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B-STABILITY OF NUMERICAL INTEGRATORS ON

RIEMANNIAN MANIFOLDS

MARTIN ARNOLD, ELENA CELLEDONI, ERGYS ÇOKAJ*, BRYNJULF OWREN,
AND DENISE TUMIOTTO

Abstract. We propose a generalization of nonlinear stability of numerical
one-step integrators to Riemannian manifolds in the spirit of Butcher’s notion

of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce

non-expansive systems on such manifolds and define B-stability of integrators.
In this first exposition, we provide concrete results for a geodesic version of

the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable

on Riemannian manifolds with non-positive sectional curvature. We show
through numerical examples that the GIE method is expansive when applied

to a certain non-expansive vector field on the 2-sphere, and that the GIE

method does not necessarily possess a unique solution for large enough step
sizes. Finally, we derive a new improved global error estimate for general Lie

group integrators.

1. Introduction

Stability is a fundamental property of numerical methods for stiff nonlinear or-
dinary differential equations. It is important for controlling the growth of error in
the numerical approximation and is used in combination with local error estimates
to obtain bounds for the global error. Stability bounds can also in some situa-
tions be used to ensure the existence and uniqueness of a solution to the algebraic
equations arising from implicit integrators. In the literature, one can find a large
variety of stability definitions for numerical integrators with various different aims.
Some of them apply to linear test equations, others are of a more general nature
and apply to nonlinear problems with certain prescribed properties. Most of the
stability definitions found in the literature are developed for problems modeled on
linear spaces. In particular, there is a well-established non-linear stability theory,
where an inner product norm is used to measure the distance between two solutions
and the corresponding numerical approximations. Pioneering contributions to this
theory were made by Dahlquist and Butcher in the mid-1970s [6, 17], in the wake
of the legendary numerical analysis conference in Dundee, 1975. The notions of
G-stability for multi-step methods [17] and B-stability of Runge–Kutta methods
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[6] were developed. The overall idea of B-stability is that whenever the norm of
the difference between two solutions of the ODE is monotonically non-increasing,
the numerical method should exhibit a similar behavior, that is, the difference in
norm between the two corresponding numerical solutions should not increase over
a time step. Much is known about B-stable Runge–Kutta methods, and there is
even an algebraic condition on the coefficients (A, b) of a method that ensures its
B-stability. A key ingredient is the one-sided Lipschitz condition, also called a
monotonicity condition, on the ODE vector field. We refer the reader to the ex-
cellent monographs [20, 24] for a detailed treatment of the various definitions of
stability and B-stability in particular.

We remark that whether a particular ODE system is non-expansive depends
on the choice of inner product norm, but the notion of a B-stable Runge–Kutta
method does not, see [24, p. 182]. In this paper, we shall be concerned with uncon-
ditional stability, meaning that step sizes h ∈ (0,∞) are allowed. This excludes all
explicit integrators, and it makes it necessary to assume that both the flow of the
ODE vector field and the numerical method map are well defined for all positive
t. Dahlquist and Jeltsch [18] introduced generalized disks of contractivity in order
to consider also the case in which limitations on the ODE vector field and the step
size are imposed.

We shall here consider systems of ODEs whose solutions evolve on a smooth
manifold. We are primarily interested in numerical integrators which are intrinsic,
that are not developed for a particular choice of local coordinates, or based on a
specific embedding of the manifold into an ambient space. There are several such
numerical methods available in the literature.

Crouch and Grossman [15] proposed to build integrators by composing flows of
so-called frozen vector fields, and these methods were later extended to a more
general format in [10] called Commutator-free Lie group methods. Munthe–Kaas
introduced numerical integrators for homogeneous spaces [41] by equipping the
manifold with a left transitive Lie group action which was used together with the
exponential map to transform the ODE vector field locally to a vector field on the
underlying Lie algebra. Its flow is approximated by any classical Runge–Kutta
method, and the result is mapped back to the manifold by composing the group
action with the exponential map.

In computational mechanics there were early contributions to numerical inte-
gration on particular manifolds, such as the rotation group SO(3) and the special
Euclidean group SE(3). A landmark paper in the design of conservative methods
for Hamiltonian systems on Lie groups is the one by Lewis and Simo [37]. For rod
dynamics, an important paper was that of Simo and Vu-Quoc [46] who developed a
geometrically exact formulation for rods undergoing large motions, and for the time
stepping they devised a version of the Newmark methods applicable to Lie groups.
These methods can be generalized to the so-called α-methods [27] in a Lie group
setting, see [2,3]. Parametrization of the manifold in question, such as the rotation
group, plays a significant role in computational mechanics, for efficiency, accuracy,
and storage requirements. When using (minimal) local coordinates for global simu-
lation, one inevitably runs into problems with singularities, these issues have been
studied and amended by several authors, e.g. [28, 48]. Hamiltonian systems are
often formulated on cotangent bundles, in which case symplectic integrators can be
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derived through the discretization of a variational problem, this approach is some-
times named discrete mechanics. The pioneering work by Marsden and West [38]
developed this theory for Euclidean spaces, and it has later been generalized to Lie
groups in a number of papers [5, 11,21,25,26,34,36].

Finally, on a Riemannian manifold, it is natural to base the numerical schemes
primarily on the Riemannian exponential map. Leimkuhler and Patrick [35] derived
a symplectic integrator for Riemannian manifolds, and in [12] the authors suggest
using Riemannian normal coordinates to define a retraction map.

For an in-depth account of Lie group methods, we refer to [7, 11, 14, 30, 42] and
references therein.

In this paper we shall make the first attempt to generalize B-stability to Rie-
mannian manifolds, replacing the inner product norm with the Riemannian distance
function. We take inspiration from the work of Simpson-Porco and Bullo [47] who
considered contraction properties of a continuous system. In Section 2 we define
what we mean by a non-expansive system on a Riemannian manifold, and we state
the definition of B-stability of a general numerical method in this setting. Then, in
Section 3 we first present two examples of numerical methods: the geodesic versions
of the implicit Euler method (GIE) and the implicit midpoint rule (GIMP). Then
we prove a B-stability result for the GIE method in the case that the manifold
has non-positive sectional curvature. We also provide numerical experiments for
a particular vector field on the two-sphere, S2, showing that neither the GIE nor
the GIMP method is B-stable on this manifold which has positive sectional curva-
ture. We briefly discuss also for this example a non-uniqueness issue with the GIE
method which is different from what is known from the Euclidean setting. Finally,
in Section 4 we present a bound for the global error of numerical methods, based
on the monotonicity condition.

2. Non-expansive systems

We begin by briefly introducing some notation and terminology, mostly adhering
to the monograph by Lee [33]. A Riemannian manifold is a pair (M, g), where M
is a smooth manifold and g is a smoothly varying inner product defined on each
tangent space TpM, p ∈ M . We will use interchangeably the notations g(·, ·)
and ⟨·, ·⟩. Associated to (M, g) is the Levi-Civita connection, the unique affine
connection ∇, which for any three vector fields X,Y, Z on M satisfies X⟨Y, Z⟩ =
⟨∇XY, Z⟩ + ⟨Y,∇XZ⟩ and [X,Y ] = ∇XY − ∇Y X. The connection also defines
the covariant derivative of vector fields along curves, we use the notation DtV (t)
to denote the covariant derivative of V (t) along γ(t), see [33, Theorem 4.21]. A
curve γ : [a, b] → M is geodesic if it satisfies the equation Dtγ̇(t) = 0 along γ(t). A
geodesic that connects two points p and q is called a geodesic segment. If this second
order differential equation, together with initial data γ(0) = p ∈ M, γ̇(0) = vp ∈
TpM yields a solution γ(t), t ∈ [0, t∗], thus expp : TpM → M . A similar notation
is used for the t-flow, exp(tX), of a vector field X on M , it is the diffeomorphism
on M , p 7→ y(t) where ẏ = X|y, y(0) = p, and its domain of definition may be
t-dependent. A numerical method on M is a map ϕt,X : M → M that approximates
the flow map exp(tX). A set U ⊆ M is geodesically convex if, for each p, q ∈ U ,
there is a unique minimizing geodesic segment from p to q contained entirely in U .
A vector field X is forward complete on U if for every p ∈ U , exp(tX)p is defined for
all t ≥ 0. If for every (t, p) ∈ [0,∞)×U it holds that exp(tX)p ∈ U , we say that U is
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forward X-invariant. Similarly, for a mapping ρ the set U is ρ-invariant if ρ(y) ∈ U
for any y ∈ U . We denote the length of a curve γ : [a, b] → M as ℓ(γ) =

∫ b

a
∥γ̇(t)∥dt,

where ∥v∥ := ⟨v, v⟩ 1
2 is the g-norm. The metric induces a distance function between

pairs of points p, q ∈ M , d(p, q) = infγp→q
ℓ (γp→q), where γp→q is any continuous

curve connecting p and q. The following definition replaces the one-sided Lipschitz
condition on a Riemannian manifold.

Definition 2.1. Let (M, ⟨·, ·⟩) be a Riemannian manifold and let U ⊂ M . We say
that the vector field X satisfies a monotonicity condition on the set U with constant
ν ∈ R if for every x ∈ U and vx ∈ TxM , it holds that

(2.1) ⟨∇vxX, vx⟩ ≤ ν ∥vx∥2 .

Consider for every x ∈ U , the linear operator ∇X|x : vx 7→ ∇vxX on TxM . The
constant ν can be chosen as

(2.2) ν = sup
x∈U

µg(∇X|x),

where µg is the logarithmic g-norm of ∇X|x. For a linear operator A : TxM →
TxM , its logarithmic g-norm is defined as [20]

µg(A) = sup
0̸=v∈TxM

g(Av, v)

g(v, v)
.

In local coordinates x = (x1, . . . , xm) on M , we write the vector field as X =
Xi(x)∂i and the metric tensor g is represented by the matrix g(x) with elements
gij = g(∂i, ∂j). The operator ∇X has the matrix representation A(X) where
A(X)ki = ∂iX

k+Γk
ijX

j and where Γk
ij are the Christoffel symbols of the connection.

We can now formulate the logarithmic g-norm of ∇X pointwise as

µg(∇X) = maxλ
[
g

1/2(x)A(X)g−1/2(x) + g−1/2(x)A(X)⊤g
1/2(x)

]
,

i.e., the largest eigenvalue of the matrix in square brackets, see also [19].

Theorem 2.2. Let (M, g) be a Riemannian manifold, U ⊂ M a geodesically convex
set, and let X be a vector field on M satisfying the monotonicity condition (2.1) on
U with a constant ν ∈ R. Suppose that for any x0, y0 ∈ U , there is a t∗ > 0 such
that exp(tX)x0 and exp(tX)y0 exist and are contained in U for every t ∈ [0, t∗].
Then, it holds that

(2.3) d (exp(tX)x0, exp(tX)y0) ≤ d (x0, y0) e
νt for every t ∈ [0, t∗].

Remark 2.3. The condition that the set U is geodesically convex can be weakened
by introducing the notion of a K-reachable set as in [47].

Proof. The construction for the proof is illustrated in Figure 1. Since U is geodesi-
cally convex, there is a unique minimizing geodesic γ(s) ∈ U connecting x0, y0 ∈ U ,
with γ(0) = x0 and γ(1) = y0. We will be using the notation Γ(s, t) := exp(tX)γ(s),
as in [33, Chapter 6], and Γ(s, t) is contained in U . For a fixed t ∈ [0, t∗], consider
the length ℓ(t) of the curve s 7→ Γ(s, t), s ∈ [0, 1], that is

(2.4) ℓ(t) =

∫ 1

0

⟨∂sΓ(s, t), ∂sΓ(s, t)⟩
1
2 ds,

and we have d(x0, y0) = ℓ(0). Let

(2.5) S(s, t) := ∂sΓ(s, t), T (s, t) := ∂tΓ(s, t).
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S(s, t)

Figure 1. Construction for the proofs of Theorems 2.2 and 3.1.

We will use that

DtS(s, t) = DsT (s, t) = DsX|Γ(s,t),
following from the symmetry lemma [33, Lemma 6.2]. Differentiating with respect
to t, using the chain rule and the properties of the Levi-Civita connection, we have

dℓ(t)

dt
=

∫ 1

0

∂t⟨S(s, t), S(s, t)⟩
2∥S(s, t)∥

ds =

∫ 1

0

⟨DtS(s, t), S(s, t)⟩
∥S(s, t)∥

ds

=

∫ 1

0

⟨DsT (s, t), S(s, t)⟩
∥S(s, t)∥

ds =

∫ 1

0

⟨DsX(Γ(s, t)), S(s, t)⟩
∥S(s, t)∥

ds

≤
∫ 1

0

ν⟨S(s, t), S(s, t)⟩
∥S(s, t)∥

ds = ν ℓ(t),

where the last inequality follows from the assumption that X satisfies the mono-
tonicity condition (2.1). By Gronwall’s lemma, we obtain the inequality

ℓ(t) ≤ ℓ(0)eνt, for each t ∈ [0, t∗],

and conclude that

d(exp(tX)x0, exp(tX)y0) ≤ ℓ(t) ≤ ℓ(0)eνt = d(x0, y0)e
νt.

□

Remark 2.4. Choosing ν = sup{∥∇X|p∥ : p ∈ Γ([0, t∗] × [0, 1])} leads to a bound
similar to the one in Theorem 1.2 by Kunzinger et al. in [32].

The next definition is inspired by the definition of contracting systems by Simpson-
Porco and Bullo in [47].

Definition 2.5 (Non-expansive system). Let (M, g) be a Riemannian manifold.
Let U ⊆ M be an open, geodesically convex set and X ∈ X(M). If

(i) X is forward complete on U ,
(ii) U is forward X-invariant,
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(iii) X satisfies the monotonicity condition (2.1) on U with ν ≤ 0,

the quadruple (U , X, g, ν) is called a non-expansive system.

We are now ready to give the definition of a B-stable numerical method on
Riemannian manifolds.

Definition 2.6 (B-stability). Let (M, g) be a Riemannian manifold and let ϕh,X be
a numerical method on M . Suppose that for any non-expansive system (U , X, g, ν)
on M , it holds that

(i) ϕh,X is forward complete on U , i.e., ϕh,X is well defined for all h > 0, and
(ii) U is forward ϕh,X -invariant for all h > 0.

If

d(ϕh,X(x0), ϕh,X(y0)) ≤ d(x0, y0), x0, y0 ∈ U , h > 0,

then ϕh,X is called B-stable.

3. Numerical integrators on manifolds and B-stability

Geodesic Explicit Euler (GEE) method. The simplest numerical method defined on
a Riemannian manifold is the Geodesic Explicit Euler method

(3.1) yn+1 = expyn
(hX|yn

) ,

that can not be unconditionally stable, but will be used for comparison in the
numerical experiments in Example 3.2.
Geodesic Implicit Euler (GIE) method. We consider the following definition of the
Implicit Euler method in a Riemannian manifold

(3.2) yn = expyn+1

(
−hX|yn+1

)
.

This reduces to the classical implicit Euler method when the manifold is the Eu-
clidean space.
Geodesic Implicit Midpoint (GIMP) method. Similarly, we consider the implicit
midpoint rule on a Riemannian manifold:

(3.3)

yn = expȳ

(
−1

2
hX|ȳ

)
,

yn+1 = expȳ

(
1

2
hX|ȳ

)
.

This method can be found in Zanna et al. [50] for the case of Lie group integrators.
It is a symmetric method, but it is not generally symplectic. In [39] a symplectic
method was found for products of 2-spheres, (S2)d, that happens to be a time
reparametrization of (3.3). It is called the spherical midpoint method (SPHMP).
Applied to a single copy of S2 it reads in Cartesian coordinates

(3.4) yn+1 = yn + hX|ȳ, ȳ =
yn + yn+1

∥yn + yn+1∥
.

3.1. The case with non-positive sectional curvature. In the next theorem,
we prove the B-stability of the GIE method on Hadamard manifolds, i.e., manifolds
with non-positive sectional curvature.

Theorem 3.1 (B-stability of the GIE method). Let (M, g) be a Riemannian mani-
fold with non-positive sectional curvature. Then, the GIE method (3.2) is B-stable.
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Proof. Let (U , X, g, 0) be a non-expansive system of ODEs, and consider ϕh,X with
step size h > 0. Let γ0(s), s ∈ [0, 1] be a curve in U such that γ0(0) = x0 ∈ U and
γ0(1) = y0 ∈ U , and set γ1(s) = ϕh,X (γ0(s)). By assumption γ1(s) is well defined
and contained in U . Consider the one-parameter family of curves

Γ(s, t) := expγ1(s)(−thX|γ1(s)).

We have γ1(s) = Γ(s, 0) and γ0(s) = Γ(s, 1). Now, using as earlier the notation
S(s, t) := ∂sΓ(s, t), T (s, t) := ∂tΓ(s, t), we have

ℓ(t) =

∫ 1

0

⟨S(s, t), S(s, t)⟩ 1
2 ds and

dℓ

dt
(t) =

∫ 1

0

∂t⟨S(s, t), S(s, t)⟩
2∥S(s, t)∥

ds.

Let f(t) = 1
2∂t⟨S(s, t), S(s, t)⟩ = ⟨DtS(s, t), S(s, t)⟩. We differentiate with respect

to t and apply the Jacobi equation together with the definition of sectional curvature
and obtain

(3.5)

df

dt
(t) =

〈
D2

tS(s, t), S(s, t)
〉
+ ∥DtS(s, t)∥2

= −
〈
R
(
S(s, t), T (s, t)

)
T (s, t), S(s, t)

〉
+ ∥DtS(s, t)∥2

= −K(S, T )
(
∥S∥2 ∥T∥2 − ⟨S, T ⟩2

)
+ ∥DtS(s, t)∥2 .

Here R is the Riemannian curvature tensor and K is the sectional curvature. Since
by assumption K(S, T ) ≤ 0 it follows that df

dt (t) ≥ 0 for t ∈ [0, 1]. By the symmetry
lemma [33, Lemma 6.2], we get

DtS(s, t)|t=0 = DsT (s, 0) = −hDsX|γ1(s).

Then
f(0) = −h

〈
DsX|γ1(s), S(s, 0)

〉
≥ 0,

since X satisfies the monotonicity condition with ν = 0. So, we have

f(t) = f(0) +

∫ t

0

df

dτ
(τ) dτ ≥ 0,

which allows us to conclude that dℓ
dt (t) ≥ 0. Thus

(3.6) length (γ1(s)) = ℓ(0) ≤ ℓ(1) = length (γ0(s)) .

For any given ε > 0, we have ℓ(1) < d(γ0(0), γ0(1))+ ε. By (3.6) and the definition
of distance we obtain

d(γ1(0), γ1(1)) ≤ ℓ(0) ≤ ℓ(1) ≤ d(γ0(0), γ0(1)) + ε.

Since ε is arbitrary, the condition for B-stability is satisfied. □

Example 3.2. [Sn++] The space Sn++ of symmetric positive definite matrices is a
well-known example of a manifold with negative sectional curvature. Its tangent
space at a point A, denoted by TASn++, can be identified as the set of n×n symmetric
matrices. Sn++ is equipped pointwise with the metric

(3.7) gA(U, V ) = trace
(
A−1UA−1V

)
,

where A ∈ Sn++ and U, V ∈ TASn++, [43, 45].
The manifold Sn++ can be used as a model space for simple beam models, such

as the Elastica [51], or in diffusion tensor magnetic resonance imaging (DT-MRI)
[8,13,22,44], via 3D tensors, i.e., 3× 3 SPD matrices. Another interesting applica-
tion is the segmentation and recognition of images and videos represented by SPD



8 M. ARNOLD, E. CELLEDONI, E. ÇOKAJ, B. OWREN, AND D. TUMIOTTO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
step size h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
di

st
an

ce
 d

GEE
GIE
GIMP
Exact solution

Figure 2. Riemannian distance of two solutions after one step
plotted for increasing values of the step size h with the same initial
values.

matrices, [1, 29, 49]. Such applications usually involve averaging SPD matrices, for
example, to collect noisy measurements of the object under consideration. In Sn++,
a suitable mean was proposed by Karcher [31]. Given k matrices Y1, . . . , Yk ∈ Sn++,
we search for a matrix X∗ ∈ Sn++, the Karcher mean, such that

(3.8) X∗ = argmin
X∈Sn++

1

2

k∑
j=1

d2 (X,Yj) ,

i.e., X∗ is such that grad1
2

∑k
j=1 d

2 (X,Yj) = 0. Here, d(X,Y ) is the Riemannian

distance between X and Y given as [23]

(3.9) d(X,Y ) =

√√√√ n∑
i=1

log2
(
λi

(
X− 1

2Y X− 1
2

))
,

with λi

(
X− 1

2Y X− 1
2

)
being the ith eigenvalue of X− 1

2Y X− 1
2 , i = 1, . . . , n, and

grad is the Riemannian gradient found e.g. in [23, Lemma 2]

(3.10) grad
1

2
d2(X,Y )|X = −X

1
2 log

(
X− 1

2Y X− 1
2

)
X

1
2 .

For S++
n , the exponential map is explicitly known in terms of the matrix exponential

and matrix square roots as

expA(tV ) = A
1
2 etA

− 1
2 V A− 1

2 A
1
2 ,

for A ∈ Sn++ and V ∈ TASn++. The objective function f(X) = 1
2

∑k
j=1 d

2 (X,Yj) is

defined as the geometric mean of symmetric positive definite matrices in [40] and
[4], and is known to have a unique minimizer X∗ as in (3.8), [31]. There is no known
closed-form solution for (3.8) and usually, iterative methods are used to compute
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the Karcher mean.
In Figure 2, the Riemannian distance of two solutions after one step is plotted
for increasing values of the step size h with the same pair of initial values. One
can observe the non-expansive behavior of the GIE and the GIMP method and
the expansive behavior of the Geodesic Explicit Euler (GEE) method. The GEE
solution is discontinued at h = 0.6 for presentation purposes. The exact solution is
calculated with strict tolerance by odeint of scipy.integrate in Python.

3.2. The case with positive sectional curvature: The 2-sphere. In this
section, we consider systems on the 2-sphere S2 with the standard metric. We
show through an example that the GIE and GIMP methods fail to be B-stable.

3.2.1. Killing vector fields. A Killing vector field is a vector field X such that the
Lie derivative LXg = 0. This implies that

0 = (LXg)(Y,Z) = X⟨Y,Z⟩ − ⟨LXY,Z⟩ − ⟨Y,LXZ⟩
= ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ − ⟨∇XY −∇Y X,Z⟩ − ⟨Y,∇XZ −∇ZX⟩
= ⟨∇Y X,Z⟩+ ⟨∇ZX,Y ⟩,

so that the monotonicity condition (2.1) holds with ν = 0 for any such vector field.
In this sense one could say that the Killing vector fields represent a borderline case
for non-expansive systems.

3.2.2. A Killing vector field on S2. Consider the vector field X(y) = e3 × y, which
describes rotations on the 2-sphere around the z-axis. Using Cartesian coordinates,
the GIE method (3.2) on the 2-sphere takes the form

(3.11) y0 = expy1
(−hX|y1

) = cosα · y1 −
sinα

α
· (hX|y1

), α = ∥ − hX|y1
∥.

We apply (3.11) to two initial points lying on the open northern hemisphere and
measure the distance between the points for increasing values of the time step. The
distance between two points y0, z0 ∈ S2 is calculated as

(3.12) d(y0, z0) = arccos (y0 · z0).
Figure 3 (left) shows one step performed with the GIE method starting from two

x 101 y

1
0

1

z

1

0

1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
step size h

0.0

0.2

0.4

0.6

0.8

1.0

di
st

an
ce

 d

Figure 3. One step of GIE method for two initial points with
increasing step size h (left) and their Riemannian distance (right).
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initial points with increasing step size h. In Figure 3 (right), the distance between
the trajectories is shown as a function of h. As can be seen from the distance curve,
the GIE method shows an expansive behavior, and it is in fact small values of the
step size that cause problems. In Figure 4, the SPHMP and the GIMP methods
are tested on the same vector field. Both methods are a reparametrization of the
exact solution for this problem.
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Figure 4. Top: One step of SPHMP (3.4) (left) and GIMP (3.3)
(right) method for the same two initial points with increasing step
size h. Bottom: Riemannian distance of two numerical solutions
after one step plotted for increasing values of the step size h.
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A non-uniqueness issue. It is well-known from the theory of implicit Runge–Kutta
methods that the conditions for the uniqueness of the solution to the implicit equa-
tions that must be solved in each time step involve the one-sided Lipschitz condi-
tion. In the monograph by Hairer and Wanner [24] a precise result is given, and
we include it here for completeness.

Theorem 3.3 (Theorem 14.4 in [24]). Consider a differential equation satisfying
a one-sided Lipschitz condition with constant ν. If the Runge–Kutta matrix A is
invertible and hν < α0(A

−1), then the system of equations to be solved in each time
step possesses at most one solution.

We note that α0 is a function that depends only on the Runge–Kutta coefficients,
and it is known that α0(A

−1) = 1 for the implicit Euler method. Thus, for ν ≤ 0
there is a unique solution for every h > 0. But the Killing vector field example on
S2 shows that this result is not generally true in Riemannian manifolds. In fact,
for this example, we see from (3.11) that the last component is decoupled from the
other two. Writing for simplicity y30 =: z0 and y31 =: z we need to solve the scalar
equation

(3.13) z0 = cos
(
h
√
1− z2

)
z =: q (z, h)

with respect to z. One has q (0, h) = 0 for all h, and q (zk, h) = 0 for zk =

±
√

1−
(
π
h

)2 ( 1
2 + k

)2
for any k ∈ N such that

(
π
h

)2 ( 1
2 + k

)2 ≤ 1. In fact, for h ∈
I0 =

(
0, π

2

]
, q (z, h) has precisely one zero, and for h ∈ Im =

(
(2m− 1) π

2 , (2m+ 1) π
2

]
,

m ≥ 1, q (z, h) has 2m + 1 zeros in [−1, 1]. All the zeros are simple and therefore
there is a sign change in q(z, h) at each of them. It follows that ∃ϵ > 0 such that if
h ∈ Im and |z0| < ϵ, then (3.13) has at least 2m + 1 solutions. One easily verifies
that for each of these values of the last component, there is a unique solution for
the first two components. We illustrate the structure of the solution in Figure 5.
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Figure 5. A bifurcation diagram for solutions to the equation
(3.13).
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3.2.3. Relation to other Lie group integrators. For some homogeneous manifolds
M = G/H, with H a closed Lie subgroup of the Lie group G, the Geodesic Implicit
Euler method (3.2) is equivalent to the implicit Lie-Euler method for a specific
choice of isotropy, [11,41], i.e., of the map a : G/H → g which is used to define the
Lie group method:

(3.14) yn+1 = exp(ha(yn+1)) yn,

with g the Lie algebra of G and exp : g → G the Lie group exponential. See [30]
for an introduction to Lie group methods. The following example on S2 illustrates
the impact of the choice of isotropy on the approximation of the solution obtained
via (3.14).

Example 3.4. Consider a vector field on the 2-sphere S2 = SO(3)/SO(2). In
Cartesian coordinates, embedding S2 in R3, the ODE can be written as

(3.15) ẏ = a(y)× y,

where × denotes the vector cross product. By the identification of (R3,×) with the
Lie algebra so(3), we have that a : S2 → R3 ≃ so(3). The action of the Lie group
exponential exp : R3 ≃ so(3) → SO(3) on a vector p ∈ R3 takes the simple form:

exp(a)p = p+
sin(α)

α
a×p− 1− cos(α)

α2
a×(a×p), α = ∥a∥, a ∈ R3 ≃ so(3).

We remark that for a given vector field X(y) = a(y) × y, the choice of a(y) is not
unique. In fact, we can replace a(y) with its projection orthogonal to y without
changing X(y), and similarly replacing a(y) by a(y)+ c(y) y, with c : S2 → R, does
not alter X(y):

ẏ = a(y)× y = (a(y) + c(y)y)× y, y⊤a(y) = 0.

On the other hand, the numerical approximation obtained by the method (3.14),

yn+1 = exp(h(a(yn+1) + c(yn+1) yn+1))yn,

does depend on the choice of c(y), see also Figure 6. Similarly, we cannot expect
that in general different Lie group integrators have the same stability behavior when
applied to the same vector field X.
In Figure 6 we illustrate the isotropy issue by applying the Implicit Lie–Euler
method to the problem

(3.16) ẏ = e3 × y = (e3 + (c− 1)y3 y)× y

for c ∈ [−2, 2] and step size h = 2. This means that c = 0 corresponds to the GIE
method, whereas for c = 1 the exact solution is reproduced. We observe that the
difference in solutions may expand, contract or stay constant, depending on the
choice of isotropy parameter c.

4. A bound for the global error

For the next result, we first consider an initial value problem on the finite-
dimensional Riemannian manifold (M, g),

(4.1)

{
ẏ = X|y
y(0) = y0 ∈ M

,
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Figure 6. Left: The Implicit Lie-Euler method applied to (3.16)
with stepsize h = 2 and c ∈ [−2, 2]. The dashed curve shows the
arrival point parametrized by c. The solid line depicts the exact
solution. Right: the distance between two solutions for increasing
stepsizes with three different choices of isotropy parameter c ∈
{0, 1, 2}.

where X is a smooth vector field, y0 ∈ M is the initial value. The following theorem
is a generalization of Theorem 2 from [9], where we use the constant ν from the
monotonicity condition rather than the operator norm of ∇X.

Theorem 4.1. Let (M, g) be a Riemannian manifold and fix y0 ∈ M . Let Uy0
⊂ M

be a geodesically convex set and X a vector field on M satisfying the monotonicity
condition (2.1) on Uy0 with constant ν ∈ R. Let y(t) = exp(tX)y0 be defined and
contained in Uy0 for t ∈ [0, t∗], t∗ > 0. Let ϕh,X be a numerical method yj+1 =
ϕh,X (yj) , j = 0, . . . , k − 1, well defined and contained in Uy0

for any h such that
0 < h ≤ h∗ ≤ t∗, t∗ = hk, whose local error can be bounded for some p ∈ N and
C ∈ R as

(4.2) d (exp(hX)y, ϕh,X(y)) ≤ Chp+1 for all y ∈ Uy0
, h ∈ (0, h∗].

Then, for all k > 0, the global error is bounded as

(4.3) d (y(t∗), yk) ≤


C
ν

(
et

∗ν − 1
)
hp for ν > 0

Ct∗hp for ν = 0,
Ce−νh

ν

(
et

∗ν − 1
)
hp for ν < 0

h ∈ (0, h∗].

Proof. Let us denote the global error as Ek := d (y(t∗), yk). For j = 0, . . . , k − 1,

Ej+1 ≤ d (exp(hX)y(jh), exp(hX)yj) + d (exp(hX)yj , ϕh,X (yj))(4.4)

≤ ehνd (y(jh), yj) + d (exp(hX)yj , ϕh,X (yj))(4.5)

= ehνEj + d (exp(hX)yj , ϕh,X (yj))

≤ ehνEj + Chp+1.(4.6)

(4.4) is the triangle inequality, where the first term is the error at jh propagated over
one step and the second term is the local error. (4.5) is obtained via a Grönwall-
type inequality of [32] for the first term. Using the local error estimate (4.2) for



14 M. ARNOLD, E. CELLEDONI, E. ÇOKAJ, B. OWREN, AND D. TUMIOTTO

the second term we obtain the recursion in (4.6). Considering t∗ = hk, ν ̸= 0 and
summing over j = 1, . . . , k − 1, we obtain

(4.7) Ek ≤ C
et

∗ν − 1

ehν − 1
hp+1.

For ν > 0, eνh − 1 > νh and (4.7) becomes equivalent to the first estimate in (4.3).
For ν < 0, 1 − e−νh < νh and (4.7) becomes equivalent to the third estimate in
(4.3). □

Remark 4.2. In cases where the monotonicity constant ν ≪ 0, in the sense that
one can assume νh → −∞ as h → 0, see e.g. [24, Ch IV.15], one gains an order of
convergence such that the global error essentially equals the local error.

5. Conclusions and further work

The notion of B-stability proposed in [6] for Euclidean spaces has been general-
ized to Riemannian manifolds. Building on the work by Simpson-Porco and Bullo
[47] on contraction systems in Riemannian manifolds, we expressed the B-stability
condition in terms of the Riemannian distance function. For this first study, only
geodesic versions of the implicit Euler method and the implicit midpoint rule were
considered. We proved that in the Riemannian setting, the geodesic implicit Eu-
ler method is B-stable for manifolds of non-positive sectional curvature, but not
necessarily in positively curved spaces. Through numerical experiments on the 2-
sphere, one finds strong evidence that the GIE method is indeed not B-stable in
general. Another observation was that, contrary to what has been proved in Eu-
clidean spaces, the nonlinear equations associated with the GIE method do not have
a unique solution for non-expansive systems. Finally, we showed that the mono-
tonicity constant can be used to obtain improved global error estimates compared
to [9, 16].

Many open questions remain for the B-stability properties of numerical methods
applied to problems on Riemannian manifolds. There exist many classes of numer-
ical integrators that could be analyzed in this setting. In mechanical engineering,
most of the problems of interest are set in manifolds of positive sectional curva-
ture, such as SO(d), SE(d) d = 2, 3, S2, TS2 and direct or semidirect products
of these. It may also be of interest to consider explicit integrators, in which case
B-stability must be replaced by some conditional form of stability, such as the circle
contractivity proposed in [18].
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[2] M. Arnold and O. Brüls, Convergence of the generalized-α scheme for constrained mechanical

systems, Multibody System Dynamics 18 (2007), no. 2, 185–202.
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