovan, 1998). Furthermore,
in early development, GABAR are predominantly depolarizing to
promote cell proliferation, neurite growth and synapse formation
(Ben-Ari, 2002). While it is still unclear when the shift from
depolarization to hyperpolarization occurs (as there are significant
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differences associated with sex, brain region and neuronal type)
(Peerboom and Wierenga, 2021), disruption in this process due
to prolonged inhibition may plausibly prevent the direction
reversal of GABA currents through ionotropic GABAR leading
to sustained or increased activity. In our study, the consequence
of excitatory synaptic inhibition at 14 DIV was a subsequent
increase in burstiness and synchrony in DCZ networks at baseline,
indicating impaired inhibitory synaptic development and overall,
less inhibition in the network.

Although the emerging picture is that E/I synaptic activity
is the single most important factor regulating neural network
bursting behavior, our results also indicate that there are intrinsic
homeostatic mechanisms at work. This is especially relevant
considering the recordings during response and recovery at the
different perturbation days for the DCZ networks (Figures 6-
8). According to the theory of homeostatic plasticity, network
activity is stabilized by a negative feedback process where a
forceful change in activity is resisted, and the system returns to a
tolerated dynamic range (Turrigiano, 1999). This process typically
operates on relatively slow time scales, from several hours to days,
however, rapid presynaptic homeostatic plasticity following acute
AMPAR blockade (Delvendahl et al., 2019), and rapid homeostatic
plasticity via disinhibition after vision restriction (Kuhlman et al.,
2013) have also been reported. The data presented in our study
show that inhibited networks were able to recover network bursts
during DCZ exposure, supporting several previous studies where
networks bursts were maintained in the presence of activity
suppressing chemogens (Chub and O’Donovan, 1998; Li et al,
2007; Zeldenrust et al., 2018). The exact mechanism for recovery
during chemogenetic manipulation is unknown, however, we posit
that several factors including alterations in neuromodulator levels
and neurotransmitter release (Ramakers et al,, 1994; Muramoto
etal, 1996; Chub and O’Donovan, 1998) or sensitivity (Turrigiano
etal,, 1998; Desai et al., 1999) contributed to the network rescuing
spontaneous activity.

Furthermore, an increase in burstiness and synchrony during
DCZ silencing may indicate that silencing excitatory synaptic
transmission may have lowered the spike threshold of excitatory
neurons causing neurons to respond more robustly to activation,
in a manner that reverberates in the network without much
inhibitory control. We know from this study and others that
in vitro, neurons tend to connect with each other in a modular
organization of several clusters connected by both long- and short-
range connections (Antonello et al., 2022). Within a network with
reduced inhibition, as one module becomes activated whether
spontaneously or due to external influence, the activity will quickly
spread throughout the network in a positive feedback manner,
increasing network synchronization (Huang et al, 2017). Our
results also suggest that homeostatic mechanisms might play a role
in the recovery of the DCZ networks at 28 DIV as seen with the
decrease in burst duration and IBIs (Figure 7) as well as burstiness
and synchrony (Figure 8) between 3rd phase response and 12 h
recovery. We cannot entirely exclude, however, that such changes
may be related to the media changes done in order to wash out
DCZ from the networks. Also, though activity recovered in the
sense that there was a decrease in burstiness and synchrony, the
inhibited networks did not recover to baseline, but rather had
drastically lower activity at both 12- and 24-h recovery as shown
in Figures 6-8. This may indicate that recovery to baseline is a
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very slow process and takes longer than 24 h, especially before the
networks reach 28 DIV. Since there was an increase in both baseline
burstiness and coherence between 28 and 32 DIV for all networks
as shown in Figure 5, it would be interesting to see whether this
would stabilize as the networks get older and remain unperturbed
and unstimulated.

Finally, an unexpected observation was a response to PBS
vehicle between the baseline and 1st phase responses in PBS
networks. PBS is often used as a vehicle in many in vitro and
in vivo experiments. Addition of 10% PBS as a vehicle might have
affected the concentration of media nutrients and caused a response
in the firing activity. On the other hand, the observed effects may
be merely due to intrinsic differences in each network in the PBS
group. As it relates to the DCZ networks and the variability in the
response between baseline and treatment 1st phase especially at 14
and 21 DIV, we cannot rule out that this may be due to where the
DREADDs hM4Di are located in the network, and how they get
activated. Although several protocols were tested to optimize the
concentration of AAV DREADDs and DCZ ligand, we cannot be
certain that the same DREADDs on the same neurons, or even
on the same part of the network were being activated every time.
To our knowledge, this combination using AAV DREADDs, and
the novel synthetic ligand DCZ has not been used in vitro with
dissociated primary neurons, so there are still great possibilities to
explore in this area of research.

5. Conclusion and future directions

In this study, we investigated the responses of in vitro
neural networks to transient selective inhibition of excitatory
synaptic transmission, and network recovery from perturbation.
We examined characteristics of network bursting dynamics over
time, as well as network burstiness and synchrony. We found that
while uninhibited networks developed with most of their spikes
located in network bursts, inhibited networks overall exhibited
more burstiness and synchrony at maturity. The burstiness
and synchrony was also maintained during network response
recordings, indicating homeostatic mechanisms restoring network
activity in the presence of the ligand. The overall increase in
burstiness and synchrony after the first perturbation, may be due
to a decrease in endogenous inhibitory mechanisms caused by
long term inhibitory synaptic modifications. In future studies it
will be interesting to monitor the networks in the long term to
see how the recovery profile changes with network maturity. As
well as investigate the long-term implications of excitatory synaptic
silencing on functional connectivity. There might have been some
remodeling of synaptic attributes and/or reorganization of the
structural network, which would make the network less efficient
at information transmission due to the increased synchrony. This
hypothesis can be tested further using high density MEAs that offer
higher spatial resolution for network connectivity investigation.
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Abstract

Fundamental neural mechanisms such as activity dependent Hebbian and homeostatic neuroplasticity are driven
by balanced excitatory - inhibitory synaptic transmission, and work in tandem to coordinate and regulate complex
neural network dynamics in both healthy and perturbed conditions. These neuroplasticity processes shape neural
network activity, as well as structural and functional aspects of network organization, information transmission and
processing. While crucial for all aspects of network function, understanding how the brain utilizes plasticity
mechanisms to retain or regain function during and after perturbation is often challenging. This is because these
processes occur at varying spatiotemporal scales simultaneously across diverse circuits and brain regions and are
thus highly complicated to distinguish from other underlying mechanisms. However, neuroplasticity and self-
organizing properties of the brain are largely conserved i i vitro biological neural networks, and as such, these
networks enable us to investigate both structural and functional plasticity responses to perturbation networks at the
micro and mesoscale level. In this study, we selectively silenced excitatory synaptic transmission in 2 vitro neural
networks to investigate the mmpact of the perturbation on structural and functional network organization and
resilience. Our results demonstrate that selective inhibition of excitatory transmission leads to transient de-
clustering of modular structure, increased path length and degree i perturbed networks. These changes indicate
a transient loss of network efficiency; with the network subsequently reorganizing to a state of increased clustering
and short path lengths following recovery. These findings highlight the remarkable capacity of neural networks to
reconfigure their functional organization following perturbation. The ability to detect and decode such processes
as they evolve highlights the robustness of our models to investigate certain dynamic network properties that are

often not accessible by i1 vivo methods.



1 Introduction

Complex self-organizing systems like 2 vitro neural networks spontaneously acquire structural and
functional organization through dynamic activity independent (Goodman and Shatz 1993) and activity
dependent (Kater, Davenport et al. 1994, Kirwan, Turner-Bridger et al. 2015) interactions between
constituent elements of the network. During network development, structural connectivity is initially
characterized by a dense meshwork of neurite connections and synapse overproduction which is
subsequently sculpted by experience-driven synaptic pruning and connection refinement (Ivenshitz and
Segal 2010, Fauth and Tetzlaff 2016, Millan, Torres et al. 2018). These processes occur concurrently
with the maturation of excitatory and inhibitory synapses (Huang 2009), which have pivotal roles in
mitiating, regulating, and balancing the neural activity within these networks. While excitatory synapses
enhance signal transmission, inhibitory synapses act as regulators, effectively controlling and modulating
overall network activity levels. The precise coordination between these two types of synapses 1s crucial
for establishing a well-functioning and adaptable neural network (Zhang and Sun 2011). As structural
connectivity becomes more refined, these synapses mature and optimize their function, ultimately
contributing to the establishment of efficient and effective neural circuitry (Najafi, Elsayed et al. 2020,
Sukenik, Vinogradov et al. 2021) manifesting through the emergence of complex network activity such
as network bursts and synchrony (Ben-Ari 2001, Opitz, De Lima et al. 2002, Wagenaar, Pine et al. 2006,
Chiappalone, Vato et al. 2007).

A key characteristic of self-organizing neural networks is the progressive advancement from a less
organized state to the formation of complex topologies and functional hierarchies over time (Karsenti
2008, Prokopenko 2009). The neuroplasticity processes involved in self-organization also dictate network
wiring and, by large, information transmission and processing across ordered neural networks (Rubinov,
Sporns et al. 2009). Neurons involved in the execution of a specific function tend to cluster together in
specialized modules, for example, cells with the same eye preference grouped mto ocular dominance
columns in the visual system (Hubel and Wiesel 1969), are typically highly interconnected with each
other. This organization is ubiquitous across neural networks, where high local clustering of neurons
combined with rapid information transmission within and between clusters have been shown to have
important implications for functional processing and efficiency (Bassett and Bullmore 2006, Bullmore
and Sporns 2009, Meunier, Lambiotte et al. 2010). These modules perform segregated processing
facilitated by dense short-range intra-module connections (edges) (Kaiser and Hilgetag 2010, Klinshov,

Teramae et al. 2014, Okujeni, Kandler et al. 2017), with global integration with the rest of the network



by few long-range inter-module edges (Bullmore and Sporns 2012, Perinelli, Tabarelli et al. 2019). Thus,
communication efficiency in the network is inversely proportional to the distance or number of edges

(path length) separating processing modules (Kaiser and Hilgetag 2006, Sporns 2013, Sporns 2018).

In complex systems, network resilience to perturbation also plays a critical role in information processing,
since failure in one part can trigger cascades of failures throughout the network (Albert, Jeong et al. 2000,
Ivanov and Bartsch 2014). In disorders such as post-traumatic stress disorder (PTSD) (Suo, Lel et al.
2015), schizophrenia (Liu, Liang et al. 2008), epilepsy (Li, Chen et al. 2020) and during the prodromal
stages of Alzheimer’s disease (AD) (Pereira, Mijalkov et al. 2016), aberrant alterations in path length,
clustering and modularity are highly correlated with pathophysiology progression, duration and / or
severity. Nevertheless, neural networks can often compensate to maintain function despite any external
perturbations or internal fluctuations. Much of this resilience stems from activity-dependent
neuroplasticity, which is essential for the brain to function effectively, adapt to changing environments
and protect itself against damage (Nakamura, Hillary et al. 2009, Overman and Carmichael 2013).
However, since network topology, synaptic transmission and neuroplasticity responses are mextricably
linked, quantifying their interdependence in healthy and perturbed conditions in the brain still presents
major challenges. Consequently, there are unanswered questions regarding the implications of disrupting
synaptic activity on global aspects of network organization and resilience. Specifically, it remains unclear
whether the network can maintain its structural and functional organization during perturbation or if it

undergoes reorganization, potentially leading to more efficient or less efficient functioning.

For this investigation, we expanded on our previous work using hM4D1 designer receptors exclusively
activated by designer drugs (DREADDs) (Urban and Roth 2015, Ozawa and Arakawa 2021) to selectively
target and inhibit excitatory synaptic transmission in i vitro rat cortical networks interfaced with
microelectrode arrays (MEAs) (Weir, Christiansen et al. 2023). In our previous work (Weir, Christiansen
et al. 2023), we found that selective inhibition significantly influenced the functional electrophysiological
dynamics in perturbed networks, which manifested as increased network burst rate, higher fractions of
spikes 1 bursts, and increased synchrony. In the present study, perturbation resulted in transient but
significant de-clustering of modules within the networks, with a decrease in clustering coeflicient and
small-worldness concomitantly with increased path length. These structural changes implied a shift to a

random network organization, effectively creating a less optimized and less efficient network.



2 Materials and methods

21 Culture of cortical networks on microelectrode arrays and AAV transduction

Neuronal cultures of primary rat (Sprague Dawley) cortex neurons (Cat. No: A36511) were thawed and
co-cultured with 15% primary rat cortical astrocytes (Cat. No: N7745100) both obtained from
ThermoFisher Scientific (US). A small drop (80 pl) of the cell suspension containing about 60 x 10" cells
were plated on the active area of PDL + Geltrex precoated complementary metal-oxide semiconductor
(CMOS)-based high density multielectrode array (HD-MEA) (3Brain GmbH, Switzerland). Cells were
incubated in a humidified incubator (5% CO., 37°C) for 6 hours to allow attachment, then the wells were
filled with 1 mL Neurobasal™ Plus Medium supplemented with 2% B-27 Plus supplement and 0.5%
GlutaMAX™all from ThermoFisher Scientific. The day of plating was designated as day 0 and 50%
media changes were carried out every 2-3 days. At 7 days in vitro (DIV), the cells were transduced with
a vector encoding hM4Di1-CaMKlla-DREADDs according to the protocol established in our previous
paper (Weir, Christiansen et al. 2023). In short, 80% of the cell media was removed from the cultures
and a drop containing 6 x 10" AAV viral particles encoding experimental hM4Di- CamKlla-DREADDs
was added to the cells. The cultures were gently agitated for 30 seconds to distribute the viral particles in
the media and then incubated for 8 hours. Afterwards, each culture was topped up with fresh Neurobasal
Plus cell media and incubated for an additional 40 hours. After the incubation period, 50% media
changes were carried out every second day as scheduled. The vector encodes mCherry which is a bright

red fluorescent protein tag that makes it possible to visualize results soon after transduction.

22  Immunocytochemuistry

At 14 DIV, samples on Nunc™ Lab -Tek™ chamber slides (Cat. No. 154534PK) were fixed with 4%
Paralormaldehyde (PFA) for 20 minutes, then permeabilized with a buffer of 0.03% Triton X-100 and
5% goat serum diluted in DPBS for 2 hours at room temperature. Following blocking, antibodies at the
indicated concentrations (Table 1) were added in a buffer of 0.019% Triton X-100 and 1% goat serum in
DPBS. Nuclel were stained with Hoechst (bisbenzimide H 33342 trihydrochloride, 14533, Sigma-
Aldrich, 1: 5000 dilution). Samples were washed, mounted on glass cover slides with anti-fade
fluorescence mounting medium (ab104135, Abcam) and imaged. All sample images were acquired using
an EVOS M5000 imaging system (Invitrogen, ThermoFisher Scientific). Images were processed using

Fiji/ImageJ and Adobe Illustrator 2020 version: 24.0.0.



Table 1. Overview of primary and secondary antibodies, species, and concentration

Primaries Secondaries

Markers Catalogue # Concentration  [Fluorescent Catalogue # Concentration

Ck mCherry Ab205402 (Abcam) 1:1000 Goat-anti-Chicken Ab175477 1:1000
|AlexaFluor 568  (Abcam)

Ms Calmodulin =~ MAS3-918 1:250 Goat-anti-Mouse A11019 1:1000

(CaMKIl) (Invitrogen) IAlexaFluor 568  (Invitrogen)

Ms NMDARI1 32-0500 (Invitrogen) 1:100 Goat-anti-Mouse A21236 1:1000
IAlexaFluor 647  (Invitrogen)

Ms GABA Ab86186 (Abcam) 1:250 Goat-anti-Mouse A11001 1:1000
|AlexaFluor 488  (Invitrogen)

Ms TUJ Ab78078 (Abcam)  1:500 Goat-anti-Rabbit  A11011 1:1000
IAlexaFluor 568  (Invitrogen)

Rb Glutamate Ab183999 (Abcam) 1:100 Goat-anti-Rabbit  A21244 1:1000

decarboxylase |AlexaFluor 647  (Invitrogen)

(GADG65/67)

Rb Map2 Ab32454 (Abcam)  1:250 Goat-anti-Rabbit  A11008 1:1000
|AlexaFluor 488  (Invitrogen)

Rb Glial fibrillary  Ab278054 (Abcam)  1:500

acidic protein

(GFAP)

28  Deschloroclozapine (DCZ) activation of AM4Di DREA DDs in neural networks

Networks for DCZ, treatment were transiently inhibited once per day at 25, 26 and 27 DIV for 2 hours
cach time. The novel synthetic ligand deschloroclozapine (DCZ; 10 uM) was used to activate the
DREADDs receptors to induce synaptic silencing in excitatory neurons (Bjorkli, Ebbesen et al. 2022,
Weir, Christiansen et al. 2023). On the days of treatment, DCZ diluted in cell media was added to 20%
media volume i the wells for a final DCZ concentration of 10 uM. Networks were incubated for 2 hours.
Thereafter, DCZ was washed out by doing 3 x 809% media changes using {resh media. For each recording,
samples were placed in the recording head stage for 10 minutes before starting data acquisition to reduce

noise variations due to disturbances caused by moving the cells from the mcubator (see Figure 1 for a

workflow). Electrophysiological data was recorded for 15 minutes.
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Figure 1. Workflow of experimental procedures. Timeline of experiment from preparation of HD MEAs and throughout
the lifetime of the network. The DCZ, protocol used for selectively perturbing DREADDs networks is illustrated in the bottom
panel. Figure created i Biorender.con.

24  MEA setup and electrophysiological recording

Electrophysiological recordings were performed using the BioCam Duplex 3.0 platform with
complementary metal-oxide semiconductor (CMOS) chips. Two models of CMOS chips (Arena and
Accura) were used 1n this study due to availability (3Brain GmbH, Switzerland). The chips are integrated
with 4096 square microelectrodes (21 pm x 21 pm) that are arranged in a 64 x 64 square grid on a seeding
area of 2.67mm x 2.67mm (Arena) or 3.8mm x 3.8mm (Accura). The electrodes are aligned with 42 pm
pitch (Arena) or 60 pm pitch (Accura) between electrodes. Recordings were done at a sampling rate of
20kHz, with a low pass cut off frequency at 100Hz and a high pass cut off frequency of 200 Hz. The raw
data was visualized and preprocessed using the BraimWave software v5.1. Preprocessed data was analyzed

offline m MATLAB.



2.5  Preprocessing: Spike detection and spike sorting using BrainWave 5 (3Brain GmbH,
Switzerland)

Spike detection was performed using the Precise Timing Spike Detection (PTSD) algorithm which
facilitates reliable and precise identification of spike events. Active channels were defined with a mean
firing rate (MFR) of >0.10 spikes/s at a threshold of 7 x standard deviations (std) of the signal’s biological
and thermal noise. The peak lifetime period of spikes was set at 2.0 ms with the refractory period set at
1.0 ms. Spike sorting was performed using a K-Means & Silhouette clustering algorithm. Principle
component analysis was used for feature extraction with the minimum number of spikes per cluster set
at 2, and the maximum at 3. Outlier thresholds were set at 2 and all outliers and duplicate units were

discarded. The duplication detection window was set at 0.1 ms with a threshold of 40%.

2.6  Network finctional connectivity analyses

Connectivity data was analyzed offline using MATLAB (2021b). Functional connectivity was detected
using Pearson cross-correlation. Prior to analyzing cross correlation, all potential connections were tested
using Spearman’s rank correlation and a bin size of 100 ms. Highly significant (p < 0.001) and strongly
correlated (r> 0.01) connections were then further assessed using normalized Pearson cross correlation.
For cross correlation, a bin size of 1 ms and a maximum lag of £100ms was used and significant (p< 0.1)
correlations were retained. Correlations of lag 0 were discarded. The weight of a connection in the
adjacency matrix was set as the maximum normalized correlation coelficient within the specified lag. A
final filtering step was performed to remove connections between distal electrodes with a biologically

implausible lag, specifically exceeding 1 mm/ms.

Modularity was determined using functions from the Brain Connectivity toolbox (Rubinov and Sporns
2010) and the Community detection toolbox (https://github.com/mmitalidis/ComDetTB). For each
adjacency matrix, the Louvain method of modularity detection (Blondel, Guillaume et al. 2008) was
applied 100 times with a gamima of 1 and absolute weights. Each partitioning was then assessed for cluster
validity using the node membership criterion as defined i the Community detection toolbox. The
partition with the highest cluster validity, that is the strongest internal edge consistency for each module,
was then selected. The Modularity Q values indicate the confidence of accurate network subdivision into
modules. Modularity can either be positive or negative, with positive values indicating the possible
presence ol a community structure and negative values or zero indicating an undivided network (Newman

2006). Partitions with modularity Q greater than 0 indicate a community structure and > 0.1 indicate a



strong community structure (Newman 2006). In our results, partitions with modularity Q < 0.01 were

discarded as too weakly clustered to qualify as a module.

For each module and giant component, the characteristic path length, clustering coellicient and
participation coefficient (Guimera and Nunes Amaral 2005) was detected using the Brain connectivity
toolbox. The participation coefficient measures whether a node only interacts with nodes in its own
module or if it shares edges with nodes from multiple modules. Path lengths were set as 1 minus the
weight to account for stronger correlations being indicative of shorter paths. The intermodular path
length describes the average distance between all nodes from one module to all nodes in another module.
The clustering coeflicient was calculated using binarized edges and describes the property of a node in
the network and how well connected the neighborhood is. Mean degree describes the average number
of connections that a node has to other nodes in the network. Small-world propensity (SWP) quantifies
the extent to which a network displays small-world characteristics while accounting for variations in
network density, and was calculated using the methods described in (Muldoon, Bridgeford et al. 2016)
for weighted networks. The weighted clustering coefficient was calculated using the measure by (Onnela,
Saramiki et al. 2005) and a threshold of ¢+ = 0.6 was set for the small-world propensity to classify
networks as small-world, according to previous described (Muldoon, Bridgeford et al. 2016). The SWP

was normalized so that values closer to 1 indicates that the network 1s more small-world.



3 Results

31  AAVZ/I1 Gi-DREADD expression found exclusively in CaMKIIa positive neurons with
maturing excitatory and inhibitory synapses

Immunolabeling with antibodies specific for CaMKIIa expressed on excitatory neurons, and for
mCherry expressed by DREADDs confirmed that both proteins colocalize in the network as shown in
(Figure 2A). In addition, there was no colocalization with mCherry and GAD65/67, a marker for
mhibitory neurons (Figure 2B). Furthermore, at 14 DIV the networks expressed NMDA receptors

(Figure 3A) and GABA (Figure 3B) indicating the capacity for excitatory and inhibitory signaling at this

stage.

Figure 2. AAV2/1 hMA4Di designer receptor exclusively activated by designer drugs (DREADDs) expressed in CaMKIIa
positive neurons in vitro. (A) mCherry DREADDs expression was confirmed in CaMKIIa positive neurons (B) GAD65/67
expressing neurons (inhibitory neurons) did not express mCherry DREADDs. Scale bar = 250um.



Figure 8. Neural networks positively stained for both NMDA receptors (A) and GABA (B) together with MAP2 neuronal
cytoskeletal marker at 14 DIV. Scale bar = 250um.

3.2  Network modularity develops over time and can be altered with inhibition of excitatory
transmission

Spontaneous network activity was recorded between 14 DIV and up until 40 DIV. Graphs were created
from the processed data to identily the different modules in the network and the nodes belonging to each
module. These graphs are presented i Figure 4 and show the modules for one network at 6 recording
timepoints. At 14 DIV, the neural networks were still relatively immature and developing both
structurally and functionally. Our results showed no distinct modules, and only a few active nodes were
detected (Figure 4A). At 21 and 26 DIV, almost all active nodes belonged to one of three modules
detected (Figure 4B, C; red, blue and yellow). The graph shown at 28 DIV (Figure 4D) depicts the

modular organization in the network 24 hours after selective inhibition of excitatory transmission. The
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original 3 main modules from 26 DIV appeared to be fragmented into smaller clusters, with large areas
where no activity was detected. Interestingly though, we found that by 32 DIV the network had begun
reconfiguring itself, with more nodes organized into modules. By 40 DIV, the network had reconfigured
itself back into 3 main modules, although with a different spatial positioning (Figure 4E, F). Network
organization at 40 DIV also showed that detected nodes within modules had more spatial distance

compared to being positioned closer together at 21 DIV and 26 DIV.
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Figure 4. Inhibition results in functional de-clustering in modules with subsequent reorganization following recovery.
Depicted here is a sample neural network across development. Modularity in the network at 14 DIV (A), at 21 DIV (B) and
at 26 DIV (C). Network modular organization alter perturbations at 28 DIV (D), at 32 DIV (E) and at 40 DIV (F). Each dot
is one node and represents one active electrode at the time of recording. The colors indicate the module that the detected

nodes belong to, and node sizes are scaled according to their participation coefficient.

38  Neural networks exhibited alterations in functional organization during and following selective
perturbation

Further analyses were conducted to determine the extent to which both structural and functional
organization had changed within the inhibited networks. Figure 5 depicts the results of these analyses for
3 experimental networks, from here onwards identified as Netl, Net2 and Net3 (see figure legend). We
observed mconsistencies in the number of modules before and after selective inhibition of the networks,
making it difficult to conclude exactly the structural changes taking place. For mstance, in Figure 5A,
networks had self-organized into 3 modules at 21 DIV before mhibition. During the period of inhibition
between 25 and 27 DIV, there was no change in the number of modules in Net2, an increase in module

number from 3 to 6 modules at 27 DIV for Netl, and a decrease from 3 to 1 module at 27 DIV for
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Net3. During the network recovery period after inhibition, no modules were detected for Net2. The
number of modules increased in Netl and Net3, then returned to baseline number of 3 modules by 40

DIV.

6 08
Net 1 Net 1
55 Net 2. 07 Net2|
5 Net 3| Net 3|
06
as
z, oos
335 5 04
g 8
= =03
25
. 02
15 01 =
1 . o
26 27 28 32 36
ES 0 21 26 27 28 32 36 a0
DIV Biv
1 700
Net 1 FoNetl
o9 Net 2 — [~ Net2
- 1 Net 3, [ ~ Net3|
Eor- | 500
£ 06 8
8 400
Sos 8
£ 04 § 300
3 =
A 200 !
02t ‘ 1
01 100
o ol
21 26 27 28 32 36 40 21 26 27 28 32 36 10
DIV DIV
08 045
FNet 1 Net 1
07 Net 2| 04 4 Net 2
Net 3| _ Net3|
035
=08 5
2 2 o3
s
§ 05 £
8 Fozs
5 2
g ¥ 2
Soa- 2
£ 5015
& E
02 T oot -
01 005"
o 0
21 2 27 28 32 36 10 21 26 27 28 32 36 10
DIV DIV

Figure 5. Neural networks exhibited transiently increased path lengths and decreased clustering due perturbation, with
subsequent reconfiguration. Functional organization is described in terms of Module number (A), Modularity Q (B),
Clustering coefficient (C), Mean degree (D), Participation coefficient (E), and Inter module path length (F) with standard error
bars.

For further analyses of network subdivision, analyses of the modularity Q were conducted, and the results
highlighted that network organization reflected a community structure. Prior to perturbation, modularity
Q = /> 0 but less than <0.2 (Figure 5B) indicating a community structure. Modularity Q appeared to
mcrease (Q > 0.2) during perturbation for two networks (Netl and Net3). One network decreased to Q
= 0, mndicating that there was low division during perturbation. Following perturbation and between 28
and 40 DIV, all networks appeared to stabilize with modularity Q values Q = 0.17 (Figure 5B), which
mdicate varying modularity prior, during and after perturbation. Additional findings demonstrated that

during the period of inhibition between 25 and 27 DIV, there was a decrease across all networks in
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clustering coefficient (Figure 5C), however, all networks restored high clustering with (values > 0.6) after
perturbation suggesting some recovery of network functional organization. Similar results were observed
for the participation coefficient (Figure 5E). Furthermore, the average number of connections that each
node had with other nodes i the network had decreased from above >150 connections to <110
connections for Net2 during perturbation, while the other 2 networks had no detected connections by
27 DIV. However, during the recovery period after inhibition, the networks gradually restored the
connections such that all networks had mean degrees of approximately > 300 connections by 40 DIV
(Figure 5D). Our examination of intermodular path length showed that the number of edges connecting
modules fluctuated greatly between recordings during the period of inhibition between 25 and 27 DIV,
as well as immediately after inhibition at 28 DIV (Figure 5F). Nevertheless, we observed that networks

restored to pre-perturbation values between 32 and 40 DIV at < 0.2 intermodular path length.
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Figure 6. Neural networks exhibited transient decreases in SWP during perturbation, with subsequent recovery. The neural

networks were analyzed as a weighted matrix with the dashed ling denoting the ¢+ = 0.6 threshold.

Finally, we found that the neural networks exhibited relatively large SWP values at 21 DIV (¢p+ > 0.5)
indicating that the neural networks displayed small-world properties before perturbation (Figure 6).
During perturbation, two networks maintained high SWP values, while one network decreased to
¢+=0.3. There were fluctuations in values during recovery, but by 40 DIV, all networks restored to SWP

values ¢+ > 0.5 although none restored to pre-inhibition values.
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4 Discussion

Complex biological systems like the brain or i vitro neural networks can adjust their structural and
functional organization in response to changes i sensory inputs or experiences. In healthy conditions,
network topological architecture evolves in accordance with the principles of high efficiency of
mformation transfer and processing. Networks achieve this by having segregated modules for specialized
processing, and short pathways to connect the different areas of the network (van den Heuvel and Sporns
2013). It 1s also imperative that the relevant topologies are resilient 1.e., they need to be adaptable to
perturbations. The findings presented in this study demonstrate that perturbation of network activity via
selective inhibition of excitatory synaptic transmission resulted into transient de-clustering of modular
structures that corresponded to reduced clustering and decreased small-worldness. Other structural
changes included a transient increase in path lengths during perturbation, with the network subsequently

reorganizing to a state of increased clustering and short path lengths following recovery.

By structurally and functionally reorganizing information processing areas in response to impaired
synaptic transmission, complex biological networks can adapt to altered inputs (Rezaul Karim, Proulx et
al. 2021) and retain function. De-clustering refers to the process by which specialized brain regions or
modules lose their distinct functional boundaries. It involves a reduction in the functional segregation or
modular organization of the brain, leading to increased mteractions and information flow between
previously distinct brain regions (Park and Friston 2013, Joanna Su Xian, Kwun Kei et al. 2019). Several
studies have shown that decreased clustering can occur in various contexts including during brain
development and aging (Micheloyannis, Vourkas et al. 2009, Joanna Su Xian, Kwun Kei et al. 2019).
De-clustering also represents a dynamic process of functional reorganization that allows for more flexible
and efficient information processing during perturbation, learning and sensory input by enabling new
mformation to be mtegrated into existing ensembles (Katori, Sakamoto et al. 2011, Pinotsis, Brincat et
al. 2017). Our previous investigation showed that selective inhibition results in an increase in network
wide bursts and synchrony (Weir, Christiansen et al. 2023), which is highly relevant here because it
suggests that global activation increases as inhibited networks lose their structural boundaries. This also
suggests that the transient loss of functional boundaries between processing areas in the network may be
a compensatory response to restore synaptic drive with and across the perturbed areas of the network.
As synaptic inputs to different parts of the network decrease due to inhibition, the remaining areas may
have increased their synaptic capabilities, for example by either scaling up neurotransmitter release,
mcreasing receptors on neurites or lowering the threshold for excitatory post-synaptic current (Bridi, de
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Pasquale et al. 2018). As these synaptic modifications tend to occur on a slow time scale (Bridi, de
Pasquale et al. 2018, Hobbiss, Ramiro-Cortés et al. 2018), it is entirely possible that they happen
concomitantly with the mcrease m network synchrony since synchrony increases also occur gradually

over several days (Weir, Christiansen et al. 2023).

Furthermore, the decrease in clustering coefficient and participation coefficient - two basic
measurements of network communication and information flow - correspond with the reduction in the
small-worldness in the network during and after inhibition. There are various factors that can influence
small-worldness in neural networks, one of which is the lesioning of specific hubs. Although our
perturbation did not target any particular area of the network, the observed effects closely align with other
studies that have demonstrated the distinct impact of hub lesioning on the small-world structure of the
remaining network (Sporns, Honey et al. 2007). Specifically, lesioning provincial hubs disturbs functional
mtegration of the module to which they belong, which results in less segregation in the remaining network
(Sporns, Honey et al. 2007). Evidently, by silencing excitatory synaptic transmission across the network,
we also impaired hub function, which resulted i overall less discriminate processing. Provincial hubs
play a pivotal role in functional processing in their module, while other hubs 1.e., connector hubs, act as
central communication transmission ports that receive and transfer a substantial bulk of information to
the rest of the network (Bettencourt, Stephens et al. 2007). Since these hubs also make transmission
faster by connecting several areas of the network, loss of hub processing will inevitably lead to some

functional re-organization of paths in the network.

The findings presented in Figure 5D, and F indicate that the applied perturbation resulted in a decrease
m mean degree, which implies a reduction m the average number of connections between nodes in the
network. Additionally, the inter-module path length increased, indicating that transmission of signals
between different areas of the network required more steps or intermediaries. These changes in network
connectivity and information transmission have implications for the network’s efficiency. According to
the theory of bramn efficiency and economic cost of signal propagation (Achard and Bullmore 2007,
Bullmore and Sporns 2012), a more efficient network is characterized by high degree of connectivity with
direct mformation flow between nodes. A shorter path length between communicating areas of the
network 1s also associated with improved efficiency as it minimizes the number of transmission steps

required.
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As with all complex self-organizing systems, there is an innate desire to self-organize towards increased
effectiveness. This drive was evident in our study, where we observed the remarkable ability of neural
networks to reconfigure themselves following perturbations at 25 DIV, 26 DIV and 27 DIV. By 32 DIV,
the networks had already begun re-configuring to restore their segregated processing and distinct
modularity (Figure 4). Furthermore, the networks also exhibited the restoration of high mean degree and
low path lengths, which would contribute to overall more efficient information processing, transmission,
and communication. Together, these findings highlight the dynamic flexibility and self-reglatory

capabilities of neural networks.

5 Conclusions and future directions

In conclusion, the findings from this study shed light on the remarkable adaptability of neural networks
i response to perturbation, both structurally and functionally. We showed that targeted inhibition of
excitatory synaptic transmission resulted in a temporary disruption in modular organization, network
clustering and short path lengths. The neural networks also demonstrated an innate capacity to adapt and
reconligure themselves in response to perturbation, with the ultimate goal of restoring their functional
organization and optimized mformation processing. Understanding the self-regulatory capabilities of
neural networks provides valuable msights into the mechanisms underlying neural plasticity, and recovery
from disruptions. Therefore, our study highlights the significance of utilizing 1 vitro models as tools to
explore these tricate structure-function relationships at a micro and mesoscale level i changing
conditions in complex neural networks. Future analyses to validate and characterize other features of
structural and functional organization such as, hub organization, degree distribution and specific measure
of efficiency may help to strengthen the findings reported here. These further studies would also benefit
greatly from expanding the sample size and data set to mvestigate network resilience at different
timepoints in development 1.e., early development and late maturity. Together, the results can enhance
our understanding of adaptability in neural networks and may lead to the development of therapeutic

strategies targeting neuroplasticity for function restoration in various neurological conditions.
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Abstract

Reciprocal structure—function relationships underly both healthy and pathological behaviors in
complex neural networks. Neuropathology can have widespread implications on the structural
properties of neural networks, and drive changes in the functional interactions among network
components at the micro- and mesoscale level. Thus, understanding network dysfunction requires a
thorough investigation of the complex interactions between structural and functional network
reconfigurations in response to perturbation. However, such network reconfigurations at the micro-
and mesoscale level are often difficult to study in vivo. For example, subtle, evolving changes in
synaptic connectivity, transmission, and electrophysiological shift from healthy to pathological states
are difficult to study in the brain. Engineered in vitro neural networks are powerful models that enable
selective targeting, manipulation, and monitoring of dynamic neural network behavior at the micro-
and mesoscale in physiological and pathological conditions. In this study, we first established
feedforward cortical neural networks using in-house developed two-nodal microfluidic chips with
controllable connectivity interfaced with microelectrode arrays (mMEAs). We subsequently induced
perturbations to these networks by adeno-associated virus (AAV) mediated expression of human
mutated tau in the presynaptic node and monitored network structure and activity over three weeks.
We found that induced perturbation in the presynaptic node resulted in altered structural
organization and extensive axonal retraction starting in the perturbed node. Perturbed networks also
exhibited functional changes in intranodal activity, which manifested as an overall decline in both
firing rate and bursting activity, with a progressive increase in synchrony over time. We also observed
impaired spontaneous and evoked internodal signal propagation between pre-and postsynaptic nodes
in the perturbed networks. These results provide novel insights into dynamic structural and functional

reconfigurations in engineered feedforward neural networks as a result of evolving pathology.
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1. Introduction

One of the main structural pathological hallmarks of AD is the accumulation of neurofibrillary tangles
in the brain as a result of the hyperphosphorylation of the microtubule associated protein tau (Braak
et al., 1991). Tau proteins are mainly found in the axons of neurons (Gotz et al., 2019) where they
enrich microtubules to promote their assembly in axons (Baas et al., 2019; Qiang et al., 2018).
However, under pathological conditions, tau becomes hyperphosphorylated, causing widespread
morphological disruption in axons (Jackson et al., 2017; Kopeikina et al., 2013), ultimately affecting
synaptic transmission and network function. The high interconnectivity of the brain also implies that
neuronal axons and synapses may act as conduits for the spread of such pathology from affected
areas, causing progressive, widespread disruption to the structural and functional integrity of the
network (Adams et al., 2019; Kuhl, 2019). It has also been shown that hyperphosphorylated tau
triggers hypoactivity in neurons (Ittner et al., 2011; Menkes-Caspi et al., 2015; Polanco et al., 2018;
Wang et al., 2017), thus disturbing excitatory-inhibitory balance, and disrupting synaptic transmission

and global integration across the network.

To elucidate how relevant pathological mechanisms gradually affect the structure and function of
neural networks, it is imperative to study the underlying processes at the micro- and mesoscale. Such
investigations are highly challenging, or de facto not feasible in vivo due to the size and complexity of
the brain. This challenge can be overcome with the application of advanced cellular models based on
engineered neural networks. Such networks develop with progressively increasing structural and
functional complexity over time, essentially recapitulating fundamental aspects of neural network
behavior as seen in the brain (Collingridge et al., 2010; Valderhaug et al., 2021; van de Wijdeven et al.,
2019; Winter-Hjelm N, 2023). Engineered in vitro models thus enable longitudinal studies of dynamic
network behavior and allow for selective perturbation and monitoring of network responses at the
micro- and mesoscale level (Bauer et al., 2022; Bruno et al., 2020; Fiskum et al., 2021; Gribaudo et al.,

2019; Nonaka et al., 2011; Valderhaug et al., 2021; Weir et al., 2023).

In the present study, we longitudinally investigated structural and functional changes in engineered
two-nodal feedforward cortical neural networks, following induced expression of human mutated tau
in the presynaptic nodes. Our primary aim was to longitudinally monitor and identify dynamic changes
in neurite organization and electrophysiological activity of networks with evolving perturbation and
compare this with control unperturbed networks. The two-nodal feedforward configuration of the
engineered network enabled us to observe structural and functional reconfigurations in response to
the perturbation in the affected node, while simultaneously monitoring dynamic changes in the

postsynaptic node. Our results demonstrate that prior to perturbation, all neural networks developed
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increasingly robust firing and bursting activity within the nodes. They had also developed prominent
structural connections, and functional internodal connections with spontaneous and evoked
feedforward burst propagation from the presynaptic to postsynaptic nodes. However, within four days
of inducing perturbation by expression of human mutated tau in the presynaptic node, internodal
connectivity was disrupted, manifested as progressive retraction of neurites from the entry zone near
microtunnels in the presynaptic node, followed by retraction of neurites from the exit zones near the
microtunnels towards the postsynaptic nodes. Neurite retraction persisted over a span of 3 weeks,
during which period we observed a significant concomitant reduction in the overall intranodal mean
firing rate, mean burst rate, and total number of bursts. Such structural or functional changes were
not observed in control unperturbed networks. Furthermore, the neurite retraction and overall
decrease in activity in the perturbed networks occurred simultaneously with a significant increase in
network synchrony. Increased synchrony over time was not observed in control unperturbed
networks. These results provide new insights into dynamic micro- and mesoscale network
reconfigurations in response to induced perturbations and illustrate the utility of engineered

feedforward neural networks as models of network function and dysfunction.



Altered structural and function organization in feedforward networks

2. Methods

2.1. In vitro neural networks

An experimental timeline can be found in Figure 1. For this study, we used in-house developed
microfluidic chips interfaced with microelectrode arrays (MMEAs; n=7) and 8-well chambered slides
(Ibidi, 80841; n=2). Design and fabrication of the mMEAs was conducted as reported previously by our
group (Winter-Hjelm N, 2023). Briefly, two compartments (from here on referred to as nodes) (5 mm
wide/60 um high) were connected by 20 microtunnels (700 um long/10 um wide/5 um high) designed
to promote unidirectional axonal outgrowth from the presynaptic to the postsynaptic node. Tesla
valve microtopographies were included in the microchannels to redirect axons from the postsynaptic
node back to their chamber of origin. Furthermore, axon traps were included on the postsynaptic side
to misguide outgrowing axons and prevent them from entering the microtunnels. To prevent neuronal
somata from entering the microtunnels, 4 pm pillars with 4 um interspacing were positioned within
the presynaptic node. This design promotes formation of feedforward networks by aiding axon
outgrowth from the presynaptic node, but not vice versa. Impedance measurements and sterilization
of the mMEAs were conducted as reported previously (Winter-Hjelm N, 2023). Prior to seeding of the
cells, nodes were coated with 0.1 mg/mL Poly-I-Ornithine (PLO; Sigma-Aldrich, #P4957) for 30 min,
subsequently replenished with fresh PLO for another 2h at 37°C/5% CO.. Following this, all PLO was
discarded, and the surfaces rinsed three times with distilled Milli-Q-water. Subsequently, the
platforms were coated with laminin solution consisting of 16 ug/mL Mouse Natural Laminin (Gibco,
#23017015) diluted in PBS (Sigma-Aldrich, D8537) for first 30 min, before being replenished with fresh
laminin solution for another 2 h at 37°C/5% CO.. To ensure proper flow of coating solution through
the microtunnels, a hydrostatic pressure gradient was applied during all coating steps. Laminin
solution was discarded and replaced by astrocyte media consisting of DMEM (Gibco™, 11885084)
supplemented with 15% Fetal Bovine Serum (Sigma-Aldrich, F9665) and 2% Penicillin-Streptomycin
(Sigma-Aldrich, #P4333) for 10 min at 37°C/5% CO, before rat primary cortical astrocytes (Gibco,
#N7745100) were plated at a density of 100 cells/mm? 48 hours prior to plating of neurons
Subsequently, rat primary cortical neurons (Gibco, #A1084001) were plated at a density of 1,000
cells/mm? in neuronal media consisting of Neurobasal Plus Medium (Gibco™, A3582801)
supplemented with 2% B27 Plus Medium (Gibco™, A358201), 2.5 mL/L Gluta-Max (Gibco™, 35050038)
and 1% Penicillin-Streptomycin (Sigma-Aldrich, P4333). 4 and 24 hours after plating the neurons, 90%

of the media was replenished. Thereafter, 50% of the media was replenished every 2 days.
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Figure 1. Schematic of the in vitro experimental timeline for establishing networks, transduction, and
electrophysiological recordings. Created with BioRender.com.

2.1.1. AAV8 - GFP —2A P301L Tau production and in vitro transduction

The viral vector encoding experimental AAV8 P301L mutated tau was kindly gifted by Dr. Christiana
Bjgrkli (Department of Neuromedicine and Movement Science, NTNU). Adeno associated virus (AAV)
vector production and purification was performed in-house at the Viral Vector Core Facility (Kavli
Institute for Systems Neuroscience, NTNU). Tittering of the viral stock was determined as
approximately 10 vg/mL. The viral stock was divided into 20 pl aliquots and stored at -80°C . Aliquots
designated for use were thawed on ice, while any remaining virus was also aliquoted and stored at -
80°C for future use. Each aliquot was thawed a maximum of 3 times. Viral units were introduced to healthy
networks at 28 DIV to induce perturbation. Neurons were transduced by removing 70% of the cell
media from the presynaptic nodes and directly adding 3 x 102 viral units per neuron diluted in cell
media. After addition of the virus, the cultures were gently agitated for 30 s to ensure proper
distribution and then incubated for 4 h. During our extensive testing of the protocol, we evaluated
varying viral concentrations including low levels (between 1 x 102 and 8 x 10? viral units per neuron)
and high levels (between 1 x 10° and 5 x 103 viral units per neuron). The final titer of viral units per
neuron was decided by selecting the lowest concentration that achieved a balance between high
transduction efficiency and prolonged cell culture longevity (results of the protocol testing not
included). Afterwards, each well was topped up with fresh media without antibiotics and incubated
for an additional 20 h at 37°C/5% CO,. After the incubation period, 50% changes of the media were
carried out as scheduled. To ensure comparable conditions with the control networks, an 80% media

change was also conducted in the control unperturbed networks at the same time as the addition of
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AAV P301L to the perturbed networks. The viral vector encoded a GFP fluorescent tag for easy

visualization of transduction efficiency.

2.2. Immunocytochemistry

To assess network maturity including the expression of structural neuronal markers such as
microtubule associated protein, immunocytochemistry (ICC) was performed as follows. Prior to
immunostaining, cell media were aspirated and discarded from the culture plates, and the cultures
were rinsed once with Dulbecco's Phosphate Buffered Saline (DPBS; Thermo Fischer Scientific, Cat
#14040-117). Following this, networks were fixed with 4% Paraformaldehyde (Sigma-Aldrich, #P6148)
for 10 min at room temperature followed by 3x10 min washes with DPBS. Further, all DPBS were
discarded and replaced by blocking solution consisting of 5% Goat serum (Sigma-Aldrich, Cat# G9023)
and 0.3% Triton-X (Thermo Fischer Scientific, Cat# 85111) in DPBS. Next, primary antibodies at the
indicated concentration (Table 1) were added in a buffer of 0.01% Triton-X and 1% Goat Serum in
DPBS overnight at 4°C. The following day, primary antibody solution was discarded, and cultures were
rinsed 3x5 min with DBPS before secondary antibodies at the indicated concentration (Table 1) were
added in a buffer of 0.01% Triton-X and 1% Goat Serum in DPBS for 2 h at room temperature. For
staining cellular nuclei, Hoechst dye (bisbenzimide H 33342 trihydrochloride; Sigma-Aldrich, Cat#
14533) was added at 1:10.000 dilution for the last 10 min of the secondary antibody incubation.
Samples from the 8-well Ibidi chips were washed with PBS, mounted on glass cover slides with anti-
fade fluorescence mounting medium (Abcam, Cat#Ab104135) whereas microfluidic chips were filled
with distilled Milli-Q-water before imaging. Immunolabelling was conducted at 22 DIV on control
unperturbed neural network samples, as well as on perturbed neural networks that were transduced

with AAV8 P301L at 20 DIV.

Table 1. List of primary and secondary antibodies with concentrations

Primary antibodies Concentration Supplier

Ck Map2 1:1000 Abcam, #Ab5392

Rb Phospho-Tau (Thr217) (pTau) 1:1000 Invitrogen, #44-744
Ms AT8 (Ser202/205) 1:1000 Invitrogen, #MN1020
Rb GAD65/67 1:100 Abcam, #Ab183999
Ms Calmodulin (CaMKlla) 1:200 Invitrogen, #MA3-918
Rb GFAP 1:500 Abcam, #Ab278054
Secondary antibodies Concentration Supplier
Goat-Anti-Mouse Alexa Fluor 674 1:1000 Invitrogen, #A21236
Goat-Anti-Rabbit Alexa Fluor 488 1:1000 Invitrogen, #A21244
Goat-Anti-Chicken Alexa Fluor 568 1:1000 Abcam, #Ab175477

Ms: Mouse, Rb: rabbit, Ck: chicken.
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2.2.1 Imaging

All samples from ICC were imaged using an EVOS M5000 microscope (Thermo Fischer Scientific,
#AMF5000) connected to a LED light source and using an Olympus 20x/0.75 NA objective (N1480500),
with the following filter sets/channels: DAPI (AMEP4650), CY5 (AMEP4656), GFP (AMEP4651) and
TxRed (AMEP4655). Phase contrast images were taken using a Zeiss Axio Vert V.1 brightfield 20x/53
WD/0.4 NA objective with an Axiocam 202 mono. Images were processed using Adobe Photoshop
2020. To quantify for fluorescent intensity profile of AT8 and pTau in cell body clusters and axonal
bundles in both perturbed and control unperturbed networks, fluorescent signal was measured in
Fiji/Imagel2. A total of six clusters of cell bodies and five axonal bundles were selected as regions of
interest and assessment was done for total fluorescent signal (mean intensity/pixel) measured by
mean grayscale. The data was further processed in Matlab R2021b. Additional statistical analysis of
the mean grayscale values between perturbed and unperturbed networks using Statistical Package for

the Social Sciences (SPSS) version 29.0.0.0.

2.3. Electrophysiological recordings

Electrophysiological activity of neural networks on mMEAs (n=7) was recorded using a MEA2100
recording system (Multichannel Systems, MCS, Reutlingen, Germany) at a sampling rate of 25,000 Hz.
A 3D-printed in-house made plastic cap covered by a gas-permeable membrane was used to keep the
cultures sterile during recordings. The stage temperature was set to 37°C (TC01, Multichannel
Systems) and the cultures were allowed to equalize on the stage for 5 min before spontaneous
electrophysiological activity was recorded for 15 min. All networks were recorded 24 h after media
changes on the following days in vitro (DIV): 16, 20, 24, 26, 28, 31, 33, 35, 37, 39, 41, 43, 45 and 47.
From 28 DIV onwards, networks were electrically stimulated and simultaneously recorded for 1
minute (directly following the 15 min recordings of spontaneous electrophysiological activity).
Electrical stimulations were applied to one presynaptic electrode with the highest detected mean
firing rate (Pasquale et al., 2010) during the 15 min recording. Stimulation consisted of a train of 60
spikes at £ 800 mV (positive phase first) of 200 us duration with an interspike interval of 5s. This was
according to previous studies demonstrating that persistent electrical stimulation in in vitro networks
can increase network activity over time, resulting in enhanced evoked action potentials and an
increased frequency of spikes in bursts (Brewer et al., 2009; Ide et al., 2010). Raw data was converted
to an .h5 Hierarchical Data Format using Multichannel DataManager (V.1.14.4.22018) system and

imported to Matlab R2021b for further analyses using adapted and custom-made scripts.
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2.4. Data analysis

Electrophysiology data analysis was done as previously described (Winter-Hjelm N, 2023). Briefly, raw
data was filtered using a 4™ order Butterworth bandpass filter removing low frequency fluctuations
below 300 Hz and high frequency noise above 3000 Hz. A notch filter was used to remove 50 Hz noise
caused by the power supply mains. Stimulation data was filtered using the SALPA filter (Wagenaar et
al., 2002), and each stimulation time point was followed by 15 ms blanking. Spike detection was
conducted using the Precise Timing Spike Detection (PTSD) algorithm (Maccione et al., 2009) with a
threshold of 11 times the standard deviation, a maximum peak duration set to 1 ms and a refractory
period of 1.6 ms. Burst detection was conducted using the loglSl approach (Pasquale et al., 2010), with
a minimum of four consecutive spikes set as a minimum for a burst to be detected, and a hard
threshold of 100 ms. Network bursts were detected using the logIBEl approach (Pasquale et al., 2010),
with at least 20% of active electrodes required to participate during the span of a network burst.

Network synchrony was measured using the coherence index (Timme et al., 2018).
2.5 Statistical analysis

Statistical Package for the Social Sciences (SPSS) version 29.0.0.0 was utilized for all statistical analyses.
For comparison of the repeated measures, we used Generalized Linear Mixed-Effect Models (GLMMs)
with network type (i.e., controls versus perturbed networks) as a fixed effect, and the network
characteristics as targets. The network age (DIV) was used as a random effect. Only data from 31 DIV
onwards were included in the analysis to specifically compare changes in network characteristics
following perturbation to the control unperturbed networks. A gamma probability distribution with a
log link function was chosen as the linear model. This selection was based on the Akaike information
criterion and initial assessment of distribution fit to the predicted values. For multiple comparisons,

we used sequential Bonferroni adjustment.
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3. Results
3.1. Engineered feedforward cortical networks show intra- and internodal connectivity

Prior to perturbation, we validated that neurons were structurally connected with each other within
the nodes and expressed markers for excitatory and inhibitory synaptic transmission. Our results
showed that the neural networks organized into densely interconnected intranodal architectures,
with outgrowing neurites in the microtunnels (Figure 2A-B). Additionally, ICC performed at 22 DIV
revealed expression of the microtubule-associated protein 2 marker, MAP2 (Figure 2C-D), the
inhibitory neuronal marker glutamic acid decarboxylase 65/67, (GAD65/67) (Fukuda et al., 1997)
(Figure 2C), and the excitatory neuronal marker calcium-calmodulin (CaM) — dependent protein kinase
I, (CaMKIl) (Takao et al., 2005) (Figure 2D). The presence of these markers indicated that the networks
consisted of mature neurons with the capacity for excitatory and inhibitory synaptic transmission, a

crucial aspect for achieving structural and functional network maturity.

To investigate whether the engineered networks were functionally connected, we monitored and
recorded electrophysiological activity commencing at 16 DIV. By 26 DIV, the neural networks displayed
a mature electrophysiological profile in line with previous studies (Chiappalone et al., 2006; Winter-
Hjelm N, 2023). Specifically, raster plots of spontaneous activity within the network revealed both
isolated spikes and synchronized bursts (Figure 3A), while correlation matrices of network
connectivity showed strong connectivity within pre- and postsynaptic nodes, as well as functional
connectivity between the nodes (Figure 3B). To further validate internodal connectivity, we applied
electrical stimulations to the electrode with the highest firing rate within the presynaptic node at 26
DIV. We recorded and assessed the evoked activity in the postsynaptic node, which revealed that
electrical stimulations caused a spiking response in the presynaptic node, followed by an on average
40 ms time delay before a subsequent spiking response was observed in the postsynaptic node (Figure
3C). This effectively demonstrated that functional connectivity was established between the- pre and

postsynaptic nodes.
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Figure 2. Developing structural organization and functional maturity of feedforward engineered neural
networks (A-B) Phase contrast images of a neural network in the presynaptic node (A) with neurite projections
going through the microtunnels (B) on a mMEA at 21 DIV. (C-D) Networks positively immunolabeled for the
neuronal marker MAP2 in addition to the inhibitory marker GAD65/67 (C) and the excitatory neuron marker
CaMKII (D). Glial fibrillary acidic protein (GFAP) antibody labelling of astrocytes in the network. DIV; days in vitro.
Scale bar 1250 um; (magnified area 312 um).
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Figure 3. Neural networks displayed intra- and internodal functional connectivity at 26 DIV (A) Raster plots
(300 seconds) of the recorded activity (top panel) and binned network activity (bottom panel) of corresponding
total firing rate of one representative network. (B) Mutual information connectivity matrix showing the
correlation in the network activity in nodes and tunnels. (C) Peristimulus time histogram of the pre- and
postsynaptic response to an electrical stimulation in the presynaptic node. The graphs here show an initial
response in the presynaptic node, followed by a delayed response in the postsynaptic node.

3.2. Perturbed networks express human mutated tau

At 28 DIV, we induced expression of human mutated tau protein in the presynaptic nodes of the
engineered networks. The AAV construct encodes GFP, which allowed for easy visualization of
transduction efficacy. Positive GFP expression was seen in the perturbed networks (Figure 4B and
Figure 5B) which indicated effective AAV transduction. For additional verification of phosphorylated
tau expression, we also labeled the networks for AT8 (Serine 202 and Threonine 205/ tau*%2%) and
Phospho-Tau (Threonine 217/tau?"’) proteins, hereon referred to as tau?%2% and tau?”’, respectively.
Both tau?¥?% (Figure 4B) and tau®"’ (Figure 5B) were overexpressed in neuronal cytosols and axons
along with GFP in perturbed networks. Perturbed networks had significantly higher expression of both
tau2°/2%5 and tau?'’ (Rajbanshi et al., 2023) in the cytosolic compartments compared to controls, while
a non-significant higher expression of tau2°>2% was found in axon bundles compared to controls.
Additionally, we conducted primary exclusion immunolabeling for both tau??2% and tau®'’ to assess

the specificity of the binding antigen, and no expression was found (Figure 4C and 5C, respectively).
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We also performed secondary antibody exclusion to assess the labeling specificity of the primary

antibody and found no immunoexpression for either tau??2% or tau?” in the networks.

>

Control network
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Perturbed network

Perturbed [AT8 primary exclusion] (@]

Figure 4. GFP expression exclusively in perturbed networks confirmed efficacy of viral transduction, further
validated by AT8 expression. (A) Control unperturbed networks were not transduced with the AAV8-GFP-2A-
P301L construct and thus did not express GFP. AT8 labeling was found primarily in axons. (B) Perturbed networks
were positive for the GFP marker after transduction, with strong axonal and somato-dendritic AT8 expression.
(C) Exclusion of the primary antibody AT8 to assess the specificity of antigen binding. Scale bar 1250 um;
(magnified area 312 um).
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Figure 5. GFP expression exclusively in perturbed networks confirmed efficacy of viral transduction, further
validated by pTau expression (A) Control unperturbed networks were not transduced with the AAV8-GFP-2A-
P301L construct and thus did not express GFP. pTau labeling found in axons and cytosols. (B) Perturbed networks
were positive for the GFP marker after transduction, with strong axonal and somato-dendritic pTau expression.
(C) Primary exclusion of pTau to assess the specificity of antigen binding. Scale bar 1250 um; (magnified area
312 pm).
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Figure 6. Quantification of fluorescent intensity of AT8 (tau202/205) and pTau (tau®'’) in perturbed and control
unperturbed networks. Representative images from networks with AT8 and pTau labelling showing cell body
clusters and axonal bundles. Bar graphs showing the mean gray value of cell body clusters.

3.3. Progressive internodal axonal retraction observed after perturbation

Prior to induced perturbation, phase contrast imaging of neural networks at 21 DIV confirmed
structural connections between the pre- and postsynaptic neural nodes (Figure 7A). Interestingly, by
four days post perturbation, i.e., at 32 DIV, the neurites within the presynaptic node of the perturbed
networks started retracting from the entry zone near the unidirectional microtunnels, and by 52 DIV
all structural connections between the presynaptic and postsynaptic nodes had been lost entirely
(Figure 7A). Extensive neurite retraction was also observed in the postsynaptic node of the perturbed
network by 52 DIV. In contrast, control unperturbed networks maintained robust neurite connections
both at the entry zone of the presynaptic node microtunnels and the exit zone in the postsynaptic

node (Figure 7B).
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Figure 7. Progressive neurite retraction and active reorganization observed within networks following induced
perturbation. (A) The leftmost column shows neurite extensions in the presynaptic node at the entry zone of
the unidirectional microtunnels (top) and dense neurites in the postsynaptic node at the exit zone of the
unidirectional microtunnels (bottom) at 21 DIV. The middle column is a snapshot of the same region in the
network at 32 DIV showing retraction in the presynaptic node (top), but not in the postsynaptic node (bottom).
The rightmost column shows extensive retraction in the presynaptic node (top) as well as in the postsynaptic
node at 52 DIV (bottom). (B) Presynaptic (top) and postsynaptic (bottom) nodes of control unperturbed network
depicting dense neurite connections at 52 DIV. Scale bar 100 um.
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3.4. Perturbed networks exhibit a decrease in overall network activity and an increase in
network synchrony

Spontaneous network activity was recorded between 16 DIV and 47 DIV for both control unperturbed
and perturbed networks. We captured network development from low activity to more mature
profiles exhibited as increased mean firing rate (Figure 8A) and increased mean burst rate (Figure 8B).
Activity recorded from both pre- and postsynaptic nodes revealed the differences between control
unperturbed and perturbed networks and their functional evolution. Specifically, the presynaptic
nodes of control unperturbed networks exhibited a steady increase in electrical activity between 16
DIV and 31 DIV, consistent with previous studies by us and others capturing developing functional
activity in cortical networks (Wagenaar et al., 2006; Weir et al., 2023). Both firing rate and burst rate
increased between 33 DIV and 45 DIV in the presynaptic node but not in the postsynaptic node (Figure
8A and B, respectively).
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Figure 8. Electrophysiological recordings revealed progressive decrease in firing and burst rate in perturbed
networks. (A) Mean firing rate (spikes/second) and (B) Mean burst rate (bursts/minute) in the presynaptic and
post synaptic nodes for control unperturbed and perturbed networks. The solid lines denote the mean activity
for the networks with the solid circles indicating individual data points. The shaded area denotes the standard
error of the mean. The stippled line indicates the day of viral transduction in the perturbed networks (28 DIV).
Plots showing the GLMM estimated group averages with 95% confidence intervals are depicted in the top right
corner of the graphs.
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Similarly, prior to induced expression of human mutated tau, the perturbed networks also exhibited
a steady increase in both firing rate and burst rate in the presynaptic node between 16 DIV and 28
DIV. However, between 31 DIV and 47 DIV, they exhibited significantly lower firing (p< 0.001) and
burst (p< 0.001) rates compared to healthy controls (Figure 8A). The firing rate in the postsynaptic
node of perturbed networks remained significantly lower (p< 0.001) than controls for the duration of
the study (Figure 8A). There were no significant differences in mean burst rate in the postsynaptic

node between healthy controls and perturbed networks (Figure 8B).

The postsynaptic node of healthy controls had significantly longer bursts (p= 0.001) compared to
perturbed networks (Figure 9B), however, there were no significant differences in the mean burst
duration in the presynaptic nodes between perturbed and healthy controls between 31 DIV and 47
DIV (Figure 9A). Furthermore, the total network activity (pre- and postsynaptic node activity
combined) revealed that between 28 DIV and 47 DIV, healthy controls had significantly higher mean
network burst duration (p< 0.001) compared to perturbed networks (Figure 9C). Specifically, between
28 DIV and 33 DIV, control unperturbed networks exhibited a transient increase in mean network
burst duration from 0.23 seconds to 0.26 seconds, however, there was a subsequent decrease
between 33 DIV and 47 DIV (Figure 9C). For the perturbed networks, the total network activity for pre-
and postsynaptic nodes combined showed that between 33 DIV and 39 DIV there was a transient
increase in network burst duration from 0.17 seconds to 0.22 seconds, with a subsequent decrease

between 39 DIV and 47 DIV, similar to the healthy controls.

We also found that all networks had a general decrease in mean network burst size (analyzed as the
percentage of active electrodes participating in network bursts), between 16 DIV and 28 DIV (Figure
9D). The total bursting activity for pre-and postsynaptic nodes combined showed that control
unperturbed networks decreased in burst size from 85% to 45% network participation (Figure 9D)
between 16 DIV and 28 DIV. Similarly, networks before perturbation had a decrease in burst size from
82% to 43% network participation (Figure 9D). Both groups had relatively stable burst size between
28 DIV and 47 DIV, however, perturbed networks had significantly larger network bursts (p< 0.001) by
47 DIV (61% of network participation) compared to control unperturbed networks (45% network
participation) (Figure 9D). Furthermore, when we examined network synchrony, measured by the
coherence index, we observed a general decrease in both pre-and postsynaptic nodes of healthy
controls between 16 DIV and 47 DIV (Figure 9F). Both nodes of perturbed networks had progressively
increased synchrony that was significantly higher (p< 0.001) than in control unperturbed networks

between 31 DIV and 47 DIV (Figure 9F).
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Figure 9. Electrophysiological recordings revealed a progressive increase in network burst size and synchrony
in perturbed networks. (A) Mean burst duration (seconds) in the pre-and (B) postsynaptic nodes of control and
perturbed networks. (C) Mean network burst duration in the pre-and postsynaptic nodes combined for control
and perturbed networks. (D) Mean network burst size (percentage) in the pre-and postsynaptic nodes combined
for control and perturbed networks. (E) Coherence Index (measure of network synchrony) in the pre- and (F)
postsynaptic nodes of control and perturbed networks. The solid line denotes the mean activity for the networks
with solid circles indicating individual data points. The shaded area denotes the standard error of the mean. The
stippled line indicates the day of transduction for the perturbed networks (28 DIV). Plots showing the GLMM
estimated group averages with 95% confidence intervals are depicted in the top right corner of the graphs.
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3.5. Induced perturbation results in reduced propagation of spontaneous and evoked activity
between nodes

Further analyses were conducted to determine the proportion of bursts propagating between the pre-
and postsynaptic nodes in both control unperturbed and perturbed networks. We first evaluated the
total number of network bursts exhibited by each network at each recording and identified the
percentage of propagating bursts between the pre- and postsynaptic nodes in either direction (Figure
10). Our results showed that between 16 DIV and 28 DIV, both control unperturbed and perturbed
networks had a steady increase in the total number of network bursts, with most or all bursts
propagating in a feedforward manner from the presynaptic to the postsynaptic node (Figure 10).
Additionally, we found that for all subsequent recordings from 28 DIV onwards, burst propagation
diminished in the control unperturbed networks to <2% by 47 DIV even though the total number of
bursts within the network exceeded 2000 bursts/recording (Figure 10). This implied that bursts were
contained primarily within nodes of healthy controls. In contrast, perturbed networks exhibited a
steady decline in the total number of network bursts between 33 DIV and 47 DIV (to less than10
bursts/recording by 43 DIV) (Figure 10).
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Figure 10. Feedforward burst propagation between pre- and postsynaptic nodes for perturbed (left) and
control unperturbed (right) networks. The left y-axis on the graph denotes the percentage of network bursts
propagating between the nodes, represented as the bars. The right y-axis denotes the total number of network
bursts detected each day represented as the solid line. The x-axis denotes the day in vitro. The stippled line at
28 DIV indicates the day of transduction for the perturbed networks.

We also applied periodical electrical stimulations to the electrode with the highest firing rate in the
presynaptic node to assess whether a presynaptic stimulus could evoke a postsynaptic response. The
same electrode in each of the mMMEAs was stimulated for 1 minute at each recording session between
28 DIV and 47 DIV. We found that electrical stimulation within the presynaptic node of control
unperturbed networks produced a spike response followed by a postsynaptic spike response with an

average delay time of 20 ms (31 DIV) and 40 ms (35 DIV) (Figure 11A). Control unperturbed networks
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also produced spike responses in the presynaptic node at 45 DIV and 47 DIV, although the tuning
curves were of lower amplitudes than after previous stimulations. In addition, the spike responses in
the postsynaptic node of control unperturbed networks at 45 DIV and 47 DIV were too low to allow
for an evaluation of the delay time between the nodes. In contrast, stimulation in the presynaptic
node of perturbed networks at 31 and 35 DIV resulted in a presynaptic spike response, with no spike
response in the postsynaptic node (Figure 11B). There was no response in presynaptic nor

postsynaptic nodes at 45 DIV and 47 DIV in the perturbed networks.
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Figure 11. Induced perturbation resulted in progressive decline in presynaptic response to electrical
stimulation between the pre-and postsynaptic nodes over time. (A) Mutual information connectivity matrices
showing the network activity in chambers and tunnels (left column) and peristimulus time histograms of pre-
and postsynaptic responses to electrical stimulations (right column) for control networks at 31, 35, 45 and 47
DIV. (B) Connectivity matrices showing the network activity in chambers and tunnels (left column) and
peristimulus time histograms of pre- and postsynaptic responses to electrical stimulations (right column) for
perturbed networks at 31, 35, 45 and 47 DIV. The curves show an initial response in the presynaptic network,
followed by a delayed response in the postsynaptic network (for control networks) and no postsynaptic response
(for perturbed networks). The shaded area denotes the standard error of the mean.
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4. Discussion

Engineered neural networks in vitro self-organize into complex topologies and produce a complex
profile of activity patterns ranging from individual spikes produced by single neurons to high frequency
network bursts generated by neural assemblies (Chiappalone et al., 2006; van de Wijdeven et al.,
2018; Weir et al., 2023). The development of complex network activity can be attributed to the
structural properties of the network, as function tends to co-evolve with structure (Kapucu et al.,
2017). Activity typically evolves with the maturity of neurons, and of excitatory and inhibitory
synapses. As shown in Figure 2, our engineered neural networks expressed both the excitatory
neuronal marker CaMKIla, and the inhibitory neuronal marker GAD65/67 in conjunction with the
neuronal marker MAP2 by 21 DIV, strongly indicating the capacity for excitatory — inhibitory synaptic
transmission within the maturing networks. This was further verified through recordings of
electrophysiological activity, which showed that in healthy conditions, networks developed highly
dynamic and complex age-dependent firing activity and network bursts over time, in line with previous
studies by us and others (Chiappalone et al., 2006; Chiappalone et al., 2007; Fiskum et al., 2021; van
de Wijdeven et al., 2018; Weir et al., 2023).

The structural organization of neural networks is a crucial determining factor for the emergence of
complex network dynamics and information processing. In our engineered feedforward networks, we
showed that neurites extended from the presynaptic nodes into the microtunnels towards the
postsynaptic nodes, thus establishing structural connections. Furthermore, electrical stimulation at 26
DIV confirmed that these networks were functionally interconnected, as evoked activity in the
presynaptic node could propagate and elicit a response in the postsynaptic node (illustrated in Figure
3), in line with previous findings (Fair et al., 2009; Ma et al., 2018; Winter-Hjelm N, 2023). These results
confirm recapitulation of a feedforward network in vitro, where information flows in a unidirectional
manner, propagating sequentially from input nodes to output nodes (Barzegaran et al., 2022; Markov
etal., 2014). Such feedforward hierarchical organizations are found in many parts of the brain (Markov
et al., 2014; Siegle et al., 2021), and facilitate fast, efficient information processing between pre- and
postsynaptic neuronal assemblies. We also observed spontaneous feedforward burst propagation in
control unperturbed networks occurring from 16 DIV to 43 DIV, and perturbed networks from 16 DIV
to 41 DIV (Figure 10). The ability of the network to spontaneously transmit information between the
nodes is an essential factor in determining its functional capacity since this enables the integration of
signals that support coordinated, complex information processing (Fauth et al., 2019; Fukushima et
al., 2018; Senden et al., 2018). As such, our results confirmed the intended structural and functional
organization of engineered feedforward cortical networks, with the presynaptic node providing input

to the postsynaptic node (Figure 3 and Figure 10).
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These engineered feedforward networks also enabled us to selectively induce a perturbation, via AAV
mediated expression of human mutated tau in the presynaptic node, and to monitor resulting effects
within and between nodes. By utilizing this approach, we can effectively recapitulate and monitor a
pathological process at the micro- and mesoscale. Such a process not only induces structural and
functional changes in the immediately affected node, but also disrupts both structure and function in
the postsynaptic node (Kuhl, 2019; Valderhaug et al., 2021). These findings are highly relevant for
advanced modelling of evolving pathological processes in neurodegenerative diseases, such as AD,
where an association between the progression of tau pathology and altered transsynaptic activity has
been demonstrated (Liu et al., 2012). Such transsynaptic spread of tau pathology is attributed to the
robust connection loops that exist between the putative origin points of tau pathology in the lateral
entorhinal cortex layer Il (Braak et al., 1991) and feedforward anatomical sites to hippocampal
subregions (Liu et al., 2012; Stepan et al., 2015; Witter, 2007; Witter et al., 2017). This feedforward
transsynaptic spread of hyperphosphorylated tau may contribute to structural impairments that
disrupt the normal functioning of neural networks. In our study, by quantification of fluorescent
signaling of tau?%2% and tau®'’ expression, we find prominent differences, i.e., increased tau?"’ and
tau2°/2% jn the cytosol of neurons in the perturbed networks compared to the control unperturbed
ones, signifying detrimental effects of tau phosphorylation. Normal phosphorylation at tau?*%2% sites
is found in maturing brain and is associated with neural development (Goedert et al., 1995), while
tau®'” phosphorylation is found to be associated with the normal development of postsynaptic sites
(Rajbanshi et al., 2023). This means that some phosphorylation of tau at these sites is to be expected
in control unperturbed networks as shown in Figure 6. Furthermore, studies have shown that the
phosphorylation of tau at a single site does not preferentially induce neurotoxic effects (Steinhilb et
al., 2007). It appears then that the neurotoxic effects of tau depend on a combined high
phosphorylation pattern at multiple sites in axons and/or cytosol, which we have demonstrated in our
perturbed networks (Figure 6). In addition, recent findings also reported a correlation between high

tau217

expression and AD pathology progression (Rajbanshi et al., 2023) associated with synaptic
decline. Therefore, our finding of increased expression of both tau?°?2% and tau?'’ in the cytosol of
neurons within the perturbed networks suggests that the introduction of human mutated tau, capable
of inducing detrimental synaptic effects, has impacted both the structural and functional dynamics of

these networks.

This result is further supported by the differences found in the electrophysiological activity of
perturbed networks compared to unperturbed controls. Initially, both unperturbed control and
perturbed networks had diminished burst propagation between pre- and postsynaptic nodes over

time, with very little propagation from 41 DIV in healthy controls, and no propagation after 43 DIV in
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the perturbed networks, as illustrated in Figure 10. The decreased level of spontaneous activity
propagation in healthy networks with age, i.e., DIV, is suggestive of local information processing within
nodes, rather than internodal processing. This is further supported by the drastic increase in the total
number of bursts detected within nodes of controls (>1800 bursts/recording by 47 DIV), at the same
time as the perturbed networks experienced a drastic decline in the total number of bursts within
nodes (<10 bursts/recording by 47 DIV) as shown in Figure 10. The perturbed networks exhibited
differences that can be attributed to increased tau hyperphosphorylation, which, when combined with
feedforward propagation between the immediately affected node and the healthy node, precipitated
the spread of perturbation effects, leading to disruption in normal synaptic activity across the entire

network.

Other studies have found that severity of neuronal loss and atrophy of cortical structures as a result
of tau pathology tend to positively correlate with the severity of functional network decline (Adamec
et al., 2002; Rascovsky et al., 2005), thus highlighting the complex interrelationship between network
structure and function in pathology. The present study revealed such dynamic structural and
functional changes in perturbed networks, attributable to the induced expression of human mutated
tau at 28 DIV. Between 32 DIV and 52 DIV, we observed progressive neurite retraction from the entry
zone near the microtunnels in the presynaptic nodes in the perturbed networks. We also noticed that
retraction from the exit zone near the postsynaptic nodes also occurred within weeks of presynaptic
retraction as shown in Figure 7A. This was not observed in the unperturbed control networks, which
maintained a dense neurite network in the zones near the microtunnels in both nodes as seen in
Figure 7B. The significance of these changes in perturbed networks lies in their potential to adversely
affect the network’s ability to transmit and integrate information. Prolonged expression of mutant
P301L tau exacerbates axonal destabilization (Biswas et al., 2018; Qiang et al., 2018) and impairment
of presynaptic terminals (Hunsberger et al., 2021). Furthermore, both maintenance of presynaptic
integrity and synaptic plasticity depend on active anterograde and retrograde axonal transport
systems (Cai et al., 2011), thus impairment of tau in axons can affect such processes (Lacovich et al.,
2017) and severely disrupt synaptic functions between pre- and postsynaptic nodes in perturbed
networks. Furthermore, the observed subsequent neurite retraction in the postsynaptic node of the
perturbed networks (shown in Figure 7A), suggested that the loss of presynaptic input triggered
reorganization within postsynaptic nodes. These observations thus indicated a dynamic process of
structural and functional reconfiguration across the entire feedforward network in response to

presynaptic node perturbation.

The prominent structural changes observed following induced perturbation occurred concomitantly

with changes in the electrophysiological profile of the perturbed networks between 28 DIV and 47
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DIV. Prior to perturbation and between 16 DIV and 28 DIV, all networks in our study exhibited similar
trends in activity patterns such as firing and burst rate (Figure 8), burst duration and synchrony (Figure
9) and burst propagation (Figure 10). In healthy conditions, gradually increasing firing and burst
patterns are crucial for the establishment and maintenance of functional synapses, and the
elaboration of the network topology into hierarchical processing. Bursts also contribute to the
formation and refinement of neural circuits especially during early network formation (between 9 and
21 DIV) [49], where they facilitate the integration of immature neurons into the maturing network. It
is therefore expected that all healthy networks would inherently follow this developmental trend of
increasing firing and burst rates prior to perturbation. Following the induced expression of human
mutated tau, perturbed networks exhibited a steady decline in both firing rate and burst rate in
comparison to control unperturbed networks, which continued to display a steady increase over time
(Figure 8). Furthermore, these differences in firing rate following perturbation were found to be
significant between control unperturbed and perturbed networks in both pre- and postsynaptic
nodes. This suggested that perturbed networks became less electrophysiologically active as they
underwent structural reorganization, including neurite retraction. The observed decrease in firing and
bursting activity also aligned with in vivo findings showing that neurons in a mouse model with the
Tau-P301 mutation gradually became more hypoactive (Busche et al., 2019). However, Busche et al.,
(Busche, 2019) also suggested that the disruption in network activity occurred before any prominent
structural tau abnormalities were observed in vivo. We have shown however, that the decline in
general network activity correlated strongly with the progressive loss of synaptic connectivity and pre-
and postsynaptic neurite reorganization. These changes are highly challenging to detect and correlate

in vivo.

Another interesting result in our study was the significant increase in network burst size and
synchrony, as measured by the coherence index, observed in the perturbed networks between 28 DIV
and 47 DIV (Figure 9 E and F). Network bursts, which are coordinated patterns of neuronal activity
exhibited by multiple interconnected neurons within the network, are ubiquitous for normal network
function (Weir et al., 2023). Coordinated neuronal activity also leads to network synchrony (Salinas et
al., 2001), and is thus important for information processing, coding, and synaptic integration of
distributed signals (Gansel, 2022). Synchrony may also promote activity-dependent establishment of
synaptic connections via spike-timing dependent plasticity (STDP) (Anisimova et al., 2022) to support
network function. In a recent study by our group, we found that networks that were perturbed by
selective silencing of excitatory synaptic transmission also demonstrated increased synchrony during
network recovery (Weir et al., 2023). Such behavior may thus be crucial for the network’s ability to

restore its functional and structural organization within specific time windows after a perturbation.
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On the other hand, increased synchrony may also have adverse effects, such as facilitating the spread
of perturbations through axons and synapses to affect the entire interconnected network (Uhlhaas et
al., 2006), as has been found in AD pathology (Liu et al., 2012; Wang et al., 2017). Furthermore,
excessive network bursts and synchrony have been implicated in various neurological disorders,
including epilepsy, where they signify a disruption in normal network physiology i.e., impaired
excitatory-inhibitory dynamics (Kudela et al., 2003; Wu et al., 2015). Therefore, while a degree of
network synchrony is necessary for normal functioning, too much can be problematic. This raises a
crucial question regarding whether the observed synchrony in the perturbed networks in our study

may represent an adaptive or maladaptive network response to induced perturbation.

Interestingly, synchrony increased concurrently with neurite retraction at 32 DIV, and while firing and
burst rate declined. We found that, following perturbation, networks began exhibiting fewer, yet
larger synchronized bursts, which can be interpreted as a homeostatic compensatory response to
maintain network activity as the overall firing and burst rates declined. In response to low network
activity levels, homeostatic scaling, which occurs gradually and over several hours to days, can
increase overall input to counteract hypoactivity (Chowdhury et al., 2018; Turrigiano, 2008). This may
explain the observation of increasing synchrony between 31 DIV and 47 DIV (Figure 9 E and F).
However, increased synchrony could also signify pathophysiological changes in the underlying
network since it occurred concomitant with the evolution of induced pathology. In vivo, induced
perturbation caused by hyperphosphorylated tau can disrupt the structural and functional integrity of
the affected network, and subsequently result in increased inflammation leading to apoptotic or
necrotic cell death (Dong et al., 2022; Thal et al., 2022). Furthermore, it has been suggested that the
presence of diverse connections and pathways within a neural network can provide alternative routes
for information flow to reduce the reliance on a single synchronized pathway (Kirst et al., 2016), thus
acting as a gatekeeping mechanism to prevent excessive synchrony and enhancing overall network
robustness. In our study, as induced perturbation led to progressive structural and functional
disruption in the network, it is likely that information flow within the network might have been
hindered, as there were insufficient alternative routes to effectively distribute activity, ultimately
leading to excessive synchrony. This is further supported by observations in control unperturbed
during the same time frame between 31 DIV and 47 DIV. During this time, control networks exhibited
significantly higher mean firing and burst rates (Figure 8) and comparatively more bursts within nodes
(Figure 10), without showing excessive synchrony. These networks also maintained the dense neurite
architectures between the nodes. This effectively suggests that the unperturbed control networks
possessed the ability to maintain their activity within a dynamic range to prevent excessive network

wide activation, an ability which the perturbed networks appeared to gradually lose. Based on these
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findings, increased network synchrony after induced perturbation might be associated with the
deterioration of overall network function in response to the perturbation, rather than serving as an

adaptive purpose.

Lastly, to further investigate whether perturbation affected structural and functional connectivity
between the nodes, we applied periodic electrical stimulation to one electrode within the presynaptic
node and assessed the postsynaptic response. We found that although control unperturbed exhibited
a consistent presynaptic spike response to electrical stimulation, there was a gradual decline in the
postsynaptic response over time as illustrated in Figure 11A. This could be due to activity dependent
long-term synaptic changes in the vicinity of the stimulating electrode, such as a reduction in synapse
number or downscaling of synaptic receptors on neurons, as previously reported (Collingridge et al.,
2010). Such activity dependent structural changes would likely reduce the amplitude of the
presynaptic response, thus reducing the strength of the propagating signal (as shown in Figure 11A).
For perturbed networks, we found that there was no response to presynaptic stimulation in the
postsynaptic node by 31 DIV (Figure 11B). This outcome was anticipated as we had already observed
extensive neurite retraction in the presynaptic node by the specific time point, indicating the
severance of connectivity between nodes. No response to stimulation was observed in the presynaptic
node at 45 DIV and 47 DIV, which may be due to possible progressive neuron loss in the network, or
structural reorganization of any remaining neurons to areas outside the vicinity of the stimulating
electrode. Nevertheless, the differences in response to electrical stimulation between perturbed and
control unperturbed networks may reflect the functional capacity of each network, although
determination of whether these differences were indeed related to the networks’ functional capacity
was beyond the scope of this study. In this paper, our objective was to monitor ongoing changes in
both structure and function, a goal we successfully demonstrated through our results. This
underscores the efficacy of our platform in investigating dynamic changes to perturbation at the
network level. Additionally, it could potentially allow for the examination of how mutated tau affects
neurons at the molecular level, including phenomena like mitochondrial changes. This, in turn, may
facilitate the assessment of critical molecular shifts throughout the timeline of network alterations,
although this specific aspect falls beyond the scope of our present study. These findings have
significant implications for future research endeavors and their ability to tract and analyze such

intricate processes.

26



Altered structural and function organization in feedforward networks

5. Conclusions and future directions

Using engineered two-nodal feedforward neural networks with controllable afferent-efferent
connections, we longitudinally monitored and assessed dynamic structural and functional behaviors
in healthy conditions and in response to induced perturbation via expression of human mutated tau.
We found that prior to perturbation, both control unperturbed and perturbed networks followed a
similar developmental trajectory consistent with relevant literature. The effects of the induced
perturbation were evident within one week, with perturbed networks exhibiting significant decreases
in firing rate, burst rate and total number of bursts in comparison to the relevant increases observed
in control unperturbed networks. These changes align with reported adverse effects of tau
hyperphosphorylation. Furthermore, over time, while healthy controls showed a steady decline in
burst size and synchrony, perturbed networks showed significant increases in both, suggesting that all
the activity was contained within a few, large, synchronized network bursts. Increasing synchrony,
coupled to neurite retraction and the overall decline in firing and burst rates also suggested that the
observed synchrony may be a maladaptive, rather than an adaptive, response. Importantly, the
relevant changes seen in the perturbed networks were not observed in healthy controls, suggesting
that the changes were attributable to the induced perturbation, rather than physiological endogenous
tau expression. However, a valuable enhancement for future studies will involve designing a control
virus featuring a wild-type tau with the same structure as the experimental virus to enable a more
thorough comparison of the effects induced by mutated tau. Although the control unperturbed
networks served as a sufficient baseline for evaluating structural and functional changes, introducing
a control virus would heighten the study’s validity by establishing a baseline to differentiate any
alterations attributed to the virus itself as a foreign entity within the culture. Nevertheless, our current
findings do provide significant new insights into dynamic structural and functional reconfigurations at
the micro- and mesoscale in engineered feedforward neural networks as a result of evolving tau-

associated pathology.
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