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Abstract
1.	 Linear mixed-effects models are powerful tools for analysing complex datasets with 

repeated or clustered observations, a common data structure in ecology and evolu-
tion. Mixed-effects models involve complex fitting procedures and make several 
assumptions, in particular about the distribution of residual and random effects. 
Violations of these assumptions are common in real datasets, yet it is not always 
clear how much these violations matter to accurate and unbiased estimation.

2.	 Here we address the consequences of violations in distributional assumptions and the 
impact of missing random effect components on model estimates. In particular, we 
evaluate the effects of skewed, bimodal and heteroscedastic random effect and re-
sidual variances, of missing random effect terms and of correlated fixed effect predic-
tors. We focus on bias and prediction error on estimates of fixed and random effects.

3.	 Model estimates were usually robust to violations of assumptions, with the excep-
tion of slight upward biases in estimates of random effect variance if the generat-
ing distribution was bimodal but was modelled by Gaussian error distributions. 
Further, estimates for (random effect) components that violated distributional 
assumptions became less precise but remained unbiased. However, this particu-
lar problem did not affect other parameters of the model. The same pattern was 
found for strongly correlated fixed effects, which led to imprecise, but unbiased 
estimates, with uncertainty estimates reflecting imprecision.

4.	 Unmodelled sources of random effect variance had predictable effects on vari-
ance component estimates. The pattern is best viewed as a cascade of hierarchical 

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0002-9124-2261
https://orcid.org/0000-0003-3320-0861
https://orcid.org/0000-0002-7765-5182
https://orcid.org/0000-0001-5163-8096
https://orcid.org/0000-0001-9458-709X
https://orcid.org/0000-0002-0419-7125
https://orcid.org/0000-0002-8370-4614
https://orcid.org/0000-0001-8920-2183
http://creativecommons.org/licenses/by/4.0/
mailto:holger.schielzeth@uni-jena.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13434&domain=pdf&date_stamp=2020-07-16


1142  |    Methods in Ecology and Evolu
on SCHIELZETH et al.

1  | INTRODUC TION

Biological data often vary on multiple levels and complex data struc-
tures have become the norm in the study of ecology and evolution 
(Allegue et  al.,  2017; Bolker,  2008; Cheng, Edwards, Maldonado-
Molina, Komro, & Muller, 2010; Zuur, Ieno, Walker, Saveliev, & Smith, 
2009). Many studies now deal with data that are non-independent at 
the level of individuals, patches, cohorts or measuring batches. Linear 
mixed-effects models (LMMs) have become the tool of choice for an-
alysing these types of datasets (Bolker et al., 2009). Unlike standard 
linear models (LMs), LMMs make assumptions not only about the dis-
tribution of residuals, but also about the distribution of random effects 
(Grilli & Rampichini, 2015). Unfortunately, distributional assumptions 
for random effects cannot be checked as easily as for fixed effects 
(Alonso, Litiere, & Laenen,  2010); indeed, most standard software 
packages do not feature explicit tests of assumptions (though see spe-
cialized r-packages like HLMdiag, Loy & Hofmann, 2014). However, do 
such violations affect estimates of parameters of key interest?

Formally, the assumptions of a mixed-effects model involve 
validity of the model, independence of the data points, linearity of 
the relationship between predictor and response, absence of mea-
surement error in the predictor, homogeneity of the residuals, in-
dependence of the random effects versus covariates (exogeneity), 
occurrence of data missing completely at random and assumptions 
about the distribution of the residuals and random effects (Gelman 
& Hill, 2007; Grilli & Rampichini, 2015; Snijders & Bosker, 2011; Zuur 
et  al.,  2009). Another way of stating the core assumptions is that 
the residuals and random effect coefficients are independent and 
identically distributed. Any violation of this implies invalidity of the 
model. Hence, the model needs to be complete in such a sense that 
all the remaining effects are marginalized by appropriate random-
ization. Mixed models are flexible, in principle, in their use of vari-
ous distributions (Lee & Nelder, 2004), but normal distributions are 
by far the most commonly used. An additional concern is therefore 
whether violations of the normality assumption affect model fit.

Model diagnosis is typically based on evaluation of the distri-
bution of Cholesky residuals (Cheng et al., 2010). In the ideal case, 
residuals should be normally distributed—although a normal dis-
tribution of residuals does not guarantee that the distributional 
assumptions are fulfilled. Plotting residuals against fitted values 
allows an assessment of heteroscedasticity—although again ob-
serving the predicted pattern does not guarantee the absence of 
heteroscedasticity. However, unlike standard linear models, the 
distributional assumptions in mixed-effects models need to be 
checked at multiple levels, including the distribution of random ef-
fect coefficients (Snijders & Bosker,  2011). Data points with high 
leverage on model estimates can also be an issue, but such lever-
age can be assessed with influence diagnosis tools (Demidenko & 
Stukel, 2005; Loy & Hofmann, 2013; Santos Nobre & Singer, 2007; 
Zare & Rasekh, 2011).

Distributional assumptions are notoriously difficult to check, par-
ticularly for random effects. Since group means are unobservable di-
rectly (even more so in generalized linear mixed-effects models), any 
violation might be due to violations of the random effect distribution or 
of other parts of the model (Grilli & Rampichini, 2015). Consequently, 
McCulloch and Neuhaus (2011) suggested checking the distributional 
assumptions of the lower levels first, before checking the distribution 
of group levels. A posterior predictive model check offers a general 
approach for checking the predictive accuracy of a model (Box, 1980; 
Gelman & Hill, 2007; Rubin, 1984). A posterior predictive model check 
is based on the simulation of data using parameter estimates of the 
model (incorporating uncertainty in the estimates) with relevant fea-
tures for evaluating whether the observed values are within the range 
of simulated values. The problematic part of this approach is the choice 
of relevant features for assessment. Ideally, these features should be 
motivated by biological interest but should not be parameters for 
which the model is optimized (Sinharay & Stern, 2003). The mean value 
of a parameter is thus usually a poor choice (because it is estimated in 
the model), but other aspects of the distributions of observations, such 
as the occurrence of extreme values, might be.

grouping factors. Variances trickle down the hierarchy such that missing higher-
level random effect variances pool at lower levels and missing lower-level and 
crossed random effect variances manifest as residual variance.

5.	 Overall, our results show remarkable robustness of mixed-effects models that 
should allow researchers to use mixed-effects models even if the distributional as-
sumptions are objectively violated. However, this does not free researchers from 
careful evaluation of the model. Estimates that are based on data that show clear 
violations of key assumptions should be treated with caution because individual 
datasets might give highly imprecise estimates, even if they will be unbiased on 
average across datasets.

K E Y W O R D S

biostatistics, correlated predictors, distributional assumptions, linear mixed-effects models, 
missing random effects, statistical quantification of individual differences (SQuID)
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Various studies have tested the effect of violations of distributional 
assumptions on model estimates on model estimates, focusing primar-
ily on estimates of fixed effects. Fixed effects have been found to be 
largely robust to violations of distributional assumptions of the ran-
dom effects, at least for Gaussian models (Arnau, Bendayan, Blanca, & 
Bono, 2013; Jacqmin-Gadda, Sibillot, Proust, Molina, & Thiebaut, 2007; 
Maas & Hox,  2004; McCulloch & Neuhaus,  2011; Sinharay & 
Stern, 2003; Verbeke & Lesaffre, 1997; Warrington et al., 2014). For 
generalized linear mixed-effects models, the patterns have been more 
variable and fixed effect estimates can be biased in some cases (Grilli 
& Rampichini,  2015; Heagerty & Kurland,  2001). Overall, violations 
of assumptions regarding random effect distributions appear to have 
minor consequences for linear models, but potentially have serious 
consequences for non-linear models, including generalized linear 
mixed-effects models (Grilli & Rampichini, 2015). Unfortunately, very 
few studies have assessed random effect variances and predictions 
(e.g. Maas & Hox,  2004; McCulloch & Neuhaus,  2011; Verbeke & 
Lesaffre, 1996); for those who did, the estimation of the group variance 
is usually accurate, but random effect coefficients (best linear unbiased 
predictors, BLUP) are frequently misestimated.

Here we address several general questions about the robustness 
of LMMs to violations of distributional assumptions at each level of 
a model. We focus on parameter estimates, i.e. the slopes for fixed 
effects and the variance explained by random effects, which are usu-
ally of greatest interest to researchers in ecology and evolution. We 
implement a simulation scheme that features several severe violations 
of distributional assumptions, including skewed, bimodal and hetero-
scedastic distributions of residuals, as well as missing random effect 
components. Such violations of distributional assumptions might arise 
for a variety of reasons in real datasets, for example if some relevant 
influence (like the state of an organism or the time of sampling) is not 
accounted for or if measurements show boundary effects. We inde-
pendently vary violations of the distributional assumptions of the error 
variance and the distribution of random effects. We then evaluate the 
effect on parameter estimates. Overall, we found remarkable robust-
ness of LMMs. Bias is generally small in estimated parameters, with 
the most pronounced problems arising when predictors or random 
effect components are missing. A cursory exploration of generalized 
linear mixed-effects models (GLMMs) shows substantial robustness 
as well but also some notable complications. Our results do not free 
researchers from caring about assumptions, but should still encourage 
the mindful use of LMM even in seemingly problematic cases.

2  | MATERIAL S AND METHODS

2.1 | Simulated base model

We simulated data to be fitted in a simple LMM and then purpose-
fully violated assumptions about random effects and error distribu-
tions for this model (see Table  1 for definitions of key terms). The 
base model contained two continuous fixed effects predictors that 
were, for the sake of simplicity, drawn from uncorrelated normal 

distributions with zero mean and unit variance. The slope for the de-
pendency of the response variable on each of these covariates (x1 and 
x2) was set to +0.2 for the fixed effect of interest (β1) and to −0.2 for 
the second fixed effect (β2). Since covariates were centered and their 
slopes were of opposite signs, their expected overall effect on the 
mean was zero. We used a data generating model based on simulated 
values for all covariates and thus implicitly assume no measurement 
error in covariates (though with sampling variance across datasets).

We generated 120 observations per iteration. Observations were 
clustered in 30 groups with four observations on average per group. 
Groups may represent individuals sampled multiple times or any other 
hierarchical structure in the data that results in non-independence. The 
number of replicates per group varied while ensuring that each group 
was represented at least once. This simulates unbalanced sampling as it 
is common in ecology and evolution. We drew group-level means from 
a normal distribution with a mean of zero and a variance of 0.5 and 
residual deviations were also drawn from a normal distribution with 
zero mean on a variance of 0.5. The base data generating model was:

where y is a vector of the simulated response, �
0
 is the intercept that 

was set to 1, x1 and x2 are the vectors of the covariate values, �
1
 and �

2
 

y = �0+�1x1+�2x2+�+�,

� ∼ N(0,�2
�
),

� ∼ N(0,�2
�
),

TA B L E  1   Glossary of key terms

Term Explanation

Best linear unbiased 
estimates (BLUE)

Fitted values for specific fixed effect 
slopes

Best linear unbiased 
predictors (BLUP)

Fitted values for specific random effect 
levels (also known as Empirical Bayes 
estimators or conditional modes)

Bias Mean difference between the estimated 
and the true (simulated) value

Fitted values Model estimates for existing observations

Fixed effects Factorial or continuous predictors for 
which the slopes are estimated for each 
level or covariate without modelling a 
hyperparameter

Hyperparameter Unobservable parameter that in the 
cases covered here typically model the 
variance among instances

Precision/Prediction 
error

Square root of the mean squared 
difference between the estimated and 
the true value

Predicted values Model estimates for novel observations

Random effect Grouping factor for which the variance 
among levels is estimated by a 
hyperparameter (that usually is of main 
interest in the analysis)

Residuals Residual deviations from fitted values 
that are unexplained by the model
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are the two slopes that were set to �
1
= 0.2 and �

2
= −0.2, respectively, 

α represents a vector of the random effect for group identity, ε vector 
of the residual errors, �2

�
 the among-group variance (set to 0.5)  

and �2

�
 the error variance (within-group variance, set to 0.5). The ex-

pected phenotypic variance was �2

P
= �2

�
+ �2

�
+ �2

1
�2

x
1

+ �2
2
�2

x
2

= 1.08 
(Allegue et al., 2017), the expected unadjusted repeatability was thus 
�2

�
∕�2

P
= 0.46, and the expected adjusted repeatability was thus 

Radj =
�2

�

�2

�
+ �2

�

= 0.5 (Nakagawa & Schielzeth, 2010).

2.2 | Benchmark models

We generated 10,000 simulated datasets per scenario (the base 
model introduced above and the scenarios with violations as intro-
duced below). In all cases we then fitted the analysis model:

to the data, where b0, b1, b2, �̂, �̂, �̂2

�
 and �̂2

�
 are the estimates of �

0
, �

1
,  

�
2
, �, �, �2

�
 and �2

�
 respectively. We purposefully mis-specified mod-

els, either in the distributional assumptions, by ignoring additional 
grouping structure or correlations among predictors (see below for 
details). We evaluated the estimated slope b1 for the parameters �

1
,  

�̂
2

�
 for the parameter �2

�
 and �̂2

�
 for the parameter �2

�
. We also in-

spected the effect on the standard error of the fixed effects. We 
assessed bias as the mean deviation from the simulated value and 
prediction error as the square root of the mean squared deviations 
of the estimated from the simulated value (root mean square error, 
RMSE). Our analysis is focused on estimation and less on inference 
(e.g. type I and type II) errors, since we believe that effect size es-
timation is most relevant in the long run. However, since we realize 
that significance testing is important, we also explore the coverage 
in the confidence intervals for fixed effects.

All simulations were programmed in r 3.6.1 (R Core Team, 2019) 
and resulting data analysed with the lme4 package (version 1.1-21) 
for fitting mixed-effects models (Bates, Mächler, Bolker, & Walker, 
2015).

2.3 | Violations of distributional assumptions

Analysis of data with LMMs would typically assume that � and � are 
sampled from normal distributions as in our base simulations above. 
To assess if violations of this assumption are a problem, we purpose-
fully violated this assumption by simulating datasets in which we 
sampled � and � from other distributions. This was done indepen-
dently for both terms (group variance and residuals) one at a time 
and for both in combination.

Skewed distributions (scenario set A): Instead of drawing 
from standard normal distributions, � and � were drawn from 

skewed distributions using the function rpearson from the pack-
age PearsonDS (version 1.1, Becker & Klößner,  2017) in r 3.6.1  
(R Core Team,  2019) with the skew parameter set to 3. A skew 
parameter of 0 yields a standard normal distribution and a skew 
parameter of 3 ensures that skew was recognizably extreme (see 
Section 3), probably more than in most real scenarios, in order to 
discover even small biases. The skew parameter (as simulated by the  
rpearson function) does not change the simulated variance and  
the expected repeatabilities and phenotypic variances thus remain 
the same.

Bimodal distributions (scenario set B): Instead of drawing 
from standard normal distributions with a mean of zero for all ob-
servations, group level and/or residual variances were drawn from 
two distinct normal distributions with the means shifted up and 
down by ±1.5 units. Such shift might arise if there is an influential 
fixed effect missing from the model. Shifting was done at random, 
such that approximately (but not exactly) half of the draws were 
shifted down and half up. This yielded bimodal distributions with 
modes separated by 3 units (equivalent to 3 SDs) and an expected 
mean that remained at zero. Separation by 3 SDs is sufficiently 
extreme (see Section 3), probably more than in most real scenar-
ios, in order to discover even small biases. The addition of shifted 
modes affects the total simulated residual variance. In order to ad-
just the group level and the residual variance to the target value, 
we restored the designated variance by � = ��

√

�2

�

SD(��)
 and � = ��

√

�2

�

SD(��)
,  

respectively, where �′ and �′, are the group-level deviations and the 
residual error after adding the shift in means, SD(�′) and SD(�′) are 
the standard deviations of �′ and �′, respectively and �2

�
 and �2

�
 are the 

target residual and group variances (set to 0.5 as above). However, 
since this would result in identical residual variances across all simu-
lations (with no sampling variance), we let 

√

�2

�
 and 

√

�2

�
 vary slightly 

by an amount that sampling of 120 observations from 30 groups 
would yield when sampled from normal distributions. See Supporting 
Information for more explanations of how and why the variances 
were standardized with variability.

Heteroskedastic distributions (scenario set C): Instead of drawing 
from standard normal distributions, � and � were drawn from distri-
butions where the variance depended on one of the covariates (x

1
)  

as �2

Het
= �2

+ � ⋅ (x
1
− min(x

1
)) where the heteroscedasticity factor �  

was set either to 2, 4 or 8. A heteroscedasticity factor of 0 yields a 
standard normal distribution and a larger heteroscedasticity factor 
of 8 ensures that heteroscedasticity is recognizably extreme, prob-
ably more than in most real applications, to discover even small bi-
ases. The incorporation of a heteroscedasticity parameter affects 
the total simulated residual variance. In order to rescale the residual 
variance to the target value, we restored the designated variance by 
�=��

√

�2

�

SD(��)
, where �′, is the residual error after adding the heterosce-

dasticity factor, SD(�′) is the standard deviation of �′ and �2

�
 is the tar-

get residual variance (set to 0.5 as above). However, since this would 
result in identical residual variances across all simulations (with no 
sampling variance), we let 

√

�2

�
 vary slightly by an amount that sam-

pling of 120 observations would yield when sampled from normal  
distributions.

y = b0+b1x1+b2x2+ �̂+ �̂,

�̂ ∼ N(0,�̂2
�
),

�̂ ∼ N(0,�̂2
�
),
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2.4 | Missing random effects

In order to investigate the effect of missing random effects, we in-
troduced a higher-level random effect (with ten levels), a lower-level 
random effect (with 60 levels) or a crossed random effect (with 30 
levels; scenario set D). Additional random effects were sampled ran-
domly, i.e. in an unbalanced fashion, ensuring that each group was 
represented at least once. The random effect variances were set to 
�2

H
 = 0.5 for the higher-level random effect, �2

L
 = 0.5 for the lower-

level random effect and �2

C
 = 0.5 for the crossed random effect, while 

the variance of the random effect of interest and the residual vari-
ance were kept at �2

�
 = 0.5 and �2

�
 = 0.5 respectively. All additional 

random effects were normally distributed and thus did not violate 
any distributional assumptions. Adding additional sources of variance 
affects the expected repeatability, but this is unproblematic, since 
we used these simulations primarily to illustrate where, i.e. in which 
component of variance, the additional unmodelled variance would 
appear in the model.

2.5 | Correlated predictors

The base version of the model generated covariate values indepen-
dently (expected correlation of zero). We also introduced cases of 
correlated predictors, by drawing values of the covariates x

1
 and x

2
 

from multivariate normal distributions with correlations set to +0.2, 
+0.5 or +0.8 (scenario set E). These simulations were introduced to 
study biases and prediction errors in a situation typically assumed to 
be problematic. The three correlation values were chosen to show 
the effect of mild, moderate and strong correlations among predic-
tors. At least the situation with a correlation of 0.8 will typically be 
considered as very problematic.

2.6 | Further exploration

Besides the models introduced above, we also implemented the fol-
lowing simulations, the results of which are presented as supplemen-
tary documents:

1.	 Balanced sampling: We repeated the entire analysis with a sam-
pling design that was balanced with respect to the distribution of  
group levels across observations.

2.	 Small sample data: We repeated the entire analysis with a sam-
ple size reduced to 40 observations, 10 groups, five higher-level 
groups, 20 lower-level groups and 10 crossed-level groups.

3.	 Few groups: We repeated the entire analysis with a different dis-
tribution of observations across groups: 120 observations, six 
groups, three higher-level groups, 12 lower-level groups and six 
crossed-level groups.

4.	 Low repeatability: To evaluate the effect of low repeatability, we 
also simulated the cases of �2

�
 = 0.1 and �2

�
 = 0.9 (expected adjusted 

R = 0.1) with the rest of the settings as in the base simulation.

5.	 High repeatability: To evaluate the effect of high repeatability, we 
also simulated the cases of �2

�
 = 0.9 and �2

�
 = 0.1 (expected adjusted 

R = 0.9) with the rest of the settings as in the base simulation.
6.	 Generalized LMMs with Poisson data: We repeated the entire 

analysis with simulated count data. Latent values were simulated 
as for the Gaussian approach, but observations were generated 
as samples from Poisson distributions after exponentiating la-
tent values. In order to generate realistic data ranges, the latent 
scale values were divided by 2 before simulating observations. 
The data were analysed with log link using the glmer function 
in R (package lme4, Bates et al., 2015), including an observation-
level random effect to model residual variance. We analysed pa-
rameter estimates on the latent scale. To make data comparable 
to other scenarios, we multiplied estimated variances by 4 and 
slopes by 2, which compensates for the reduced variation on the 
latent scale.

7.	 Generalized LMMs with proportional data: We repeated the en-
tire analysis with proportion data. Latent values were simulated as 
for the Gaussian approach except for the intercept that was set to 
zero in order to achieve maximum power. Observations were gen-
erated as samples from Binomial distributions (after inverse logit 
transformation of latent values) with 20 trials per observation. 
The data were analysed with logit link using the glmer function 
in R (package lme4, Bates et al., 2015), including an observation-
level random effect to model overdispersion. We analysed param-
eter estimates on the latent scale.

3  | RESULTS

Violations of distributional assumptions on either random effect 
variances or residual variances had surprisingly little biasing effect 
on the estimates of interest. The only notable exception was bias in 
the estimate of the group variance when the underlying distribution 
was bimodal, which resulted in slight upward bias (Figure 4). There 
were, however, effects on the precision of estimates. Less precise 
estimates resulted from severely skewed distributions (Figure  1), 
bimodal distributions (Figure  S1) and heteroskedastic residuals 
(Figure S2). With respect to fixed effects, the increased imprecision 
is appropriately reflected in increased uncertainty estimates, except 
for heterogeneous residual variance, in which coverage of the CI was 
low (Figures S11 and S12).

An interesting pattern emerged in the distributions of group 
means and residuals when estimated from models that assumed 
normal distributions (Figure  2): The distribution of best linear un-
biased predictors (BLUPs) approximates a normal distribution at 
low repeatability, while they were clearly non-normally distributed 
at higher repeatabilities (Figure 2). The reversed pattern appeared 
for residuals that were clearly non-normal at low repeatabilities and 
approached normality at high repeatability (Figure 2). These two re-
sults illustrate that the estimated distributions approached the dis-
tribution assumed by the model if there was little signal for the focal 
level, while they traced the simulated distribution if the signal in the 
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F I G U R E  1   Effects of violations of distributional assumptions on parameter estimates of key interest. The left three columns show the 
distributions of group, residual and phenotypic variance as they were generated in one simulation run. Components that feature violated 
assumptions are highlighted in dark grey. The three columns on the right show the distribution of point estimates across 10,000 replicated 
simulations runs for the fixed effect slope, the group variance and the residual variance. The simulated true value is shown as a red triangle. 
The mean of the estimate values is shown as a solid red line, and the 5% and 95% quantiles of the estimate values are shown as dashed 
red lines. Upper row: The base mixed model with normal group and residual variances. Second row: Skewed distribution of the residual 
variances. Third row: Skewed distribution of the group variances. Lowest row: Skewed distributions for the group and residual variances

F I G U R E  2   Effects of skewed 
distributions and size of the variance 
components on estimated group means 
and residuals. Each column shows a 
single simulation run for a case with low 
repeatability (left column), moderate 
repeatability (middle column) and high 
repeatability (right column). The upper 
row shows the distribution of group 
means as they were simulated from a 
skewed distribution. The second row 
shows the estimated group means 
(BLUPs). The third row shows the 
distribution of residuals as they were 
simulated from a skewed distribution.  
The last row shows residuals as they  
were estimated by the model
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data was strong, i.e. when the respective variance component was 
relatively high compared to other variance components.

Missing random effect predictors had little effect on the fixed 
effect estimates but had systematic effects on the estimates of ran-
dom effects (Figure 3). The variance due to unmodelled higher-level 
predictors was almost completely absorbed by the nested random 
effect variance of interest. The variance arising from unmodelled 
lower-level predictors was largely absorbed by the residual variance 
with only a small fraction appearing in the random effect of interest. 
Even more so, the variance arising from unmodelled crossed random 
effect predictors was almost completely absorbed by the residual 
variance.

A correlation between fixed effect estimates resulted in no bias 
in estimates on average (Figure  S3). However, the estimates were 
less precise and scattered more widely when predictors were cor-
related, but the effect was marked only for very strong correlations 
(r = 0.8, but not r = 0.5 in our simulation). Weak correlations had 
almost no effect on parameter estimates.

Overall, bias in fixed effect estimates was small in all scenar-
ios, typically <1% of the ‘true’ value in our simulations (Figure 4). 
Bias in group effect variances was also <2% in most cases, except 
for increased upward bias (up to 10%) in cases with bimodal group 
variance distributions and more extreme deviations in cases of 
missing random effect predictors as described above. Added pre-
diction error (as compared to the control scenario) was rather small 

compared to the control scenarios for fixed effects with minor 
increase in cases of heteroscedasticity (Figure  4). Random effect 
components that violated assumptions showed increased predic-
tion error (Figure 4).

Balanced sampling showed few differences from the base sce-
nario with marginally reduced prediction error in the group variance 
(Figure  S4). Simulations with low sample size generally showed a 
similar pattern, although, as expected, prediction errors were signifi-
cantly increased for all components (Figure S5). Simulations with few 
groups show largely similar patterns, but larger prediction error for 
group variances and increased susceptibility in the case of bimodal 
group variances (Figures S6).

Simulations with low repeatability did not differ much for es-
timates of fixed effects, though prediction error was slightly in-
creased, reflecting the overall lower amount of variance explained 
by the model (Figure S7). Interestingly, the upward bias of the group 
variance in scenarios with bimodal group distributions was absent at 
low repeatabilities. Relative bias in the group variance estimate was 
larger and uniformly positive with significantly larger relative predic-
tion error. Simulations with high repeatability showed the opposite 
pattern of reduced bias and prediction error in fixed effect estimates 
and group-level variances (Figure S8).

In simulations with Poisson and binomial distributions, GLMM 
results also showed generally similar patterns with larger predic-
tion error, reflecting the overall lower information content per data 

F I G U R E  3   Effects of missing random effects on parameter estimates of interest. The three columns on the left show the distribution 
of point estimates across 10,000 replicated simulation runs for the fixed effect slope, the group variance, and the residual variance. The 
simulated true value is shown as a red triangle. The mean of the estimate values is shown as a solid red line, and the 5% and 95% quantiles  
of the estimate values are shown as dashed red lines. The figures on the right illustrate the flow of unmodelled variance components  
(G, grouping factor of interest; R, residual variance; H, higher-level missing random effect; L, lower-level missing random effect; C, crossed 
missing random effect). Upper row: The base mixed model with normal group and residual variances. Second row: Missing higher-level 
random effect with variance of 0.5. Third row: Missing lower-level random effect with variance of 0.5. Lowest row: Missing crossed random 
effect with variance of 0.5
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point, and consistent downward bias in the group variance even 
for the control scenario (Figures S9 and S10). However, there were 
also important differences: Skewed distributions had a significantly 
larger effect on the respective variance components, resulting in 
stronger bias in the estimates. Heteroscedasticity affected the 

estimate of the residual variance. Unlike the Gaussian scenarios, 
the fixed effect estimates were also biased in cases of heterosce-
dasticity (Figures  S9 and S10). Coverage of the confidence inter-
vals of fixed effects were too low in particular for Poisson models 
(Figure S12).

F I G U R E  4   Bias and prediction error in fixed effect (upper row), random effect variance (middle row), and residuals variances (lower row) 
estimates. Vertical lines separate the five different sets of scenarios (A–E) of violated modal assumptions. In each plot, the leftmost bars (A1, 
B1, C1, D1, E1) refer to the control scenario while the model violations tend to increase from left to right within blocks. Both bias and root 
mean square prediction error are expressed in relation to the true mean size of the component. Error bars represent the estimated standard 
error based on 10,000 simulations. Some bars are way beyond the range of the plot and their values are shown as numbers in the top part of 
the respective bar
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4  | DISCUSSION

Our simulation analysis shows that the effect of violations of dis-
tributional assumptions of random effect variances and residuals is 
surprisingly small. Even substantially skewed, bimodal and hetero-
scedastic distributions resulted in little overall bias—with the excep-
tion of group variances estimated for data generated from a bimodal 
distribution. Fixed effect estimates in particular were relatively un-
biased, though coverage of the confidence intervals was somewhat 
too low in the case of heterogeneous residual variances. However, 
the variance components for which the normality assumption was vi-
olated showed significantly increased prediction error, meaning that 
estimates were more variable and thus less precise. Hence, while 
estimates are unbiased on average, they might be further from the 
true value than when the distributional assumptions are not fulfilled.

Some of the violations that we simulated could easily emerge 
from incomplete models. Bimodal distributions, for example, may 
often arise from a strong effect of a class variable that was not in-
cluded in the model. Indeed, this was how we generated bimodal 
distributions in the simulation. Such missing effects might be sex or 
age classes for the group means or different contexts or environ-
ments for the residuals. Identifying and fitting those factors would 
stabilize the distributions and therefore improve estimates. Similar 
effects may underlie cases of heteroscedasticity. Skewed distribu-
tions frequently arise from effects being multiplicative rather than 
additive, thus the scale of the measurement should be assessed in 
such cases (Houle, Pelabon, Wagner, & Hansen, 2011) and appropri-
ate transformation might reduce heteroscedasticity.

We also show that missing random effect terms have systematic ef-
fects on estimates of other variance components. Unmodelled sources 
of variance have predictable effects on model variance components 
that depend on the hierarchical structure of the dataset. The effects 
are analogous to a cascade, where variances flow down the hierarchy, 
but usually not up. Hence, variances of missing higher-level structure 
cascade down to a lower-level random effect that are included in the 
model. Lower-level and equal-level (crossed) random effects will cas-
cade down to the residuals. This also implies that when faced with the 
problem of an incentive to omit one of two hierarchical random ef-
fects, it should usually be the lower-level random effect that should 
be modelled and the higher-level random effect that is left out. This 
issue might appear in very complex models or if two levels are nearly 
identical in their factor levels. Modelling the random effect with more 
levels is then preferable (though the decision also depends on fixed 
effects, such as group-level predictors). Evidently, this will create some 
dependencies among some random effect levels, but seems to be not 
very problematic in the cases that we simulated. Note, however, that 
we simulated only data-level predictors and the pattern might differ 
for group-level or mixed-level predictors.

Finally, we show increased imprecision in fixed effect estimates 
when covariates are correlated. Warnings about correlated fixed ef-
fects are abound (Freckleton, 2011; Quinn & Keough, 2002; Zuur, 
Ieno, & Elphick, 2010), but the impact of such collinearity is much 
more subtle than commonly assumed. Briefly, large effects on 

precision of estimates are evident only when fairly strong correla-
tions exist, while weak and moderate correlations have very little 
effect. Furthermore, while the correlation among predictors affects 
the estimates of those variables involved in these correlations, the 
problem does not trickle through to the rest of the model, i.e. it does 
not affect estimates of random effect components or other uncor-
related predictors. Morrissey and Ruxton (2018) also point out that 
the increased variation in estimates is a simple consequence of the 
sampling design being inadequate for estimating independent ef-
fects of correlated variables.

A pertinent question when estimates are highly variable is if 
the uncertainty is appropriately reflected in the estimated standard 
error of the estimates. Besides the slight under-coverage of confi-
dence intervals caused by heterogeneous residuals variances, fixed 
effect estimates did not show high levels of imprecision in most sce-
narios, hence the main concern is the uncertainty estimate for the 
random effect variance. However, there is no universally accepted 
way in which uncertainty in random effect variances is quantified. 
Profile likelihoods, Bayesian estimation or parametric bootstrapping 
offer three very different options (Gelman & Hill, 2007; Venzon & 
Moolgavkar, 1988). Our simulation results give some indication for 
how parametric bootstrapping is likely to perform. Parametric boot-
strapping relies on simulations based on model estimates followed by 
refitting the model and assessing the variability in estimates across 
simulations. Although we did not perform this for computational 
reasons (many bootstrap iterations are required per simulation), our 
results suggest that bootstrapping would not cover the correct es-
timates well. In cases where the best estimate is far from the true 
value, parametric bootstrapping will generate data that are more 
concentrated around the estimated value. Furthermore, parametric 
bootstrapping will not reproduce the underlying distributional viola-
tions that caused the initial outlier estimate. All methods will prob-
ably fail in accurately predicting specific random effect levels, as 
our simulations show that BLUPs were strongly biased towards the 
assumed distribution if the respective variance component is small 
(see also Verbeke & Lesaffre, 1996).

A common practice is to perform nonlinear transformations of 
the response variable in order to improve the fit to normal distribu-
tions (Gurka, Edwards, Muller, & Kupper, 2006). However, this comes 
at a cost of reduced interpretability, when the data are not on the 
original scale (Grilli & Rampichini, 2015; Houle et al., 2011; Jacqmin-
Gadda et al., 2007). Our results suggest that transformations might 
not be necessary, since violations of the normality assumption often 
have little impact. It might thus be beneficial to avoid transforma-
tion when faced with the trade-off between interpretability and 
conformance to model assumptions. Furthermore, the decision to 
transform should consider measurement theory, since not all trans-
formations are consistent with all kinds of data (Houle et al., 2011). 
One example where transformations should be avoided is in the esti-
mation of selection gradients (Brodie, Moore, & Janzen, 1995). There 
is a strong theoretical motivation for estimating selection gradients 
as the slope of relative fitness (absolute fitness divided by average 
fitness in the population) over trait values. The response, relative 
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fitness, is almost certainly not normally distributed. Our simulations 
suggest that the estimate of the relevant slope, the selection gradi-
ent, will likely be unbiased in such situations.

We have simulated unbalanced data sampling as it frequently 
occurs in the study of ecology and evolution. Our results show re-
markable robustness even with such unbalanced data. However, our 
data were missing completely at random (MCAR) with respect to the 
parameters and response of interest. MCAR is often not the mode 
of missingness in the study of ecology and evolution. If missing data 
depend on covariate values they are called missing at random (MAR) 
while when missing data depend on themselves (i.e. the response 
variable) or unobserved predictors, they are called missing not at 
random (MNAR; Nakagawa, 2015; Nakagawa & Freckleton, 2008). 
This scenario includes the random effect level, when their represen-
tation depends on their phenotype of interest (MNAR) or on other 
observed features (MAR) or unobserved features (MNAR). While 
missing data imputation techniques can handle MAR, MNAR data 
are problematic and usually lead to biases whether or not distribu-
tional assumptions of the model are fulfilled.

There are approaches for obtaining robust estimators for the fixed 
effects for cases of small sample size and for models with violated 
distributional assumptions (e.g. Kenward & Roger,  1997; Kenward & 
Roger, 2009; Royall, 1986; Royall & Tsou, 2003). Sandwich estimators, 
for example, increase the standard errors to a degree that small samples 
or violations would increase uncertainty beyond what is expected from 
large samples with no violations. Sandwich estimators have repeatedly 
been shown to perform well, except when there is a combination of 
violations and very small sample sizes (Arnau et al., 2013; Verbeke & 
Lesaffre, 1997). We did not apply robust estimation in our simulation 
and for the situations that we simulated here. However, we found that 
that ordinary estimation procedures perform sufficiently well. We feel 
encouraged by the observation that estimates are on average unbiased 
and are less concerned with the exact significance–non-significance 
cutoff that affects type I error rates. However, it is important to note 
that for individual cases, robust estimation might make a difference re-
garding whether the value is above or below some specific α threshold.

In our simulation, we only superficially investigated non-Gaussian  
error distributions, which can be modelled by generalized linear 
mixed-effects models (GLMMs). GLMMs include link functions and 
specific error distributions. The array of possible options is vast, with 
Poisson GLMMs, Binomial GLMMs and Negative-binomial GLMMs 
being the most popular. The link function and the specific error dis-
tributions cause additional complications and need to be chosen ap-
propriately (Bolker et al., 2009; Harrison et al., 2018). However, at 
the latent scale, the models are equivalent to Gaussian GLMMs, such 
that most of our results will likely apply to non-Gaussian GLMMs as 
well. Our simulations for Poisson and proportion data indicate that 
results were broadly similar, but Poisson and Binomial models re-
sponded differently to violations in different situations. Robustness 
thus seems to be much more context-specific in the case of GLMMs. 
Furthermore, the expected response will also depend on the popula-
tion mean value. For the simulation of binomial GLMMs we have cho-
sen a mean of zero on the latent scale, which results in an expected 

mean of 0.5 on the observed scale and thus maximum information 
per data point. Other cases may be less favourable.

Extensions of LMMs, such as double hierarchical generalized lin-
ear models (dHGLMs) allow modelling heterogeneous residual vari-
ances. This might be of specific biological interest (e.g. Westneat, 
Wright, & Dingemanse, 2015) and can be extended to fit fixed and 
random effect predictors that potentially affect heterogeneity in 
residual variances (rather than just affecting average trait values, 
Cleasby & Nakagawa, 2011; Cleasby, Nakagawa, & Schielzeth, 2015). 
Because of the small impact of heteroscedasticity on model estimates 
(see also Jacqmin-Gadda et al., 2007, but note the reduced coverage 
of the confidence interval for fixed effects), it does not seem to be 
necessary to fit heterogeneous residual variances when the main aim 
is to get robust estimates of fixed and random effects components in 
the fixed part of the model. dHGLMs make additional assumptions 
(including those about the distribution of heterogeneous residual vari-
ances) that will require additional checks. It seems that the biological 
insights promised by HGLMs, rather than putative violations per se, 
should be the main motivation for fitting them (Westneat et al., 2015).

In many cases, part of the appropriate model specification 
should include random-slope terms when data on slopes are rep-
licated within groups (Gurka, Edwards, & Muller,  2011; Schielzeth 
& Forstmeier,  2009). Random-slope models can get complicated, 
in particular if multiple random-slope terms are to be included. In 
general, special attention is required such that models still report 
appropriate estimates. We did not simulate random-slope effects, in 
particular because the range of parameters to be explored goes be-
yond the scope of this manuscript. It is thus possible that violations 
of random effect distributions that are involved in random-slope 
terms might cause biased and/or imprecise estimates. Simulations 
of random-slope models with violated distribution of the random ef-
fects suggest robustness of the fixed effect type 1 error rate if the 
random-slope variance is appropriately specified (Jacqmin-Gadda 
et al., 2007; Taylor, Cumberland, & Sy, 1994; Warrington et al., 2014), 
but the conditions when random slopes are not appropriately speci-
fied are largely unexplored.

Overall, our results should be viewed as encouraging, and allow 
users of mixed-effects models to proceed with confidence. We con-
clude that mixed-effects models are largely robust even to quite se-
vere violations of model assumptions. While it can be fine to model 
data that are clearly not normally distributed, we do caution that 
this might result in increased variability in estimates, hence extreme 
(and therefore misleading) results might occur for specific datasets. 
However, the effect is largely confined to the parameter(s) that are 
most closely linked to the violations of assumptions. It will thus be 
relatively easy to identify estimates that should be treated with in-
creased caution. Our results therefore do not eliminate the need 
for proper evaluation of each model (of which posterior predictive 
model checks seem most generally applicable, Gelman & Hill, 2007). 
However, mixed-effects models should not be seen as dangerously 
complicated. Rather they are powerful tools to model a large variety 
of dataset and are usually more powerful than alternative analyses. 
We therefore encourage the use of mixed-effects models even for 
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slightly non-standard datasets while also advocating efforts to un-
derstand the specific consequences of particular types of violations.
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